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ABSTRACT

The recent discovery of giant magnetocaloric effects (MCE) at around room tem-

perature has triggered the possibility of the development of a magnetic refrigerator

that operates at ambient temperature. One of the main characteristics of giant

magnetocaloric materials is the existence of a first order magnetic phase transition

coupled with variations of the lattice parameter. This causes a huge entropy change

which can be utilized practically. The martensitic transformation in these mate-

rials can be driven by either sweeping the magnetic field or the temperature and

this property provides the flexibility to design thermodynamic cycles. Therefore,

investigation of the entropy and the cooling power generated across this martensitic

transition becomes important for practical purposes. However, the details of the

correlation between the martensitic transition and magneto-elastic coupling in giant

MCE materials have not been completely understood.

Among new magnetocaloric materials, Ni-Mn-In Heusler alloys have attracted

considerable attention as novel rare-earth free magnetic refrigerants. In order to

fully understand the properties of the martensitic phase transition in Ni-Mn-In

Heusler alloys and its influence on the MCE, we studied four well-characterized ma-

terials with nominal compositions Ni50Mn36In14, Ni50Mn35.5In14.5, Ni48Mn35In17 and

Ni48Mn38In14, which differ in that the former two materials exhibit a paramagnetic to

antiferromagnetic transition, whereas the others exhibit an additional ferromagnetic

transition. We performed magnetization and field-dependent calorimetry measure-

ments. The results provide a firm basis for the analytic evaluation of field-induced

entropy changes and relative cooling power in these and related materials. We find

that two of the samples (Ni50Mn36In14 and Ni50Mn35.5In14.5) include an additional
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entropy contribution beyond that due to magnetic spins due to the magneto-elastic

coupling, which can be explained in terms of the renormalization of the phonon con-

tributions. We also showed that the magnetization and calorimetry results give a

consistent measure of antiferromagnetic plus superparamagnetic behavior of these

materials to a model with Mn showing local moment behavior. The analysis pro-

vides a specific picture of the superparamagnetic properties of Ni50Mn36In14 and the

spin canting behavior of Ni50Mn35.5In14.5. Further analysis of the relative cooling

power provides a prediction which is shown to give a firm foundation for under-

standing the practical behavior of compositions with ferromagnetic and martensitic

transformation nearly coinciding.
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NOMENCLATURE

MCE Magnetocaloric effect

Cp Specific heat under a constant pressure p

Cv Specific heat under a constant volume v

RCP Relative Cooling Power

kB Boltzmann constant

R Gas constant

Tc Curie temperature

TN Néel temperature

TF Fermi temperature

µB Bohr magneton

PPMS Physical Property Measurement System
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1. MAGNETOCALORIC EFFECT

1.1 Introduction

Magnetocaloric effect (MCE) materials, first discovered in 1881 [1], undergo a

temperature and/or entropy change in response to a change in the external magnetic

field. Interest in the magnetocaloric effect has increased in recent decades because of

the prospects of creating magnetic cooling machines using these magnetic materials

as working refrigerants. Such materials are found to have potential applications as re-

frigerants in solid-state magnetic refrigerators near room temperature and have been

employed on a regular basis in low-temperature laboratory research [2]. Magnetic

refrigeration technology as a new alternative to the conventional vapor compression

approach has also grown considerably, coinciding with rising international concerns

about global warming due to an ever increasing energy consumption [3].

In 1976, the first design of a magnetic refrigerator operating near room temper-

ature was developed by using Gadolinium [4]. Searching for magnetocaloric materi-

als for room-temperature magnetic refrigeration has attracted significant attention

only since Pecharsky and Gschneidner discovered a giant magnetocaloric effect in

Gd5(Si,Ge)4 in 1997 [5] with a first-order transition below room temperature. A num-

ber of other magnetocaloric materials with a first-order magnetic phase transition

have been intensively explored, such as MnAs-based alloys [6], La(Fe1−xSix)13 and

their hydrides [7, 8], MnFeP1−xAsx and Fe2P-based alloys [9–11], NiMn-based alloys

[12–14], and MnCoGeBx [15]. In these materials, a first-order structural transition

in the vicinity of the magnetic phase transition enhances the magnetocaloric effect.

Moreover, the maximum isothermal entropy change is often significantly greater than

that of the benchmark material, Gd, which presents a second-order magnetic phase

1
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Figure 1.1: The temperature dependences of the total entropy of a MCE material in
two different fields (H1 and H2). ∆SM and ∆Tad are shown schematically.

transition.

MCE can be characterized by the entropy change or by the temperature change

of the material caused by a change of the external magnetic field. The former is the

isothermal magnetic entropy change (∆SM ) caused by scanning the magnetic field

isothermally, while the latter is the adiabatic temperature change (∆Tad), caused by

changing the magnetic field adiabatically [16–19].

1.2 Magnetic Refrigeration

Refrigerators of the same general type as those that we know today first came

about in the early 20th century. These operate with the vapor-compression method,

initially using steam engines with open drive compressors operating with dangerous

and environmentally unfriendly refrigerants. In 1930, systems using CFCs (chloroflu-

orocarbons) for refrigeration were developed and rapidly dominated the market. Still

later research revealed that the use of uncontrolled CFCs was significantly hazardous

to the stratospheric ozone layer and due to the Montreal protocol, the use of these

2



was substituted by that of HFCs (hydrochlorofluorocarbons). Although these do not

damage the ozone layer, they contribute to the greenhouse effect and to the rise of

the earth’s average temperature and.

Magnetic refrigeration is an emerging technology. It is based on the magne-

tocaloric effect in solid-state refrigerants. Compared with conventional vapor com-

pression systems, magnetic refrigeration can be an environment-friendly and efficient

technology. In 1997, Ames Laboratory and Astronautics demonstrated a proof-of-

principle magnetic refrigerator competitive with conventional gas compression cool-

ing [3]. Since then, over 25 magnetic cooling units have been built and tested all over

the world. Contrarily to vapor compression, since this technology resorts to materi-

als in solid form and does not use hazardous gases, and is able to reach a maximum

efficiency of about 60% [2, 20] of the Carnot limit in 5 T, such refrigerators have a

bright promise for the future.

In a magnetic refrigerator, the refrigeration process occurs due to the applica-

tion/removal of a magnetic field in the magnetic refrigerant. In addition, water or

fluids not harmful to the environment can be used for heat exchange. In order to

extract heat from a cold reservoir and release it to a heat sink, the magnetic refriger-

ant should work in a given thermodynamic cycle. The main thermodynamic cycles

suitable to implement magnetic refrigeration are the Carnot cycle, Stirling cycle,

Ericsson cycle and Brayton cycle. Among these, the Ericsson and Brayton cycles are

most applicable for room temperature magnetic refrigeration and may easily achieve

a large temperature span [20]. Magnetic Ericsson and Brayton thermodynamic cycles

are illustrated in Fig. 1.2. The Ericsson cycle consists of two isothermal processes

and two isofield processes while the Brayton cycle consists of two adiabatic processes

and two isofield processes.
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Figure 1.2: Schematic temperature-dependent entropy diagram of (a) Ericsson cycles
(b) Brayton cycles used for magnetic refrigeration without a first order transition.

1.3 Magnetocaloric Materials

Recent extensive reviews of giant MCE materials systems have been presented

[21–23]. In this section, I will attempt to introduce some of the giant MCE systems

of most interest, and give a general idea of their characteristics.

1.3.1 Gd(Ge1−xSix)4

The Gd(Ge1−xSix)4 alloys (0.3 ≤ x ≤ 0.5), first discovered in 1997, are the first

of the so-called “giant” MCE alloys [5, 24, 25] as shown in Fig. 1.3. Large magne-

tocaloric effects are observed in these alloys as the result of a magneto-structural

phase transition between a low-temperature ferromagnetic phase and a high temper-

ature paramagnetic or antiferromagnetic phase. At temperatures near the magneto-

structural transition, the presence of a magnetic field stabilizes the high magneti-

zation (lower temperature) phase, shifting the phase transition to higher tempera-

tures. This results in an entropy change in the material related to the latent heat
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Figure 1.3: The heat capacity of Gd5Si2Ge2 as a function of temperature and mag-
netic field. The inset shows total entropy of Gd5Si2Ge2 as a function of temperature
and magnetic field from 250 to 350 K as determined from the heat capacity. Reprinted
with permission from [5].
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Figure 1.4: Schematic view of (a) the L21 structure and (b) the underlying cubic
sublattice [31].

of the phase transition [26]. Although the magnetic entropy changes measured in

Gd(Ge1−xSix)4 alloys remain among the largest among MCE materials (up to 45 J

/kg K at µ0H = 5T) [27], the material suffers from significant hysteresis [28] and

kinetic [29, 30] limitations associated with the first-order phase transition. This

will also influence the optimal operation-frequency and the efficiency of a magnetic

refrigerator.

1.3.2 Ni-Mn-Z Heusler Alloys

Among new magnetocaloric materials, an interesting class is Heusler materials.

It is these materials on which this dissertation focuses. These are ordered inter-

metallics with the generic formula X2YZ in which the three components occupy the

crystallographic non-equivalent positions of an L21 structure. In this formula, X

and Y are 3d elements and Z is a group IIIA-VA element with positions as shown

in Fig. 1.4. These alloys often show magnetism, which is due to the X and/or Y

elements. Many Heusler alloys undergoing magneto-structural transitions have been

reported to have a large MCE around the transition temperature [5, 7]. These mag-

netic and metamagnetic shape-memory alloys have attracted considerable attention
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as candidates for novel rare-earth free magnetic refrigerants [12, 14, 23, 32–35]. A

common characteristic feature of many Heusler alloys is that their magnetoelastic

interaction substantially affects the phase transformations and other properties.

In the important Ni-Mn-based family (Ni-Mn-Z, Z = Ga, In, Sn, Sb), the mag-

netic moment is confined primarily to the Mn atoms [36] and a giant MCE due to

the first order martensitic transition has been reported [12, 37–39]. In inverse MCE

materials, an increase in applied field causes a decrease in the temperature of the ma-

terial while the opposite temperature response is typically observed in conventional

MCE materials. The giant conventional MCE was first reported in Ni-Mn-Ga [40, 41]

while inverse MCEs have been observed in the Ni-Mn-X (X=Sn, Sb, In) Heusler alloy

system [12, 42]. Some of the representative experimental magnetization curves for

Ni-Mn Heusler alloys from the literature are shown in Fig. 1.5.

1.3.3 MnAs Based Compounds

MnAs exists in two distinct crystallographic structures [48], similar to Gd5Ge2Si2.

At low and high temperatures the hexagonal NiAs structure is found whereas for a

narrow temperature range of 307-393 K the orthorhombic MnP structure exists. The

high temperature transition in the paramagnetic region is second order. The low tem-

perature transition is a combined the first-order structural and ferro-paramagnetic

transition with large thermal hysteresis. The change in volume at this transition

amounts to 2.2% [49]. Very large magnetic entropy changes are observed at this

transition, between 307 K and 317 K [6, 50]. Substitution of Sb for As leads to a

lowering of Tc and the reduction of hysteresis [51, 52]. The materials costs of MnAs

are quite low. However, processing of As containing alloys is complicated due to

the biological activity of As. In the MnAs alloy, As is covalently bound to the Mn

and would not be easily released into the environment. However, this should be ex-
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Figure 1.5: Temperature dependences of the magnetizations of Ni50Mn50−xXx (X =
Ga [43], Sn [44], In [45], and Sb [46]) in a magnetic field of 5 T. The symbols in the
form of triangles, squares, circles, and asterisks correspond to the alloys with Z =
Ga, Sn, In, and Sb, respectively. Reprinted with permission from [47].
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Figure 1.6: The isothermal entropy change in La(Fe13−xSix) as a function of x for a
field change of 0 to 20 kOe. Reprinted with permission from [55].

perimentally verified, especially because in a non-stoichiometric alloy second phases

frequently form that may be less stable.

1.3.4 La(Fe,Si)13 and Related Compounds

Another interesting type of material is rare-earth-transition-metal compounds

crystallizing in the cubic NaZn13 type of structure. The giant MCE in the itiner-

ant electron metamagnet La(Fe11.4Si1.6) phase was first reported by Hu et al [7]. It

exhibits a large volume change of 1.5% and a substantial hysteresis as a function

of field or temperature [53]. Further investigations revealed that the entropy is en-

hanced with lower Si content (down to La(Fe11.8Si1.2)) but the transition temperature

decrease from 195 K to 180 K. On the other hand, increasing the Si content destroys

the first-order transition and raises TC to 220 K at the compositions La(Fe11.0Si2.0),

where the magnetic transition is purely second order [22, 54] as shown in Fig. 1.6.

From the materials cost point of view the La(Fe,Si)13 type of alloys appear to be
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very attractive. La is the cheapest of the rare-earth series, and both Fe and Si are

available in large amounts. On the other hand, the transformation including such a

volume change is performed very frequently the material will definitely become very

brittle and probably break into smaller grains. This can have a distinct influence

on the corrosion resistance of the material and thus on the lifetime of a refrigerator.

