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ABSTRACT

Shape memory alloys (SMAs) show size effect in their response because the behav-

ior of small-scale SMA structures deviates from that of the bulk material. Ni-Fe-Ga

ferromagnetic SMA micropillars, for example, demonstrated a significantly increased

hardening in their compressive stress-strain response as their diameter approached

micron and submicron scales. This response cannot be modeled using conventional

theories that lack an intrinsic length scale in their constitutive models. Constitu-

tive models, however, are crucial for the design and simulation of SMA components

at nano and micron scales as in NEMS and MEMS. Therefore, to capture such a

size effect, a gradient-based thermodynamically consistent constitutive framework is

established. We assume the existence of generalized surface and body forces that

contribute to the free energy as work conjugates to the generalized variables of

martensite volume fraction, transformation strain tensor, and their spatial gradi-

ents. The rates of evolution of the generalized variables are obtained by invoking

the principal of maximum dissipation after assuming a transformation surface. This

approach is compared to the theories that use a configurational force balance law.

The developed constitutive model includes various energetic and dissipative length

scales that can be calibrated experimentally. To demonstrate the capabilities of this

model, a series of boundary value problems are solved. The boundary value prob-

lems contain the differential equation for the transformation surface as well as the

equilibrium equation and are solved analytically and numerically. Example problems

include pure bending of SMA beams, simple torsion of SMA cylindrical bars, and

compression of SMA micro/nanopillars. The simplest version of the model, contain-

ing only the additional gradient of martensite volume fraction, predicts a response
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with greater hardening for smaller structures. Also once calibrated, the model can

qualitatively predict the experimentally observed response of Ni-Fe-Ga micropillars

under compression.
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1. INTRODUCTION

Incorporation of shape memory alloys in small-scale applications cannot be suc-

cessful without physical understanding and subsequent modeling of their behavior

at such scales. The elastic and inelastic response of materials alters as the size

of the specimen approaches the micron/nanometer region where fluctuations in the

lower-scale microstructural and physical features of the material cannot be resolved

by smearing their effect through averaging and homogenization. Modeling such an

experimentally observed size-dependent behavior can be achieved in the realm of

continuum mechanics without resort to cost-prohibitive molecular/atomisitc frame-

works by using enriched or higher-order continuum theories. Section 1.1 discusses

the current state-of-the-art for small-scale SMA actuators which provide a motiva-

tion for the experimental works, presented in section 1.2, aiming at understanding of

the SMA behavior as the size of the specimen or its constituent microstructural fea-

tures approaches the micron/nano scale. An effort is made to categorize the observed

size-dependent response according to the dimensionality of the specimen. Different

responses have been observed for SMA powders (0D structures), SMA wires or mi-

cropillars (denoted as 1D specimens) compared to 2D specimens such as SMA thin

films or other SMA experiments involving samples with nano-sized grains (3D speci-

mens). Finally, the prominent existing modeling techniques for the inelastic material

response, falling in the category of enhanced or higher-order continuum theories, are

reviewed in section 1.3. Although the majority of the research work pertains to

modeling dislocation plasticity at micron scale through higher order plasticity theo-

ries, this can provide a firm ground for developing a higher-order phenomenological

continuum theory to capture the response of shape memory alloys at smaller scales.
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1.1 Significance of the research: small-scale actuators

The growth in the field of microsystems and its commercial applications created

a great need for suitable microactuators. The low actuation frequency, with the

order of 1 Hz, in bulk SMA actuators have hindered further implementation of these

unique materials. Though the martensitic transformation front can, in principle,

propagate with the wave speed of the material, this capability is limited by lower

heat conduction rates specifically during the forward transformation stage where a

cooling process is required.

Another drawback is the latent heat generated during the martensitic phase trans-

formation. This latent heat is exothermic for forward transformation and endother-

mic for reverse transformation [111, 130]. It was shown by Tabesh et al. that the

generation of latent heat during forward transformation and its absorption during

reverse transformation decreases the actuation response [141]. Reducing the size of

the actuator facilitates the dissipation of the latent heat generated.

