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ABSTRACT

We consider the interpolatory theory of bandlimited functions at both the integer

lattice and at more general point sets in Rd by forming interpolants which lie in

the linear span of translates of a single Radial Basis Function (RBF). Asymptotic

behavior of the interpolants in terms of a given parameter associated with the RBF

is considered; in these instances the original bandlimited function can be recovered

in L2 and uniformly by a limiting process.

Additionally, multivariate interpolation of nonuniform data is considered, and

sufficient conditions are given on a family of RBFs which allow for recovery of multi-

dimensional bandlimited functions. We also consider the rate of approximation that

can be obtained in different cases. Sometimes, we may say something about the

rate in terms of the RBF parameter mentioned above, while other times, we achieve

rates based on a shrinking mesh size. The latter technique allows us to consider

interpolation of Sobolev functions and their associated approximation rates as well.
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NOMENCLATURE

N The Natural numbers (we do not include 0 in this definition)

N0 The Natural numbers including 0

Z The Integers

R The Real numbers

C The Complex numbers

C∞(R) The space of continuous, infinitely differentiable functions on R

C0(R) The space of continuous functions on R which decay to 0 at infinity

Lp Lp(R), the Banach space of p-integrable measurable functions

`p `p(Z), the Banach space of (infinite) p-summable sequences

W k
p W k

p (R), the Sobolev space of functions whose first k weak

derivatives are in Lp

S The Schwartz space of rapidly decreasing functions

S ′ The space of Tempered Distributions

f̂ The Fourier transform on L1 or S ′

F [f ] The Fourier transform of a function f ∈ L2

| · | The Euclidean norm on Rd

‖ · ‖X The norm of a linear space X (usually a Banach space)

a.e. almost everywhere (with respect to Lebesgue measure)

RBF Radial Basis Function

CIS Complete Interpolating Sequence

PWσ The Paley-Wiener space of bandlimited functions whose

Fourier transforms are supported on [−σ, σ]

PWS The Paley-Wiener space over the set S ⊂ Rd
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1. INTRODUCTION

It has long been an endeavour in mathematics to find techniques which allow one

to approximate complicated functions by simpler ones. A classical example of this is

found in the Weierstrass Approximation Theorem, which states that any continuous

function on the interval [0, 1] can be uniformly approximated (as well as one would

like) by a polynomial. A constructive proof of Weierstrass’s Theorem uses Bernstein

polynomials to do the approximation. Let us start with a general formulation of the

problem.

Problem 1.0.1 (General Approximation Problem). Given a class of functions C,

form an Approximation Space of functions A such that given any function f in C,

we can find some function g in A such that g “closely approximates” f .

Of course the above problem is quite vague. In general, we need some sort of

measurement of “closeness” of two functions. Often, the class C will be a normed

linear space, andA a subspace of C, in which case the notion of distance is provided by

the norm. Heuristically, one chooses A to be a space of functions that is simpler than

C in some manner. Again, the Weierstrass Approximation Theorem is illustrative

in that polynomials are generally considered more easily understood than arbitrary

continuous functions.

Note that in the above example, there is no guarantee that the value of an approx-

imating polynomial at any point in the interval [0, 1] will actually coincide with the

continuous function it is approximating. That is, if p is a polynomial approximating

f ∈ C[0, 1], then there may not exist an x ∈ [0, 1] such that p(x) = f(x). How-

ever, another potential approximation scheme involves interpolation, in which one

attempts to match the values of the original function at certain prescribed points.
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We formulate below a general problem in this vein.

Problem 1.0.2 (General Interpolation Problem). Given a class, C, of real-valued

functions defined on Rd and a set of distinct points X := (xi)i∈I ⊂ Rd, form an

Approximation Space of functions A such that, given any function f in C, we can

find some function g in A such that g(xi) = f(xi) for all i ∈ I, and moreover g

“closely approximates” f .

An example of such an interpolation scheme would be to let C = C[0, 1] as in the

setting of the Weierstrass Approximation Theorem, let X =
{

0, 1
N
, 2
N
, . . . , N−1

N
, 1
}

for some N ∈ N, and let A be, say, the set of cubic splines: namely, piecewise cubic

polynomials. It is a classic fact that one can uniformly approximate any f ∈ C[0, 1]

by a cubic spline p such that p
(
i
N

)
= f

(
i
N

)
for i = 0, . . . , N , as long as N is chosen

suitably large. In general, the index set I could be finite or countably infinite. In

the sequel, we will focus our attention on the infinite case.

We may further restrict our considerations to forming an approximation space

which consists of linear combinations of shifts of a single function. For simplicity,

suppose that C = C[0, 1] as before, X = (xi)i∈I be a set of distinct points in [0, 1],

and let φ be a function on [0, 1]. We define a potential approximation space Aφ,X :={∑
i∈I
aiφ(· − xi) : (ai) ⊂ R

}
, and ask if we can closely approximate f ∈ C[0, 1] by

g ∈ A.

Problem 1.0.3 (General Approximation by Translates of a Single Function). Given

a class, C, of real-valued functions defined on Rd, a set of distinct points X :=

(xi)i∈I ⊂ Rd, and a function φ : Rd → R, form the Approximation Space

A := Aφ,X :=

{∑
i∈I

aiφ(· − xi) : (ai) ⊂ R

}
.
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Then for every f in C, find a function g in A such that g “closely approximates” f .

We can also formulate the corresponding interpolation problem:

Problem 1.0.4 (General Interpolation by Translates of a Single Function). Given

a class of functions C as before, a set of distinct points X := (xi)i∈I ⊂ Rd, and a

function φ : Rd → R, form the Approximation Space

A := Aφ,X :=

{∑
i∈I

aiφ(· − xi) : (ai) ⊂ R

}
.

Then for every f in C, can we find a function g in A such that g(xi) = f(xi) for all

i ∈ I, and moreover, g “closely approximates” f?

Besides considering different approximation schemes, we will also pay some atten-

tion to the rate of approximation of functions; that is, how “fast” the approximation

occurs in some sense. Given different approximation schemes, there are typically

different ways of measuring the rate of approximation, be it in terms of some lim-

iting parameter or by adding more interpolation points, for example. Our primary

technique for examining approximation rates will be in the context of Problem 1.0.4.

We will consider a countable sequence of points X := (xj)j∈Z, and subsequently a

parameter h ∈ (0, 1]. Then we pose the following question:

Problem 1.0.5 (General Approximation Rate Problem). Given a normed space,

(C, ‖ · ‖), of real-valued functions defined on Rd, a set of distinct points X := (xj)j∈Z

in Rd, and an Approximation Space A, find a function R(h) : (0, 1] → [0,∞) such

that, for every f in C, there exists a function g in A such that g(hxj) = f(hxj) for

all j ∈ Z, and moreover ‖f − g‖ ≤ R(h)‖f‖. (The function R is usually called the

approximation rate).
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Often, the parameter h is called the “mesh size,” and the goal is to find approx-

imation schemes such that R(h) → 0 as h → 0. Of course if R1(h) ≤ R2(h) for all

h ∈ (0, 1], then the approximation scheme that yields a rate of R1 is better than

the one with associated rate R2. In many cases we will consider, we achieve polyno-

mial rates of approximation depending on the smoothness of the target class C; i.e.

R(h) = hk for some k ∈ N.

Our contribution addresses some of these problems – specifically Problems 1.0.4

and 1.0.5 – for certain classes of functions and approximation spaces. We typically

consider C to be either the class of bandlimited functions on Rd or of Sobolev func-

tions of a given smoothness and integrability. Additionally, we typically consider

Approximation Spaces formed by linear combinations of translates of a single Radial

Basis Function (RBF). We will always consider interpolation problems, sometimes

by interpolating at the integer lattice, but also more generally at non-uniform sets

of points X ⊂ Rd.
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2. BASIC NOTIONS

We begin by introducing some basic tools and definitions which will be used

throughout the rest of this work.

Suppose that d ∈ N and 1 ≤ p < ∞. If Ω ⊂ Rd is a set with positive Lebesgue

measure, then define the usual Banach spaces of Lebesgue measurable functions over

Ω and their associated norms by

Lp(Ω) :=
{
f : Ω→ R : ‖f‖Lp(Ω) <∞

}
, ‖f‖Lp(Ω) :=

(∫
Ω

|f(x)|pdx
) 1

p

,

where dx is the Lebesgue measure on Rd. When p =∞, let

L∞(Ω) :=
{
f : Ω→ R : ‖f‖L∞(Ω) <∞

}
,

where

‖f‖L∞(Ω) := inf {C ≥ 0 : |f(x)| ≤ C for almost every x in Ω} .

Here, almost everywhere is in the sense of the d-dimensional Lebesgue measure. If

no set is specified, we mean Lp(Rd), (or Lp(R) if d = 1).

Similarly, for 1 ≤ p <∞, define the sequence spaces indexed by a set I and their

norms by

`p(I) :=
{

(ai)i∈I ⊂ R : ‖a‖`p(I) <∞
}
, ‖a‖`p(I) :=

(∑
i∈I

|ai|p
) 1

p

.

When p =∞, let ‖a‖`∞(I) := sup
i∈I
|ai|, and

`∞(I) :=
{

(ai)i∈I ⊂ R : ‖a‖`∞(I) <∞
}
.
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If no index set is given, we refer to `p(Z).

Given a function g ∈ L1(Rd), its Fourier transform, ĝ, is defined by the following:

ĝ(ξ) :=

∫
Rd
g(x)e−i〈ξ,x〉dx, ξ ∈ Rd. (2.1)

The Fourier transform can be uniquely extended from L1∩L2(Rd) to a linear isometry

(up to a constant factor) of L2(Rd) onto itself. We denote by F [g], the Fourier

transform of a function g ∈ L2(Rd). Moreover, the Parseval-Plancherel Identity

states that

‖F [g]‖L2 = (2π)
d
2‖g‖L2 . (2.2)

If g is also continuous and F [g] ∈ L1, then the following inversion formula holds:

g(x) =
1

(2π)d

∫
Rd

F [g](ξ)ei〈ξ,x〉dξ, x ∈ Rd, (2.3)

(see, for example, [48]).

Additionally, define W k
2 := W k

2 (R) to be the Sobolev space over R of functions

in L2 whose first k weak (or distributional) derivatives are in L2. Recall that if T is

a distribution, then its k-th derivative is the distribution defined by

〈
T (k), φ

〉
= (−1)k

〈
T, φ(k)

〉
, for all φ ∈ D,

where D is the set of test functions which are in C∞(R) and have compact support

(C∞(R) being the set of all continuous functions on R which are infinitely differen-

tiable). The seminorm on W k
2 is defined by

|g|Wk
2

:=

(∫
R
|g(k)(x)|2dx

) 1
2

= ‖g(k)‖L2 ,

6



and the norm on the same space can be defined by

‖g‖Wk
2

:=
(
‖g‖2

L2
+ |g|2Wk

2

) 1
2
.

Another basic property of the Fourier Transform, which will be used frequently,

is that for g ∈ W k
2 ,

F [g(k)](ξ) = (iξ)kF [g](ξ). (2.4)

In light of (2.2) and (2.4), the norms on the spaces L2 and W k
2 may be expressed as

follows:

‖g‖L2 =
1√
2π

(∫
R
|F [g](ξ)|2 dξ

) 1
2

, ‖g‖Wk
2

=
1√
2π

(∫
R

(
1 + |ξ|k

)2 |F [g](ξ)|2 dξ
) 1

2

.

Similarly, the seminorm becomes

|g|Wk
2

=
1√
2π

(∫
R
|ξ|2k|F [g](ξ)|2dξ

) 1
2

. (2.5)

This is the seminorm that will be used throughout, since most calculations will be

carried out in the Fourier transform domain. Additionally, if Ω ⊂ R is an interval,

let |g|Wk
2 (Ω) be as in (2.5) with the integral taken over Ω.

An important class of functions for what follows will be the Paley-Wiener, or

bandlimited, functions. For σ > 0, these spaces are defined as follows:

PWσ := {f ∈ L2 : F [f ] = 0 almost everywhere outside [−σ, σ]} . (2.6)

The Paley-Wiener Theorem asserts that an equivalent definition of this space is that

of entire functions of exponential type σ whose restriction to R is in L2. Similarly,

7



define the multivariate Paley-Wiener spaces to be

PW (d)
σ :=

{
f ∈ L2(Rd) : F [f ] = 0 almost everywhere outside [−σ, σ]d

}
. (2.7)

Furthermore, let the class PW k
σ be functions whose k-th derivatives lie in PWσ. That

is

PW k
σ := {f : R→ R : f (k) ∈ PWσ}.

Note that f ∈ PW k
σ does not imply that f is square-integrable; for example, any

polynomial of degree at most k−1 is in PW k
σ for any σ, because its k-th derivative is

identically 0, hence bandlimited. Since all one-dimensional Paley-Wiener spaces are

isometrically isomorphic (see Theorem A.0.5), we typically consider the canonical

case of PWπ. In higher dimensions, let S be a set of positive Lebesegue measure.

Then define the Paley-Wiener space of S-bandlimited functions via

PWS := {f ∈ L2(Rd) : F [f ] = 0 almost everywhere outside S}.

As is customary, we use C to denote an absolute constant whose value may

vary from line to line, and we use subscripts to denote dependence of C on certain

parameters.

Definition 2.0.6. Let f and g be two functions on R. Then f(x) = O(g(x)), |x| →

∞, provided there exists some x0 > 0 and an absolute constant C such that

|f(x)| ≤ C|g(x)|, for all |x| ≥ x0.

In this case, it is said that f(x) is “big O” of g(x).

Recall that a function f : C→ R is said to be entire if it can be represented as a

8



power series which converges on all of the complex plane.

Definition 2.0.7. An entire function f is said to have exponential type σ > 0 if

for every ε > 0, there exists a constant C > 0 such that

|f(z)| ≤ Ce(σ+ε)|z|, z ∈ C. (2.8)

The smallest σ for which (2.8) holds is called the type of f . One can also calculate

the type of f by σ = lim sup
|z|→∞

|f(z)|
|z|

.

By convention, the constant 0 function is said to have exponential type 0. Any

polynomial has exponential type 0 as well. The sinc function, defined by f(z) :=

sin(πz)
πz

, has exponential type π.
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3. ON CARDINAL INTERPOLATION AND THE SAMPLING THEOREM

3.1 Observations on the Sampling Theorem

In this chapter, we study Problem 1.0.4 in the case of interpolation at the (multi)

integer lattice Zd ⊂ Rd for different RBFs. Specifically, we will consider interpolation

of bandlimited functions. Thus Problem 1.0.4 can be more specifically restated as

follows.

Problem 3.1.1 (Cardinal Interpolation of Bandlimited Functions). Let d ∈ N, σ >

0, and φ : Rd → R be a given radial basis function. Define the Approximation Space

A := Aφ,Zd :=

∑
j∈Zd

ajφ(· − j) : (aj) ⊂ R

 .

Given an f ∈ PW (d)
σ , find a cardinal interpolant, Iφf ∈ A, such that Iφf(j) = f(j)

for every j ∈ Zd, and ‖Iφf − f‖L2(Rd) is small.

As mentioned before, there is no loss of generality in reducing to the canonical

case σ = π. The function Iφf is called the cardinal interpolant of f because it

coincides with the function f at the integer lattice Zd.

This problem may be approached in several ways which are all essentially equiva-

lent. Perhaps the most illustrative approach comes from first considering a classical

univariate sampling theorem from the early 1900’s, due independently to E. T. Whit-

taker, Kotelnikov, and Shannon.

Theorem 3.1.2 (WKS Sampling Theorem). If f ∈ PWπ, then

f(x) =
∑
j∈Z

f(j)
sin(π(x− j))
π(x− j)

, x ∈ R.
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Many questions arise from this theorem, one of which is the question of summa-

bility. The function sin(x)/x decays like 1/|x|, which is quite slow. Consequently,

the series above does not converge uniformly in general, but locally uniformly. Isaac

Schoenberg asked if one can drop the condition of complete recovery, given by the

sampling theorem, in exchange for a series that merely interpolates the bandlimited

function, but which nonetheless converges uniformly. Schoenberg referred to such

techniques as summability methods. Before moving on, one more pertinent observa-

tion about the series in Theorem 3.1.2 is in order. The function sinc(x) := sin(πx)
πx

has the following interpolatory property on the integer lattice: sinc(0) = 1, and

sinc(j) = 0 for j ∈ Z \ {0}. This property is recorded below for future use.

Definition 3.1.3. A function L : Rd → R is called a fundamental function, or

equivalently a cardinal function, provided

L(j) = δ0,j :=

 1, j = 0

0, j 6= 0
, j ∈ Zd.

The sinc function gets its name from the abbreviation of the Latin sinus cardi-

nalis, meaning “cardinal sine.”

Let us now undertake the task of creating more general fundamental functions

which are generated by integer translates of a single RBF. Given a function φ : Rd →

R, formally define

L̂φ(ξ) :=
φ̂(ξ)∑

j∈Zd
φ̂(ξ + 2πj)

, ξ ∈ Rd \ {0}. (3.1)

Of course, at the moment, this function is not the Fourier transform of anything,

despite our suggestive notation. However, under the correct assumptions it will be
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the Fourier transform of a fundamental function. Assume that φ̂ is always non-

negative; then by definition, L̂φ is non-negative as well. Of course, an equivalent

assumption would be that φ̂ is non-positive, in which case L̂φ would have the same

property. If in addition, L̂φ ∈ L1(Rd), then the following holds.

Theorem 3.1.4. Let φ̂ : Rd → R be non-negative (or non-positive) such that∑
j∈Zd

φ̂(ξ + 2πj) has no zeros, and let L̂φ be defined by (3.1). If L̂φ ∈ L1(Rd), de-

fine

Lφ(x) :=
1

(2π)d

∫
Rd
L̂φ(ξ)ei〈x,ξ〉dξ, x ∈ Rd. (3.2)

The function Lφ is continuous, square-integrable, and a fundamental function. More-

over, L̂φ is the Fourier Transform of Lφ.

Proof. Continuity and square-integrability of Lφ follow from the Fourier inversion

theorem, as does the “moreover” statement. To prove that Lφ is a fundamental

function, we employ a periodization argument that will be used quite frequently. Let

Ω := [−π, π]d and k ∈ Zd. Then via the substitution u = ξ + 2π`,

Lφ(k) =
1

(2π)d

∫
Rd

φ̂(ξ)∑
j∈Zd

φ̂(ξ + 2πj)
ei〈k,ξ〉dξ

=
1

(2π)d

∑
`∈Zd

∫
Ω+2π`

φ̂(ξ)∑
j∈Zd

φ̂(ξ + 2πj)
ei〈k,ξ〉dξ

=
1

(2π)d

∫
Ω

∑
`∈Zd

φ̂(u− 2π`)e−i〈k,2π`〉∑
j∈Zd

φ̂(u− 2π`+ 2πj)
ei〈k,u〉du

12



=
1

(2π)d

∫
Ω

ei〈k,u〉du

= δ0,k.

The interchange of sum and integral in the third line is justified by Tonelli’s Theorem,

for example.

Armed with a fundamental function, we formally define the cardinal interpolant

of a function f ∈ PW (d)
π via

Iφf(x) :=
∑
j∈Zd

f(j)Lφ(x− j), x ∈ Rd. (3.3)

By Theorem 3.1.4,

Iφf(k) =
∑
j∈Zd

f(j)Lφ(k − j) =
∑
j∈Zd

f(j)δj,k = f(k), k ∈ Zd.

Thus Iφ interpolates f on Zd, and accordingly, we shall call Iφf the cardinal inter-

polant of f , and Iφ the cardinal interpolation operator.

Typically, there is a parameter associated with the function φ that one may

exploit to change the decay of the fundamental function, Lφ, away from the origin.

In the sequel, such parameters will be used to yield asymptotic recovery results for

bandlimited functions. Schoenberg pioneered the subject of cardinal interpolation in

the 1960’s (see for example [41]-[44]). He considered the family of so-called cardinal

B-splines:

M :=

{
Mn := 1[− 1

2
, 1
2 ] ∗ · · · ∗︸ ︷︷ ︸

n

1[− 1
2
, 1
2 ] : n ∈ N

}
.
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The integer n is the parameter mentioned above, and Schoenberg proved that

LMn(x) = O(e−|x|), |x| → ∞,

(the big O constant, see Definition 2.0.6, depends on n). Consequently, it is easy to

see that the series in (3.3) corresponding to IMn converges uniformly as long as the

data sequence (f(j))j∈Z is bounded (which it is for any Paley-Wiener function, f).

