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ABSTRACT

Unlike 2G systems where the radius of macro base station (MBS) could reach

several kilometers, the cell radius of LTE-Advanced and next generation wireless

networks (NGWNs) such as 5G networks would be random and up to a few hundred

meters in order to overcome the radio signal propagation impairments. Heteroge-

neous wireless networks (HetNets) are becoming an integral part of the NGWNs es-

pecially 5G networks, where small cell base stations (SBSs), wireless-fidelity (WiFi)

access points (APs), cellular BSs and device-to-device (D2D) enabled links coex-

ist together. HetNets represent novel approaches for the mobile data offloading,

resource allocation and coverage probability problems that help to optimize the net-

work traffic. However, heterogeneity and interworking among different radio access

technologies bring new challenges such as bandwidth resource allocation, user/cell

association, traffic offloading based on the user activity and coverage probability

in HetNets. This dissertation attempts to address three key research areas: traf-

fic offloading, bandwidth resource allocation and coverage probability problems in

HetNets.

In the first part of this dissertation, we derive the mathematical framework to

calculate the required active user population factor (AUPF) of small cells based on

the probabilistic traffic models. The number of total mobile users and number of

active mobile users have different probabilistic distributions such as different com-

binations of Binomial and Poisson distributions. Furthermore, AUPF is utilized to

investigate the downlink BS and backhaul power consumption of HetNets.

In the second part, we investigate two different traffic offloading (TO) schemes

(a) Path loss (PL) and (b) Signal-to-Interference ratio (SIR) based strategies. In this
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context, a comparative study on two techniques to offload the traffic from macrocell

to small cell is studied. Additionally, the AUPF, small cell access scheme and traffic-

type are included into a PL based TO strategy to minimize the congested macrocell

traffic.

In the third part, the joint user assignment and bandwidth resource allocation

problem is formulated as a mixed integer non-linear programming (MINLP). Due to

its intractability and computational complexity, the MINLP problem is transformed

into a convex optimization problem via a binary variable relaxation approach. Based

on the mathematical analysis of the problem, a heuristic algorithm for joint user

assignment and bandwidth allocation is presented. The proposed solution achieves

a near optimal user assignment and bandwidth allocation at reduced computational

complexity.

Lastly, we investigate the transition between traditional hexagonal BS deploy-

ment to random BS placement in HetNets. Independent Poisson Point Processes

(PPPs) are used to model the random locations of BSs. Lloyds algorithm is investi-

gated for analyzing the coverage probability in a network which functions as a bridge

between random and structural BS deployments. The link distance distribution is

obtained by using the Expectation-Maximization (EM) algorithm which is further

utilized for calculating the coverage probability.
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1. INTRODUCTION∗

1.1 Heterogeneous Wireless Networks

We are currently witnessing a wireless communications revolution and the wireless

network structures are adapting themselves to cope with the increased volume of data

transmissions. Earlier wireless communications systems relied on high-power cellular

towers called macro base stations (MBSs). The deployment of MBSs was based on

the hexagonal traditional grid to provide seamless voice and data connection to all

mobile users. Cellular phones were used initially only for voice transmissions along

with limited text messaging applications. However, contemporary cellular phones are

capable of transmitting high–definition (HD) multimedia, online gaming and video

conferencing. From the network architecture perspective it is obvious that adding

more MBSs to meet the user demands is not feasible due to the lack of available

locations and expensive costs. For instance, in the traditional macrocell network,

the placement of a new cellular tower in a highly dense location, i.e., downtown, can

be very challenging. Additionally, the main issue that networks operators are facing

is the capacity not the coverage due to the ever increasing number of applications

and demands in the wireless communications industry.

Moreover, next generation wireless networks are supposed to interwork efficiently

∗Section 1.3 Reprinted with permission from “Downlink Power Consumption of HetNets Based
on the Probabilistic Traffic Model of Mobile Users,” by Ali Rıza Ekti, Muhammad Z. Shakir,
Khalid A. Qaraqe and Erchin Serpedin, IEEE 24th International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC), Copyright 2013 by IEEE.

Section 1.3 Reprinted with permission from “End–to–End Downlink Power Consumption of
Heterogeneous Small Cell Networks Based on the Probabilistic Traffic Model,” by Ali Rıza Ekti,
Muhammad Z. Shakir, Khalid A. Qaraqe and Erchin Serpedin, IEEE Wireless Communications
and Networking Conference (WCNC), Copyright 2014 by IEEE.
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and seamlessly with other radio technologies; This characteristic is referred to as

multi-homing. For example, a typical smart phone can establish connections via

several different radio technologies such as High Speed Packet Access (HSPA), Long

Term Evolution (LTE)-Advanced and wireless–fidelity (WiFi) (e.g., 802.11g, n, c)

where each of these connections employ non-overlapping frequencies. Therefore, the

agile evolution of wireless communications systems has led to the emergence of new

concepts in term of quality of service (QoS) and system efficiency in the next genera-

tion wireless networks (NGWNs). In order to support the inevitable dynamic changes

in NGWNs such as 4G and 5G networks, heterogeneous wireless networks (HetNets)

have become an integral part of NGWNs. Several wireless technologies can co–exist

such as WiFi, 3rd Generation Partnership Project (3GPP) systems of the Universal

Mobile Telecommunications System (UMTS) and LTE-Advanced in HetNets as illus-

trated in Fig. 1.1, where several cellular base stations (BSs), WiFi access points (APs)

and device-to-device (D2D) enabled links cooperate to improve energy consumption,

network capacity, data rate and coverage [1, 9, 33]. This new paradigm shift in cel-

lular network structure deployment assumes MBSs and a combination of low cost,

low powered and easy to deploy small cell base stations (SBSs), distributed antenna

systems (DAS), D2D links and WiFi APs. HetNets increase spectrum utilization and

reduce energy consumption by using shorter propagation distances and by employing

higher frequency bands to enable higher data rates. HetNets also offer solutions to

network operators to lower the cost per bit and increase the revenue per bit by uti-

lizing multiple access technologies at the same time. Some key elements of HetNets

are femtocells (home eNBs), picocells, distributed antenna systems and existing WiFi

APs. They are differentiated by their coverage areas, backhaul connections, propaga-

tion characteristics and transmit powers. In order to provide a better understanding

of the differences between traditional MBS and HetNet deployments, TABLE 1.1

2



Core 

Network

Internet

(Youtube, Netflix, 

Gaming, Facebook,..)

MBS

SBS

DAS

WiFi

D2D

Figure 1.1: A Heterogeneous Wireless Network: Combination of MBS, SBS, WiFi
AP, DAS and D2D links.

is constructed [1, 3, 16, 18, 33, 49, 77]. As seen in TABLE 1.1, HetNets emploit the

macrocell infrastructure as a backbone, and additionaly utilize the smaller BSs and

other radio access technologies at the same time.

1.1.1 Elements of Heterogeneous Wireless Networks

1.1.1.1 Macrocells

Macrocells provide wide area coverage for HetNets and act as a backbone for all

the other networks. Macrocells exhibit a coverage range greater than 500m. One of

the most important feature of macrocells is that they support high mobility users

and minimize the handover.

3



Table 1.1: Why do we need HetNets?

HetNet Traditional Macro Base Station

Cell Association
Connect to BS with highest data
rate.

Connect to BS with strongest re-
ceived signal.

Deployment
MBS as backbone. Random and
overlapped coverage

Hexagonal grid, MBSs with defi-
nite boundaries.

Backhaul Transfer mmWave band, Fiber, DSL. DSL and Fiber.

Resource Management
Utilize multiple radio access tech-
nologies.

Utilize single type radio access
technology.

Coverage Probability
Analytically and numerically
available.

Numerically available.

1.1.1.2 Small Cells

Small cells can be divided into two categories: (a) Picocells provide coverage

mostly in the hotspot areas such as airports, stadiums, malls and concert areas, and

(b) Femtocells present coverage in the residential areas such homes and apartments.

Even though, we separated them into two components, the distances between mobile

users and SBSs are being short enable high data rates to be achieved via low power

transmissions. Also, small cells enable users to enjoy higher data rates while utilizing

already existing backhaul infrastructure.

1.1.1.3 Distributed Antenna Systems

DASs create virtual cells among the MBSs and each antenna presents a line–

of–sight (LOS) to the mobile user. Thus, DASs provide better coverage and link

reliability. DASs utilize the fiber connection as backhaul.

4



1.1.1.4 Wireless-Fidelity Access Points

WiFi APs use the unlicensed radio frequency (RF) spectrum to offload traffic

from macro-cells. WiFi APs are similar to small cells but utilize the unlicensed

bands. They can be controlled by mobile users and network operators.

1.1.1.5 Device to Device Links

D2D links are the shortest range communications among all the aforementioned

technologies. D2D links provide flexibility and improved coverage. Users may employ

common data packages with the neighboring users to reduce the over the air signaling

via Bluetooth or WiFi Direct.

The combination of the previously mentioned technologies brings the beauty of

the different worlds onto a single plate. Therefore, HetNets represent a promising

solution for NGWNs, where many low power, low cost small cells (e.g., femtocells),

WiFi APs and D2D links are employed to support the existing macrocell networks

to reduce the over the air signaling and uplink power consumption, and to increase

capacity. Thus, HetNets enhance the spectral efficiency compared to the MBSs based

networks.

However, the increasing complexity of HetNets due to the random deployment

of small cells brings into the importance of how to model and analyze the HetNets.

Additionally, this new network paradigm also raises new challanges such as the prob-

lems of bandwidth resource allocation, user/cell association, traffic offloading based

on the user activity and coverage probability regarding the feasibility of current

wireless networks.
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1.1.2 Research Challenges

Even though offloading traffic to smaller cells will reduce the over the air sig-

naling and increase the capacity, each small cell traffic is limited on the backhaul

capacity. Therefore, the overall performance of the small cells is highly dependent on

the backhaul connection. Current backhaul technologies are microwave radios, digi-

tal subscriber lines (DSLs) and optical fiber links [81]. Moreover, the impact of the

wireless network traffic such as user activity, traffic type and dynamic nature of wire-

less environment on the small cell selection, traffic offloading and power consumption

require further investigation [77, 91]. Interference among neighboring cells is highly

important due to closer proximity of access points. Furthermore, the resource al-

location and scheduling algorithms should be optimized effectively by considering

joint bandwidth and user assignments due to the interworking among different radio

access technologies. One prominent example is multi–homing where mobile users

can utilize WiFi and cellular networks simultaneously. Maximum throughput, mix

traffic types, queue stabilization, delay and energy efficiency are the main parame-

ters to consider while formulating each resource allocation problem [43, 44, 86, 91].

Additionally, a key metric in the downlink cellular networks is the probability of cov-

erage which is the received signal strength of the randomly chosen user. Traditional

MBS deployment assumes the hexagonal structure, however, it lacks mathematical

tractability. Unfortunately, these results cannot be employed in the randomly de-

ployed HetNets. Therefore, the complexity of the HetNets motivates new research

investigations to utilize different models such as modeling BS locations via Poisson

point process (PPP) [2, 23,58].

Therefore, an investigation on the bandwidth resource allocation, user/cell as-

sociation, traffic offloading based on the user activity and coverage probability is a

6



must for the NGWNs. Some of these challenges, which will be addressed in this

dissertation, are:

• Calculation of the number of required SBSs deployment based on the user

activity.

• Investigation of the total power consumption with the deployment of SBSs.

• Comparison of Path loss and signal–to–interference ratio (SIR) based traffic

offloading strategies and radio access technologies.

• Assignment of the mobile users and their allocated bandwidth.

• The coverage probability transition from the traditional hexagonal MBS de-

ployment to the random deployment scenario.

1.2 Overview of Traffic Offloading

HetNets represent a novel approach to resolve the problem of mobile data offload-

ing and help to optimize the network traffic [33]. HetNets consist of a combination

of different size small cells with reduced radius in the range [10–100]m such as pic-

ocells and femtocells with WiFi APs and WiFi Direct D2D enabled links as seen in

Fig. 1.2a, and are deployed within the existing macrocell. Fig. 1.2a displays WiFi and

D2D supported HetNets. HetNets are envisioned to increase the spectral efficiency

and enhance the overall network performance by offloading network traffic from the

MBS to small cells [73]. Since small cells operate within a smaller distance com-

pared to MBSs and are attached to the macrocell core network via wireless/wired IP

backhaul connections, they are expected to provide higher data rates and dedicated

capacity to residential areas and hot spots, and to reduce traffic congestion. SBSs

have the capability to utilize the unlicensed RF spectrum where WiFi is currently
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operating along with the licensed RF spectrum. Such a feature will provide dual

mode functionality for SBSs. Therefore, SBSs may provide uninterrupted voice call

and text services. At the same time, WiFi satisfies the user’s higher demand for mul-

timedia applications such as watching/downloading HD videos and online gaming by

employing selected IP traffic offloading (SIPTO).

Fig. 1.2b illustrates the anticipated SIPTO traffic offloading (TO) scenarios for

WiFi APs. SIPTO refers to the decision whether the mobile user employs SBS or

WiFi APs based on the type or content of the traffic–type. WiFi Direct protocol on

IEEE 802.11 may also serve as a good alternative and as it utilizes the unlicensed

bands on D2D connections where two closely located devices get connected without

routing the traffic through the access network [40]. WiFi Direct is a connection

protocol similar to Bluetooth but it utilizes the WiFi interface. Since some users

may present common packets within the vicinity of the same receivers, D2D enabled

devices can utilize shorter radio links from the neighboring devices. This will increase

the overall performance of the small cells and reduce the traffic congestion. The

recent advances in mmWave communications at 60 GHz spectrum usage for WiFi are

expected to bring a new dimension on the coalition between LTE small cells and WiFi

APs such as free spectrum usage, less interference, high data rate and reliable low–

range transmission [68]. Collaboration between SBSs, WiFi APs/Wireless Gigabit

Alliance (WiGig) and D2D enabled devices will significantly reduce the traffic load

in the traditional macrocell networks. According to [19], it is expected that the total

percentage of TO from MBSs to small cells will increase by 60% by 2020. Reference

[19] describes the TO profiles of countries that began deployment of small cells.

Countries where LTE–advanced and WiFi APs communication technologies have

already been implemented present higher TO percentages. Therefore, deployment of

WiFi supported small cells represents an extremely important task for the network
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1.2.1 Contributions in Traffic Offloading

We investigate two different traffic offloading schemes (a) path loss (PL) based

traffic offloading (TO) strategy and (b) SIR based traffic offloading. In this context,

a comparative study of the two techniques to offload the traffic from macrocell to

small cell is studied. Additionally, the active user population factor (AUPF), small

cell access scheme and traffic-type are included into a PL based TO strategy to

minimize congestion of macrocell traffic [27].

1.3 Overview of Power Consumption

Currently, information and communication technology (ICT) industry consumes

0.5% of the total global energy [32]. HetNets are expected to tackle these demands

and to improve the overall power consumption by placing numerous low power, low

cost small cells (e.g., femtocells) BSs over macrocell networks.

Power consumption of a network can be divided into two subcategories: (F.I) up-

link power consumption, and (F.II) downlink power consumption. Highly escalating

number of mobile subscribers which was 4.5 billions in 2012 and anticipated to reach

7.6 billions by 2020 and massive mobile data traffic volume which was 45 million tera–

byte (TB)/year in 2012 and expected to attain 623 million TB/year till 2020 [24], are

the main factors that affect the uplink power consumption. Reference [79] revealed

that mobile users with adaptive transmit power schemes reduce the uplink power

consumption by using link adaptation, and thus enable greener networks.