Micro and nanoscale SMA actuators will have a higher heat transfer rate due to

the high surface area to volume ratio. Therefore, it is possible to obtain much higher

actuation frequencies by using small-scale actuators.

The other option for attaining higher actuation frequencies is implementation of

magnetic shape memory alloys. One of the challenges in using FSMAs is their low

actuation force and work output [31,59]. Interestingly in this case too, it is possible

to reach higher blocking stresses by reducing the size of the actuator.

SMAs have recently been used as high performance actuators for application in

micro-electro-mechanical systems (MEMS) in the form of thin films/beams. SMA

thin films, due to high actuation stress and strain and long fatigue life [55], are

used in micropumps [17], microvalves [82], microgrippers [57], and microactuators
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[133] (see figures 1 and 2). An NiTi thin film, for example, with dimensions of

1 mm×100µm×5µm can exert a force of 0.5 N over an actuation distance of 30µm.

Also, as compared to bulk SMAs, the thin films can be thermally activated at a

higher frequency due to the larger exposed free surfaces.

Figure 1: Schematic design of a microthermostat using NiTi microflaps [133].

The successful incorporation of SMAs in MEMS in the form of thin films/beams

cannot be achieved without assessing their functionality using numerical modeling

tools that can take into account the observed size effect. To this end, developing a

constitutive model for shape memory alloys with the capability of capturing the size

effect is chosen as the objective for this research work.
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Figure 2: Schematic design of a microgripper using NiTi thin films [57].
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1.2 Motivation: experimental evidence of size effect in the response of SMAs

Size effect refers to the dependence of a material property on the size of the spec-

imen or sample. This generally occurs as a characteristic length,  L, in the loading,

boundary conditions, or geometry of the sample (such as dynamic wavelength, size

of the stress concentration region, curvature of bending, or thickness of the sam-

ple) falls within the same order of magnitude as of a microstructural intrinsic length

scale, `,in the material (such as grain size, size of the dislocation loop in metals or

martensitic twin variants in shape memory alloys). i.e. δ → 1 where

δ =
`

L
=

Internal characterisitc length

External characterisitc length
(1.1)

In that case, the heterogeneities in the microstructure of the specimen and hence

the local state of the material become significant and cannot be averaged out to

produce a larger scale, in many cases a global continuum, response [10].

The non-homogeneities in the microstrucutre of SMAs can be illustrated by con-

sidering the Ni-rich NiTi, as an example. Schryvers et al. [129] measured the lattice

strain and Ni concentration near the Ni4Ti3 precipitates using detection tools and

techniques provided by transmission electron microscopy (TEM) (as shown in figure

3). At distances about 50 nm from the precipitates with an average larger diameter

of 300 nm, strains upto 2% and depletion of Ni to 49.5 at.% were detected. It is

very well known, and also illustrated in figure 4, that Ni composition has a high

impact on the transformation temperatures of NiTi. The strain, or stress, also shifts

the transformation temperatures through the Clausius-Clapeyron effect. Therefore,

the matrix contains very sharp gradients in the transformation temperature near the

precipitates. This influences the response of nano or micro-sized specimens compared

to larger bulk specimens.
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Figure 3: EDX measurements of the Ni concentration gradients near Ni4Ti3 precip-
itates in Ni-rich NiTi [129].

In addition, the size effect has been observed, for instance, for elastic properties

of porous materials such as foams [92] or cortical bone tissue [26] where the flexural

or torsional stiffness alters with the thickness or diameter of the specimen [16, 154].

The elastic modulus of ZnO nanowires were shown to significantly depend on the

size for wires smaller than about 120 nm [23], whereas that of gold nanowires were

essentially independent of the diameter [151].

A size effect is also seen in inelastic phenomena such as dislocation plasticity

[48, 75, 105]. The yield stress of gold nanowires showed a 100-times strengthening

when compared to the bulk material [151].

Likewise, the martensitic transformation is reported to demonstrate size effect.