The theory of radial basis functions supplied more examples of such fundamental

functions, as Schoenberg’s work was taken up by a host of followers. In 1992, Baxter

[5] discussed the asymptotic behavior of the fundamental function associated with the

Hardy multiquadric, φc(x) := (|x|2 + c2)
1
2 . This result sparked interest from others,

and in the 90’s and early 2000’s, Baxter, Riemenschneider, and Sivakumar produced

a series of fundamental papers [6], [36]-[39], [45] concerning cardinal interpolation via

shifts of the Hardy multiquadric and the Gaussian kernel. Namely, they considered

the families

Q :=
{

(| · |2 + c2)
1
2 : c > 0

}
, and

G :=
{
e−λ|·|

2

: λ > 0
}
.

It was shown by Buhmann [7] that the fundamental function associated with the

Hardy multiquadric satisfies

Lφc(x) = O(|x|−5), |x| → ∞,

while for that associated with the Gaussian, gλ(x) := e−λ|x|
2
,

Lgλ(x) = O(e−λ|x|), |x| → ∞.
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Recent efforts of the author and Ledford [18] have extended the results of Baxter

to a broader class of general multiquadrics,

Qα :=
{(
| · |2 + c2

)α
: c > 0

}
.

The following Theorem provides a summary of the decay of the univariate funda-

mental function associated with the general multiquadric φα,c(x) := (|x|2 + c2)α,

x ∈ R.

Theorem 3.1.5 (cf. [18] Corollaries 4.4,4.6, and 4.8).

(i) If α ∈ (0,∞) and c ≥ 1, then

Lφα,c(x) = O
(
|x|−b2α+1c) , |x| → ∞.

(ii) If α = −1, and c ≥ 1, then

Lφ−1,c(x) = O(|x|−k), |x| → ∞,

for every k ∈ N.

(iii) If α ∈ (−∞,−1), and c ≥ 1, then

Lφα,c(x) = O
(
|x|−d2|α|−2e) , |x| → ∞.

Note that the so-called Poisson kernel, φ−1,c, exhibits much better behavior - its

fundamental function decays faster than any polynomial - owing to the fact that its

Fourier transform is purely an exponential function, which is not the case for the

other general multiquadrics. Another consideration is that for most values of the
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exponent α, specifically α ∈ (−∞,−3/2) ∪ {−1} ∪ [1/2,∞), the series in (3.3) will

converge uniformly as desired.

The final consideration for Problem 3.1.1 is the desire to make ‖Iφf−f‖L2 small

in some quantifiable way. To explore the answer to that question, it is germane to

consider the role of the parameters of the functions discussed above. In fact, upon

considering the asymptotic behavior of the cardinal interpolants in terms of their

parameters, an answer presents itself. Intertwined with this conclusion is the answer

to another relevant question: that of not only approximating, but recovering, a

bandlimited function via its cardinal interpolant.

Let K ⊂ (0,∞) be an infinite set, and let (φκ)κ∈K be a family of functions on

Rd, and let Iκf be defined as in (3.3) with φ replaced by φκ.

Problem 3.1.6 (Recovery of Bandlimited Functions). Given a sequence of functions

(φκ)κ∈K with associated cardinal interpolation operators (Iκ)κ∈K, do the following

hold for every f ∈ PW (d)
π ?

1) lim
κ
‖Iκf − f‖L2(Rd) = 0,

2) lim
κ
|Iκf(x)− f(x)| = 0, uniformly on Rd,

where κ approaches some limiting value (typically 0 or ∞).

Schoenberg’s investigation of spline interpolants brought forth a positive solution

to Problem 3.1.6 for the B-splines; here κ = n, and recovery is achieved in 1) and

2) as n → ∞. Later, Baxter’s work gave a positive solution for the interpolants

associated with the Hardy multiquadric when one lets the shape parameter c→∞.

In the case of the Gaussian interpolants considered by Baxter, Riemenschneider,

and Sivakumar, Problem 3.1.6 once again has a positive solution when the Gaussian

parameter λ→ 0+.
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Recently, Ledford [28] has generalized Problem 3.1.6 in a different way by con-

sidering sufficient conditions on the family of functions (φκ)κ∈K for the problem

to have a positive solution. He calls such a family of functions a regular fam-

ily of cardinal interpolators. All of the previously mentioned examples are regu-

lar families, as are more general multiquadrics, namely, φα,c(x) := (|x|2 + c2)α for

α ∈ (−∞,−2d+1
2

] ∪ [1
2
,∞) \ N0. In this case, κ = c→∞.

However, the following section is devoted to showing that, with a more specific

analysis, the family

Qα :=
{(
| · |2 + c2

)α
: c ≥ 1

}
provides a positive answer to Problem 3.1.6 for every α ∈ R \ N0.

One interesting note on the driving force behind the proof of these facts is the fol-

lowing observation: for every family listed above, the fundamental functions converge

pointwise to the sinc function as the parameter κ goes to its limiting value.

3.2 Recovery of Bandlimited Functions Using General Multiquadrics

The purpose of this section is to extend the result of Baxter [5] to the broader

family of general multiquadrics, Qα, discussed in the previous section (the work in

this, and only this, section was done jointly with Ledford in [18]). To wit, if α ∈ R

and c > 0, consider the d-dimensional general multiquadric

φα,c(x) :=
(
|x|2 + c2

)α
, x ∈ Rd, (3.4)

where | · | denotes the Euclidean distance on Rd. One finds from [47, Theorem 8.15]

that the distributional Fourier transform of the general multiquadric coincides with

a legitimate function when α ∈ R \ N0:
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φ̂α,c(ξ) =
21+α

Γ(−α)

(
c

|ξ|

)α+ d
2

Kα+ d
2
(c|ξ|), ξ ∈ Rd \ {0}, (3.5)

where Γ(t) =
∫∞

0
xt−1e−xdx is the usual Gamma function, and

Kν(r) =
1

2

∫ ∞
0

e−r cosh teνtdt, r > 0, ν ∈ R. (3.6)

The function Kν is called the modified Bessel function of the second kind. A few

comments concerning these functions are in order. First note that both φα,c and

its Fourier transform are radial, that is φα,c(x) = φα,c(|x|). It is also clear from

the definition that the modified Bessel function is symmetric in its order; that is,

K−ν = Kν for any ν ∈ R. Additionally, the Bessel function Kν comprises a simple

pole of order ν at the origin, and a term decaying exponentially away from the origin.

Since φα,c is integrable and square-integrable whenever α < −d/2, traditional Fourier

theory shows that its Fourier transform must be continuous and square-integrable as

well, a fact that is exhibited by the cancellation of the pole of order −α− d
2

resulting

from the Bessel function (Kα+ d
2

= K−α− d
2
) and the power |ξ|−α− d2 in (3.5). This

cancellation shows that φ̂α,c is bounded at the origin, and the exponential decay of

the modified Bessel function provides integrability. A proof of this fact will be given

in Proposition 5.2.3, but shall not be needed here. For other values of α, the formula

(3.5) coincides with the distributional Fourier transform of the general multiquadric,

except in the case that α is a non-negative integer. If α ∈ N0, then its distributional

Fourier transform exists, but is a differential operator on the Schwartz space, and

thus cannot be represented as a function.

For notational convenience, let L̂α,c be the function in (3.1) with φ̂ replaced by

φ̂α,c. It is evident from (3.5) and (3.6) that φ̂α,c is either non-negative or non-positive
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throughout the real line (depending on the sign of Γ(−α)). Consequently, if L̂α,c is

integrable, Theorem 3.1.4 implies that Lα,c is a fundamental function associated with

the general multiquadric φα,c. The following lemmas serve as a prelude to the proof

of integrability.

Lemma 3.2.1. Let R > r > 0, c > 0, and α ∈ R \ N0. Then

|φ̂α,c(R)| ≤
(
R

r

)−α− d
2

e−c(R−r)|φ̂α,c(r)|.

Proof. Defining λ := λc,α,d := 21+α

Γ(−α)
cα+ d

2 , equations (3.5) and (3.6) yield the following

series of estimates:

|φ̂α,c(R)| = |λ|R−α− d2
∫ ∞

0

e−cR cosh(t)e(α+ d
2

)tdt

= |λ|
(
R

r

)−α− d
2

r−α−
d
2

∫ ∞
0

e−c(R−r) cosh(t)e−cr cosh(t)e(α+ d
2

)tdt

≤ |λ|
(
R

r

)−α− d
2

r−α−
d
2 e−c(R−r)

∫ ∞
0

e−cr cosh(t)e(α+ d
2

)tdt

=

(
R

r

)−α− d
2

e−c(R−r)|φ̂α,c(r)|.

The inequality above comes from the fact that cosh(t) ≥ 1.

Note that if α + d
2
≥ 0, then (R/r)−α−

d
2 ≤ 1, and so the upper bound is purely

exponential, though this will not be expressly needed. The following inequalities are

summarized from [47, Section 5.1].
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Lemma 3.2.2. (i) If α + d/2 ≥ 1/2, then

Kα+ d
2
(r) ≥

√
π

2
r−1/2e−r, r > 0.

(ii) If α + d/2 < 1/2 and r > 1, then

Kα+ d
2
(r) ≥ Cα,d r

−1/2e−r, where Cα,d :=

√
π 3α+ d

2
− 1

2

2α+ d
2

+1Γ
(
α + d

2
+ 1

2

) .
(iii)

Kα+ d
2
(r) ≤

√
2π r−1/2e−re

|α+ d2 |
2

2r , r > 0.

(iv)

Kα+ d
2
(r) ≤ 2α+ d

2
−1Γ

(
α +

d

2

)
r−α−

d
2 , r > 0.

Proposition 3.2.3. Let α ∈ R \ N0 and c > 0. Then L̂α,c ∈ L1(Rd). Consequently,

by Theorem 3.1.4, the function Lα,c, defined to be the inverse Fourier transform of

L̂α,c, is a fundamental function.

Proof. First, choose a large positive number M . Then, since |L̂α,c(ξ)| ≤ 1 for all ξ,

∫
[−M,M ]d

|L̂α,c(ξ)|dξ ≤ (2M)d.

It remains to estimate

I :=

∫
Rd\[−M,M ]d

|L̂α,c(ξ)|dξ.

To do this, we establish a pointwise estimate for L̂α,c(ξ). Let ξ ∈ Rd\[−M,M ]d be

fixed. Since M is large, there exists some kξ ∈ Zd\{0} such that 2π ≤ |ξ+2πkξ| ≤ 4π.

Additionally, Lemma 3.2.2(ii) provides a positive constant γ := γα,d such that, if

cr ≥ 1, Kα+ d
2
(cr) ≥ γe−cr(cr)−

1
2 . Therefore, choose M large enough so that for
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ξ ∈ Rd \ [−M,M ]d, we have c|ξ| ≥ 1. Then if λ is the constant from Lemma 3.2.1,

we have via Lemma 3.2.2(ii),

∣∣∣∣∣∑
k∈Zd

φ̂α,c(ξ + 2πk)

∣∣∣∣∣ ≥ |φ̂α,c(ξ+ 2πkξ)| ≥ γ|λ||ξ+ 2πkξ|−α−
d
2 e−c|ξ+2πkξ|(c|ξ+ 2πkξ|)−

1
2 .

Now depending on the sign of α+ d
2
, the expression above is minimized by substituting

2π or 4π for |ξ + 2πkξ| in the appropriate places. Consequently, there is a positive

constant D := Dc,α,d such that

∣∣∣∣∣∑
k∈Zd

φ̂α,c(ξ + 2πk)

∣∣∣∣∣ ≥ De−4πc.

Lemma 3.2.2(iii) states that Kα+ d
2
(r) ≤

√
2π r−

1
2 e−re

|α+ d2 |
2

2r for every r > 0. Conse-

quently, by further adjusting M if need be so that e
|α+ d2 |

2

2c|ξ| ≤ 2 for ξ ∈ Rd \ [−M,M ]d,

there is a positive constant β such that Kα+ d
2
(c|ξ|) ≤ βe−c|ξ|. We conclude that

I ≤ D−1e4πc

∫
Rd\[−M,M ]d

|φ̂α,c(ξ)|dξ ≤ βD−1|λ|e4πc

∫
Rd\[−M,M ]d

|ξ|−α−
d
2 e−c|ξ|dξ.

The integral on the right is convergent, so L̂α,c ∈ L1(Rd).

As mentioned above, one of the primary tools in showing convergence of cardinal

interpolants is the fact that the fundamental functions converge almost everywhere

to the multivariate sinc function, which is equivalent to the Fourier transform of

the fundamental functions converging pointwise almost everywhere to the indicator

function of the cube [−π, π]d. The story is no different here. Defining I(ξ) to be the

function that takes value 1 whenever ξ ∈ [−π, π]d, and 0 elsewhere, the following

holds.

21



Proposition 3.2.4. Let α ∈ R \ N0. Then

lim
c→∞

L̂α,c(ξ) = I(ξ)

for all ξ ∈ Rd such that max{|ξ1|, . . . , |ξd|} 6= π.

Proof. First suppose that ξ /∈ [−π, π]d. Then there exists some k0 ∈ Zd such that

|ξ + 2πk0| < |ξ|. Therefore by Lemma 3.2.1,

|φ̂α,c(ξ)| ≤
(

|ξ|
|ξ + 2πk0|

)−α− d
2

e−c(|ξ|−|ξ+2πk0|)|φ̂α,c(ξ + 2πk0)|

≤
(

|ξ|
|ξ + 2πk0|

)−α− d
2

e−c(|ξ|−|ξ+2πk0|)
∑
k∈Zd
|φ̂α,c(ξ + 2πk)|.

Consequently, since φ̂α,c is of one sign, dividing both sides of the above equation by∑
k∈Zd
|φ̂α,c(ξ + 2πk)| yields

0 ≤ L̂α,c(ξ) ≤
(

|ξ|
|ξ + 2πk0|

)−α− d
2

e−c(|ξ|−|ξ+2πk0|).

The term on the far right approaches 0 as c → ∞ because the exponent there is

negative. Therefore, for ξ /∈ [−π, π]d, lim
c→∞

L̂α,c(ξ) = 0 by the Squeeze Theorem.

Now suppose that ξ ∈ (−π, π)d \ {0}. Then for all k ∈ Zd \ {0}, |ξ| < |ξ + 2πk|.

By (3.1), we may write

L̂α,c(ξ) =

(
1 +

∑
k 6=0

φ̂α,c(ξ + 2πk)

φ̂α,c(ξ)

)−1

,
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so it suffices to show that

lim
c→∞

∑
k 6=0

φ̂α,c(ξ + 2πk)

φ̂α,c(ξ)
= 0.

By Lemma 3.2.1,

0 ≤
∑
k 6=0

φ̂α,c(ξ + 2πk)

φ̂α,c(ξ)
≤
∑
k 6=0

(
|ξ + 2πk|
|ξ|

)−α− d
2

e−c(|ξ+2πk|−|ξ|).

The series on the right is convergent and dominated by the convergent series where

c is replaced by 1, so

lim
c→∞

∑
k 6=0

φ̂α,c(ξ + 2πk)

φ̂α,c(ξ)
= 0

as desired. Convergence of the second series stems from the fact that if α + d
2
> 0,

then the term |ξ+2πk|
|ξ| is less than 1, and so the series is majorized by

∑
k 6=0

e−2cπ|k|,

which converges. On the other hand, if α + d
2
< 0, the k-th summand is majorized

by the k-th summand of the convergent series
∑
k 6=0

(1 + |k|
|ξ| )
−α− d

2 e−2cπ|k|.

Note that by continuity, we can let L̂α,c(0) = lim
|ξ|→0

L̂α,c(ξ) = 1, which concludes

the proof. This fact is also shown in [18, Theorem 4.11].

We now consider interpolation of bandlimited functions at the lattice Zd by trans-

lates of the function Lα,c, beginning the analysis with an L2 version of the Poisson

Summation Formula.

Lemma 3.2.5 (cf. [5] Lemma 3.2). If f ∈ PW (d)
π , then

∑
j∈Zd

f̂(ξ + 2πj) =
∑
j∈Zd

f(j)e−i〈j,ξ〉, (3.7)

where the second series is convergent in L2(Rd).
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Lemma 3.2.6. Let f ∈ PW (d)
π . For m ∈ N, define

Î m
α,cf(ξ) :=

 ∑
‖k‖1≤m

f(k)e−i〈k,ξ〉

 L̂α,c(ξ), ξ ∈ Rd,

where ‖k‖1 =
d∑
i=1

|ki| for k ∈ Zd. Then (I m
α,cf)m∈N forms a Cauchy sequence in

L2(Rd).

Proof. Define Qm : Rd → R via

Qm(ξ) =
∑
‖k‖1≤m

f(k)e−i〈k,ξ〉.

Thus, Î m
α,cf(ξ) = Qm(ξ)L̂α,c(ξ). From Lemma 3.2.5, it is clear that (Qm)m∈N is a

Cauchy sequence in L2[−π, π]d. Since Qm(ξ + 2πk) = Qm(ξ) for every k ∈ Zd,

‖Î m
α,cf − Î `

α,cf‖L2(Rd) ≤
∫
Rd
|Qm(ξ)−Q`(ξ)|2

(
L̂α,c(ξ)

)2

dξ

=
∑
k∈Zd

∫
[−π,π]d

|Qm(ξ + 2πk)−Q`(ξ + 2πk)|2

×
(
L̂α,c(ξ + 2πk)

)2

dξ

=

∫
[−π,π]d

|Qm(ξ)−Q`(ξ)|2
∑
k∈Zd

(
L̂α,c(ξ + 2πk)

)2

dξ

≤
∫

[−π,π]d
|Qm(ξ)−Q`(ξ)|2dξ .

The interchange of sum and integral is valid by Tonelli’s Theorem, and the last
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inequality follows from the fact that

∑
k∈Zd

(
L̂α,c(ξ + 2πk)

)2

=

∑
k∈Zd

φ̂α,c
2
(ξ + 2πk)

(∑
l∈Zd

φ̂α,c(ξ + 2πl)

)2 ≤ 1. (3.8)

Note that because φ̂α,c is either non-negative or non-positive, the above inequality

is simply the fact that the `2 norm of a sequence is less that the `1 norm of the

same sequence. In conclusion, (Î m
α,cf)m∈N is a Cauchy sequence in L2(Rd) because

‖Î m
α,cf − Î `

α,cf‖L2(Rd) ≤ ‖Qm −Q`‖L2[−π,π]d , and the latter is Cauchy.

Lemmas 3.2.5 and 3.2.6 allow us to define

Îα,cf(ξ) := L̂α,c(ξ)
∑
k∈Zd

f(k)e−i〈k,ξ〉, (3.9)

where the series is convergent in L2(Rd). By a periodization argument similar to

that in the proof of Lemma 3.2.6, one can show that Îα,cf ∈ L1(Rd). Indeed,

‖Îα,cf‖L1(Rd) =
∑
l∈Zd

∫
[−π,π]d+2πl

L̂α,c(ξ)

∣∣∣∣∣∑
k∈Zd

f(k)e−i〈k,ξ〉

∣∣∣∣∣ dξ

=

∫
[−π,π]d

∑
l∈Zd

L̂α,c(ξ + 2πl)

∣∣∣∣∣∑
k∈Zd

f(k)e−i〈k,ξ〉

∣∣∣∣∣ dξ

=

∫
[−π,π]d

∣∣∣∣∣∑
k∈Zd

f(k)e−i〈k,ξ〉

∣∣∣∣∣ dξ
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≤ (2π)
d
2

∥∥∥∥∥∑
k∈Zd

f(k)e−i〈k,·〉

∥∥∥∥∥
L2[−π,π]d

= (2π)
d
2‖f̂‖L2[−π,π]d .

Thus, applying the Fourier inversion formula term by term, we see that

Iα,cf(x) =
∑
k∈Zd

f(k)Lα,c(x− k), x ∈ Rd. (3.10)

Since Lα,c is a fundamental function, it is evident that Iα,cf(j) = f(j), j ∈ Z.

Theorem 3.2.7. Let α ∈ R \ N0. If f ∈ PW (d)
π , then

lim
c→∞
‖Iα,cf − f‖L2(Rd) = 0,

and lim
c→∞
|Iα,cf(x)− f(x)| = 0 uniformly on Rd.

Proof. We first demonstrate uniform convergence. The proof is the same as in [5].

Again let I(ξ) be the characteristic function of the cube, and let Ω := [−π, π]d. Then

by the inversion formula, Lemma 3.2.5, and the oft-exploited periodization argument,

Iα,cf(x)− f(x) =
1

(2π)d

∫
Rd

∑
k∈Zd

f̂(ξ + 2πk)(L̂α,c(ξ)− I(ξ))e−i〈x,ξ〉dξ

=
1

(2π)d

∫
Ω

f̂(ξ)
∑
k∈Zd

(L̂α,c(ξ + 2πk)− I(ξ + 2πk))e−i〈x,ξ+2πk〉dξ.
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Therefore, we find that

|Iα,cf(x)− f(x)| ≤ 1

(2π)d

∫
Ω

|f̂(ξ)|
∑
k∈Zd

∣∣∣L̂α,c(ξ + 2πk)− I(ξ + 2πk)
∣∣∣ dξ

=
1

(2π)d

∫
Ω

|f̂(ξ)|

(
1− L̂α,c(ξ) +

∑
k 6=0

L̂α,c(ξ + 2πk)

)
dξ.