1.3.1 Related Work on Power Consumption

In contrast to (F.I), (F.II) can be divided into two subcategories: (i) BS down-

link power consumption, and (ii) BS backhaul downlink power consumption. Most of

the downlink power is consumed by the BSs. Currently, the number of BSs reached
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4 millions and each BS consumes an average of 25 mega–Watt Hour (MWH) per

year [38]. To meet the escalating demands of mobile users, cellular operators are

placing small cells to complement the macro network which also will reduce the

operational expenditure (OpEx) and capital expenditures (CapEx) expenditures of

the network. It is estimated that the number of small cells will reach 100 millions

with 500 million mobile users in 2020 [24]. At present, a typical small cell consumes

about 6–10 W, and it can be predicted that the power consumption of a small cell

will still be approximately 5 W in 2020. Hence, 4.4 TWH will be consumed by the

100 million small cells in 2020 which is an extra 5% on top of the power consumption

of current BS infrastructure. In order to resolve this issue, numerous avenues are

being considered such as [31, 38, 84] (i) developing new power amplifier technolo-

gies to design energy efficient BSs; (ii) utilizing power saving protocols where BSs

are in sleeping mode under low traffic load; (iii) benefiting from renewable energy

sources, e.g., solar and wind energy in place of diesel generators to lower the power

consumption of BSs, specifically, the ones at off–grid sites; (iv) modifying cell size

intelligently in accordance with the traffic load conditions and the received interfer-

ence from neighboring cells; and (v) exploiting the amplify–and–forward relays to

enrich the power reduction with reduced complexity, even though at an increased

cost for infrastructure deployment.

Thus, it is incumbent upon network operators to impose the aforementioned tech-

niques in HetNets so that different radio access technologies are deployed on a large

scale. In [55], the impact of reducing the number of active cells during the access

portion is underutilized for different network configurations such as hexagonal, cross-

roads and Manhattan types. In [88], the relationship between traffic load changes

and energy savings through dynamic and fixed power ratio for only macro BS (MBS)

networks has been illustrated. In [4], HetNets composed of pico BSs (PBSs) and MBS
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are examined. The sleeping strategy performs well in order to reduce the total down-

link power consumption. The total downlink power consumption has been reduced

significantly using the sleeping strategy across various times of the day and different

locations of PBSs. In [5], country wide downlink power consumption over different

traffic loads for the MBS and micro BSs (mBS) deployment is studied. Also, [57,82]

focused on the impact of backhaul power consumption on different backhaul tech-

nologies, e.g., fiber, microwave, along with BS downlink power consumption.

1.3.2 Contributions in Power Consumption

We propose that the population of small cells depends on the traffic load due

to the active mobile users, which is modeled as a random-variable, and assumed to

be time-varying. It is necessary to assess the number of active small cells based

on the AUPF. AUPF defines the ratio of the number of active mobile users to the

number of total mobile users, and it also describes the daily user traffic profile. We

derive the mathematical framework to calculate the required population of small

cells based on the probabilistic traffic models where the number of total mobile users

and number of active mobile users have different probabilistic distributions such

as different combinations of Binomial and Poisson distributions. Additionally, the

large scale deployment of many lightly loaded small cells is expected to increase the

downlink and backhaul power consumption of the HetNets. The proposed AUPF

model helps to calculate the number of active small cells and to evaluate the power

consumption of HetNets [28,29].

1.4 Overview of Resource Allocation

New radio resource allocation mechanisms should be investigated to provide an

efficient usage of all available networks in HetNets. Cooperation among different

wireless technologies enable them to complement each other and to provide seamless
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data services and connections. The radio resource allocation problem in a HetNet

can be categorized into two types: (a) Single network access-allocation where mobile

terminals (MTs) can access only the required bandwidth from a single network, and

this single network is the best available network at the user location, and (b) Multi–

homing network-allocation where MTs can simultaneously utilize all the available

networks and aggregate the offered bandwidth from these networks to improve the

achieved data rate [89]. Specifically, each MT is covered by a set of overlapped

networks which consist of a combination of cellular BSs and wireless local area net-

work (WLAN) APs [41–43]. MT manufacturers, like Apple, LG, Blackberry and

Samsung, provide standard built-in WiFi and cellular technologies. For instance,

Apple’s iPhone operating system (iOS) 7 supports the multiple–connection trans-

mission control protocol (MCTCP) which allows users to utilize both LTE and WiFi

connections simultaneously [8]. Another example of “multi–homing” is the concept

of “Open Garden” app which enables all devices to find the best available network

combination [10].

Currently, MTs are equipped with multiple radio interfaces such as cellular and

WiFi in order to efficiently use all the available networks. Additionally, a MT can

maintain simultaneous connections from different access networks using its cellular

and WiFi interfaces to provide an increased aggregated bandwidth with multi-homing

capability to support applications that require higher data rates. Furthermore, due

to the fact that at least one radio interface is active, it will provide seamless mobility

support and reduce the call blocking rate [15]. Therefore, “multi–homing” has gained

significant attention recently.
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1.4.1 Related Work on Resource Allocation

There are many studies dedicated to the radio resource allocation problem in

HetNets. Existing studies can be divided into two categories single-network resource

allocation and multi–homing network-allocation, respectively. In what concerns the

first category, the bandwidth resource allocation methods are studied in [12,66,75,80].

Bandwidth allocation and call admission control algorithms are proposed for different

classes of services in [75]. The work in [12] develops a distributed resource allocation

method based on a convex optimization mechanism in order to find the optimal

bandwidth for a minimum required data rate. However, the authors of [12] consider

only a single network connection. The authors in [66] introduce a utility function

based resource allocation scheme which exploits a convex optimization mechanism

for code division multiple access (CDMA) and WLAN networks. The authors in

[80] utilize a stochastic programming method to handle the probabilistic nature of

demand uncertainty in HetNets. The major drawback of considering a single network

connection is that it causes call dropping if there are no other networks such as

WLAN and/or cellular networks in the area due to the fact a MT cannot be satisfied

with the required bandwidth.

The bandwidth resource allocation methods belonging to the second category are

studied in [41–43,47,51,53,60–62] where novel algorithms are proposed to allocate the

radio bandwidth resource to different traffic types based on a specific utility of the ser-

vice supported over all the available networks. Utility fairness is considered in [53] to

accomodate the bandwidth for different traffic types such as variable bit rate (VBR)

and constant bit rate (CBR). The authors in [60] and [62] use non-cooperative

game theory to allocate the bandwidth in a HetNet where the requested bandwidth

is collected from all the available networks. The works in [61] and [47] propose a
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cooperative game theoretic approach to create an alliance among different types of

networks. In [43], the authors consider different traffic types and user types to max-

imize the utility function while maintaining QoS. The utility maximization problem

is solved optimally via a convex optimization method for radio resource allocation in

a distributed manner. The work in [51] proposes an opportunistic user association

for HetNets to address a resource allocation problem for machine-to-machine (M2M)

traffic under a cooperative Nash bargaining solution method. In [41], optimal cen-

tralized and suboptimal decentralized resource allocation algorithms are proposed to

account for both single network and multi-homing service and their performance is

compared. In [42], a decentralized resource allocation algorithm is proposed to re-

duce the resource allocation complexity in the HetNet while considering the arrivals

of new calls and service requests. Therefore, MTs with multi-homing capabilities

can further optimize the utilization of the resources of the HetNets [44].

1.4.2 Contributions in Resource Allocation

Unlike the existing research, in order to account for the MT’s limited number

of radio interfaces and the abundant wireless network options, the joint user assign-

ment and bandwidth allocation problem is formulated to select the optimal subset

of networks for each user and allocate the optimal bandwidth share from this subset

to maximize the HetNet total utility. The problem is formulated as a mixed integer

non–linear program (MINLP) and due to its intractability and computational com-

plexity, we transform the problem into a convex optimization problem via a binary

variable relaxation approach. Based on the mathematical analysis of the problem,

we present a heuristic algorithm for joint user assignment and bandwidth alloca-

tion. The proposed solution achieves a near optimal user assignment and bandwidth

allocation at reduced computational complexity [30].
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1.5 Overview of Coverage Probability

Rapidly accumulating device diversity, user demands, and need for better cov-

erage make network planning more complicated and introduce randomness in the

deployment of BSs in HetNets. In the scenarios where the locations of BSs do not

follow a deterministic structure, modeling the performance of the network precisely

becomes a challenging task.

1.5.1 Related Work on Coverage Probability

One of the proposed approaches is to model BS deployment as an independent

PPP, a methodology which provides analytical tractability for interference and cov-

erage probability analyses [2,39]. However, the independent PPP assumption ignores

the correlation among the BSs. Field measurements show that the coverage probabil-

ity lies in practice between the traditional hexagonal model and the independent PPP

approach. This is mainly due to the fact that network operators have still control

on BS deployment in a deterministic way [35, 87], which creates intentional repul-

sion between BSs. Therefore, more realistic ways should be incorporated while still

maintaining the tractability of PPP for interference analysis. The authors in [23,58]

apply a α-Ginibre point process (GPP) and a β-GPP to model the correlation be-

tween BSs. The GPP is a deterministic point process and takes into account the

repulsion between BSs.

1.5.2 Contributions in Coverage Probability

However, PPP allows BSs to be deployed very close to each other and gives

pessimistic results compared to the field measurements. In order to address this

issue, Lloyd’s algorithm, which functions as a bridge between random and structural

BS deployments, is investigated for analyzing coverage probability in a network. The
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link distance distribution is modeled as a mixture of Weibull distributions and its

parameters are obtained by using the expectation-maximization (EM) algorithm for

each iteration of Lloyd’s algorithm. The link distance distribution is further utilized

for calculating the coverage probability approximately by exploiting the tractability

of PPP [25].

1.6 Outline

This dissertation attempts to address common problems such as traffic offloading,

power consumption, resource allocation and coverage probability in HetNets. The

outline of this dissertation is as follows:

1. In Chapter 2, the probabilistic mobile user distribution is analyzed along with

its impact on downlink power consumption of HetNets. The daily traffic profile

and activity are also considered in the derivations [28,29].

2. In Chapter 3, we investigate the traffic offloading scenarios in HetNets by

considering the benefits of WiFi, D2D and MBS cooperation [27].

3. In Chapter 4, the mobile user assignment and bandwidth resource allocation

mechanism is investigated [26,30].

4. In Chapter 5, the coverage probability analysis for the transition from the

traditional hexagonal cellular structure to the randomly deployed HetNets is

discussed [25].
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2. PROBABILISTIC TRAFFIC MODEL OF MOBILE USERS IN

HETEROGENEOUS WIRELESS NETWORKS AND ITS IMPACT ON

DOWNLINK POWER CONSUMPTION∗

2.1 Introduction

We studied the impact of the probabilistic distributions of the total number of

active mobile users and the total number of mobile users on the downlink base station

and backhaul power consumption, and the number of active small cells. Herein

chapter, we will provide answers to the following questions:

• How to calculate the small cell population based on the variable traffic profile?

• What is the impact of AUPF on the downlink base station and downlink back-

haul power consumption of HetNets?

• Which backhaul option consumes the least amount of power, the digital sub-

scriber line (DSL) or fiber?

2.1.1 Organization

The rest of the chapter is organized as follows. In Section 2.2, the system model is

presented. Probabilistic distribution analysis of small cells and the downlink power

∗Reprinted with permission from “Downlink Power Consumption of HetNets Based on the Prob-
abilistic Traffic Model of Mobile Users,” by Ali Rıza Ekti, Muhammad Z. Shakir, Khalid A. Qaraqe
and Erchin Serpedin, IEEE 24th International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), Copyright 2013 by IEEE.

Reprinted with permission from “End–to–End Downlink Power Consumption of Heteroge-
neous Small Cell Networks Based on the Probabilistic Traffic Model,” by Ali Rıza Ekti, Muham-
mad Z. Shakir, Khalid A. Qaraqe and Erchin Serpedin, IEEE Wireless Communications and Net-
working Conference (WCNC), Copyright 2014 by IEEE.
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consumption of the system model are provided in Section 2.2.1 and Section 2.3,

respectively. Simulation results and discussions are presented in Section 2.4. Finally,

concluding remarks are drawn in Section 2.5.

2.2 System Model

A HetNet scenario is assumed where the SBSs are distributed within the macro-

cell network homogeneously and each SBS can serve up to ten users simultaneously.

A typical illustration of the set up considered in this chapter is depicted in Fig. 2.1

where N , D, F , S and O represent the total number of modems and optical network

units (ONU), digital subscriber line access multiplexers (DSLAMs) which convert

the electrical signals into the data traffic, femto gateways (FGs) which authenticates

each femtocell with the core macrocell network and controls the signaling, passive

splitters and optical line terminals (OLTs), respectively. ONUs convert optical sig-

nals via appropriate electronics to provide provide fiber internet connection, splitters

are the passive devices with many input and outputs and OLTs are responsible for

coordinating the multiplexing between splitter and gateway. In Fig. 2.1, it is shown

that MBS presents fiber backhaul connection to core network, while SBSs are capable

of connecting to the core network via DSL or fiber.

A circular macrocell of radius rm [m] with a BS, Bm, is considered and it is

deployed at the center of macrocell with a fiber backhaul connection. HetNets contain

N circular small cells of radius rn [m] with low power, low cost user deployed BS, Bn,

which is located at the center of each small cell and with a wired backhaul connection.

The number of small cells per macrocell can be computed as follows [28]:

N = γ
Am
An

=
ma

mt

πrm
2

πrn2
, 0 ≤ γ ≤ 1 (2.1)

where N denotes the number of active SBSs; γ is a random variable denoting the
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Figure 2.1: End–to–end downlink power consumption of macrocell and small cell
networks in HetNet.

population of active mobile users per macrocell. The factor γ is the ratio of the

number of active mobile users ma and the number of total mobile users mt, and it

is referred to as the active user population factor (AUPF)†; Am and An stand for

the areas of macrocell and small cell, respectively. Moreover, it is assumed that the

SBS is active or inactive based on the probability that a mobile user is active in

the vicinity of the SBS. Thereby, the population of the SBSs is controlled by the

percentile of the active mobile users in a daily traffic profile.

†ma depends on mt.
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2.2.1 Probabilistic Distribution Analysis

We suppress the notations as much as possible, and use ma, mt to refer to a

random variable, and its values. So for instance the notation fma(ma) becomes

f(ma).

If we are given f(ma|mt), the conditional distribution of ma given mt, and

f(mt), the distribution of mt, then the joint distribution of ma and mt, f(ma,mt) =

f(ma|mt)f(mt) and the marginal probability mass function (PMF) can be calculated

as:

f(ma) =
∑
mt

f(ma,mt) =
∑
mt

f(ma|mt)f(mt). (2.2)

When we are interested in the distribution of γ =
ma

mt

, then we have:

γ =
∑
γ=ma

mt

f(ma,mt),

=
∑
mt

∑
ma=γmt

f(ma,mt),

=
∑
mt

f(γmt|mt)f(mt). (2.3)

In this study, we consider that the total number of mobile users, mt and the total

number of active mobile users, ma, are distributed as a mixture of Binomial and

Poisson distributions. ‡

‡B(·, ·) and P (·, ·) denote Binomial and Poisson distributed random variables, respectively.
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2.2.1.1 ma|mt–Discrete Binomal and mt–Constant

Let’s assume mTmax is the maximum possible number of the mobile users such

that § mt = mTmax = 6250 as a constant, therefore, f(mt) = 1. Variable ma is a

random variable with ma|mt ∼ B(·, ·).

Let us consider that f(ma|mt) is Binomial distributed such that mt > 0 and

0 ≤ p ≤ 1, and whose PDF is given by:

f(ma|mt) =

(
mt

ma

)
pma(1− p)mt−ma , (2.4)

where p is the probability of having an active mobile user. Therefore, by substituting

f(mt) and (2.4) into (2.2), one can calculate f(ma) as follows:

f(ma) =

(
mt

ma

)
pma(1− p)mt−ma , ma = 0, ...,mt. (2.5)

Using (2.5), one can express the small cell populations factor, γ, as follows:¶

γ = δImt (γmt)

(
mt

γmt

)
pγmt(1− p)mt−γmt . (2.6)

By substituting (2.6) into (3.1) we can obtain the expression to calculate the

small cell population, N , under this case as follows:

N =
Am
An

δImt (γmt)

(
mt

γmt

)
pγmt(1− p)mt−γmt . (2.7)

§mTmax
= Am

An
× 10 where 10 is the maximum number of mobile users that can be associated

with a single SBS as explained in the Section 2.2. Therefore, mTmax
is equal to 6250. When mt = 0

then γ =∞, therefore, 1 ≤ mt ≤ mTmax .

