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ABSTRACT 

 

Magnetic bearings have been widely used in turbomachinery field due to their 

advantages from the non-contact mechanism and the absence of a lubrication 

requirement. This study focuses on modeling and predicting the rotordynamic and 

thermal performances of the nonlinear active magnetic bearing supported rotordynamic 

system with flexible rotor and flexible foundation effects, and then optimizing the design 

of the magnetic bearing actuator and the control law to achieve the multiple goals 

simultaneously. Nonlinearities, including the nonlinear magnetic bearing force with 

respect to the rotor displacement and the control current, the flux saturation, and the 

power amplifier current and voltage saturation, are analyzed to improve the prediction of 

the rotordynamic system. Two-dimensional finite element method is used to determine 

the temperature distribution on the actuator and predict the hot spot temperature during 

rotor steady state operations. A multiple-input multiple-output (MIMO) flexible support 

model effects on rotordynamic behavior of the system are addressed. Multiple system 

properties and performances, like the bearing actuator mass, the maximum vibration 

amplitude, the power loss, and the external static load, are set as goals to be optimized. 

Genetic algorithms, including Non-dominated Sorting Genetic Algorithm-II (NSGA-II) 

and Neighborhood Cultivation Genetic Algorithm (NCGA), are selected as the main 

optimization strategies due to their advantages in solving complicated optimization 

problems.  
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1. INTRODUCTION 

 

1.1 Overview 

This dissertation presents the optimization design of the active magnetic bearing 

(AMB) supported rotordynamic system. The first objective of the research is to improve 

the reliability of the prediction of the rotordynamic performances of the AMB supported 

system by including a flexible rotor, flexible foundation effects, and system 

nonlinearities. The second objective is to incorporate the thermal modeling and hot spot 

temperature prediction into the rotrodynamic analysis, to serve for the high temperature 

applications of the AMB supported system. The third objective is to optimize the design 

of this AMB supported system to achieve multiple system performance related goals 

simultaneously. Genetic Algorithm, an optimization algorithm inspired by the biological 

processes of genetics and evolution, is selected to simultaneously optimize the design 

objectives. Finite Element Method (FEM) is used to determine the thermal distribution 

on the actuator and find the hot spot temperature when the rotor is in steady state 

operation. The dynamic flexibility of the support is described by the Frequency 

Response Function Matrix (FRFM), and its effect on the rotordynamic behavior of the 

AMB supported system is studied. A two-controller strategy, which utilize a set of 

controller parameters at startup stage, and another set of controller parameters at the 

steady state operation of the rotor, is demonstrated to give a further optimized AMB 

supported system with smaller actuator mass and lower vibration amplitude without too 

much sacrifice in the power loss.   
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1.2 Contributions and Novelties 

The contributions and novelties of the research include: 

1) Nonlinear magnetic bearing analysis and simulation. While most of the current 

researches on magnetic bearing system use a linear model, which linearize the 

magnetic bearing force into a bearing displacement stiffness and a bearing 

current stiffness, our current study greatly improves the prediction of the 

magnetic bearing system rotordynamic performances by including the system 

nonlinearities. Firstly, the magnetic bearing force is nonlinear with respect to the 

rotor displacement and the control current, and the linearization of the force 

induces error into the accuracy of the prediction. Secondly, the magnetic bearing 

material is nonlinear, which means that the relationship between the magnetic 

flux density B and the magnetic field H is nonlinear and the maximum achievable 

magnetic flux intensity is limited. Thirdly, there are voltage and current limits on 

the power amplifier output voltage and current, which is called power amplifier 

voltage saturation and current saturation. Without considering the saturation from 

the amplifier, the control law might generate a control signal demanding a power 

amplifier voltage or current exceeding its limits, and the predicted magnetic 

bearing force cannot actually be achieved. Besides, the nonlinear catcher 

bearings, which are installed to prevent the unexpected contact between the rotor 

and the magnetic bearing stator in the cases of overload or magnetic bearing 

failure, induce another nonlinearity into the system. 
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2) Rotordynamic stability, harmonic response to unbalance, and transient analysis 

with the effects of the cross-coupled MIMO dynamic flexibility in the foundation. 

In this study, a state space representation form of the magnetic bearing support 

with dynamic flexibility is developed, and assembled with the equation of motion 

of the rotor, to predict the rotordynamic behavior under the effects of the 

flexibility of the support.    

3) Numerical analysis and optimization of the power losses of the bearing-rotor 

system in the dynamic process. Most of the power losses studies of the magnetic 

bearing system focus on heteropolar magnetic bearing system, calculating the 

iron loss caused by the bias current only, ignoring the control current induced 

iron loss. This study numerically determines the power loss of the AMB system, 

for both the heteropolar magnetic bearing actuators and the homopolar magnetic 

bearing actuators. Two dynamic process of the rotor, one of the levitation in 

which the rotor is lifted from an initial position, and the other of the rotor steady 

state operation with rotor unbalance induced force, are simulated. The study 

detects the flux intensity and the control current when the system is in the steady 

state operation, and then numerically determines the power losses of the AMB 

system from both the magnetic bearing stator and the spinning rotor. The 

obtained power loss is set one of the minimization objectives for the system 

optimization.   

4) The 2D thermal model is coupled into the spinning rotor, and the hot spot 

temperature can be detected to prevent the bearing from too high temperature. In 
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the steady state operation of the rotor, the thermal field of the actuator is 

determined numerically with the two dimensional finite element method (FEM). 

The highest temperature, which is called the hot spot temperature, is detected and 

set as a constraint of the designed system.    

5) The bandwidth limits of the electronics, including the sensors, controllers, power 

amplifiers and other compensators are taken into consideration. 

6) The optimization of the homopolar magnetic bearing actuator and the controller 

simultaneously is unique. Most of the current magnetic bearing system 

optimizations are plant based optimization, which focus on the optimization of 

the actuator parameters only. In this study, the closed loop, including the actuator 

and the controller, are optimized simultaneously. The optimization detects and 

tunes the controller of the system automatically. The optimization techniques 

solve the design problem of the homopolar magnetic bearings, which is one of 

the main challenges facing homopolar magnetic bearings due to their complex 

geometry. 

7) Numerically calculate the vibration amplitude and determine the stability margin 

of the AMB supported system according to the API617/ISO14839 standard. In 

ISO 14839, stability margin are experimentally determined without numerical 

analysis. In this study, open loop transfer function and sensitivity function of the 

system, including the rotor, the sensors, the controllers, the power amplifiers and 

the actuators can be numerically determined. The system stability margin can be 

determined and checked with the standards.  
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1.3 Present Status of Magnetic Bearing 

Magnetic bearings have various advantages over conventional bearings like fluid 

film bearing or rolling bearing. Its non-contact nature makes magnetic bearing has the 

minimal friction and wear, which allows magnetic bearings have higher efficiency and 

higher running speeds of the rotor. Since no lubrication is required in AMB system, 

there is no oil contamination. As a result, magnetic bearings can be used in harsh 

environment, including extremely high and low temperatures, vacuums, gravity free 

conditions, and subsea environments. High temperature magnetic bearings have been 

used on aircrafts, jet engines and drilling equipment, with a temperature limit up to 

538°C, while current roller bearings and squeeze dampers are limited to 260°C. Another 

difference between magnetic bearings and conventional bearings is that magnetic 

bearings are active controlled and have high static stiffness, which can provide precise 

control of the nominal shaft center.  

Due to these advantages, the use of magnetic bearings increases dramatically in a 

wide range of applications, for example, energy storage flywheels, turbo-molecular 

vacuum pumps, high speed milling machines, turbo expanders, oil free motors, aircraft 

gas turbine engines, and so on. For example, NASA Glenn Research Center has 

developed a high temperature, high load magnetic bearing system for aircraft engine, 

which can be operated under a temperature as high as 1000 degrees Fahrenheit. In the 

recent years, magnetic bearings attract further more attention for the successful 

application in the subsea area. The compressors and high speed motors of the Åsgard 

Subsea Gas Compression System, which is expected to start to operate in 2015, uses 
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magnetic bearing systems for their oil-free, frictionless, high efficiency, long service life 

and low maintenance properties in the remote conditions on the seabed floor. High-

performance, high-speed magnetic bearings have been applied to aerospace and defense 

applications where precision is vital and operating conditions challenging. For example, 

magnetic bearings are applied to neutron choppers, which operate in vacuum and speed 

up to 36,000 rpm.  

However, magnetic bearings have their limits. Here we listed the main concerns 

about magnetic bearings. 

1) Magnetic bearings load capacity and specific load are limited by the saturation in 

magnetic material. The best magnetic conducting medium (iron cobalt alloy) has 

a saturation flux intensity of about 2.3 Tesla.   

2) Control of many modes, even beyond the operating speed range, is required.  

3) Time, cost, and advanced knowledge of both mechanical engineering and 

electrical engineering are required for the magnetic bearing/ rotor and control 

system design. 

4) Catcher bearings have to be installed near the magnetic bearing to avoid 

unexpected contact between the rotor and the bearing stator in cases of overload 

or magnetic bearing failure from the controller or power supply.[1]  

Many of these challenges of magnetic bearings are in the design stage, so 

optimization is significant to design a compact, high efficient and reliable magnetic 

bearing system. 



 

7 

 

In the research of the nonlinear magnetic bearings, Chinta and Palazzolo[2] 

studied the nonlinear forced response with two methods: one using imbalance force, and 

the other using non-imbalance harmonic force. The periodic motions' local stability and 

bifurcation behavior are obtained by Floquet theory. Ahmed and Ouladsine [3] proposed 

a nonlinear model for magnetic levitation systems and validated with experimental 

measurements. A nonlinear control law based on differential geometry was synthesized 

with the model. Kang and Palazzolo [4] analyzed the nonlinear dynamics of a permanent 

magnet-biased homopolar magnetic bearing system with a flexible rotor. They proposed 

a modified Langmuir method with the correction terms for the weak flux region to form 

an analytical model of the experimental magnetization curve (BH curve) of Hiperco 50. 

The response of the rotor-bearing system showed that limit cycle stability can be 

achieved due to the magnetic flux saturation or current saturation in the amplifier.  

The genetic algorithms have been used in the optimization design of the 

heteropolar magnetic bearings. Carlson-Skalak and Maslen et al. [5] presented the single 

objective optimization design of HEMB actuator using genetic algorithms. The concept 

of catalog selection was used, which made the optimization more amenable to 

commercial design. Shelke et al. [6]used multi-objective genetic algorithms to optimize 

both the actuator weight and the copper power loss in the coil of the HEMB actuator. 

They included only the ohmic loss in the coil as the power loss and set it as one of the 

two optimization goals. Chang et al. [7] designed the HEMBs with minimum volume 

according to the static load, dynamic load and the equivalent stiffness with genetic 

algorithms. In the research of active magnetic bearing supported systems, genetic 
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algorithms have also been applied to optimize the control strategies of the systems. 

Schroder et al. [8] used the genetic algorithms to optimization the robust control strategy 

of the 5-axis controlled HEMBs supported rotordynamic system with both radial bearing 

and axial bearing. Chen and Chang et al. [9-11] optimized the PID controller of the 

HEMBs system. Jastrzębski et al. [12] discussed a closed-loop centralized optimal 

position control strategy for a multi-input multi-output HEMBs system. The controller 

parameters are optimized with genetic algorithms and the system performance was 

compared with the one controlled by the classical PID controller. However, these 

optimizations of the controllers did not address the design of the magnetic bearing 

actuator. Other than genetic algorithms, Hsiao et al. [13] used the goal programming as 

the search method and finite difference to calculate the objectives and constraints in the 

optimization design of the HEMB supported rotor-bearing system controlled with a PD 

controller.  

In the optimization design of HOMB, Lee et al. [14] studied the performance 

limits of the permanent magnet biased HOMB, including the maximum static bearing 

force, the force slew rate, and the displacement sensitivity. Fan et al. [15]proposed 

design procedures for a type of permanent magnet biased HOMB in the rotor-bearing 

system. However, the procedure simply searches for feasible solutions without 

minimizing any objective functions. Optimization of the HOMB design remains a 

novelty due to the complexity of the HOMB actuator construction, the additional flux 

circuit due to the permanent magnet bias flux and the more complex flux path of the 

electromagnetic induced flux relative to a HEMB design. 
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Various multi-objective genetic algorithms (MOGAs) techniques have been 

developed by previous researchers. The Non-dominated Sorting Genetic Algorithm-II 

(NSGA-II) optimization techniques by Deb et al. [16] have been applied to many 

different design problems and work as a standard that other algorithms are compared 

with. Strength Pareto Evolutionary Algorithm (SPEA) by Zitzler and Thiele [17] also 

received a lot of attention because of its simplicity and effectiveness. Neighborhood 

Cultivation Genetic Algorithms (NCGA) by Watanabe et al. [18], which are developed 

based on NSGA-II and demonstrated to have better solutions than NSGA-II, have also 

been widely used. Other than genetic algorithms, other multiple objective algorithms 

have also been developed, for example Multi-objective Particle 

Swarm Optimization (MOPSO) by Coello et al. [19], Multi-objective Simulated 

Annealing (MOSA) [20] , etc. MOPSO has been used to solve various optimization 

problems. However, other than the simplicity of programming, there is no significant of 

the MOPSO over genetic algorithms. If given enough time, genetic algorithms 

demonstrate better Pareto solutions than MOSA. But MOSA is faster than genetic 

algorithms in speed, so given the same time, MOSA gives better results.  

 

1.4 Practical Significance 

The standard rotordynamic code for magnetic bearing systems is linear based, 

which does not include saturation feature of the power amplifier, and there is no 

bandwidth limitation on the electronics. Besides, the linear magnetic bearing software 

does not have the model of the actuator. It uses the position stiffness and the current 
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stiffness to estimate the actuator generated magnetic force, while the magnetic bearing 

force is actually nonlinear with respect to the rotor displacement and control current. In 

this study, the full nonlinear analysis of the magnetic bearing supported system with 

flexible rotor and flexible support, considering saturation features of the system 

components (power amplifier and actuator), the bandwidth of the electronics, and with 

the modeling of the actuator, is conducted. The nonlinear analysis of the magnetic 

bearing- rotor system improves the prediction of system performance.  

The optimization design of the magnetic bearing system solved two of the main 

challenges of the magnetic bearings, one of the actuator design, and the other of the 

control system design. The design of the magnetic bearing system is very complicated, 

with the following considerations: 

1) The optimization involves large number of design variables, coming from both 

the actuator dimension parameters and controller gains.  

2) Several objectives are optimized simultaneously in a multi-objective 

optimization. Trade-offs among the objectives should be balanced. “Good” 

solutions need to be defined for all the objectives and selected from the pools.  

3) The constraints of the system should be taken carefully to avoid any physical 

confliction, to supply enough dynamic load capacity, to suppress excessive 

vibration, to prevent too high temperature, to satisfy the ISO/API standards, and 

a lot of others to consider to make the design really practical. Some of these 

constraints might be computationally expensive, especially in the optimization 

iteration. For example, the hot spot temperature as a constraint may involve a 
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thermal modeling of the system. The dynamic load capacity and vibration 

amplitude require a transient simulation of the rotor motion.    

4) The system matrix equation is complicated, which describes not only the motion 

of the rotor, but also the flexible support, the nonlinear actuator, and the 

electronics with finite bandwidth. The system matrix equation is nonlinear with 

large dimension.  

5) The initial solutions of the optimization might be mostly infeasible, since it is 

time consuming to find a set of feasible solutions as initial solutions to start the 

optimization. For this type of complicated optimization, randomly selected initial 

solutions from a range are an easy way to start the optimization. However, these 

randomly generated solutions are possibly infeasible, especially for nonlinear 

problems.   

All these make the optimization of the AMB system a complicated task, which 

requires complex numerical algorithms to solve.   
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2. SYSTEM COMPONENTS AND OPTIMIZATION ALGORITHMS 

 

The main components in a closed loop controlled AMB system include a rotor, 

sensors, controllers, power amplifiers, and magnetic bearing actuators. Figure 1 depicts a 

simplified closed loop of the system. A sensors measure the displacement of the rotor 

from its reference position; a PD controller receives the sensor signal, compares the 

signal to a desired sensor signal according to the target rotor position, calculates 

corrections required to return to the desired position, and derives a control signal 

accordingly; a power amplifier transforms this control signal into a control current; and 

the control current generates magnetic forces in the magnetic bearing actuator to suspend 

the rotor to the desired position. 

 

 

Figure 1  Simplified control loop and main components of the HOMB supported rotor 

system 

 

Two representative types of radial magnetic bearings, one of the heteropolar type 

and the other of the homopolar type, are introduced in this section. Simplified one 
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dimensional magnetic circuit, and the calculation and linearization of the magnetic 

bearing forces are presented. This section also talks about the modeling of the flexible 

rotor with the finite element method (FEM). Other system components, including the 

sensors, controllers, and power amplifiers, are introduced.  

 

2.1 Radial Magnetic Bearing Actuators 

Generally, radial magnetic bearings are classified into two groups based on the 

structural configurations: heteropolar magnetic bearings (HEMB) and homopolar 

magnetic bearings (HOMB). In the HEMB bearings, the magnetic poles alternate in 

polarity in the plane perpendicular to the rotor axis, while in the HOMB, all the poles in 

the given rotational plane have the same polarity, as shown in Figure 2 and Figure 3. In 

Figure 2 and Figure 3, a catcher bearing is installed as backup bearing next to the 

magnetic bearing. In the figures, gl is the air gap clearance of the magnetic bearing, rC is 

the catcher bearing clearance, N represents the north pole, and S represents the south 

pole.  
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Figure 2 Heteropolar active magnetic bearing with alternating poles 

 

 
Figure 3 Homopolar radial magnetic bearing actuator 

 

In general, the heteropolar magnetic bearings have the simpler structure and 

lower cost, thus are the most commonly used ones. Homopolar magnetic bearings have a 

much more complicated structure with two stators and in most cases permanent magnets, 

and thus are more expensive. However, the homopolar magnetic bearings have much 

lower power loss due to the configurations with less field variation around the 
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circumference of the rotor. [21] In vacuum applications, power loss is a major concern 

since there is no convection or conduction that all the heat on the rotor must be 

dissipated by radiation to the housing. As a result, homopolar magnetic bearings have 

been used for vacuum applications such as satellites.  

 

2.1.1 Homopolar radial magnetic bearing actuator 

HOMB bearings are mostly used with permanent magnets to supply bias flux. In 

this study, the permanent magnet biased 4 poles HOMB actuator and the magnified coils 

are displayed in Figure 4.  

 

 

(a)                                                                            (b) 

Figure 4  Homopolar radial magnetic bearing actuator (a) and the magnified coil 

geometry (b) 

 

Stator A is an active plane with coils on each of the 4 active poles, including pole 

1 in y-axis direction, pole 2 in z-axis direction, pole 3 in negative y-axis direction, and 
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pole 4 in negative z-axis direction. The y-axis control current cyi goes through the coils 

on pole 1 and pole 3, and the z-axis control current 
czi goes through the coils on pole 2 

and pole 4. Control currents on the stator A generate control flux that conducts radially. 

Stator B is a dead plane without coils, thus there is no control flux in the radial directions 

on stator B. There are also 4 poles on the stator B, including pole 5 in y-axis direction, 

pole 6 in z-axis direction, pole 7 in negative y-axis direction, and pole 8 in negative z-

axis direction. A back iron ring that conducts the bias flux axially is used. In the 

Cartesian coordinate system, the x-axis direction indicates the axial direction of the 

rotor, and the negative z-axis direction indicates the direction of the static load induced 

by weight. The radial magnetic bearings generate radial forces in y- and z- axis 

directions. The definitions of the variables in Figure 4 are as follows: gl - air gap length, 

ct -thickness of the coil, 
cl -radial length of the coil, 

cr -coil space radius,
sr  - radius of the 

stator,  rr -radius of the rotor, pr - pole tip radius, bit - thickness of the back iron, pw - 

width of the pole, 
mt -thickness of permanent magnet, 

rL - length of the rotor under  the 

magnetic bearing, pl - length of the pole along the rotor axis, 
aL - length of the gap 

between two stators.  The thickness of the coil is 

                                               tan( / ) / 2c p p pt r n w                                         (1) 

where pn is the number of poles on each of the stator. In this case, 4pn  . The length of 

rotor under the bearing 
rL is expressed by 

                                                    (2 ) / (1 )r p c aL l t                                              (2) 
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where 
a  is the ratio of the length of empty space to length of rotor under the bearing. In 

this model, 

                                                    / 0.1a a rL L                                                 (3) 

The equivalent electric circuit of the HOMB bearing is shown in Figure 5. The 

model is based on the following assumptions: 1) No flux leakage; 2) The permeability of 

the pole, the rotor, the stator and the back iron is much bigger compared with the air, 

thus the reluctances from the pole, rotor and the back iron can be ignored compared with 

the air reluctance; 3) The cross sectional area of the flux path in the pole is the same with 

the air gap area.  