But then by definition,

∑
k 6=0

L̂α,c(ξ + 2πk) =

∑
k∈Zd

φ̂α,c(ξ + 2πk)− φ̂α,c(ξ)∑
l∈Zd

φ̂α,c(ξ + 2πl)
= 1− L̂α,c(ξ).

Therefore,

|Iα,cf(x)− f(x)| ≤ 2
1

(2π)d

∫
[−π,π]d

|f̂(ξ)|(1− L̂α,c(ξ))dξ.

As the integrand is non-negative and bounded by 2|f̂(ξ)| ∈ L1[−π, π]d, and lim
c→∞

(1−

L̂α,c(ξ)) = 0 by Proposition 3.2.4, the Dominated Convergence Theorem implies that

lim
c→∞
|Iα,cf(x)− f(x)| = 0, x ∈ Rd.

The upper bound is independent of x, hence the convergence is uniform.

Turning to the proof of L2 convergence, in view of the Plancherel/Parseval Iden-

tity, it suffices to show that ‖Îα,cf − f̂‖L2(Rd) → 0. We first estimate the norm of

Îα,cf − f̂ on the cube [−π, π]d. Recall that since (e−i〈k,·〉)k∈Zd is an orthonormal
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basis for L2[−π, π]d, we may write f̂(ξ) =
∑
k∈Zd

f(k)e−i〈k,ξ〉. Moreover,

‖f̂‖L2[−π,π]d = ‖f(k)‖`2(Zd).

Consequently, (3.9) yields

‖Îα,cf − f̂‖2
L2[−π,π]d

=

∫
[−π,π]d

∣∣∣∣∣∑
k∈Zd

f(k)(L̂α,c(ξ)− 1)e−i〈k,ξ〉

∣∣∣∣∣
2

dξ

=

∫
[−π,π]d

|L̂α,c(ξ)− 1|2
∣∣∣∣∣∑
k∈Zd

f(k)e−i〈k,ξ〉

∣∣∣∣∣
2

dξ.

The right hand side is bounded by 4‖f(k)‖2
`2(Zd)

, so by the Dominated Conver-

gence Theorem and Proposition 3.2.4, lim
c→∞
‖Îα,cf − f̂‖L2[−π,π]d = 0.

Now to estimate the norm outside the cube, if l = (l1, l2, . . . , ld) ∈ Zd \{0}, define

Ql := [−π − 2πl1, π − 2πl1]× · · · × [−π − 2πld, π − 2πld]. As f is bandlimited,

‖Îα,cf − f̂‖2
L2(Rd\[−π,π]d) = ‖Îα,cf‖2

L2(Rd\[−π,π]d) =
∑
l 6=0

‖Îα,cf‖2
L2(Ql)

.

Consequently,

∫
Rd\[−π,π]d

|Îα,cf(ξ)|2dξ =
∑
l 6=0

∫
Ql

∣∣∣∣∣L̂α,c(ξ)∑
k∈Zd

f(k)e−i〈k,ξ〉

∣∣∣∣∣
2

dξ

=

∫
[−π,π]d

∑
l 6=0

|L̂α,c(ξ + 2πl)|2
∣∣∣∣∣∑
k∈Zd

f(k)e−i〈k,ξ〉

∣∣∣∣∣
2

dξ,

by the Monotone Convergence Theorem.

28



Recall that 0 ≤ L̂α,c(ξ) ≤ 1, so |L̂α,c(ξ+ 2π`)|2 ≤ L̂α,c(ξ+ 2π`), and as calculated

above,
∑
` 6=0

L̂α,c(ξ+ 2π`) = 1− L̂α,c(ξ). Consequently, the integral above is majorized

by ∫
[−π,π]d

|1− L̂α,c(ξ)|

∣∣∣∣∣∑
k∈Zd

f(k)e−i〈k,ξ〉

∣∣∣∣∣
2

≤ 2‖f(k)‖2
`2(Zd).

Therefore, the Dominated Convergence Theorem and Proposition 3.2.4 imply that

lim
c→∞
‖Îα,cf‖L2(Rd\[−π,π]d) = 0, and the proof is complete.

3.3 Numerical Results

To give some brief numerical results, we focus on univariate cardinal interpolation,

first using general multiquadrics and subsequently the Gauss kernel. First note that

Proposition 3.2.4 implies that Lα,c must converge to the sinc function as c → ∞.

Figure 3.1 shows the graph of L 1
2
,c (the fundamental function associated with the

Hardy multiquadric) for different values of c. As expected, for the larger value,

c = 10, the accuracy is much higher. The estimated L2-error of the difference in L 1
2
,c

and the sinc function on the interval [−10, 10] considered in the figure is .0780 when

c = 1 and .0091 when c = 10.

Figure 3.2 shows the multiquadric interpolant (with α = 1/2) for the bandlimited

function g(x) = 1
2π

∫ π
−π t

4eixtdt on the interval [−10, 10]. The estimates for the dif-

ference appear in Table 3.1. The numerical entries are the estimated values of the

relative error ‖Iα,cg(x)− g(x)‖L∞[−10,10]/‖g‖L∞[−10,10].

To calculate Iα,cg, the series in (3.10) was truncated at k = ±100. From the

data in Table 3.1, it seems that for low values of c, it is beneficial to take a large

positive value of α. However, for large values of c, there is not as marked a difference

when varying α. This could be simply due truncation error in approximating the

interpolant. Some similar numerical results for cardinal multiquadric interpolation
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can be found in [16].
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Figure 3.1: Plots of sinc function and Fundamental function for the Hardy multi-
quadric (with α = 1/2) with shape parameters c = 1 (left) and c = 10 (right).
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Figure 3.2: Plot of the function g and its multiquadric interpolant for α = 1/2 and
both c = 1 (left) and c = 10 (right).

Turning our attention to cardinal interpolation via the Gauss kernel gλ(x) =

e−λ|x|
2
, we note that similarly to Proposition 3.2.4, it was shown in [5, Proposition

2.2] that Lλ (the fundamental function associated with the Gaussian) converges to

the sinc function as λ → 0+. Again by approximating the fundamental function,
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c = 1 c = 10 c = 100
α = 7/2 .1550 .0353 5.221 · 10−4

α = 1/2 .2470 .0408 5.318 · 10−4

α = −1/2 .2891 .0428 5.352 · 10−4

α = −1 .3073 .0439 5.369 · 10−4

α = −7/2 .4078 .0492 5.456 · 10−4

Table 3.1: Estimated relative error of Iα,cg − g for a range of α and c values.

we estimate that the maximum of the difference of Lλ and the sinc function on the

interval [−10, 10] was .0747 when λ = 1 and .0046 when λ = 1/10. The following

table displays the relative L∞ error of the Gaussian interpolant to the function g

used above.

λ = 1 λ = .1 λ = .01
.2401 .0210 7.60 · 10−4

Table 3.2: Estimated relative error of Iλg − g for a range of λ.

We note that the estimated difference of Lλ(x)−sinc(x) was smaller for compara-

ble values of λ than the difference of the fundamental functions associated with the

Poisson kernel. Likewise, for smaller values of λ, the cardinal Gaussian interpolant

of the bandlimited function g behaved favorably when compared to the multiquadric

interpolants for small or negative values of α. The reason for this is likely that the

Gaussian fundamental function decays exponentially away from the origin. Addi-

tionally, in the instances when we can find approximation rates (such as in Chapters

5 and 6), the Gaussian interpolant of a bandlimited function converges at a faster

(or at least equal up to a constant) rate than its multiquadric interpolant.
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4. RIESZ BASES OF EXPONENTIALS

For the remainder of this work, our discussion will focus on nonuniform, or

scattered-data, interpolation problems. Precisely, we wish to consider Problem 1.0.4

for some of the radial basis functions explored in the previous chapter, where now

the interpolation schemes will involve more general point sets (xj)j∈Z ⊂ Rd rather

than the integer lattice. However, some background information is required before

making suitable progress toward a solution.

Definition 4.0.1. Let H be a separable Hilbert space. A sequence (hj)j∈N is said to

be a Riesz basis for H provided there exist an orthonormal basis, (ej)j∈N, for H

and a bounded, invertible, linear operator, T : H → H, such that

hj = Tej, j ∈ N.

The above is merely one way to define a Riesz basis on a Hilbert space as the

following theorem demonstrates.

Theorem 4.0.2. The following are equivalent:

1. (hj) is a Riesz basis for H.

2. (hj) is a bounded, unconditional basis for H (i.e. sup
j
‖hj‖ <∞ and the series

h =
∑
j

〈h, hj〉hj converges unconditionally for every h ∈ H).

3. (hj) is complete in H and there exists a number B ≥ 1 such that for every

(cj) ∈ `2,

1

B
‖c‖`2 ≤

∥∥∥∥∥∑
j

cjhj

∥∥∥∥∥
H

≤ B‖c‖`2 . (4.1)
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The smallest B for which (4.1) holds is called the Riesz basis constant of (hj).

4. (hj) is a basis for H and the series
∑
j

cjhj converges if and only if (cj) ∈ `2.

5. There is an equivalent inner product on H such that (hj) is an orthonormal

basis for H equipped with that inner product.

6. (hj) is an exact frame for H (a sequence (hj) is a frame for H if there exist

constants A,B > 0 such that A‖h‖2 ≤
∑
j

| 〈h, hj〉 |2 ≤ B‖h‖2 for every h ∈ H,

and a frame is exact if removal of any vector hk makes the new sequence cease

to be a frame).

7. For every (cj) ∈ `2, there exists a unique h ∈ H such that

〈h, hj〉 = cj, for every j.

8. (hj) is complete, and the Moment Space of (hj) is `2. (Define T : H → `2 via

h 7→ (〈h, hj〉)j. Then T (H) is called the Moment Space).

There are yet many more equivalences than are stated above, but those mentioned

should be sufficient to indicate the nature of Riesz bases of Hilbert spaces. For proof

of many of the equivalences in Theorem 4.0.2, refer to [48]. For the purposes of

connection with interpolation schemes, the following problem is one of quite natural

interest.

Problem 4.0.3. Let S ⊂ Rd be a bounded set with positive Lebesgue measure. Is

there a Riesz basis of exponentials, i.e. of the form
(
e−i〈xj ,·〉

)
j∈N, for L2(S)? If there

is, we say that L2(S) admits a Riesz basis of exponentials.

This problem is an old one in abstract harmonic analysis, and there has been

much work to characterize both the sets S and the points (xj) ⊂ Rd such that
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the conclusion is true. As a starting point, the following lemmas provide a simple

necessary condition on the sequence (xj).

Lemma 4.0.4. Let S ⊂ Rd, and let
(
e−i〈xj ,·〉

)
j∈N be a Riesz basis for L2(S). Let

(e∗j)j∈N be the associated coordinate (or biorthogonal) functionals (i.e. the functions

such that
〈
e−i〈xj ,·〉, e∗k

〉
S

= δj,k, where 〈·, ·〉S is the usual inner product on L2(S)).

Then (e∗j)j∈N is also a Riesz basis for L2(S). Moreover, any function f ∈ L2(S) has

the following representations

f(x) =
∑
j∈N

〈
f, e∗j

〉
S
e−i〈xj ,x〉, f(x) =

∑
j∈N

〈
f, e−i〈xj ,·〉

〉
S
e∗j(x).

In the case that d = 1, S = [−π, π], and xj = j for j ∈ Z, then the coordinate

functionals are also exponential functions. However, in general, the coordinate func-

tionals may even fail to be continuous. Another important note is that if a Riesz

basis satisfies (4.1) with constant B, then its coordinate functionals also satisfy (4.1)

with the same constant (see Lemma 6.2.2).

Lemma 4.0.5. Let S ⊂ Rd, and let
(
e−i〈xj ,·〉

)
j∈N be a Riesz basis for L2(S). Then

there exists an ε > 0 such that

|xk − xl| ≥ ε, for all k 6= l,

where |xk − xl| is the Euclidean distance on Rd.

Proof. By way of contradiction, suppose that there are subsequences (kj), (lj) ⊂ N

such that ‖xkj − xlj‖ → 0 as j → ∞. Then the Dominated Convergence Theorem

implies that ‖e−i〈xkj ,·〉 − e−i〈xlj ,·〉‖L2(S) → 0 as j →∞. On the other hand, if (e∗j)j∈N
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are the coordinate functionals to (e−i〈xj ,·〉), then for every j,

〈
e−i〈xkj ,·〉 − e−i〈xlj ,·〉, e∗kj

〉
S

= 1.

This supplies a contradiction because

∣∣∣〈e−i〈xkj ,·〉 − e−i〈xlj ,·〉, e∗lj〉
S

∣∣∣ ≤ ∥∥∥e−i〈xkj ,·〉 − e−i〈xkj ,·〉∥∥∥
L2(S)

sup
j∈N
‖e∗kj‖L2(S) → 0.

Note that the supremum on the right hand side above must be finite by Theorem

4.0.2(2).

4.1 Riesz Bases of Exponentials in One Dimension

Since later our concern will be interpolating bandlimited functions, we first con-

sider the problem of finding Riesz bases of exponentials for intervals in one dimension.

In this setting, it is often more natural to index the sequence by the integers rather

than the natural numbers. The following beautiful theorem due to M. Kadec shows

that such bases are abundant.

Theorem 4.1.1 (Kadec’s 1/4-Theorem, [21]). Let (xj)j∈Z ⊂ R. If

sup
j∈Z
|xj − j| <

1

4
,

then
(
e−ixj(·)

)
j∈Z is a Riesz basis for L2[−π, π].

Consequently, any small enough perturbation of the integer lattice will give a

Riesz basis of exponentials. As an aside, the upper bound in Theorem 4.1.1 is sharp:

Proposition 4.1.2 (cf. [48], Theorem 5, p.103). The set of functions

{
e±i(n−

1
4)(·) : n ∈ N

}
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is exact, but not a Riesz basis for L2[−π, π].

Having so far given separate necessary and sufficient conditions on the sequence

(xj), the following theorem due to B.S. Pavlov gives a necessary and sufficient con-

dition.

Theorem 4.1.3 (Pavlov, [34]). The set
(
e−ixj(·)

)
j∈Z is a Riesz basis for L2[−π, π] if

and only if the following three conditions hold.

(i) (xj) lies in a horizontal strip along the real axis (i.e. sup
j
|=(xj)| ≤ C for some

C, with =(xj) being the imaginary part of xj),

(ii) The function

F (z) := lim
R→∞

∏
|xj |<R

(
1− z

xj

)
is an entire function of exponential type π, and

(iii) F satisfies the following (Muckenhoupt A2 condition):

sup
I⊂R

(
1

|I|

∫
I

|F (x)|2dx · 1

|I|

∫
I

1

|F (x)|2
dx

)
<∞,

where the supremum is taken over all bounded intervals I ⊂ R.

The final result on the one dimensional case is a recent one of Kozma and Nitzan.

Theorem 4.1.4 ([24]). Let S ⊂ R be a finite disjoint union of intervals. Then L2(S)

admits a Riesz basis of exponentials. That is, there exists a sequence (xj)j∈N ⊂ R

such that
(
e−ixj(·)

)
j∈N is a Riesz basis for L2(S).
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4.2 Riesz Bases of Exponentials in Higher Dimensions – Cubes

While Problem 4.0.3 has seen some good characterization in one dimension, it

remains a significantly more difficult task in higher dimensions due to the fact that

the solution is highly dependent on the geometry of the set S, in general. Therefore,

we will examine different geometries of the set S and discuss some scenarios when

L2(S) does (or does not) admit a Riesz basis of exponentials. Perhaps the easiest

generalization of the one dimensional results comes when considering S to be a cube.

To ease notation, if X := (xj) is such that the associated exponential functions

form a Riesz basis for L2(S) for a given S, then we call X a Riesz-basis sequence for

L2(S).

Theorem 4.2.1. Let X1 := (x
(1)
j )j∈Z, . . . , Xd := (x

(d)
j )j∈Z be Riesz-basis sequences

for L2[−π, π]. Then the Cartesian product, X1 × · · · ×Xd, is a Riesz-basis sequence

for L2[−π, π]d. That is,

(
e
−i
〈(
x
(1)
j1
,...,x

(d)
jd

)
,·
〉)

(j1,...,jd)∈Zd
is a Riesz basis for L2[−π, π]d.

Proof. The conclusion follows simply by observing that the tensor product of Riesz

bases is again a Riesz basis. More precisely, if (fj)j∈Z is a Riesz basis for L2(X)

and (gk)k∈Z is a Riesz basis for L2(Y ), then (fj ⊗ gk)j,k∈Z (defined by fj ⊗ gk(x, y) =

fj(x)gk(y) for (x, y) ∈ X×Y ) is a Riesz basis for L2(X)⊗L2(Y ), which is isomorphic

to L2(X × Y ).

The next theorem, due to Bailey, is a generalization of Kadec’s 1/4-Theorem to

higher dimensions.

Theorem 4.2.2 ([2], Theorem 2). If (xj)j∈Zd ⊂ Rd, and

sup
j∈Zd
‖xj − j‖∞ <

ln(2)

πd
,

then
(
e−i〈xj ,·〉

)
j∈Zd is a Riesz basis for L2[−π, π]d, where ‖xj−j‖∞ = max

1≤i≤d
|(xj)i−ji|.
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Another similar generalization of the proof of Kadec’s 1/4 was given by Sun and

Zhou.

Theorem 4.2.3 ([46]). For d ≥ 1, define

Cd(x) := (1− cos(πx) + sin(πx) + sinc(x))d − (sinc(x))d,

and let xd be the unique number such that 0 < xd ≤ 1/4 and Cd(xd) = 1. If (xj)j∈Zd

satisfies

sup
j∈Zd
‖xj − j‖∞ < xd,

then
(
e−i〈xj ,·〉

)
j∈Zd is a Riesz basis for L2[−π, π]d.

It was shown in [2] that Theorems 4.2.2 and 4.2.3 lead asymptotically to the same

estimates.

Lastly, similar to the multiband result of Theorem 4.1.4, the following higher

dimensional analogue holds.

Theorem 4.2.4 ([25], Theorem 2). Let S ⊂ Rd be a finite disjoint union of rectangles

whose edges are parallel to the coordinate axes. Then L2(S) admits a Riesz basis of

exponentials.

4.3 Riesz Bases of Exponentials in Higher Dimensions – Convex Bodies

Seeing as the interpolation schemes to be considered involve the use of radial

basis functions, it is more natural to consider Paley-Wiener spaces (and hence L2

spaces) over balls or other convex bodies in Rd rather than cubes. However, finding

Riesz bases of exponentials for such spaces can be tricky as the following suggests.

Open Problem 4.3.1. Does there exist a Riesz basis of exponentials for L2(B2),

where B2 is the Euclidean ball in Rd?
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Unfortunately, no solution or counterexample is known for this problem in any

dimension larger than 1. Since the Euclidean ball is a very nice and natural convex

body, the lack of knowledge here is quite disappointing. Nevertheless, there has been

some progress in finding convex bodies that do admit Riesz bases of exponentials.

To state the theorems, a definition is in order.

Definition 4.3.2. A convex body Z ⊂ Rd is a zonotope if it is the image of a cube

in Rm (m ≥ d) under a projection P : Rm → Rd.

Zonotopes exhibit very special symmetry, and can be equivalently defined to be

Minkoswki sums of affine line segments centered at a point. One important fact is

that every face of a zonotope is again a zonotope.

The following result is due to Lyubarskii and Rashkovskii.

Theorem 4.3.3 ([31], Proposition 3.2). If d ≥ 2 and Z is a zonotope in Rd, then

L2(Z) has a Riesz basis of exponentials.

The extension to more than 2 dimensions in Theorem 4.3.3 is only alluded to

in [31], but the method of proof extends due to the additional symmetry enjoyed

by zonotopes (in d = 2, zonotopes are simply symmetric convex polytopes). Recent

works by Grepstad and Lev [14], and Kolountzakis [23] have extended Theorem 4.3.3

in a different manner.

Theorem 4.3.4 ([14], Corollary 3, and [23]). Let S ⊂ Rd be a centrally symmetric

polytope whose (d − 1)-dimensional faces are also centrally symmetric, and whose

vertices lie on some lattice, Λ. Then L2(S) admits a Riesz basis of exponentials.