The suitability of this material definitely needs to be tested further.

1.4 Experimental Field-induced Isothermal Entropy

Generally speaking, the entropy of a solid is made up of contributions from the

magnetic ions, crystalline lattice, and conduction electrons. For the sake of simplicity,

we consider that the total entropy of a solid can be written as a sum of these three

contributions,

Stot(T,B) = Smag(T,B) + Slat(T ) + Sel(T ) (1.1)

where Smag is the magnetic contribution including the variation of the magnetic

field, Slat is the contribution from the crystalline lattice, and Sel is the contribution

from the conduction electrons. We suppose here that only the magnetic part of the

entropy depends on the magnetic field.

From the experimental point of view, the entropy curve can be determined from

heat capacity measurements using the thermodynamic relation ∆S =
∫

C(T )/TdT ,

where C(T ) is the heat capacity. The isothermal entropy change upon magnetic-field

variation can be obtained from the heat capacity vs temperature curves as [56]

∆S(T,B0 → B1) =

∫ T

0

Cp(T
′, B1)− Cp(T

′, B0)

T ′
dT ′. (1.2)

The field-induced entropy change can also be determined indirectly from the

measurement of M versus H with sufficiently small temperature increments. The
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field-induced entropy change is then obtained as [57, 58]

∆S(T,B0 → B1) = lim
∆T→0

1

∆T

[
∫ B1

B0

M(T +∆T,B)dB −

∫ B1

B0

M(T,B)dB

]

. (1.3)

In order to characterize MCE materials, isothermal magnetic measurements and

field dependent specific heat measurements are crucial. Understanding the hysteresis

in the phase diagram is important when performing experiments and data analysis

because non-equilibrium thermodynamic states are involved. In our study [59], an

improved specific heat measurement technique has been applied to measure across

first order transitions successfully. Also, additional temperature cycles in the M−H

measurements were performed to ensure a consistent forward martensitic transforma-

tion for each measurement [59]. In a later chapter we will describe several traditional

experimental methods and a method for tracing the specific heat across the first or-

der phase transition by this analysis. In addition, in the experimental section we will

describe how to overcome the phase coexistence issue in magnetization measurements

in order to properly compare results from calorimetric measurements.

1.5 Relative Cooling Power

Another relevant quantity for evaluating the performance of MCE materials is the

amount of transferred heat between cold and hot reservoirs in an Ericsson magnetic

refrigeration cycle [60–62] as shown in Fig. 1.2. The relative Cooling Power (RCP)

is a measure of a MCE material’s ability to work as a heat/cool engine [21] and it is

commonly used to determine the performance of the MCE material.

Its mathematical formula can be expressed as,

RCP(H) =

∫ Thot

Tcold

∆S(T, 0 → H)dT, (1.4)
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where Tcold and Thot are the temperatures of the two reservoirs. Therefore we can

obtain RCP by calculating the area under the ∆S curves. Similar to the field-induced

isothermal entropy described in the previous section, RCP can be obtained by using

two distinct experimental methods. Here, I expand Eq. 1.4 by using Eq. 1.3 [63],

giving

RCP(H) =

∫ Thot

Tcold

∆S(T, 0 → H)dT =

∫ H

0

M(Thot, H
′)dH ′ −

∫ H

0

M(Tcold, H
′)dH ′

(1.5)

which indicates that RCP can be determined from isothermal magnetic measure-

ments at only two temperatures without knowing the details of the magnetic entropy

at points between. Thus, even if a broad temperature transition happens experimen-

tally, a large number of magnetic isotherms is not required. On the other hand,

since the entropy change data obtained from specific heat are usually much denser,

we can also calculate the entropy integral directly from the data. The comparison of

the results provide additional useful information for us to better understand MCE

materials.
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2. MAGNETIC ORDER AND TRANSITION IN MATERIALS

The macroscopic magnetic properties of materials are a consequence of magnetic

moments associated with individual electrons. It is known from experiment that

every material which is put in a magnetic field acquires a magnetic moment. The

dipole moment per unit volume defined as the magnetization will be denoted here by

the M . In many materials, M is proportional to the applied field H . The relation is

then written as

M = χH (2.1)

where χ is the magnetic susceptibility of the material. Generally, χ values are used to

categorize the material. In the following section, we will introduce paramagnetism,

antiferromagnetism, and ferromagnetism [64, 65].

2.1 Paramagnetism

For some solid materials, each atom possesses a permanent dipole moment by

virtue of incomplete cancellation of electron spin and/or orbital magnetic moments.

In the absence of an external magnetic field or interactions between atoms, the orien-

tations of these atomic magnetic moments are random, such that a piece of material

possesses no net macroscopic magnetization. These atomic dipoles are free to rotate,

and paramagnetism results when they preferentially align with an external field. The

magnetization response to magnetic fields and temperatures can be expressed as [66]

M = NgJµBBJ (x) (2.2a)

x =
gJµBH

kBT
(2.2b)
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BJ(x) =
2J + 1

2J
coth

(

2J + 1

2J
x

)

−
1

2J
coth

(

1

2J
x

)

, (2.2c)

where µB is the Bohr magneton, N is the total number of magnetic ions in the

specimen and BJ(x) is a Brillouin function.

2.2 Ferromagnetism

A small number of crystalline substances exhibits strong magnetic effects called

ferromagnetism [67]. Some examples of ferromagnetic substances are iron, cobalt,

nickel, gadolinium, and dysprosium. These substances contain permanent atomic

magnetic moments that tend to align parallel to each other even in a weak external

magnetic field. Once the moments are aligned, the substance remains magnetized

after the external field is removed at least within each domain. This permanent

alignment is due to exchange interactions between neighboring spin moments. In the

Heisenberg model, the Hamiltonian for atoms with the spin moments ~si (or ~sj) in

the magnetic field H can be written in the form

H = −
∑

i,j

Ji,j~si · ~sj − µBH
∑

i

~si (2.3)

with

Ji,j =















J if i, j are neighbors

0 otherwise.

(2.4)

When the temperature of a ferromagnetic substance reaches or exceeds a critical

temperature Tc, called the Curie temperature, the substance loses its residual mag-

netization. Below the Curie temperature, the magnetic moments are aligned and

the substance is ferromagnetic. Above the Curie temperature, the thermal agitation

is great enough to cause a random orientation of the moments, and the substance
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becomes paramagnetic. The magnetic response due to small magnetic fields in the

paramagnetic regime can be expressed as [68]

M =
µ0Ng2µ2

BJ(J + 1)

3kB

H

T − Tc
. (2.5)

2.3 Antiferromagnetism

In materials that exhibit antiferromagnetism, the magnetic moments of atoms

align in opposite directions on different sublattices. Generally speaking, antiferro-

magnetic order exists at sufficiently low temperatures, vanishing at and above a

certain temperature, the Néel temperature TN . Above TN , the material is paramag-

netic.

In the molecular field theory of antiferomagnetism, the system is composed of

two sublattices with an opposite and identical magnitude of magnetic moments The

induced magnetization M of the sublattice in the presence of an effective field H ′

caused by its immediate neighbors is paramagnetic. Hence, M is expressed as

M = NSgµBBS

(

gµBSH
′

kBT

)

, (2.6)

where BS is the Brillouin function. Note that each atom is neighbor to atoms pos-

sessing fields with opposite directions in an ideal antiferromagnetic material. Thus,

apart from a trivial additive constant, we may take [69, 70]

H ′ = −2|J | ·
∑

j

Sj/gµB = −2z|J | · S̄/gµB, (2.7)

where z is the number of neighbors possessed by a given atom and S̄ is the mag-

netization of a sublattice. The variation of S̄ with temperature can be obtained by

15



substituting the molecular field H ′ in place of H in Eq. 2.6. This gives the implicit

equation

S̄ = SBS

(

2|J |zSS̄

kBT

)

(2.8)

The solution S̄ of this equation is S as T → 0 but falls catastrophically to zero as T

approaches a critical temperature TN , given by

TN =
2

3
|J |zk−1

B S(S + 1). (2.9)

The magnetic internal energy and the magnetic or excess specific heat can be ob-

tained as

Cv =
dE

dT
=

d

dT

(

−N |J |zS̄2
)

= −2N |J |zS̄
dS̄

dT
= −3NkB

TN

S(S + 1)
S̄
dS̄

dT
(2.10)

and the numerical results for different S are illustrated in Fig. 2.1. Note that the spe-

cific heat contributions due to ferromagnetism and antiferromagnetism are actually

identical based on the molecular field theory although the magnetization behaviors

are apparently different.

Van Vleck applied Eq. 2.6 to each sub-lattice separately, replacing H by the

appropriate effective field which is the vector sum of H and the molecular field due

to the atoms on the other sub-lattice. He obtained the following results for the

susceptibility in the limit of low fields [71]. Below TN , χ depends on whether the

applied field is parallel to the direction of spontaneous antiferromagnetism (χ‖) or

whether it is perpendicular to this axis (χ⊥), resulting in

χ‖ =
Ng2µ2

BJ
2BS(y)

kB[T + 3TNS(S + 1)−1]BS(y)
where y = 2z|J |SS̄/kBT (2.11a)
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Figure 2.1: The magnetic specific heat Cv/NkB, calculated from a molecular field
theory as discussed in the text.
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χ⊥ =
Ng2µ2

BS(S + 1)

6kBTN
(2.11b)

and the results are illustrated as Fig. 2.2. However, many antiferromagnets are

studied experimentally as powders or polycrystals, and these we must expect to

contain a random distribution of antiferromagnetic axes and therefore to be isotropic,

so that, averaging over all directions of the axis of spontaneous antiferromagnetism

we find that the powder susceptibility is

χp(T ) =
2

3
χ⊥(T ) +

1

3
χ‖(T ) (2.12)

and χ(0) should have the average value of 2
3
χ⊥. Above TN , there is no spontaneous

antiferromagnetism and the crystal is isotropic:

χ =
Ng2µ2

BJ(J + 1)

3kB(T + TN)
. (2.13)

Ideal antiferromagnetism is composed of the two sublattices with identical mag-
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nitude of magnetic moments but opposite direction. The system is considered to be

“ferrimagnetic” when the two sublattices possesses unequal magnitude of magnetic

moments.

2.4 Field-cooled and Zero-field-cooled Measurements

Certain magnetic systems undergoing transitions to ordered ferromagnetic [72–

77], antiferromagnetic [78] and ferrimagnetic [79] states are reported to show irre-

versibility, indicated by the difference between their field-cooled (FC) and zero-field-

cooled (ZFC) susceptibilities. ZFC magnetization is achieved by applying a small

field and cooling to a low temperature and then the sample is then warmed in a con-

stant field with the magnetization being measured as a function of temperature. FC

magnetization is obtained starting at a high temperature and in an applied field and

then taking measurements as the temperature is lowered gradually in this constant

field.

The irreversible FC vs. ZFC magnetic behavior is also one of the characteristic

features of a spin glass. Tg is defined as the temperature at which the irreversibility

disappears as the sample temperature is increased. However, whether this corre-

sponds to glass transition need be determined by additional measurements such as

frequency dependent susceptibility. The irreversibility appears in many of the ma-

terials in the thesis. In Fig. 2.3, I demonstrated FC and ZFC magnetization results

from one of our material (Ni48Mn35In17). Besides hysteretic martensitic transfor-

mation (Tm), Curie temperature (Tc) are also observed in this material. Additional

measurements are typically used to definitively distinguish spin glass effects from

other ordered magnetic states; not discussed here.
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2.5 Thermodynamics of Phase Transitions

Changes of phase are called phase transitions, and phase transitions are ubiqui-

tous in nature. In the modern classification scheme, phase transitions are divided

into two broad categories [80, 81]. Phase transitions which are connected with an en-

tropy discontinuity are called discontinuous or phase transitions of first order. On the

other hand, phase transitions where the entropy is continuous are called continuous

or of second or higher order.

For a first-order phase transition, the first derivative of the Gibbs free energy

with respect to the temperature is discontinuous, as is the entropy:

S = −

(

∂G

∂T

)

P

. (2.14)

This discontinuity produces a divergence in the higher derivatives such as the specific

heat Cp (see Fig. 2.4)

Cp = T

(

∂S

∂T

)

P

= −T

(

∂2G

∂2T

)

P

. (2.15)

For a phase transition of second order, the first derivative of the free enthalpy is

continuous. However, the second derivatives, such as specific heat, are discontinuous

or divergent. Fig. 2.5 shows how a kink in the entropy due to a second order transition

causes the discontinuity of the specific heat around the transition.

2.6 Arrott Plot

One of the standard experimental methods for establishing the presence of ferro-

magnetic order is the Arrot plot [82, 83] in which the square of the magnetization M
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Figure 2.5: Gibbs free energy, entropy, and specific heat as a function of temperature
for a second-order phase transition.
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in a field H is plotted as a function of H/M for a fixed temperature T . The Arrott

plot technique is based on the Weiss-Brillouin treatment of molecular field theory.