The material properties characterizing the unique behaviour of shape memory alloys,

6



Figure 4: Effect of the Ni concentration on the martensitic transformation tempera-
ture (MS shown here) [50].

i.e. the critical stresses to start and finish forward or reverse transformation as well

as the transformation dissipation and hysteresis, are shown not to be independent

7



of the size of the specimen. The size effect in the SMA response has been observed

in a variety of structural configurations from nanograined specimens to micropillars.

In the next section, an attempt is made to categorize these phenomena based on the

dimensionality of the corresponding material being tested.

Dimensionality and size effect in the reversible martensitic transformation:

The diffusionless phase transformations are prone to size effect due to the mi-

crostructural constraints (such as grain boundary incompatibility or precipitates) as

well as constraining stress fields encountered at the phase propagation fronts. The

experimental observations giving a clue for size effect in the behavior of shape mem-

ory alloys can be categorized based on the dimensionality of the sample or specimen

being tested.

SMA nano particles represent the size effect in “0D” structures.

The size effect was demonstrated in microcrystalline particles in non-transformable

solid matrix, and in free-standing powders. As observed from various experiments, by

decreasing the grain size of the parent phase, the martensite transformation is fully

or partially suppressed. The martensite transformation in nanoparticles within an

amorphous matrix in NiTiCu alloys (produced by melt spinning technique) showed a

critical size at which the martensite transformation was suppressed upon cooling [62].

Glezer et al. showed that the nanocrystals of larger than 25 nm transformed com-

pletely, the nanocrystals of 15-25 nm transformed partially, and the critical size below

which no transformation occurred was determined to be 16 nm. The smaller the size

of the nanocrystaline, the lower the extent of the transformation.

The martensitic transformation behavior of freestanding nanometer-sized B2-

ordered AuCd particles, with an average composition of Au50Cd50 (at.%) synthesized

by a wet-chemical process, were investigated by Frommen, Wilde, and Rosner [54].
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The martensitic transformation start temperature, Ms, of nanometer-sized AuCd

particles (with an average size of about 6 nm) was determined to be significantly

lower than AuCd bulk alloys. AuCd particles with an average particle size of 46

nm transformed at ambient temperature, similar to the bulk material. Suppression

of the martensite formation was attributed to the absence of pre-existing nucleation

sites in the small AuCd particles. The authors also suggested that this decrease in

the transformation temperatures could be linked to the fact that the free energies of

the martensite and its parent phase in the nanometer-sized particles are lower than

those of the bulk.

Nanocrystalline TiNi powders, prepared by the electro explosion of TiNi wires

and with an average crystal size of 50 nm, has been characterized in the work by Fu

and Shearwood [56]. DSC results showed the existence of martensitic transformation

with a large transformation temperature hysteresis that was attributed to the altered

composition of the alloy in the affected zone adjacent to the surface oxidation.

In accordance with metal plasticity, several studies have been performed on

SMA micro/nanopillars and wires. Pillars and wires are essentially loaded in a

one-dimensional sense representing the size effect in “1D” structures.

In-situ TEM studies performed on NiTi nanopillars showed existence of forward

martensitic transformation in sample sizes of smaller than 200 nm [157]. Subsequent

nucleation of martensite upon increasing the load resulted in a multi-step process.

For engineering strains of more than 20%, the reverse transformation was inhibited.

Ni54Fe19Ga27 shape memory alloy (SMA) single crystalline micropillars (Figure 5),

with diameters from 10µm to 235 nm, were tested under compression in the work

of Ozdemir et al [112]. The results revealed an increase in the critical stress for

stress-induced martensitic transformation and the yield strength of martensite with

decreasing pillar size (See figures 6 and 7). The stress hysteresis also increased with

9



Figure 5: The SEM image of an SMA micropillar manufactured form a slab of
Ni54Fe19Ga27 [1 1 0]-oriented single crystal using focused ion beam (FIB) machining
[112].