 

 

Figure 5 1D magnetic circuit of the homopolar magnetic bearing actuator 

 

According to the Ampere’s Law, the line integral of the magnetic field around a 

closed loop is proportional to the electric current flowing through the loop: 
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                                    (4) 

where giH is the magnetic field intensity of the i
th 

air gap for i=1~6; gil is the air gap 

length of the i
th

 pole with the rotor centered for i=1~6; giR is the air gap length of the i
th

 

pole with the rotor centered; 
i is the flux in the i

th
 air gap; 

cH is the coercive field 

intensity of permanent magnet; 
mt is the thickness of the permanent magnets, pmR is the 

total reluctances of the two magnets in a flux loop.  

For linear analysis, the Ampere’s Law can be written in the form of 

                                               
gi gi gi i

H Rl                                                                            (5) 

for 1,2,3,...,8i  . The equation (4) can be written into the matrix form as: 
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where  
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and  

                                                              
2 m

pm

pm m

t
R

A
                                             (8) 

 where pm is the permeability of the permanent magnet,
mA is the cross sectional area of 

the permanent magnet, 2 mt indicates the total thickness of the two permanent magnets in 

one flux loop. By solving equation (6), the flux 
i  in each pole can be obtained and (y, 

z) is the displacement of the rotor. Then the flux intensity in each pole ignoring the 

leakage can be determined in the form of 

                                                         i
gi

g

B
A


                                                            (9) 

The Maxwell stress tensor formula determines the force exerted by the magnetic 

field in the form of  

                                                       

2

02

gi g

MBi

B A
F


                                                 (10) 

The total magnetic bearing force is obtained from (6), (9), and (10) as:  
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Linearize the force and expression for the centered rotor case and define the 

position stiffness pK and current stiffness 
iK as 
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                              (12) 

In this case, due to the symmetry of the actuator, py pz pK K K   and 

iy iz iK K K  . The linearized force expression for the centered rotor case is: 
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                                          (13) 

where the position and current stiffness are:  
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For nonlinear analysis, in the stator and the rotor, the saturation of the 

ferromagnetic core material is counted and the nonlinear magnetization B-H curve is 

approximated by a piece-wise B-H curve 
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             (16) 

where
1 00.0006285(H/m)=500  , 

2 00.00005028(H/m)=4  are the magnetic 

permeability in the ferromagnetic core material, 
1 22.0 , 2.3B Tesla B Tesla  . The curve 

fitted B-H curve is shown in Figure 6.  

 

 
Figure 6 Piece-wise B-H Curve of the ferromagnetic core material in the stator and the 

rotor 
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By solving equation (4) and (16), the flux intensities in each of the pole can be 

obtained, and thus the magnetic bearing force can be obtained by equation (11).  

 

2.1.2 Heteropolar magnetic bearing actuator 

Figure 7 shows an 8-pole heteropolar magnetic bearing actuator with alternating 

configuration (NSNSNSNS) used in the optimization design. The flux loops clearly 

shows the alternation of the polarities in the poles. The 2D FEM thermal analysis is 

based on the assumption that the flux fringing and leakage are neglected and the flux is 

constrained in the radial direction, which means that there is no flux in the axial 

direction and that the temperature is constant along the axial direction.  

 

 
Figure 7 8-pole magnetic bearing stator (a) and exaggerated coil geometry (b) 
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Magnetic bearings operate in accordance with Ampere's law, Gauss's law, 

Faraday's law and constitutive relations. Application of Ampere's law to the flux paths 

yields  

         2 ( )si si ri ri gi gi b ciH L H L H L N I i                                 (17)  

where 1,2,3,4i  for the 4 flux paths, 
siH ,

riH and giH are the magnetic field intensity in 

the stator, rotor, and air gap of the i
th

 flux path loop,
siL , 

riL and giL are the flux path 

length in the stator, rotor and air gap of the i
th

 flux path loop,
bI is the bias current in the 

coil, 
cii is the control current in the coil of the i

th
 flux path loop, N is the number of the 

coil turn.  

For linear analysis, in the air gap, the magnetic flux intensity giB and flux field 

density giH are related by the constitutive law: 

            0gi giB H                                (18) 

where 7

0 4 10 ( / )H m    is the permeability of the free space.  

In the stator and rotor, same law applies: 

                                                            
si si siB H                                                 (19) 

                                                           
ri ri riB H                                                  (20) 

Leakage is ignored so that flux is conserved around the loop yielding: 

                                               i si si ri ri gi giB A B A B A                                  (21) 

where siA , riA , giA  represent the cross sectional area of the i
th

 flux path in the stator, the 

rotor and the air gap respectively. Then the equation (17) becomes  
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              ( 2 ) ( )si ri gi i b ciR R R N I i                                     (22)  

where , ,si ri giR R R are the reluctances in the stator, rotor and air gap respectively and are 

defined by 
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                               (23) 

where , ,si ri giA A A are the flux path area in the stator, rotor and air gap in the thi flux path 

loop. By solving equation (22), the fluxes can be obtained and are then utilized to 

determine the x- and y- direction magnetic bearing forces. 
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 1 3 2 4,MBx MByF F F F F F                                         (25) 

where the flux derate factor 
Bd  accounts for leakage and fringing effects and is typically 

taken as about 0.85.  

For the 8-pole case,  
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Linearization of the magnetic bearing force at the centered position and when 

there is no control current 0, 0, 0, 0cx cyx y i i    yields, 

   
MBx px ix cx
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F K x K i

F K x K i
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                                                     (27) 
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For nonlinear analysis, in the stator and the rotor, the saturation of the 

ferromagnetic core material is counted and the nonlinear magnetization B-H curve is 

approximated by a piece-wise B-H curve 
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               (29) 

where 1 00.0006285(H/m)=500  , 2 00.00005028(H/m)=4  are the magnetic 

permeability in the ferromagnetic core material, 1 22.0 , 2.3B Tesla B Tesla  . By solving 



 

26 

 

(29) and (17), the flux intensities in the poles can be obtained, and then the magnetic 

bearing forces can be determined by equation (21) and (24).  

 

2.2 Finite Element Model of the Flexible Rotor 

A flexible rotor has a much wider mechanical bandwidth than a rigid rotor, 

which resulting in a much larger response to high frequency forces. Thus for flexible 

rotors, the controller design at high frequencies is much more important than for rigid 

rotors. Besides, when there are non-collocated sensors and actuators, there will be 

flexible modes with a node between a sensor-actuator pair. If these modes have 

frequencies within the bandwidth of the controller, then the stability of the system might 

be altered by additional zeros induced by the non-collocation, thus the control of flexible 

rotor systems generally requires a more elaborate control design approach.  

Finite element method (FEM) is used to model the flexible shaft, with the 6 

degrees of freedom (DOFs) Timoshenko beam element.  

 

 
Figure 8 Timoshenko beam element with 6 degrees of freedom 
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Figure 8 shows a Timoshenko beam element with two local nodes and 6 DOFs at 

each node. The degree of freedom vector for the thi element is 

            
1, , , 1 1 1 , 1 , 1 ,[ ]
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e i i i x i y i z i i i i x i y i zU x y z x y z     
                                     (30) 

 

2.2.1 Finite element matrices of the element  

For a symmetric cylindrical beam, the mass matrix of the element is built with 

the lumped mass method in the form of  
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where 

                                

2 2

, ,

2 2

, ,

2 2 2

, ,

( )
4

( )
8

(3 3 4 )
48

i O i I i i

i
pi O i I i

i
ti O i I i i

m D D L

m
I D D

m
I D D L


 

 

  

                                                 (32) 



 

28 

 

pI is the polar moment of inertia, 
tI is the transverse moment of inertia, ,O iD is the 

outside mass diameter of the element, ,I iD is the inner diameter of the element, 
iL is the 

length of the element, and  is the mass density of the rotor material.  

The stiffness of the element is based on the linear elastic assumption and in the 

form of 
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y and
z are the transverse shear form factors in the y- and z- directions, G is the elastic 

shear modulus of the rotor material, E is the Young’s modulus of the rotor material, L is 

the length of the element, A is the cross sectional area of the element, 

4 4

_ , ,( )
64

t a O i I iI D D


   is the transverse area moment of inertia, and 

4 4

_ , ,( )
32

p a O i I iI D D


  is the polar area moment of inertia.  

The disk gyroscopic effects are taken into consideration in this study. The 

gyroscopic matrix is in the form of 
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                               (34) 

The gyroscopic matrix represents the angular velocity dependent torques due to 

the simultaneous shaft spin and disc tilting motion. The gyroscopic moments couple the 

dynamics in the two radial directions of motion, thus a change in the vertical state of the 

rotor affects the horizontal dynamics, and vice versa. Due to these two cross coupled 
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term in the radial directions, gyroscopic moments cause the critical speeds of the system 

to drift from their original predictions at zero spin speed. 

 

2.2.2 Assembly of the finite element matrices  

Since the element mass matrices are diagonal, the assembled global mass matrix 

is also diagonal in the form of 

                    1 1 1 1 1 1([ ... ... ])p t t i i i pi ti ti N N N pN tN tNM diag m m m I I I m m m I I I m m m I I I        (35) 

where i  indicates the number of the node. For a rotor with N nodes, the dimension of the 

mass matrix is 6NΧ6N. 
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where e

im and 1

e

im  are the mass of the thi  node and the ( 1)thi   node, e

piI and , 1

e

p iI   are the 

polar moment of inertia of the thi  node and the ( 1)thi   node, and e

tiI and
, 1

e

t iI 
 are the 

transverse moment of inertia of the thi  node and the ( 1)thi   node.  

The global stiffness matrix of the rotor is assembled from the 12Χ12 element 

stiffness matrices 1K , 2K , 3K , …, 1EK  , EK in the form shown in Figure 9. E is the total 

number of elements of the shaft.  

 

 
Figure 9 Assembly of the shaft stiffness matrix 
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For the first 6Χ6 components in the global stiffness matrix corresponding to the 

1
st
 element, and the last 6Χ6 components in the global stiffness matrix corresponding to 

the E
th 

(last) element, the values remain same with the element matrices, i.e. 

1(1: 6,1: 6) (1: 6,1: 6)shaftK K  

(6 1: 6 6,6 1: 6 6) (7 :12,7 :12)shaft EK E E E E K      

For elements 2,3,..., ( 1)i E  , the global shaft stiffness matrix is assembled by 
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   
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   

      (36) 

 

2.3 Sensors, Controllers, Power Amplifiers and Filters 

In this study, the system components with finite bandwidth are described by 

transfer functions. In the field of control systems, the dynamics of the system can be 

written in terms of a transfer function, which is a mathematical representation for fit or 

to describe inputs and outputs of black box models. Figure 10 shows a simple block 

diagram of a transfer function, in which Y(s) is the input and X (s) is the output.  

 

G(s)Y(s) X(s)

 
Figure 10 Block diagram of a transfer function 
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The transfer function is G(s), which is the ratio of the output of the system over 

the input of the system in the form of 

                                                   
( )

( )
( )

X s
G s

Y s
                                                       (37) 

The input, output, and transfer function are complex quantities since they contain 

both amplitude and phase information. Bode plots, which describes the amplitude and 

the phase with respect to the frequency, are used to describe the transfer functions.  

 

2.3.1 Sensors 

Displacement sensors are used in the closed loop to measure the position of the 

rotating rotor and convert the physical displacement into voltage signal. The sensitivity 

of a sensor is the ratio of the output signal over the input. For a displacement sensor, the 

sensitivity is the output voltage over input displacement in mV/μm. Sensor runouts are 

noise disturbances caused by the uneven rotating surfaces, geometry errors, and 

electrical or optical inhomogeneity at the sensor locations. A larger sensitivity by using 

electronic amplification can be obtained for a larger output. However, this amplification 

also amplifies the sensor runouts induced noise. Generally, the sensitivity is bounded by 

the signal-to-noise (SNR) ratio.  

The sensor used in the system is a typical displacement model, which has a 

sensitivity (DC gain) and a 1st order filter of high bandwidth. The high bandwidth is set 

to avoid large sensor effects on system stability and performance. The transfer function 

of the sensor is 
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sen

sen

G
TF s

s



  (38)  

where
senG is the sensitivity or gain of the sensor, and

sen is the time constant of the 1
st
 

order filter in the sensor.  

 

2.3.2 Power amplifiers 

In a lot of the linear simulations for AMB systems, power amplifiers are simply 

described as DC gains with low pass filters. However, real amplifiers are limited by 

power supply voltage and maximum coil current. To include these power amplifier 

saturation effects, a nonlinear power amplifier model with a current and voltage limit are 

used in this study. Figure 11 is the block diagram of a typical power amplifier with 

voltage and current limits. It shows the current feedback control loop from the input 

voltage to the output current in the power amplifier. In the feedback loop, the 

instantaneous commanded current is compared with the measured current in the 

magnetic bearing coils. Typical efficiencies of this power amplifier are generally greater 

than 90%, thus the power amplifier loss is ignored.  

In the linear stage, the power amplifier transfer function from the input voltage to 

the output current is 

                                      
_

_

out i amp

in i amp amp amp

I K

V L s R K 


 
                                     (39) 

where the resistance amp coilR R , and the reluctance ampL is approximated by the coil 

parameters in the form of 
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2

g

amp

c

N A
L

l


                                               (40) 

where  is the free space permeability, N is the number of coil turns, gA is the air 

gap area, and
cl is the coil length in Figure 7. The resistance and the reluctance of the coil 

change with design variables since the coil geometry varies with different designs in the 

optimization. ampK and amp are the gains in the forward loop and the feedback loop 

respectively. 

 

 
Figure 11 Nonlinear power amplifier model with voltage and current saturation 

 

From Figure 11,  

                                          _ _( )amp i amp amp out iV L s R I                                     (41) 

                                       _ _ _( )amp i in i out i ampV V I K                                     (42) 

Given the DC gain dcG and bandwidth of the power amplifier bdw , the transfer 

function from the input voltage to the output current is 
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Solving (41), (42) and (43) gives 

                                            amp amp bd dcK L w G                                                (44) 

                                            
amp bd amp

amp bd dc

L w R

L w G



                                               (45) 

 When there is voltage saturation, the output current is _
sat

out i

amp amp

V
I

L s R



; 

when there is current saturation, the output current is _out i satI i , where satV and sati are 

the saturation voltage and saturation current of the power amplifier.  

 

2.3.3 Controllers and compensators 

PD controllers are used in this study to control the closed loop system. The 

transfer function of the PD controller is written as     

                                  
2

( 1)( 1)
( )

p d

P d

con

G G s
TF

s s
s

 


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 
                                              (46) 

where pG is the proportional gain of the PD controller, 
dG  is the derivative gain of the 

controller, p  and d are the time constants of the proportional gain and derivative gain 

respectively.  

Figure 12 shows the closed-loop step response of a 2
nd

 order system controlled 

by PD controllers with different controller gains. The transfer function of the 2
nd

 order 

system is in the form of 
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                                              (47) 

Increasing the proportional gain can decrease the rise time to the target, and 

decrease the steady state error. However, large proportional gains increases the 

overshoot and degrade the system stability. Derivative gain does not have too much 

impact on the rise time or the steady state error. However, an increase in derivative gain 

can decrease the overshoot, and improve the stability when the derivative gain is small. 
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Figure 12 Response of the PD controller to step reference input with different controller 

gains 

  

The system dynamics could be of a nature that a satisfactory stable design cannot 

be obtained through adjustment of proportional gain alone. In such cases, compensation 

of the dynamics is indicated. Three simple and effective compensation methods, lead, 

lag, and notch compensations are used in this study.  
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A phase lead compensation stage may be utilized for improving phase stability-

margin. A form of the transfer function for a phase lead stage is 

                                   ( ) ,lead lead

s z
TF s K z p

s p


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
                              (48) 

Figure 13 shows a bode plot of a lag compensator with a transfer function in the 

form of  
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Figure 13 Bode plot of a lead compensator 

 

A phase lag stage is very useful for providing low frequency (DC) gain to reject 

errors due to static, typically weight, loading acting on the magnetic bearing. A form of 

the phase lag stage is                                        

                           ( ) ,lag lag

s z
TF s K z p

s p


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
                                       (50) 
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Figure 14 Bode plot of a lag compensator 

 

Figure 14 shows a bode plot of a lag compensator with a transfer function in the 

form of  

                                            
1.2

( )
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s
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s





                                               (51) 

A notch filter is utilized to reduce the gain at the high frequency, which is called 

gain stabilization. A typical transfer function of a notch filter is in the form of 

2 2
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Figure 15 is the bode plot of a notch filter with the transfer function in the form 

of   
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Figure 15 Bode plot of a notch filter 

 

The choice of the notch center frequencies is targeted to remove the respective 

harmonic disturbance from the imbalance and the sensor runouts, thus alleviating the 

control efforts.  

 

 



 

41 

 

3. MULTIPLE-OBJECTIVE OPTIMIZATION AND GENETIC ALGORITHMS

  

Multiple-objective optimization, in which multiple objective functions need to be 

optimized simultaneously, has received a lot of interest from researchers with different 

backgrounds. Multiple-objective optimization arises because in the real design problems, 

determining which solutions are best in a multidimensional solution space can be 

difficult, especially when one does not understand the tradeoffs among the solutions. A 

mathematical definition of multiple objective optimization problem can be addressed as: 

Minimize (or maximize) 

 fi(x1,x2, …,xn), i=1,2…p  

such that 

hj(x1,x2, …,xn) < 0, j=1,2,…q  

where (x1,x2, …,xn) are the n design variables, fi(x1,x2, …,xn) are the p objective functions, 

hj(x1,x2, …,xn) are the q inequality constraints. 

 

3.1 Pareto Solutions of Multiple Objective Optimization 

In multi-objective optimization problems, because of the incommensurability and 

confliction among multiple objectives, there does not necessarily exist a solution that is 

best for all objectives. A solution might be the best in one of the objectives but the worst 

in the other objectives. Therefore for the multi-objective optimization cases, there 

usually exists a set of solutions that none of the objective functions can be improved in 

value without impairment in some of the other objective values. Such solutions are 
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called Pareto solutions or non-dominated solutions, which are usually displayed in the 

form of Pareto’s frontier. [22] Figure 16 shows an example of the Pareto optimal points 

in an optimization with two minimization type objectives. These points form a Pareto 

frontier, on which objective 1 can only be minimized with the sacrifice of a larger 

objective 2 value and vice versa.  

 

 
Figure 16 Pareto’s frontier and Pareto solutions in optimization with two objectives 

 

The 
Ax  solution is said to dominate another solution

Bx  , and write as A Bx x° , if 

both the following two conditions are met: 

1) Ax is no worse than Bx  in all objectives; 

2) Ax is strictly better than Bx in at least one of the objectives. 

In the minimization type optimization problem, the mathematical expression is  
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  

°                        (54) 

where objN is the number of optimization objectives. If any of the above two conditions 

is violated, then the solution 
Ax does not dominate the solution

Bx . All the Pareto 

solutions are non-dominated solutions.  

 

 

3.2 Genetic Algorithms and Multiple Objective Genetic Algorithms 

Genetic Algorithms (GAs) are adaptive heuristic search algorithms based on the 

evolutionary ideas of natural selection and genetics. [23] During the past decades, GA 

has been applied on diversity areas ranging from biology to engineering optimizations. 

GA has a lot of advantages over other optimization techniques, and the main advantages 

that we are choosing them for this study include that it [24] 

1) Works with a large number of variables that many parameters can be optimized 

inside the magnetic bearing system. 

2) Simultaneously searches from a wide sampling of the cost surface. 

3) Provides a list of optimum parameters, not just a single solution. 

4) Is welled suited for parallel computer.  

Figure 17 shows the flow chart of the genetic algorithms. In GAs, the evolution 

starts from a population of randomly generated individuals which is called initial 

generation. The fitness of every individual in the population, which is usually the 

objective function value, is evaluated in each generation. The more fit individuals are 
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stochastically selected from the current population as parents to crossover and mutate to 

reproduce offspring as a new generation. In the crossover, new child populations are 

generated by combining the parts from the parent populations. In the mutation, the new 

child populations are generated by changing parts in the parent populations. The new 

generation is then used in the next algorithm iteration. The iteration terminates when 

either a maximum number of generations has been produced of a satisfactory level of 

fitness is reached for the population. 

 

Start

Generate initial generation， with randomly 
generated populations

end

Calculate the fitness value of each population in 
the generation

selection

crossover

mutation

new generation

satisfactory fitness level or maximum 

generation reached?

NO

YES

 
Figure 17 Flow chart of genetic algorithms 
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Following is a few simple examples of the encoding, selection, crossover and 

mutation in the case of binary string.  