Eq. 2.17 gives the proposed equation for magnetization as a function of both applied

field and temperature:

M = M0 tanh

(

µ(H + λM)

kBT

)

(2.16)

where M0 is the spontaneous magnetization at absolute zero, µ is the magnetic

moment per atom and λ is the molecular field constant. This equation can be

rewritten by assuming M/M0 to be very small at the Curie temperature and we get

µH

kBT
+ λ

µM

kBT
= tanh−1

(

M

M0

)

=
M

M0
+

1

3

(

M

M0

)3

+
1

5

(

M

M0

)5

+ · · · . (2.17)

Ignoring higher order terms inM/M0 and differentiating the equation with respective

M , we get

1

χ
=

(

kBT

µM0

)

− λ. (2.18)

At the Curie temperature, 1/χ = 0 and the Curie temperature can be expressed as

Tc =

(

µλ

kB

)

M0. (2.19)

Thereby, Eq. 2.17 can be rewritten in term of Tc

µH

kBT
= ǫ

M

M0
+

1

3

(

M

M0

)3

+
1

5

(

M

M0

)5

+ · · · , (2.20)

where ǫ = T−Tc

T
. Considering terms only up to third order and introducing the critical

exponents γ and β into Eq. 2.20 to accommodate for deviations from the mean field
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Figure 2.6: Schematic Arrott plot for a ferromagnetic material near the Curie tem-
perature with γ = 1 and β = 1/2.

approximation, we get [84]

(

H

M

)1/γ

=
T − Tc

T1
+

(

M

M1

)1/β

, (2.21)

where M1 and T1 are constants. Eq. 2.21 is used to identify the best values of the

critical exponents γ and β under which isothermal M − H curves are straight and

parallel lines. When this is done, the isotherm which passes through the origin of the

plot of (H/M)1/γ vs. M1/β represents the Curie temperature. A schematic Arrott

plot for a ferromagnetic material near the Curie temperature with γ = 1 and β = 1/2

is shown in Fig. 2.6

2.7 First Order Magnetic Transitions

One of the main characteristics of giant magnetocaloric materials is the coexis-

tence of a first order magnetic phase transition coupled with variations of the lattice
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Figure 2.7: Schematic representation of the absolute entropy and field-induced en-
tropy change for ideal inverse MCE materials in the vicinity of a first-order phase
transition. In ideal cases, the first order transition will happen at a single tempera-
ture.

parameters. This first order solid-solid phase transition, which has a diffusionless

nature consisting of a homogeneous lattice deformation leading to a new crystal

structure, is also known as a martensitic transition. An ideal first order transition

should happen at a single temperature as shown in Fig. 2.7, and the corresponding

isothermal entropy due to external fields should always be a step function. How-

ever, in real MCE materials, the first order transition happens over a finite range

of temperatures. In the temperature range where the first order transition happens,

the portion of one phase increases while the other decreases as the temperature in
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the materials increases or decreases. A schematic representation of the entropy be-

havior and field-induced entropy change for inverse MCE materials in the vicinity

of a first-order phase transition is shown in Fig. 2.8. Across the temperature region

where the first order transition happens, the entropy changes abruptly and the first

derivative of the Gibbs free energy is discontinuous. As distinct from a second or-

der transition, a latent heat is observed experimentally in a first order transition.

For MCE materials, the variation of the lattice parameter drives a variation in the

lattice-elastic energy which, in the equilibrium condition, must be counterbalanced

by the exchange energy among the magnetic ions so it is expected to find a strong

dependence of the exchange parameter with the volume in these materials [85]. Two

of the most common theoretical models for this behavior based on Landau theory

will be described in the following sections.

2.7.1 Clausius-Clapeyron Relation

The Clausius-Clapeyron relation is a way of characterizing a first order phase

transition between a two-phase and one-component system in equilibrium [86]. For

a first-order magnetic phase transitions the magnetic Clausius-Clapeyron equation

is valid:

µ0
dH

dT
= −

∆S

∆M
(2.22)

where ∆S = SM2
− SM1

and ∆M = M2 − M1 are the entropy differences and the

magnetization difference between states 2 and 1 at the transition temperature (T )

and the transition field (H). Using this equation one can calculate the entropy change

(and consequently the MCE) at the transition on the basis of magnetization data

and the magnetic phase diagram H − T .

In the case of a magnetostructural phase transition, the Clausius-Clapeyron re-
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Figure 2.8: Schematic representation of the absolute entropy and field-induced en-
tropy change for real inverse MCE materials in the vicinity of a first-order phase
transition. In real MCE materials, the first order martensitic transition happens
across a temperature region instead of at a single ideal temperature.
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lation is modified so that the dissipated energy is taken into account: [36, 87]

µ0
dH

dT
= −

∆S

∆M
+

1

∆M

dEdiss

dT
, (2.23)

where Ediss is dissipated energy. Notice that Ediss is usually weakly dependent on

temperature, and thus the last term is claimed to be negligible in Heusler alloys which

shows that the Clausius-Clapeyron equation is still a good approximation [36, 88].

2.7.2 Model of Exchange-inversion Magnetization

The exchange-inversion theory, proposed by Kittel [89] considers the dependence

of the exchange interaction on the interatomic distance and describes quite well the

antiferromagnetic to ferromagnetic transitions in Mn2Sb and in FeRh [90–95]. Ac-

cording to this model, we assume that the interlattice exchange energy of a specimen

of volume V can be written as

−ρ(a− ac)VMA ·MB (2.24)

where a is the relevant lattice parameter and ac, is the value at which the interlattice

exchange interaction changes sign; ρ denotes ∂λ/∂a, where λ is the molecular field

constant connecting the sublattice magnetizations MA and MB. We have no a

priori knowledge of the sign of ρ, which may be positive or negative, according to the

substance. If we may neglect the intrinsic dependence of the sublattice magnetization

on the parameter a, the parts of the Gibbs free energy at zero pressure including the

exchange-interaction energy and the elastic energy of a volume V can be written to

the lowest relevant order as,

G =
1

2
RV (a− aT )

2 − ρ(a− ac)VMA ·MB, (2.25)
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where R represents the appropriate elastic stiffness constant divided by a2 and aT

stands for the equilibrium value of a at temperature T for the orientation MA⊥MB.

Obviously, the free energy of the system is dependent on strain. The equilibrium

value of a is given by

(

∂G

∂a

)

T

= RV (a− aT )− ρVMA ·MB = 0. (2.26)

Therefore, one obtains

a = aT +
ρ

R
MA ·MB. (2.27)

A combination of eqs. 2.25 and 2.27 yields

G

V
= −

ρ2

2R
(MA ·MB)

2 − ρ(aT − ac)(MA ·MB). (2.28)

Given MA = MB = M0 and a transition driving force 2µ0HcM0, the energies of the

two phases must be equal at the transition so that

(

G

V

)

AF

+ 2µ0HcM0 =

(

G

V

)

FM

. (2.29)

Substitution of Eq. 2.28 and 2.29 gives

µ0Hc = −ρM0(aT − ac). (2.30)

The critical distance is independent of temperature and, for an isotropic material,

(aT − ac)/ac is proportional to the thermal expansion during the transition, ∆L/L0.

Therefore, it can be expected that µ0Hc/M0 is proportional to ∆L/L0 [96]. Taking

into account the temperature dependence of the ρ coefficient, it is possible to describe

the magnetocaloric and elastocaloric effects within the framework of the same model
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[97].

2.7.3 The Bean-Rodbell Model

Bean and Rodbell [98, 99] have proposed a phenomenological model that de-

scribes a first-order magneto-structural phase transition. This model has been used

to explain the first-order magnetic phase transition observed for MnAs [100] and

MnFeP1−xAsx [101] quantitatively.

This model correlates strong magnetoelastic effects with the occurrence of a first-

order phase transition. The central assumption in this model is that the exchange

interaction (or Curie temperature) is strongly dependent on the interatomic spacing.

In this model, the dependence of Curie temperature on the volume is represented by

Tc = T0

[

1 + β
V − V0

V0

]

, (2.31)

where Tc is the Curie temperature, whereas T0 would be the Curie temperature if

the lattice were not compressible, and V0 would be the volume in the absence of

exchange interaction. The coefficient β can either be positive or negative.

The critical behavior of the magnetic system is analyzed on the basis of the Gibbs

free energy consisting of the following contributions

G = Gexchange +GZeeman +Gelastic +Gentropy +Gpress (2.32)

where Gexchange, GZeeman, Gelastic, Gentropy and Gpress represent the exchange inter-

action, the Zeeman energy, the elastic energy, the entropy term, and the pressure

terms, respectively. This formula can be expressed within the molecular-field ap-
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proximation, for materials with arbitrary spin j as

G = −
3

2

(

j

j + 1

)

NkBTcσ
2 − gµBBjNσ +

1

2K
ω2 − T (Smag + Slat) + Pω. (2.33)

Here, N is the number of magnetic atoms, kB is the Boltzmann constant, σ is the

normalized magnetization, g is the Landé factor and B is the external magnetic field,

K = −1/V (∂V/∂P )T,B is the compressibility, ω is the volume change, Smag is the

magnetic entropy and Slat is the lattice entropy.

In order to obtain the magnetic state equation, the variables σ and ω should

assume values that minimize the Gibbs free energy. Therefore, fixing σ and assuming

that Smag depends only on σ, the Gibbs energy is minimized for the following volume

deformation:

ω =
3

2

(

j

j + 1

)

NkBT0βσ
2 − PK +KT

∂Slat

∂ω
. (2.34)

Neglecting the last term and substituting the above equilibrium deformation into

Eq. 2.33, we get a final expression for the Gibbs free energy. Performing the derivative

of this Gibbs free energy with respect to σ and considering the relation σ = B−1
j (σ) =

− 1
NkB

∂Smag
∂σ

we get the following magnetic state equation [102]:

σ = Bj

{

1

T

[(

T0j

j + 1

)

(3− 3βPK)σ +
gµBj

kB
B +

9

5

(

(2j + 1)4 − 1

[2(j + 1)4]

)

T0ησ
3

]}

(2.35)

where Bj is the Brillouin function and the parameter η is given by:

η =
5

2

(

[4j(j + 1)]2

[(2j + 1)]4 − 1

)

NkBKT0β
2. (2.36)

This parameter η controls the nature of the magnetic phase transition in the model.
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The first order phase transition occurs under the following condition [102]:

PKβ > 1− η. (2.37)

Note that the traditional Bean-Rodbell model assumes that the lattice entropy

change across the first order transition is negligible and it greatly simplifies the

mathematical algorithm. However, this restrictions of the model can be lessened by

approximating the lattice entropy when T > θD by the expression

Slat = 3R

[

lnT − ln θD +
4

3

]

. (2.38)

By doing so, the colossal MCE is claimed to be explained and the readers are rec-

ommended to follow the discussion in reference [85] if interested. The fundamental

physical concepts and mathematical treatment are similar to the above so we won’t

discuss the detail of the extended model in this thesis.
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3. MEASUREMENT METHODS FOR THE SPECIFIC HEAT

3.1 Introduction

A process involving only infinitesimal changes in the thermodynamic coordinates

of a system is known as a infinitesimal process. For such a process, the general

statement of the first law becomes

dU = dQ+ dW. (3.1)

If the infinitesimal process is quasi-static, then dU and dW can be expressed in terms

of thermodynamic coordinates only. An infinitesimal quasi-static process is one in

which the system passes slowly from an initial equilibrium state to a neighboring

equilibrium state. It should be recognized that dU refers to a property within the

system (internal energy), whereas dQ and dW are not related to properties of the

system; rather, they refer to the transfer of energy to the system by surrounding

objects. The quantity dW is expressible in terms of the product of an intensive

generalized force and an extensive generalized displacement such as −PdV for a

hydrostatic system, FdL for a stretched wire, E dZ for an electrochemical cell, EdP

for a dielectric slab and µ0HdM paramagnetic systems.

Eq. 3.1 shows that the internal energy can be changed either by heat or work.

As a practical matter, it is much easier to produce heat from combustion or elec-

tricity passing through a resistor than it is to produce work from falling weights or

compressed springs. As a result, when systematic experiments were performed to

measure the capability of a substance to store internal energy, heat rather than work

was used, and the results came to be known as the heat capacity of the sample. If a
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system experiences a change of temperature from Ti to Tf during the transfer of Q

units of heat, the average heat capacity of the system is defined as the ratio:

Average heat capacity =
Q

Tf − Ti
. (3.2)

As both Q and (Tf − Ti) become smaller, this ratio approaches a limiting value,

known as the heat capacity C, thus:

C = lim
Tf→Ti

Q

Tf − Ti

=
dQ

dT
. (3.3)

Calorimetric data are indispensable in any thermodynamic study. Specific heat

measurements and their corresponding entropies are regarded as the most reliable

direct measurements of thermodynamic quantities.