Note that Theorem 4.3.4 does not require S to be convex as in Theorem 4.3.3,

and so is more inclusive than the zonotope restriction. However, the lattice condition

on the vertices is not needed in Theorem 4.3.3.

39



4.4 Connection With Interpolation

Thus far, the idea of finding Riesz bases of exponentials for domains in higher

dimensions has been elucidated, but the ultimate goal is to connect such abstract

considerations to concrete interpolation problems. It turns out that there is a highly

advantageous characterization of Riesz bases of exponentials which is directly con-

nected to interpolation. To wit, consider the following definition.

Definition 4.4.1. Let X := (xj)j∈N ⊂ Rd, and let S ⊂ Rd be a bounded set of

positive Lebesgue measure. X is said to be a complete interpolating sequence

(CIS) for PWS provided for every (cj)j∈N ∈ `2, there exists a unique f ∈ PWS

such that

f(xj) = cj, j ∈ N.

The following theorem provides a pleasing connection between the two ideas.

Theorem 4.4.2. X ⊂ Rd is a complete interpolating sequence for PWS if and only

if
(
e−i〈xj ,·〉

)
j∈N is a Riesz basis for L2(S).

Proof. Since
〈
f̂ , e−i〈xj ,·〉

〉
L2(S)

= f(xj) for any f ∈ PWS by the Fourier inversion

formula, the equivalence is simply a restatement of Theorem 4.0.2(7).

One consequence of Theorem 4.4.2 is that there is a natural bijection from

PWS → `2 given by the map f 7→ (f(xj))j∈Z. In addition, this map is an isomor-

phism (of Banach spaces) due to the frame inequality found in Theorem 4.0.2(6).

That is, if Tf = (f(xj))j∈Z, then

A‖f̂‖2
L2(S) ≤ ‖Tf‖2

`2
≤ B‖f̂‖2

L2(S),

for some positive constants A,B > 0 (here, identify PWS isometrically as L2(S)
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via the Fourier transform and Parseval’s identity; or equivalently, one could equip

PWS with the norm given by ‖f‖PWS
:= ‖f̂‖L2(S)). Note that the map T is injective

(or one-to-one) because of completeness of the exponential system in L2(S), and is

surjective (or onto) because the moment space is equal to `2 by Theorem 4.0.2(8).

41



5. NONUNIFORM SAMPLING IN HIGHER DIMENSIONS

Equipped with the theoretic underpinning of the previous chapter, we now focus

our discussion on finding a general framework for interpolation of multivariate band-

limited functions via translates of RBFs. Some intermediate steps in this direction

have been taken by Bailey, Schlumprecht, and Sivakumar [4] and Ledford [27]. The

former consider Gaussian interpolation of bandlimited functions whose band lies in

a ball of small radius β, where the interpolation is done at a Riesz-basis sequence

for some larger symmetric convex body (per the discussion of Chapter 4). Ledford

worked with squares in two dimensions using Poisson kernels for the interpolation

scheme, and mentions an extension to cubes in higher dimensions. Owing to the ge-

ometry of the problem, the use of cubes requires a careful analysis when interpolating

with radial functions. It seems that with the techniques available, the geometry best

suited to bandlimited function interpolation in higher dimensions is that of Paley-

Wiener spaces over balls. In fact, the main theorem in [40] (on convergence of the

nonuniform Gaussian interpolant to a bandlimited function) holds in higher dimen-

sions for functions whose band lies in the unit ball, but as mentioned above, this

may well be vacuous if there is no Riesz-basis sequence for that space. Therefore,

we use the fact that one can approximate the Euclidean ball closely by a zonotope

which does have an associated Riesz basis of exponentials. That is, for any δ < 1,

there exists a zonotope, Z, such that δB2 ⊂ Z ⊂ B2, and L2(Z) has a Riesz basis of

exponentials.

Inspired by Ledford’s conditions for univariate interpolation in [26] and the higher

dimensional Gaussian interpolation results in [4], we give sufficient conditions on a

family of functions to form interpolants for the Paley-Wiener space associated with
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some symmetric convex body in Rd, such as a zonotope, which also provides recovery

of bandlimited functions whose Fourier transforms are supported in a ball contained

in the convex body. The work of this chapter can also be found in [17].

Now, let Z be a convex set with (xj)j∈N being a Riesz-basis sequence for L2(Z),

and we define two operators that will play an important role in our analysis. First,

let (e∗j)j∈N ⊂ L2(Z) be the coordinate functionals for (e−i〈xj ,·〉)j∈N. Recall that (e∗j)

is also a Riesz basis for L2(Z) with the same Riesz basis constant, say Rb. Thus for

every g ∈ L2(Z), we can write

g =
∑
j∈N

〈
g, e∗j

〉
Z
e−i〈xj ,·〉 =

∑
j∈N

〈
g, e−i〈xj ,·〉

〉
Z
e∗j , (5.1)

where 〈·, ·〉Z is the usual inner product on L2(Z). The final expression in (5.1)

combined with the Riesz basis constant (see (4.1)) implies that if f ∈ PWZ , then

‖f(xj)‖`2 ≤ Rb‖F [f ]‖L2(Z). (5.2)

Notice that for any g ∈ L2(Z) and a ∈ Rd,

∥∥∥∥∥∑
j∈N

〈
g, e∗j

〉
Z
e−i〈xj ,·〉

∥∥∥∥∥
L2(a+Z)

=

∥∥∥∥∥∑
j∈N

〈
g, e∗j

〉
Z
e−i〈a,xj〉e−i〈xj ,·〉

∥∥∥∥∥
L2(Z)

≤ Rb

∥∥∥∥(〈g, e∗j〉Z e−i〈a,xj〉)j
∥∥∥∥
`2

= Rb

∥∥∥∥(〈g, e∗j〉Z)j
∥∥∥∥
`2

≤ R2
b

∥∥∥∥∥∑
j∈Z

〈
g, e∗j

〉
Z
e−i〈xj ,·〉

∥∥∥∥∥
L2(Z)

= R2
b‖g‖L2(Z). (5.3)
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Consequently, the following extension of g is locally square integrable and thus

defined almost everywhere on Rd.

E(g)(x) :=
∑
j∈N

〈
g, e∗j

〉
Z
e−i〈xj ,x〉, x ∈ Rd. (5.4)

If m ∈ N, then we define the prolongation operator Am : L2(Z)→ L2(Z) via

Am(g)(ξ) := E(g)(2mξ)χZ\ 1
2
Z(ξ), ξ ∈ Z, (5.5)

where χS is the function taking value 1 on the set S and 0 elsewhere.

It follows from (5.3) that for g ∈ L2(Z),

‖Am(g)‖2
L2(Z) =

∫
Z\ 1

2
Z

|E(g)(2mu)|2du = 2−dm
∫

2mZ\2m−1Z

|E(g)(v)|2dv (5.6)

≤ 2−dmNmR4
b‖g‖2

L2(Z),

where N = N (2Z,Z) is the minimum number of translates of Z required to cover

2Z. The constant N depends only on d, and an induction argument shows that at

most Nm translates of Z are required to cover 2mZ.

5.1 Interpolation Scheme

Suppose that Z ⊂ Rd is a fixed, convex set. Also assume that X := (xj)j∈N is a

fixed but arbitrary Riesz-basis sequence for L2(Z) with basis constant Rb. We explore

conditions on interpolation operators formed from translates of a single function that

allow for recovery of bandlimited functions through a certain limiting process. The

criteria here are inspired by so-called regular interpolators developed by Ledford [26].

The results therein are univariate by nature, and our analysis extends to sufficient
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conditions for interpolation schemes in higher dimensions.

Definition 5.1.1. We call a function φ : Rd → R a d-dimensional interpolator for

PWZ if the following conditions hold.

(I1) φ ∈ L1(Rd) ∩ C(Rd) and φ̂ ∈ L1(Rd).

(I2) φ̂ ≥ 0 and there exists an ε > 0 such that φ̂ ≥ ε > 0 on Z.

(I3) Let Mj := sup
u∈Z\ 1

2
Z

|φ̂(2ju)|. Then (2−jdN jMj) ∈ `1, where N is the covering

number from (5.6).

It is important to note that for (I2), it is allowable for φ̂ to be negative everywhere

and bounded away from 0 on Z, in which case −φ satisfies the condition. Condition

(I1) allows the use of the Fourier inversion formula (2.3), while (I2) allows one to show

existence of an interpolant for a bandlimited function. Finally, (I3) is a technical

condition that comes from a periodization argument that is ubiquitous throughout

the proofs in the sequel.

Remark 5.1.2. Condition (I1), which is mainly needed to show that an interpolant

exists, can also be stated as follows:

(I1’) φ(x) =
1

(2π)d

∫
Rd
ψ(ξ)ei〈x,ξ〉dξ = F−1[ψ](x) for some ψ ∈ L1 ∩ L2.

Theorem 5.1.3. Let Z ⊂ Rd be a bounded convex set. Suppose that X is a Riesz-

basis sequence for L2(Z), and that φ is a d-dimensional interpolator for PWZ.

(i) For every f ∈ PWZ, there exists a unique sequence (aj) ∈ `2 such that

∑
j∈N

ajφ(xk − xj) = f(xk), k ∈ N.

(ii) The Interpolation Operator Iφ : PWZ → L2(Rd) defined by

Iφf(·) =
∑
j∈N

ajφ(· − xj),
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where (aj) is as in (i), is a well-defined, bounded linear operator from PWZ to L2(Rd).

Moreover, Iφf belongs to C0(Rd).

The proof of Theorem 5.1.3 will be given in Section 5.3.1. Now we turn to suf-

ficient regularity conditions on a family of d-dimensional interpolators to provide

convergence to bandlimited functions both in the L2 and uniform norms. Our ter-

minology is inspired by that of [26]. Assume that δB2 ⊂ Z ⊂ B2, where B2 is the

Euclidean ball in Rd.

Definition 5.1.4. Let β > 0. Suppose A ⊂ (0,∞) is unbounded, and (φα)α∈A is

a family of d-dimensional interpolators for PWZ. We call this family regular for

PWβB2 if the following hold:

(R1) If Sα :=
∑
j∈N

N jMj(α) where N is the covering number discussed above

and Mj(α) is as in (I3), then there is a constant C, independent of α, such that

Sα ≤ CMα, where Mα := sup
u∈B2\δB2

|φ̂α(u)|.

(R2) Let mα(β) := inf
u∈βB2

|φ̂α(u)|, and γα := inf
u∈B2

|φ̂α(u)|. Then

M3
α

mα(β)γ2
α

→ 0, as α→∞.

Remark 5.1.5. All of the examples considered in Section 5.2 are radial basis func-

tions whose Fourier transforms decrease radially. For such functions, (R2) may be

restated as follows:

(R2’)
φ̂α(δ)3

φ̂α(β)φ̂α(1)2
→ 0, as α→∞.

We consider interpolation of bandlimited functions f ∈ PWβB2 for some β ≤ δ.

Hence, F [f ] has support in a subset of Z. The condition (R2) comes from exploiting

the geometry of the problem, namely that βB2 ⊂ δB2 ⊂ Z ⊂ B2. This section
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concludes with the statement of the main result of the chapter, which will be proven

in Section 5.3.2.

Theorem 5.1.6. Let d ∈ N, δ ∈ (0, 1), and β ≤ δ. Suppose that Z ⊂ Rd has positive

Lebesgue measure, and satisfies δB2 ⊂ Z ⊂ B2. Additionally, suppose that X is a

Riesz-basis sequence for L2(Z). Suppose that (φα)α∈A is a family of d-dimensional

interpolators for PWZ that is regular for PWβB2, and Iα := Iφα are the associated

interpolation operators. Then for every f ∈ PWβB2,

lim
α→∞
‖Iαf − f‖L2(Rd) = 0,

and

lim
α→∞
|Iαf(x)− f(x)| = 0, uniformly on Rd.

The subject of finding Riesz-basis sequences for different geometries in higher

dimensions was discussed at length in the previous chapter. In [12, Theorem 4.1.10],

it was shown that in any dimension d, there is a zonotope, Z, satisfying the condi-

tions of Theorem 5.1.6. Consequently, by Theorem 4.3.3, Z admits a Riesz basis of

exponentials.

5.2 Examples

Since the conditions given above are somewhat abstract, it is prudent to pause

and discuss some examples that motivate the general result. Throughout this section,

suppose that Z and X satisfy the hypothesis of Theorem 5.1.6. We begin with the

Gaussian kernel and show that we recover the main result from [4].
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5.2.1 Gaussians

To fit the imposed condition of α tending to infinity, we employ a different con-

vention for the Gaussian kernel than [4]:

gα(x) := e−
|x|2
4α , α ≥ 1, x ∈ Rd.

Thus ĝα(ξ) = 1

(2α)
d
2
e−α|ξ|

2
. Conditions (I1)-(I3) are readily verified, and will be dis-

cussed in a subsequent example. Evidently, ĝα is radially decreasing, so Mα =

(2α)−
d
2 e−αδ

2
and Mj(α) = (2α)−

d
2 e−α22(j−1)

. Therefore, to check condition (R1), note

that

Sα ≤ (2α)−
d
2

∑
j∈N

N je−α22(j−1) ≤ C(2α)−
d
2 e−α ≤ C(2α)−

d
2 e−αδ

2

= CMα,

where C is some constant depending only on the dimension d. Considering (R2’)

and noting that mα(β) = ĝα(β), and γα = ĝα(1), we find that

M3
α

mα(β)γ2
α

≤ eα(β2+2−3δ2),

and the latter tends to 0 as α →∞ provided β <
√

3δ2 − 2. This, in turn, requires

δ >
√

2/3 since β must be positive. Consequently, the result of Theorem 5.1.6

coincides with the main theorem in [4], which we restate here in our terminology.

Theorem 5.2.1 (cf. [4], Theorem 3.6). Let δ ∈ (
√

2/3, 1) and β ∈ (0,
√

3δ2 − 2).

Then the set of Gaussians
(
e−
|·|2
4α

)
α∈[1,∞)

is a family of d-dimensional interpolators

for PWZ that is regular for PWβB2. In particular, for every f ∈ PWβB2, we have

lim
α→∞

Iαf = f in L2(Rd) and uniformly on Rd.
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5.2.2 Inverse Multiquadrics

The next example is a family of inverse multiquadrics. For an exponent α < −d/2,

we define (as in Section 3.2) the general inverse multiquadric with shape parameter

c > 0 by

φα,c(x) := (|x|2 + c2)α, x ∈ Rd.

We will consider the regularity of the family (φα,c)c∈[1,∞). This example requires

a bit more work up front since the Fourier transform of the inverse multiquadric is

somewhat complicated. For now, suppose α is fixed, and we suppress the dependence

on α and write φc for notational ease. Recall that the Fourier transform of φc is given

by (3.5).

One property of the modified Bessel function of the second kind not previously

discussed is the following differentiation formula ([1, p. 361]):

d

dr
[rνKν(r)] = −rνKν−1(r), (5.7)

which leads to the following observation.

Proposition 5.2.2. The function φ̂c is does not change sign, and is radially decreas-

ing. That is, if |x| ≤ |y|, then |φ̂c(x)| ≥ |φ̂c(y)|.

Proof. That φ̂c does not change sign is evident from (3.5) and the fact that Kν(r) > 0

(the sign depends solely on the sign of Γ(−α)). To see that φ̂c is decreasing, set
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r = |x|, and note that (3.5) and (5.7) imply

d

dr

[
φ̂c(r)

]
=

21+α

Γ(−α)c−α−
d
2

d

dr

[
r−α−

d
2K−α− d

2
(cr)

]

= − 21+α

Γ(−α)c−α−
d
2
−1
r−α−

d
2K−α− d

2
−1(cr),

which is negative in the case that φ̂c is positive and positive in the case that φ̂c is

negative. Since φ̂c is never 0, the conclusion holds.

To verify (I1), it is evident from the definition that φc is integrable, and the

following proposition shows that φ̂c is as well.

Proposition 5.2.3. For α < −d/2 and c > 0, φ̂c ∈ L1(Rd).

Proof. According to (3.5), it must be shown that
∫
Rd |ξ|

−α− d
2K−α− d

2
(c|ξ|)dξ con-

verges. This integral can be split into two pieces, the integral over the Euclidean ball

and the integral outside. By Lemma 3.2.2 (iv),

I1 :=

∫
B2

|ξ|−α−
d
2K−α− d

2
(c|ξ|)dξ ≤ C

∫
B2

|ξ|−α−
d
2 |ξ|α+ d

2dξ = C m(B2),

where C is a finite constant depending on α, d, and c, and m(B2) is the Lebesgue

measure of the Euclidean ball. Furthermore, by Lemma 3.2.2(iii),

I2 :=

∫
Rd\B2

|ξ|−α−
d
2K−α− d

2
(c|ξ|)dξ ≤ C

∫
Rd\B2

|ξ|−α−
d
2
− 1

2 e−c|ξ|e
|α+ d2 |

2

2c|ξ| dξ

≤ C

∫
Rd\B2

|ξ|−α−
d
2
− 1

2 e−c|ξ|dξ,

and the right hand side is a convergent integral. Again, C is a finite constant
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depending on α, d, and c. In the final inequality, we have used the fact that

e
|α+ d2 |

2

2c|ξ| ≤ e
|α+ d2 |

2

2c .

Next, notice that (I2) follows from Proposition 5.2.2 and the fact that φ̂c(1) > 0.

Thus it remains to check (I3) and the regularity conditions. By Proposition 5.2.2

and Lemma 3.2.2(iii),

Mj(c) ≤ |φ̂c(2j−1)| ≤ Cα

(
2j−1

c

)−α− d
2

c−
1
2 e−c2

j−1

e
|α+ d2 |

2

2jc . (5.8)

The right hand side of (5.8) is summable for any fixed c, which yields (I3).

To check (R1), assume, without loss of generality, that c is large enough so that

the final exponential term on the right hand side of (5.8) is at most 2, in which case

we have (by Lemma 3.2.2(ii))

∑
j∈N

N jMj(c) ≤ Cα
∑
j∈N

N j2(j−1)(−α− d
2

)c
d−1
2

+αe−c2
j−1 ≤ Cα,dc

d−1
2

+αe−c ≤ Cα,dφ̂c(1),

which, by Proposition 5.2.2, is at most Cα,dφ̂c(δ) = Cα,dMc.

Finally, we check (R2’). By Lemma 3.2.2,

φ̂c(δ)
3

φ̂c(β)φ̂c(1)2
≤ Cα,d

(
δ

β

)−α− d+1
2

c
d−1
2

+αec(β+2−3δ).

Consequently, as long as 0 < β < 3δ − 2 and δ > 2/3, (R2’) is satisfied, which leads

to the following theorem.

Theorem 5.2.4. Let α < −d/2. Assume δ ∈ (2/3, 1) and β ∈ (0, 3δ− 2), and let Z

be as before. Then the set of inverse multiquadrics ((| · |2 + c2)α)c∈[1,∞) is a family of

d-dimensional interpolators for PWZ that is regular for PWβB2. In particular, for

every f ∈ PWβB2, we have lim
c→∞

Icf = f in L2(Rd) and uniformly on Rd.
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5.2.3 A Broad Class of Examples

We end with a large class of examples which includes both the Gaussian and

the Poisson kernel as specific cases. These classes provide natural extensions of the

results in [4]. For any p ≥ 1, we define the following function with parameter α:

gα(x) :=
1

(2π)d

∫
Rd
e−α|ξ|

p

ei〈x,ξ〉dξ, x ∈ Rd, (5.9)

or in other words, gα = F−1
[
e−α|·|

p]
. Note that in the case d = 1 and p ≤ 2, these

classes correspond to the so-called p-stable random variables.

By definition, gα satisfies (I1’). Condition (I2) is evident, and to check (I3), note

that since ĝα is radially decreasing, Mj(α) = e−α2(j−1)p
, and thus (2−jdN jMj(α))j∈N

is summable. We now check the regularity conditions, which will provide bounds on

β and δ as in the previous examples. Note that Mα = e−αδ
p
. Then as before,

Sα =
∑
j∈N

N je−α2(j−1)p ≤ Ce−α ≤ Ce−αδ
p

= CMα,

where C is some constant independent of α.

Per Remark 5.1.5, consider (R2’) as follows:

Mα

mα(β)γ2
α

=
gα(δ)3

gα(β)gα(1)2
= eα(βp+2−3δp).

Evidently, the right hand side tends to 0 as α→∞ whenever β < (3δp−2)
1
p , whence

the following.

Theorem 5.2.5. Let p ≥ 1. Suppose δ ∈
((

2
3

) 1
p , 1
)

, and β ∈
(

0, (3δp − 2)
1
p

)
,

and Z is as before. Then (gα)α∈(0,∞) defined by (5.9) is a family of d-dimensional

interpolators for PWZ that is regular for PWβB2. In particular, for every f ∈ PWβB2,
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we have lim
α→∞

Iαf = f in L2(Rd) and uniformly on Rd.