1) Encoding and creating an initial population 

Binary encoding is the most common, mainly because first works about GA used 

this type of encoding. In binary encoding every population is a string of bits, 0 or 1. A 

typical 8 bit binary encoded population is in the form of  

                                                       (1  1  1  0  1  0   1   0)       

2) Evaluating fitness and selection 

The populations are passed to the cost function for evaluation. The cost function 

is based on the objective function values.  

In selection, the most fitted parents are assigned the highest probability of being 

selected to generation off springs. The two most common ways of selection are roulette 

wheel and tournament selection.  

In roulette wheel selection, the populations are firstly sorted for the selection. 

Each population is assigned a probability of being selected based on either its rank in the 

sorted population of its cost.  

Figure 18 is the roulette wheel probabilities that the parents are selected for the 

cases with four parents and eight parents. The populations with the low costs have a 

higher probability of being selected. The roulette wheel shows that with four parents, the 

first and the best parent population has a 40% chance of being selected. As the 

population number grows, the percent chance changes. In the case with eight parents, the 

best parent has a 22% chance of being selected.  
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(a)                                                                (b)   

Figure 18 Roulette wheel probabilities for (a) four parents (b) eight parents 

 

In this study, the NSGA-II and NCGA algorithms are finally selected as the 

optimization techniques. These two algorithms use the tournament method for selection. 

The block diagram in Figure 19 shows the tournament selection process of the thi  

tournament. In tournament selection, the populations are divided into different groups 

(usually two or three groups), and each group is called a tournament. The cost or fitness 

of each population is evaluated. A probability of being selected as a parent for crossover 

is assigned to the population according to the evaluation. The populations with lower 

cost or higher fitness are more likely to be selected for crossover.  
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Define tournament size k

Define number of population n in each tournament

 ith tourment: Choose k populations at random

Choose the best population from ith tournament

Assign probability p

Choose the 2nd best population from ith tournament

Assign probability p(1-p)

Choose the 3rd best population from ith tournament

Assign probability p(1-p)2

Choose the nth best population from ith tournament

Assign probability p(1-p)n

crossover

····· 

 
Figure 19 Block diagram of the tournament selection process 

 

In deterministic tournament selection, only the population with the lowest cost in 

each group is selected as a parent ( 1p  ).  Figure 20 shows a simplified example of the 

deterministic tournament selection: the unsorted populations are divided into different 

tournaments, then the fitness of each population is calculated, and only the best fitted 

population in each tournament is selected as parent to create more generations.  
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Figure 20 Deterministic tournament selection 

 

3) Crossover 

In crossover, the selected parents are recombined. Crossover replaces the genes 

of one parent by the genes of the other. Figure 21 shows an example of crossover of the 

two parents represented by binary strings at crossover point of 3.  

 

parent 1 0 0 1 1 0 1 0 0

parent 2 1 0 0 0 0 0 1 1

child 1 0 0 1 0 0 0 1 1

child 2 1 0 0 1 0 1 0 0

Crossover at point 3

 
Figure 21 Binary strings crossover example 

 

4) Mutation 
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In mutation, a gene or a subset of genes is chosen randomly and the value of the 

chose gene is changed. In the case of binary string, mutation is simply achieved by 

alternation of the selected bit or bits.  For example, the string 

                                      (1  1  1  0  1  0   1   0) 

with mutation at genes 2 and 4, becomes 

                                      (1  0  1  0  0  0   1   0) 

In this optimization, NSGA-II and NCGA are the two selected multiple-objective 

optimization algorithms to optimize the design of the magnetic bearing supported 

rotordynamic system.  

 

3.2.1 Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

NSGA-II is widely used and has become a de facto standard that other algorithms 

are compared with. The NSGA-II algorithm uses the simulated binary crossover (SBX) 

and the polynomial mutation for real coded variables. The selection, crossover, and 

mutation are same with the standard genetic algorithms. The difference is that it sorts the 

populations by “nondominated sorting” and “crowding distance sorting” before the 

selection.  

Simulated Binary Crossover simulates the binary crossover observed in nature, 

and is described as 

                                        
1, 1, 2,

2, 1, 2,

1
[(1 ) (1 ) ]

2

1
[(1 ) (1 ) ]

2

k k k k k

k k k k k

c p p

c p p

 

 

   

   

                          (55) 
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where ,i kc is the thi child of the thk component, ,i kp is the selected parent, and 
k is a 

sample from a randomly generated number. The density of 
k is 

2

1
( 1) , 0 1

2
( )

1 1
( 1) , 1

2

n

n

n if

p

n if

 




 


  

 
  


                                          (56) 

where n is crossover distribution index. The probability distributions are plotted in 

Figure 22, which shows that a large index value gives a higher probability for creating 

solutions near the parents.  

 

 

Figure 22 Probability distributions used in the SBX crossover operators with different 

crossover index n  

 

Polynomial mutation used in NSGA-II can be expressed in the form of 

                          ( )u l

k k k k kc p p p                                                 (57) 
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where 
kc is the child mutated from the parent 

kp , u

kp and l

kp  are the upper and lower 

bounds of the parent, and 
k is a small variation calculated from a polynomial 

distribution in the form of 

1

1

1

1

(2 ) 1, 0.5

1 {2(1 )] , 0.5

m
k k

k

m
k k

r if r

r if r







 

 
   

                                   (58) 

where 
kr is an uniformly sampled random number between (0,1) and m is mutation 

distribution index.  

 

 
Figure 23 Schematic of NSGA-II algorithms 

 

The algorithms of the NSGA-II are shown in Figure 23.
1F ,

2F ,
3F  in the figure 

indicate the different fitness levels by non-dominated sorting, t represents current 

generation, t+1represent next generation, Pt represents current parent populations, Qt 
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represents current child populations, Pt+1 represents new parent populations after sorting, 

Qt+1 represents new child populations, Rt represents mating pool combining the parent 

population Pt and the child population Qt.  

The non-dominated sorting ranks parent populations into different fitness 

levels
1F ,

2F ,
3F … to ensure a higher probability for “good” parent populations to create 

more child populations.  

Crowding distance sorting is introduced in NSGA-II. For two solutions with 

different non-domination ranks, the solution with the lower (better) rank is preferred. 

Otherwise, if the two solutions belong to the same non-domination rank, then the 

solution located in a less crowded region is a preferred solution. This crowding distance 

sorting ensures the diversity preservation. Circled with red dashed line is an example of 

crowding distance sorting, in which solutions in both the lower part and the upper part 

are of the 3
rd

 fitness level, but the solutions in the upper part are selected because they 

are from the less crowded region.  

In NSGA-II, an elitism operator is also introduced to speed up the performance 

of the GA and to prevent the loss of good solutions once they are found.  An example of 

elitism is given as circled in green dashed line. The elitism strategy allows the excellent 

parent populations Pt join and compete with their child populations Qt to form a now 

pool Rt to create new generations. The result demonstrated that elitism helps in speeding 

up the performance of the GA significantly and in preserving good solutions from the 

parent populations. 
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Constraint Handling: The binary tournament selection is used for constraint-

handling in the NSGA-II algorithms, in which two solutions are picked from the 

population and the better one selected. There are three possible situations depending on 

whether or solution is feasible or infeasible: 

1) Both solutions are feasible; 

2) One is feasible and the other is infeasible; 

3) Both are infeasible. 

For single objective optimization, the rule to select a better solution is easy for 

each of these cases: For case 1), where both solutions are feasible, select the solution 

with better objective function value; For case 2), where only one solution is feasible, 

select the feasible solution; For case 3), where both are infeasible, select the solution 

with smaller constraint violation.  

For multiple objective optimization, according to Deb etc, a solution i is said to 

constrained-dominate a solution, if any of the following conditions is true: 

1) Solution i and solution j both feasible and solution i dominates solution.   

2) Solution i  is feasible and solution j is not; 

3) Solution i  and solution j are both infeasible, but solution i  has a smaller 

overall constraint violation. 

Under this definition, all the feasible solutions have a better nondomination rank 

than the infeasible solutions. All the feasible solutions are ranked based on the objective 

function values. All the infeasible solutions are ranked in the way that a solution with a 

smaller constraint violation has a better nondomination rank.  
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The NSGA-II algorithms do not use any penalty function, so that either the value 

of the objective function or the measure of the constraint violation is sufficiently reduced 

in each iteration. 

The iteration is terminated when the number of maximum generations is reached. 

The number of the maximum generation should be large enough to ensure the 

convergence of the solutions from the last generation.  

 

3.2.2 Neighborhood Cultivation Genetic Algorithm (NCGA) 

The NCGA algorithms include the mechanisms of NSGA-II with standard 

genetic operation of mutation and crossover included. What makes the NCGA unique is 

the mechanism of neighborhood crossover, in which the parents are selected from 

populations with values close to one of the objectives while in normal crossover the 

parents are chosen randomly from the populations. The exploration and exploitation 

concepts are used to explain the benefits of neighborhood crossover. By exploration, an 

optimum solution can be found around the elite solution. By exploitation, an optimum 

solution can be found in a global area. In neighborhood crossover, the child populations 

generated after the crossover may be close to the parent populations. The exploitation 

factor of the crossover is enforced through this. Therefore, the precise exploitation is 

expected. According to the example cases by Watanabe, the mechanism of neighborhood 

crossover helps both the exploration and exploitation. The example cases demonstrated 

the accuracy of the solutions of NCGA is improved compare with those of the NSGA-II 

with the neighborhood crossover.  
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4. LINEAR AND NONLINEAR ROTORDYNAMIC ANALYSIS  

 

In this section, the synthesis of the system equations for linear analysis is talked. 

Rotordynamic analysis of the linear magnetic bearing system, including the stability 

analysis, levitation simulation, and unbalance transient analysis is presented with 

examples. Nonlinearities and nonlinearities induced rotordynamic performaces are 

introduced.  

 

4.1 Synthesis of Linear Rotordynamic System 

The mechanical system of a spinning shaft can be described by the equation [25]: 

                                           ( ) extMU C G U KU F                                                (59) 

where Timoshenko beam element is used and for each node there are 6 degree of 

freedom (dof). For each of the radial bearing, there are two displacement sensors, one for 

each of the y- and z- component.  The nodal displacement vector U has the form: 

                               
1 1 1 1 1 1[ ]T

x y z n n n xn yn znU x y z x y z                                       (60) 

where n is the number of nodes. The M, C, K, G are the mass, damping, stiffness, and 

gyroscopic matrices respectively of the rotor and bearing system. The assembly of the 

mass matrix, Gyrosopic matrix and stiffness matrix from the finite element has been 

introduced in section 2.2. extF is the external force exerted on the rotor, including gravity 

force, force from magnetic bearing, rotor unbalance force (in the unbalance analysis) and 

other possible forces induced by sensor runout etc.  
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In rotordynamic system, the equation (30) is generally written as first order 

ordinary differential equation (ODE) expressions as 

                                 
1 1 1

0 0

extU M C M K U M Fd

dt U I U

          
        

       
                         (61) 

For linear magnetic bearing analysis, the magnetic bearing force is linearized 

with respect to displacement and control current, and is represented by the bearing 

position stiffness and current stiffness, as has been talked in section 2.1. For example, 

the radial magnetic bearing force in y and z directions can be written as 

                                     
MBy py iy cy

MBz pz iz cz

F K y K i

F K z K i

 

 
                                                   (62) 

The bearing position stiffness values pyK  and pzK are added into the entries in 

the shaft stiffness matrix K . Assume there is a radial magnetic bearing is located at node 

i , the global stiffness matrix K will be augmented as 

              
   

   

6( 1) 2,6( 1) 2 6( 1) 2,6( 1) 2

6( 1) 3,6( 1) 3 6( 1) 3,6( 1) 3

py

pz

K i i K i i K

K i i K i i K

         

         
                       

(63)The bearing current stiffness values are used as DC gains in the actuator model with 

2
nd

 order low pass filters, in the form of 

                             
2

2 2
( )

2

i n
actuator

n n

K
TF s

s s



 


 
                                        (64) 

The actuator is then transformed into the state space form and assembled into the 

equation (48).  
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Assemble the state space forms of the sensors, controllers, power amplifiers and 

filters in the system, and write the equation in a more compact form, 

                            
sys sys sys sys sysW A W B u                                                (65) 

where sysA is the system matrix that includes the structural stiffness matrix, the mass 

matrix, the gyroscopic matrix, the damping matrix, and the controller dynamic 

parameters. sysB is the input matrix.  sysu is the input of the system.  sysW is a system vector 

composed of structural variables and states of controllers, power amplifiers, sensors, 

filters and compensators in the form of 

                                [ ]T T T

sys sen con pa act filterW U U W W W W W                                   (66) 

where 
senW includes the state variables of the sensors, which are modeled as a DC gain 

with a first order filter.
conW includes the state variables of the PD controllers. 

paW includes the state variables of the power amplifiers modeled as a DC gain with a 1
st
 

order filter with an output current and voltage limit in the linear range. 
actW includes the 

state variables of the actuator with 2
nd

 order filters. filterW includes the state variables of 

the additional low pass filters or any lead compensators and lag compensators. 

 

4.2 Linear Rotordynamic Analysis with Example 

In this example case, the rotor model used is given as in Figure 24. The rotor has 

21 nodes, and with homopolar radial magnetic bearings placed at node 6 and node 16. At 

each of the magnetic bearing location, there are two sensors, in the horizontal direction 
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and vertical direction respectively. The total length of the rotor is 1m, and the total 

weight of the rotor is 61.1kg.  
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Figure 24 Plot of the finite element model of the rotor profile 

 

The parameters of the homopolar magnetic bearing actuator are listed in Table 1. 

According to the equations in chapter 2, the resulting position stiffness in the y and z 

directions is -1.35e6 N/m, and the current stiffness in the y and z directions is 302.8 

N/Amp.  

The sensor used in the model has a DC gain of 1181V/m, and the time constant is 

1e-5. Resulting transfer function of the sensor is  

                                         
1181

1 5 1
senTF

E s


 
                                                   (67) 

The proportional gain of the PD controller is 20, and the derivative gain of the 

PD controller is 0.02, resulting transfer function of the PD controller is  
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3

(

20 0.02
( )

1 5 1)
con

s
TF s

E s




 
                                             (68) 

 

Table 1 Parameters of the homopolar magnetic bearing actuator 

Parameter Value 

Coil turns, N 100 

Air gap area, Ag(m
2
) 0.01 

Air gap length, Lg(m) 0.0005 

Rotor material permeability, µr (H/m) 0.000628 

Flux path length in rotor, Lr (m) 0.15 

Flux area in rotor, Ar(m
2
) 0.008 

BI material permeabilty, µbi(H/m) 0.000628 

Flux path length in back iron, Lbi(m) 0.1 

Flux area in back iron, Abi(m
2
) 0.008 

Permanent magnet permeability, µpm(H/A) 1.35E-06 

Flux path length in Permanent magnet, Lpm(m) 0.05 

Flux area in Permanent magnet, Apm (m
2
) 0.008 

Coercive field intensity of magnet, Hc (A/m) 633000 

Pole material permeabilty, µp (H/m) 0.000628 

Length of pole, Lp (m) 0.05 

 

4.2.1 Stability and modal analysis 

The system stability is determined by the eigenvalue of the system matrix. The 

system is stable if all the eigenvalues has negative real parts.  In this modal analysis, 

eigenvalues are filtered, only eigenvalues with positive imaginary part are counted.  

As shown in Figure 25, that all the eigenvalues are on the left plane of the plot, 

which means that the system is stable. The rigid mode and the 1
st
 and 2

nd
 bending mode 

shapes are plotted in Figure 26~Figure 28.  



 

60 

 

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

x 10
6

-4

-3

-2

-1

0

1

2

3

4
x 10

4 complex eigenvalue plane

Re

Im

 
Figure 25 Eigenvalues of the system 
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Figure 26 Mode shape of the rigid mode 
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Figure 27 Mode shape of the bending mode 
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Figure 28 Mode shape of the bending mode_2 
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4.2.2 Unbalance response 

The most important excitation in rotating machinery is due to unbalance forces. 

According to the API617, a separate damped unbalance rotor response analysis shall be 

conducted. The unbalance shall be placed at the locations that affect the particular mode 

most adversely. In this example case, the unbalance is located at the center of the 

symmetric bearing, and phased at 90° to excite most of the mode shape.  

For a rotor with the equation of motion, 

                 
1 1 1

0 0

extU M C M K U M Fd

dt U I U

          
        

       
                              (69) 
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  
 

, and 
ext unbalanceF F , then the 

equation of motion of the rotor can be described as 

                                     r r r r unbalanceW A W B F                                                  (70) 

For unbalance analysis, substitute i t

unbalance unbalanceF F e  and i t

rotor rotorW W e  , 

rotorW can be solved as 

                                     1( )r r r unbalanceW i I A B F                                         (71) 

Finally, the displacement vector U under unbalance can be obtained.  

In the example, the unbalance amount is 1.5kg·mm, which induces an unbalance 

force equivalent to 10% of the rotor weight at 3,600 rpm. The unbalance response plot is 

shown in Figure 29, which predicts a first critical speed of 4,640 rpm and a second 

critical speed of 35,210 rpm.  
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Figure 29 Unbalance response of the heteropolar supported rotordynamic system 

 

4.2.3 Sensor runout analysis 

Imperfections in the shaft surface, out-of roundness and non-uniform magnetic, 

optical and electrical properties produce a sensor output called “runout”.  Figure 35 shows 

highly magnified runout pattern, in which 
TO is the target center of the rotor, O is the 

actual center of the rotor, and 
BO is the center of the bearing.  

 

  
Figure 30 Highly magnified runout pattern 
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Runout is defined by the amplitude and phase angle of the “imperfections”. In 

this example, the runout is defined as shown in Table 2. The y- direction sensors at both 

node 6 and noe7 have runouts of type 1, and the z- direction sensors at both nodes have 

runouts of type 2.  

 

Table 2 Definition of the sensor runouts 

  Runout Type 1 Runout Type 2 

1X 
1x Amp (mm) 0.17 0.17 

1x Phase (degree) 10 100 

2X 
2x Amp (mm) 0.0423 0.0423 

2x Phase (degree) -50 110 

3X 
3x Amp (mm) 0.00847 0.00847 

3x Phase (degree) 90 180 

4X 
4x Amp (mm) 0.00508 0.00508 

4x Phase (degree) -80 180 

5X 
5x Amp (mm) 0.00423 0.00423 

5x Phase (degree) 200 290 

 

Besides the sensor runouts, there might be some random noise, which also needs 

to be defined by its maximum amplitude. In this example, the maximum amplitude of 

the random noise is defined as 0.001V, which corresponds to 0.00085mm in motion 

amplitude.  

The magnetic bearing force response to the 5X runouts spectra is presented in 

Figure 31. Figure 32 shows the coil current response to the sensor runouts. Figure 33 

shows the coil voltage response to the sensor runouts.  
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Figure 31 Force response to sensor runouts 

 

 
Figure 32 Current response to sensor runouts 

 



 

66 

 

 
Figure 33 Coil voltage response to sensor runouts 

 

The rotor orbit plot to the sensor runouts is presented in Figure 34.  

 
Figure 34 Rotor orbit plot to sensor runouts 

 



 

67 

 

4.2.4 Unbalance transient analysis 

The unbalance transient analysis is conducted with a rotor unbalance located at 

the center of gravity of the rotor and phased to create the maximum synchronous 

response amplitude, as required by API617. Unbalance transient analysis is conducted 

when the mass center of the rotor (G) is shifted away from the spin (geometric) center 

(P) by the imbalance eccentricity distance e, as is shown in Figure 35. The spin speed of 

the rotor is ω and the phase angle of the rotor unbalance is ɸ. The induced amount of the 

unbalance force is 2 cos( )me  in y-axis direction and 2 sin( )me  in z-axis direction, 

where me is the unbalance amount in terms of mass and eccentricity. The transient 

analysis of rotor unbalance is conducted by solving equation (17) with the unbalance 

forces assembled into the right hand side as external forces. 

 

 
Figure 35 Rotor unbalance diagram  
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In this example, the unbalance transient analysis is run at the rotor speed of 3,600 

rpm, with1.5kg·mm unbalance at the center of the bearing in –z direction, which induces 

an unbalance force equivalent to 10% of the rotor weight at the spin speed.  
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Figure 36 Unbalance transient plot of the homopolar AMB system 

 

4.2.5 Waterfall diagram 

Waterfall diagram is a three-dimensional plot of spectra at various machine 

speeds to show how vibration changes in time or during transient events. The sequential 

spectra are separated by uniform increments in speed. The plot suggests the frequency-

speed of rotation interface diagram, and allows the analyst to evaluate the various 

frequency components of vibration as the rotor runs up to the operating speed. The 

waterfall diagram is plotted from an FFT analyzer.  
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The waterfall diagram for this example case is presented in Figure 37, which 

shows a first spectrum caused by the rotor unbalance as defined in the unbalance 

transient analysis.  