In this chapter the various methods for the measurement the of specific heat are

compared. These common used experimental methods are [103]:

1. Adiabatic calorimetry

2. Differential scanning calorimetry

3. AC calorimetry

4. Heat-pulse methods

3.2 Adiabatic Calorimetry

This is one of the oldest methods for the measurement of specific heat. The basic

principle of this method is that a steady heat input is supplied to the sample and the

resultant temperature rise of the sample is measured. By equating the heat supplied
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(a) Nernst Step heating method (b) Continuous heating method

Figure 3.1: Principles of adiabatic calorimetry. IH , Heating current; UH , voltage
across heater resistance; TE , final temperature (after heating); TA, initial temperature
(before heating); ∆tH , heating time; ∆T , temperature increment. Reprinted with
permission from [104].

to the sample, the heat capacity can be calculated [104].

Cp(T ) = lim
∆T→0

Q

∆T
. (3.4)

In experiments, the heat given to the sample can be pulsed or continuous as

illustrated in Fig. 3.1. In an adiabatic calorimeter the heat exchange between the

sample and the environment has to be reduced as far as possible. However, the

complete thermal isolation of the sample from the surroundings is very difficult to

achieve and the corrections for the heat loss to the surroundings are hard to evaluate.

This method is primarily used for the study of chemical reactions.
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3.3 Differential Scanning Calorimetry

In this method, the reference material is heated at a constant rate. The sample

and the reference are maintained at the same temperature by supplying different

quantities of heat. By recording the power difference between the sample and the

reference, the heat capacity can be evaluated by the following formula

Cp(T ) = K ×
∆P

dT
dt

×m
(3.5)

where

K = Calibration constant

∆P = heater power difference between the sample and the reference

m = the mass of the sample.

The basic advantage of the differential techniques is firstly the high relative accu-

racy when the absolute heat capacity of the reference sample is confirmed. Secondly

the systematic errors due mainly to uncontrolled heat exchange with the surround-

ings are eliminated since both samples are subject to identical experimental condi-

tions. However, the internal equilibrium time within the sample and the surroundings

causes uncertainty and difficulty in obtaining the absolute heat capacity.

3.4 AC Calorimetry

This method was originally developed by Sullivan and Seidel [105] as illustrated

in Fig. 3.2. The basic principle of this method is that a periodic heat input is supplied

to the sample. It can be shown that the resultant equilibrium temperature of the

sample contains a dc part and an ac part.
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Figure 3.2: Schematic diagram of the Sullivan-Seidel AC calorimetry method.
Reprinted with permission from [105].

The heater power in the circuit is [106]

P = Pac[1 + cos(2ωt)]. (3.6)

The temperature variations are controlled to be sufficiently small so the heat capacity

can be considered constant. The steady-state temperature response due to the heater

will be Tθ = Tb + Tdc + |Tac| cos(2ωt+ φ) and

|Tac| =
Pac

2ωCp(T )
| sin(φ)| (3.7)

A sample with large thermal conductivity is required in this measurement in order

for the prevention of temperature gradients inside the sample. The accuracy will be

lower if the thermal conductivity of the sample is too small.
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Figure 3.3: The overview of a Quantum Design PPMS.

3.5 Heat-pulse Method

This method is the same as the thermal relaxation-time method, which has been

wide used for decades since it was proposed [107]. However, this method becomes

inappropriate when the specific heat has steep changes during a small temperature

range and this issue will be addressed in Sec. 3.5.3.

The discussion in this section is mostly based on the Physical Properties Mea-

surement System (PPMS) manufactured by Quantum Design. The overview of the

instrument is shown in Fig. 3.3 and the schematic experimental apparatus for heat-

capacity measurements is set up as in the Fig. 3.4.

In this technique, the sample is heated by power P0 during a certain time. The

thermometer on the platform starts to record the data once the heater is turned on

as shown in Fig. 3.5

Two mathematical analysis methods are used in the built-in PPMS software. One
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s(t)
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grease

heater thermometer
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Figure 3.4: Schematic experimental apparatus for PPMS heat-capacity measure-
ments.

time

P(t) T(t)
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heater power

0 timet0Tb

temperatu�	

Figure 3.5: Principles of heat-pulse calorimetry: A square-pulse of height P0 is
applied (upper diagram), resulting in a temperature change of the sample platform
the lower diagram.
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is a simple model (also known as one-τ) and the other is called the two-τ model.

These two models use different mathematical methods to do the analysis but the

experimental measurement is identical.

3.5.1 Simple Model

In the simple model, the temperature T of the platform as a function of time (t)

obeys the equation

Ctotal
dT

dt
= −Kw(T − Tb) + P (t) (3.8)

where Ctotal is the total heat capacity of the sample and sample platform; Kw is the

thermal conductance of the supporting wires; Tb is the temperature of the thermal

bath (puck frame); and P (t) is the power applied by the heater. Notice that Kw is

considered for the case of a small temperature pulse and its value has to be calibrated

before doing the sample measurements. The heater power P (t) is equal to P0 during

the heating portion of the measurement and equal to zero during the cooling portion.

Supposing that the heater is turned on at t = 0 and is turned off at t = t0, the solution

of this equation is

T (t) =











P0τ(1− e−t/τ )/Ctotal + Tb if 0 ≤ t ≤ t0

P0τ(1− e−t/τ )e−(t−t0)/τ/Ctotal + Tb if t ≥ t0

(3.9)

where τ = Kw

Ctotal
, P0 and t0 are controlled experimentally and T (t) is the reading on

the thermometer on the platform. Ctotal, Kw and Tb are varied in order to obtain a

minimum of S

S = (Ctotal, Kw, Tb) =
∑

i

(T (ti)− Ti) (3.10)

where ti is the measured time, T (ti) is the temperature in Eq. 3.9 and Ti is the

measured temperature.
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Figure 3.6: The wire conductance vs. temperature from the calibration measurement.

The simple model assumes that the sample and sample platform are in good

thermal contact with each other and are at the same temperature during the mea-

surement. This model is used in the calibration when only the grease is applied on

the sample platform. One of the typical Kw measurement is shown in Fig. 3.6.

3.5.2 Two-τ Model

The two-τ model is usually used when the sample is placed on top of the grease.

The grease temperature is assumed to be the same as the platform temperature. This

model simulates the effect of heat flowing between the sample platform and sample

through the grease, and the effect of heat flowing between the sample platform and
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puck. The following equations express this model [108, 109]:

Cplatform
dTp(t)

dt
= P (t)−Kw(Tp(t)− Tb) +Kg(Ts(t)− Tp(t))

Csample
dTs(t)

dt
= −Kg(Ts(t)− Tp(t)),

(3.11)

where Cplatform is the heat capacity of the sample platform with the grease, Csample

is the heat capacity of the sample, and Kg is the thermal conductance between the

two due to the grease. The respective temperatures of the platform and sample are

given by Tp(t) and Ts(t).

Suppose that the heater is turned on at t = 0 and is turned off at t = t0. The

solution of this equation is

T (t) =











P0

Kw
+ Tb +

P0

2βKw
+ P0

2βKw

[

et/τ2
τ1

− et/τ1
τ2

]

if 0 ≤ t ≤ t0

P0τ(1− e−t/τ )e−(t−t0)/τ/Ctotal + Tb if t ≥ t0.
(3.12)

Neither the simple model nor the two-τ model are applicable to temperature re-

gions involving a first order transitions. In next section, we will describe an improved

experimental method and modified model to overcome this issue.

3.5.3 Across a First-order Transition

As described above, the simple model and 2-τ model are built into PPMS for the

automated measurements. This technique is both fast and accurate for temperatures

not too high (T <400 K), but some problems can arise when dealing with sharp

structures in the heat capacity especially when a first-order transition is involved.

When the sample temperature crosses a first-order or a very sharp second-order

phase transition, the temperature relaxation curve is modified as illustrated in Fig. 3.7.

When the sample temperature crosses the first-order phase transition, a plateau ap-
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Figure 3.7: Example of raw temperature response data with a plateau near a first-
order transition and the corresponding heat capacity obtained by the analysis de-
scribed in the text.

pears in the relaxation curve. In this case, the conventional 2-τ fitting model must

give an erroneous curve since the heat capacity is no longer constant over the tem-

perature increment. Various alternative analysis methods have been proposed to

account for this in the past few years [110, 111], with some questions such as how

to properly account for the heat leak and wire conductance terms remaining not

entirely resolved.

In our approach, we focused on the “scanning method” instead of fitting the whole

curve. Experimentally, the heater pulse and measurement time have to increase in

order to cover the whole transition [111]. In this method, extra time must be allowed

in order to increase the stability of the initial temperature. We take the advantage of

the PPMS which can record the temperature vs. time during and after a single heat

pulse. To do the analysis point-by-point, we write down the heat capacity equation

obtained from the 1-τ model

Ctotal(T ) =
−Kw(T )(T − Tb) + P

dT/dt
. (3.13)

43



where P is the given constant heat power, T is the sample temperature from the

thermometer on the platform, Tb is the initial temperature and Kw is the wire con-

ductance. Instead of treating the wire conductance as a fitting variable, we started

with the wire conductance from the small ∆T calibration measurement as shown in

Fig. 3.6. However, the experimental conditions entail a rather large ∆T , necessitating

an additional analysis step.

These issues have been addressed in various ways [33, 110, 111], including models

introduced to consider changes in the wire conductance and also changes in the base

temperature during a long heat pulse. In our study, to probe the phase transition

region we recorded changes in temperature during a long heat pulse, turned on in the

temperature range of complete martensite and turned off when complete austenite

was achieved. This requires optimizing the pulse settings by trial and error to cover

the transition region, and long wait times to increase the base temperature stability.

The raw temperature vs. time traces were obtained from the system controller, and

analyzed separately. From measurements away from the hysteresis region using the

2-τ measurement scheme, we also determined that the thermal conductance of the

grease exceeds that of the wires by a factor of at least 100 in all cases. This ensured

that the temperature discrepancy between the platform and sample is negligible.

In order to calibrate Kw for the conditions of large ∆T (= T − Tb) in Eq. 3.13,

we made use of the lack of hysteresis outside of the transition, as known physically

and confirmed in our measurements. Because of this feature, for heating-cooling

cycles bracketing the transition, the 2-τ model remains valid for extracted Kw values

at large-∆T . In the small-∆T region, the conditions of the standard calibration

procedure are reproduced, so the standard calibration provided these values. In our
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study, a modified wire conductance K ′
w is used

K ′
w(T ) = Kw((1− x)Tb + xT ), (3.14)

where Kw(T ) is obtained from the standard calibration, and a single extrapolation

parameter x was adjusted until the heating and cooling curves became consistent for

temperatures above the transition. Finally, from the time recordings of temperature

during and after the heat pulse, we obtained the heating and cooling specific heats

by utilizing Eq. 3.13 and K ′
w.
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4. THEORETICAL ENTROPY CONTRIBUTIONS

The total entropy for our materials should be described by the three main con-

tributions which are the electronic, vibrational and magnetic:

Stotal = Sel + Svib + Smag. (4.1)

In the following section, I will introduce the fundamental concepts of each contribu-

tion.

4.1 Vibrational Contributions from Debye Model

In this section an expression for the vibration specific heat will be written down.

This expression will then be approximated by something that can actually be eval-

uated. The method of approximation used is called the Debye model.

Consider a crystal with N atoms in the each unit cell and the volume of each

unit cell is V . In the harmonic approximation, the system of N vibrating atoms is

equivalent to a system of 3N independent (one-dimensional) oscillators of frequency

ω = ω(q, p), where p and q represent the two canonical variables of the oscillator.

The average number of phonons in mode (q, p) is

n̄q,p =
1

e~ωq,p/kBT − 1
. (4.2)

The average energy per mode is

~ωq,pn̄q,p, (4.3)

so the average vibrational energy of the harmonic crystal is the sum of independent
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phonon contributions

Uvib =
∑

q,p

[

~ωq,p

~ωq,p/kBT − 1
+

1

2
~ωq,p

]

(4.4)

The specific heat at constant volume is then given by

Cvib(T ) =
∂Uvib

∂T
=

∂

∂T

∑

q,p

~ωq,p

e~ωq,p/kBT − 1
. (4.5)

The above expression allows the numerical calculation of the lattice heat capacity

of crystals, once the phonon dispersion curves ωq,p are known. The Debye model is

a model based on the exact expression in Eq. 4.5 in which the sum is evaluated by

replacing it by an integral in which there is a specific density of states. Any three-

dimensional crystal, with or without a basis, presents three acoustic branches with

linear dispersion ω = vsq for small q. For simplicity we assume the same sound veloc-

ity vs for each of the three acoustic branches and extend the linear dispersion relation

to the whole Brillouin zone. To avoid inessential details, the Debye approximation

replaces the the Brillouin zone with a sphere of equal volume. We indicate with qD

the radius of the sphere and define ωD = vsqD as the cutoff Debye frequency. The

density of phonon states corresponding to a branch with linear dispersion relation

ω = vsq is easily obtained. In fact the number of states D(ω)dω with frequency in the

interval [ω, ω + dω] equals the number of states in reciprocal space with wavevector

between [q, q + dq]; namely:

D(ω)dω =
V

(2π)3
4πq2dq =

V

(2π)3
4π

ω2

v2s
d
ω

vs
. (4.6)
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It follows that

D(ω) =
V

(2π)3
4π

ω2

v3x
=

NΩ

(2π3)

4πq3D
3

3ω2

ω3
D

= N
3ω2

ω3
D

, 0 ≤ ω ≤ ωD, (4.7)

where N is the number of unit cells of the crystal. Therefore, Eq. 4.5 can be rewritten

as the integration over the frequencies [68, 112, 113]

Cvib(T ) =
∂

∂T

(

3

∫ ωD

0

N
3ω2

ω3
D

~ω

e~ω/kBT − 1
dω

)

= 9NkB

(

T

θD

)3 ∫ θD/T

0

x4ex

(ex − 1)2
dx.