Note that in the case p = 2, gα is the Gaussian discussed in the first example,

and the condition reads β ∈
(
0,
√

3δ2 − 2
)
; so in this case, Theorems 5.2.1 and 5.2.5

coincide.

5.3 Proofs

5.3.1 Proof of Theorem 5.1.3

Throughout this section, assume that Z is as in the statement of the theorem

and that X is a Riesz-basis sequence for L2(Z). Recall that Aj is the prolongation

operator defined by (5.5). The first step in the proof of Theorem 5.1.3 is the following

key lemma.

Lemma 5.3.1. Suppose that φ is a d-dimensional interpolator for PWZ, and let

A := (φ(xm − xn))m,n∈N. Then A : `2 → `2 is a bounded, invertible, linear operator.

Proof. Linearity is plain, so we will take up boundedness first by looking at 〈Aa, a〉`2
for arbitrary a := (aj)j∈N ∈ `2. To show boundedness, use the Dominated Conver-

gence Theorem, (I1), (5.6), and a periodization argument to see that

∑
m,n∈N

amanφ(xm − xn) =
∑
m,n∈N

aman
1

(2π)d

∫
Rd
φ̂(ξ)ei〈xm−xn,ξ〉dξ

=
1

(2π)d

∫
Rd
φ̂(ξ)

∣∣∣∣∣∑
n∈N

ane
i〈xn,ξ〉

∣∣∣∣∣
2

dξ

=
1

(2π)d

[ ∫
Z

φ̂(ξ)

∣∣∣∣∣∑
n∈N

ane
i〈xn,ξ〉

∣∣∣∣∣
2

dξ

+
∑
j∈N

∫
2jZ\2j−1Z

φ̂(ξ)

∣∣∣∣∣∑
n∈N

ane
i〈xn,ξ〉

∣∣∣∣∣
2

dξ

]
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≤ 1

(2π)d

[
sup
u∈Z
|φ̂(u)| R2

b‖a‖2
`2

+
∑
j∈N

2−jd
∫
Z\ 1

2
Z

φ̂(2jξ)

∣∣∣∣∣Aj
(∑
n∈N

ane
i〈xn,ξ〉

)∣∣∣∣∣
2

dξ

]

≤ 1

(2π)d

[
sup
u∈Z
|φ̂(u)| R2

b‖a‖2
`2

+
∑
j∈N

2−jdMj2
−jdN jR6

b‖a‖2
`2

]
.

The last term on the right hand side is R6
b‖(2−2jdN jMj)j‖`1 , which by (I3) is finite

since 2−2jd < 2−jd. Equivalently, (I1’) could have been used in the first line as we

simply needed to write φ(xm − xn) via its Fourier integral.

To show invertibility, we demonstrate a lower bound for the inner product. In-

deed, using the Dominated Convergence Theorem again along with (I2),

∑
m,n∈N

amanφ(xm − xn) =
1

(2π)d

∫
Rd
φ̂(ξ)

∣∣∣∣∣∑
n∈N

ane
i〈xn,ξ〉

∣∣∣∣∣
2

dξ

≥ 1

(2π)d

∫
Z

φ̂(ξ)

∣∣∣∣∣∑
n∈N

ane
i〈xn,ξ〉

∣∣∣∣∣
2

dξ

≥ ε

R2
b(2π)d

‖a‖2
`2
.

Proof of Theorem 5.1.3. Note that (i) is a direct consequence of Lemma 5.3.1 and

(5.2).

To show (ii), we first prove that the function ω := φ̂
∑
n∈N

ane
i〈xn,·〉 belongs to
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L1 ∩ L2, which follows by a standard periodization argument.

∫
Rd
|φ̂(ξ)|

∣∣∣∣∣∑
n∈N

ane
i〈xn,ξ〉

∣∣∣∣∣ dξ ≤ sup
u∈Z
|φ̂(u)|

∥∥∥∥∥∑
n∈N

ane
i〈xn,·〉

∥∥∥∥∥
L1(Z)

+
∑
j∈N

2−jdMj

∥∥∥∥∥Aj
(∑
n∈N

ane
i〈xn,·〉

)∥∥∥∥∥
L1(Z)

≤ sup
u∈Z
|φ̂(u)|m(Z)

1
2Rb‖a‖`2

+

∥∥∥∥(2−
3
2
jdN j

2Mj

)
j

∥∥∥∥
`1

m(Z)
1
2Rb‖a‖`2 .

The final step used the Cauchy-Schwarz inequality, and the second term on the right

hand side is finite because of (I3) and the fact that N j
2 ≤ N j since N > 1, and

2−
3
2
jd ≤ 2−jd. The argument for square-integrability is quite similar:

∫
Rd
|φ̂(ξ)|2

∣∣∣∣∣∑
n∈N

ane
i〈xn,ξ〉

∣∣∣∣∣
2

dξ ≤ sup
u∈Z
|φ̂(u)|2R2

b‖a‖2
`2

+
∑
j∈N

2−2jdN jM2
jR

2
b‖a‖2

`2
.

The series on the right is ‖(2−jdN j
2Mj)j‖2

`2
≤ ‖(2−jdN jMj)j‖2

`1
, which is finite by

(I3). Consequently, ω ∈ L1 ∩ L2. It follows from basic techniques and the Riemann-

Lebesgue Lemma that the function

Iφf(x) =
1

(2π)d

∫
Rd
ω(ξ)ei〈ξ,x〉dξ =

∑
j∈N

ajφ(x− xj)

belongs to C0(Rd) ∩ L2(Rd), and moreover that F [Iφf ] = ω.

Finally, to conclude boundedness, simply notice from the periodization argument

above, Lemma 5.3.1, Plancherel’s Identity, and (5.2), that

‖Iφf‖L2 = ‖F [Iφf ]‖L2 ≤ C‖a‖`2 ≤ C‖A−1‖`2→`2‖f(xk)‖`2
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≤ C‖A−1‖`2→`2Rb‖f‖L2 .

5.3.2 Proof of Theorem 5.1.6

We now embark on the proof of the main result for this chapter. Let Z,X, δ,

and β be as in the statement of Theorem 5.1.6, and let (φα)α∈A be a family of d-

dimensional interpolators for PWZ that is regular for PWβB2 . Recall that γα and

Mα are as in (R2). The first step is to show that there exists a constant 0 < C <∞

so that

‖F [Iαf ]‖L2(Z) ≤ C
Mα

γα
‖F [f ]‖L2(Z), α ∈ A,

for every f ∈ PWZ . We proceed in a series of steps following the techniques of [4].

To begin, define the function

Ψα(u) :=
∑
j∈N

aje
−i〈xj ,u〉 =

1

φ̂α(u)
F [Iαf ](u), u ∈ Rd, (5.10)

and let ψα denote the restriction of Ψα to Z.

Remark 5.3.2. It is important to note that by uniqueness of the Riesz basis repre-

sentation for a function on Z, we have that Ψα(u) = E(ψα)(u) on Rd. That is, Ψα is

defined globally by its Riesz basis representation on the body Z. This fact is crucial

to the subsequent analysis.

Lemma 5.3.3. The following holds:

F [f ] = F [Iαf ] +
∑
m∈N

2dmA∗m

(
φ̂(2m·)Am(ψα)

)
a.e. on Z.
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Proof. Note that since
(
e−i〈xj ,·〉

)
is a Riesz basis for L2(Z), it suffices to show that

the inner product of both sides above with respect to the basis elements are all equal.

First, by (2.3), 〈
F [f ], e−i〈xj ,·〉

〉
Z

= (2π)df(xj).

On the other hand, the interpolation condition guarantees that

(2π)df(xj) = (2π)dIαf(xj)

=

∫
Rd

F [Iαf ](u)ei〈xj ,u〉du

=

∫
Z

F [Iαf ](u)ei〈xj ,u〉du+
∑
m∈N

∫
2mZ\2m−1Z

φ̂α(u)Ψα(u)ei〈xj ,u〉du

=: I1 + I2.

Evidently, I1 =
〈
F [Iαf ], e−i〈xj ,·〉

〉
Z

, whereas

I2 =
∑
m∈N

2dm
∫
Z\ 1

2
Z

φ̂α(2mv)Ψα(2mv)ei〈xj ,2
mv〉dv

=
∑
m∈N

2dm
∫
Z\ 1

2
Z

φ̂α(2mv)Am(ψα)(v)Am
(
ei〈xj ,·〉

)
(v)dv

=
∑
m∈N

2dm
〈
φ̂α(2m·)Am(ψα), Am

(
e−i〈xj ,·〉

)〉
Z

=
∑
m∈N

2dm
〈
A∗m

(
φ̂α(2m·)Am(ψα)

)
, e−i〈xj ,·〉

〉
Z
,

whence the identity.
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We now define an operator that is implicit in the previous Lemma:

τα : L2(Z)→ L2(Z), via τα(h) :=
∑
m∈N

A∗m

(
φ̂α(2m·)Am(h)

)
. (5.11)

Proposition 5.3.4. The operator τα defined by (5.11) is a bounded linear operator

on L2(Z) that is positive, (i.e. 〈τα(h), h〉Z ≥ 0 for all h ∈ L2(Z)). Moreover, there

exists a positive number C, which is independent of α, so that

‖τα‖ ≤ CMα. (5.12)

Proof. Linearity is plain, and positivity can be seen as follows.

〈τα(h), h〉Z =
∑
m∈N

2dm
〈
φ̂α(2m·)Am(h), Am(h)

〉
Z

=
∑
m∈N

2dm
∫
Z\ 1

2
Z

φ̂α(2mu)|Am(h)(u)|2du

≥ 0,

the final inequality stemming from the positivity of φ̂α.

To prove the upper bound, notice that (5.6) implies that for h ∈ L2(Z),

‖τα(h)‖L2(Z) ≤
∑
m∈N

2dm
∥∥∥A∗m (φ̂α(2m·)Am(h)

)∥∥∥
L2(Z)

≤ R2
b

∑
m∈N

2
dm
2 N m

2 Mm(α)‖Am(h)‖L2(Z)
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≤ R4
b

∑
m∈N

NmMm(α)‖h‖L2(Z)

= R4
bSα‖h‖L2(Z)

≤ CMα‖h‖L2(Z).

The final inequality comes from condition (R1).

Next, note that the positivity of τα and Lemma 5.3.3 imply that

‖F [f ]‖L2(Z)‖ψα‖L2(Z) ≥ 〈F [f ], ψα〉Z ≥ 〈F [Iαf ], ψα〉Z ≥ γα‖ψα‖2
L2(Z).

Therefore,

‖ψα‖L2(Z) ≤
1

γα
‖F [f ]‖L2(Z). (5.13)

From Lemma 5.3.3, Proposition 5.3.4, and (5.13), we see that

‖F [Iαf ]‖L2(Z) ≤ C
Mα

γα
‖F [f ]‖L2(Z). (5.14)

Next we estimate ‖F [Iαf ]‖L2(Rd\Z), which is accomplished via a familiar peri-

odization argument.

‖F [Iαf ]‖2
L2(Rd\Z)

=
∑
m∈N

2dm
∫
Z\ 1

2
Z

|φ̂α(2mu)|2|Ψα(2mu)|2du

≤
∑
m∈N

2dmMm(α)2‖Am(ψα)‖2
L2(Z)
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≤
∑
m∈N

NmMm(α)2R4
b‖ψα‖2

L2(Z)

≤ R4
b

1

γ2
α

‖F [f ]‖2
L2(Z)

∑
m∈N

NmMm(α)2.

Recall again that the covering number N must be larger than 1, so the series in the

final expression above is majorized by

∑
m∈N

N 2mMm(α)2 ≤

(∑
m∈N

NmMm(α)

)2

= S2
α ≤ CM2

α.

The first inequality above comes from the fact that the `2 norm is subordinate to

the `1 norm, and the final inequality is a consequence of (R1). Consequently, the

following holds.

Theorem 5.3.5. There exists a constant C, independent of α, such that

‖F [Iαf ]‖L2(Rd) ≤ C
Mα

γα
‖F [f ]‖L2(Z), f ∈ PWZ .

The next step toward the proof of Theorem 5.1.6 involves the definition of a

multiplication operator Tα : L2(Z)→ L2(Z) defined by

Tα(h) :=
γα

φ̂α
h.

The definition of γα implies that ‖Tα‖ ≤ 1. Lemma 5.3.3 can be rewritten as as

F [f ] = F [Iαf ] +
∑
m∈N

2dmA∗m

(
φ̂α(2m·)
γα

Am (γαψα)

)
,
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which by (5.10) is

F [f ] = F [Iαf ] +
1

γα
τα ◦ Tα (F [Iαf ]) =

(
I +

1

γα
τα ◦ Tα

)
F [Iαf ],

where I is the identity operator on L2(Z).

Proposition 5.3.6. The map I + 1
γα
τα ◦ Tα is an invertible operator on L2(Z), and

(
I +

1

γα
τα ◦ Tα

)−1

F [f ] = F [Iαf ], f ∈ PWZ .

Moreover, ∥∥∥∥∥
(
I +

1

γα
τα ◦ Tα

)−1
∥∥∥∥∥ ≤ Mα

γα
.

Proof. Surjectivity of the operator in question follows from the identity in Lemma

5.3.3. To see injectivity, suppose that (I + 1
γα
τα ◦ Tα)h = 0. Let f ∈ PWZ be the

function satisfying F [f ] = h. Then by Lemma 5.3.3 and positivity of τα, we have

0 =

〈(
I +

1

γα
τα ◦ Tα

)
F [f ], TαF [f ]

〉
Z

≥ 〈F [f ], TαF [f ]〉Z ≥ 0.

Consequently, TαF [f ] = 0, which implies that F [f ] = 0, hence h = 0, since Tαg = 0

if and only if g = 0.

Finally, the norm estimate follows from Theorem 5.3.5 and Lemma 5.3.3.

Now all of the necessary ingredients have been assembled to complete the proof.

Proof of Theorem 5.1.6. By Proposition 5.3.6 and Lemma 5.3.3, the following iden-
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tity holds on Z:

F [f ]−F [Iαf ] =

[
I −

(
I +

1

γα
τα ◦ Tα

)−1
]

(F [f ])

=

(
I +

1

γα
τα ◦ Tα

)−1

◦ 1

γα
τα ◦ Tα(F [f ]).

Therefore, if f ∈ PWβB2 , Theorem 5.3.5 and Proposition 5.3.4 imply

‖F [f ]−F [Iαf ]‖L2(Z) ≤

∥∥∥∥∥
(
I +

1

γα
τα ◦ Tα

)−1
∥∥∥∥∥ 1

γα
‖τα‖‖TαF [f ]‖L2(Z)

≤ C
Mα

γα
Mα

∥∥∥∥∥ 1

φ̂α(·)
F [f ]

∥∥∥∥∥
L2(βB2)

≤ C
M2

α

γαmα(β)
‖F [f ]‖L2(βB2). (5.15)

Next, we estimate ‖F [Iαf ]‖L2(Rd\Z) by familiar techniques.

‖F [Iαf ]‖2
L2(Rd\Z) ≤

∑
m∈N

2dmMm(α)2‖Am(ψα)‖2
L2(Z)

≤ R2
bS

2
α

∥∥∥∥∥ 1

φ̂α(·)
F [Iαf ]

∥∥∥∥∥
2

L2(Z)

≤ C
M2

α

γ2
α

‖TαF [Iαf ]‖2
L2(Z)
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≤ C

[
Mα

γα
‖Tα (F [Iαf ]−F [f ]) ‖2

L2(Z) + ‖TαF [f ]‖L2(βB2)

]2

≤ C

[
M3

α

γ2
αmα(β)

+
Mα

mα(β)

]2

‖F [f ]‖2
L2(βB2). (5.16)

Convergence of ‖F [Iαf ] − F [f ]‖L2(Rd) depends ostensibly on the three ratios

in (5.15) and (5.16). However, the largest is M3
α

γ2αmα(β)
. Indeed one obtains this by

multiplying Mα

mα(β)
by M2

α

γ2α
which is at least 1 by definition. Similarly, M2

α

γαmα(β)
≤

M2
α

γαmα(β)
Mα

γα
= M3

α

γ2αmα(β)
. Consequently, if (R2) is satisfied, then ‖F [Iαf ]−F [f ]‖L2(Rd)

converges to 0 as α→∞.

To show uniform convergence on Rd, use the Fourier inversion formula and the

fact that F [f ] = 0 almost everywhere outside of Z to see that

|Iαf(x)− f(x)| ≤ 1

(2π)d
(
‖F [Iαf ]−F [f ]‖L1(Z) + ‖F [Iαf ]‖L1(Rd\Z)

)
.

The Cauchy-Schwarz inequality and convergence in the corresponding L2 norm

imply that ‖F [Iαf ]−F [f ]‖L1(Z) → 0 as α→∞. A similar periodization argument

to the one above and another appeal to the Cauchy-Schwarz inequality shows that

‖F [Iαf ]‖L1(Rd\Z) → 0, which concludes the proof.

5.4 Remarks

Remark 5.4.1. There are many ways in which one could choose to periodize the

integrals over Rd \ Z, and consequently, condition (I3) could well be formulated

differently. For example, if one periodizes using the annuli jZ \ (j − 1)Z, then the

condition would be that (j−dN (jZ \ (j − 1)Z,Z)Mj) ∈ `1, once the definition of Mj

is modified suitably. However, this modification of Mj essentially counteracts the

change in annuli, and so does not give a substantially different condition.
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Remark 5.4.2. As a by-product of the proof of Theorem 5.1.6, one can deduce

approximation rates in terms of the parameter α for functions f ∈ PWβB2 in terms

of the ratio M3
α

mα(β)γ2α
. In fact, all of the examples from Section 5.2 exhibit exponential

approximation rates in this case. Precisely, one can see the following.

Theorem 5.4.3. Given a family (φα)α∈A of d-dimensional interpolators that is

regular for PWβB2, there exists a constant C, independent of α, so that for any

f ∈ PWβB2,

‖Iαf − f‖L2 ≤ C
M3

α

mα(β)γ2
α

‖f‖L2 .

Remark 5.4.4. It is worth discussing the limiting case briefly. Each of Theorems

5.2.1, 5.2.4, and 5.2.5 hold in the case that δ = β = 1, or in other words, Z = B2.

Indeed one needs only look at the end of the proof of Theorem 5.1.6 and see that the

Dominated Convergence Theorem can be applied to show that lim
α→∞
‖Tαg‖L2(B2) = 0

for g ∈ L2(B2). However, as mentioned above, the result may be vacuous, because

it is unknown if there is any Riesz-basis sequence for L2(B2). This is the primary

reason for the analysis we have done here, to exploit the fact that we know there are

Riesz-basis sequences for some convex bodies contained in the Euclidean ball.

Remark 5.4.5. For further reading on the interesting problem of finding Riesz-basis

sequences, the reader is referred to [21, 24, 34, 48] for results in one dimension, and

[2, 3, 31, 46] for higher dimensions.
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6. APPROXIMATION RATES FOR NONUNIFORM INTERPOLATION BY

GAUSSIANS AND REGULAR INTERPOLATORS∗

The final problem that will be considered in this work is perhaps the most in-

teresting. In this chapter, we consider Problem 1.0.5 on finding approximation rates

for nonuniform interpolation schemes from the previously discussed approximation

spaces formed by translates of the Gauss kernel and Ledford’s so-called regular in-

terpolators [26] (these are defined in Section 6.6). Interestingly, the technique of

proof allows for interpolation of Sobolev (W k
2 ) functions rather than simply band-

limited ones, providing a nice generalization. The inspiration for this problem lies

in the work of Hangelbroek, Madych, Narcowich, and Ward [19], and the work of

this chapter is published as [15]. For clarity, the specific problem to be considered is

stated below.

Problem 6.0.6. Let W k
2 (R) be the Sobolev space of functions whose first k weak

derivatives lie in L2(R). Let X := (xj)j∈Z ⊂ R be a Riesz-basis sequence for

L2[−π, π], and φ be either the Gauss kernel or a regular interpolator, and let

A := Aφ,X :=

{∑
j∈Z

ajφ(x− xj) : (aj) ⊂ R

}

be the approximation space. Find a function R(h) : (0, 1] → [0,∞) such that given

any f ∈ W k
2 (R), there is an interpolant IhX(f) ∈ A such that

IhX(f)(hxj) = f(hxj), j ∈ Z,
∗Part of this chapter is reprinted with permission from “Approximation rates for interpolation of

Sobolev functions via Gaussians and allied functions” by Keaton Hamm, 2015. J. Approx. Theory,
189, 101-122, Copyright 2015 by Elsevier B.V.
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and moreover

‖IhX(f)− f‖L2(R) ≤ R(h)|f |Wk
2 (R).