¶Let A be a set. Define the delta function of A, δA(.) as δA(x) = 1 if ma is in A and 0 otherwise.
Example: Let U denote the set of non–negative integers, then δU(x) = 1 if x is a non–negative integer
and is zero otherwise.
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2.2.1.2 ma|mt–Discrete Poisson and mt–Discrete Binomial

In the following case, ma is a random variable where ma|mt ∼ P (·, ·) and mt ∼

B(·, ·). In order to find the total number of active mobile users, we should first

calculate the total number of mobile users as:

f(mt) =

(
mTmax

mt

)
qmt(1− q)mTmax−mt , (2.8)

where q is the probability of having a mobile user served by a single small cell whether

it is active or inactive, and 0 < q ≤ 1. PDF f(ma|mt) is Poisson distributed and

given by:

f(ma|mt) = e−λmt
λmt

ma

ma!
, (2.9)

where λmt stands for the Poisson arrival rate of active mobile users where the positive

parameter λmt depends on mt and p. By substituting (2.8) and (2.9) into (2.2), we

can express (2.2) as:

f(ma) =

mTmax∑
mt=1

(
mTmax

mt

)
qmt(1− q)mTmax−mte−λmt λmt

ma

ma!
. (2.10)

Using (2.10), we can express (2.3) as follows:

γ =

mTmax∑
mt=1

(
mTmax

mt

)
qmt(1− q)mTmax−mtδImt (γmt)e

−λmt
λmt

γmt

(γmt)!
. (2.11)

By plugging (2.11) into (3.1) we can obtain the expression to calculate N under

this case as follows:

23



N =
Am
An

mTmax∑
mt=1

(
mTmax

mt

)
qmt(1− q)mTmax−mtδImt (γmt)e

−λmt
λmt

γmt

(γmt)!
. (2.12)

2.2.1.3 ma|mt–Discrete Poisson and mt–Discrete Poisson

In the following case, ma is a random variable where ma|mt ∼ P (·, ·) and mt ∼

P (·, ·). f(ma|mt) is equal to (2.9) and f(mt) is given by:

f(mt) = e−µ
µmt

mt!
, (2.13)

where µ stands for the Poisson arrival rate of the total number of mobile users and

depends on mTmax and q. By substituting (2.9) and (2.13) into (2.2), we can express

(2.2) as:

f(ma) =

mTmax∑
mt=1

e−µ
µmt

mt!
e−λmt

λmt
ma

ma!
. (2.14)

Using (2.14), we can express (2.3) as follows:

γ =

mTmax∑
mt=1

e−µ
µmt

mt!
δImt (γmt)e

−λmt
λmt

γmt

(γmt)!
. (2.15)

By substituting (2.15) into (3.1), N takes the expression:

N =
Am
An

mTmax∑
mt=1

e−µ
µmt

mt!
δImt (γmt)e

−λmt
λmt

γmt

(γmt)!
. (2.16)

2.2.1.4 ma|mt–Discrete Binomial and mt–Discrete Poisson

In the following case, ma is a random variable where ma|mt ∼ B(·, ·) and mt ∼

P (·, ·). Variable mt has the same distribution as in (2.13), and it presents mTmax and
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q dependent parameters. PDF f(ma|mt) is equal to (2.4).

By substituting (2.4) and (2.13) into (2.2), we can express (2.2) as:

f(ma) =

mTmax∑
mt=1

e−µ
µmt

mt!

(
mt

ma

)
pma(1− p)mt−ma . (2.17)

Using (2.17), we can express (2.3) as follows:

γ =

mTmax∑
mt=1

e−µ
µmt

mt!
δImt (γmt)

(
mt

γmt

)
pγmt(1− p)mt−γmt . (2.18)

By substituting (2.18) into (3.1), N can be evaluated as:

N=
Am
An

mTmax∑
mt=1

e−µ
µmt

mt!
δImt (γmt)

(
nmt
γmt

)
pγmt(1− p)mt−γmt . (2.19)

2.2.1.5 ma|mt–Discrete Binomial and mt–Discrete Binomial

In this case, ma is a random variable where ma|mt ∼ B(·, ·) and mt ∼ B(·, ·).

f(ma|mt) and f(mt) are equal to (2.4) and (2.8), respectively. Therefore, we can

obtain f(ma) by substituting (2.4) and (2.8) into (2.2):

f(ma) =

mTmax∑
mt=1

(
mTmax

mt

)
qmt(1− q)mTmax−mt

(
mt

ma

)
pma(1− p)mt−ma . (2.20)

Using (2.20), we can express (2.3) as follows:

γ =

mTmax∑
mt=1

(
mTmax

mt

)
qmt(1− q)mTmax−mtδImt (γmt)

(
mt

γmt

)
pγmt(1− p)mt−γmt . (2.21)
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By plugging (2.21) into (3.1), N can be rewritten as:

N =
Am
An

mTmax∑
mt=1

(
mTmax

mt

)
qmt(1− q)mTmax−mtδImt (γmt)

(
mt

γmt

)
pγmt(1− p)mt−γmt .

(2.22)

2.3 Downlink Power Consumption

The downlink power consumption of HetNets is composed of two components:

(i) macrocell network downlink power consumption, and (ii) small cell network down-

link power consumption [6, 70]. The total downlink power consumption can be ex-

pressed as follows:

Ptc = PM + PM
bh︸ ︷︷ ︸

MBS

+Pn + P n
bh︸ ︷︷ ︸

SBS

, (2.23)

where Ptc is the total power consumption; PM and Pn stand for the power consump-

tion of MBS and SBS, respectively.

2.3.1 Base Station Power Consumption

MBS and SBS power consumption can be calculated respectively as [82] ‖ :

PM = kmPm + jm (2.24)

and

Pn = N(ksPs + js), (2.25)

where Pm and Ps denote the maxium RF output power of MBS and SBS, respec-

tively; km and ks are the slopes of the load dependent power consumption of MBS

‖The power amplifier efficiency is omitted in (2.24), (2.25) [45].
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and SBS, respectively; jm and js denote the signal processing and site cooling power

consumption of MBS and SBS, respectively; and N denotes the traffic load depen-

dent SBS population which is strictly depending on AUPF. Total downlink power

consumption per macrocell based on the traffic load dependent population of small

cells can be easily calculated by plugging N into (2.25) for each case in Section 2.2.1,

i.e., using (2.7), (2.12), (2.16), (2.19) and (2.22).

2.3.2 Backhaul Power Consumption

In (2.23), PM
bh denotes the traffic load dependent backhaul power consumption of

MBS and it is given by∗∗ [82]:

PM
bh = γ

(⌈
1

aport

⌉
Psw + Pdl + Pul

)
, (2.26)

where aport denotes the number of ports required for the aggregation switch; Psw

stands for the maximum power consumption of the aggregation switch; Pdl is the

power consumed by one downlink interface in the aggregation switch used to collect

the backhaul traffic; and Pul denotes the power consumption of an uplink interface††.

Note that the backhaul power consumption of macrocell network is now dependent

on the traffic load to be backhauled to the core network such that γ can be calculated

by (2.6).

In (2.23), P n
bh stands for the traffic load dependent backhaul power consumption

of the small cell network which depends on the type of the medium to backhaul

∗∗d·e denotes the ceiling function.

††Uplink interface is a part of the downlink which collects the traffic from the aggregation switch
and transfer it to the MBS core network.
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Table 2.1: Downlink Power Consumption Parameters.

Base station type P(·)[W] k(·) j(·)[W] Pmod Dport aport fgport Pd Pfg Psw Pul Pdl Ponu Polt sport oport Ps

Macro 40 21.45 354.44 N/A N/A 32 N/A N/A N/A 1000 2 1 N/A N/A N/A N/A N/A

Small cell 0.05 7.5 4.8 2 72 N/A 100 60 100 N/A N/A N/A 2 20 48 48 0

the traffic from access to the core network. In this study, the power consumptions

of DSL and fiber based backhaul networks are compared and calculated based on

the similar principle in (2.26). It is assumed that the total power consumed by the

DSL and fiber based backhaul networks is denoted by P nd
bh and P

nf
bh , respectively.

The backhaul power consumption over DSL, P nd
bh , can be represented as in (2.12),

which is shown at the top of the next page. In (2.12), Pmod and P t
mod are the power

consumption of one modem and N modems, respectively; dport denotes the number

of ports required for the DSLAM; Pd and P t
d represent the power consumption of one

DSLAM and D DSLAMs, respectively; fgport denotes the number of ports required

for the femto gateway; Pfg and P t
fg represent the power consumption of one femto

gateway and F femto gateways, respectively.

Similarly, the backhaul power consumption of the small cell network over the

fiber connection, P
nf
bh , can be calculated as in (2.13), shown at the top of the next

page. In (2.13), sport and oport stand for the number of ports required for the passive

splitter and OLT, respectively; Ponu, Ps and Polt are the powers consumed by a

ONU, passive splitter and OLT, respectively; P t
onu, P

t
s and P t

olt denote the total

power consumption of the N ONUs, S passive splitters and O OLT, respectively.

Downlink power consumption parameters are described in TABLE 2.1.

28



P nd
bh =

(γAmAn
)

︸ ︷︷ ︸
N

Pmod


︸ ︷︷ ︸

P tmod

+

⌈ 1

dport

(
γ
Am
An

)⌉
︸ ︷︷ ︸

D

Pd


︸ ︷︷ ︸

P td

+

⌈ 1

fgport

⌈
1

dport

(
γ
Am
An

)⌉⌉
︸ ︷︷ ︸

F

Pfg


︸ ︷︷ ︸

P tfg

(2.12)

P
nf
bh=

(γAmAn
)

︸ ︷︷ ︸
N

Ponu


︸ ︷︷ ︸

P tonu

+

⌈ 1

sport

(
γ
Am
An

)⌉
︸ ︷︷ ︸

S

Ps


︸ ︷︷ ︸

P ts

+

⌈ 1

oport

⌈
1

sport

(
γ
Am
An

)⌉⌉
︸ ︷︷ ︸

O

Polt


︸ ︷︷ ︸

P tolt

+

⌈ 1

fgport

⌈
1

oport

⌈
1

sport

(
γ
Am
An

)⌉⌉⌉
︸ ︷︷ ︸

F

Pfg


︸ ︷︷ ︸

P tfg

(2.13)

2.4 Simulation Results and Discussions

In this section, numerical and simulation results are presented to confirm the

analytical results and investigate the impact of various probabilistic traffic load pro-

files in HetNets in terms of SBS population and downlink power consumption. Low

traffic load presents the probability value of p = 0.035, medium traffic load considers

p = {0.1, 0.15} and high traffic load assumes p = {0.3, 0.35}. In order to the evalu-

ate performance of each case in Section 2.2.1, we have used the following parameters

in the simulations, rm = 500m, rn = 20m, mTmax = CMax = 6250 along with the

parameters in TABLE 2.1.
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The effect of the daily traffic profile, Hours, against ma|mt% is shown in Fig. 2.2.

It demonstrates that the daily user traffic and ma|mt% are directly related to each

other, as expected. With the activity of the users increasing during the 24 hour

period, γ and ma|mt% are taking greater values. For example, when ma|mt% is

equal to 4.91, γ becomes 0.0491. During late night hours, most users are sleeping

which is directly affecting the γ.
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Figure 2.2: Daily traffic profile vs active user percentage.

Fig. 2.3 is plotted to show the impact of γ on N . As expected, when the AUPF

increases then N is increasing which means higher traffic load. One can easily relate

this relationship to a daily traffic profile for current cellular communications. Under

low traffic load, e.g., during night time, less small cells become active. In case of

the high traffic, e.g., during day time, the numerical value of N increases with the

increase in γ. For instance, under low γ values, the numerical values of N varies in
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the interval (0, 25). Under medium and high γ values, N will take values in these

intervals (25, 100) and (100, 188), respectively.
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Figure 2.3: Active user population factor (AUPF) vs number of active small cells.

Fig. 2.4 illustrates the downlink power consumption for different traffic loads for

the small cell network based on the BS power consumption and DSL backhaul power

consumption. When γ increases then the values of power consumption are becoming

larger due to an increase in the number of active SBS. As an example, under low

traffic values backhaul, SBS and total small cell power consumptions take values in

these intervals (0, 180) W, (0, 200) W, and (0, 380) W, respectively.

In order to compare the power consumption between fiber and DSL backhaul

cases, Fig. 2.5 illustrates the dependency between AUPF and small cell power con-

sumption over the fiber backhaul. The same pattern is also seen in the fiber backhaul

power consumption, but interestingly, fiber backhaul power consumption is less than
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Figure 2.4: Active user population factor (AUPF) vs small cell power consumption
over DSL backhaul.

DSL backhaul power consumption due to the less power consumption by fiber inter-

faces. As an example, the splitter can be considered as a passive interface in fiber

based backhaul network and thereby does not consume any power to carry traffic

from ONU to OLT, i.e., Ps = 0. Under the highest traffic load, the fiber backhaul

power consumption is 175 W less than DSL backhaul power consumption.

The downlink power consumption of macrocell network MBS with respect to γ is

depicted in Fig. 2.6. Since the MBS is single and active all the times, MBS downlink

power consumption is constant with a numerical value of 1212.5 W. On the other

hand, the backhaul power consumption varies in the interval (0, 291) W due to the

variable traffic loads. The numerical range of total power consumption is the interval

(1212.5, 1503.5) W.

A common observation for this section is that N , P nd
bh , P

nf
bh , PM

bh , Pn and Ptc

32



0.0934 0.0491 0.01664 0.0934 0.1658 0.1939 0.2843 0.1406 0.0982
0

75
150
225
300
375
450
525
600
675
750
825
900
975

1,050
1,125
1,200
1,275
1,350
1,425
1,500

Active user population factor (γ)

P
o
w
er

co
n
su
m
p
ti
o
n
-
W
a
tt

Smallcell Network Power Consumption Profile

 

 
Smallcell-Total
Smallcell-Fiber Backhaul
Smallcell-Basestation

Figure 2.5: Active user population factor (AUPF) vs small cell power consumption
over fiber backhaul.
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Figure 2.6: Active user population factor (AUPF) vs macrocell power consumption.
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are random variables and strictly dependent on the values of γ, which is highly

dependent on the population of active mobile users. Numerical values of γ, N and

Ptc increase as the traffic load increases. Also, distribution of the number of mobile

users and active mobile users play a crucial role for the number of active SBS and

their downlink power consumption. When p increases, the distinction becomes clear.

Moreover, the type of backhaul technology is playing a crucial role in the downlink

power consumption analysis.

2.5 Summary

In this study, we proposed a probabilistic traffic model in order to calculate

the number of active SBS and thereby control the downlink power consumption of

HetNets. It is shown that changes in traffic load profiles lead to changes on the

downlink power consumption and the number of active small cells, as expected. The

number of active users is calculated by the proposed probabilistic traffic model which

assures that downlink power consumption in HetNets will be reduced by switching–

off the SBSs intelligently under low and medium traffic load conditions. Furthermore,

it turns out that if the traffic load is not extremely large, small cell deployment will

reduce the power consumption significantly. Another interesting observation is that

fiber based backhaul is consuming less power than DSL based backhaul.

34



3. ON THE TRAFFIC OFFLOADING IN WIFI SUPPORTED

HETEROGENEOUS WIRELESS NETWORKS

3.1 Introduction

In this chapter, an active user dependent PL based TO strategy for HetNets

is proposed and analyzed to overcome the aforementioned problems in Section 1.2.

The main objective of the PL based strategy is to show the significant difference

between SIR based offloading and PL based offloading while considering the AUPF,

which is calculated in Section 2.2.1, and traffic–type, where hybrid small cells are

distributed homogeneously along the macrocell. PL strategy increases the offloading

percentage and ensures that more users will transfer to SBS and experience better

data throughput and coverage. Further, the offloaded user traffic gets distributed

onto SBS, WiFi and D2D enabled links based on the content of the application.

Factors such as population density, access scheme and distribution of small cells

across the macrocell area represent challenging issues that can impact the TO di-

rectly. In addition to these factors, the daily traffic profile, active user population

and traffic–type should also be investigated to optimize the network deployment and

QoS. Therefore, the AUPF of mobile users on the traffic offload has also been stud-

ied. Due to the aforementioned reasons, answers to the following questions will be

addressed herein chapter:

• What is the impact of hybrid small cell and macrocell radius on the percentage

of TO?

• How does the percentage of TO change with respect to the AUPF (γ) and the

probability of having an open/closed access hybrid small cell?
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• How much of the offloaded traffic will go through SBS, WiFi AP and D2D

enabled links?