 

 
Figure 37 Waterfall plot of the system 

 

4.2.6 Startup transient analysis 

The startup transient analysis, also called levitation analysis, simulates the 

transient process of the rotor lifted by the magnetic bearing from an initial position. 

Generally, the rotor rests on catcher bearings before the system is powered and the 

magnetic bearings start working. In the linear simulation, there is no catcher bearing. 

The catcher bearing in Figure 38 is only there to indicate the initial bearing position and 

to make a comparison with the nonlinear simulation later. Figure 38 shows successful 

levitation of the rotor from the initial position.  
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Figure 38 Startup transient analysis of the homopolar AMB system 

 

Figure 39 plots the magnetic bearing force, the current in the power amplifier, 

and the voltage of the power amplifier during the levitation. In the levitation, due to the 

rapid change of the displacement, the magnetic bearing force can be very large, resulting 

in large power amplifier current and voltage. It clears shows that the maximum power 

amplifier current is as large as 45.3 amps, and the peak power amplifier voltage is 492.3 

volts, which exceed the limits of real power amplifiers. Also, the flux intensity in the 

poles might also be saturated in the levitation to supply large magnetic bearing force, 

which cannot be simulated by the linear code. Thus the linear code cannot be reliable to 

predict the performance of the magnetic bearing- rotor system, and more dedicated 

nonlinear analysis is required.  
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Figure 39 Magnetic bearing force, power amplifier current, power amplifier voltage in 

the startup analysis 

 

4.3 Nonlinear Rotordynamic Analysis  

While many of the current research and modeling of magnetic bearings use linear 

analysis, the actual magnetic bearing supported rotordynamic system is nonlinear. The 

nonlinearities might come from: 

1) the magnetic bearing force as a nonlinear function of the rotor displacement 

and the coil current;  

2) rotor and stator ferromagnetic material saturation effects;  

3) the saturation of current and voltage in the power amplifier;  

4) the catcher bearing, sensor runouts and so on. 
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In linear analysis, the magnetic bearing force is linearized at the centered position 

and assuming no control current. Thus the flux intensity is not limited in the linear 

analysis. In the nonlinear analysis, a nonlinear BH curve is used for the magnetic bearing 

force calculation with the maximum flux intensity. A nonlinear power amplifier with 

saturation effects of both current and voltage is used, which has been talked in Section 2. 

 The catcher bearing (also known as an auxiliary, back-up or touchdown bearing) 

is a ball bearing with clearance between its inner space and the rotor. It is designed to 

prevent the unexpected contact between the rotor and stator of the magnetic bearing in 

cases of overload or failure of the magnetic bearing. 

 Other effects, such as disturbances in the system, like sensor runout, random 

noise, imbalance, affects the system. Even the gain control may amplify effects of 

disturbances to cause saturation. Besides all these, saturation may cause a “nonlinear” 

instability due to increased phase lag, large limit cycle or erratic vibrations. 

 

4.3.1 Levitation simulation with catcher bearing 

Magnetic bearings rest on catcher bearings before startup. In the levitation, the 

magnetic bearings lift the rotor from the initial position at zero spin speed.  

In this simulation, the catcher bearing is simplified as a spring-damping model 

with tangential friction force, and defined by the spring stiffness, damping ratio, and the 

tangential friction coefficient. The catcher bearing clearance is half of the centered air 

gap clearance. High fidelity modeling of the catcher bearing drop events with life 
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prediction, which provides a specified number of safe stops from full speed or worst case 

load conditions, will be conducted in the future.  

Figure 40 shows the forces of the linearized spring-damper catcher bearing 

model. O is the center of the centered rotor/catcher bearing center, O is the eccentric 

rotor center,
rR is the rotor radius, and 

cbR is the catcher bearing radius,  is the angle of 

the whirl motion of the rotor center inside the catcher bearing, is the counter clockwise 

rotation motion of the shaft, and is the spin velocity. 

 

 
Figure 40 Catcher bearing force 

 

Here  

                                      2 2r y z                                (72) 
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where y and z are the translational displacements of the rotor. The normal force is 

consisted of force induced by the linear spring with stiffness 
cbK and the damper with the 

damping coefficient
cbC , which can be expresses as: 

                                                        R cb cb

dr
F K r C

dt
                                    (73) 

Substitute equation (38) into (39), the normal force on the catcher bearing is 

                        2 2

2 2
( )R cb r cb cb

yy zz
F K y z R R C

y z


    


                        (74)  

where 
rR is the rotor radius at the catcher bearing locations, and gC is the catcher bearing 

radius,  and cb r gR R C  , which is the catcher bearing clearance. Then the normal force 

RF can be expressed as 

                              2 2

2 2
( )R cb g cb

yy zz
F K y z C C

y z


   


                          (75) 

 The tangential friction force is: 

                                                  f RF F                                                       (76) 

where f is the Coulomb friction force coefficient. When 0y  and 0z  , forces in y  

and z directions are: 

                                          

cos siny RF F F                                          (77)

 

                                          

sin cosz RF F F                                           (78)

 

Substitute (41) and (42) into (43) and (44), the y  and z directions forces are 
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                     2 2

2 2 2 2
[ ( ) ]

f

y cb g cb

y zyy zz
F K y z C C

y z y z

 
   

 
                 (79) 

                     2 2

2 2 2 2
[ ( ) ]

f

z cb g cb

z yyy zz
F K y z C C

y z y z

 
    

 
               (80) 

Torque caused by the friction force in the  direction: 

          2 2

2 2
[ ( ) ]r r f cb g cb

yy zz
T R F R K y z C C

y z
  


       


                  (81) 

The tangential friction forces and torque induced by the catcher bearing are 

assembled into the right side of the MCK equation as external forces at the nodes where 

the catcher bearing are located, and transient analysis of the equation is conducted when 

the rotor is at zero spin speed. 

As has been stated, due to the rapid change of displacement in the levitation 

simulation, the magnetic force can be very large, causing saturation in the power 

amplifier and flux intensity. As a result, the nonlinear analysis for the levitation process 

with a limited power amplifier voltage and current, as well as a BH curve with saturation, 

is required.  

 

4.3.2 Unbalance transient analysis 

For most of the case, unbalance would not be large enough to cause saturation in 

the flux intensity or the power amplifier. So the difference between the linear and 

nonlinear unbalance transient analysis is caused by the linearization of the magnetic 
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bearing force with respect to the displacement and current, which is supposed to be 

small.  

But when there is large external load applied, the system could be highly 

saturated. In this case, the linear and the nonlinear analysis result could be very different. 

Example cases of the nonlinear analysis, with the saturation model included, will 

be given in section 8.  

 

4.4 Linear and Nonlinear Analysis Comparison Example 

The significance of nonlinear analysis has been stated. In this part, an example 

case run with linear and nonlinear code for transient simulation is presented.  

The rotor model used in this example is given in Figure 41. The heavy rotor is 

2m in length with a mass of 624.4kg. The first structure damping ratio is 0.1 at 126rad/s 

spin speed and the 2
nd

 structure damping ratio is 0.1 at 6283rad/s. The radial magnetic 

bearings are located at node 7 and node 21. The non-collocated sensors are located at 

node 6 and node 20, respectively, which are next to the bearing nodes. Disks are added 

on the rotor, which are treated as added mass. 

The heteropolar “C” core magnetic bearings are used, with a position stiffness of 

-1.19E7 N/m and a current stiffness of 7637.1 N/Amp for linear analysis.  
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Figure 41 Rotor profile with added disk and non-collocated sensor and actuator 

 

More details of the actuator parameters are presented in Table 3 for nonlinear 

force calculation.  

 

Table 3 Magnetic bearing actuator parameters for linear & nonlinear comparison case  

Flux area Ag (m
2
) 1.00E-02 

Air gap Lg (m) 5.00E-04 

Flux path in stator Ls (m) 0.2 

Flux path in rotor Lr (m) 0.25 

Number of coil turns N 500 

Bias current Ib (Amp) 1 

Permeability in stator µs(H/m) 0.002 

Permeability in rotor µr(H/m) 0.002 
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The sensor DC gain is 8V/mm, with a high 1
st
 order cut off frequency of 10E5 

Hz. The resulting transfer function of the sensor is 

5.03E9
( )

6.28 5
sensorTF s

s E



                                                (82) 

The PD controller is used, with a transfer function of the form 

 
3

0.1368 1.3712E 5
( )

(1 5 1)
PD

s
TF s

E s

 


 
                                    (83) 

In the linear analysis, the power amplifier is modeled as a DC gain of 1.56 

Amp/V with 1
st
 order low pass filter with a cut off frequency of 960 Hz. In the transfer 

function form, 

                           
9.4248 3

( )
6.0328 3

PA

E
TF s

s E



                                             (84) 

In the nonlinear analysis, the voltage limit of the power amplifier is set to be 80V, 

and the current limit is set to be 10Amp. The coil inductance is 0.002H, and the coil 

resistance is 0.5Ω. The nonlinear BH curve used is as shown in Figure 6, with the 

transient flux intensity of 2 Tesla and the maximum flux intensity of 2.3 Tesla. The 

material permeability for flux intensity under 2 Tesla is 0.016 H/m, and 0.000051064 

H/m for flux intensity between 2 Tesla to 2.3 Tesla.  

For levitation simulation, the rotor’s initial vertical position is -2.5E-4 m. The 

target is to levitate the rotor to the centered position with a vertical displacement of 0. 

The levitation result for both linear and nonlinear is shown in Figure 42.  
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Figure 42 Linear and nonlinear code levitation simulation comparison 

 

Control currents corresponding to the magnetic bearings located at node 7 and 

node 21 in the vertical direction are plotted for comparison as shown in Figure 43. The 

figure shows different current behavior of the power amplifiers in the linear analysis and 

in the nonlinear analysis, even though the currents do not exceed the limit of the power 

amplifier.  

 

 
Figure 43 Linear and nonlinear code levitation simulation comparison_ control current 
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The flux intensities corresponding to the magnetic bearings at node 7 in the upper 

cores and the lower cores are plotted in Figure 44. It clearly shows that in the lower 

cores, the maximum flux intensity exceeds 2 Tesla, which means that the B-H curve 

goes into the nonlinear range and there is flux intensity saturation. This explains the 

differences of the motion and current in the linear and nonlinear analysis.  

 

 
Figure 44 Flux intensity in the nonlinear levitation simulation in the upper cores and the 

lower cores 
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5. FLEXIBLE SUPPORT ANALYSIS OF AMB SYSTEM 

 

The bearing support structure may have a big effect on the rotating machinery 

behavior by altering the effective bearing stiffness and the damping properties. Vazquez 

et al. [26, 27]experimentally studied the effects of the bearing support flexibility on rotor 

stability and unbalance response with fluid film bearings, and demonstrated that the 

analysis of machine vibration response based on rigid bearing supports predict critical 

speeds that are substantially higher than actual values. Nicholas et al. [28]included the 

flexible supports using experimentally measured compliance frequency response 

function (FRF), and presented an improvement in the calculation of the critical speeds 

using the method. API 617 stated that if the foundation flexibility is less than 3.5 times 

the bearing stiffness, then a foundation model should be included.  

This study gives an analytical way to predict the magnetic bearing supported 

rotor system properties with flexible support.  

 

5.1 Dynamics of Flexible Support 

A typical simplified outline of the AMB support is displayed in Figure 45. The 

dynamic characteristics of the support model can be determined experimentally by 

measuring the response of the support under certain external excitations. The general 

process is shown in the block diagram in Figure 46. An impact hammer is used to excite 

the support casing. In a lot of experiments, radial magnetic bearings are used as shakers 

to generate excitations. The acceleration by the excitation is measured by the signal 
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conditioner, and is then processed by the modal analyzer to get the displacement caused 

by the excitation.  

 

Rotor

Support

O

y

z
yR

ys

FMBy

Stator

 
Figure 45 Simplified model plot of the AMB support 
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Figure 46 Modal analysis schematic diagram 
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In this study, we assume that there are two supports, one at each of the magnetic 

bearing locations. The excitation is applied to each support in the horizontal direction or 

vertical direction, one direction at a time. Accelerations with a total of 16 are measured, 

and can be assembled in the matrix as  

1 1 1 1 1 2 1 2 1

1 1 1 1 1 2 1 2 1

2 1 2 1 2 2 2 2 2

2 1 2 1 2 1 2 1 2

1

1

2

2

y y y z y y y z y

z y z z z y z z z

y y y z y y y z y

z y z y z y z y z

a a a a Fy

a a a a Fz

y a a a a F

z a a a a F

    
    
    

    
    
         

                          (85) 

The subscripts 1 and 2 refer to support 1 and 2, respectively. The acceleration 

data is integrated twice to get the displacements. The relations between the response 

displacements and the excitation forces are be expressed in the form of 

1 1 1 1 1 2 1 2 1

1 1 1 1 1 2 1 2 1

2 1 2 1 2 2 2 2 2

2 1 2 1 2 1 2 1 2

1

1

2

2

y y y z y y y z y

z y z z z y z z z

y y y z y y y z y

z y z y z y z y z

G G G G Fy

G G G G Fz

y G G G G F

z G G G G F

    
    
    

    
    
         

                       (86) 

 Let 

1 1 1 1 1 2 1 2

1 1 1 1 1 2 1 2

2 1 2 1 2 2 2 2

2 1 2 1 2 1 2 1

y y y z y y y z

z y z z z y z z

ij

y y y z y y y z

z y z y z y z y

G G G G

G G G G
G

G G G G

G G G G

 
 
 

  
 
 
 

, and ijG is defined for each excitation 

frequency. ijG is called dynamic compliance matrix. Each term of ijG is a polynomial 

transfer function.  
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In multiple-input-multiple-output control, this frequency dependent matrix 

ijG can be treated as a transfer function matrix for the stator system, where the input is 

excitation forces, and the output is the displacement, as shown in Figure 47.  

 

Gij(s)
Input u Output y

 
Figure 47 Transfer function matrix diagram of a MIMO system 

 

This transfer function represented stator system can be written in state space 

form, 

                                            
stator s stator s

s stator

W A W B u

y C W

 


                                         (87) 

where 
statorW is the state variables of the system, u is the input into the system, and y is 

the output of the system. In this case, the input 

1

1

2

2

y

z

y

z

F

F
u

F

F

 
 
 

  
 
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 

, and the output 

1

1

2

2

y

z
y

y

z

 
 
 

  
 
  

.  

 

5.2 Flexible Support Assembling into AMB System 

The state space representation form of the stator has been derived. To get the 

rotordynmaic behaviors of the rotor-bearing-support system, the support model needs to 

be assembled into the system matrix.  

As has been stated, the equation of motion of the rotor can be written as 
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1 1 1

0 0

extU M C M K U M Fd

dt U I U

          
        

       
                    (88) 

Let 0

U
W

U

 
  
 

, then the equation of motion is in the form of 1
st
 order differential 

equation 

                                0 0

0 0

0

0 0 0

extM C K FW Wd

K Kdt W W

          
         

        
                   (89) 

As a result, the state space representation of the rotor can be written as 
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   (90)                     
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where
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, 
AMBTF is the 

coordinate selection matrix for the magnetic bearing forces. For a rotor with n nodes and 

with two radial magnetic bearings located and node i and node j , respectively, the 

AMBTF is in the form of 
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The 
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 term can be written into the form of 0pK W , as has been 

introduced. Let ' pK K K  , then the equation of the rotor can be written as 

      

1 1
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    (93) 

The system electronics, including the sensors, the controllers, the filters, the power 

amplifiers, and the actuators, are assembled into one state space equation in the form of 

                                  
MB MB MB MB MB

MB MB MB

W A W B u

y C W

 


                                                (94) 

where [ ]T

MB sen con pa act filterW W W W W W . The output and input of the state space form 

depend on the electronics represented. The inputs into the sensors are relative 
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displacements between the rotor and the sensors, 
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 are the output of the controllers. They can be extracted from the output of the 

electronics system
MBy . The support model is in the form of  
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                                                  (95) 

where 
su is the input of the support system, which is the magnetic bearing force in this 

case. In this case, we are demonstrating the effects from the dynamics of the support 

model, so the cross-coupling stiffness of the magnetic bearing is neglected. The support 

model is 
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          (96)                                         
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Assemble the rotor, the electronics, and the support into a whole system equation, 

considering that  

1

1

0

2

2

r

r

AMB

r

r

y

z
TF W

y

z

 
 
 

 
 
  

,

1

1

2

2

s

s

s s

s

s

y

z
C W

y

z

 
 
 

 
 
  

, and 

1

1

2

2

cy

cz

MB MB

cy

cz

i

i
TM W

i

i

 
 
 

 
 
  

 

where 
MBTM is the transform matrix from the electronics system to the control current, 

which depends on the states represented by the controllers.  

The final equation of the whole system is in the form of 
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            (98) 

The system stability (eigenvalue analysis), unbalance transient analysis, and 

forced harmonic responses can be obtained by solving this system equation.  

 

5.3 Rigid Support and Flexible Support Comparison 

The comparison between the rigid support and flexible support was based on the 

heteropolar “C” core magnetic bearings, and the coil turn was set to be 100, and the bias 

current was 6 Amps, and resulting position stiffness was -3.6E6 N/m, current stiffness 

was 353.8 N/Amp. According to API 617, if the foundation flexibility is less than 3.5 
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times the bearing stiffness, then a foundation model should be included. For magnetic 

bearings, the bearing stiffness should be effective stiffness, which includes the effects 

from the sensor, power amplifier, PD controller and the actuator, rather than simply the 

position stiffness or the current stiffness. The effective stiffness of a heteropolar “C” 

core magnetic bearing is in the form of 

                         G G Geffective p i pa p sensorK K K                                        (99) 

where pK is the position stiffness, iK is the current stiffness, G pa is the power amplifier 

stiffness, G p is the proportional gain of the PD controller, and Gsensor
is the sensor gain. 

In this example case, the resulting effective stiffness of the magnetic bearing is 1.197E7 

N/m. A flexible support model is described by the compliance frequency response 

function (FRF), and defined as a transfer function matrix ijG . In the study performed by 

Vazquez et al., a highly cross-coupled support transfer function matrix G ij with 24
th

 order 

transfer functions were obtained through measurements. Example cases with low order 

transfer functions in ijG are run and compared with flexible support model, to 

demonstrate the effects induced by the dynamics of the support as well as the cross-

coupled stiffness. Three example cases are given here.  

In the 1
st
 case, assume that there is no cross-coupled term in the ijG matrix. The 

support has a static direct stiffness of 1.8E7 N/m in both the horizontal and the vertical 

directions, which is equivalent to twice of the magnetic bearing effective stiffness. 

Resulting a simple matrix ijG in the form of 
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2

1 0 0 0

0 1 0 01

0 0 1 010 100 2.394 7

0 0 0 1

ijG
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 
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  
 
 

                        (100) 

The resulting unbalance responses of the rotor at node 6, where the magnetic 

bearings are located, are plotted in Figure 48 and compared with the one with rigid 

support model.  
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Figure 48 Unbalance response plot of the flexible support in the 1

st
 case 

 

The 2
nd

 case increases the support stiffness to 6 times the effective stiffness of 

the magnetic bearings, resulting ijG in the form of  

                            
2

1 0 0 0

0 1 0 01
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                             (101) 
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The resulting unbalance responses of the rotor at node 6, where the magnetic 

bearings are located, are plotted in Figure 49 and compared with the one with rigid 

support model.  
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Figure 49 Unbalance response plot of the flexible support in the 2

nd
 case with increased 

support static stiffness 

 

The 3
rd

 case introduces cross-coupled support dynamics into the matrix, making 

the ijG in the form of  
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  (102) 
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where 
1 7.2 7K E , representing a direct stiffness of the support of 7.2 7 /E N m  , and 

2 7.2 8K E , representing a cross-coupled static stiffness of 7.2 8 /E N m . The resulting 

unbalance responses of the rotor at node 6, where the magnetic bearings are located, are 

plotted in Figure 50 and compared with the one with rigid support model. The plot 

indicates that the cross-coupled dynamic compliances increase the amplitude of the rotor 

response to unbalance, thus should be considered in real applications.  
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Figure 50 Unbalance response plot of the flexible support in the 3rd case with cross-

coupled support static stiffness 

 

An unbalance transient simulation with the support model in the 2
nd

 case is 

conducted. The result is shown in Figure 51, which shows that the rotor is unstable with 

this support model. 
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Figure 51 Unstable unbalance transient simulation with flexible support 

 

Increase the coefficient of ‘s’ term, which is equivalent to adding damping into 

the support model while keeping the mass and static stiffness terms, the resulting ijG is in 

the form of  

                            
2
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 

                            (103) 

The unbalance transient simulation is shown in Figure 52, which shows that the 

rotor is stable with added damping in the support model.  