the reduction in the pillar size and the superelastic response started to diminish for

pillar diameters below 500 nm. It was concluded that decreasing the sample size and

increasing the temperature of the sample have similar effects on the superelastic re-

sponse of NiFeGa SMAs. The micropillars had undergone a two-stage transformation

and the results, hence, indicated that a reduction in pillar diameter decreases the

transformation temperature due to the difficulty of martensite nucleation to occur

on small scales. In the 1µm and smaller pillars, showing only one-stage martensitic

transformation, stress hysteresis increased significantly as the size decreased. The

increase in stress-strain hysteresis and energy dissipation was attributed to the re-

finement of twin structures in smaller samples. Size-independent plastic deformation

was observed in previous works for precipitate hardened SMA pillars. In the work
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by Ozdemir et al. the SMA single crystal was free of precipitates, thus, the spacing

between the precipitates was not the controlling characteristic length scale and a

significant size effect for dislocation yielding of martensite was observed. The obser-

vations from this work indicate a size independent transformation-induced plasticity

in the micropillars. However in accordance with the size effect in metal plasticity,

the dislocation plasticity of martensite phase in the micropillars was shown to be

size-dependent [112].

Figure 6: The superelastic stress-strain plots for Ni54Fe19Ga27 SMA micropillars of
various diameters [112].

The superelastic stress-induced B2 → B19′ transformation was investigated in
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Figure 7: The critical stress for the start of martensitic transformation and marten-
sitic plastic yield stress in an SMA micropillar as a function of the diameter, D [112].

50.7 at.% NiTi micropillars prepared by focused ion-beam (FIB) machining [110].

Microcrystal compression specimens (5 and 20 µm) were fabricated from a large [1

1 0] grain in a solutionized 50.7 at.%NiTi polycrystalline sample. The bulk [1 1

0] solutionized specimen demonstrated a ∼60 MPa lower plateau stress for forward

transformation compared to micropillars with similar orientation. No evidence of

a complete loss in pseudoelastic behavior was found for the micropillar sizes tested

and the results suggested a limited dislocation plasticity prior to the onset of the

martensitic transformation.

In another work on NiTi micropillars, Frick et al. studied pillars ranging in di-

ameter from approximately 2µm to 200 nm [53]. The micropillars were prepared
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using focused ion-beam micro-machining of aged [1 1 1] single crystal NiTi. Test

results revealed size-dependent pseudoelastic behavior and size-independent disloca-

tion yielding of the martensite phase. Pillars of aged [1 1 1] NiTi with diameters

from 2µm to 400 nm demonstrated pseudoelasticity. Decreasing the diameter led to

a loss in the pseudoelastic behavior and ultimately it was suppressed for diameters

less than 200 nm. The critical stress to start dislocation plasticity was shown to be

independent of the pillar diameter.

Single crystal NiTi micropillars (12.6 and 9.4 µm in diameter) and bulk polycrys-

talline samples were studied in the work of Manjeri et al [99]. The fully reversible

stress induced martensitic transformation did not show dislocation plasticity at the

length scales investigated.

In their work on Cu-Al-Ni pillars, Juan et al. showed that the Cu-Al-Ni austenite

and martensite phases are more stable in nanopillars than the bulk material leading

to a much higher damping and energy absorption capacity [127]. Their previous work

on this alloy demonstrated the existence of reversible stress-induced and tempera-

ture induced martensitic transformation in the nanometer scale [126]. The single

crystal sample (produced via FIB) with a diameter of 900 nm was in austenite at

room temperature. The size effect observed was attributed to geometrical aspects.

Martensitic nucleation sites at the microstructural features, such as grain boundaries,

dislocations or stress-concentrating surface defects, are scarce in single crystal SMA

micropillars. Thus, upon loading of a SMA micropillar, there are fewer nucleation

sites for martensite to from. The decrease in the critical stress for the reverse trans-

formation was attributed to the stabilization of stress induced martensite due to the

relaxation of strain energy generated during loading at the free surfaces. This was

the consequence of martensite variants forming across the entire cross-section of the

specimen. The two size effect phenomena observed were
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1. The stabilization of austenite due to statistically reduced number of martensite

nucleation sites and,

2. The improved stability of martensite due to relaxation effects at the free surface

of the pillar,

leading to the forward transformation stress to be very high, the reverse transforma-

tion stress to be very low, and the load-displacement curve to exhibit a very large

hysteresis. The constraining influence of gallium contamination as a result of FIB

machining, which leaves an amorphous layer of less than ∼5 nm on the surface of

the pillar, was disregarded by the authors [127].