The subsequent analysis will provide a positive solution to this problem with

R(h) = hk for all of the interpolators considered. Note that the function R will

depend on the choice of the interpolator φ, but not on the function f that is being

interpolated.

6.1 Main Results

In this section, we will formulate a series of theorems on the way to the main

result, and using these we supply the proof of the main theorem of this chapter,

Theorem 6.1.5.

We will form two interpolants involving translates of a fixed Gaussian function;

one is the original interpolation operator from [40] which interpolates functions in

PWπ at a Riesz-basis sequence X, and the second is similar to that of [19], which will

be used to interpolate W k
2 functions at hX, given a parameter 0 < h ≤ 1. Let λ > 0

be fixed, and let X := (xj)j∈Z be a Riesz-basis sequence for L2[−π, π]. It was shown

in [40] that given f ∈ PWπ, there exists a unique `2 sequence (aj)j∈Z depending on

λ, f , and X such that the Gaussian interpolant

I X
λ (f)(x) :=

∑
j∈Z

aje
−λ(x−xj)2 , x ∈ R, (6.1)

is continuous and square-integrable on R, and satisfies the interpolatory condition

I X
λ (f)(xj) = f(xj), j ∈ Z. (6.2)

Where the sequence is clear, we will omit the superscript X. The main result from
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their paper is the following.

Theorem 6.1.1 ([40], Theorems 4.3 and 4.4). Let X be a Riesz-basis sequence for

L2[−π, π], and 0 < λ ≤ 1. Then for every f ∈ PWπ, the Gaussian interpolant I X
λ f

satisfies

lim
λ→0+
‖I X

λ f − f‖L2(R) = 0, and lim
λ→0+
|I X

λ f(x)− f(x)| = 0,

uniformly on R.

Define the second interpolant via the following identity:

IhX(f)(x) :=
1

h
I X

h2

(
fh
) (x

h

)
, (6.3)

where

fh(x) := hf(hx), x ∈ R. (6.4)

Defined this way, it is evident that this operator satisfies a similar interpolation

condition to (6.2). Precisely, due to (6.2), (6.3), and (6.4),

IhX(f)(hxj) =
1

h
I X

h2

(
fh
)(hxj

h

)
=

1

h
fh(xj) = f(hxj). (6.5)

An important fact, and indeed the reason for defining IhX in this manner, is that if

f ∈ PWπ
h
, then fh ∈ PWπ. Moreover, the relation F [fh](ξ) = F [f ](ξ/h) holds. The

second interpolation operator enters the analysis in the following way: to interpolate

Sobolev functions, we first interpolate them by bandlimited functions whose band

size increases depending on h, and then use the original Gaussian interpolant to do

the rest of the work. More precisely, the following holds.
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Theorem 6.1.2. Let k ∈ N, h > 0, and let X be a fixed Riesz-basis sequence for

L2[−π, π]. Then for every g ∈ W k
2 , there exists a unique F ∈ PWπ

h
such that

F (hxj) = g(hxj), j ∈ Z, (6.6)

|F |Wk
2
≤ C|g|Wk

2
, (6.7)

and

‖g − F‖L2 ≤ Chk|g|Wk
2
, (6.8)

where C is a constant depending on k and X.

We note that for the case X = Z but general p, a similar result was obtained in

[19, Lemma 2.2], however, the proof of Theorem 6.1.2 is substantially different.

We then consider stability of the Gaussian interpolant Iλ as an operator from

W k
2 to itself. In [40], it was shown that (Iλ)λ∈(0,1] is uniformly bounded as a set of

operators from PWπ to L2, as well as being uniformly bounded from PWπ to C0(R).

We adapt the techniques of that paper to show that (Iλ)λ∈(0,1] is uniformly bounded

as a set of operators from PWπ to W k
2 , which in light of Theorem 6.1.2, means

that this family is uniformly bounded on W k
2 . We summarize this in the following

theorem:

Theorem 6.1.3. Let k ∈ N and let X be a Riesz-basis sequence for L2[−π, π]. Then

there exists a constant C depending only on k and X such that for every 0 < λ ≤ 1,

|Iλ(g)|Wk
2
≤ C|g|Wk

2
, for all g ∈ W k

2 . (6.9)

Consequently, (Iλ)λ∈(0,1] is uniformly bounded as a set of operators from W k
2 to itself.

Combined with some calculations (see Section 6.4), this theorem yields the fol-
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lowing corollary:

Corollary 6.1.4. Let k ∈ N and let X be a Riesz-basis sequence for L2[−π, π]. Then

there exists a constant C depending only on k and X such that for every 0 < h ≤ 1,

|IhX(g)|Wk
2
≤ C|g|Wk

2
, for all g ∈ W k

2 . (6.10)

Consequently,
(
IhX

)
h∈(0,1]

is uniformly bounded as a set of operators from W k
2 to

itself.

A combination of these results yields the main theorem:

Theorem 6.1.5. Let k ∈ N, 0 < h ≤ 1, and let X be a Riesz-basis sequence for

L2[−π, π]. Then there exists a constant depending only on k and X such that for

every g ∈ W k
2 ,

‖IhX(g)− g‖L2 ≤ Chk|g|Wk
2
. (6.11)

We also obtain derivative convergence:

Corollary 6.1.6. Let k ≥ 2, 1 ≤ j < k, 0 < h ≤ 1, and let X be a Riesz-basis

sequence for L2[−π, π]. Then there exists a constant depending only on j, k, and X

such that for every g ∈ W k
2 ,

|IhX(g)− g|W j
2
≤ Chk−j|g|Wk

2
. (6.12)

As PWσ ⊂ W k
2 for every k, an easy corollary of Theorem 6.1.5 is the following:

Corollary 6.1.7. Let 0 < h ≤ 1, σ > 0, and let X be a Riesz-basis sequence for

L2[−π, π]. Then for each k ∈ N, there exists a constant depending only on k and X
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such that for every φ ∈ PWσ,

‖IhX(φ)− φ‖L2 ≤ Chk|φ|Wk
2
. (6.13)

Note that Corollary 6.1.7 holds for φ ∈ S (R) as well.

Before giving the proof of the main result, we display a theorem (that will be

used several times) of Madych and Potter that gives an estimate on the norm of

functions with many zeroes.

Theorem 6.1.8 (cf. [33], Corollary 1). Suppose k ∈ N and f ∈ W k
p (R). Let

Z := {x ∈ R : f(x) = 0} and suppose that h := max{dist(x, Z) : x ∈ R} <∞. Then

there exists a constant C independent of f, h and Z such that

|f |W j
p
≤ Chk−j|f |Wk

p

for j = 0, 1, . . . , k.

We now provide a proof of Theorem 6.1.5 using the results we have collected thus

far in this section.

Proof of Theorem 6.1.5. Theorem 6.1.2 provides a function F ∈ PWπ
h

which inter-

polates g at (hxj). Then

‖IhX(g)− g‖L2 ≤ ‖IhX(g)− F‖L2 + ‖F − g‖L2 =: I1 + I2.

By (6.8),

I2 ≤ Chk|g|Wk
2
.

Since F (hxj) = g(hxj), uniqueness of the interpolation operator guarantees that

IhX(F ) = IhX(g), and therefore I1 = ‖IhX(F ) − F‖L2 . Applying Theorem 6.1.8 to
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IhX(F )− F along with Corollary 6.1.4 and equation (6.7) yields

I1 ≤ Chk|IhX(F )− F |Wk
2
≤ Chk

(
|IhX(F )|Wk

2
+ |F |Wk

2

)
≤ Chk|F |Wk

2
≤ Chk|g|Wk

2
.

6.2 Interpolation of W k
2 Functions by Bandlimited Functions

The main goal of this section is to provide the proof of Theorem 6.1.2, which

follows from a series of intermediate steps. We begin with a proposition which

will lead to the existence and uniqueness of a bandlimited interpolant for a given

Sobolev function. The proposition is stated and proved for general p rather than in

the specific case p = 2 because it is interesting in its own right and gives a sort of

reverse inequality of [33, Theorem 1].

Proposition 6.2.1. Let (xn)n∈Z ⊂ R be a strictly increasing sequence such that

inf
n∈Z

(xn+1 − xn) =: q > 0. If g ∈ W k
p (R), 1 ≤ p ≤ ∞, k ∈ N, then (g(xn))n∈Z ∈ `p.

Moreover, if 1
p

+ 1
p′

= 1, and p 6=∞, then

‖g(xn)‖`p ≤ 2
1
p′

(
3

2q

) 1
p

‖g‖Lp + 2
1
p′

(
2q

3

) 1
p′

‖g′‖Lp . (6.14)

Proof. First, in the case p = ∞, if g ∈ W 1
∞(R), then g is continuous and bounded,

and the result follows.

For 1 ≤ p <∞, let

In :=
[
xn −

q

3
, xn +

q

3

]
.

These intervals are pairwise disjoint and have length 2
3
q. The former condition en-

sures that ∑
n∈Z

∫
In

|g(t)|pdt ≤
∫
R
|g(t)|pdt <∞.
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As g admits an absolutely continuous representative (see, for example, [29, Theorem

7.13, p.222]), we may assume, without loss of generality, that g itself is absolutely

continuous. Therefore, we may choose yn ∈ In such that |g(yn)|p = min{|g(x)|p : x ∈

In}; then we have that

|g(yn)|p2

3
q ≤

∫
In

|g(t)|pdt,

and consequently, (g(yn))n∈Z ∈ `p. Moreover,

(∑
n∈Z

|g(yn)|p
) 1

p

≤
(

3

2q

) 1
p

‖g‖Lp . (6.15)

Additionally, by the Fundamental Theorem of Calculus,

g(xn) = g(yn) +

∫ xn

yn

g′(t)dt.

Using the inequality |a+ b|p ≤ 2p−1(|a|p + |b|p), we have

|g(xn)|p ≤ 2p−1

[
|g(yn)|p +

∣∣∣∣∫ xn

yn

g′(t)dt

∣∣∣∣p]

≤ 2p−1

[
|g(yn)|p +

(
2q
3

) p
p′

∫
In

|g′(t)|pdt
]
.

The second inequality follows by Hölder’s Inequality because

∣∣∣∣∫ xn

yn

g′(t)dt

∣∣∣∣p ≤ (∫ xn

yn

|g′(t)|dt
)p
≤
(∫

In

|g′(t)|dt
)p

≤
(∫

In

|g′(t)|pdt
)p 1

p

|In|
p
p′ =

(
2q

3

) p
p′
∫
In

|g′(t)|pdt.
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Therefore by (6.15) and the fact that p/p′ = p− 1,

∑
n∈Z

|g(xn)|p ≤ 2p−1
∑
n∈Z

|g(yn)|p + 2p−1
(

2q
3

)p−1
∑
n∈Z

∫
In

|g′|p

≤ 2p−1
(

2q
3

)−1 ‖g‖pLp + 2p−1
(

2q
3

)p−1 ‖g′‖pLp

= 2p−1
(

2q
3

)−1
[
‖g‖pLp +

(
2q
3

)p ‖g′‖pLp] .
Now since the function x 7→ |x|

1
p is concave,

(∑
n∈Z

|g(xn)|p
) 1

p

≤ 2
p−1
p
(

2q
3

)− 1
p
(
‖g‖Lp + 2q

3
‖g′‖Lp

)
= 2

1
p′
(

3
2q

) 1
p ‖g‖Lp + 2

1
p′
(

2q
3

) 1
p′ ‖g′‖Lp ,

which is (6.14).

From now on, let X := (xj)j∈Z be a fixed Riesz-basis sequence for L2[−π, π] with

Riesz basis constant B. It is a necessary condition for a Riesz-basis sequence to be

uniformly separated; i.e. there are 0 < q ≤ Q such that

q ≤ xj+1 − xj ≤ Q, j ∈ Z, (6.16)

(without loss of generality, assume that xj < xj+1 for every j).

Note that if X is a Riesz-basis sequence for L2[−π, π], then hX is a Riesz-basis

sequence for L2

[
−π
h
, π
h

]
. Indeed, define the map

Jπσ : L2[−π, π]→ L2[−σ, σ] via F (x) 7→
(π
σ

) 1
2
F
(π
σ
x
)
.

73



Note that Jπσ is a norm-one linear isometry, and hence that
(
Jπσ

(
e−ixj(·)

))
j∈Z is a

Riesz basis for L2[−σ, σ] with the same basis constant due to the following lemma.

Lemma 6.2.2. Let X, Y be Hilbert spaces. If T : X → Y is a linear isometry with

‖T‖ = 1, and (φj) is a Riesz basis for X, then (Tφj) is a Riesz basis for Y with the

same basis constant.

Proof. Let B be the Riesz basis constant of (φj) as in Theorem 4.0.2(3). Now every

x ∈ X can be written uniquely as x =
∑

j ajφj, and since T is surjective, if y ∈ Y ,

let x ∈ X be such that Tx = y, then we have

y = Tx = T

(∑
j

ajφj

)
=
∑
j

aj(Tφj),

and since this representation of x is unique, y is uniquely represented in this form

by injectivity of T . And for the inequalities in Theorem 4.0.2(3), we have that

1

B

(∑
j

|cj|2
) 1

2

≤

∥∥∥∥∥∑
j

cjφj

∥∥∥∥∥
X

=

∥∥∥∥∥∑
j

cjT (φj)

∥∥∥∥∥
Y

≤ B

(∑
j

|cj|2
) 1

2

,

which proves the claim.

Taking σ = π/h, we see that
(
h

1
2 e−ihxj(·)

)
j∈Z

is a Riesz basis for L2

[
−π
h
, π
h

]
with

basis constant B. This is equivalent, via Theorem 4.0.2(7), to the fact that given

any data sequence (yj) ∈ `2, there exists a unique bandlimited function f ∈ PWπ
h

such that f(hxj) = yj for all j ∈ Z. Consequently, Proposition 6.2.1 implies that if

g ∈ W k
2 , then there exists a unique F ∈ PWπ

h
such that F (hxj) = g(hxj), j ∈ Z.

We now turn toward the proof of Theorem 6.1.2. We have just shown the unique

existence of a bandlimited interpolant satisfying (6.6), so it remains to prove (6.7)

and (6.8). First, we demonstrate that (6.6) and (6.7) imply (6.8). Indeed, by (6.6),
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(6.7), and Theorem 6.1.8, we have that

‖g − F‖L2 ≤ Chk|g − F |Wk
2
≤ Chk

(
|g|Wk

2
+ |F |Wk

2

)
≤ Chk|g|Wk

2
,

which is (6.8).

To prove (6.7), we use the techniques of [32]. Define the sequence of first forward

divided differences via the following formula:

g[1](hxj) :=
g(hxj+1)− g(hxj)

h(xj+1 − xj)
, j ∈ Z, (6.17)

and for k ≥ 2, the k-th forward divided difference is defined recursively:

g[k](hxj) :=
g[k−1](hxj+1)− g[k−1](hxj)

h(xj+k − xj)
j ∈ Z. (6.18)

The following pair of lemmas combine to show (6.7).

Lemma 6.2.3. Let h > 0, k ∈ N, and let X be a Riesz-basis sequence for L2[−π, π].

Given g ∈ W k
2 , let F ∈ PWπ

h
be the unique bandlimited interpolant satisfying (6.6).

Then there exists a constant depending only on k and X such that

|F |Wk
2
≤ Ch

1
2

∥∥∥(g[k](hxj)
)
j

∥∥∥
`2
.

We relegate the proof of this lemma to Section 6.5 as it is somewhat technical.

Lemma 6.2.4. Let (xj)j∈Z be a strictly increasing sequence such that

inf
j∈Z

(xj+1 − xj) =: q > 0. If h > 0, k ∈ N, and g ∈ W k
p (R), then

∥∥(g[k](hxj)
)∥∥

`p
≤ 1

(k − 1)!

(
1

hq

) 1
p

‖g(k)‖Lp . (6.19)
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Proof. We give the arguments for k = 1 and general k separately to exhibit better

the idea behind the proof. If k = 1, then by Hölder’s Inequality and the fact that

p/p′ = p− 1,

∑
j∈Z

∣∣∣∣g(hxj+1)− g(hxj)

h(xj+1 − xj)

∣∣∣∣p =
∑
j∈Z

|h(xj+1 − xj)|−p
∣∣∣∣∣
∫ hxj+1

hxj

g′(t)dt

∣∣∣∣∣
p

≤
∑
j∈Z

|h(xj+1 − xj)|−p|h(xj+1 − xj)|p−1

∫ hxj+1

hxj

|g′(t)|pdt

≤ 1

hq
‖g′‖pLp .

Thus ∥∥(g[1](hxj)
)∥∥

`p
≤
(

1

hq

) 1
p

‖g′‖Lp .

If k ≥ 2 we use the fact (see for example [8, Corollary 3.4.2] ) that

g[k−1](hxj) =
g(k−1)(ξj)

(k − 1)!

for some ξj ∈ [hxj, hxj+k−1].

Therefore,

(k − 1)!g[k](hxj) = (k − 1)!
g[k−1](hxj+1)− g[k−1](hxj)

h(xj+k − xj)

=
g(k−1)(ξj+1)− g(k−1)(ξj)

h(xj+k − xj)
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=
1

h(xj+k − xj)

∫ ξj+1

ξj

g(k)(t)dt.

Consequently,

[(k − 1)!]p |g[k](hxj)|p ≤ |h(xj+k − xj)|−p
(∫ ξj+1

ξj

|g(k)(t)|dt

)p

≤ |h(xj+k − xj)|−p
(∫ hxj+k

hxj

|g(k)(t)|dt

)p

≤ |h(xj+k − xj)|−p+p−1

∫ hxj+k

hxj

|g(k)(t)|pdt .

Thus,

∑
j∈Z

|g[k](hxj)|p ≤
1

[(k − 1)!]p
(khq)−1

∑
j∈Z

∫ hxj+k

hxj

|g(k)(t)|pdt

=
1

[(k − 1)!]p
(khq)−1k‖g(k)‖pLp ,

where the k in the last term comes from the fact that the integral from hxj to hxj+1

appears k times for each j. We conclude that

∥∥∥(g[k](hxj)
)
j

∥∥∥
`p
≤ 1

(k − 1)!

(
1

hq

) 1
p

‖g(k)‖Lp .

We conclude with the proof of Theorem 6.1.2 which combines the above results.

Proof of Theorem 6.1.2. Given g ∈ W k
2 , let F ∈ PWπ

h
be the unique function satis-
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fying (6.6). Then by Lemmas 6.2.3 and 6.2.4, there exists a constant C depending

only on k and X such that

|F |Wk
2
≤ Ch

1
2

∥∥∥(F [k](hxj)
)
j

∥∥∥
`2

= Ch
1
2

∥∥∥(g[k](hxj)
)
j

∥∥∥
`2
≤ C|g|Wk

2
,

which is (6.7). As commented above, (6.6) and (6.7) imply (6.8), whence Theorem

6.1.2 follows.

6.3 Stability of Interpolants

This section turns to the proof of Theorem 6.1.3, which will be done in a series

of steps reminiscent of the proofs in [40]. The first issue that bears discussing is how

Gaussian interpolation of W k
2 functions is even possible. It was shown in [40] that

the Gaussian matrix associated with λ > 0 and the Riesz-basis sequence X,

G := Gλ,X :=
(
e−λ(xi−xj)2

)
i,j∈Z

,

is an invertible operator on `p for every 1 ≤ p ≤ ∞. Consequently, for a given

g ∈ W k
2 , Proposition 6.2.1 implies the existence of a Gaussian interpolant of the form

(6.1), where the sequence (aj) is given by a = G−1y with yj = g(xj), j ∈ Z. Moreover,

invertibility of G provides uniqueness of the Gaussian interpolant for a given data

sequence, so if F ∈ PWπ is the function from Theorem 6.1.2 that interpolates g at

X, then Iλ(g) = Iλ(F ).

Now assume h ∈ L2[−π, π]. Then by definition of a Riesz-basis sequence, there

exists a unique sequence (aj)j∈Z ∈ `2 such that h(t) =
∑

j∈Z aje
−ixjt, t ∈ [−π, π].

Let H be the extension of h to all of R given by H(u) :=
∑

j∈Z aje
−ixju, u ∈ R.

On account of the Riesz basis condition, H is locally square-integrable, and hence
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well-defined almost everywhere. Define the shift operator A` for ` ∈ Z by

A`(h)(t) := H(t+ 2π`), t ∈ [−π, π]. (6.20)

From the Riesz basis constant inequality in Theorem 4.0.2(3), it follows that (A`)`∈Z

is a uniformly bounded set of operators on L2[−π, π] with norm at most B2. Let

A∗` denote the adjoint of A`. The following is a straightforward adaptation of [40,

Theorem 3.3].