(4.8)

where θD = ~ωD/kB is the Debye temperature. The vibrational entropy contribution

can be obtained from the integration of the specific heat

Svib(T ) =

∫

Cvib(T )

T
dT = −3NkB ln

[

1− e−
θD
T

]

+ 12NkB

(

T

θD

)3 ∫ θD/T

0

x3

ex − 1
dx.

(4.9)

However, the Debye model simplifies the motion of atoms as that of ideal harmonic

oscillators, and this causes the deviation compared with the experimental data. This

deviation usually is most significant below the Debye temperature and it becomes

smaller as the temperature goes higher. Overall, the Debye model has been extremely

successful in explaining specific heats of solids[114].

4.2 Electronic Contributions in Metals

Up to this point, we have only considered contributions to the heat capacity from

vibrations within the solid. In metals, the free conduction electrons also contribute

to the specific heat. In the free electron model of metals, the conduction electrons are

treated as a perfect gas obeying Fermi-Dirac statistics. Interactions of the electrons

with the positively charged atomic ions and with the other electrons are neglected.

A major success of Fermi’s consideration of electrons in metals is that it could
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explain the excess specific heat in metals (beyond that given by the phonons). Com-

bining the density of states and thermal distribution, the total electron energy is

given by an integral over all energies:

Uel =

∫ ∞

0

D(E)f(E, T )EdE, (4.10)

where E is the energy of free electrons, D(E) is the density of states and f(E, T ) is

Fermi-Dirac distribution. Consider the perturbation of the Fermi-Dirac distribution

due to temperature as shown in Fig. 4.1. The electronic contribution of specific heat

can be expressed as

Cel(T ) =
∂Uel

∂T
=

∂

∂T
(Uel −NEF ) =

∂

∂T

∫ ∞

0

D(E)f(E, T )(E − EF )dE

=

∫ ∞

0

D(E)
∂f(E, T )

∂T
(E − EF )dE,

(4.11)

where

∂f(E, T )

∂T
=

ex

(1 + ex)2
E −EF

kBT 2
with x =

E − EF

kBT
. (4.12)

The term ∂f
∂T

only becomes large near E = EF , so we can approximate D(E) ≈

D(EF ) = const. Thus

Cel = D(EF )

∫ ∞

0

ex

(1 + ex)2
(E − EF )

2

kBT 2
dE = k2

BTD(EF )

∫ ∞

−
EF
kBT

exx2

(1 + ex)2
dE (4.13)

If EF ≫ kBT , then − EF

kBT
→ −∞, and the integral becomes

∫ ∞

−∞

x2ex

(ex + 1)2
=

π2

3
(4.14)
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Figure 4.1: Fermi-Dirac distribution for T = 0 and for T slightly above zero.

Thus the specific heat becomes [112]

Cel(T ) =
π2

3
kBTD(EF ), (4.15)

and the electronic entropy contribution becomes

Sel(T ) =

∫

0

Cel(T )

T
dT =

π2

3
kBTD(EF ). (4.16)

The above linear variation of electronic specific heat is valid only at low tempera-

tures (T << TF , note that TF generally very large so it is valid in metal at most

temperatures). The electronic contribution generally becomes negligible at high tem-

peratures since the vibrational contribution dominates.
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4.3 Magnetic Contribution

The entropy Smag at a given field (H) due to the orientation of otherwise non-

interacting ions can be written in terms of the partition function:

Smag = R
d

dT
(T lnQmag), (4.17)

where Qmag is the sum of all magnetic states

Qmag =

m=J
∑

m=−J

emgµBH/kBT . (4.18)

Carrying out the differentiation one finds

Smag = R

[

lnQmag −

∑m=J
m=−J

mgµBH
kBT

emgµBH/kBT

∑m=J
m=−J e

mgµBH/kBT

]

. (4.19)

The first term can be simplified by expanding the summation

lnQmag = ln

m=J
∑

m=−J

emgµBH/kBT

= ln[e(J+1/2)gµBH/kBT − e−(J+1/2)gµBH/kBT ]− ln[egµBH/2kBT − e−gµBH/2kBT ]

= ln sinh

(

J + 1
2

J
y

)

− ln sinh

(

1

2J
y

)

,

(4.20)

with

y =
JgµBH

kBT
. (4.21)

In addition, the second term in Eq. 4.19 can be rewritten in terms of

M =

∑m=J
m=−J mgµBe

mgµBH/kBT

∑m=J
m=−J e

mgµBH/kBT
= JgµBBJ

(

JgµBH

kBT

)

= JgµBBJ(y). (4.22)
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Therefore, the final expression of the entropy is obtained as

Smag = R

[

ln sinh

(

J + 1
2

J
y

)

− ln sinh

(

1

2J
y

)

− yBJ(y)

]

. (4.23)

Smag varies from R ln(2J + 1) at y = 0 to zero as y approaches infinity (T → 0 or

H → ∞ ).

The physical principle of this model is simple. In the absence of a magnetic field,

the random orientation of the angular angular momentum vectors of the (magneti-

cally active) ions introduces an entropy R ln(2J + 1) in excess of that due to lattice

vibrations and electronic carrers. The application of a strong magnetic field, while

the material is kept at constant temperature, tends to orient all the moments into

the direction of the magnetic field, reducing the entropy toward zero.

The error made in this analysis lies in the assumption that a random orientation

of the magnetic moments would prevail at all temperatures in the absence of a field.

If any interaction at all exists between the moments, either through a true magnetic

force or owing to an interaction with the electric crystalline field, some particular

configuration with zero entropy will be stable at 0 K. However, the entropy will

approach the high temperature value of R ln(2j + 1) only at temperatures for which

kT exceeds the energy of interaction[115].
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5. ENTROPY ENHANCEMENT OF GIANT MAGNETOCALORIC EFFECT

5.1 Motivation

The magnetocaloric effect (MCE) is defined as an intrinsic thermodynamic prop-

erty of magnetic solids, which manifests as an adiabatic temperature change or as

an isothermal entropy change due to the application of a magnetic field. Materials

showing MCE have been a source of growing interest because of their potential for

the replacement of vapor-compression refrigeration in use today due to their envi-

ronmentally friendly and energy efficient prospects [3]. Recently, a giant MCE at

room temperature based on a first-order phase transition was observed in several

materials, such as, Ni-Mn based Heusler alloys [12, 37–39, 116–119], Gd5Si2−xGex

[5], MnAs-based compounds [9, 51, 120] and LaFe13−xSix [7, 121]. Composition maps

in the Ni-Mn-In system have been recently developed allowing the design of alloys

at different working temperatures [122] and the austenite phase can be tuned to be

either paramagnetic or ferromagnetic. In this chapter, we present Ni-Mn-In mate-

rials with four different compositions. Two of them have a ferromagnetic austenite

phase while the others have a paramagnetic austenite phase.

In general, first-order magnetic transitions are often accompanied by structural

transitions, which enforce the magnetization change suddenly and, consequently, en-

hance the magnetocaloric effect. Therefore magnetocaloric materials often display

magneto-elastic or magneto-structural transitions. The entropy of a MCE material

includes contributions due to magnetism (Smag), lattice vibration (Svib) and conduc-

tion electrons (Sel). Thus, the isothermal field-induced total entropy change can be

expressed by:

∆Siso = ∆Smag +∆Svib +∆Sel. (5.1)
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Theoretically, a giant magnetocaloric effect can be obtained if the above contributions

have the same sign. However, they may partially cancel each other if they have

opposite signs.

One of the common ways to understand the inverse MCE in Heusler alloys is to

characterize the field-induced isothermal entropy through the magnetization. How-

ever, this method may suffer from non-equilibrium thermodynamic states in the

coexistence phase region especially when the external field used to drive the com-

plete martensitic transformation is too large to achieve experimentally. Hence, this

method may fail to interpret the maximum field-induced entropy if the experiment is

not performed properly. On the other hand, the temperature region of the first order

transition is usually small and it is easy to scan the temperature across the complete

martensitic transformation. Also, calorimetric data are indispensable in any ther-

modynamic study. Heat capacity measurements and their corresponding entropies

are regarded as the most reliable direct measurements of thermodynamic quantities.

The maximum isothermal entropy can be obtained from calorimetric measurement

at zero field.

In the following section, we will give a introduction of vibrational and electronic

entropy contributions. In the calorimetric experiment, we develop a method to cross

the first order transitions and evaluate the additional entropy by subtracting the

well-known vibrational and electronic contributions. Four samples with different

compositions are studied and strong magnetoelastic couplings have been found in

two of them whereas the others appear to agree well with the maximum magnetic

entropy due to local Mn moments (J = 2).
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Figure 5.1: Schematic field-induced isothermal entropy change for non-ideal mag-
netocaloric effect materials is shown. ∆S saturation can be observed if the applied
field is large enough to drive the martensitic transformation completely.
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5.2 Entropy Change in Calorimetric Processes

A method to determine the entropy change of a system is to determine the specific

heat from T1 up to the wanted T2. If we know the specific heat of a system over

this temperature range, we can then find the corresponding entropy change. This is

given by [123]:

S(T2)− S(T1) =

∫ T2

T1

C

T
dT. (5.2)

If C is measured at constant volume, S(T2) and S(T1) refer to that volume. If C(T ) is

measured at constant pressure, S(T2) and S(T1) then refer to that pressure. In many

cases the measurement of an entropy change thus involves simply the measurement

of the heat capacity of the substance. The third law of thermodynamics requires that

the entropy of all states of a system in internal thermodynamic equilibrium should

be the same at the absolute zero of temperature. Therefore we can set the entropy

at absolute zero temperature to be any finite constant and for convenience, we set it

equal to zero. We can then rewrite our definition of the entropy as

S(T )− S(T = 0) = S(T ) = kB ln Ω =

∫ T

0

C

T
dT, (5.3)

where Ω is the number of microstates consistent with the macroscopic configura-

tion. The counting of states is relative to the reference state of absolute zero, which

corresponds to the entropy of S(T = 0). This equation provides the basis for our

statistical interpretation of entropy and gives an experimental way to evaluate its

value directly. The total entropy for our materials should be described by the three

main contributions which are the electronic, vibrational and magnetic:

Stotal = Sel + Svib + Smag. (5.4)
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In the following section, I will discuss our specific heat results and magnetization

measurements. Last but not least, any additional anomalous entropy contributions

can be obtained from our analysis.

5.3 Sample Preparation

Bulk polycrystalline Ni-Mn-In alloys were prepared using arc melting in a pro-

tective argon atmosphere from 99.9% pure constituents. Ingots were flipped and

re-melted three times to promote homogeneity. The resulting alloy buttons were cut

into plates using a high speed diamond wafering blade. The samples were quenched

in ice water after they were then homogenized (solutionized) at 900◦C for 24 hours

in a quartz vial under a protective argon atmosphere to prevent oxidation.

Electron microprobe measurements were carried out using wavelength dispersive

spectrometry (WDS) methods on a Cameca SX50 equipped with four wavelength-

dispersive x-ray spectrometers and an electron backscattering image from these mea-

surements for the Ni50Mn36In14 sample is shown in Fig. 5.2. We prepared ma-

terials for the studies described here with four targeted compositions which are,

Ni50Mn36In14, Ni50Mn35.5In14.5, Ni48Mn35In17 and Ni48Mn38In14. The final composi-

tions were found to be Ni49.54Mn36.12In14.34, Ni49.88Mn35.70In14.42, Ni49.53Mn35.22In15.22

and Ni47.22Mn38.45In14.33 respectively, which is very close to the targeted compositions.

In this chapter, I label the samples as Ni50Mn36In14 →Ni50A, Ni50Mn35.5In14.5 →Ni50B,

Ni48Mn35In17 →Ni48A and Ni48Mn38In14 →Ni48B.

The sample preparation and WDS were done by our collaborators from the

School of Materials Science and Engineering in Shanghai Jiaotong University by

Yujin Huang and Department of Mechanical Engineering in Texas A&M University

by Nickolaus Bruno. Also, Nickolaus Bruno performed the SQUID measurements,

whereas I carried out all specific heat measurements and analysis. An identical
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Figure 5.2: Back-scattered electron image of the Ni50Mn36In14 sample after heat
treatment (scale bar 20µm in the bottom of the figure). The very dark regions are
empty cavities and image contrast shows grain size.
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preparation method was used used for all different compositions of Ni-Mn-In shown

in this thesis.