These two examples of unbalance transient simulation shows that different 

transfer functions of the support could affect the rotor behavior significantly. Even with 

same static stiffness of the support, different higher order terms in the transfer function 

(corresponds to support damping in these two examples) might lead to totally different 

behaviors of the rotor. Thus an accurate description of the support model, either through 
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simulation or experimental measurements, is very important in predicting rotordynamic 

performances.   
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Figure 52 Stable unbalance transient simulation and comparison to the rigid support 

 

5.4 Conclusions for Flexible Support 

This section presents a state space representation method to describe the behavior 

of the flexible support, explains how the support model is assembled into the system, 

and shows that the dynamic flexibility in the support could lead to totally different 

rotordynamic behaviors. Examples in which flexible support is modeled with simple and 

low order transfer functions demonstrated that an accurate description of the support 

model, either obtained through simulation or experimental measurements, is very 

important in predicting rotordynamic performances.  
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6. POWER LOSS AND THERMAL FIELD ANALYSIS 

 

Improving the energy efficiency and reducing the power loss are always a major 

concern of the turbomachinery area. Due to the non-contact mechanism of magnetic 

bearings, the power loss of the magnetic bearing supported system is much lower than 

the conventional bearing supported ones without friction loss. However, the uniqueness 

of the magnetic bearings introduces other power loss sources, like hysteresis loss and 

eddy current loss. This part will talk about numerical calculation of the power loss of the 

magnetic bearing system in the steady state operation of the rotor.  

Magnetic bearings have broad applications under extreme environments because 

no lubrication is required in the system. Successful application of magnetic bearings 

demonstrated a temperature as high as 1000 degrees Fahrenheit. This part will show a 

two-dimensional thermal field analysis of the actuator in the steady state operation of the 

rotor with finite element method. 

    

6.1 AMB System Power Loss Analysis 

This part talks about the numerical method to determine the power losses in the 

magnetic bearing-rotor system. Figure 53 shows the power losses of the total bearing-

rotor and electronics system, which come from the actuator, rotor, power amplifier and 

long cables. Cable loss only exists in long cables, thus is generally ignored. As has been 

talked, power amplifiers can be as efficient as 98%. As a result, the power loss analysis 

counts the actuator loss and the rotor loss.  
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Figure 53 Power losses in the magnetic bearing supported system 

 

6.1.1 Power loss in the rotor 

The main losses in the rotor of the magnetic bearings supported system include: 

eddy current loss, hysteresis loss including both alternating hysteresis loss and rotational 

hysteresis loss, and windage loss. [29] 

Rotational hysteresis loss in the magnets is caused by the change of the 

orientation of the magnetic field with respect to the material. The rotational hysteresis 

loss is calculated based on a linear curve fit of the experiment data (Brailsford (1938)), 

which is expressed by: 

                             1 3

max(3000 500) 10 ( / )hr r vrhP B f M watts m                               (104)  

Here, 
vrhM is the effective volume coefficient for the rotational hysteresis phenomenon, 

rf is the effective rotational hysteresis frequency in zH , which is 4 times of the rotational 

frequency for an 8-pole heteropolar AMB, maxB is the maximum flux density in Tesla.  
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The alternating hysteresis loss occurs when the magnitude of the flux intensity in 

a magnetic material changes while the direction remains the same. It is caused by the 

effects of energy diminishing at remagnetization when the iron in the B-H curve 

traversing a complete cycle of the B-H curve. At remagnetization, the iron in the B-H 

curve travels along a hysteresis loop where the energy diminishes by the area enclosed in 

each loop.  

 

 
Figure 54 Alternating hysteresis loss in B-H curve 

 

The loss for one rotor lamination stack is given by the formula from Steinmetz as 

presented by Knowlton (1949) as: 

                          1 3

max(10000 ) 10 ( / )k

ha eff vahP f B M watts m                       (105) 

Here, is the hysteresis coefficient with a value of approximately 0.00046 for a good 

grade of silicon, and vahM is the effective volume factor. For flux densities in the range 
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of 0.15~1.2 Tesla, the exponent k has an approximate value of 1.6. 
maxB and efff are the 

same as they are discussed in the eddy current loss.   

Eddy currents are generated when the flux density within the iron core changes.  

A solid magnetic core acts like a short winding that generates large eddy currents. By 

dividing the iron core into insulated sheets or particles, the eddy currents can be reduced.  

Assuming that the flux in the laminated sheets is sinusoidal and distributed 

evenly, the eddy current losses can be approximated by [24]: 

                              

2 2 2 2

max 3( / )
6

eff vec

e

d B f M
P watts m




                                  (106) 

Here, d is the lamination thickness in meter, ρ is the electric resistivity of the material in 

3kg m , efff is effective remagnetization frequency in
zH , which is 4 times of the 

rotational frequency for the 8-pole heteropolar magnetic bearing, and equal to the 

rotational frequency for the homopolar magnetic bearing. 
vecM is the effective volume 

factor for eddy currents. For the heteropolar radial magnetic bearings, due to the 

alternating of the polarities in the poles, the flux direction in the rotor is also changing 

when it rotates, thus
maxB is the maximum total flux intensity in Tesla. For the homopolar 

radial magnetic bearings, all the poles on the rotating plane of the rotor have the same 

polarity, so the varying flux intensity is only caused by the control flux. Thus for the 

homopolar magnetic bearings, maxB is the maximum control flux intensity. This results in 

the advantage of the homopolar magnetic bearing that the power loss is much lower than 

heteropolar magnetic bearings.  
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The hysteresis loss and the eddy current loss can be summed up as core loss and 

approximated from Carpenter’s catalog [30], as shown on Figure 55.  

 

 
Figure 55 Extended core loss map from Carpenter’s catalog 

 

Windage losses are dominant in high speed machineries, for example in 

compressors and expanders where the gas is under high pressure. Basically, the air losses 

are proportional to the cube of the circumferential speed. Windage losses were 

calculated based on the drag force on a turbulent boundary layer as developed by Von 

Karman, which is approximated by: 

                              
4 3 0.2

2
0.074 ( ) ( )

2
wd gP LR watts

R
 

 


                           (107) 
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Here, g is the air density in 3kg m ,  is the shaft rotational frequency in /rad s , 

and is the viscosity of air in 2 /m s , L is the length of the actuator, and R is the radius of 

the rotor at the bearing locations.  

 

 

6.1.2 Power loss in the stator  

The main losses in the actuator of the magnetic bearings system comes from the 

ohmic loss. The eddy current loss and alternating hysteresis loss exist in the stator. The 

total loss of the system is expressed by 

                               
stator e ohm hic aP P P P                                                (108) 

where
statorP is the total stator power loss, 

eP is the eddy current loss, and 
haP is the 

alternating hysteresis loss.
ohmicP is the ohmic loss, which is caused by the current in the 

coils. The ohmic loss in each of the coil is in the form of 

                                  
8

2

1

( )ohmic i coil

i

P I R watts


                                         (109) 

where iI is the maximum current in the coils for the i
th

 pole, and coilR is the coil resistance 

of the pole.  

The calculation of the eddy current loss and the alternating hysteresis loss is 

similar to the calculation in the rotor. The difference is that in the rotor, the flux intensity 

change is large with the flux direction change. However, in the stator, the direction of 

the flux intensity remains the same. The fluctuation of the flux intensity comes from the 
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variation of the control flux intensity. As a result, the hysteresis loss and the eddy current 

loss in the stator are generally very small and can be ignored. 

As has been stated in part 2, homopolar magnetic bearings generally have lower 

power loss. In homopolar magnetic bearings, there are no changes in polarities in the 

rotational plane. As a result, there is no rotational hysteresis loss in the homopolar 

magnetic bearing supported rotor. Besides, the variation of the flux intensity is much 

smaller than they are in the heteropolar magnetic bearings, causing much lower 

rotational hysteresis loss and eddy current loss. In this research, in the heteropolar 

magnetic bearing supported system, the actuator and the rotor are laminated to reduce 

the eddy current loss.  

 

6.2 AMB Actuator Thermal Analysis  

The power loss components are used as heat sources in the thermal analysis of 

the actuator. The 2D finite element method (FEM) is used to determine the temperature 

distribution and find the hot spot temperature on the actuator. The 3D thermal modeling 

in Solidworks is used to validate the 2D thermal modeling.  

 

6.2.1 Thermal analysis with 2D Finite Element Method 

The 2D finite element method (FEM) is used to determine the temperature 

distribution of the actuator and detect the hot spot temperature on it. The calculation area 

of the actuator is selected based on the symmetry rule, assuming that all the currents in 

the 8 poles are the same, as is shown in Figure 56. As a result, half pole is chosen for 
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calculation. Four-node iso-parametric finite element method is used and the mesh for the 

2D thermal analysis is shown in Figure 57. The Gauss quadrature formula is used for 

numerical integration.  

 

 
Figure 56 Calculation area of the actuator 

 

On the right and left boundaries of the actuator, due to the symmetry, there is no 

heat flow across the two boundaries. On these two boundaries, 

                                                  ˆ 0lq                                                             (110) 

In the actual applications, the outer surface of the stator is connected to the 

housing that dissipates heat efficiently. As a result, the upper boundaries are assumed 

constant room temperature, which is assumed to be 77°F (25°C). On this boundary, 
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                                                                       T const                                                               (111) 

The lower boundaries are forced convective boundary condition when the rotor is 

spinning. All the other boundaries are assumed free convection. 

  

 
Figure 57 Mesh plot of the 2D FEM thermal analysis 

 

In the stator (section I~ IV), the internal heat sources, which comes from the 

eddy current loss and alternating hysteresis loss, are assumed evenly distributed. In the 

coil (section V), the evenly distributed heat sources come from the ohmic loss.  
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6.2.2 Thermal analysis with 3D Solidworks modeling 

The 3D thermal analysis is modeled with Solidworks. The power losses from the 

actuator are modeled as the heat sources. In this check case, assume that in each coil, 

there is 100 watts heat from iron power loss, which is about 5A current through 2 Ω 

resistance (half of the coil in 2D model). In the stator, assume there are 286.2 watts of 

the heat from core loss by Carpenter’s catalog. On the inner surface of each pole, assume 

taht the windage loss is of 2 watts at 1300 rpm spin speed. The outer surface of the stator 

is assumed constant room temperature (77°F). All the other outer surfaces are considered 

as natural convection, with a convection coefficient of 7 2/ /watts m K .  

Figure 58 shows the temperature surface plot of the 2D thermal code, which 

shows a hot spot temperature of 147.8°F in the coil.   
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Figure 58 Temperature surface plot of the 2D modeling with TRC code 
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Figure 59 shows the mesh plot of the heteropolar 8-pole magnetic bearing core 

actuator model with 3D Solidworks thermal model.  

 

 
Figure 59 Mesh plot of the 3D thermal modeling with Solidworks 

 

Figure 60 shows the temperature surface plot of the actuator in the 3D thermal 

modeling, which shows a hot spot temperature of 150°F in the coil. Comparison between 

Figure 58 and Figure 60 shows that temperature distribution in the actuator and the 

predicted hot spot temperature by the 2D FEM thermal modeling code are very close to 

they are in the 3D Solidworks model. The 2D FEM thermal modeling, which takes only 

1/16 of the actuator and assumes that all heat flows in the radial direction, is proved to 

be a reliable and much less computationally expensive way to predict the temperature 

distribution and the hot spot temperature in the actuator. The hot spot temperature will 

be later used as a constraint in one of the optimization example. In the searching and 

iteration, this type of simplified yet accurate model saves computation cost significantly.  
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Figure 60 Temperature surface plot of the 3D thermal modeling with Solidworks 

 

6.2.3 Thermal test with a 6 pole homopolar magnetic bearing actuator 

A thermal test is conducted on a stationery 6-pole homopolar magnetic bearing 

actuator. Figure 61 shows the devices used in the test, including the amplifier, 6-pole 

magnetic bearing actuator, current probe and the thermal couple. The thermal couple 

was used to detect and measure the highest temperature on the stator and coil 

corresponding to different coil current values. In this case, the stator is stationery and 

there is no spinning rotor, thus the only power loss or the heat source in the stator comes 
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from the ohmic loss in the coils. There is no eddy current loss or the hysteresis loss in 

the stator.  

Coil resistance in each of the pole is 0.126 Ω by test result. The hot spot was 

detected and measured by increasing the current from 1A to 5A. The convective 

coefficient was estimated to be h=7.5 2/ /W m K . In this test, the outer surface of the 

stator is free convection boundary, which is different from the constant temperature 

boundary in the 8-pole case where the stator is connected with the housing.  

 

 
Figure 61 Thermal test experimental setup 

 

The main uncertainty in the test comes from the convective coefficient at the free 

convective boundary. The value is dependent on the type of media, gas or liquid, the 
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flow properties such as velocity, viscosity and other flow and temperature dependent 

properties. In general the free convective heat transfer coefficient for air indoors varies 

from 5 ~ 25 2/ /W m K . In this simulation, the free convective boundaries are 

approximated as vertical plate with laminar flow, and using Rayleigh number [8] to 

determine the convective heat transfer coefficient. The Rayleigh number is  

                                                       
3( )s

L

g T T L
Ra






                                             (112) 

The correlations recommended by Churchill and Chu [9] is of the form 

  

2
1/6

9/16 8/27

0.387 
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 
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                        (113) 

The convective heat transfer coefficient for free convection is  

                                          LNu k
h

L
                                                      (114) 

Here, g is the gravity acceleration, Ts is the surface temperature, T is the room 

temperature, L is the characteristic length of the surface, which is the thickness of the 

actuator in this case. v is the kinematic viscosity, α is the thermal diffusivity, and β is the 

thermal expansion coefficient, Pr is the Prandtl number. 

The resulting convective heat transfer coefficients for free convection are 6 ~ 

10 2/ /W m K  when the surface temperature is between 82°F and 200°F, which is the 

temperature range of the convective boundaries. In this simulation, free convection 

coefficient is assumed to be 7.5 
2/ /W m K and the result is compared with the test, as is 

shown in Figure 62.  
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Figure 62 Code result V.S. test result with error bar induced by uncertainty of the 

convective coefficient 

 

The results show that when the free convection coefficient is 7.5 2/ /W m K , the 

test and the simulation give almost identical hot spot temperatures, which means the 2D 

FEM thermal analysis results are consistent with the test. 

Figure 62 also shows the error bar induced by the uncertainty of the convective 

heat transfer coefficient. Points below the line indicate an upper limit of the free 

convection coefficient value of 10
2/ /W m K , while points above the line indicate a 

lower limit of the free convection coefficient value of 6
2/ /W m K . The error induced by 

the uncertainty of the free convection coefficient is significant at high temperatures.  
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7. ISO STANDARD CHECK OF AMB SUPPORTED SYSTEM 

 

The ISO 14839 standards were developed specifically for rotating machinery 

equipped with active magnetic bearings. For conventional oil-film bearings, API 617 

[31] regarding centrifugal compressors is usually applied. However, these standards set a 

peak-to-peak displacement criterion that is too strict for magnetic bearings. Besides, due 

to the control unit in the active magnetic bearings supported rotor-bearing system, the 

stability of the system should be evaluated with the electronic components, including the 

controller, sensor, power amplifier and compensators. The ISO 14839 [1, 32]standards 

are specially designed for magnetic bearing supported turbomachinery systems, which 

requires that the rotating machinery equipped with active magnetic bearings should be 

evaluated: 

- shaft vibratory displacement measured at or close to the AMBS, and  

- working current and voltage measured in magnetic coils or power supply amplifiers, 

and  

- stability margin of the closed loop system 

In this study, a power amplifier model with both current and voltage limit is 

developed. The current and voltage output can be plotted in the transient simulations. So 

the main standard check focuses on the vibratory displacement and the stability margin. 

To note that in the eight edition of API617, a new annex presents an extensive set of 

specifications that AMB supported compressors and expanders must meet for API 

service. For the vibration amplitude and sensitivity margin check, the API617 follows 

the ISO14839.  
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7.1 ISO 14839-2: Evaluation of Vibration 

Reliable operation of the AMB machines requires that the maximum rotor 

displacement lower than the minimum radial clearance (minimum axial clearance for 

axial bearing) to avoid contact between rotating and stationary parts of a machine. Due 

to the larger clearance, magnetic bearings allow larger vibration amplitude than 

conventional bearings. The standards for oil-film bearings can be relaxed for the 

magnetic bearings. The ISO 14839-2 sets limits for the maximum displacement of the 

rotor.  

The catcher bearing clearance is generally set to be the minimum clearance. The 

following figure shows the maximum rotor displacement of a radial magnetic 

bearing
maxD , where 

x  and y are the rotor eccentricities in x, y directions, 

2 xa and 2 ya are the vibration amplitude in x, y directions.  

 

 
Figure 63 Maximum rotor displacement 
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ISO 14839 establishes vibration zone guidelines for magnetic bearings. The 

definitions of each zone are as follows. 

Zone A: The vibratory displacement of newly commissioned machines would 

normally fall within this zone. 

Zone B: Machines with vibratory displacement within this zone are normally 

considered acceptable for unrestricted long-term operation. 

Zone C: Machines with vibratory displacement within this zone are normally 

considered unsatisfactory for long term continuous operation. Generally, the machine 

may be operated for a limited period in this condition until a suitable opportunity arises 

for remedial action.  

Zone D: Vibratory displacement within this zone is normally considered to be 

sufficiently severe to cause damage to the machine. 

In this study, the maximum vibratory displacement is measured in the transient 

analysis, with rotor induced unbalance and other external static force applied on the 

rotor.  

 

7.2 ISO 14839-3: Evaluation of Stability Margin 

ISO 14839 introduced a new approach to evaluate the stability margin of the 

AMB system. The approach is related to the gain margin. The peak magnitude value of 

the closed-loop sensitivity function is inversely proportional to the system gain margin. 

Therefore, a smaller sensitivity function peak corresponds to a larger system gain 

margin, which indicates a larger stability margin.  
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7.2.1 Sensitivity function measurement 

The perturbation and measurement points specified in the ISO 14839-3 standard 

for obtaining the sensitivity function is shown in Figure 64, which can be simplified as a 

block diagram as shown in Figure 65. According to the ISO14839-3, the open-loop 

transfer function or the system’s sensitivity function is measured at rotor standstill 

and/or nominal speed but over the maximum frequency range starting from zero.  

 

 
Figure 64 Excitation and measure point for sensitivity function 

 

 
Figure 65 Simplified block diagram for the Excitation and measure point for the 

sensitivity function 
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In Figure 64 and Figure 65, a point between the sensor and controller was 

selected to injection an excitation  E s . The response signals 
1V and

2V , after and before 

the injection point respectively, are measured. At this injection point,  

                                               
1 2( ) ( ) ( )V s E s V s                                                     (115) 

And the open loop transfer function of the closed loop system is 
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Thus, the sensitivity transfer function is 
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Similar to the ISO 14839-2, four zones are defined in ISO 14839-3 to describe 

the stability of the AMB system.  

Table 4 given by ISO 14839 summarizes the zones for vibration displacement 

and sensitivity. According to the table, for new machines supported on magnetic 

bearings, the maximum displacement should be less than 0.3 of the catcher bearing 

clearance, and the peak sensitivity should be less than 3 (9.5 dB). To be accepted for 

long term operation, it is required that the magnetic bearing supported machines have a 

maximum displacement between 0.3 ~ 0.4 of the catcher bearing clearance, and a 

maximum sensitivity bound between 3 ~ 4 (9.5 ~ 12 dB). If the maximum displacement 

is between 0.4 ~ 0.5 of the catcher bearing clearance, or a maximum sensitivity bound is 

between 4 ~ 5 (9.5 ~ 12 dB), the magnetic bearing supported machines are expected to 

have excessively high vibration. If the maximum displacement is larger than 0.5 of the 
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catcher bearing clearance, or a maximum sensitivity bound is larger than 5 (12 dB), then 

the magnetic bearing supported machines are expected to be damaged by excess 

vibration.   

 

Table 4  Zones and respective boundaries from both ISO 14839-2 and ISO 14839-3 

Zone 
Max. displacement 

bounds 
Peak sensitivity G(jω) bounds Description 

A 0.3max minD C    3 (9.5 )G j dB   New machines 

B 0.3 0.4min max minC D C      3  9.5 4 (12 )dB G j dB   
Acceptable for long 

term operation 

C 0.4 0.5min max minC D C      4 12 5 (14 )dB G j dB   
Excessively high 

vibration 

D 0.5max minD C    5 (14 )G j dB   
Machine damage 

expected 

 

7.2.2 Sensitivity function by simulation 

As shown in Figure 65, the open loop transfer function of the system can be 

described as 

                                            0 ( ) ( ) ( )c pG s G s G s                                                      (118) 

Here ( )cG s is the transfer function of the controller, including lead and/or lag 

compensators, notch filters, and any other additional filters. ( )pG s is the transfer function 

of the plant, including the system components of sensor, amplifier, and actuator, as 

shown in Figure 66. So the open loop transfer function is in the form of 

        0( ) ( ) ( ) ( ) ( ) ( )c PA act rot senG s G s G s G s G s G s                                   (119) 
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Figure 66 Block diagram for excitation and measure point for sensitivity function 

 

The transfer function of the controller, power amplifier, and sensor can be 

defined easily. The actuator transfer function can be defined as the 2nd order filter with a 

DC gain that is equivalent to the current stiffness in that direction.  