3.1.1 Organization

The remainder of this chapter is structured as follows. SBS and WiFi APs coali-

tion benefits are discussed in Section 3.3. A layout of the HetNets along with the

evaluation of the population factor with respect to the number of active small cells

and access schemes are depicted in Section 3.4. PL and SIR TO based strategies are

discussed in Section 3.5, respectively. The TO analysis is presented in Section 3.6.

Section 3.7 presents economics of TO. Simulation results and discussions are in-

cluded where required to provide a comparative performance analysis. Finally, the

concluding remarks are drawn in Section 3.8.

3.2 Device–to–Device, Small Cell Base Station and Wireless-Fidelity Based Traffic

Offloading

In D2D enabled networks direct transmission through each device is considered.

For instance, some devices may utilize the SBSs or WiFi APs for downloading a

multimedia file while other close–proximity devices can utilize the shorter direct link

to fetch data from its D2D peers like a peer–to–peer (P2P) connection with WiFi

Direct or WiGig. This will distribute the traffic load onto D2D enabled devices and

reduce the total traffic load. A good example of this situation is that of watching

ultra HD videos from TV by directly transmitting through a laptop or camera or

blu-ray player. However, D2D enabled devices are battery powered equipment, and

therefore, the energy consumption will increase and drain the battery of the mobile

devices based on the content of the file that is being downloaded or uploaded. This

concern can be eliminated by providing higher data rates for the D2D enabled de-

vices. D2D communication does also present reliability concerns due to the rapid RF
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environment changes. Almost 38% of the total mobile data traffic is offloaded onto

WiFi APs and hotspots in US [20] and it is expected to be higher with the imple-

mentation of 5G NGWNs. Since WiFi APs are already deployed at homes, campuses

and businesses, it is more convenient for the network operators to utilize the WiFi

as the data offloading docking stations. Most of the current cellular phones have the

capability of connecting to either WiFi or cellular base stations in order to download

multimedia and delay tolerant applications and contents. Mobile devices usually pick

the WiFi APs if there is one in the vicinity due to the fact that it will provide higher

data rates and reduce the cellular plan cost by utilizing the unlicensed RF spectrum.

Especially with the introduction of the WiGig technology which employs the 60 GHz

unlicensed and price–free spectrum, it will definitely bring WiFi one step further as

the carrier offloading strategy [69]. WiGig operates on a very wide bandwidth which

makes the spectrum very attractive for multimedia and delay tolerant applications

such as streaming ultra HD from a dvd-player or laptop to a TV set. Especially for

backhaul, it creates an opportunity for outdoor point–to–point (P2P) connections

to provide Internet access to neighboring buildings to prolong the access of fiber

networks. WiGig presents several advantages such as (i) intelligent beam control

techniques; (ii) energy efficient transmission, i.e., 30% less energy consumption than

LTE small cells; (iii) shorter range and easy interference management; (iv) 7 GHz of

free and unlicensed spectrum with Gbps transmission rates; (v) instant wireless syn-

chronization. Lastly, SBSs are a natural extension of the macrocell network. SBSs

provide also a better QoS for voice and delay tolerant applications with no disrup-

tion. SBSs utilize the licensed spectrum which enable them to avoid easily unwanted

radios and penetrate through buildings. On the other hand, licensed spectrum is

limited so WiFi will most of the time provide higher data rates. This points out

the importance of the multi–homing [43]. Currently, mobile devices are capable of
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handling higher bandwidth consuming applications along with basic voice and text

applications via WiFi and cellular interfaces. Such type of communication presents

multi–homing features. Multi–homing associates each radio interface with the avail-

able overlapped mobile networks which can be cellular base stations or WiFi APs.

Therefore, multi–homing has gained significant interest within the past years. Most

of the smartphones have the capability of multi–homing which enables each device

to connect to any available network as shown in Fig. 1.2b. Therefore, after carefully

examining these three approaches, one can infer that a combination of these technolo-

gies will generate higher data rates, better coverage and less power consumption, a

research topic which is currently being investigated in the upcoming WiFi supported

5G NGWNs [9]. Next, the potential benefits of the coalition between SBSs and WiFi

will be discussed.

3.3 Small Cell Base Station and WiFi Access Points Coalition Benefits

The capacity of SBS depends directly on the limited availability of the spec-

trum which can also be dissipated by the interference from the highly dense SBS

deployment. To handle such problems, researchers and network operators started to

investigate the usage of WiFi to support the SBSs. Possible integration scenarios can

be seen in Fig. 1.2a. Integration of these two technologies will bring many benefits.

Radio Frequency Spectrum Utilization: RF spectrum is critical for the wireless

communications systems because of its limited availability. Due to the ever increasing

demand for it, researchers have sought to find more efficient ways to utilize the RF

spectrum. Depending on the design, communication systems use the RF spectrum

in different ways. However, one of the most important design features is the fact

that wireless systems should optimize the use of resources by employing a set of

functionalities. Due to the limited nature of current RF spectrum, the mmWave
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communication band 60 GHz will bring new degrees of freedoms in terms of TO such

as higher data rates with interference immunity, better security and re–use of the

frequency bands.

60 GHz mmWave Communication: Electromagnetic waves can be absorbed by

oxygen molecules while traveling through air. The absorption level is higher at 60

Ghz, therefore, the propagation distance diminishes at such high frequencies. With

the great absorption rates in the 60 GHz mmWave communication, e.g., WiGig can

be used in shorter range communications to provide very high data rates with no

interference to neighboring WiGig devices because of the aforementioned oxygen ab-

sorption issue. Moreover, this portion of spectrum is unlicensed so far and represents

an attractive option for the operators. However, one interesting point that needs to

be addressed is the effect of the rain on the deployment of the outdoor 60 GHz tech-

nologies. Rain might dominate the mmWave penetration distance more than the

oxygen absorption rate.

Smart Traffic Offloading: The combination of WiFi and SBSs will allow network

operators to provide voice and text services through the carrier core network while

transferring the Internet traffic through WiFi APs and its backhaul as depicted in

Fig. 1.2b. This offloading scenario will give the opportunity to use the best of both

WiFi and SBSs for the mobile users.

WiFi Backhaul: Small cells typically utilize either the DSL, fiber or cable as

backhaul connection technology. Small cell owners are not concerned with the type

of technology used for backhaul, however, the network operators are concerned by

the technology used for backhaul [81]. Stemming from the limited backhaul capa-

bilities, the volume of offloaded traffic from macrocell can be reduced if the small

cell backhaul reaches a certain threshold. Therefore, the backhaul constraint can

be integrated with the biased user association technique [33]. The biased user as-
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sociation technique refers to the allocation of the mobile user to the available small

cells. If the wired backhaul reaches its limits, then WiFi integrated SBSs also enable

network operators to use WiFi as a very good candidate for the backhaul transfer.

WiFi APs in many SBSs can construct a mesh network for a high quality and de-

pendable wireless backhaul especially with the new WiGig concept which can easily

provide fiber optical data transfer rates. Moreover, WiFi can also be used to offload

the Machine-type traffic that is envisioned to explode in volume due to the advent

of Internet of Things (IoT).

Cost Efficiency: Network operators have a big craving for successful WiFi and

SBS integration in order to eliminate extra OpEx and CapEx costs for separate

installation/planning of the WiFi APs and SBSs. Therefore, dual mode or hybrid

small cells which combine the small cell and WiFi on the same hardware will lower

the cost of the ownership and increase the usage of shared resources such as backhaul,

site rental, spectrum cost and additional equipment. In the earlier years of the small

cell deployments, WiFi was considered as a competitor but now it can be easily seen

that SBS and WiFi are the two sides of the same coin that can complement each

other well. Mutualism of these two technologies in the same box will guarantee the

usage of the right technology all the times without contemplation over the radio

access technology.

Handover: Seamless handover is a must for the integrated SBS and WiFi tech-

nologies due to excessive traffic and interference. It will assure the uninterrupted

service quality for the mobile user regardless of the radio interface technology. In

these cases, successful offloading which is a part of handover becomes an important

issue. One of the easiest ways of incorporating the impact of environment into the

handover analysis is to use a simple PL model with different PL exponents corre-

sponding to different environments and cell types.
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3.4 Heterogeneous Small Cell Network Layout

In this section, a HetNets scenario is considered where the small cells are dis-

tributed within the macrocell network homogeneously. In terms of the ease of prac-

tical implementation, it is assumed that each macrocell is surrounded by six macro-

cells that generate interference to the corresponding mobile users. Moreover, each

small cell is encircled by six small cells in order to provide a fair comparison with

macrocells.

A circular macrocell of radius rm [m] is assigned with a BS, Bm, which is deployed

at the center of macrocell. HetNets contain N circular small cells of radius rn [m]

with low power, low cost user deployed BSs, Bn, which are assumed to be located at

the center of each small cell and equipped with a wired/wireless backhaul connection.

The number of small cells per macrocell can be expressed as in Section 2.2.1 ∗ [28]:

N = γ
Am
An

α︸ ︷︷ ︸
Open Access

+ γ
Am
An

(1− α)︸ ︷︷ ︸
Closed Access

, 0 ≤ γ ≤ 1 , 0 ≤ α ≤ 1, (3.1)

where N denotes the number of active small cells, and γ stands for the AUPF

parameter which represents a random variable that controls the small cell population

per macrocell and daily traffic profile. The AUPF, γ, is the ratio of the number of

active mobile users, ma, and the number of total mobile users, mt
†. Variable α

stands for the probability of having an open access small cell. Variables Am = πr2
m

and An = πr2
n denote the areas of macrocell and small cell, respectively. Moreover,

∗The intuition behind this approach is to associate the active user distribution, daily traffic
profile and small cell access schemes together.

†To calculate the AUPF, it is assumed that two types of mobile users exist in the network:
(a) active mobile users and (b) inactive mobile users. The number of total mobile users is equal to
the total number of active and inactive mobile users, mt.
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it is assumed that the small cell is active or inactive based on the probability that a

mobile user is active in the vicinity of the small cell. Thereby, the population of the

small cells is controlled by the percentile of the active mobile users in a daily traffic

profile and access schemes of the small cells.

3.4.1 Small Cell Access Schemes

Based on the privileges and permissions allocated to customers, small cell access

schemes can be classified into:

3.4.1.1 Closed Access

Self deployed small cells have a key limitation in a “closed access” scheme since the

customers would opt for limiting the access to themselves and their preferred users.

As expected, closed access small cells do not enhance the coverage for all customers.

Therefore, operators search for better access schemes such as “open access” small

cells in order to reduce the OpEx and increase the coverage [21].

3.4.1.2 Open Access

Any random nearby cellular user can utilize the small cells which are in “open

access” mode. This will allow the network operator to expand the coverage and

network performance but will create additional interference problems. A small cell

owner would still favor a closed access scheme in order to employ small cell backhaul

and enhance the capacity for particular users [21].

Fig. 3.1 illustrates‡ the relationship between γ and α with respect to N and No.

Variables No and Nc denote the number of active open access small cells and active

‡In Fig. 3.1 x–axis values are taking decreasing and increasing values in order to show the impact
of daily traffic profile. In a 24–hour period, the activity of the mobile users is not monotonically
increasing and decreasing.
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closed access small cells, respectively. The number of mobile users is assumed to be

adaptive in the coverage area. The following parameters are used rm = 400m and

rn = 20m to calculate the total number of small cells per macrocell. Low traffic load

presents the probability value p = 0.03, medium traffic load exhibits p = 0.15 and

high traffic load assumes p = 0.3, where p is the probability of having an active user.

Fig. 3.1 demonstrates the impact of variable traffic load profiles on N for different

α and γ. When the traffic load increases, then N takes greater values as expected.

For instance, the numerical range of N under low traffic load is the interval (0,

16). In case of medium traffic load, the numerical range of N is within the interval

(16, 56). Also, under high traffic load, N varies in the interval (56, 114). As a

common observation for Fig. 3.1, α represents the scaling factor for the daily traffic

profile of N and No, where the total number of small cells remains the same while

No takes different values. Another crucial point, a significant role on the number

of active small cells is played by AUPF, which is a function of the active mobile

users. Therefore, AUPF directly affects N and No and their values fluctuate with

the variable traffic load.

Deployment of many small size, low cost and low power SBSs and WiFi APs in

the existing macrocell network brings into analysis the important function played

by TO. When the congested traffic unloads onto the small cells, MBS will experi-

ence less congested traffic and perform better. Small cells reduce the transmission

distance and increase the data rate and coverage but such a setup will create a dis-

advantage in terms of SIR for the offloaded users. Users offloaded to smaller cells

receive dissipated SIR due to the strongest interference power received. If SIR based

offloading takes place, then most of the users will remain in the MBS coverage and

receive low data rates and unsatisfactory QoS. Therefore, in this study, the PL based

TO is investigated stemming from the fact that the offloaded users onto small cells
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Figure 3.1: Number of small cells per macrocell as a function of active user population
factor and probability of having open access small cell for daily traffic profile.

experience better received power from the closer BSs. This will increase the overall

offloading percentage and improve the overall system performance and spectral effi-

ciency. Furthermore, offloaded user traffic is divided between WiFi, D2D and SBSs

in order to reduce the traffic congestion of SBSs.

3.5 Traffic Offloading Methods: Path loss and Signal–to–Interference Ratio

3.5.1 Path Loss Based Traffic Offloading

The power of the signal propagating through the environment is considered to

carry the distance information between transmitter and receiver. This parameter

requires knowledge of several wireless propagation characteristics such as PL and

shadowing to obtain an estimate about the distance considered. It is known that

wireless propagations in different propagation environments differ from each other.

The main reason behind this observation lies in the topographical characteristics of
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the physical propagation environment. To model the PL in HetNets where multiple

small cells complement the macrocell, several empirical models were proposed in

[76, Chapter 12]. However, the measurements indicate that a simple power law PL

model cannot be used to fit the measurements with good accuracy especially when

the distance between the transmitter and receiver is short [71, 73, 76]. Therefore,

this study considers a two slope (commonly known as dual slope) PL model for

HetNets [71, 73, 76]: (a) PL = K/(dζ1) for d ≤ g, and (b) PL = K/((d/g)ζ2gζ1)

for d > g. Two separate PL exponents, ζ1 and ζ2, which are referred to as basic

and additional PL exponents, respectively, are used to characterize two different

propagation regions, together with a breakpoint distance g between them where the

propagation changes from one regime to the other. The breakpoint of the PL curve

is defined as the point after which the strength of the signal attenuates such that

the basic PL exponent ζ1 represents the slope before breakpoint and the additional

PL exponent ζ2 represents the slope after breakpoint. This can be considered as

two regions: for d ≤ g, i.e., short distances, while for d > g, i.e., large distances,

where g = (4hrxhtx)/(λc) [m] is the breakpoint of a PL curve which depends on the

MBS and SBS (receiver in uplink) antenna height hrx [m], antenna height of the

mobile user (transmitter in uplink) htx [m] and wavelength of the carrier frequency

λc. Parameter K denotes the PL constant.

To avoid the sharp transition between the two regions of a two slope PL model,

a generalized propagation model for both macrocell and smallcell networks is con-

sidered in [67,71]:

PL =
K

dζ1(1 + d/g)β
, β = ζ2 − ζ1. (3.2)

In order to decide if a user connects to a small cell or remains with a MBS, the
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following strategy is assumed. The active mobile user transfers to the small cell if §

PLn>PLm. Otherwise, it remains connected to MBS.

3.5.2 Signal–to–Interference Ratio Based Traffic Offloading

Based on the two slope PL model (3.2), the received signal power at MBS or SBS

from the active mobile user is given by:

P rx =
K

dζ1(1 + d/g)β
P txψ, (3.3)

where

• P rx[W] denotes the average received signal power at the reference MBS or SBS

from the desired mobile user, located at a distance d from the same reference

BS;

• ψ is the composite shadowing and fading component over the link between the

mobile user and respective MBS or SBS;

• P tx [W] defines the mobile user transmit power for the physical uplink shared

channel (PUSCH) such that each mobile user in the macrocell network trans-

mits with the maximum power Pmax.

SIR is also an important parameter to evaluate the system performance in wireless

communications and it is used in many performance metrics such as TO, handover,

power control and channel assignment. The general definition of the SIR is the ratio

between the average desired received signal power at the reference macrocell or small

cell, and the total interference power received from the surrounding MBSs or small

cells, P rx/
∑6

i=1 P
rx
i . P rx[W] stands for the average desired received signal power at

§Subscripts m and n are associated with MBS and SBS, respectively.
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the reference macrocell or smallcell, and
∑6

i=1 P
rx
i [W] denotes the total interference

power received from surrounding MBSs or SBSs. The PL strategy discussed in

Section 3.5.1 can also be applied to SIR based offloading. For instance, if SIRn>SIRm,

then users transfer to SBS. Otherwise, they will continue using MBS.