5.4 Magnetization Analysis

The magnetization measurements were carried out using a Quantum Design Mag-

netic Property Measurement System by Nickolaus M. Bruno. The results shown in

Fig. 5.3 and Fig. 5.4 for the four samples indicate a martensitic transition from

a paramagnetic/ferromagnetic austenite to an anti-ferromagnetic (or low-moment)

martensite upon cooling. The austenite to martensite transformation is observed on

cooling the samples and the reverse transformation is observed on sample heating.

These transformations are in good agreement with reported phase diagrams for sim-

ilar compositions [36], with both Ni50 compositions remaining paramagnetic at all

temperatures above the martensitic transition, while the Ni48 compositions exhibit

a ferromagnetic Curie temperature (Tc) within the austenite phase. Furthermore,

as shown below, the magnetization can be fitted very well in terms of fixed local

moments residing on the Mn ions.

The Curie-Weiss law,

M =
NA

3kB
µ2
eff

H

T − Tc
× n, (5.5)

where µeff = gµB

√

J(J + 1), Tc is the Curie temperature and g = 2, was used to

fit the high temperature magnetization curves in the paramagnetic region i.e. above

Tc for Ni48 compositions. This fitting was obtained by assuming that densities of

magnetic moments (n) is identical to the manganese ion density. For four compo-

sitions, the fittings yield J close to 2 as displayed in Table 5.1. The consistency of

these results with a model corresponding to a local magnetic moment of gJµB = 4µB

per Mn ion agrees with computed results [36, 124–126]. Therefore, it appears that
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Figure 5.3: Temperature dependence of the magnetization for the Ni48 samples at
0.05 T and the error bars are smaller than the symbols. The data include results
for both heating and cooling processes, as shown in the inset for the Ni50B sample.
The low-T bifurcation corresponds to field-cooled (FC) and zero-field cooled (ZFC)
as shown. Samples include Ni48 compositions, A=Ni48Mn35In17, B=Ni48Mn38In14.
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the moments can be treated as local moments which are indirectly coupled through

RKKY interactions. Similar behavior has previously been identified in other X2MnY

Heusler systems [127, 128], and we show below that such a prescription also agrees

with the specific heat results. Fitted Tc values are also given in Table 5.1. Notice

that for the two Ni50 materials, the fitted Tc is lower than the martensite transition

temperatures, which indicates that the austenite phase is paramagnetic while the

two compositions Ni48 go into a ferromagnetic regime before becoming paramagnetic

upon heating through a second order magnetic transition.

At low temperatures, the magnetization of each of the samples tends to satu-

rate at a value lower than 4µB per Mn, due to the antiferromagnetic behavior of

the martensite phases. For the case of Ni50A, good agreement with the M vs. T

curves above about 100 K (Fig. 5.5) was obtained by assuming a small fraction of

the magnetic moments from small superparamagnetic clusters with the remainder

corresponding to an antiferromagnetic matrix. Such a model has been used pre-

viously for Ni-Co-Mn-Sn Heusler alloys [129]. Since the Néel temperatures of our

materials are high (> 500◦C, as shown below), we can treat the antiferromagnetic

susceptibility as nearly temperature-independent at these temperatures. Therefore,

the martensite magnetization curves in different fields can be fitted by a combination

of paramagnetic and antiferromagnetic contributions

M = NgJ ′µBBJ ′

(

gJ ′µBH

kBT

)

+ χafH, (5.6)

where BJ ′ is Brillouin function for the clusters with total spin J ′ and χaf is the con-

stant magnetic susceptibility due to antiferromagnetism. In this fitting (between 100

K and 300 K for all measurement fields), we obtained J ′ = 26, and a cluster density

N = 3.9 × 10−5 mole/g. Assuming the clusters to be locally ferromagnetic with
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nom. comp. WDS comp. label J Tc(K) Tmh(K) γ(J/moleK2) θD(K)
Ni50Mn36In14 Ni49.54Mn36.12In14.34 Ni50A 2.002(4) 292±0.3 347 0.0124 315
Ni50Mn35.5In14.5 Ni49.88Mn35.70In14.42 Ni50B 1.992(2) 310±0.1 333 0.0128 318
Ni48Mn35In17 Ni49.53Mn35.22In15.22 Ni48A 2.003(4) 323±0.2 299 0.0117 316
Ni48Mn38In14 Ni47.22Mn38.45In14.33 Ni48B 1.998(1) 298±0.1 257 0.0163 316

Table 5.1: Table of the Ni-Mn-In compositions/notations and the corresponding analysis are listed. Tmh is defined as
the maximum peak of the specific heat from the heating measurement.
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fully-aligned Mn ions (individually with J = 2 consistent with the Curie-law fitting),

this corresponds to 9.3% of the Mn atoms contained in the superparamagnetic clus-

ters with the remaining Mn atoms contained in an antiferromagnetic (AF) matrix.

Note that as is well established for an antiferromagnet with ordering temperature

TN , similar to Eq. 5.5, M = (NAnHµ2
eff/(6kBTN), within a molecular field model,

while for a powder sample the magnetization will drop slowly to 2/3 of this value

approaching T = 0. Equating the fitted susceptibility χaf = 9.37× 10−6emu/g G to

the value at TN , and assuming the antiferromagnetic matrix to include 91% of the

Mn ions as established in the fitting, we obtain TN = 610 K, while renormalizing this

value to the small decrease in χaf in the fitted range gives TN ≈ 500K. As shown

below, this extrapolated TN is also consistent with the measured entropy of the AF

phase.

At lower temperatures (Fig. 5.5) the departure of the Ni50A magnetization data

from the fitted curves is likely due to super-spin glass behavior similar to what has

been established in related alloys [129], possibly combined with blocking behavior due

to anisotropy of individual clusters. In the Ni50A sample, a FC vs. ZFC bifurcation

near 100 K was also observed as shown in Fig. 5.6. Similar behavior is seen more

clearly for the Ni48B sample in Fig. 5.3.

The fitting procedure establishing superparamagnetic behavior in an AF matrix

in Ni50A works particularly well for Ni50A sample since there is a large temper-

ature region below Tm over which this behavior could be established. However, in

Ni48B the amplitude of the low-temperature M-T curves vs. field (Fig. 5.9) also cor-

responds to approximately 10% of the Mn moment in superparamagnetic clusters.

Ni50B exhibits a larger magnetic response at low temperatures which we have not

fully characterized, while in Ni48A a series of Arrott plots with the standard criti-

cal exponents (Fig. 5.7) confirm that the enhanced low-temperature magnetization
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Figure 5.5: Temperature dependence of the magnetization for the martensite of
Ni50A sample (Ni50Mn36In14) at B=0.05, 1, 3, 5, 7 T and the error bars are smaller
than the symbols. The black line is the fitting from the combination of paramagnetic
and antiferromagnetic model.

corresponds to the development of a spontaneous moment due to spin canting at a

critical temperature of 194 K, with an AF (or other zero moment) phase above it.

This matches a previous report [36] for a low-temperature ferromagnetic transition in

nearly identical compositions However, our result shows that this is not ferrimagnetic

but a canted or similar phase.
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Figure 5.6: ZFC and FC magnetization curves for the Ni50A sample are shown in
0.05 T and the error bars are smaller than the symbols.
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5.5 Specific Heat Analysis

In this section, I will give a detailed analysis about the specific heat measurements

on the Ni-Mn-In samples. For Ni50Mn36In14 sample, the 2-τ method and our method

give consistent results as shown in Fig. 5.10 in the non-hysteretic regime. The open

circles in Fig. 5.10 are analyzed by the 2-τ model and these results can not reflect

the specific heat across the 1st order transition correctly. The method developed in

Sec. 3.5.3 allows us to do a point-by-point analysis after scanning a long heat pulse

across the transition. The post-process results are shown as the dense curves in the

Fig. 5.10. The excellent agreement also was observed in the specific heat results for

the other samples Ni48A, Ni48B, Ni50A and Ni50B (as shown below).

Having confirmed the accuracy of this modified analysis method, I will now dis-

cuss the decomposition of the individual specific heat contributions for these samples.

The total specific heat for this system should be described by the three main contri-

butions which are the electronic, vibrational and magnetic:

Ctotal = Cel + Cvib + Cmag. (5.7)

This follows from the similar decomposition of the entropy as discussed in chapter 4.

The electronic specific heat contribution can be described by the known formula [130]

Cel(T ) =

(

π2

3

)

k2
BD(EF )T ≡ γT, (5.8)

where D(EF ) is the density of states at Fermi energy. Thus this term is a linear

function of the temperature. The vibrational contribution [130, 131] based on the

Debye model is

Cvib(T ) = 9kB

(

T

θD

)3 ∫ θD/T

0

x4ex

(ex − 1)2
dx (5.9)
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where θD is the constant Debye temperature. Since the electronic and vibrational

contributions dominate outside of the transition regime and the mathematical for-

mulae are well-defined, I will analyze these two contribution first. The electronic

contribution acts as a linear function as temperature at low temperature while the

Debye model behaves as T 3 so we can write done the specific heat behavior as

Ctotal

T
= γ + βT 2. (5.10)

The applicability of the Debye model was discussed in chapter 4, however note that

the T 3 behavior in the T → 0 limit is exact and model independent for a harmonic

network. Therefore, the electronic contribution can be obtained from the intercept

of a plot of C/T vs. T 2 as shown in Fig. 5.15 for the four Ni-Mn-In samples.

The γ results are listed in Table 5.1 and discussed below. We also found that in

Ni50Mn36In14 (Ni50A) γ = 0.0124 J/mole K2 is independent of the external magnetic

field up to 2 T (shown in the inset of Fig. 5.14). Note that these values are per mole

formula unit, considering the 4-atom (A2BC) formula unit of the parent Heusler

structure.

In order to gain a systematic understanding of the entropy, we performed calori-

metric measurements from 1.8 K to 400 K for all four samples. The low temperature

part (< 10 K) has been shown in Fig. 5.15. Fig. 5.16 shows our heating curve spe-

cific heat results (martensite→austenite) for the four Ni-Mn-In samples over the full

range. The martensitic transition temperatures and Curie temperatures seen in the

specific heat results are consistent with the magnetic measurements shown in Fig. 5.3

and Fig. 5.4. Also we indeed cannot observe the Curie temperatures for the two Ni50

samples since they are found to be lower than the martensitic transformation tem-

peratures (Tmh/Tc > 1), as shown above. Since Tmh/Tc < 1 for other two samples,
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they go to a paramagnetic austenite phase through a second order ferromagnetic

phase transition and the Curie temperature can be clearly observed in the specific

heat measurements as shown in Fig. 5.16.

We did a least χ2 fitting in the low temperature regime (< 10K) for each sample

yielding γ = 0.0117 J/mole K2 to γ = 0.0163 J/mole K2, as shown in Table 5.1

as discussed above. With γ obtained from the low temperature fittings, the Debye

model was applied in least χ2 fittings to around 100 K for each sample. The fitted

Debye temperatures range from 314 K to 318 K (shown in Table 5.1). With these

parameters, we extended the specific heat by extrapolating this model to 400 K and

obtained the solid curve shown for the case of Ni50A in Fig. 5.16. The parameters

for the different samples are very close to each other, as a results of which the curves

for different samples cannot be distinguished in the figure, and therefore we only

drew the representative results for Ni50A.

In this chapter, we concentrated on the contributions obtained from sample heat-

ing. However, in limited tests we found that the cooling curves (shown in the be-

ginning of this chapter) gives similar results as what was observed in heating curves.

For further analysis discussed below, we used exclusively the results from the heating

curves.

5.6 Entropy Analysis

In the previous section, I described the specific contributions from experiments

based on four Ni-Mn-In compositions. In this section, I will further dig into the spe-

cific heat contribution vs. varying composition. As compositions vary, the first order

transformations change from corresponding to antiferromagnetic to ferromagnetic in

some compositions and antiferromagnetic to paramagnetic in others, as shown in the

last section. In Fig. 5.16, the heating curve specific heat results were shown. The
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two materials with compositions labeled Ni48 can be seen to have well-known contri-

butions due to their second order magnetic transitions while the other two materials

with higher Ni compositions show only the structural changes, with much sharper

specific heat response.

The heating curve specific heat results for these materials turn out to be very close

to each other below the martensitic transitions, and their vibrational and electronic

contributions are quite similar to each other, as is apparent from the fitted values

(Table 5.1) and also as seen in Fig. 5.16. As discussed in chapter 4, the magnetic

entropy can be obtained from the equation

Smag =

∫

Cmag

T
dT =

∫

Ctotal − Cvib − Cel

T
dT ≤ R ln(2J + 1)×N. (5.11)

The last inequality expresses the well-known limit for the magnetic entropy [115].