The rotor transfer function can be defined by the ratio of the displacement at the 

sensor to the magnetic force generated in the corresponding actuator.  

The equation of motion of the AMB supported system can be described by: 

                                                   MX CX KX F                                                 (120) 

The position stiffness of the magnetic bearing is included in the K . Substitute 

j tX Xe  and j tF Fe  into the equation of motion and  

                                2( )M j C K X F                                          (121) 

                                                    2 1( )X M j C K F                                         (122) 

Let 2 1( ) ( )R M j C K       , then 

                                                     ( )j jk kX R F                                                      (123) 

The transfer function of the rotor, which describes the magnitude and phase angle 

between the rotor displacement at the sensor location ( jX ) and the corresponding 

magnetic force generated by the actuator ( kF ), is 
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                                                    ( ) ( )
j

rot jk

k

X
G j R

F
                                          (124) 

Finally, the open loop transfer function can be written in the function of the 

sweep frequency   

                      ( ) ( ) ( ) ( )o c PA act rot senG G s j G s j G s j G G s j                     (125) 

Then by
1

1
s

o

G
G




, the sensitivity function can be obtained as 

                 
1

1 ( ) ( ) ( ) ( )
s

c PA act rot sen

G
G s j G s j G s j G G s j   


                  (126)  

Now the stability margin of the system can be obtained by evaluating the 

magnitude of this frequency dependent sensitivity function.  

 

7.3 Example of ISO Standard Check 

The example of the ISO standard check is based on the linear case in part 4. The 

exemplary plot of the transient analysis with rotor unbalance, with same setups as in 4.2, 

is as presented in Figure 67. The catcher bearing clearance is 0.25mm, and the maximum 

displacement is 0.096mm, which is 0.39 of the catcher bearing clearance. The vibratory 

displacement falls into the zone B in the ISO standard, which is acceptable for long-term 

use of the magnetic bearing supported system. As shown in the plots, the maximum 

magnitude of sensitivity function in the z direction is smaller than 3, which indicates that 

the system in the z direction satisfy the zone A stability requirements, which is for new 

machines.  
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Figure 67 Unbalance transient analysis for ISO standard check 
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Figure 68 Exemplary sensitivity function magnitude plots 
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8. HOMOPOLAR AMB OPTIMIZATION DESIGN EXAMPLE
*
 

 

In this section, an optimization design example based on homopolar magnetic 

bearing actuator supported rotordynamic system is presented. Homopolar magnetic 

bearings, which have much lower power loss and higher energy efficiency, have been 

widely used especially in the satellites. However, the more wide spread use of the 

homopolar magnetic bearings is limited by their complicated structure. This section 

presents an example design of the homopolar magnetic, which can optimize the actuator 

and the controller parameters simultaneously, to achieve a design with the minimum 

actuator mass, the minimum vibration amplitude at steady state operation, and the 

minimum power loss.  

 

8.1 Homopolar AMB Optimization Problem Statement 

In this study, the actuator mass, the steady state vibration amplitude, and the 

power loss are evaluated and set as three minimization type objectives. The objectives, 

design variables, and constraints are illustrated in this part. 

 

8.1.1 Objectives 

One of the main concerns in the designing of the homopolar magnetic bearings is 

 

* 
Copyright [2015] by ASME: Part of the data reported in this section is reprinted with permission from 

Zhong, W., and Palazzolo, A., 2015, "Magnetic Bearing Rotordynamic System Optimization Using Multi-

Objective Genetic Algorithms," Journal of Dynamic Systems, Measurement, and Control, 137(2), p. 

021012. 
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to reduce the actuator mass, especially in the application of air space area. As a result, 

minimizing the total actuator mass is set as the first optimization goal. The total actuator 

mass includes the mass of the stator, mass of the coil, mass of the permanent magnet, 

and mass of the back iron. The actuator mass can be expressed as 

                    Total s coil pm biW W W W W                                               (127) 

where
sW is the mass of the stator, 

coilW is the mass of the coil, pmW is the mass of the 

permanent magnet, and biW is the mass of the back iron and  

                                       
s s sW V                                                               (128) 

                        2 2 4 ( )s s c p p c pV r r l A r r                                          (129) 

where
sr is the outer diameter of the stator, pl is the length of pole along the rotor axis, 

pA  is the cross sectional area of the pole.  

The weight of the coil is 

                                        4coil c cW V                                                        (130) 

where
cV is the volume of the coil and  is the coil packing factor 

                           
(( 2 )( 2 ) )

2 ( 2 )

c p c p c p p c

c c p c p

V w t l t w l l

t l w t l

   

  
                                   (131) 

and 2( / 2)c c c wA t l N d  , so 2( / 2) /c w cl N d t . 

The weight of the permanent magnet is 

                                  8
pm pm m m

W A L                                                     (132) 
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where 
pm

 is the mass density of the permanent magnet, 
m

A is the cross sectional area of 

the permanent magnet and 
m

L is the length of the permanent magnet.  

The weight of the back iron is: 

                                 2 2
(( ) )

bi bi r s bi s
W L r t r                                          (133) 

where 
bi

  is the mass density of the back iron.  

The steady state vibration amplitude from unbalance response indicates the rotor 

sensitivity and the effectiveness of the bearing damping, thus is selected as the second 

objective of optimization design. Steady state vibration amplitude is obtained from the 

unbalance transient analysis. In this study, the rotor unbalance is defined at node 11, 

which is the center of the rotor that excites the first mode most, with a phase angle of 

90°.  

The main losses in the homopolar magnetic bearings system include: eddy 

current loss, windage loss, ohmic loss, and hysteresis loss. [29] The total loss of the 

system is expressed by: 

                                  Total wd ohmic coreP P P P                                              (134) 

where 
TotalP is the total system power loss and

ohmicP is the core loss of the actuator 

consisting of eddy current loss and hysteresis loss.  

The calculation of the windage loss has been stated in part 3.4. The ohmic loss is 

in the form of 

                               2

max ( )ohmic p coilP n I R watts                                         (135) 

where maxI is the maximum current in the coil and coilR  is the total resistance of the coil.  
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                  2/ 4 / ( )coil cu coil w cu coil wR Nl A Nl d                                 (136) 

where 
coill  is the average length of the coil per turn, which is the circumferential length 

of the blue center line in Figure 4 (b). The equation for the average length of the coil per 

turn is written as: 

                              2( 2 )coil p p cl l w t                                                 (137) 

The eddy current loss and hysteresis loss can be calculated according to the 

equations in chapter 3. In this case study, the eddy current loss and hysteresis loss are 

summed up as core loss and approximated from Carpenter’s catalog [30],  as shown on 

Figure 69.  

 

 
Figure 69 Extended core loss map from Carpenter’s catalog 
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8.1.2 Design variables 

To achieve the design objectives, 10 design variables, including 8 parameters 

describing the actuator geometry, and 2 parameters defining the gains of the PD 

controller, are selected. The design variables and their boundaries are listed in Table 5. 

  

Table 5 Design variables and bounds for homopolar AMB optimization example 

Design Variable  Design Variable Lower Bound Upper Bound 

1 pole length along rotor axis, ( )pl m  0.01  0.08 

2 air gap clearance, ( )gl m  0.0003  0.0012 

3 permanent magnet thickness, ( )mt m  0.005 0.03 

4 permanent magnet length, ( )mL m  0.008 0.08 

5 air gap area, 
2( )gA m  0.0001 0.005 

6 permanent magnet area, 2( )mA m  0.0001 0.01 

7 coil turns, N  30 200 

8 stator inner radius, ( )cr m  0.055 0.25 

9 proportional gain, pG  5 80 

10 derivative gain, 
dG  0.005 1 

 

8.1.3 Constraints  

The optimization constraints come from the physical configuration, stability of 

the rotordynamic system, power amplifier limits, material properties, etc. In this 

MOGAs optimization of HOMB supported rotordynamic system, 11 constraints were 

applied in the NSGA-II code: 

1.  The closed loop controlled system should be stable, with all eigenvalues of the 

characteristic matrix sysA in the left half plane, which can be written as 

                                            ( ( )) 0maxreal                                                   (138) 
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where is the eigenvalue of the closed loop system characteristic matrix sysA , ( )real  is 

the real parts of the eigenvalues, and ( ( ))maxreal  represents its maximum value.  

2. The power amplifier current is limited by its saturation value and can be 

expressed by 

                                                   
max sati i                                                      (139) 

where 
maxi  is the maximum power amplifier current in the levitation simulation and 

unbalance analysis, which is extracted from the transient analysis. 

3. The power amplifier voltage in the unbalance analysis and levitation simulation 

is limited by the saturation voltage of the power amplifier. 

                                                pmax psatV V                                                    (140) 

where pmaxV is the maximum power amplifier voltage in the levitation simulation and 

unbalance analysis, which is extracted from the transient analysis. 

4.  The flux density is limited to the saturation flux density of the actuator material, 

                                                 
max satB B                                                     (141) 

where 
satB is the saturation flux intensity and

maxB is the maximum flux intensity. The 

maximum flux density 
maxB is obtained through solving the circuit equation with the 

control current and the respective rotor displacement when the control current is the 

maximum throughout the levitation and rotor unbalance analyses, i.e.  

                                        maxcy czi i i                      (142) 

   ,i i i i
c max c max

y y z z                                        (143) 
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5. The space of the total actuator is limited in the radial direction by the maximum 

outer diameter of the back iron.  

             
maxBID D                                                   (144) 

where 2( )BI s bi mD r t t   and 
maxD is the maximum outer diameter of the back iron 

defined.  

6.  The length of the coil bulk is limited by the stator and can be expressed as 

 
maxc cl l                                    (145) 

where   2 2

max
( / 2)c c c p pl r t w r    .  

7.  Width of the coil bulk is defined 5 times bigger than the diameter of the coi,  

      5c wt d                                        (146) 

where wd is the diameter of the coil, and 
ct is the width of the coil bulk. For this 4-poles 

case, 

      tan45 / 2c p pt r w                            (147) 

8. The space of the permanent magnet is limited. The area of the permanent magnet 

can be expressed by  

      2 2( ( ) ) / 2m s s mA r r t                                        (148) 

where is the angle of arc of the permanent magnet, and is limited by 

                                                                 2 / pn                                                   (149) 

where pn is the number of poles on each stator, and 4pn  in this case.  
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9.  According to the API 617 [31], the maximum amplification factor(AF) is 

defined less than 5.  

                                                               
max( ) 5iAF                                      (150) 

The amplification factor is directly related to the damping ratio of the closed loop 

system in the form of 
1

2
i

i

AF


 , where 
i  is the damping ratio of the system defined by 

the eigenvalues in the form of 
( )

| |

i
i

i

real 



  , i=1,2,3,…, 332. This amplification factor 

constraint is to ensure that the closed loop controlled system should be able to supply 

sufficient damping.   

10. The actuator length is limited by
rmaxL , which is the maximum actuator length 

defined  

                                                         r rmaxL L                                                          (151) 

The flowchart of the code is shown in Figure 70.  As can be seen from the 

flowchart, the good design should be able to: 1) stabilize the rotor system; 2) levitate the 

rotor from the initial position; 3) minimize the three objectives including the actuator 

mass, the steady state vibration amplitude, and the power losses simultaneously.  

In the standard NSGA-II, all the constraints are treated independently and 

equally, which from the first generation, for each population in each generation, all the 

analysis, including eigenvalue analysis, time transient response analysis, and power 

loss analysis, etc. are required. In this study, to speed up the optimization, the 

optimization first checks the physical confliction constraints. For example, the 6
th
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constraint listed above, that the length of the coil bulk is limited by the stator, is 

expressed by a simple equation and can be checked quickly at very low computation 

cost. If there are physical conflictions of the actuator parameters, it will be unnecessary 

to do eigenvalue analysis, time transient response analysis, and power loss analysis, etc. 

In such cases, all the following eigenvalue analysis, transient analysis, power loss 

analysis, etc. are skipped. Extremely “poor” objective values and constraint values are 

assigned to these design variables so that the optimization would filter out these designs 

quickly. With similar strategy, the eigenvalues are then checked for system stability of 

the system without physical conflictions. Time transient levitation simulation are only 

conducted for the stable system without physical conflictions to check if the system has 

enough dynamic load capacity to lift the rotor from an initial position. For the system 

with enough dynamic load capacity, an unbalance transient simulation is then 

conducted. The power loss is determined for the steady state operation in the unbalance 

transient analysis to work as one of the optimization objectives. Since the initial 

generation is randomly created, most of the populations in the early generations might 

physical conflictions. No eigenvalues analysis, transient analysis, or power loss 

analysis are required for them. For the early generations, the computation can be very 

fast with the strategy. As the optimization continues, the populations get better with 

less physical conflictions. The eigenvalues analysis, transient analysis, and power loss 

analysis are more frequently required and the optimization slows down. 
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Figure 70  Flowchart of multiple objective optimization of HOMB system with NSGA-II 

code 

 



 

129 

 

8.2 Rotordynamic System Assembling 

The optimization is based on the FEM flexible rotor model with 6 degree of 

freedom Timoshenko beam element. In this example, there are 23 nodes of the rotor, 

resulting in 138 states in U.  Simulations verified that 23 nodes yielded converged 

natural frequencies and responses. The blue circles on the rotor indicate the nodes for the 

magnetic bearings and their respective sensors. The bearings are located symmetrically 

with respect to the mid cross section of the rotor (Node 11). The controllers, power 

amplifiers, sensors, filters and compensators of the closed loop controlled system are 

represented by the transfer function forms, and then converted into state space 

representation forms to assemble into motion of equation of the rotor. The total system 

can be summarized as a first order ordinary differential equation with 332 dimensions, 

which is in the form of  

                          

1 4 1 12 1 81 276 1 4 1 28

[ ]T T T

sys sen con pa act filterW U U W W W W W

    

                                     (152) 

where senW  includes the state variables of the sensors, which are modeled as a DC gain 

with a first order filter. conW includes the state variables of the PD controllers. paW  

includes the state variables of the power amplifiers modeled as a DC gain with a 1
st
 

order filter with an output current and voltage limit in the linear range. 
actW includes the 

state variables of the actuator with 2
nd

 order filters. filterW includes the state variables of 

the additional low pass filters (5Χ4), lead compensators (1Χ4) and lag compensators 

(1Χ4). 
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The sensor used in the system is modeled as a DC gain of 1181V/m with a 1
st
 

order filter of high bandwidth (cut-off frequency set to be 15.9 kHz). The resulting 

transfer function of the sensor is  

                               
1181

( )
1 5 1

senTF s
e s


 

                                              (153) 

The power amplifier is modeled as a DC gain of 1A/V with a 1st order filter of 

100 Hz cut-off frequency and is limit to output current and voltage saturation. In the 

linear range while the output current and voltage are less than the limits, the transfer 

function of the power amplifiers is  

                             
12.5664

( )
0.02 12.5664

paTF s
s




                                       (154) 

The transfer function of the PD controller is written as     

                               
2

( 1)( 1)
( )

p d

P d

con

G G s
TF

s s
s

 




 
                                      (155) 

where the proportional gain and derivative gain, pG and 
DG are two of the design 

variables to be optimized, p and
d

 are the time constants of the proportional gain and 

derivative gain respectively. p and
d

 are both set to be small as 1e-5 to ensure high 

bandwidth of the PD controller. Other system constant parameters are listed in Table 6. 

The maximum flux intensity is limited to 2 Tesla, the saturation voltage of the power 

amplifier is set to be 220 V, and the saturation current of the power amplifier is set to be 

15Amps.  
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Table 6 Constants and input parameters for homopolar AMB optimization example 

Symbol Quantity Value 

μ0 free air permeability 74 10 /H m   

pm  permeability of permanent magnet 61.35 10 /H m  

satB  saturated flux density 2.0Tesla  
  coil packing factor 0.85 

wd  wire diameter 0.00129 m 

r  weight density of rotor 7850 3/kg m  

s  weight density of stator 7770 3/kg m  

c  weight density of coil 8910 3/kg m  

bi  back iron weight density 7850 3/kg m  

pm  permanent magnet density 7400 3/kg m  

air  air density 1.2 3/kg m  

bit  back iron thickness 0.01 m  

air  air viscosity 5 21.501 10 /m s  

cu  resistivity of copper 81.68 10 m   

cH  permanent magnet coercive field intensity 633000 /A m  

/s cr r  ratio of stator outer diameter to coil radius 1.1 

maxD  maximum back iron outer diameter 0.4 m  

sM  volume ratio of the flux path in the stator 0.4 

rM  volume ratio of flux path in the rotor 0.3 

satV  power amplifier saturated voltage 220V  

sati  power amplifier saturated current 15 A  

 

8.3 Homopolar AMB Optimization Results 

The optimization design results of the HOMB supported rotordynamic system 

under different rotor spin speeds are displayed in this part. Different control strategies 

will also be compared and discussed.  The multiple objective optimization result is 

presented in the form of Pareto frontier. For the solutions on the Pareto frontier, which is 

called Pareto optimal solutions or non-dominated solutions, no improvement is possible 
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in any objective function without sacrificing the other objectives. Thus on the Pareto 

frontier, all the solutions are optimal compromises among the conflicting objectives.  

 

8.3.1 HOMB optimization with MOGAs under different spin speed 

The spin speed of the rotor affects the windage loss and the unbalance of the 

rotor system. Optimizations were conducted at multiple speeds in order to illustrate the 

design process which includes accounting for variations in vibration behavior with 

speed. Speeds of 3600 rpm, 7200 rpm and 9000 rpm were selected to be representative 

of those occurring in industrial rotors for this size and weight class. The optimization 

starts with a random generated initial generation with 60 populations, and the 

optimization is convergent after 150 generations. The initial rotor positions are set to be 

40% of the air gap clearance under the centered position. In each generation and each 

population, it varies with the air gap clearance, which is one of the design variables.  

The Pareto frontiers in the final generation of the 3 objective HOMB 

optimization when the rotor spin speed is 3600 rpm, 7200 rpm and 9000 rpm are shown 

in Figure 71- Figure 73. The unbalances are set at node 11, which is the center of the 

rotor and excites the 1
st
 mode most. The unbalances are 1.45 kg∙mm, 0.36 kg∙mm and 0.3 

kg∙mm for the spin speed at 3600 rpm, 7200 rpm and 9000 rpm respectively. The Pareto 

frontiers in all the three plots clearly show the trade-off between the vibration amplitude 

and the actuator mass under different spin speeds, namely decrease in the vibration 

amplitude causes an increase in the actuator mass and vice versa.  
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Figure 72 shows that in the Pareto-optimal solution on the Pareto frontier, the 

smaller actuator mass and power loss will result in high steady state vibration amplitude 

and vice versa. When both the actuator mass and the vibration amplitude approximate 

the minimum values, which is at the left corner of the Pareto frontier, the power loss 

approached the maximum.  

Figure 73 shows that to get less vibration amplitude, either the power loss or the 

actuator mass is increased. Also, the red dots at the left corner of the Pareto frontier 

show that when both the vibration amplitude and actuator mass are close to the 

minimum, the power loss is about the maximum.  

 

 

Figure 71  Pareto frontier of the multi-objective HOMB optimization- 3600 rpm (a) 

Pareto frontier (b) top view of the Pareto frontier 
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Figure 72  Pareto frontier of multi-objective HOMB optimization- 7200 rpm    (a) Pareto 

frontier (b) top view of Pareto frontier 

 

 

Figure 73  Pareto frontier of the multi-objective HOMB optimization- 9000 rpm (a) 

Pareto frontier (b) top view of the Pareto frontier 

 

The general trends shown in the Pareto front plots in Figure 71, Figure 72 and 

Figure 73are a reduction of vibration with increased actuator mass, a “threshold actuator 

mass” below which the vibrations rise sharply, and increasing power loss with increasing 
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actuator mass. The peak vibration amplitude depends somewhat inversely with actuator 

mass. A second, and more subtle trend, is that the minimum achievable vibration on the 

Pareto front increases by approximately 25% as rotor speed increase from 7200 rpm to 

9000 rpm. 

Two points A and B on Figure 71, representing two sets of different designs are 

compared. The values of the 10 design variables at the two points are listed in the Table 

7. The values of the three objectives and the amplification factors (AF) at the two points 

are listed in the Table 8. 