3.6 Traffic Offloading Analysis

In order to provide more insightful results, the percentage of TO for PL and SIR

based strategies is investigated in three different set–ups¶:

3.6.1 Cell Size Dependent Traffic Offloading

In order to point out the impact of cell size on the offloaded traffic, Fig. 3.2 shows

the summary of the radius dependent TO for variable small cell and MBS sizes. It is

assumed that γ and α are equal to 1, which means that the macrocell is fully loaded

with active mobile users and all the small cells are open access. The active mobile

users in the macrocell network receive better SIR than those in the small cell network

due to fact that the instantaneous SIR is lower in small cells. On the other hand,

since the radius of the small cell is relatively smaller than that of macrocell, it will

provide a better PL. Therefore, the significant difference between PL and SIR can be

seen in Fig. 3.2. The impact of TO with respect to the macrocell radius and different

values of rn is illustrated in Fig. 3.2a. With the increase in rm, SIR gets better for

the macrocell network due to the reduced interference from the surrounding MBSs.

Therefore, the percentage of SIR based offloading decreases in Fig. 3.2a. Then again,

the PL for the small cell will often be higher and provide at least 78% TO due to the

fact that the radius and the PL exponents are smaller than the values corresponding

¶In this study, the simulation results exclusively provide the numbers for MBS to small cell
TOs.
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Table 3.1: Numerical Values of the Number of Traffic Offloadings (TOs), Number of
Open–Access small cells and Number of Closed–Access small cells for Low, Medium
and High Traffic.

α
Low Traffic - p = 0.03 Medium Traffic - p = 0.15 High Traffic - p = 0.30
No Nc SIR PL No Nc SIR PL No Nc SIR PL

0 0 12 0 0 0 60 0 0 0 122 0 0
0.25 3 9 1 4 15 45 7 19 31 91 13 38
0.5 6 6 3 8 30 30 10 38 61 61 24 76
0.75 9 3 4 12 45 15 25 57 91 31 39 114

1 12 0 5 15 60 0 21 75 122 0 45 151

to the macrocell. For instance, when rm takes values in the interval (200, 1000),

the percentage of PL based offloading is always greater than 78% even though rn is

increasing from 20m to 200m. This proves that shorter separation leads to a better

offloading in terms of PL. As long as there is a drastic ratio between rm and rn,

PL based offloading will lead to the best performance in terms of TO. Another

interesting observation is that SIRn is getting better when rn takes greater values

since the interference from neighboring small cells is decreasing. Fig. 3.2b depicts

the PL, SIR and dual mode cognitive based offloading for different rn and rm values.

SIR based offloading is increasing as expected due to the fact that rn takes greater

values, a factor which reduces the received interference from surrounding small cells.

Compared to PL based offloading, the SIR based method provides less TO than the

PL based offloading. SIR and PL based offloading strategies take values in these

intervals (24%, 57%) and (78%,100%), respectively, indicating that the radii of MBS

and small cell are the main factors that affect the TO. For a clearer view of this

impact, TABLE 3.1 depicts a summary of N , No, TO for low, medium and high

traffic loads for different α values, when rn = 20m and rm = 400m.
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Figure 3.2: Percentage of an active mobile user only traffic offloadings (TOs) per
macrocell as a function of active user density per m2, radius of macrocell and radius
of small cell.
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3.6.2 Traffic–Type Dependent Offloading

Fig. 3.3 illustrates the percentage of TO onto SBS, WiFi APs or D2D enabled

devices. It is assumed that γ and α are equal to 1, which means that the macrocell

is fully loaded with active mobile users and all the small cells are open access. It

is assumed that TO proportions from the total offloaded small cell traffic to SBSs,

WiFi APs and D2D enabled links are given by 54%, 38% and 8%, respectively. For

instance, if the total number of traffic offloaded to the small cells is 100 then 54 of

them will go through SBS, 38 via WiFi APs and 8 to D2D. In order to provide a

better understanding of the TO to SBS, WiFi APs and D2D, Fig. 3.3 depicts the

percentage of the traffic distribution. Since the mobile data traffic is heterogeneous

being composed of voice and text transmissions, multimedia applications, P2P con-

nections, social networking applications, etc., it is assumed that voice and text will

be associated with SBSs, multimedia and delay tolerant applications with WiFi APs

and P2P connections with D2D connections [20]. Since voice and text services are of

paramount importance for network operators, SBSs will provide uninterrupted QoS.

On the other hand, compensation of the higher data requirements will be ensured

by WiFi and D2D connections which will also diminish SBS backhaul volume.

3.6.3 Daily Traffic Profile and Small Cell Access Scheme Dependent Traffic

Offloading

One of the fundamental reasons for small cell deployment is to reduce the traffic

load when the data traffic usage is high and heterogeneous during a 24 hour period.

Therefore, Fig. 3.4 depicts the impact of daily traffic profile and access scheme on

TO. Fig. 3.4 illustrates the percentage of user offloading from MBS to small cell

while considering both active and inactive mobile users. Fig. 3.4a demonstrates the

effects of α for different γ values. As expected, the slope of the curve almost stays
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Figure 3.3: Percentage of an active mobile user only traffic offloadings (TOs) to small
cells per macrocell as a function of traffic–type.
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constant, which illustrates that γ is the main factor that alters the percentage of

TO. For low traffic values, the percentage of TOs takes values in the interval (0%,

3%) when α is increasing from 0 to 1. In case of high traffic load, the percentage of

offloadings ranges in the interval (0%, 30%). Fig. 3.4b depicts the impact of γ on

the percentage for different α values. The curve of the offloading percentage changes

drastically for different γ values. It is evident that the traffic load decreases when the

percentage of the offloaded traffic reduces due to the diminishing number of active

mobile users and small cells. As an example, low, medium and high traffic loads are

chosen. The percentage of offloading takes values in the intervals (0%, 3%), (3%,

12%), and (12%, 21%), respectively.

3.7 Economics of Traffic Offloading

Network operators’ exhibit special interest into TOs through proper placement

of small cells since it is a necessity to reduce the total cost of ownership (TCO),

CapEx which refers to the equipment and installation cost and OpEx which refers

to the cost to keep the system running. Site lease and transportation generates the

biggest chunk of the total cost in the network planning. In a traditional macrocell

network, placement of a new cellular tower in a highly dense location i.e., downtown,

can be impossible. Therefore, utilizing the already existing infrastructure and third

party solutions such as WiFi, femtocells and D2D communications, are anticipated

to reduce the total cost. Data offloading through WiFi and femtocells has a great

value in different dimensions of a business such as hotspot operators, manufacturing

devices and service providers. The greatest benefit in terms of cost savings is reducing

the OpEx. First, operators only need to add little or no upgrades for the backhaul

traffic due to the already existing backhaul infrastructures such as DSL lines, fiber,

etc., for the TO which will relieve the congested traffic. Second, there is no need
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Figure 3.4: Percentage of total traffic offloading (TO) per macrocell as a function of
active user population factor and the probability of having an open access small cell.
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for drastic changes in the hardware and software for the radio access network. In a

macrocell network, the cost per GB-RAN equals $21.80, while it is only $8.19 for the

WiFi supported SBSs [65]. Therefore, both LTE SBSs and WiFi APs have shown

significant CapEx and OpEx reductions opposed to LTE macrocells such as 85%

decrease taking into account both CapEx and OpEx [54].

Reference [54] showed TCOs for scenarios where SBSs are cheaper for low density

buildings. On the other hand, WiFi APs dominate the TCO with an increase in the

density. SBSs are almost 31% cheaper for low density buildings while WiFi APs

are 60% cheaper for higher density buildings. Hybrid and smart TO can be seen in

Fig. 1.2b. If hybrid offloading takes place, it might further reduce TCO. Despite the

fact that 60 GHz mmWave communications are still under maturation stage, they

will bring a huge offloading relief for the indoor communications and backhaul traffic.

Operators can easily build a mesh network with 60 GHz devices to eliminate the

crowded usage of the wired backhaul connections. Another important aspect of the

cost reduction is for the mobile subscribers. Since the current data plans for cellular

3G/4G networks are considerably high and limited per month, WiFi offloading in the

residential areas diminishes the data usage and increase savings for each bill cycle.

The mobile operator’s business is to provide data services and they are supposed to

generate revenues by offering such a service. One may wonder about the motivation

for reducing the data load on a mobile operator’s data network by offloading it to

WiFi and small cells technologies which is equivalent to a scenario where a vendor

willingly reduces the volume of the sale in a business. The motivation of an operator

is evident based on the current revenue models. Users are keen to get data services

and faster data rates but the cost that they are willing to pay is limited. This has

resulted in several flat-charge models for the data services in mobile service contracts

in Europe, America and many Asian countries. In this flat-charge model, the mobile
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operator does not charge the customer for the “amount of the data”, rather it charges

the customers a fixed monthly rate for the “offering of the service”, when and where

needed. Hence, if these operators have a choice to seamlessly offload some of the

users to other offloading technologies that are not managed by the operator, this will

free up some user and data capacity in operator’s system and will allow the operator

to enroll more customers with a contract of “offering the service”. These flat-charge

models are one of the reasons for saturating average revenue per user (ARPU) for

the operators. In short, in the presence of a flat-charge billing model the operator is

not interested in serving a larger volume of data to each customer; rather the focus is

on enrolling as many users as possible while ensuring that they have an experience of

good service offering when they need the service in absence of any other alternative

source.

Based on this information, the aforementioned strategies in this study can shrink

the total costs. Therefore, adding low cost WiFi supported small cells will decrease

the marginal cost for network operators and mobile subscribers, reduce the number

of sites per network and expand the network coverage. Lastly, the reduction of the

number of active cells per network will yield huge energy savings due to the fact that

small cells are using very low power compared to the traditional macrocells. Even

though, small cells are low cost solutions, a huge number of installed small cells can

significantly increase the total cost. Therefore, the number of small cells is an issue

that still needs to be carefully planned.

3.8 Summary

HetNets have gained significant attention due to their unique characteristics.

Many studies are currently conducted to utilize this new concept more efficiently in

4G and 5G NGWNs. Due to the size and cost constraints on placing a new MBS in
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the existing cellular networks, it is wise to use low cost and highly spectrally efficient

WiFi and D2D enabled links supported small cells. One of the main objectives of

HetNets is to help reduce the traffic load in the existing MBSs. Therefore, this study

investigated the effect of daily heterogeneous traffic profile and exploited it in the

PL based TO strategy where variously sized small cells are spread over the macrocell

homogeneously. It is shown that changes in traffic load profiles and probability of

having an active mobile user lead to changes in the number of active smallcells,

as expected. It is also demonstrated that the heterogeneous nature of the traffic–

type is also an important and useful parameter to spread the congested traffic over

various types of technologies such as SBSs, WiFi APs and D2D enabled links. Delay

tolerant applications can use WiFi APs and D2D enabled links where voice/text

service can go through SBSs. This will not only reduce the over-the-air traffic but

also truncate the wired backhaul bottleneck problem with the integration of WiFi and

D2D communication technologies. In order to illustrate the improvements, the SIR

based offloading is compared with the PL based method. It is shown that substantial

offloading improvements can be achieved with the hybrid TO strategy, which allows

for a reduction in the congested macrocell traffic. If the radius of the small cell is

shorter than that of the macrocell, then PL based offloading will most likely provide

higher offloading percentages than SIR based offloading in terms of transferring the

congested traffic. This reduces the over-the-air signaling, operational and capital

expenditures, and increases the spectral efficiency, data rates and coverage.
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4. JOINT USER ASSIGNMENT AND BANDWIDTH ALLOCATION IN

HETEROGENEOUS WIRELESS NETWORKS

4.1 Introduction

Besides considering traffic offloading and various traffic profiles, the bandwidth

resource allocation should be investigated among the offloaded mobile users. In

HetNets, researchers mainly assume that a MT connects to all existing networks

in a multi-homing fashion. However, this vision overlooks the fact that the MT is

equipped with only a limited number of radio interfaces for each network type, i.e.,

one cellular and one WiFi interface. Hence, the MT has to select one cellular BS and

one WiFi AP from all the available ones to get its required bandwidth in a multi-

homing fashion. In order to account for the limited number of interfaces for MTs,

we formulate a joint user assignment and bandwidth allocation problem to support

MTs with multi-homing capabilities.

The contributions of this study are summarized below:

• The multi-homing radio resource allocation problem is formulated as a non-

convex MINLP [11,34,37,48,78,83,90] to jointly perform user network assign-

ment and bandwidth allocation for a set of MTs with multi-homing capabilities

within an overlapped coverage of WLAN APs and cellular BSs for best effort

service.

• We show that the multi-homing radio resource allocation problem can be con-

verted into a convex optimization problem after applying relaxation on the

binary user assignment variable and reparameterization of bandwidth variable.

A Lagrangian decomposition approach is proposed to solve the relaxed convex
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optimization problem by dividing the problem into four-sub-problems.

• We derive a lower bound and an upper bound for the optimal value of the

non-convex MINLP problem. A closed-form upper bound is derived using a

modified Lagrange duality method. However, the relaxed convex optimization

problem does not necessarily provide a binary solution and therefore, the re-

laxed convex problem cannot perform the user assignment. In order to ensure

the binary assignment, we propose a heuristic method. We first assign the

users and then allocate the bandwidth based on the selected user assignment.

Using such an approach, a lower bound is derived. Furthermore, it is also illus-

trated that under certain conditions, the lower-bound coincides with the upper

bound and thus it achieves the optimal value of the MINLP. In this way, the

computational complexity is dramatically reduced.

• The General Algebraic Modeling System (GAMS)/Branch–And–Reduce Opti-

mization Navigator (BARON) software is utilized to compare the results of the

proposed heuristic algorithm [72]. The GAMS/BARON is a commercially avail-

able software and it incorporates the branch and bound method and exhibits

global optimality while also utilizing the reduction tests. However, complexity

and time consumption of GAMS/BARON increase dramatically when we con-

sider a system with a large number of networks and MTs that compete on the

available bandwidth of different networks.

4.1.1 Organization

The remainder of this chapter is structured as follows. The system model is

presented in Section 4.2. The multi-homing radio resource allocation problem is

formulated and solved in Section 4.3. Numerical results and discussions are given in

Section 4.4. Finally, conclusions are drawn in Section 4.5.
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4.2 System Model

We consider a HetNet where a combination of WLAN APs and cellular BSs

present an overlapped coverage as depicted in Fig. 4.1. The network sets corre-

sponding to WLAN APs and cellular BSs are denoted by N1 = {1, 2, · · · , N1} and

N2 = {N1 + 1, · · · , N1 + N2}, respectively. The total network set is denoted by

N = N1 ∪ N2, where N1 ∩ N2 = ∅. The set of MTs located within this HetNet

is denoted by M = {1, 2, · · · ,M}. Each MT is equipped with WiFi and cellular

interfaces. The set of interfaces is denoted by R = R1∪R2, where R1 and R2 repre-

sent the WiFi and cellular interfaces, respectively, and R1 ∩R2 = ∅. The allocated

bandwidth from network n ∈ N to radio interface r ∈ R of m ∈ M MT is denoted

by bnmr. Even though some of smartphones with dual sim card present more than

one cellular radio interface, these interfaces cannot be used simultaneously for two

different calls. Therefore, we assume that the MT can have multiple interfaces of

the same type, but the MT can only utilize one interface of the same type at a given

moment of time. Hence, the MT can utilize one radio interface from R1 and one

radio interface from R2 and aggregate the offered bandwidth from these two radio

interfaces to support its ongoing call. The binary user assignment variable is defined

by xnmr.

4.3 Problem Formulation

In this section, the multi-homing resource allocation problem is formulated. We

adopt a utility function perspective in order to account for the proportional fairness

among users [46,74]. Let unmr (bnmr) denote the utility function of network n allocat-

ing bandwidth bnmr to r ∈ R of m ∈ M. Then, the utility function can be defined

as:
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Figure 4.1: Cellular networks and WLAN APs overlapped coverage.

unmr (bnmr) = xnmr ln (1 + ηbnmr) , (4.1)

where η is used for scalability of bnmr and xnmr ∈ {0, 1} stands for the binary user

assignment variable for interface r ∈ R of MT m ∈M to network n ∈ N .