The magnetic moment concentration N is well-established in our samples since as

shown above the results in all cases are consistent with Mn treated as local moments

with J = 2. By extending the Debye and electronic contributions identified at low

temperatures through the transition, we can identify deviations from this limit. The

entropy difference, Sexcess, plotted in Fig. 5.17, represents the integrated difference

of Eq. 5.11 for each sample. These excess contributions are expected to be equal to

Smag if the fitted Sel and Svib correctly account for the other contributions.

The Ni48 excess entropy contributions for both samples appear to be close to the

classical magnetic entropy as shown in Fig. 5.17. These curves were obtained by

subtracting the fitting parameters in Table 5.1 from the experimental heating curve

specific heat as Eq. 5.11 and then dividing by their corresponding Mn densities.

As shown before the Ni50 compositions have Tmh/Tc > 1 so that the second order

transitions completely disappear and these materials transform to a paramagnetic
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phase directly from the martensite phase, so that only one sharp transformation is

apparent in ∆Sexcess.

A calculated antiferromagnetic contribution with J = 2 and TN ≈ 540 (shown as

the dashed line in Fig. 5.17) fits all of the excess entropy curves qualitatively very

well below the martensitic transition for all the samples. The antiferromagnetic anal-

ysis comes from a mean-field model, and is a numerical solution of the relationship

described in Sec. 2.3 (and see Fig. 2.1) for which J and TN are the only parameters.

It is interesting that these materials all appear to have nearly identical magnetic

interactions judging from the entropy results in this region, although this magnetic

behaviors are rather different. For example the apparent spin-canting transition in

Ni48A sample can not be observed here, indicating that this transitions has little

effect on the magnetic entropy.

Above the martensitic transition, the entropy for the Ni50 samples surprisingly

goes beyond the magnetic entropy limit while the Ni48 samples have entropy which

agrees well with the magnetic limit for J = 2. This is the first time in the literature

as far as we are aware of for a direct observation of the excess total entropy from

calorimetric measurements.

The electronic entropy change as represented by a γ difference between the

martensite and austenite phases is believed to be much smaller than the entropy

change due to lattice vibrations related to the structural deformations. If we at-

tribute all of the observed excess entropy change to an electronic contribution, this

requires the γ change to be 14 mJ/mole K2 in Ni50Mn36In14, which means a dou-

bling of the martensite γ. This appears to be too large to be possible. A change of

5 mJ/mole K2 is required in Ni50Mn35.5In14.5, which appears to be more conceivably

correct. One recent experimental estimation [96] already addressed a significant lat-

tice entropy contribution (≈ 50%) in Ni-Mn-In with a composition different from
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ours. Also, a measurement at high magnetic fields in Ni-Co-Mn-In [88] found that

the electronic contributions are relatively small (4 mJ/mole K2) compared to the

vibrational contribution. We also recently worked with James Monroe, from our col-

laborator I. Karaman’s group [132] in preliminary studies of a NiCoMnIn material

for which heat treatments can favor either the austenite or martensite structure at

low temperatures. In this case also, we found only a small difference in γ of 1.8

mJ/mole K (a 13% difference). Based on these results we can not completely rule

out the possibility of a γ change of 5 mJ/mole K2 in Ni50Mn35.5In14.5, or a partial

contribution to the entropy change across the martensitic transition in Ni50Mn36In14

being due to γ change, however the vibrational contribution is expected to be most

important.

Aside from the references mentioned above, it has also been inferred in previous

studies on other Hesuler alloys [133–135] that the electronic contribution (typically

γ = 5 − 10 mJ K/mole) is negligible compared with the vibrational contributions.

Also see reference [55] where giant MCE materials are summarized for additional

discussion.

Here, if we attribute therefore the entire additional entropy change to vibrational

contributions, the Debye temperature would be required to decrease from 315 K to

300 K in Ni50Mn36In14 and from 318 K to 312 K in Ni50Mn35.5In14.5. This comes from

the entropy analysis in the Debye model presented in Sec. 4.1. It seems very likely

that these contributions make up all or most of the excess giant MCE entropy in these

materials. For a magneto-elastic coupled system, the lattice entropy can be connected

to the magnetic subsystem through the dependence of the Debye temperature θD on

the deformation [85, 136]

θ = θD

(

1− η
∆V

V0

)

, (5.12)
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where θD, η and ∆V
V0

are the Debye temperature in absence of lattice deformation,

the Grüneisen constant and the volume change. This relationship has been used in

a number of recent cases [85, 96, 136, 137] to estimate the entropy change starting

from measured changes in lattice parameters, although a significant limitation is

that the Grüneisen constant is not always well established. Usually, η is between

1 and 3 [65]. A first-principles calculation found that η is 2.405 for a Ni-Mn-Sb

Heusler alloy [138] and we can adopt the same value in making an estimation for the

present materials. This yields ∆V
V0

2.0% based on our results for Ni50Mn36In14 and

0.78% for Ni50Mn35.5In14.5. As follow-up work to this dissertation, we hope to obtain

temperature dependent synchrotron X-ray diffraction data to determine these values

in the near future in order to further understand the relationship of entropy changes

to changes in crystal structure for these materials.

5.7 Summary

In summary, a giant magneto-elastic coupling modified by changing chemical

composition has been observed in Ni-Mn-In Heusler alloys. For Ni48Mn38In14 and

Ni48Mn35In17 Tmh/Tc < 1, and the samples go to paramagnetic austenite state

through a second order ferromagnetic phase transition, so that the Curie temper-

ature can be clearly observed in specific heat measurements. For Ni50Mn36In14 and

Ni50Mn35.5In14.5 materials Tmh/Tc > 1, so that the second order transitions com-

pletely disappears and the materials transformed paramagnetic state directly.

In the martensite phase, these samples were found to agree with a model in

which the martensite is antiferromagnetic with a small portion of superparamagnetic

clusters. The portion of superpagmanetic moments is small and contributes relatively

minor amount to the specific heat results. As the temperature increases to the

austenite phase region through first-order transitions, the materials were shown to be
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ferromagnetic with J close to 2 or else paramagnetic with ferromagnetic fluctuations,

with the magnetic properties attributed to solely to a local moment of Mn atoms.

The specific heat due to antiferromagnetism was modeled by molecular field theory

and with TN between 500 K and 600 K the resulting curves were found to give

a qualitatively good agreement for all samples. In addition, by subtracting the

well-established electronic and phonon contributions, the magnetic contributions and

other excess contributions were evaluated. In the materials with Tmh/Tc > 1, an

additional entropy contribution attributed to structural deformations was observed

by comparing the analysis with the magnetic limit R ln(2J + 1). This is the first

time in the literature as far as we are aware of for a direct observation of the excess

entropy from calorimetric measurements.
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6. RELATIVE COOLING POWER IN PARAMAGNETIC

MAGNETOCALORIC SYSTEMS

6.1 Motivation

One of the common physical quantities used to characterize MCE materials is the

isothermal entropy change upon variation of the external magnetic field. We have

explored this quantity using two methods, through the integration of specific-heat

data, and also by indirect methods [56], based on magnetization measurements. This

allows the examination of entropy contributions competing with magnetism as has

already been discussed in the last chapter. However, care must be exercised in mea-

suring both the specific heat and magnetization within the coexistence phase region

due to the first-order martensitic transition. In addition, since the first order trans-

formation is by nature hysteretic, the question remains as to how well relationships

for the magnetization derived from equilibrium thermodynamics capture correctly

the actual transformation entropy.

As further comparison of the MCE by these methods, we examine the relative

cooling power (RCP) [139] which represents the amount of transferred heat between

the hot and cold reservoirs under a magnetic refrigeration cycle [140]. Values ex-

tracted from direct and indirect methods provide a compelling demonstration that

the corresponding entropies are in very close agreement. The RCPs for the two in-

vestigated materials are smaller than comparable materials operating at lower tem-

peratures, which we show results from the separation between the austenite Curie

temperature (Tc) and the operating temperature. However, further analysis shows

that a significant RCP would be achievable in such systems by suitable tuning of

structural and magnetic transition temperatures.
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6.2 Sample Preparations

Bulk polycrystalline Ni50Mn36In14 and Ni50Mn35.5In14.5 (nom. at. %) alloys are

studied in this chapter. These two samples are identical to two of the four samples

which have been discussed in the previous chapter (Ni50A and Ni50B respectively).

The readers are referred to Sec. 5.3 for the sample preparation and Table 5.1 for

their common properties.

6.3 Magnetization Analysis

Iso-field magnetization measurements were carried out using a Quantum Design

Magnetic Property Measurement System. Fig. 6.1 and Fig. 6.2 show the magnetiza-

tion measurement results at different fields. The transition curves as shown in Fig. 6.1

and Fig. 6.2 correspond to the well-known martensitic transformation. The results

indicate a transition from a paramagnetic austenite to an anti-ferromagnetic (or sim-

ilar low-moment) martensite upon cooling. These magnetic properties have already

been discussed in detail in the last chapter. The forward (austenite to martensite)

transformation is observed on cooling the samples and the reverse transformation

(martensite to austenite) is observed on sample heating. Outside of the transforma-

tion hysteresis region, the transition is nominally complete. As shown in Fig. 6.1

and Fig. 6.2, the transition temperatures slightly shift to lower temperatures as the

field increases.

Comparing these two samples, Ni50Mn35.5In14.5 (Ni50B) has a slightly lower marten-

sitic transition temperature as shown in Fig. 6.3 measured at 0.05 T. The martensitic

transition temperature also shifts to lower temperature as the field increases as shown

before.
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The Curie-Weiss law,

M =
NA

3kB
µ2
eff

H

T − Tc
× n, (6.1)

where µeff = gµB

√

J(J + 1), Tc is the Curie temperature and g = 2, was used to

fit the austensite magnetization curves of the two samples. Fitting Ni50Mn36In14

(Ni50A) yielded Tc = 292K and J = 2.00 per Mn while Ni50Mn35.5In14.5 (Ni50B)

yielded Tc = 310K and J = 1.99. These values are slightly different from the re-

sults published in reference [59] because the fitting temperature range is different.

However, this does not make any difference for the physical results we discuss in this

thesis. This fitted spin value was obtained by assuming that the density of mag-

netic moments is identical to the manganese ion density n (from WDS). The fitted

curves for Ni50Mn36In14 (Ni50A) are shown in the inset of Fig. 6.4 for two of these

fields. The linearity of these curves in M and T demonstrates the paramagnetism

of the austenite phase. These results with a local magnetic moment of 4µB agree

with reported studies [36, 124–126] and are consistent with magnetic moments in the

sample attributed to manganese with at most a very small moment on other atoms.

Note that the Curie temperature apparent here is very similar to Tc ≈ 293 K re-

ported to be observed in a sample of Ni50Mn34In16 [118]. Even though the structural

transition temperatures are in general very sensitive to composition in the Ni-Mn-In

alloys, Tc of the austenite is nearly composition-independent, a feature that holds

even for the present case where the ferromagnetic fluctuations in the austenite phase

are interrupted by the higher-temperature structural transition.

Besides increasing/decreasing the temperature of the sample, it was shown above

that changing the external magnetic field can also drive the magneto-structural tran-

sition. However, for cases including a first-order transition through scanning the
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magnetic field, incorrect probing protocols can lead to spurious magnetic entropy

changes [139, 141–145]. In order to correctly probe the phase transition, the follow-

ing isothermal measurement was performed, resulting in curves such as plotted in

Fig. 6.4 (main plot). The M-H measurements at a sequence of temperatures always

included a loop bringing the sample below the lowest temperature, 325 K. That is

to say, the materials were brought to complete martensite phase region before the

next isothermal M-H measurements in order to avoid the hysteresis due to coexis-

tence of two phase. The magnetization was recorded at each temperature with the

field increasing to the maximum value and also while it was brought back to zero.

Next, the temperature was reduced, bringing the sample into the complete marten-

site region, before going to the next measurement temperature. This was done with

steps of ∆T = +3 K near the phase transition, with the loop in temperature always

performed at zero field before every isotherm. The magnetization for temperatures

higher than 353 K and lower than 341 K shows similar paramagnetic behavior with

no observable hysteresis or nonlinearity so only three representative curves are shown

in Fig. 6.4.

6.4 Isothermal Entropy Change

In this section, we compare the two different experimental MCE entropy char-

acterizations from calorimetric and magnetic measurement. The specific heat mea-

surement across the transition was performed under fields of 1, 5, 7, 9 Tesla. The

martensitic transition temperature is shifted to the lower temperature as the external

field increases and it is consistent with the magnetization measurement under the

corresponding fields. A schematic phase diagram of a typical inverse magnetocaloric

effect material near the martensitic transition is shown in Fig. 6.5. The experimental

measurement protocols for both methods are drawn as the dashed lines with arrows.
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Figure 6.5: Schematic phase diagram of a typical inverse magnetocaloric effect ma-
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Note that the martensitic transition in isofield measurements is entirely completed

by the available magnetic field. In order to do the comparison with the specific heat

properly, we must go to complete martensite phase before proceeding to any higher

temperature isothermal experiment.