Figure 74 shows the levitation simulation and rotor unbalance transient analysis 

of Point A on Figure 71.  Figure 75 shows the levitation simulation and rotor unbalance 

transient analysis of Point B on Figure 71.   

At point A, the optimization design result in an HOMB system which has an 

actuator of 3.81kg, and the steady state vibration amplitude with rotor unbalance is 

0.016mm, and the power loss from the actuator is 24.7 watts. At point B, the 

optimization design result in an HOMB system which has an actuator of 13.3kg, and the 

steady state vibration amplitude with rotor unbalance is 0.007mm, and the power loss 

from the actuator is 18.1 watts. At both points, the rotor is successfully levitated from 

the catcher bearing positions and show good unbalance transient performance. As is 

clearly shown on the figures, the optimization design at point B has a much smaller 

vibration amplitude than it does at point A, but in the sacrifice of the actuator mass and 

power loss.  
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Table 7 Optimized design variables of point A and B on Figure 71 

Design Variable Design Variable Point A Point B 

1 pole length along rotor axis, ( )pl m   0.01 0.028 

2 air gap clearance, ( )gl m  0.00033 0.00030 

3 permanent magnet thickness, ( )mt m   0.005 0.018 

4 permanent magnet length, ( )mL m   0.023 0.036 

5 air gap area,
2( )gA m   0.00039 0.0025 

6 permanent magnet area, 2( )mA m   0.0014 0.0041 

7 coil turns, N  56 43 

8 stator inner radius, ( )cr m  0.081 0.083 

9 proportional gain, pG  60.3 27.6 

10 derivative gain,
dG   0.25 0.19 

 

 

Table 8 Objectives and amplification factors of point A and B on Figure 71 

Variable  Variable description Point A Point B 

1 Actuator mass( kg ) 3.81  13.3  

2 Power loss( watts ) 24.7 18.1 

3 Vibration amplitude( mm) 0.0155  0.0066 

4 Amplification factor 2.43 3.62 

 

 
                                              (a)                                                   (b) 

Figure 74  Levitation simulation (a) and unbalance transient (b) analysis of point A on 

the Pareto frontier on Figure 71 
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      (a)                                                                  (b) 

Figure 75  Levitation simulation (a) and unbalance transient (b) analysis of point B on 

the Pareto frontier on Figure 71 

 

8.3.2 HOMB optimization design with MOGAs using 2 stage control  

The transient analysis includes two stages: the levitation stage where the actuator 

lifts the rotor from an initial position at zero speed, and the steady state stage where the 

rotor is spinning at a constant speed with an unbalance applied. In the levitation stage, 

due to the rapid change of displacement, the required magnetic force is large. So the 

voltage and current of the power amplifier, and the flux intensity in the poles, are very 

easily saturated. In the levitation stage, the controller needs to be carefully designed to 

avoid heavily saturated operation.  

Figure 76 shows the HOMB optimization design with MOGAs using different 

PD controllers for the levitation stage and the steady state stage. The code is run when 

the spin speed is 3600 rpm, with all the other parameters staying the same with the 

optimization using the same controller throughout the two stages. To use different PD 

controllers for the levitation stage and the steady state stage, two extra PD controller 

gains are introduced as two additional design variables, resulting in 12 design variables.  
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Figure 76 Pareto frontier of the multi-objective HOMB optimization with 2 stage 

control- 3600 rpm (a) Pareto frontier (b) top view of the Pareto frontier 

 

 

Compared with Figure 71, it clearly shows a significant reduction of the steady 

state vibration amplitude and the actuator mass without too much increase in the power 

loss when using the 2 stage control.  

To better demonstrate the benefits from the 2 stage control, Figure 77 is 

presented with the top views of the Pareto frontiers of the multi-objective HOMB 

optimization with single controller and 2 stage control under 3600 rpm spin speed. 

Compared with the single controller control, at the left corner on the Pareto frontier of 

the 2 stage control, the optimization comes with designs that the systems have much 

smaller actuator mass, lower vibration amplitude without much increase in the power 

loss.   
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Figure 77  Top views of the Pareto frontiers of the multi-objective HOMB 

optimization with single controller and 2 stage control- 3600 rpm 

 

Figure 78 is the top view of the Pareto frontier of the multi-objective HOMB 

optimization with single controller and 2 stage control under 7200 rpm spin speed. It 

also shows that the 2 stage control strategy reduces the actuator mass and vibration 

amplitude simultaneously compared with the single stage control.  

 



 

140 

 

 

Figure 78 Top views of the Pareto frontiers of the multi-objective HOMB optimization 

with single controller and 2 stage control- 7200 rpm 

 

 

Figure 79 Top views of the Pareto frontiers of the multi-objective HOMB optimization 

with single controller and 2 stage control- 9000 rpm 

 

Figure 79 is the top view of the Pareto frontier of the multi-objective HOMB 

optimization with single controller and 2 stage control under 9000 rpm  spin speed. It 
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shows that at high spin speed (9000 rpm), the benefit from the 2 stage control is less than 

at the low spin speeds. However, the 2 stage control is still better than the single 

controller strategy in the optimization of the HOMB with the designs that comes with 

smaller steady state vibration amplitude with same amount of unbalance. 

 

8.4 Summary of the HOMB Optimization Example 

In this example, the NSGA-II algorithms are used to optimize the actuator and 

the PD controller of the homopolar magnetic bearing supported rotordynamic system. 

Three minimization type objectives are defined, including the actuator mass, the 

unbalanced rotor induced steady state vibration amplitude, and the power losses from the 

actuator. Eight actuator parameters and two PD controller gains were selected as design 

variables. Constraints were handled using the penalty-parameter-less method.  

The best compromised optimization solutions, which are called Pareto solutions 

are presented in the form of Pareto frontier. For all the Pareto solutions, none of the 

objective can be improved in value without sacrificing any of the other objective. In this 

study, the Pareto solutions for the three objectives are given by the NSGA-II algorithms. 

Closed-loop control of the rotordynamic system was simulated including both the 

levitation stage at zero spin speed and the steady state stage of the spinning, unbalanced 

rotor. A 2 stage control approach was utilized, which used different PD controllers for 

the levitation stage at zero speed, and at a steady state operating speed with unbalance. 

The 2 stage control approach is demonstrated to be able to further optimization one or 

more objectives.  
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This optimization uses linear analysis but with limits applied on the flux 

intensity, power amplifier voltage and current to count for the nonlinearities in the actual 

system. This means that designed system is not allowed to run in the saturation. But in 

real application, systems run in some extent of saturation may have higher load capacity 

and lower power loss. In the next section, a nonlinear model based on heteropolar 

magnetic bearing actuator which allows system saturation will be introduced.  
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9. HETEROPOLAR AMB OPTIMIZATION DESIGN EXAMPLE 

 

In the previous section, we optimized the design of the actuator and the controller 

of the homopolar magnetic bearings supported rotor-bearing system using NSGA-II 

algorithms. The three minimization objectives included the shaft dynamic response 

(vibration), the actuator mass, and the actuator power loss. The magnetic bearing forces 

were linearized and represented by the bearing stiffness and the current stiffness. The 

study considered the nonlinearities in the AMB supported systems by limiting the power 

amplifiers and actuators operating in the linear range.  The power loss in the actuator 

was estimated by the Carpenter’s catalog map. The transient performance of the rotor 

with two stages was simulated; one was the levitation stage where the rotor was lifted 

from the catcher bearing locations at zero spin speed, and the other was the steady state 

stage where the rotor was spinning with rotor unbalance induced force. The present work 

is designed to optimize the design of the full nonlinear rotor-bearing system supported 

with heteropolar magnetic bearings. The goal is to get the most compact actuators with 

the highest static load and the lowest power loss under a certain hot spot temperature 

constraint and to the satisfaction of the ISO 14839 [32] standards. Compared with the 

previous work, the following novelties and improvements are made, 1) the simulated full 

nonlinear modeling allows the designed systems to run in the nonlinear range with 

saturation of power amplifiers and flux intensity. 2) Power loss from not only the 

magnetic bearing actuators but also the rotor was numerically determined since rotor 

loss can be significant in heteropolar AMBs systems. 3) Thermal modeling is included 
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with the finite element method (FEM) to determine the temperature distribution and 

predict the hot spot temperature of the designed magnetic bearing actuator. 4) The 

system is designed to bear a maximum additional static load applied at the center of the 

rotor in the steady state operation. 5) The steady state vibration amplitude and the 

sensitivity margin of the designed systems are checked to satisfy the ISO 14839 [32, 33] 

standards.  6) The optimization process is also managed by the optimization software 

Isight, which integrates the MATLAB code and conducts the optimization part. Different 

multi-objective algorithms in Isight were tested on this optimization problem, and finally 

NSGA-II and NCGA are selected to compare with the MATLAB coded NSGA-II 

algorithms due to their efficiency in finding feasible solutions and their fast convergence 

to the Pareto frontier.  

 

9.1 Heteropolar AMB Optimization Problem Statement 

In this study, three objectives are considered: minimizing the actuator mass, 

maximizing the static load at the center of the rotor, and minimizing the system power 

loss. Ten design variables, including the parameters describing the stators, the coils, the 

controllers, and the external static load are selected. The thermal analysis is coupled with 

the rotordynamic analysis so that the hot spot temperature at the steady state operation of 

the system can be predicted, and then checked with the upper temperature limit set as a 

constraint. Optimization constraints also include ISO standard check, and rotor levitation 

check to make sure the designed system has enough system dynamic capacity to lift the 

rotor.  
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9.1.1 Objectives 

Reducing the actuator mass has been a major concern for the magnetic bearing 

design, especially in the applications of aerospace. According to NASA news, it costs 

$10,000 to put a pound of payload in Earth orbit. Schweitzer and Maslen [21] stated that 

a reduced unit load capacity is the main drawback of magnetic bearings in comparison to 

the rolling element bearings and fluid film bearings. Increasing the size of magnetic 

bearings at the design stage has been the way to solve the load capacity problem, 

resulting magnetic bearings generally having a larger size and mass. With all these 

concerns, the actuator mass is selected as the first optimization objective. The geometry 

of the stator and the coil is shown in Figure 7. The mass of the stator is  

                                        s s s pM A l                            (156) 

where 
s is the mass density of the stator, pl is the effective length of the bearing, which 

is also the length of the pole, 
sA is the surface area of the stator on the flux plane. 
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r
  , sr is the radius of the stator, cr is the radius of 

the available coil space, pw is the pole width, and pr is the pole tip radius. 

The mass of all the coils on the poles is  

                                            8c c cM V                                                      (158) 
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where 
cV is the volume of the coil and 

c is the coil packing factor. 
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and 2( / 2)c c c wA t l N d  , so 2( / 2) /c w cl N d t . The thickness of the coil 
ct is 

                              tan( / ) / 2c p p pt r n w                                             (160) 

where pn is the number of poles on each of the stator. In this case, 8pn  . 

As a result, the total mass of the actuator is 

                                    8actuator s s c cM V V                                              (161) 
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         (162) 

As has been stated, a reduced unit load has been the main drawback of the 

magnetic bearings. Maximizing the static load is significant in the design of the 

magnetic bearings, thus is set as the third objective of the optimization. 

An external static load is applied during the steady state operation at the center of 

the rotor in the same direction as the gravity force. An unbalance transient simulation is 

conducted with this static load. Therefore, in this transient process, the external forces on 

the rotor include the gravity force, rotor unbalance induced force, and this external static 

load. As listed in Table 9, the static load is also one of the design variables.  

Minimizing the overall power loss is significant since it increases the efficiency 

for turbomachinery. The total power loss from the rotor and the stator during the steady 
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state operation of the system is evaluated and set as an objective to be maximized. In this 

operation, the horizontal rotor is loaded with an unbalance force and an external static 

force both at the center of the symmetric rotor. 

   

9.1.2 Design variables 

Ten design variables, reflecting the variation of the stator dimension, rotor 

profile, and the control strategy, are selected. The design variables and their respective 

bounds are listed in Table 9. Besides, this example also optimize the maximum static 

load of the magnetic bearing support system, thus the static load is also defined as a 

design variable.   

 

Table 9 Design variables and respective bounds for heteropolar AMB optimization 

example 

Design 

Variable 

Quantity Lower 

Bound 

Upper 

Bound 

1 bias current in the coil, ( )bI A  2 12 

2 coil turn, N   60 200 

3 cross sectional area of flux path in the air 

gap,
2( )gA m  

0.0002 0.003 

4 radius of the rotor, ( )rR m   0.05 0.1 

5 width of the pole, ( )pw m   0.015 0.04 

6 radius of the coil space, ( )cr m   0.06 0.15 

7 outer diameter of the stator, ( )sr m   0.08 0.16 

8 proportional gain of the controller, pG  5 30 

9 derivative gain of the controller, dG  0.01 0.05 

10 static load, ( )statF N   0 15,000 
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In this study, the power amplifier saturation voltage is set to be 220V, and the 

power amplifier saturation current is set to be 15A. The DC gain of the power amplifier 

from input voltage to output current is 1V/A. The bandwidth is set to be 6283rad/s, 

which is a typical 1kHz for power amplifiers.  

 

9.1.3 Constraints 

The constraints of the system come from the geometry of the actuator, the 

dynamic capacity of the system to levitate the rotor from an initial location, the 

maximum vibration displacement of the rotor checked with the ISO standards, and the 

high temperature limit of the actuator. According to these, 7 constraints are listed:  

1. The length of the coil is limited to the available space in the stator and can be 

expressed as 

                                              
maxc cl l                                                         (163) 

where   2 2

max
( / 2)c c c p pl r t w r    . 

2. Width of the coil is larger than the coil diameter,  

                                                
c wt d                                                            (164) 

where wd is the diameter of the coil, and 
ct is the width of the coil bulk. For this 8-poles 

case, 

                                       tan 22.5 / 2c p pt r w                                           (165) 

3. The magnetic bearings shall be able to levitate the rotor against the gravity from 

an initial released position. In this case, the rotor is initially rested on the catcher 
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bearings, which are ball bearings designed to prevent the unexpected contact between 

the rotor and the magnetic bearing stator in cases of overload or failure of the magnetic 

bearings. The catcher bearing clearance is generally half of the centered air gap 

clearance. The catcher bearing is simplified as a spring-damping model with tangential 

friction force. In this levitation, there is no friction force from the catcher bearing since 

the rotor is lifted at zero spin speed. A high fidelity modeling of the catcher bearing drop 

events with life prediction, which provides a specified number of safe stops from full 

speed or worst case load conditions, will be conducted in the future. In this study, 

levitation is accepted if the controller is able to lift the rotor from the catcher bearing 

location to at least half of the catcher bearing clearance at steady state operation. 

Mathematically, it is expressed by 

                                            / 2ss initial cbz z c                                                  (166) 

where 
ssz is the steady state vertical rotor displacement, 

initialz is the initial vertical rotor 

displacement, 
cbc is the catcher bearing clearance,

initial cbz c  , and / 2cbc g .  

4. The vibration displacement of the rotor shall qualify the limits by ISO 14839 

standards, which are developed specifically for rotating machinery equipped with AMBs. 

ISO 14839 establishes vibration zone guidelines for magnetic bearings. For newly 

commissioned machines, the vibration displacement should be lower than 0.3 of the 

minimum radial clearance.  

5. The catcher bearing clearance is generally taken as the minimum radial clearance. 

This optimization sets a constraint to ensure the designed systems meet this 

newly commissioned machine vibration displacement requirement. The maximum 
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vibration displacement is measured from the steady state of the unbalance transient 

simulation. The amount of the unbalance is 1.5kg·mm, which adds an external force of 

about 10% of the rotor weight and is phased to 90° to excite the most 1st mode. 

6. The hot spot temperature of the actuator should be limited. ISO14839-2 [32] 

states that the temperature is one of the most important factors affecting the reliability of 

the AMB system that should be kept within range. The hot spot temperature is limited to 

175⁰F as a constraint in the optimization. The temperature distribution and the hot spot 

temperature are predicted with the 2D finite element method as shown in section 6.2.  

7. To ensure that there is enough flux path area in the radial direction of the stator, 

the stator thickness should be larger than the pole width.  

                                       0s c pr r w                                                          (167) 

8. To ensure that there is enough flux path area in the rotor, the stack thickness of 

the laminated iron cobalt should also be larger than the pole width. 

                                          0r j pR R w                                                     (168) 

where jR is radius of the un-laminated (solid) journal.  

As a summary of the optimization objectives, design variables and constraints, 

the optimization code flow chart of the heteropolar AMB system is shown in Figure 80.  
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Figure 80 Code flow chart of the heteropolar AMB system optimization example 

 

Similarly to the homopolar design example, to speed up the computation, the 

code first checks the physical conflictions of the design variables. The levitation 

simulation, which is used for check the dynamic load capacity, is only conducted for the 

designs without physical conflictions. Afterwards, unbalance transient analysis is 

conducted only for the system that can be successfully levitated. The power amplifier 
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current and the flux intensity in the steady state operation of the unbalance transient 

analysis are extracted, and used for the calculation of the power loss in the stator and the 

rotor. The finite element method is used to determine the temperature distribution of the 

actuator, and check if the highest temperature exceeds the set limit. Besides, the 

maximum rotor displacement in the unbalance transient process is checked with the ISO 

14839 standards.    

   

9.2 Heteropolar AMB Optimization Example Results and Discussions 

In this part, the best-compromised solutions of the optimization are presented in 

the form of Pareto frontier with the NSGA-II algorithms in MATLAB. Representative 

Pareto solutions will be taken from the Pareto frontier. The rotordynamic performance, 

power loss, and hot spot temperature of the designs at these representative points will be 

presented and compared. Besides, nonlinearities of the AMB supported system at these 

designs will be illustrated.  

  

9.2.1 Pareto frontier and optimization results 

The optimization is conducted with a rotor steady state spin speed of 3600 rpm 

and the rotor unbalance of 1.5kg·mm at the center of the rotor with a phase angle of 90°. 

In this example, the code runs 120 generations, with 40 populations in each generation. 

In the final generation, all 40 populations are feasible solutions with all the constraints 

satisfied. However, only 30 populations are Pareto solutions, as presented in the Pareto 

frontier in Figure 81. The figure clearly shows the trade-off between the static load and 
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power loss, which means that the power loss becomes higher to get a higher static load 

and vice versa.   

 

 
Figure 81 (a) Pareto frontier of the heteropolar AMBs optimization (b) side view of the 

Pareto frontier 

 

Three representative points A, B, and C are taken from Figure 81 for comparison.  

Each point corresponds to a design of the AMB system. The design variables at the three 

points are listed in Table 10.  

The three objectives values, the hot spot temperature, the steady state vibration 

amplitude, and other parameters at the three points are listed in Table 11. Comparison 

between the designed AMB systems at point A and point B shows that while the designs 

at the two points result in actuators with similar mass, the design at point A allows much 

higher static load at the center of the rotor with the sacrifice of producing higher power 

loss. Comparison between the designs at point A and point C shows they bear equivalent 

level of static load at the center of the rotor, but point A results in lower system power 

loss with the sacrifice of larger actuator mass. 
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Table 10 Design variables of the representative designs on Pareto frontier for heteropolar 

AMB optimization example 

Design 

Variable 

Quantity Point 

A 

Point 

B 

Point 

C 

1 bias current in the coil, ( )bI A   4.0 6.4 3.8 

2 coil turn, N  179 168 173 

3 cross sectional area of flux path in the air 

gap,
2( )gA m   0.0021 0.0016 0.0017 

4 radius of the rotor, ( )rR m   0.0745 0.0863 0.0746 

5 width of the pole, ( )pw m   0.0241 0.0263 0.0239 

6 radius of the coil space, ( )cr m  0.1124 0.1078 0.1126 

7 outer diameter of the stator, ( )sr m  0.1369 0.1353 0.1435 

8 proportional gain of the controller, pG   16.8 16.9 15.4 

9 derivative gain of the controller, 
dG  0.024 0.023 0.029 

10 static load, ( )statF N   8251.1 7995.7 3180.9 

 

Table 11 Objectives and other parameters of the representative points on Pareto frontier 

for heteropolar AMB optimization example 

Parameter  Parameter Description Point 

A 

Point 

B 

Point 

C 

1 actuator mass( kg ) 22.1 15.3 21.2 

2 static load(N) 8251.1 7995.7 3180.9 

3 power loss( watts ) 365.8 512.1 178.4 

4 hot spot temperature(°F) 127.2 114.9 101.2 

5 maximum displacement with load and 

unbalance (mm) 

0.058 0.051 0.035 

6 ohmic loss( watts ) 242.0 285.5 109.0 

7 hysteresis loss in the rotor( watts ) 84.3 151.8 49.2 

8 eddy current loss in rotor( watts ) 33.2 68.3 15.6 

9 windage loss in rotor( watts ) 5.2 6.1 4.2 

 

To better demonstrate and compare the performance of the designed systems, this 

part will show the rotordynamic and thermal behaviors at the three points. Figure 82 

plots the transient levitation analysis of the designed system at point A. It shows that the 
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designed magnetic bearing actuator and the respective PD controller can successfully 

levitate the rotor from the catcher bearings locations marked with red dashed line at the -

0.25mm. Figure 83 presents the flux intensity and the current in the power amplifier 

corresponding to the upper electromagnetic core during levitation.  The upper core is 

most easily saturated in flux intensity and current since it supplies the magnetic force to 

counter the gravity of the rotor and the applied external static load. Figure 83 shows 

during levitation, slight saturation in the flux intensity occurs at about 2.7ms and 5.4ms, 

and slight current saturation occurs at about 2.7ms during the levitation. 