The overall resource allocation objective of all the networks resumes to finding

the optimum allocation bnmr, ∀n ∈ N , ∀m ∈ M, ∀r ∈ R that maximizes the total

utility in the region, expressed as
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U =
∑
n∈N

∑
m∈M

∑
r∈R

unmr (bnmr) . (4.2)

For each network n, the allocated resources should be such that the total load in its

coverage area is within the network capacity limitation Zn, i.e.,

∑
m∈M

∑
r∈R

xnmrbnmr ≤ Zn, ∀n ∈ N . (4.3)

The bandwidth resource allocation problem is formulated under the assumption

of proportional fairness in the overlapped WLAN APs and cellular BSs. Using (4.1),

(4.3) and binary assignment variable, xnmr, the primary bandwidth resource alloca-

tion problem, (P1), can be expressed in the form of the following non-convex MINLP

max
b,x

∑
n∈N

∑
m∈M

∑
r∈R

xnmr ln(1 + ηbnmr) (P1)

s.t.
∑
m∈M

∑
r∈R

xnmrbnmr ≤ Zn, ∀n ∈ N (Cp1)

∑
n∈N1

∑
r∈R1

xnmr ≤ 1, m ∈M (Cp2)

∑
n∈N1

∑
r∈R2

xnmr = 0, m ∈M (Cp3)

∑
n∈N2

∑
r∈R2

xnmr ≤ 1, m ∈M (Cp4)

∑
n∈N2

∑
r∈R1

xnmr = 0, m ∈M (Cp5)

bnmr ≥ 0, m ∈M, n ∈ N , r ∈ R (Cp6)

xnmr ∈ {0, 1}, m ∈M, n ∈ N , r ∈ R (Cp7)

The objective function is given in (P1), the constraint (Cp1) ensures that the allocated
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resource cannot exceed the capacity limit, the constraints (Cp2) and (Cp3) guarantee

that a MT can only connect to WiFi networks using WiFi interfaces. Moreover,

the constraints (Cp4) and (Cp5) assure that a MT can only establish a connection

to the cellular BS using only its cellular interfaces. Furthermore, the constraint

(Cp6) secures that the allocated bandwidth is always a positive quantity, and (Cp7)

describes the binary nature of the assignment variable.

It can be seen that (P1) is a non-convex MINLP problem which involves both

binary variables, xnmr and real–valued positive bandwidth variables, bnmr. Due to

the computational complexity and mathematical intractability, MINLP is a Non–

deterministic Polynomial–time (NP)-hard problem [13, 56]. For instance, without

considering the number of interfaces, i.e., |N | = 2, |M| = 50 and |R| = 1, there

will be a total of 250 network and user assignments. In this study, a lower bound

and an upper bound are derived for the value of objective function (P1). Specifically,

the binary variable is relaxed such that the MINLP problem resumes to a convex

optimization formulation and a closed-form upper bound is derived using a modified

Lagrange duality method. However, the relaxed convex optimization problem does

not necessarily have a binary solution, and therefore, it might not be able to perform

the user assignment. Motivated by the modified Lagrange duality method, a heuristic

method is proposed to first assign the users and then allocate the bandwidth based on

the selected user assignment. In this way, a lower bound is derived in a closed-form.

Furthermore, it is also illustrated that under certain conditions, the lower-bound

coincides with the upper bound and thus it achieves the optimality of the MINLP.

4.3.1 Upper-bound: A Convex Relaxation Approach

In order to convert the problem (P1) into a convex optimization problem, we adopt

the binary relaxation approach [37]. The binary constraint xnmr ∈ {0, 1} is modified
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by allowing xnmr to take any fractional value in the interval [0, 1]. In addition, a new

variable wnmr = xnmrbnmr is introduced such that the relaxed optimization problem

resumes to

max
w,x

∑
n∈N

∑
m∈M

∑
r∈R

xnmr ln(1 + η
wnmr
xnmr

) (P2)

s.t.
∑
m∈M

∑
r∈R

wnmr ≤ Zn, ∀n ∈ N (Cr1)

Cp2 − Cp5, (Cr2)

wnmr ≥ 0, m ∈M, n ∈ N , r ∈ R (Cr3)

0 ≤ xnmr ≤ 1, m ∈M, n ∈ N , r ∈ R (Cr4)

It is illustrated in Appendix A that problem (P2) is a convex optimization problem.

In addition, it is easy to verify that there exists an interior point in the feasible

region. Thus, the Slater’s condition holds and the problem presents a zero duality

gap [14]. In this way, the optimal solution of problem (P2) can be derived using

the Lagrange duality method. However, such an optimal solution is not necessarily

binary, and it may not satisfy the binary constraint in problem (P1).

In the following context, the optimal objective value for the relaxed problem (P2),

which is denoted as V ∗U , is derived in a closed-form using a modified Lagrange duality

method. Consequently, if we denote the optimal objective value of (P1) as v∗, v∗U

presents an upper-bound for v∗, i.e., v∗ ≤ v∗U , since (P2) is optimized over a larger

constraint set.

The Lagrangian of problem (P2) can be expressed as
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L(w,x,λ) =
∑
n∈N

∑
m∈M

∑
r∈R

xnmr ln

(
1 + η

wnmr
xnmr

)

−
∑
n∈N

λn

(∑
m∈M

∑
r∈R

wnmr − Zn

)
, (4.4)

where λn ∈ R+ stands for the Lagrange multiplier associated with the network

bandwidth constraint, (Cr1). The dual function is therefore

g(λ) = max
w∈D1

L(w,x,λ)

s.t. Cr2 − Cr4,

(4.5)

where D1 denotes the feasible domain of constraint (Cr1). Since the problem is

convex with zero duality gap, the Karush–Kuhn–Tucker (KKT) condition holds [14].

Taking the derivative of L(x,w,λ) over w yields

wnmr =

(
1

λn
− 1

η

)+

xnmr, (4.6)

where it is assumed that λn 6= 0. If we assume 1
λn
− 1

η
< 0 (λn > η) for any

network n ∈ N , then wnmr = 0,∀m ∈ M, r ∈ R, n ∈ N , which does not meet the

complementary slackness requirement

λn

(∑
m∈M

∑
r∈R

wnmr − Zn

)
= 0,∀n ∈ N . (4.7)

Therefore, it can be seen that 0 < λn ≤ η, ∀n ∈ N and the relationship (4.6)

between wnmr and xnmr can be simplified to
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wnmr =

(
1

λn
− 1

η

)
xnmr. (4.8)

Plugging (4.8) into (4.5) leads to

g(λ) = max
x

∑
n∈N

∑
m∈M

∑
r∈R

xnmrA(λn) +
∑
n∈N

λnZn

s.t. Cr2, Cr4,

(4.9)

where A(λn) = λn/η−lnλn+ln η−1. It can be verified that A(λn) is a monotonically

decreasing function over λn ∈ (0, η] with limλn→0A(λn) = ∞ and A(η) = 0. Thus,

A(λn) ≥ 0,∀λn ∈ (0, η].

The problem above can be decomposed into four sub–problems∗

max
x

∑
n∈N1

∑
m∈M

∑
r∈R1

xnmrA(λn)

s.t.
∑
n∈N1

∑
r∈R1

xnmr ≤ 1, m ∈M

0 ≤ xnmr ≤ 1, ∀n ∈ N1,m ∈M, r ∈ R1.

(P3)

max
x

∑
n∈N1

∑
m∈M

∑
r∈R2

xnmrA(λn)

s.t.
∑
n∈N1

∑
r∈R2

xnmr = 0, m ∈M

0 ≤ xnmr ≤ 1, ∀n ∈ N1,m ∈M, r ∈ R2.

(P4)

∗ ∑
n∈N

λnZn is neglected since it is optimized over x
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max
x

∑
n∈N2

∑
m∈M

∑
r∈R1

xnmrA(λn)

s.t.
∑
n∈N2

∑
r∈R1

xnmr = 0, m ∈M

0 ≤ xnmr ≤ 1, ∀n ∈ N2,m ∈M, r ∈ R1.

(P5)

max
x

∑
n∈N2

∑
m∈M

∑
r∈R2

xnmrA(λn)

s.t.
∑
n∈N2

∑
r∈R2

xnmr ≤ 1, m ∈M

0 ≤ xnmr ≤ 1, ∀n ∈ N2,m ∈M, r ∈ R2.

(P6)

It is observed that the only feasible solution for problems (P4) and (P5) is all

zeros. Therefore, only (P3) and (P6) need to be solved in this case.

Towards this end, we assume that N1 WiFi networks and N2 cellular networks

are available. Moreover, for the sake of brevity, a new variable snm is defined as

snm =
∑
r∈R1

xnmr, n ∈ N1. Thus, problem (P3) resumes to

max
∑
n∈N1

A(λn)

(∑
m∈M

snm

)
(4.10)

s.t.
∑
n∈N1

snm ≤ 1, m ∈M (4.11)

0 ≤ snm ≤ 1, ∀n ∈ N1,m ∈M

In order to obtain a better understanding of this optimization problem, matrix

S = [snm] is introduced as follows:
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S =



s11 s12 · · · s1M

s21 s22 · · · s2M

...
...

. . .
...

sN11 sN12 · · · sN1M


. (4.12)

In this way, the constraint (4.11) can be interpreted as: the summation of all

elements in each column is less than 1. Also, the term associated with A(λn) in

(4.10), i.e.,
∑M

m=1 snm, can be interpreted as the summation of all elements in nth

row. It is observed that the maximum of the objective function (4.10) depends on

the value of λn. However, it is proved in Appendix B that all λn are equal, i.e.,

λ1 = · · · = λN1 . (4.13)

Based on (4.13), the objective function (4.10) is reduced to:

∑
n∈N1

A(λn)

(∑
m∈M

snm

)
= A(λ1)

∑
m∈M

(∑
n∈N1

snm

)
.

It turns out that it is maximized when

∑
n∈N1

snm = 1, m ∈M, (4.14)

and it admits the optimal value MA(λ1).

Defining hnm =
∑
r∈R2

xnmr, n ∈ N2 and following similar steps yield the optimality

condition for problem (P6):

∑
n∈N2

hnm = 1, m ∈M. (4.15)

Similarly, the optimal value is expressed as MA(λN1+1), where
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λN1+1 = · · · = λN1+N2 . (4.16)

Combining these results, the dual function g(λ) is expressed as:

g(λ) = MA(λ1) +MA(λN1+1) + λ1Zw + λN1+1Zc,

where

Zw =

N1∑
i=1

Zi (4.17)

Zc =

N1+N2∑
j=N1+1

Zj. (4.18)

Equations (4.17) and (4.18) express the total bandwidth assigned by the WiFi and

cellular networks, respectively. It is also assumed that the same type of networks

have the same bandwidth capacity Z1 = Z2 = · · · = ZN1 and ZN1+1 = ZN1+2 =

· · · = ZN1+N2 , e.g., the situation where each WiFi network assumes 11 Mbps and

each cellular network admits 2 Mbps [43]. The dual problem resumes to minimize

g(λ) with respect to λ

min
λ

MA(λ1) +MA(λN1+1) + λ1Zw + λN1+1Zc

s.t. 0 < λ1 ≤ η, 0 < λN1+1 ≤ η.

(4.19)

The dual problem (4.19) is a convex optimization problem and achieves the closed-

form solution:
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λ∗1 = · · · = λ∗N1
=

Mη

M + ηZw

,

λ∗N1+1 = · · · = λ∗N1+N2
=

Mη

M + ηZc

.

(4.20)

In this case, since problem (P2) presents a zero duality gap, it follows that

v∗U = MA(λ∗1) +MA(λ∗N1+1) + λ∗1Zw + λ∗N1+1Zc, (4.21)

where λ∗1 and λ∗N1+1 are given in (4.20). Moreover, v∗U represents an upper-bound for

the original MINLP problem, i.e., v∗ ≤ v∗U .

The optimal primal points x∗ are chosen such that conditions (4.14) and (4.15)

are met. In terms of x, they are expressed as

∑
n∈N1

∑
r∈R1

x∗nmr = 1, m ∈M,

∑
n∈N2

∑
r∈R2

x∗nmr = 1, m ∈M.

(4.22)

In the meantime, all the variables associated with (P4) and (P5) are zeros. Moreover,

since w is expressed in terms of x in (4.6), the constraint associated with variable

w, (Cr1), also needs to be checked

∑
m∈M

∑
r∈R

wnmr = Zn, ∀n ∈ N , (4.23)

where the equality is achieved due to the complementary slackness in (4.7). Specifi-

cally, the optimal points w∗ can be expressed as
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w∗nmr =

(
1

λ∗n
− 1

η

)
x∗nmr =

 Zwx
∗
nmr/M, n ∈ N1

Zcx
∗
nmr/M, n ∈ N2

(4.24)

and (4.23) resumes to

∑
m∈M

∑
r∈R1

x∗nmr =
MZn
Zw

=
M

N1

, n ∈ N1

∑
m∈M

∑
r∈R2

x∗nmr =
MZn
Zc

=
M

N2

, n ∈ N2.

(4.25)

In a more compact form, (4.22) and (4.25) can be considered in terms of s∗nm and

h∗nm such that the optimality conditions for problem (P2) can be depicted in a two-

dimensional space as follows

∑
n∈N1

s∗nm = 1, m ∈M (4.26)∑
n∈N2

h∗nm = 1, m ∈M (4.27)

∑
m∈M

s∗nm =
MZn
Zw

=
M

N1

, n ∈ N1, (4.28)

∑
m∈M

h∗nm =
MZn
Zc

=
M

N2

, n ∈ N2, (4.29)

where 0 ≤ snm ≤ 1 and 0 ≤ hnm ≤ 1.

4.3.2 Lower-bound: A Heuristic Method

If a binary snm and hnm satisfying the above constraints can be found, then any

xnmr with snm =
∑
r∈R1

xnmr, n ∈ N1 and hnm =
∑
r∈R2

xnmr, n ∈ N2 (the rest x are all

zeros) is an optimal solution for the original MINLP problem (P1). This argument

can be proved in two steps: first, such an x satisfies the optimality conditions (4.26)
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- (4.29) for problem (P2) and thus achieves a larger objective value than v∗; second,

such an x is a feasible solution for problem (P1) and consequently achieves a lower

objective value than v∗. In this way, the argument is proved and the corresponding

optimal w is given by (4.24).

Combining (4.26) with (4.28) and (4.27) with (4.29), the problem whether a

binary optimal solution exists can be interpreted as two matrix assignment problems:

(1) If a N1×M matrix S∗ with binary elements can be found such that the summation

of all elements in each column is 1 and the summation of all elements in each row

is M
N1

. (2) If a N2 ×M matrix H∗ with binary elements can be found such that the

summation of all elements in each column is 1 and the summation of all elements in

each row is M
N2

. However, it can be seen that generally such two matrices do not exist

and only fractional optimal solutions can be obtained from problem (P2). Therefore,

in this section, a heuristic method is proposed based on the optimality conditions

(4.26) - (4.29). Specifically, the proposed heuristic method first assigns users and

then optimizes the bandwidth based on the selected user assignments.

It can be seen that optimality conditions (4.26) and (4.27) are based on con-

straints (Cp2) and (Cp4), respectively, which states that every MT has to connect to

a WiFi/celluar network to maximize the total utility. In addition, conditions (4.28)

and (4.29) are derived from the bandwidth constraint (Cp1), which claims that the

bandwidth for each network has to be fully utilized to achieve a maximum utility

function. Motivated by this fact, we round the RHS of (4.28) and (4.29) to the
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largest integers not greater than them and relax (4.26) and (4.27) as follows

∑
n∈N1

s∗nm ≤ 1, m ∈M (4.30)∑
n∈N2

h∗nm ≤ 1, m ∈M (4.31)

∑
m∈M

s∗nm =

⌊
MZn
Zw

⌋
=

⌊
M

N1

⌋
, n ∈ N1, (4.32)

∑
m∈M

h∗nm =

⌊
MZn
Zc

⌋
=

⌊
M

N2

⌋
, n ∈ N2, . (4.33)

Then, any binary snm and hnm satisfying (4.30), (4.31), (4.32) and (4.33) is a feasible

solution for problem (P1). Equivalently, the binary snm and hnm are obtained by al-

ternatively finding two matrices S∗ and H∗ such that for each matrix, the summation

of all elements in each column is less than 1 and the summation of all elements in

each row is
⌊
M
N1

⌋
and

⌊
M
N2

⌋
, respectively. It is easy to verify that such two binary

matrices always exist. Specifically, we select S∗ and H∗ as follows:

S∗ =



1 · · · 1︸ ︷︷ ︸
L1

0 · · · 0︸ ︷︷ ︸
L1

· · · 0 · · · 0︸ ︷︷ ︸
L1

0 · · · 0︸ ︷︷ ︸
K1

0 · · · 0︸ ︷︷ ︸
L1

1 · · · 1︸ ︷︷ ︸
L1

· · · 0 · · · 0︸ ︷︷ ︸
L1

0 · · · 0︸ ︷︷ ︸
K1

...
...