The entropy contribution due to the external field shown in Fig. 6.6 is obtained

by using the relation [56].

∆S(T, 0 → H) =

∫ T

0

Cp(T
′, H)− Cp(T

′, H = 0)

T ′
dT ′. (6.2)

Alternatively, an indirect experimental determination of the field-induced entropy

can be evaluated from the isothermal magnetization by scanning the field with close

enough temperature intervals [36, 57, 58]. This is done as a discrete approximation

to the relation which is expressed as

∆S(T, 0 → H) = lim
∆T→0

1

∆T

[
∫ H

0

M(T +∆T,H ′)dH ′ −

∫ B

0

M(T,H ′)dH ′

]

. (6.3)

The magnetic measurement were done by Nickolaus Bruno from the group of our

collaborators from the Departments of Mechanical Engineering and Materials Science

& Engineering in TAMU and the result of four analysis is shown as discrete symbols

in Fig. 6.6.

It is important to recognize that the magnetic MCE measurements may be intrin-

sically erroneous if changes in the material are time dependent, i.e., if the response is

not instantaneous, because the experiments were carried out in a sweeping magnetic

field. In our experiment, we lowered the sweeping speed to a rate of 25 Oe/s for

which the measurement results were found to be consistent with data taken at a

higher speed, in order to avoid this situation.
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The specific heat results for two materials in various fields were shown in Fig. 6.7

and Fig. 6.8. Note that in these and following figures the data are reported per

kg rather than per mole, following the convention from the literature on magne-

tiocaloric materials. The field-induced entropy change results obtained from these

specific heat measurements while heating in various fields are shown in Fig. 6.6 and

Fig. 6.9. In Ni50Mn36In14 (Ni50A), the isothermal entropy obtained from magnetic

measurements is also plotted in the same figure with the calorimetry results (Fig. 6.6)

and they appear to be in good agreement with each other. A similar comparison was

reported recently for other Ni-Mn-In materials [33, 59]. This result confirms that the

isothermal entropy change obtained from the magnetic measurement is physically

identical to the isothermal entropy change from the calorimetric measurement.

6.5 Relative Cooling Power Analysis

Another relevant quantity for evaluating the performance of MCE materials is the

amount of transferred heat between cold and hot reservoirs in an ideal refrigeration

cycle [60, 61]. This is referred to as the relative cooling power (RCP),

RCP(H) =

∫ Thot

Tcold

∆S(T, 0 → H)dT,

where Tcold and Thot are the temperatures of the two reservoirs. Therefore we can

obtain RCP by calculating the area under the ∆S curves. Eq. 1.4 can also be

rewritten [63] by using Eq. 1.3

RCP(H) =

∫ Thot

Tcold

∆S(T, 0 → H)dT =

∫ H

0

M(Thot, H
′)dH ′ −

∫ H

0

M(Tcold, H
′)dH ′

which indicates that RCP can be determined from isothermal magnetic measure-

ments at only two temperatures without knowing the details of the magnetic entropy
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at points between. Thus, despite the very sharp transition in this case, a larger num-

ber of magnetic isotherms (including cooling loops below the transformation) was

not required to obtain RCP. On the other hand, since the entropy change obtained

from specific heat data is much denser, we could calculate the entropy integral di-

rectly from the data. The results provide an additional useful comparison between

methods.

Generally, the relative cooling power can be considered to be given by Eq. 1.4 or

Eq. 1.5 evaluated with specific temperatures Thot and Tcold bracketing the transition,

corresponding to full martensite to austenite conversion. However, Fig. 6.10 dis-

plays the corresponding integrations evaluated with Thot allowed to vary across the

transition for a more generalized comparison. This provides an excellent comparison

between the results obtained by both methods, since as Eq. 1.5 shows the structure

of ∆S(T, 0 → H) is properly accounted for even at intermediate temperatures where

M(H) has not been measured. The 1 T entropy change is small, giving an RCP

integral (not shown) indistinguishable from the background. However, in 5 T and 7

T the results are in very good agreement, including the observed asymmetry of the

∆S peaks, which is reproduced with both methods. Also note that above 350 K,

the ∆S integration curves slope downward since here in the paramagnetic phase, a

conventional (non-inverse) MCE sets in.

To define the RCP in Ni50Mn36In14 (Ni50A), in practice we chose the point where

the integration curves of Fig. 6.10 reach a maximum, which is 349 K for all cases, at

the temperature indicated in the figure. The resulting RCP values are 28 J/kg in 5

T, 48 J/kg in 7 T, and 79 J/kg in 9 T. For comparison RCP = 242 J/kg in 7 T has

been reported for an annealed Ni-Co-Mn-Sn ribbon [142], and 104 J/kg in 5 T for

bulk Ni50Mn34In16 [42]. Therefore, for the Ni50A sample even though a large field-

induced entropy change is observed, the RCP remains smaller than can be achieved
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in corresponding materials exhibiting a ferromagnetic austenite phase.

6.6 Molecular Field Theory Prediction

In this section, I will discuss the Ni50Mn36In14 (Ni50A) sample and Ni50Mn35.5In14.5

(Ni50B) separately. In fact, the measurement for Ni50Mn35.5In14.5 (Ni50B) samples

were done several months after Ni50Mn36In14 (Ni50A), and the predictions in [59]

turned out to work very well for this sample.

6.6.1 Theory and Ni50Mn36In14 (Ni50A) Results

We now consider more generally the RCP obtainable in similar alloy systems with

the transformation temperature Tm closer to Tc, where the austenite paramagnetic

response will be stronger. As we established, the Ni50Mn36In14 austenite is described

very accurately as a Curie-law paramagnetic with each Mn having a spin fitted to J =

2.0, and ferromagnetic correlations corresponding to Tc = 289 K. Similar behavior is

observed in other Ni-Mn-In systems, and as noted above Tc is found to be relatively

independent of composition. For the present alloy, since the magnetization curves

are linear close to the transition in both phases (Fig. 6.4), Eq. 1.5 can be written,

RCP(H) = ∆χH2/2, with χ = M/H being the susceptibility. Based on the observed

small martensite magnetic response, its contribution to RCP in 9 T is −χmH
2/2 =

−21 J/kg, which decreases rapidly at lower fields. Closer to Tc, the paramagnetic

response of the austenite will become nonlinear, and to address this situation we

have adopted a mean field approach [146]. Except for the critical region very close

to Tc in small fields, this gives a good approximation for the spin polarization, and

as long as T remains above Tc, coercivity effects need not be considered.

The inset of Fig. 6.11 shows representative spin polarization results obtained fol-

lowing a standard derivation [146], with the mean spin following a Brillouin function

containing the applied magnetic field enhanced by the local ferromagnetic exchange
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field. We assumed each Mn to have a local moment with J = 2 and g = 2, coinciding

with the magnetization fit, and used Tc = 289 K as measured, which determines the

size of the exchange field. The magnetization is obtained from the average spin using

the known moment per Mn, along with the Mn-ion density per kg for Ni50Mn36In14.

No adjustable parameters are needed to obtain
∫

MdH , which is the integral appear-

ing in Eq. 1.5. Fig. 6.11 shows RCP results obtained this way vs. Tm/Tc, where the

temperature at which the integration is evaluated is assumed to match Tm for differ-

ent compositions along the horizontal axis. In this calculation we also assumed that

the martensite-phase contribution to RCP, −χmH
2/2, remains unchanged. While

in practice this term will vary with processing, note that this term is in any case

small, particularly near Tc. The circles on the graph represent the RCP extracted

from specific heat for Ni50Mn36In14 (with Tm/Tc = 1.21 as obtained in our analysis

for this material). These are in a very good agreement with the calculated curves

from the molecular field theory as shown in Fig. 6.11.

More generally, Fig. 6.11 shows the RCP that should be attainable in compo-

sitions similar to Ni50Mn36In14 if Tm is adjusted along the horizontal axis through

composition or local ordering changes. In this discussion, only magnetic contribu-

tions to the entropy are considered. For Tm close to Tc the RCP values become

comparable to those reported in other Ni-Mn-X materials, as described above. Note

that an approach typically used for these materials has been to maximize the austen-

ite magnetization, for example in reference [14] by substitution of Co, in order to

enhance the RCP. However, these results predict that compositions with Tm ∼ Tc

having small or zero spontaneous magnetization in both phases may still exhibit com-

parable results. Since magnetic coercivity effects will not contribute to the thermal

hysteresis, optimizing materials of this type may represent a promising approach for

obtaining useful MCE materials.
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6.6.2 Ni50Mn35.5In14.5 (Ni50B) Results

After confirming the agreement between the two experiments in Ni50Mn36In14,

we established confidently that the magnetic and calorimetric measurement yield

consistent results. In the Ni50Mn35.5In14.5 sample, we followed up with only the

calorimetric measurements as was shown in Fig. 6.8. The integrated entropy obtained

from the calorimetric measurement is shown in Fig. 6.12.

Picking out the peak of the integrated entropy as before as Thot, the corresponding

RCPs are obtained and are plotted as the triangles in Fig. 6.11. With Tm/Tc = 1.08
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for this sample, which is smaller than Tm/Tc = 1.21 in Ni50Mn36In14, the RCP results

are found to be large as expected in the molecular field theory. As shown in Fig. 6.12

these results are indeed in excellent agreement with the molecular field model pre-

viously developed for these materials as described in the last section. Further, we

note that our collaborators, after developing the heat treatment for this sample [147],

found an extremely small thermal hysteresis in this sample of 3 K, indicating that

this may indeed be a promising route for development of useful materials for mag-

netocaloric applications.

6.7 Summary

We examined the magnetocaloric effect in Ni50Mn36In14 and Ni50Mn35.5In14.5, heat

treated to exhibit a narrow structural phase transition to the martensitic phase near

345 K. Above the transformation this composition is paramagnetic with no sponta-

neous magnetization, unlike similar compositions typically studied with somewhat

lower structural transition temperatures. Field-induced entropy changes were ana-

lyzed both through indirect magnetic and direct calorimetric measurements. For the

latter, we demonstrated a procedure based on relaxation calorimetry using extended

heating and cooling curves extending across the first-order phase transition. The re-

sults are in excellent agreement with magnetization-based methods, which provide a

firm basis for the analytic evaluation of field-induced entropy changes. In particular,

the relative cooling power (RCP) can be assessed in this way, and the associated

analysis shows that a large RCP may be generated in materials with the structural

transition tuned very close to the Curie temperature. Follow-up measurements were

indeed in excellent agreement with the predictions of this model.
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7. CONCLUSION

The recent discovery of giant magnetocaloric effects at around room temperature

has triggered research and development aimed to produce a magnetic refrigerator

that operates at ambient temperatures. Among new magnetocaloric materials, Ni-

Mn-In Heusler alloys have attracted considerable attention as candidates for novel

rare-earth free magnetic refrigerants. In order to fully understand the properties

of the martensitic phase transition in Ni-Mn-In Heusler alloys and its influence on

the MCE properties, we prepare four samples with different compositions which

are Ni50Mn36In14, Ni50Mn35.5In14.5, Ni48Mn35In17 and Ni48Mn38In14. The former two

samples exhibit a paramagnetic to antiferromagnetic transition from high tempera-

ture to low temperature while the later two samples exhibit an additional ferromag-

netic transition in the high temperature phase.

Calorimetric experiments were performed in order to understand the total en-

tropy of the system and to compare with magnetization measurements. A modified

calorimetric analysis technique was developed in order to properly probe the first

order transition. We observed the complete martensitic transformation by sweeping

of the temperature under zero field conditions for the four samples. The entropy of

the systems are obtained from S =
∫ C(T )

T
dT which includes contributions due to

magnetism (Smag), lattice vibrations (Svib) and conduction electrons (Sel):

Stot = Smag + Svib + Sel. (7.1)

In the Ni50Mn36In14 and Ni50Mn35.5In14.5 samples, this includes an additional con-

tribution due to the magneto-elastic coupling, which can be explained in terms of
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the renormalization of the Debye temperature coupled with magnetism. The origin

of the correlation between the magnetic transitions and the lattice expansion, and

the influence of magnetostructural coupling on MCE have been the focus of several

previous studies. However, magnetization experiments were more often conducted

rather than calorimetric measurements. However, the magnetization data can only

give the field-induced entropy change instead of the total entropy of the material.

On the other hand our measurements represent the first time in the literature as far

as we are aware of the observation of the excess entropy directly from calorimetric

measurements.

Besides these results, we analyzed the field-induced entropy change through both

magnetization and direct field-dependent calorimetry measurements in Ni50Mn36In14

and Ni50Mn35.5In14.5. The results provide a firm basis for the analytic evaluation

of field-induced entropy changes and relative cooling power in related materials. In

particular, we predict the relative cooling power in the molecular field theory, and

the associated analysis shows that a large RCP may be generated in materials with

the structural transition tuned very close to the Curie temperature.
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