  

 
Figure 82 Levitation simulation at point A on the Pareto frontier in Figure 81 
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(a)                                                                           (b) 

Figure 83 (a) Flux intensity and (b) the power amplifier current during the levitation at 

point A 

 

Figure 84 shows the translational displacement during the unbalance transient 

analysis at point A. Due to the static load from both rotor weight and the applied external 

force of 8251.1N, there is an eccentricity of -0.058mm in the z- direction.  However, 

even with the eccentricity from the static load, the maximum displacement of the rotor 

satisfies the requirement for newly commissioned machines in the ISO14839 standard, 

which should be less than 0.075mm in this case.  

 

 
(a)                                                                (b) 

Figure 84 Translational displacements (a) y- direction (b) z- direction in the unbalance 

transient analysis at point A 
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Figure 85 presents the flux intensity and the power amplifier current 

corresponding to the upper electromagnetic core during the steady state unbalance 

transient analysis with the applied external load of 6577.0N. There is no flux saturation 

or current saturation in the unbalance transient simulation at point A. 

 

         
(a)                                                          (b)   

Figure 85 (a) Flux intensity and (b) the power amplifier current during the unbalance 

transient at point A 

 

Figure 86 presents the transient levitation simulation of the rotor in the designed 

system at point B. It shows successful levitation of the rotor from the catcher bearing 

position. Figure 87 shows the flux intensity and the power amplifier current 

corresponding to the upper electromagnet core during the levitation process. Flux 

intensity saturation occurs during 5.3ms~5.7ms, and power amplifier current saturation 

occurs during 1.2ms~2.6ms and at about 5.5ms.  
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Figure 86 Levitation simulation at point B on the Pareto frontier in Figure 81 

 

 
(a)                                                                                                    (b) 

Figure 87 (a) Flux intensity and (b) the power amplifier current during the levitation at 

point B 

 

Figure 88 shows the translational displacement of the rotor of the designed 

system at point B with rotor induced unbalance and the applied external static load of 

7995.7N. The maximum displacement is - 0.051mm, which satisfies the newly 

commissioned machines standards.  
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(a)                                                                          (b) 

Figure 88 Translational displacements (a) y-axis (b) z-axis in the unbalance transient 

analysis at Point B 

 

Figure 89 shows the flux intensity and the power amplifier current corresponding 

to the upper electromagnet core during the unbalance transient simulation at point B. It 

shows slight flux saturation and slight power amplifier current saturation at around 6ms. 

At point B, the steady state flux intensity is about 1.8 Tesla, and the steady state current 

is about 13 amps. The large current results in high ohmic loss, and large flux intensity 

results in high eddy current loss and high hysteresis loss in the rotor, as is presented in 

Table 11. As has been stated, the design at point B has an equivalent static load 

compared to the design at point A, but it has smaller actuator mass with the sacrifice of 

producing higher power loss. This loss is caused by increased flux intensity and current 

which allows some degree of saturation in the unbalance transient process.  
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(a)                                                                      (b) 

Figure 89 (a) Flux intensity and (b) the power amplifier current during the unbalance 

transient at point B 

 

Figure 90 shows the successful levitation of the rotor from the catcher bearing 

position in the designed system at point C. Figure 91 shows the flux intensity and the 

power amplifier current corresponding to the upper electromagnet core during levitation. 

The plot shows flux saturation at about 5.7ms and power amplifier current saturation 

from 2.3ms~3ms. 

 

 
Figure 90 Levitation simulation at point C on the Pareto frontier in Figure 81 
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(a)                                                                         (b) 

Figure 91 (a) Flux intensity and (b) the power amplifier current during the levitation at 

point C 

 

Figure 92 shows the translational displacement of the rotor during the unbalance 

transient analysis with the applied external static load of 3180.9N at point C. The 

maximum displacement is -0.035mm, which is smaller than it is at point A and B due to 

the much smaller applied external load. Figure 93 shows the flux intensity and the power 

amplifier current corresponding to the upper electromagnet core at point C during the 

simulation. There is no flux saturation or power amplifier current saturation.  

 

 
(a)                                                                        (b) 

Figure 92 Translational displacements of (a) y- axis (b) z-axis in the unbalance transient 

analysis at Point C 
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                             (a)                                                                              (b) 

Figure 93 (a) Flux intensity and (b) the power amplifier current during the unbalance 

transient at point C 

 

 Figure 94 shows the hot spot temperature verses the three objectives. The plots 

show that the static load and the power loss, rather than the actuator mass, dominate the 

hot spot temperature. To get lower hot spot temperature, the static load and the power 

loss of the system would be limited.  

 

 
Figure 94 Hot spot temperature V.S. objectives 
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Power loss components of the designed system at point A are listed in the pie 

chart form in Figure 95. The main power loss comes from the ohmic loss, which takes 

about 66.2% of the total system power loss. The ohmic loss mainly comes from the bias 

current that counters the rotor gravity force and the large applied external force at the 

center of the rotor. The hysteresis loss in the rotor is significant due to alternating 

polarities in the heteropolar magnetic bearings. This takes about 23.1% of the total 

power loss. The windage loss is low in this case where the rotor is at low spin speed 

(3600 rpm). However, the windage loss grows with spin speed and could be dominant at 

high speed operation. Figure 95 suggests that the other losses in the stator, including the 

hysteresis loss and eddy current loss caused by the flux field change, are very small and 

can be ignored. The flux field change in the stator comes from the control current to 

counter the rotor unbalance induced force. Unless the rotor is heavily unbalanced, which 

is rare in rotordynamic applications, the control current is small resulting in slight flux 

field change in the stator. Thus the hysteresis loss and the eddy current loss in the stator 

are generally small compared to they are in the rotor.   
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Figure 95 Power loss components of the designed system at point A 

 

The 2D thermal analysis of the designed magnetic bearing actuator at point A is 

presented in Figure 96. The hot spot temperature occurs in the coil, which is 127.2°F.  

 

 
Figure 96 2D thermal analysis of the designed AMBs supported system at point A 
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To validate the 2D thermal modeling and the symmetric assumption of the 

actuator, a 3D thermal analysis of the designed actuator is conducted with the thermal 

analysis tool in Solidworks. An example comparing the approximated symmetric model 

and the actual model is shown in Figure 97 and Figure 98. In Figure 97 the currents in 

the +z, -z, +/-y direction poles are 11.2amps, 3.5amps, and 4.0amps respectively, which 

is set according to the coil currents of the designed system at point A at steady state 

operation. In Figure 98, all the poles have a coil current of 11.2amps, which is equal to 

the maximum coil current, occurring in the +z poles to counter the gravity force and the 

static load. A comparison between Figure 97 and Figure 98 shows that the symmetric 

assumption does not have too much impact on predicting a hot spot temperature. The hot 

spot temperature predicted is higher than the actual model by 2%, which is totally 

acceptable for a conservative model.  

 

 
Figure 97 Solidworks thermal modeling with actual currents in the poles 
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Figure 98 Solidworks thermal modeling under symmetric actuator model 

 

A comparison between Figure 96 and Figure 98 shows that the 2D thermal model 

predicts a higher hot spot temperature since the 2D model neglects the natural 

convection in the axial direction. As a conclusion, the thermal modeling with 2D and 

symmetric assumptions is an efficient and conservative model in predicting the hot spot 

temperature using the minimum computation time.  

The sensitivity margin of the designed AMB supported nonlinear system at point 

A is evaluated by linearizing the system with the rotor centered. A Bode plot of the 

sensitivity function and four different stability zones are shown in Figure 99. For the 

point A corresponding designed system, the value of the peak sensitivity magnitude is 

3.7; thus is characterized as zone B which is acceptable for unrestricted long-term 

operation according to the zone limit values.  
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Figure 99 Evaluation of the stability margin of the designed system at point A 

 

9.2.2 Optimization design with Isight 

The study also uses the optimization software Isight to integrate the simulation 

into its optimization tool. In this optimization design of the magnetic bearings supported 

systems, the initial generations are produced randomly. Due to the large number of 

design variables and constraints, very few populations in the first generation are feasible 

solutions. Among the four available multi-objective optimization algorithms in Isight, 

only NCGA and NSGA-II work well for this complex system optimization design 

problem, developing more and more feasible solutions in the later generations and 

converging to find Pareto solutions efficiently. The Figure 100 shows the Pareto frontier 

of the optimization design with different algorithms.  
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(a)                                              (b) 

Figure 100 Comparison of the MATLAB coded NSGA-II with NSGA-II and NCGA in 

Isight 

 

Figure 100 shows that the NSGA-II in Isight is quite comparable to the Matlab 

NSGA-II, except that there are fewer Pareto solutions in a narrower range. The NCGA 

gives Pareto solutions in about the same range of the solutions by MATLAB NSGA-II, 

but with even fewer Pareto solutions. The MATLAB NSGA-II has the best performance 

in finding more Pareto solutions in a wider range.  

 

9.3 Summary of the Heteropolar AMB Optimization Design 

This example study focuses on the optimization design of the heteropolar 

magnetic bearing actuator and the controller simultaneously to make the desired system 

with the minimum actuator mass, minimum power loss, and the maximum static load 

applied at the center of the rotor. The optimization models a full nonlinear rotor-bearing 
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system, with simulation of levitation, imbalance transient and thermal modeling. Two 

multiple objective genetic algorithms, including NSGA-II and NCGA, were utilized and 

compared to find the Pareto solutions. The 2D finite element method (FEM) was used to 

determine the temperature distribution and find the hot spot temperature of the actuator. 

The vibration level and the stability margin of the designed rotordynamic system were 

checked with the ISO 14839 standards. Trade-off among the objectives and the 

compromise of the objectives can be achieved by the multi-objective optimization 

algorithms and presented with the Pareto frontier.  The optimization result demonstrates 

that some extent of the power amplifier current saturation and the flux intensity 

saturation, especially in the levitation stage, helps in making actuators with smaller 

mass, higher static load, but higher power losses.  
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10. CONCLUSIONS AND FUTURE DIRECTION OF WORK 

 

This study focused on optimization design of the active magnetic bearing 

supported flexible rotor with flexible support, considering the system nonlinearities, the 

temperature limits, and the ISO standards acceptance check. The study illustrated 

general objectives, constraints, and key parameters in the design of magnetic bearing 

systems, and presented the genetic algorithms as a tool to solve complicated 

optimization problems.  

 

10.1 Conclusion of Completed Work 

The current research focuses on the followings:  

1) Model a full magnetic bearing system, including a flexible rotor, and flexible 

foundation effects. The flexible rotor is modeled with finite element method. 

A flexible rotor has a much wider mechanical bandwidth than a rigid rotor, 

which resulting in a much larger response to high frequency forces. Thus for 

flexible rotors, the controller design at high frequencies is much more 

important than for rigid rotors. Besides, this flexible rotor model allows non-

collocated sensors and actuators, when there will be flexible modes with a 

node between a sensor-actuator pair. The flexible support is model with 

experimentally measured compliance frequency response function (FRF). 

The method does not require the acknowledgement of the mass of the stator, 

and is suitable for the support of any type of bearing. Besides, the method 
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uses state space representation form to deal with the highly cross-coupled 

dynamic compliances between different locations and directions. With this 

method, both the modal stability analysis and transient analysis of the system 

with the flexible support can be modeled.  

2) Develop a reliable nonlinear model to predict the magnetic bearing supported 

rotor-bearing system. The nonlinearities include nonlinear magnetic material 

(flux saturation), nonlinear magnetic bearing force with respect to the rotor 

displacement and control current, the current and voltage saturation in the 

power amplifier, and the catcher bearing effects. 

3) Besides the rotordynamic performances, other properties, including the 

power losses of the system, the thermal field of the actuator, and the vibration 

amplitude of the rotor as well as the sensitivity margin as required in 

ISO14839/API617, are analyzed to have a practically reliable design of the 

magnetic bearing system. 

4) Apply the optimization techniques, including NSGA-II and NCGA into the 

optimization design of the complex magnetic bearing system. The 

optimization problem is designed to have multiple design variables, including 

actuator dimensional parameters, controller gains, and even external load, 

simultaneously vary in a range to find the best sets that can make all the 

desired objectives the best. As the design of the complicated magnetic 

bearing system is one of the major concerns that draw back the more wide 

spread of AMBs, this optimization methods present a tool for the successful 
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design of the system with large number of design variables, multiple 

objectives, and constraints.  

 

10.2 Future Direction of Work 

In the nonlinear analysis of this study, the catcher bearings are represented by a 

simplified model, which uses a constant stiffness coefficient, a constant damping 

coefficient, and a tangential friction coefficient. In the actual applications, the catcher 

bearing forces are much more complicated. A high fidelity catcher bearing model would 

be expected for a more accurate modeling of the magnetic bearing supported system.  

The optimization of the system, which involves the iteration of various 

simulations, for example nonlinear transient simulation of the rotor, finite element 

thermal modeling of the actuator, and ISO/standard acceptance check, takes hours of 

computation time. For future study, it will be important for the researchers to perform 

optimization of the code to make it more effective and less computationally expensive. 

Two possible methods, one of the modal reduction of the rotordynamic system, and the 

other of the surrogate model to substitute any expensive objective function or constraint 

function in the optimization, are recommended for future researchers. 

 

10.2.1 High fidelity catcher bearing model 

Catcher bearings are designed for a limited number of rotor drops, rather than 

continuous operation. A proper design of the magnetic bearing supported rotors includes 
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the use of catcher bearing surfaces for both radial and axial loading considerations. The 

designed catcher bearings should satisfy the following requirements:   

1) When the power to the magnetic bearing system is off, the rotor rests on the 

catcher bearings. The rotor should be able to roll over without destroying the 

magnetic bearing stator or the rotor.  

2) When there are excessive loading forces, the catcher bearings should be able to 

provide support to prevent the rotor from contacting the AMB stator. 

3) During power or component failures, the catcher bearings shall provide a 

specified number of safe drops from full speed or the worst case load conditions.  

Lee et al. [34] employed a thermal-structural, fully nonlinear ball bearing to 

evaluate the life of catcher bearings in terms of number of drop occurrences to failure 

with the Rainflow counting approach. The result shows that decreasing rotor-inner race 

contact friction, reducing catcher bearing air gap, applying a constant side load after a 

drop event, reducing support stiffness and increasing support damping, and reducing 

speed (rpm) all increase the life of an AMB catcher bearing.   

 

10.2.2 Modal reduction 

In this study, the rotordynamic system is modeled with finite element method 

(FEM), using 6 DoFs Timoshenko beam element. With the electronics and flexible 

support included, the rotordynamic system would have thousands of state variables. 

Thus solution of the non-condensed equation of motion would require thousands of 

coupled, ordinary differential equations. In the heteropolar magnetic bearing system 
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optimization design example, during the optimization iteration, for each population in 

each generation, one unbalance transient analysis and one startup transient (levitation) 

analysis are conducted, which requires integration of the ordinary equation twice in each 

iteration. The computation is expensive even with a small number of rotor finite 

elements.  

Modal reduction, which approximates the behavior of the original large-scale 

ones with reduced-order models and thus requiring much less computation time, offers a 

solution to the expensive computation problem. The basic idea of model reduction is to 

condense a large system to a similar much smaller substitute. According to Noor [35], 

the good global approximation vectors for model reduction must satisfy 

1) Linear independence and completeness. 

2) Low computational expense in their generation, and simplicity of automatic 

selection of their number. 

3) Good approximation properties, in the sense of high accuracy of the solution 

obtained using these vectors. 

4) Simplicity of obtaining the system response characteristics using these vectors. 

Modal reduction methods have been applied to rotordynamic systems. The 

commonly used methods include Guyan reduction [36], model reduction by modal 

analysis [37], component mode synthesis (CMS) [38, 39], and balanced truncation [40, 

41].  

Guyan reduction, also known as static reduction, is the most popular reduction 

method. Guyan reduction reduces the system matrices of a system by removing the 
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DOFs not located at the substructure’s boundary. For those remaining DOFs, which at 

located at the boundary, the stiffness of the local structure are retained, but the inertial 

terms are omitted to generate a more compact and efficient system. Guyan reduction and 

is only accurate for stiffness reduction, while the inertial forces are not preserved. 

Besides, eigenvalues of the reduced system are always higher than those of the original 

non-reduced system. The quality of the eigenvalue approximation depends on the 

location of the points preserved in the reduced model, and decreases as the mode number 

increases.  

The modal analysis method of model reduction uses modal coordinates to 

represent the system and decouple the dynamic system equations of motion. The number 

of modes to retain is typically selected based on experience and checked by considering 

whether a convergence of the modal vectors has been reached. The damping ratio is 

assigned to each mode using measurements or experience data. The frequency can be 

twice the frequency of interest, or use a middle frequency range. The modally 

condensed system may include only about 5%-10% of the modes, requiring solution of 

only a few uncoupled ordinary differential equations compared with the thousands of 

DOFs coupled ordinary differential equations in the original system.  

Component mode synthesis divides the system into smaller structures that are 

individually designed, analyzed, and then assembled into a full system model for a 

dynamic analysis. The selections of interface DOFs, the discretization of the full system, 

and the modes to be retained for each subsystem are determined by the user, similarly to 

those in a modal analysis method. One main disadvantage of the method is that the final 
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assembled equations could remain coupled. However, the modal representation in this 

method is independent of the boundary and interface coordinates. Thus this method is 

well suited for solving nonlinear supports such as bearings.  

Balanced truncation is an important projection model reduction method which 

delivers high quality reduced models by making an extra effort in choosing the 

projection subspaces based on the controllability and observability of the system. Only 

the states or modes that are most observable and controllable are selected. The balanced 

truncation is based on removing the states of a balanced realization which correspond to 

singular numbers below a certain threshold. Balance truncation methods have been 

applied to rotor dynamic systems primarily focused on controller design for the rotor 

systems. For active magnetic bearings, the balance truncation method could be an 

effective method for the controller design.  

 

10.2.3 Surrogate modeling 

In general, the objective values and the constraint values can be evaluated by an 

explicit function or a computational simulation. However, in some cases, the evaluations 

of the objectives and the constraints can be difficult when the genetic algorithms are 

used to solve expensive optimization problem. The computational simulation for 

objectives and fitness functions could be very time consuming, or there does not exist an 

analytical function for them. In such cases, a surrogate modeling might be used to speed 

up the computation. 
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A surrogate model is an engineering optimization method that uses approximated 

surrogate modeling techniques in lieu of expensive experiments and simulations to 

mimic the behavior of the model to quickly find the local or global optima. The 

approach is also known as black-box modeling or behavior modeling, since that the 

inner working of the simulation is not assumed to be known or understood, but only the 

input-output behavior is important. A comparison between the conventional optimization 

and the surrogate optimization is presented in Figure 101.  

 

 
Figure 101 Flowcharts of a conventional optimization and a surrogate model 

optimization 

 

As has been stated, the magnetic bearing system is complex with large number of 

variables, highly nonlinear matrix differential equations of large dimension, and 

complicated constraints of the system. In such cases, surrogate models can be used to 
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approximate the time consuming objective functions and constraint functions to reduce 

computation cost, since the prediction with a surrogate model is generally much more 

efficient than with a numerical analysis code. Once the surrogate models are built, the 

optimization algorithms, in this study, the NSGA-II or NCGA, can be used to search for 

the new designs.  

This bi-level optimization, with surrogate models to run the expensive analysis 

code, and with genetic algorithms to determine new samples, is presented in the 

flowchart in Figure 102.  

 

 
Figure 102 Flowchart of bi-level optimization with surrogate models and genetic 

algorithms 
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The process firstly selects the initial sample data from experiments or simulations 

to be run. Then, the surrogate models are constructed based on the sampled data set. 

Various techniques can be used to construct the surrogate models. The most popular 

surrogate models are polynomial response surfaces methodology [42], Kriging (also 

called DACE, design and analysis of computer experiments) [43], support vector 

machines [44], space mapping [45], and artificial neural networks [46]. Once the 

surrogate models are built, an optimizer, in this case, NSGA-II or NCGA can search the 

surrogate model extensively, since the model is cheap to evaluate. The experiments or 

simulations are simulated at new locations and added to sample. The process iterates 

until the code runs out of time or the optimum design is found.   
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