. . .
...

...

0 · · · 0︸ ︷︷ ︸
L1

0 · · · 0︸ ︷︷ ︸
L1

· · · 1 · · · 1︸ ︷︷ ︸
L1

0 · · · 0︸ ︷︷ ︸
K1


︸ ︷︷ ︸

M



N1, (4.34)
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H∗ =



0 · · · 0︸ ︷︷ ︸
K2

0 · · · 0︸ ︷︷ ︸
L2

· · · 0 · · · 0︸ ︷︷ ︸
L2

1 · · · 1︸ ︷︷ ︸
L2

0 · · · 0︸ ︷︷ ︸
K2

0 · · · 0︸ ︷︷ ︸
L2

· · · 1 · · · 1︸ ︷︷ ︸
L2

0 · · · 0︸ ︷︷ ︸
L2

...
... . .

. ...
...

0 · · · 0︸ ︷︷ ︸
K2

1 · · · 1︸ ︷︷ ︸
L2

· · · 0 · · · 0︸ ︷︷ ︸
L2

0 · · · 0︸ ︷︷ ︸
L2


︸ ︷︷ ︸

M



N2 (4.35)

where L1 =
⌊
M
N1

⌋
, L2 =

⌊
M
N2

⌋
, and K1, K2 are the remainders of M

N1
and M

N2
, respec-

tively. In this selection, even though the last K1 users are not assigned any WiFi

bandwidth, they are compensated with the cellular bandwidth. Similarly, the first K2

users are not assigned any cellular bandwidth, they are compensated with the WiFi

bandwidth. Thus, the user assignment is made with respect to snm and hnm. Then,

the specific interface can be randomly picked such that s∗nm =
∑
r∈R1

x∗nmr, n ∈ N1 and

h∗nm =
∑
r∈R2

x∗nmr, n ∈ N2.

To this end, what remains is to allocate bandwidth based on the selected user

assignments. It can be obtained by solving the following convex optimization prob-

lem:

max
w

∑
n∈N

∑
m∈M

∑
r∈R

x∗nmr ln(1 + η
wnmr
x∗nmr

)

s.t.
∑
m∈M

∑
r∈R

wnmr ≤ Zn, n ∈ N

wnmr ≥ 0

x∗nmr = 1

where x∗nmr stands for the user assignments based on (4.34) and (4.35). It is easy to

verify that the above optimization problem is maximized when the bandwidth of each
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network is equally allocated for the assigned users. In a matrix form, it is represented

in (4.36) and (4.37) where W ∗
1 and W ∗

2 stand for the bandwidth allocation for WiFi

and cellular networks, respectively.

W ∗
1 =



Z1

L1

· · · Z1

L1︸ ︷︷ ︸
L1

0 · · · 0︸ ︷︷ ︸
L1

· · · 0 · · · 0︸ ︷︷ ︸
L1

0 · · · 0︸ ︷︷ ︸
K1

0 · · · 0︸ ︷︷ ︸
L1

Z1

L1

· · · Z1

L1︸ ︷︷ ︸
L1

· · · 0 · · · 0︸ ︷︷ ︸
L1

0 · · · 0︸ ︷︷ ︸
K1

...
...

. . .
...

...

0 · · · 0︸ ︷︷ ︸
L1

0 · · · 0︸ ︷︷ ︸
L1

· · · Z1

L1

· · · Z1

L1︸ ︷︷ ︸
L1

0 · · · 0︸ ︷︷ ︸
K1


︸ ︷︷ ︸

M



N1, (4.36)

W ∗
2 =



0 · · · 0︸ ︷︷ ︸
K2

0 · · · 0︸ ︷︷ ︸
L2

· · · 0 · · · 0︸ ︷︷ ︸
L2

ZN1+1

L2

· · · ZN1+1

L2︸ ︷︷ ︸
L2

0 · · · 0︸ ︷︷ ︸
K2

0 · · · 0︸ ︷︷ ︸
L2

· · · ZN1+1

L2

· · · ZN1+1

L2︸ ︷︷ ︸
L2

0 · · · 0︸ ︷︷ ︸
L2

...
... . .

. ...
...

0 · · · 0︸ ︷︷ ︸
K2

ZN1+1

L2

· · · ZN1+1

L2︸ ︷︷ ︸
L2

· · · 0 · · · 0︸ ︷︷ ︸
L2

0 · · · 0︸ ︷︷ ︸
L2


︸ ︷︷ ︸

M



N2

(4.37)

Therefore, using this heuristic method, the user is assigned based on the matri-

ces (4.34) and (4.35). In the mean time, the bandwidth is allocated according to
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the matrices (4.36) and (4.37). Additionally, a closed-form utility function value is

derived as a lower bound of the MINLP and it can be expressed as

v∗L = N1L1 ln

(
1 +

ηZw
L1

)
+N2L2 ln

(
1 +

ηZc
L2

)
. (4.38)

The difference between the original MINLP and the heuristic method is bounded by

v∗ − v∗L ≤ v∗U − v∗L. (4.39)

In this way, even though we are not able to get the difference between our heuristic

method and the MINLP analytically since v∗ is generally not tractable, an upper-

bound is obtained to measure how our heuristic method works.

As discussed earlier, if two matrices S∗ and H∗ can be found such that conditions

(4.26) - (4.29) are met, then the optimality of problem (P1) is achieved. This occurs

in our heuristic method when K1 = 0 and K2 = 0, or equivalently, the remainders of

M/N1 and M/N2 are zeros. In this case, our heuristic method is optimal based on the

user assignments (4.34), (4.35) and bandwidth allocations (4.36), (4.37). Further-

more, v∗L in (4.38) coincides with v∗U in (4.21) and thus achieves v∗ in a closed-form.

4.4 Numerical Results

In this section, our proposed method is validated via numerical simulations. In

particular, the heuristic solution is compared with the optimal solution yielded by

GAMS/BARON. The transmission capacity for each cellular BSs and WiFi APs are

2 Mbps and 11 Mbps, respectively [43, 53]. The number of MTs with multi–homing

capability has range between [10, 50] and η is chosen to be 1.

Fig. 4.2 shows the comparison of upper bound, (4.21), our proposed heuristic

method, (4.38) and global optimal solutions obtained by GAMS/BARON. It can be
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seen that the numerical results coincide very well with GAMS/BARON and provide

near optimal results. As discussed earlier, the upper bound is obtained by optimizing

over a larger feasible domain, which results in a slightly greater objective function

values over GAMS/BARON as shown in Fig. 4.2. On the other hand, the heuristic

method takes values less than GAMS/BARON since it is calculated by a feasible

solution of (P1).

It can be observed that when the number of each network type is a common

denominator for the number of MTs, the solution in (4.38) yields the optimal result.

This observation also coincides with our analytical result in Section 4.3. The main

reason behind this is that (4.34), (4.35), (4.36) and (4.37) assure that each user gets

connected to both cellular and WiFi network and enjoys the multi-homing capability.

Thus, it maximizes the objective function. Due to the nature of logarithmic function,

if the amount of already existing resources increase then this will increase the total

worth. Therefore, the objective function assumes larger values when the number of

MTs increases.

One interesting observation in Fig. 4.2a is that if we consider the two-network case

where N1 = 1 and N2 = 1. In this case, since both S∗ and H∗ have only one row, all

the elements of S∗ and H∗ are ones to ensure the condition that the summation of all

elements in each column is 1. Following this particular structure, for both matrices,

the requirements (4.28) and (4.29) for the summation of all elements in each row is

always met. Therefore, the validation of this special case is also confirmed in the

matrix interpretation. Basically, the remainders are always zero when N1 = N2 = 1.

Hence, by applying the modified Lagrange duality method, the relaxed problem (P2)

is ensured to have a binary optimal solution with the proposed heuristic method,

which is also globally optimal for the non-convex MINLP problem (P1).
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(a) |N1| = 1 and |N2| = 1.
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(b) |N1| = 2 and |N2| = 3.
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(c) |N1| = 3 and |N2| = 2.
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(d) |N1| = 2 and |N2| = 2.

Figure 4.2: Bounds on objective function compared with the optimal solution of
GAMS/BARON.

4.5 Summary

In this chapter, the joint user assignment and optimal bandwidth allocation prob-

lem for HetNets is investigated under the set-up where the MTs present multi–
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homing capability. In particular, the problem of maximizing the overall network

bandwidth capacity is considered. First, we formulate the primal problem as a

non-convex MINLP (P1) and transform it into a convex optimization problem (P2)

using a change of variables and the binary variable relaxation approach. Then, the

modified Lagrange duality method is adopted and the problem is decomposed into

four-subcomponents. It is shown that the optimal solutions of the relaxed convex op-

timization problem yields to the upper bound for the original non-convex MINLP and

the proposed heuristic method further provides a lower bound which also performs

near optimal solution of the original non-convex MINLP. In addition, the difference

between the original non-convex MINLP and the heuristic method is determined

analytically. The validity of the proposed method is confirmed by numerical results.
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5. LLOYD’S ALGORITHM APPROXIMATION FOR COVERAGE

PROBABILITY IN HETEROGENEOUS CELLULAR NETWORKS

5.1 Introduction

The previous chapters provided insight into the random and heterogeneous nature

of NGWNs which brings to attention the importance of coverage probability for each

mobile user. Due to the highly dynamic nature of HetNets, BSs are deployed neither

totally random nor totally deterministic. Therefore, in this chapter, we investigate

the coverage probability for traditional hexagonal BS deployments and random BS

deployments. The main contributions of this chapter are summarized as follows.

• We propose a semi-analytical strategy by adopting the Lloyd’s algorithm to

account for the scenarios that lie between the pessimistic random PPP-based

deployment and the optimistic structural BS deployment.

• We derive the link distance distribution for each iteration of Lloyd’s algorithm

by using the EM algorithm. It is shown that the link distance can be approxi-

mated well by a mixture of Weibull distributions.

• By integrating the link distance distribution into the PPP analysis, we provide

a coverage probability analysis.

5.1.1 Organization

The rest of the chapter is organized as follows. The Lloyd’s algorithm is described

in Section 5.2. The analysis of link distance distribution is given in Section 5.3. Sec-

tion 5.4 presents the coverage probability study. The numerical results are presented

in Section 5.5. The concluding remarks are provided in Section 5.6.
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5.2 Lloyd’s Algorithm Approach

A two–dimensional (2D) Voronoi diagram is a tessellation in which each poly-

gon depicts the set of points nearest to a central generator point. Voronoi diagrams

present diverse applications in many fields such as wireless communications, astron-

omy, archaeology, physics, mathematics, and coding [64, 85]. Lloyd’s algorithm in-

crementally moves the generator of each polygon to the centroid of that polygon and

maximizes the distance between adjacent generators [52]. The maximization pro-

cedure creates repulsion between adjacent generators until the generators establish

a fixed state such as centroidal Voronoi tessellation (CVT). The resultant Voronoi

diagram gives a structural geometry asymptotically, depending on how many itera-

tion steps are used [59]. In this study, we initialize the tessellation of BSs based on

a PPP. While the initial geometry captures the randomness of BS deployment, the

asymptotic Voronoi diagram with Lloyd’s algorithm yields a structural BS deploy-

ment. Each iteration of the Lloyd’s algorithm represents an intermediate deployment

scenario between the random and structural BS deployments, which motivates us to

adopt Lloyd’s algorithm for modeling BS deployment. A demonstration of iteration

steps {0, 9, 490} is illustrated in Fig. 5.1. In order to exploit Lloyd’s algorithm

for modeling BS deployment, the analytical expression of link distance distribution

at each iteration of Lloyd’s algorithm is required. To the best of our knowledge,

the link distance distribution is not available in the literature, and an approximate

distribution is derived in the next section by exploiting the EM algorithm.

5.3 Link Distance Distribution Analysis

Consider a snapshot of a wireless network that covers an area A. The users

are distributed uniformly in the area. Each user is associated with the closest BS,

i.e., the users in a polygon generated with Voronoi tesselation are connected to the
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(a) Iteration 0.
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(b) Iteration 9.
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(c) Iteration 490.

Figure 5.1: Illustration of transition from random BS deployment to structural BS
deployment with the Lloyd’s algorithm.

corresponding generator of that polygon. The link distance between a user and its

associated BS is denoted by r. As an initial stage of the Lloyd’s algorithm, we

consider a random BS deployment where BSs are spatially distributed in the area as

a realization of a homogeneous 2D PPP Φ with intensity λ. The probability density

function (PDF) of link distance is equivalent to the null probability for the PPP [2]
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and is given by

fr(r) =
dFr (r)

dr
=

d

dr
(1− P [r > R])

= e−λπr
2

2λπr, (5.1)

which corresponds to a Rayleigh distribution with variance 1/2λπ. On the other

hand, considering the case of hexagonal tessellation, the PDF of link distance is

given by [7]

fr(r) =


πr√
3R2 , 0 ≤ r ≤ R.

2
√

3r
R2

[
π
6
− cos−1

(
R
r

)]
, R ≤ r ≤ 2R

√
3

3
.

0, r ≥ 2R
√

3
3
.

(5.2)

The transition from (5.1) to (5.2) via Lloyd’s algorithm can be approximated as

a mixture of Weibull distributions by employing the EM algorithm. A mixture of

Weibull distributions can be expressed as

fr(r) =
l∑

j=1

φj

(
ϕj
δj

(
r

δj

)ϕj−1

e

(
− r
δj

)ϕj)
, (5.3)

where φj is the weight of jth component and
∑l

j=1 φj = 1, δj and ϕj are the scale

parameter and the shape parameter, respectively, and l is the number of Weibull

distributions. In order to consider various BS intensities, we define δj to be ψj
√
λ0/λ,

where λ0 is a constant and ψj is the scale parameter when λ = λ0. The main reasons

for using a mixture of Weibull distributions are: (i) Rayleigh distribution is a special

case of a Weibull distribution if the Weibull parameters are properly selected, (ii) The

support of Weibull distribution is [0,∞], and (iii) Weibull distribution can provide

negative and positive skewness, a feature required in the transitions from (5.1) to

(5.2). Next, we discuss the calculations of parameters φj, δj and ϕj with the EM
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algorithm.

5.3.1 EM Algorithm for Link Distance Distribution

We have a training set r = {r(1), r(2), · · · , r(m)} consisting of m independent

observations generated by considering each iteration step of Lloyd’s algorithm. Our

goal is to fit the Weibull parameters to the link distance distribution by utilizing the

EM algorithm. The EM algorithm consists of two steps, namely, the expectation (E)-

step and the maximization (M)-step. The reader is referred to [22] for more detailed

explanations about the EM algorithm.

The complete log-likelihood is defined as

L(wj, θ) =
m∑
i=1

l∑
j=1

w
(i)
j log

[
ϕj
δj

(
ri
δj

)ϕj−1

exp(−r
ϕj
i

δ
ϕj
j

)φj

]
, (5.4)

where θ = {ϕj, δj, φj} and w
(i)
j = p(z(i) = j|r(i); θ) denotes the posterior probabilities

associated with the hidden label information z(i). The steps of the EM algorithm

are:

• E-step: Choose wj to maximize L(wj, θ)

wtj = arg max
wj

L(wj, θ
t).

• M-step: Choose θ to maximize L(wj, θ)

θt+1 = arg max
θ

L(wtj, θ).