Theorem 6.3.1. Let X be a Riesz-basis sequence, let λ > 0 be fixed, and let f ∈

PWπ. Let ψλ denote the restriction, to the interval [−π, π], of the function

Ψλ(ξ) :=

√
λ

π
e
ξ2

4λF [Iλ(f)](ξ).

Then

F [f ] = F [Iλ(f)] +

√
π

λ

∑
`∈Z\{0}

A∗`

(
e−

(·+2π`)2

4λ A`(ψλ)

)
on [−π, π]. (6.21)

Consequently, the equation

(iξ)kF [f ](ξ) = (iξ)kF [Iλ(f)](ξ)+(iξ)k
√
π

λ

∑
`∈Z\{0}

A∗`

(
e−

(·+2π`)2

4λ A`(ψλ)

)
(ξ) (6.22)

holds for every ξ ∈ [−π, π].

Lemma 6.3.2. The following holds for every ` ∈ Z and every ξ ∈ [−π, π]:

(iξ)kA∗`

(
e−

(·+2π`)2

4λ A`(ψλ)

)
(ξ) = A∗`

(
e−

(·+2π`)2

4λ A`
(
(i·)kψλ

))
(ξ). (6.23)

Proof. It suffices to show equality of the inner products of the above expressions with
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the Riesz basis elements ej := e−ixj(·). Here and elsewhere, 〈·, ·〉 denotes the usual

inner product on L2[−π, π].

〈
(i·)kA∗`

(
e−

(·+2π`)2

4λ A`(ψλ)
)
, ej

〉
=

〈
A∗`

(
e−

(·+2π`)2

4λ A`(ψλ)
)
, (−i·)kej

〉

=
〈
e−

(·+2π`)2

4λ A`(ψλ), Al
(
(−i·)kej

)〉

=

∫ π

−π
e−

(ξ+2π`)2

4λ ψλ(ξ + 2π`)(i(ξ + 2π`))k

×eixj(ξ+2π`)dξ

=
〈
e−

(·+2π`)2

4λ A`
(
(i·)kψλ

)
, A`(ej)

〉

=
〈
A∗`

(
e−

(·+2π`)2

4λ A`
(
(i·)kψλ

))
, ej

〉
.

Lemma 6.3.2 and (6.22) imply the following:

Corollary 6.3.3. If ξ ∈ [−π, π], then

(iξ)kF [f ](ξ) = (iξ)kF [Iλ(f)](ξ) +

√
π

λ

∑
`∈Z\{0}

A∗`

(
e−

(·+2π`)2

4λ A`
(
(i·)kψλ

))
(ξ).

(6.24)

Lemma 6.3.4 (cf. [40], Corollary 3.4). Suppose that λ, f, ψλ, and B are as defined

above. Then

∥∥(i·)kF [Iλ(f)]
∥∥
L2[−π,π]

≤
√

2π|f |Wk
2

+

√
π

λ
B4 2e−

π2

4λ

1− e−π
2

4λ

‖(i·)kψλ‖L2[−π,π]. (6.25)
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Proof. Note that (6.24) yields the appropriate bound as long as we can show that

∥∥∥∥∥∥
∑

`∈Z\{0}

A∗`

(
e−

(·+2π`)2

4λ A`
(
(i·)kψλ

))∥∥∥∥∥∥
L2[−π,π]

≤ B4 2e−
π2

4λ

1− e−π
2

4λ

‖(i·)kψλ‖L2[−π,π].

This is true because the desired term is bounded above by

B2
∑

`∈Z\{0}

e−
(2|`|−1)2π2

4λ ‖A`
(
(i·)kψλ

)
‖L2[−π,π],

via the triangle inequality and the facts that ‖A∗`‖ ≤ B2 for all `, and that e−
(ξ+2π`)2

4λ ≤

e−
(2|`|−1)2π2

4λ for ξ ∈ [−π, π]. Similarly, since ‖A`‖ ≤ B2 for all ` ∈ Z and e−
(2|`|−1)2π2

4λ ≤

e−
(2|`|−1)π2

4λ , the above term is majorized by

B4
∑

`∈Z\{0}

e−
(2|`|−1)π2

4λ ‖(i·)kψλ‖L2[−π,π] ≤ B4 2e−
π2

4λ

1− e−π
2

4λ

‖(i·)kψλ‖L2[−π,π].

The fraction comes from summing the geometric series.

This brings us to our final proposition before the proof of the main theorem in

this section:

Proposition 6.3.5. Suppose that λ, f, ψλ, and B are as defined above. Then

‖(i·)kψλ‖L2[−π,π] ≤
√

2λe
π2

4λ |f |Wk
2
.

Proof. We begin by taking the inner product of both sides of (6.24) with (i·)kψλ,

and noticing that both terms on the right hand side are non-negative. Indeed, it is
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easily checked that the operator

Tλ(h) :=
∑

`∈Z\{0}

A∗`

(
e−

(·+2π`)2

4λ A`(h)

)

is positive in the sense that 〈Tλ(h), h〉 ≥ 0 for all h ∈ L2[−π, π]. Moreover,

〈
(i·)kF [Iλ(f)], (i·)kψλ

〉
=

√
π

λ

∫ π

−π
|ξ|2ke−

ξ2

4λ |ψλ(ξ)|2dξ ≥ 0

by the definition of ψλ in Theorem 6.3.1. Therefore, from (6.24), we have that

〈
(i·)kF [Iλ(f)], (i·)kψλ

〉
≤
〈
(i·)kF [f ], (i·)kψλ

〉
.

Finally,

√
π

λ
e−

π2

4λ ‖(i·)kψλ‖2
L2[−π,π] =

√
π

λ
e−

π2

4λ

∫ π

−π
|(iξ)kψλ(ξ)|2dξ

≤
∫ π

−π

[√
π

λ
e−

ξ2

4λ (iξ)kψλ(ξ)

]
(iξ)kψλ(ξ)dξ

=
〈
(i·)kF [Iλ(f)], (i·)kψλ

〉

≤
〈
(i·)kF [f ], (i·)kψλ

〉

≤ ‖(i·)kF [f ]‖L2[−π,π]‖(i·)kψλ‖L2[−π,π],

where the last step is a consequence of the Cauchy-Schwarz inequality. The required

result follows, taking into account (2.5).

Before finishing the proof of Theorem 6.1.3, we note that in light of Theorem
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6.1.2, we need only prove the upper bound for functions f ∈ PWπ. That is, if we

show that for all f ∈ PWπ, |Iλ(f)|Wk
2
≤ C|f |Wk

2
, then if F ∈ PWπ is the function

given by Theorem 6.1.2 for a certain g ∈ W k
2 , we have

|Iλ(g)|Wk
2

= |Iλ(F )|Wk
2
≤ C|F |Wk

2
≤ C|g|Wk

2
,

which is the conclusion of Theorem 6.1.3.

Proof of Theorem 6.1.3. In light of (2.5), we need to estimate both∥∥(i·)kF [Iλ(f)]
∥∥
L2[−π,π]

and
∥∥(i·)kF [Iλ(f)]

∥∥
L2(R\[−π,π])

.

By Lemma 6.3.4 and Proposition 6.3.5,

∥∥(i·)kF [Iλ(f)]
∥∥
L2[−π,π]

≤
√

2π|f |Wk
2

+

√
π

λ
B4 2e−

π2

4λ

1− e−π
2

4λ

‖(i·)kψλ‖L2[−π,π]

≤
√

2π(1 + 4B4)|f |Wk
2
.

In the second inequality, we used the fact that 2/(1− e−π
2

4λ ) ≤ 4.

On R \ [−π, π], we use a periodization argument:

∥∥(i·)kF [Iλ(f)]
∥∥2

L2(R\[−π,π])
=

π

λ

∫
R\[−π,π]

e−
ξ2

2λ |(iξ)kΨλ(ξ)|2dξ

=
π

λ

∑
`∈Z\{0}

∫ (2`+1)π

(2`−1)π

e−
ξ2

2λ |(iξ)kΨλ(ξ)|2dξ

=
π

λ

∑
`∈Z\{0}

∫ π

−π
e−

(t+2π`)2

2λ |A`((i·)kψλ)(t)|2dt
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≤ π

λ

∑
`∈Z\{0}

e−
(2|`|−1)2π2

2λ ‖A`((i·)kψλ)‖2
L2[−π,π]

≤ B4π

λ

2e−
π2

2λ

1− e−π
2

2λ

‖(i·)kψλ‖2
L2[−π,π]

≤ 8πB4|f |2
Wk

2
.

Consequently, we have that

|Iλ(f)|Wk
2 (R) ≤

√
2π(1 + 14B4 + 16B8) |f |Wk

2 (R).

Uniform boundedness comes from the above inequality as well as the fact that

‖Iλ(f)‖L2 ≤ C‖f‖L2 for f ∈ PWπ (use the same method of proof taking k = 0).

6.4 Proofs of Corollaries 6.1.4 and 6.1.6

We begin with the proof of the Corollary 6.1.4. Arguing along the same lines as

in Theorem 6.1.3, it suffices to show the estimate for functions F ∈ PWπ
h
. To do

so, we must explore the relationship between the seminorms of the two interpolants,

and that between bandlimited functions F and F h.

Firstly,

|F h|Wk
2

= hk+ 1
2 |F |Wk

2
, (6.26)

because

|F h|2Wk
2

=
1

(2π)d

∫ π

−π
|ξ|2k|F

[
F h
]

(ξ)|2dξ

=
1

(2π)d

∫ π

−π
|ξ|2k|F [F ](ξ/h)|2dξ
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=
1

(2π)d
h

∫ π
h

−π
h

h2k|u|2k|F [F ](u)|2du

= h2k+1|F |2Wk
2
.

Now we consider the seminorms of the interpolants. By (6.3) and the identity

F [g( ·
h
)](ξ) = hF [g](hξ),

F
[
IhX(F )(·)

]
(ξ) =

1

h
F
[
I X

h2

(
F h
) ( ·

h

)]
(ξ) = F

[
I X

h2

(
F h
)

(·)
]

(hξ).

Putting these together, we have the following relation between the seminorms of the

interpolants: ∣∣IhX(F )
∣∣
Wk

2
=

1

hk+ 1
2

∣∣∣I X

h2

(
F h
)∣∣∣
Wk

2

, (6.27)

which is seen as follows.

∣∣IhX(F )
∣∣
Wk

2
=

1√
2π

∥∥∥(i·)kF
[
I X

h2

(
F h
)]

(h·)
∥∥∥
L2

=
1√
2π

(∫
R
|ξ|2k

∣∣∣F [
I X

h2

(
F h
)]

(hξ)
∣∣∣2 dξ) 1

2

=
1√
2π

(
1

h

∫
R

∣∣∣u
h

∣∣∣2k ∣∣∣F [
I X

h2

(
F h
)]

(u)
∣∣∣2 du) 1

2

=
1√
2π

1

hk+ 1
2

∥∥∥(i·)kF
[
I X

h2

(
F h
)]∥∥∥

L2

=
1

hk+ 1
2

∣∣∣I X

h2

(
F h
)∣∣∣
Wk

2

.
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Proof of Corollary 6.1.4. Let F ∈ PWπ
h

be the function given by Theorem 6.1.2.

Then IhX(g) = IhX(F ), and by (6.26), (6.27) and Theorem 6.1.3, we see that

|IhXF |Wk
2

=
1

hk+ 1
2

|I X

h2
(F h)|Wk

2
≤ C

hk+ 1
2

|F h|Wk
2
≤ Chk+ 1

2

hk+ 1
2

|F |Wk
2

= C|F |Wk
2
,

which, on account of (6.7), gives (6.10).

Proof of Corollary 6.1.6. Let j < k, 0 < h ≤ 1, and let F be the function given by

Theorem 6.1.2. Then, as in the proof of Theorem 6.1.5, we see via Theorem 6.1.8

that

|IhX(g)− g|W j
2
≤ |IhX(F )− F |W j

2
+ |F − g|W j

2

≤ Chk−j|IhX(F )− F |Wk
2

+ Chk−j|F − g|Wk
2

=: I1 + I2 .

By Corollary 6.1.4 and (6.7), we have

I1 ≤ Chk−j|F |Wk
2
≤ Chk−j|g|Wk

2
,

and

I2 ≤ Chk−j|g|Wk
2
,

from which the corollary follows. We note that this does give a convergence result

under the operative assumption k > j.

6.5 Proof of Lemma 6.2.3

First, recall that if X is a Riesz-basis sequence for L2[−σ, σ], then for any sequence

y ∈ `2, there exists a unique function f ∈ PWσ such that f(xj) = yj, j ∈ Z. Similar

to (6.17), we define the k-th forward divided difference of a data sequence y by
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identifying yj as a function on the data sites X; that is, consider yj = y(xj). Then

we find from [32, Theorem 2], that if y is a sequence such that y[k] ∈ `2, then there

exists a unique function f ∈ PW k
σ such that f(xj) = yj, j ∈ Z. Moreover, there

is a constant, C, such that ‖f (k)‖L2 ≤ C‖y[k]‖`2 . But as we have been considering

increasing values of σ, namely π/h where h→ 0+, the dependence of this constant on

h must be recorded carefully. We will come to the final conclusion that the constant

is of order
√
h.

We make the preliminary observation that if y ∈ `2, then the function F ∈ PWσ

and the function G ∈ PW k
σ that satisfy the interpolation conditions are in fact the

same (note that y ∈ `2 implies that y[k] ∈ `2). This conclusion follows from the

simple fact that if F ∈ PWσ, then F ∈ PW k
σ since the Paley-Wiener space is closed

under differentiation, and since F − G|X = 0 where X is a Riesz-basis sequence for

L2[−σ, σ], F = G.

Therefore, it suffices simply to determine the constant, C, such that ‖f (k)‖L2 ≤

C‖y[k]‖`2 . We do this via some intermediate steps involving spline interpolants.

Our proofs here rely heavily on the work of Madych in [32]. Essentially, we track

the constants through modified proofs of [32, Theorems 1,2]. For the sake of self-

containment, we present the proofs here with the necessary modifications.

Theorem 6.5.1 (cf. [32], Theorem 1). Suppose X is a Riesz-basis sequence for

L2[−π, π] and k ∈ N. Then for every sequence y such that y[k] ∈ `2, and 0 < h ≤

1, there is a function F ∈ PW k
π/2h such that (yj − F (hxj))j ∈ `2 and |F |Wk

2
≤

Ch
1
2‖y[k]‖`2. Here, the constant C depends on k and the Riesz-basis sequence X.

Moreover, ∥∥∥(yj − F (hxj))j

∥∥∥
`2
≤ Chk‖y[k]‖`2 .

Proof. Let q and Q be as in (6.16), and B the Riesz basis constant of X. By work
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of Golomb [13], such a data sequence y has a unique minimal piecewise polynomial

spline extension (or interpolant), s, of order 2k such that s(hxj) = yj; further, s is

a polynomial of degree 2k − 1 on any interval of the form [hxm, hxm+1]. Then by a

lovely estimate of de Boor [9], we have the following bound:

‖s(k)‖L2 ≤ k!k1− 1
2k(2k + 1)(2k − 1)k−1

∥∥∥∥∥∥
((

h(xj+k − xj)
k

) 1
2

y
[k]
j

)
j

∥∥∥∥∥∥
`2

. (6.28)

Thus we see that the right hand side is at most

CkQ
1
2h

1
2‖y[k]‖`2 ,

where

Ck = k!(k)(2k + 1)(2k − 1)k−1.

Next we construct F ∈ PW k
σ via F̂ (ξ) = ŝ(ξ)φ̂(ξ/σ) (we will specify σ later),

where φ̂ is an infinitely differentiable function with support in [−1, 1], with φ̂(ξ) = 1

for ξ in some neighborhood of the origin, and s is the spline interpolant discussed

above. By definition, it is evident that F̂ has support in [−σ, σ]. Moreover, it satisfies

the bound

‖F (k)‖L2 ≤ ‖φ‖L1(R)‖s(k)‖L2 , (6.29)

which by (6.28) is at most

CkQ
1
2h

1
2‖φ‖L1(R)‖y[k]‖`2 =: Ck,Qh

1
2‖y[k]‖`2 . (6.30)

As a consequence of (6.29), (6.30), and the Paley-Wiener Theorem, F (k) ∈ PWσ, and

so F ∈ PW k
σ .
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Now let φ̂σ(ξ) := φ̂(ξ/σ). We observe that

ŝ(ξ)− ŝ(ξ)φ̂σ(ξ) = (iξ)kŝ(ξ)
1− φ̂σ(ξ)

(iξ)k
=: (iξ)kŝ(ξ)Îσ,k(ξ).

Thus,

s(hxj)− F (hxj) = s(k) ∗ Iσ,k(hxj) =

∫
R
s(k)(hxj − x)Iσ,k(x)dx. (6.31)

Using Minkowski’s Integral Inequality, (6.31), and the fact that yj = s(hxj), we

find that

∥∥∥(yj − F (hxj))j

∥∥∥
`2

=

(∑
j∈Z

∣∣∣∣∫
R
s(k)(hxj − x)Iσ,k(x)dx

∣∣∣∣2
) 1

2

≤
∫
R

(∑
j∈Z

∣∣s(k)(hxj − x)
∣∣2 |Iσ,k(x)|2

) 1
2

dx

=

∫
R
‖s(k)(hxj − x)‖`2|Iσ,k(x)|dx.

Our next step is to estimate ‖s(k)(hxj − x)‖`2 . We will see that

‖s(k)(hxj − x)‖`2 ≤
(
NDk−1

hq

) 1
2

‖s(k)‖L2 ,

where N := dQ
q
e. To show this, we require the following:

Lemma 6.5.2 (cf. [32], Lemma 2). Let Pm denote the class of algebraic polynomials

of degree at most m. If P is a polynomial in Pm which is not identically zero, then
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for any −∞ < a < b <∞,

1 ≤
max
a≤x≤b

|P (x)|(
1
b−a

∫ b
a
|P (x)|2dx

) 1
2

≤ Dm,

where Dm is a finite constant which depends on m but is independent of a and b.

To apply this to our situation, simply notice that if hxj − x ∈ [hxm, hxm+1] for

some m, then s(k) is a polynomial of degree at most k − 1 on this interval, and

consequently

|s(k)(hxj − x)|2 ≤ Dk−1

h(xm+1 − xm)

∫ hxm+1

hxm

|s(k)(y)|2dy,

where Dk−1 is the constant from Lemma 6.5.2. Since hq ≤ h(xm+1 − xm) ≤ hQ for

all m, there are at most N = dQ
q
e terms of the form hxj − x in any given interval

[hxm, hxm+1]. Consequently, we have that for any x ∈ R,

∑
j∈Z

|s(k)(hxj − x)|2 =
∑
m∈Z

 ∑
hxj−x∈[hxm,hxm+1]

|s(k)(hxj − x)|2
 ≤ NDk−1

hq
‖s(k)‖2

L2
,

which is what we set out to show.

Finally, noting that ‖Iσ,k‖L1 = σ−k‖I1,k‖L1 , and taking σ = π/(2h), we obtain

∥∥∥(yj − F (hxj))j

∥∥∥
`2
≤ Ck,q,Qh

k‖y[k]‖`2 ,

where

Ck,q,Q = Ck,Q

(
NDk−1

q

) 1
2 2k

πk
‖I1,k‖L1 .
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Proof of Lemma 6.2.3. Let g ∈ W k
2 , and let yj := g(hxj). Let F0 be the PW k

π/2h

function given by Theorem 6.5.1. Since (yj − F0(hxj))j ∈ `2, and hX is a Riesz-

basis sequence for L2

[
−π
h
, π
h

]
, there exists a unique F1 ∈ PWπ

h
such that F1(hxj) =

yj − F0(hxj), j ∈ Z. Moreover, this function satisfies

‖F1‖L2 ≤
√

2πBh
1
2

∥∥∥(yj − F0(hxj))j

∥∥∥
`2
.

Recall from the discussion in Section 6.2 that
(
h

1
2 e−ihxj(·)

)
j∈Z

is a Riesz basis for

L2

[
−π
h
, π
h

]
with basis constant B, the basis constant for

(
e−ixj(·)

)
j∈Z. Therefore,

‖F1‖L2 ≤ B

(∑
j∈Z

∣∣∣∣〈F̂1, h
1
2 e−ihxj(·)

〉
L2[−πh ,

π
h ]

∣∣∣∣2
) 1

2

=
√

2πBh
1
2

∥∥∥(F1(hxj))j

∥∥∥
`2
,

the last step coming from the inversion formula.

Define F := F0 + F1. Then by construction, F (hxj) = yj = g(hxj), j ∈ Z.