Maximizing (5.4) with respect to the parameters ϕj and δj, we obtain (5.5) and (5.6),

respectively

∇ϕL(wj, θ) =
m∑
i=1

l∑
j=1

w
(i)
j

(
1

ϕj
+

(
1−

(
ri
δj

)ϕj)
log(

ri
δj

)

)
, (5.5)
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Table 5.1: Numerical Values of φj, ϕj and δj as outputs of EM algorithm.

Iteration
φj ϕj δj

Iteration
φj ϕj δj

φ1 φ2 φ3 ϕ1 ϕ2 ϕ3 δ1 δ2 δ3 φ1 φ2 φ3 ϕ1 ϕ2 ϕ3 δ1 δ2 δ3

0 0.3333 0.3333 0.3333 2.0063 2.0164 2.0265 0.5622 0.5616 0.5609 15 0.3244 0.3309 0.3448 1.8793 2.5936 3.0010 0.4128 0.5018 0.4942

1 0.3332 0.3333 0.3334 2.0301 2.0401 2.0501 0.5512 0.5501 0.5489 16 0.3225 0.3312 0.3463 1.8688 2.6446 3.0642 0.4041 0.5046 0.4919

2 0.3331 0.3333 0.3336 2.0523 2.0648 2.0774 0.5412 0.5396 0.5381 17 0.3202 0.3317 0.3481 1.8568 2.7016 3.1238 0.3958 0.5074 0.4896

3 0.3330 0.3333 0.3337 2.0724 2.0912 2.1100 0.5323 0.5303 0.5284 18 0.3167 0.3329 0.3504 1.8400 2.7655 3.1746 0.3878 0.5101 0.4870

4 0.3328 0.3333 0.3339 2.0968 2.1222 2.1476 0.5248 0.5221 0.5196 19 0.3123 0.3347 0.3531 1.8281 2.8267 3.2104 0.3806 0.5123 0.4842

5 0.3325 0.3333 0.3342 2.1132 2.1503 2.1868 0.5180 0.5147 0.5115 20 0.3090 0.3361 0.3549 1.8359 2.8762 3.2334 0.3746 0.5141 0.4820

6 0.3322 0.3332 0.3346 2.1240 2.1786 2.2318 0.5116 0.5079 0.5045 21 0.3066 0.3371 0.3562 1.8423 2.9249 3.2567 0.3692 0.5154 0.4804

7 0.3318 0.3332 0.3350 2.1284 2.2078 2.2846 0.5053 0.5020 0.4987 22 0.3042 0.3381 0.3577 1.8420 2.9746 3.2803 0.3643 0.5159 0.4790

8 0.3313 0.3331 0.3356 2.1226 2.2378 2.3463 0.4983 0.4970 0.4946 23 0.3028 0.3385 0.3586 1.8523 3.0160 3.3000 0.3602 0.5161 0.4782

9 0.3308 0.3329 0.3363 2.1057 2.2693 2.4201 0.4898 0.4930 0.4926 24 0.3028 0.3383 0.3589 1.8660 3.0553 3.3212 0.3566 0.5160 0.4779

10 0.3305 0.3324 0.3371 2.0603 2.3067 2.5223 0.4781 0.4904 0.4933 25 0.3034 0.3377 0.3589 1.8766 3.0959 3.3469 0.3534 0.5156 0.4780

11 0.3301 0.3316 0.3383 1.9929 2.3615 2.6521 0.4627 0.4904 0.4962 26 0.3042 0.3370 0.3588 1.8829 3.1359 3.3732 0.3505 0.5150 0.4782

12 0.3292 0.3307 0.3401 1.9248 2.4367 2.7822 0.4458 0.4929 0.4986 27 0.3048 0.3363 0.3589 1.8848 3.1749 3.3987 0.3481 0.5142 0.4785

13 0.3277 0.3305 0.3418 1.8934 2.5004 2.8724 0.4323 0.4962 0.4984 28 0.3051 0.3357 0.3591 1.8850 3.2120 3.4205 0.3460 0.5132 0.4786

14 0.3260 0.3306 0.3434 1.8822 2.5503 2.9402 0.4217 0.4991 0.4964 29 0.3054 0.3352 0.3594 1.8872 3.2478 3.4406 0.3442 0.5122 0.4788

∇δL(wj, θ) =
m∑
i=1

l∑
j=1

w
(i)
j

(
−ϕj
δj

+
ϕj
δj

(
ri
δj

)ϕj)
. (5.6)

In order to maximize (5.4) with respect to φj when
∑l

j=1 φj = 1, the Lagrangian

function is constructed as

Λ(φj) =
m∑
i=1

l∑
j=1

w
(i)
j log φj + h

(
l∑

j=1

φj − 1

)
, (5.7)

where h stands for a Lagrange multiplier. After taking the derivative of (5.7) with

respect to φj and equating it to zero, we obtain:

φj =
1

m

m∑
i=1

w
(i)
j . (5.8)

An iterative method such as Limited Broyden-Fletcher-Goldfarb-Shanno (L-BGFS)

can be applied to obtain ϕj and δj [63] due to the fact that ϕj and δj in (5.5) and

(5.6) do not have explicit forms.
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5.4 Coverage Probability

Probability of coverage is the ratio of the network area where signal-to-interference-

noise ratio (SINR) is greater than a certain threshold T to the total area. It can be

defined as

pc (T, λ, γ)
4
= P [SINR > T ] = P

[
hr−γ

σ2 + Ir
> T

]
, (5.9)

where γ ≥ 2 is the path loss exponent, h denotes the channel gain between tagged BS

and its user, and σ2 is the noise power. Variable Ir stands for the total interference

power received from the neighboring BSs and is given by

Ir =
∑

n∈Φ/bo

gnR
−γ
n , (5.10)

where bo is the tagged BS, gn and Rn are the channel gain and the distance between

the nth interfering BS and the tagged user, respectively. Assuming that the channel

gains are characterized with i.i.d. exponential distributions where E[h] = E[gn] = µ,

(5.9) is expressed as

pc (T, λ, γ) = Er [P [SINR > T |r]]

=

∫
r>0

P
[
hr−γ

σ2 + Ir
> T |r

]
fr(r)dr

=

∫
r>0

e−µTr
γσ2

LIr (µTrγ) fr(r)dr, (5.11)

where LIr (·) is the Laplace transform of Ir and is given by

LIr (µTrγ) = EIr
[
e−µTr

γIr
]

= EΦ,gn

[
e−µTr

γ
∑
n∈Φ\b0

gnR
−γ
n

]
. (5.12)
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Due to the independence of fading coefficients, (5.12) can be re-written as

LIr (µTrγ) = EΦ

 ∏
n∈Φ\b0

Eg[exp
(
−µTrγgR−γn

)
]

 . (5.13)

By considering the properties of probability generating functional (PGFL) [2,17, ch.4,

p.126], (5.13) can be expressed as

LIr (s) = exp

(
−2πλ

(∫ ∞
r

(
1− Eg[exp(−sgk−γ)]

)
kdk

))
,

= exp

(
−2πλ

∫ ∞
0

(∫ ∞
r

(
1− e−sk−γg

)
kdk

)
f(g)d(g)

)
. (5.14)

Plugging (5.3) and (5.14) into (5.11), and using the substitution rϕ = u, the coverage

probability is expressed as

pc (T, λ, γ) (5.15)

=
l∑

j=1

φj
ϕj

∫ ∞
0

e
λπu

ϕj
2
j (1−β(T,γ))−µTu

ϕj
γ
j −

uj

δ
ϕj
j duj

 ,

where

β(T, γ) =
2(µT )

2
γ

γ
E
(
g

2
γ Γ

(
− 2

α
, gµT

)
− Γ

(
− 2

α
, 0

))

and Γ (c, b) stands for the incomplete Gamma function.

5.5 Numerical Results

In this section, we evaluate Lloyd’s algorithm approximation for coverage prob-

ability with computer simulations. BSs are arranged according to a homogeneous

PPP in a 300× 300 square meter area where λ = 1 unless other stated. We consider
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a 75 × 75 square meter in the middle of the total coverage area to eliminate the

boundary effect [2]. We consider a Rayleigh fading channel and set γ to be 4. The

parameters ϕj, δj, and φj are provided in TABLE 5.1 by using the EM algorithm

when l = 3, m = 104, and λ0 = λ = 1. It is worth emphasizing that a mixture of

three Weibull distributions is sufficient to characterize the link distance distribution.

The values in the TABLE 5.1 are employed in the calculation of coverage probability.

In Fig. 5.2, the link distance distribution is investigated when λ = 1 and λ = 0.25.

The mixture of Weibull distributions obtained via the EM algorithm agrees with the

results of Lloyd’s algorithm. Lloyd’s algorithm performs like a bridge between (5.1)

and (5.2). The radius of each Voronoi cell becomes evenly distributed as a result of

increase in the iteration values, therefore, fr(r) converges to (5.2). This is mainly

due the fact that the shape of Voronoi tessellation becomes more consistent as in the

case of hexagonal-like tessellations. In Fig. 5.3, the impact of Lloyd’s algorithm on

coverage probability is investigated. As seen in Fig. 5.3, Lloyd’s algorithm represents

the intermediate deployment scenarios between the pessimistic, i.e., random, and the

optimistic, i.e., structural, BS deployments. In Fig. 5.4, we compare the coverage

probability of the random PPP BS model, hexagonal BS model, and Lloyd’s approx-

imation. The tightness of the proposed method for coverage probability is illustrated

for different iterations of Lloyd’s algorithm, i.e., {0, 2, 9, 29}. If the iteration value

increases then the coverage probability for the proposed method tends to approach

the hexagonal BS tessellation. It is important to note that the analytical approxima-

tions lose the tractability of Lloyd’s algorithm at larger iteration values such as after

iteration number 9. The analytical approximation suffers from the fact that PGFL

assumption begins to fail. Nevertheless, the proposed approximation holds for low

SIRs.
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Figure 5.2: The transition from Rayleigh distribution to hexagonal distribution.

5.6 Summary

In this study, the impact of Lloyd’s algorithm on the coverage probability of wire-

less networks is investigated. The link distance distribution is modeled as a mixture

of Weibull distributions. Its parameters are derived based on the EM method at each

iteration of Lloyd’s algorithm. The numerical results show that if the Lloyd’s algo-

rithm is employed, the transitions between pessimistic PPP to optimistic hexagonal

deployment can be approximately modeled.
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6. CONCLUSIONS AND FUTURE DIRECTIONS

HetNets are a key solution to meet the increasing capacity demand from cellu-

lar networks. This had led to a new paradigm shift from MBS based networks to

combinations of MBS and low powered nodes such as femtocells, picocells, DAS and

D2D links. An expected effect of the increasing heterogeneity in NGWNs brought

many research areas into the picture such as user/cell association, traffic offloading,

radio resource allocation and coverage analysis. Some of these research problems

were addressed in this dissertation. Next, we summarize all the contributions in this

work as follows.

In Chapter 2, the number of active small cells is calculated based on different

probabilistic distribution models. This number if then used to evaluate the downlink

power consumption of HetNets.

In Chapter 3, the traffic offloading for a combination of MBS, SBS, WiFi and

D2D links is investigated. It is shown that the shorter transmission can lead to

greater traffic offloading with path loss based strategy. Different cellular networks

sizes and access schemes are incorporated into this analysis.

In Chapter 4, HetNets create many great opportunities that can improve the QoS

of the mobile users. Therefore, it is a must to develop new radio resource allocation

mechanisms. Therefore, the joint user/network assignment and bandwidth alloca-

tion problem is formulated as a MINLP to account for the MT’s limited number of

radio interfaces and the abundant wireless network options. MINLP problems are

intractable and computationally inefficient, thus, we transform the problem into a

convex optimization problem via a binary variable relaxation approach. The pro-

posed solution achieves a near optimal user assignment and bandwidth allocation at
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reduced computational complexity.

In Chapter 5, we proposed a baseline model to model the transition from tradi-

tional hexagonal models to randomly located HetNets. The BSs locations of each tier

are sampled from an independent homogeneous PPPs to account for randomness. In

order to provide a tractable mathematical analysis, the EM algorithm is employed to

model the link distance distribution. Furthermore, it is shown that Lloyd’s algorithm

may approximately model each step of the transition.

Some of the potential future research directions that require further investigation

are:

• Power Consumption: Investigation of the deployment of hybrid backhaul

technologies, CO2 emission analysis and the mobility behavior of active mobile

users and total mobile users where both categories of users adopt heterogeneous

mobility patterns. Another interesting research challenge related to this study

is the analysis of evolution in downlink power consumption and the number of

active SBSs from the perspective of multiple or K–tier HetNets.

• Resource Allocation: One research area that needs to be well investigated

is the context of green communications. This is motivated by the increasing

BS energy consumption which also affects the CO2 emissions.

– Investigation of the impact of energy efficiency of each MT and wireless

network. For instance, if MT utilizes both of the available interfaces at the

same time, then battery consumption might increase. Since the battery

consumption is one of the biggest concerns in the design of smart phones, a

practical resource allocation approach could be addressed in this set-up by

minimization of energy consumption while still maximizing the allocated

bandwidth.
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– Due to the increasing volume in the CO2 emissions in the information and

communication technology (ICT) industry, on/off strategy can be used to

minimize the power consumption. An on/off strategy can be modeled

via binary variables. This analysis could be carried out by minimizing

Blog(1+P
B

) while at the same time maximizing the multi–homing capacity.

This might also be combined with a cross layer optimization approach.

• Coverage Analysis: The advantage of the Lloyd’s algorithm approximation

compared to the Gibbs point process should be further investigated. The Gibbs

point process could be used to model the hard-core point process and the cluster

point process. The tractability of the Lloyd’s algorithm approximation should

be clarified. Mean interference-to-signal ratio (MISR) can also be incorporated

along with the SIR analyis [36, 50]. Another interesting research application

for the Lloyd’s algorithm may be in the aftermath of disaster areas. As a

futuristic approach, BSs can be placed on drones, i.e., autonomous planes.

BSs can yield coverage to areas such as disaster/public safety regions, rural

areas and downtown areas. We can also utilize such a strategy for the self

organized networks (SON) networks to decide the best coverage options for a

given area. All these applications can be part of the 5G and NGWN.
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APPENDIX A

In this appendix, it is proved that problem (P2) is a convex optimization problem.

The Hessian matrix of the function xnmr ln(1 + ηwnmr
xnmr

) is first calculated as follows

H =

 −
w2
nmr

(wnmrxnmr
+1)

2
x3
nmr

wnmr

(wnmrxnmr
+1)

2
x2
nmr

wnmr

(wnmrxnmr
+1)

2
x2
nmr

− 1

(wnmrxnmr
+1)

2
xnmr

 (A.1)

It is observed that the Hessian matrix (A.1) is positive semi-definite, which leads

to the fact that the function xnmr ln(1 + ηwnmr
xnmr

) is a concave function. Furthermore,

the objective function in (P2) is concave since the summation of concave functions is

also concave. Therefore, problem (P2) is a convex optimization problem due to the

fact that all the constraints are affine [14].
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APPENDIX B

In this appendix, it is proved that λ1 = · · · = λn. Assume not all λn, n =

1, · · · , N1 are equal to each other, then there exists a λk in this sequence such that

λk > λmin, where λmin = minn=1,··· ,N1 λn. Since A(λn) is a monotonically decreasing

function, it follows that A(λk) < A(λmin). Therefore, in order to maximize (4.10),

the kth row of S is assigned to be all zeros. In other words, if any positive value is

assigned to the row corresponding to A(λk), then that value can be added to the row

corresponding to A(λmin) which will yield a larger objective value. Consequently, it

follows that

skm = 0, m ∈M,

and moreover

xkmr = 0, m ∈M, r ∈ R1.

Due to (4.6),

wkmr = 0, m ∈M, r ∈ R1. (B.1)

It remains that

∑
m∈M

∑
r∈R

wkmr − Zk =
∑
m∈M

∑
r∈R1

wkmr

+
∑
m∈M

∑
r∈R2

wkmr − Zk = −Zk, (B.2)
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where the last equality follows from (B.1) and the fact that k ∈ N1 (the cellular

interface cannot connect to the WiFi network). Based on (4.7), λk = 0. Then,

the assumption that λk > λmin leads to λmin < 0, which is contradictory to the

nonnegativity property of the Lagrange multiplier λ. In addition, the argument that

λk = 0 also voids the assumption λn 6= 0 when deriving (4.6). This completes the

proof.
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