Moreover, we have that

‖F1‖L2 ≤
√

2πBh
1
2

∥∥∥(F1(hxj))j

∥∥∥
`2

=
√

2πBh
1
2

∥∥∥(yj − F0(hxj))j

∥∥∥
`2

≤ Ck,q,Q
√

2πBhk+ 1
2‖y[k]‖`2 .

Recalling that for F ∈ PWσ, the relation |F |Wk
2
≤ σk‖F‖L2 holds, we see that

|F1|Wk
2
≤ Ck,q,Q,Bh

1
2‖y[k]‖`2 . (6.32)

Therefore (6.30) and (6.32) lead to the conclusion that

|F |Wk
2
≤ Ck,q,Q,Bh

k‖y[k]‖`2 + Ck,Qh
1
2‖y[k]‖`2 ≤ Ch

1
2‖y[k]‖`2 ,
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where C depends on k, q,Q, and B (we assumed h ≤ 1, so we note that h
1
2 is the

biggest term involving h). This concludes the proof.

6.6 Interpolation by Means of Regular Interpolators

Here we extend the discussion of approximation and convergence rates of W k
2

functions, but rather than limiting ourselves to the case of the Gaussian interpolation

operator, we consider families of regular interpolators, a notion developed by Ledford

[26].

A function φ : R→ R is said to be an interpolator for PWπ if the following hold:

(A1) φ ∈ L1(R) ∩ C(R) and φ̂ ∈ L1(R).

(A2) φ̂(ξ) ≥ 0, ξ ∈ R, and φ̂(ξ) > 0 on [−π, π].

(A3) If Mj := sup
|ξ|≤π

φ̂(ξ + 2πj), then (Mj)j∈Z ∈ `1.

Next, a family of interpolators (φα)α∈A indexed by an unbounded set A ⊂ (0,∞)

is called regular if

(R1) φα is an interpolator for PWπ for every α ∈ A.

(R2) Let Mj(α) := sup
|ξ|≤π

φ̂α(ξ + 2πj), and mα := inf
|ξ|≤π

φ̂α(ξ). Then there exists a

constant C independent of α such that for all α ∈ A,
∑
j 6=0

Mj(α) ≤ Cmα.

(R3) For almost every ξ ∈ [−π, π], lim
α→∞

mα

φ̂α(ξ)
= 0.

Here, α plays the role of 1/h in our previous discussions.

It was shown ([26, Corollary 1]) that if X is a Riesz-basis sequence for L2[−π, π]

and f ∈ PWπ, then there is a unique sequence (aj)j∈Z ∈ `2 such that the interpolant

Iφ(f)(x) :=
∑
j∈Z

ajφ(x− xj) (6.33)
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is continuous and satisfies Iφ(f)(xj) = f(xj), j ∈ Z.

The main result of that paper is the following:

Theorem 6.6.1 (cf. [26], Theorems 1 and 2). If (φα)α∈A is a set of regular interpo-

lators and X a Riesz-basis sequence for L2[−π, π], then for every f ∈ PWπ,

lim
α→∞

Iφα(f) = f,

both in L2(R) and uniformly on R.

6.6.1 Results

Given a sequence of regular interpolators, and their associated interpolation op-

erators Iα : PWπ → L2 (where to ease notation we identify Iα = Iφα), define

another set of interpolation operators via

Iα(f)(x) := αIα2

(
f

1
α

)
(αx), where f

1
α (x) :=

1

α
f
(x
α

)
.

It is easily verified that if f ∈ PWαπ, then f
1
α ∈ PWπ and Iα(f)

(xj
α

)
=

f
(xj
α

)
, j ∈ Z. Indeed

Iα(f)
(xj
α

)
= αIα2

(
f

1
α

)(αxj
α

)
= α

1

α
f
(xj
α

)
.

Again, the idea here is that to interpolate Sobolev functions g ∈ W k
2 , we first in-

terpolate them by bandlimited functions of increasing band (namely by F ∈ PWαπ),

where the interpolation is done at the shrinking set of points
(xj
α

)
. We summarize

the analogous results to those found in Section 6.1.

Theorem 6.6.2. Let (φα)α∈A be a set of regular interpolators for PWπ. Let k ∈ N

and let X be a Riesz-basis sequence for L2[−π, π]. Then there exists a constant
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depending only on k,X and the functions (φα) such that for every g ∈ W k
2 ,

‖Iα(g)− g‖L2 ≤ Cα−k|g|Wk
2
. (6.34)

Corollary 6.6.3. Let (φα)α∈A be a set of regular interpolators for PWπ. Let k ≥ 2,

1 ≤ j < k and let X be a Riesz-basis sequence for L2[−π, π]. Then there exists a

constant depending on j, k,X and the functions (φα) such that for every g ∈ W k
2 ,

|Iα(g)− g|W j
2
≤ Cαj−k|g|Wk

2
. (6.35)

Corollary 6.6.4. Let (φα)α∈A be a set of regular interpolators for PWπ and let X

be a Riesz-basis sequence for L2[−π, π]. Then for each k ∈ N, there exists a constant

depending on X and the functions (φα) such that for every ψ ∈ S (R) and ψ ∈ PWσ

for some σ > 0,

‖Iα(ψ)− ψ‖L2 ≤ Cα−k|ψ|Wk
2
. (6.36)

To conclude this section, we give four examples of families of regular interpolators.

The first example is the family of Gaussians we have already discussed at length,

namely

G :=
(
e−λx

2
)
λ∈(0,1]

.

In Ledford’s notation, α here corresponds to 1/λ. The next two examples are given

in [26]: the family of Poisson kernels,

F :=

(√
2

α

α

α2 + x2

)
α∈[1,∞)

,

and the sequence of differenced convolutions of the Hardy multiquadric, φ(x) :=
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√
1 + x2,

M :=
(
(−1)k∆kφk∗(x)

)
k∈N ,

where

∆1f(x) := f(x+ 1) + f(x− 1)− 2f(x),

and recursively ∆kf(x) := ∆1
(
∆k−1f

)
(x), and fk∗ (x) :=

(
f ∗ · · · ∗︸ ︷︷ ︸

k

f

)
(x).

Our final example is one which is not listed in [26], but an important one nonethe-

less.

Theorem 6.6.5. For each fixed α ∈ (−∞,−1/2), the class of inverse multiquadrics

Qα :=
(
(x2 + c2)α

)
c∈[1,∞)

is a family of regular interpolators.

Proof. Let α ∈ (−∞,−1/2) be fixed. To check (R1), consider a fixed value of

c ∈ [1,∞), and the conditions (A1)-(A3) need to be shown. To see condition (A1),

it is evident that φα,c is integrable from the definition, and that φ̂α,c ∈ L1(R) follows

from the restriction on α and Proposition 5.2.3. Condition (A2) has already been

discussed: the sign of φ̂α,c depends only upon the sign of Γ(−α), and does not change

for any value of ξ; moreover, Kα+ 1
2

is strictly positive on R, whence the condition.

For (A3), if Mj := sup
|ξ|≤π
|φ̂α,c(ξ+ 2πj)|, j ∈ Z, then we need to show that Mj ∈ `1.

Recall that φ̂α,c is decreasing (Proposition 5.2.2). Consequently, M0 = lim
ξ→0

φ̂α,c(ξ),

which is a finite constant (depending on α and c since φα,c ∈ L1 ∩ L2(R) implies

φ̂α,c ∈ C0(R) via the Riemann-Lebesgue Lemma). Then for j 6= 0, we have

Mj = φ̂α,c((2|j| − 1)π) = Aα,c((2|j| − 1)π)−α−
1
2Kα+ 1

2
(c(2|j| − 1)π),
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where Aα,c is a constant. By Lemma 3.2.2(iii),

Mj ≤ Aα,c((2|j| − 1)π)−α−
1
2 c−

1
2 ((2|j| − 1)π)−

1
2 e−c(2|j|−1)πe

|α+1
2 |

2

2c(2|j|−1)π

≤ Aα,c((2|j| − 1)π)−α−1e−c(2|j|−1)π.

The second inequality follows because the final exponential term in the first inequality

may be bounded by a constant involving α and c by taking |j| = 1. Putting together

these estimates, we find that

∑
j∈Z

Mj ≤ Aα,c

[
1 +

∑
j 6=0

((2|j| − 1)π)−α−
1
2 e−c(2|j|−1)π

]
<∞,

which is (A3). Consequently, (R1) is satisfied and φα,c is an interpolator for PWπ

for every c ∈ [1,∞).

To show (R2), let Mj(c) := sup
|ξ|≤π

φ̂α,c(ξ+2πj), and mc := inf
|ξ|≤π

φ̂α,c(ξ). By Lemma

3.2.2(i) and (ii) and Proposition 5.2.2, we have

mc = φ̂α,c(π) ≥ Aαc
αe−cπ. (6.37)

Additionally, Mj(c) = φ̂α,c(π) whenever |j| = 1, so M1(c)/mc = M−1(c)/mc = 1 for

every c. Following the steps above, but keeping better track of c, it follows from

Lemma 3.2.2(iv) that for |j| > 1,

Mj(c) ≤ Aαc
α+ 1

2 ((2|j| − 1)π)−α−
1
2 e−c(2|j|−1)π. (6.38)

Thus by (6.37) and (6.38),
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∑
j 6=0

Mj(c)

mc

≤ 2 +
∑
|j|≥2

Aαc
1
2 ((2|j| − 1)π)−α−

1
2 e−c(2|j|−1)π ≤ Aα.

The series on the right hand side above is convergent for every c, and moreover is

dominated by the convergent series obtained by replacing c with 1, whence the final

inequality above.

It remains to check (R3), which is to show that lim
c→∞

mc
φ̂α,c(ξ)

= 0 for almost every ξ ∈

[−π, π]. By Lemma 3.2.2(i), (ii), and (iii), we find that up to a constant depending

on α,

mc

φ̂α,c(ξ)
≤ cαπ−α−1e−cπe

|α+1
2 |

2

2cπ

cα|ξ|−α−1e−c|ξ|

=

(
π

|ξ|

)−α−1

e−c(π−|ξ|)e
|α+1

2 |
2

2cπ .

Therefore, since 0 ≤ mc
φ̂α,c(ξ)

, for any |ξ| < π, we have lim
c→∞

mc
φ̂α,c(ξ)

= 0 since π − |ξ| is

positive. We conclude that Qα is a family of regular interpolators for PWπ.

6.6.2 Proofs for Regular Interpolators

In this section we turn to the proof of the uniform boundedness of Iαf in the

Sobolev seminorm (i.e. the analogue of Theorem 6.1.3), which will be accomplished

in a series of steps reminiscent of the proofs in [40]. Again assume that X := (xj)j∈Z

is a fixed Riesz-basis sequence with Riesz basis constant B.

From the definition of the interpolation operators, (6.33), and basic Fourier trans-

form properties, we see that

F [Iα(f)](ξ) = φ̂α(ξ)
∑
j∈Z

aje
−ixjξ =: φ̂α(ξ)Ψα(ξ), ξ ∈ R. (6.39)
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Again letting ψα be the restriction of Ψα to [−π, π], we obtain the following.

Proposition 6.6.6 ([26], Proposition 2). If f ∈ PWπ, then

F [f ](ξ) = φ̂α(ξ)ψα(ξ) +
∑
j 6=0

A∗j

(
φ̂α(·+ 2πj)Aj(ψα)

)
(ξ), ξ ∈ [−π, π]. (6.40)

The following proposition will be quite useful in obtaining estimates on the norms

of the derivatives.

Proposition 6.6.7. For every j ∈ Z,

(iξ)kA∗j

(
φ̂α(·+ 2πj)Aj(ψα)

)
(ξ) = A∗j

(
φ̂α(·+ 2πj)Aj

(
(i·)kψα

))
(ξ),

for ξ ∈ [−π, π].

Proof. Define ej := e−ixj(·) on [−π, π]. Then because (ej) forms a Riesz basis for

L2[−π, π], it suffices to show that the inner products of the left and right hand sides

with ej are equal for all j ∈ Z. So let j, ` ∈ Z be arbitrary, and let 〈·, ·〉 denote the

usual inner product on L2[−π, π]. Then

〈
(i·)kA∗j

(
φ̂α(·+ 2πj)Aj(ψα)

)
, e`

〉
=
〈
φ̂α(·+ 2πj)Aj(ψα), Aj

(
(−i·)ke`

)〉

=

∫ π

−π
φ̂α(ξ + 2πj)ψα(ξ + 2πj)

× (i(ξ + 2πj))ke−ix`(ξ+2πj)dξ

=
〈
φ̂α(·+ 2πj)Aj

(
(i·)kψα

)
, Aj(e`)

〉
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=
〈
A∗j

(
φ̂α(·+ 2πj)Aj

(
(i·)kψα

))
, e`

〉
.

To simplify the above formulae, define

Bαg(ξ) :=
∑
j 6=0

A∗j

(
φ̂α(·+ 2πj)

mα

Aj(g)

)
(ξ).

As a consequence of Propositions 6.6.7 and 6.6.6, the following holds.

Corollary 6.6.8. Let f ∈ PWπ, and φα, ψα, Bα be as defined above. Then

(iξ)kf̂(ξ) = (iξ)kF [Iα(f)](ξ) +Bα

(
(i·)kmαψα

)
(ξ), ξ ∈ [−π, π].

In [26], it was shown that ‖Bαg‖L2[−π,π] ≤ C‖g‖L2[−π,π] where C is independent

of α and g. It follows that

‖Bα

(
(i·)kmαψα

)
‖L2[−π,π] ≤ Cmα‖(i·)kψα‖L2[−π,π], (6.41)

the right hand side of which is estimated as follows:

Lemma 6.6.9.

‖(i·)kψα‖L2[−π,π] ≤
√

2π

mα

|f |Wk
2 (R)

Proof. Begin by taking the inner product in L2[−π, π] of the equation in Corollary

6.6.8 with (iξ)kψα(ξ):

〈
(i·)kF [f ], (i·)kψα

〉
=
〈

(i·)kφ̂αψα, (i·)kψα
〉

+
∑
j 6=0

〈
φ̂α(·+ 2πj)Aj

(
(i·)kψα

)
, Aj

(
(i·)kψα

)〉
.
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By property (A2), each term on the right hand side is non-negative. Consequently,

mα‖(i·)kψα‖2
L2[−π,π] = mα

〈
(i·)kψα, (i·)kψα

〉

≤
〈

(i·)kφ̂αψα, (i·)kψα
〉

≤
〈
(i·)kF [f ], (i·)kψα

〉

≤ ‖(i·)kF [f ]‖L2[−π,π]‖(i·)kψα‖L2[−π,π],

from which the result follows recalling that |f |Wk
2

= 1√
2π
‖(i·)kF [f ]‖L2(R), and the

fact that f ∈ PWπ.

Proof of Theorem 6.1.3. By Corollary 6.6.8, (6.41), and Lemma 6.6.9,

‖(i·)kF [Iαf ]‖L2[−π,π] ≤
√

2π|f |Wk
2

+ ‖Bα

(
mα(i·)kψα

)
‖L2[−π,π]

≤
√

2π|f |Wk
2

+ Cmα‖(i·)kψα‖L2[−π,π]

≤
√

2π|f |Wk
2

+ Cmα
1

mα

|f |Wk
2
.

Consequently, ‖(i·)kF [Iαf ]‖L2[−π,π] ≤ C|f |Wk
2
, where C is independent of α and

f . Now to estimate ‖(i·)kF [Iαf ]‖L2(R\[−π,π]).

‖(i·)kF [Iαf ]‖2
L2(R\[−π,π]) =

∫
R\[−π,π]

∣∣∣(iξ)kφ̂α(ξ)Ψα(ξ)
∣∣∣2 dξ
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=
∑
j 6=0

∫ π

−π

∣∣∣φ̂α(ξ + 2πj)Aj
(
(i·)kψα

)
(ξ)
∣∣∣2 dξ

≤
∑
j 6=0

sup
|ξ|≤π

∣∣∣φ̂α(ξ + 2πj)
∣∣∣2 ∥∥Aj ((i·)kψα)∥∥2

L2[−π,π]

≤
∑
j 6=0

Mj(α)2B2‖(i·)kψα‖2
L2[−π,π]

≤ B2

(∑
j 6=0

Mj(α)

)2
1

mα

|f |Wk
2

≤ C|f |Wk
2
,

where the last two inequalities come from property (R2) and the fact that

‖(Mj(α))‖2
`2
≤ ‖(Mj(α))‖2

`1
.

Consequently, we find that

|Iαf |Wk
2
≤ C|f |Wk

2

where C is independent of α and f (C depends φ and B).

6.7 Remarks on the Multivariate Case

A simple extension of the main theorem (Theorem 6.1.5) can be made by a ten-

sor product argument. This requires considering Riesz-basis sequences for L2[−π, π]d

that form a grid (i.e. Cartesian products of d Riesz-basis sequences for L2[−π, π]).
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However, this is far from the general case of nonuniform data sites in higher dimen-

sions. The reason for the lack of a better multivariate extension is twofold. Firstly,

we do not have a proper multidimensional version of Theorem 6.1.2. Secondly, not

much is known about Riesz-basis sequences associated with more general sets in

higher dimensions as discussed in Chapter 4.
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APPENDIX A

GENERAL THEOREMS AND FACTS

In this brief Appendix, we provide some auxiliary theorems that were used with-

out proof in the preceding chapters for the sake of completeness.

Theorem A.0.1 (Monotone Convergence Theorem). Suppose that (fn)n∈N is a se-

quence of positive, measurable functions on Rd (d ∈ N) such that fn(x) ≤ fn+1(x)

for every n and every x ∈ Rd. Let f(x) := lim
n→∞

fn(x) = sup
n
fn(x). Then

∫
Rd
f(x)dx =

∫
Rd

lim
n→∞

fn(x)dx = lim
n→∞

∫
Rd
fn(x)dx.

Theorem A.0.2 (Dominated Convergence Theorem). Let (fn)n∈N be a sequence in

L1(Rd) such that fn → f almost everywhere on Rd, and suppose there exists a non-

negative g ∈ L1(Rd) such that |fn(x)| ≤ g(x) a.e. for every n. Then f ∈ L1(Rd)

and ∫
Rd
f(x)dx =

∫
Rd

lim
n→∞

fn(x)dx = lim
n→∞

∫
Rd
fn(x)dx.

The statements of these convergence theorems was taken from Chapter 2 of [11].

Theorem A.0.3 (Riemann-Lebesgue Lemma). If f ∈ L1(R), then

lim
|ξ|→∞

f̂(ξ) = 0.

This leads to an important corollary which we have used throughout this work.

Corollary A.0.4 (cf. [22] p.155, Theorem 1.7). If f ∈ L1 ∩ L2(R), then f̂ ∈

C0 ∩ L2(R).
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Proof. Basic Fourier transform theory shows that f̂ ∈ L2(R) and moreover is con-

tinuous. Then the Riemann-Lebesgue Lemma implies that f̂ ∈ C0(R).

In Chapter 6, it was stated that every Paley-Wiener space over an interval in R

is isometrically isomorphic to PWπ. We supply the proof of this fact here.

Theorem A.0.5. For every σ > 0, the spaces PWπ and PWσ are isometrically

isomorphic. That is, there exists a bijection Jσπ : PWσ → PWπ such that for every

f ∈ PWσ,

‖f‖ = ‖Jσπf‖.

Proof. For now, let the norm on the Paley-Wiener spaces be ‖f‖PWσ := ‖f‖L2(R) for

every σ > 0. Then define the map

Jσπf(x) =
(π
σ

) 1
2
f
(π
σ
x
)
, x ∈ R.

First, note that Jσπ : PWσ → PWπ. Indeed, via the substitution u = π
σ
x,

Ĵσπf(ξ) =
(π
σ

) 1
2

∫
R
f
(π
σ
x
)
e−ixξdx

=
(σ
π

) 1
2

∫
R
f(u)e−iu

σ
π
ξdu

=
(σ
π

) 1
2
f̂
(σ
π
ξ
)
.

Since f ∈ PWσ, f̂
(
σ
π
ξ
)

is only nonzero whenever σ
π
ξ ∈ [−σ, σ], or in other words,

whenever ξ ∈ [−π, π]. Consequently, Jσπf ∈ PWπ.
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To see the isometry, by the same substitution as above, note that

‖Jσπf‖2
L2(R) =

∫
R

π

σ

∣∣∣f (π
σ
x
)∣∣∣2 dx =

∫
R
|f(u)|2du = ‖f‖2

L2(R).

Having not defined orthonormal bases previously, we supply the definition here.

Definition A.0.6. A set of vectors (φn)n∈N in a Hilbert space (H, 〈·, ·〉) is said to be

complete if 〈h, φn〉 = 0 for all n implies that h = 0 in H. A set of complete vectors

in H is called an orthonormal basis for H if

〈φn, φm〉 = δn,m, n,m ∈ N.
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