In another recent work on single crystal Cu-Al-Ni micron and sub-micron sized

pillars [81], Juan and No summarized three extrinsic size effects namely the increase

in the critical stress to start the forward transformation σfwd, the decrease in the

critical stress to begin the reverse transformation σrev, and the change of selection

criteria for martensite variants. Nominal stress-strain results for 1.8µm and 900

nm pillars were presented which demonstrated cyclic as well as size dependent ef-

fects compared to the bulk response. The sub-micron pillar showed a stable cyclic

reversible martensitic transformation for loading and unloading with the first two ex-

trinsic size effect features leading to an increased hysteresis and energy dissipation.

On the other hand, the response of the micron sized pillar showed an increased σfwd

followed by a partial recovery of the transformation. Subsequent cycling resulted in

a stable forward/reverse transformation hysteresis, however, with a decreased σfwd.

The dislocation generation due to the initial loading stage created ample nucleation

sites for subsequent cycles of forward transformation which caused the σfwd to drop

after the initial cycle. σrev was shown to be similar for both micron and sub-micron

pillars, yet lower than the bulk material. As mentioned earlier, this can be attributed
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to the relaxation of strain energy, otherwise conducive to the initialization of reverse

transformation, at the free surfaces [81].

Frick et al. demonstrated that the behavior of NiTi compression micropillars,

with diameters of 1000, 273, and 173 nm, depend on the diameter and is relatively in-

dependent of the orientation [51]. Irrespective of orientation or precipitate structure,

the pseudoelastic hysteresis was diminished with diameters below approximately 400

nm, and fully inhibited with diameters below 200 nm.

Although not an experimental work, the pseudoelasticity and shape memory effect

of single crystalline NiTi nanopillars were studied via molecular dynamics simulations

[160]. In the bulk NiTi subjected to periodic boundary conditions, a temperature

for the martensite start and finish could be determined. However in nanopillars,

no phase transformation of B2 → B19′ was observed. The size effect, i.e. reduced

phase transformation temperatures with decreasing pillar size, was attributed to the

increasing role of surface atoms on phase transformation where the differences in

phase energies varies between atoms at the free surface and in the bulk.

Bending of Ti-50.9 at%Ni single crystal micropillars with diameters of 1.2µm

and 200 nm were performed with in situ SEM demonstrating the existence of shape

memory behavior [27]. Also, compression experiments on the nanopillars showed that

the plastic deformation is independent of the size of the specimen and the precipitate

microstructure; unlike the response of the bulk material.

Free standing In-21 at%Tl SMA nanowires were produced through mechanical

pressure injection method (MPIM) and characterized with SEM, TEM and EDS for

phase transformation [114]. It was concluded that the nanowires do not show any size

effect for phase transformation ranging in diameter from 650 to 10 nm. The fact that

these SMA nanowires show transformation at small scales while other configurations,

though different alloys, show a size effect was attributed to the dimensionality of the
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system as well as the lack of constraints in the free-standing nanowires. On the

contrary, the nanograins are constrained by the matrix or adjacent grains and the

thin film by the substrate or the surface oxide layer.

The blocking stress for ferromagnetic SMAs can also be increased by reducing

the size of the actuator. Ganor et al. showed that, by using smaller samples (200µm

square cross section), the blocking stress achieved in a Ni2MnGa actuators can in-

crease up to twice the nominal 5 MPa stress [59]. Above this stress value, the strains

induced by the magnetic field in a bulk sample diminish when magnetic domain rota-

tion is energetically favorable to the variant reorientation. The modeling results also

affirmed higher blocking stresses for smaller specimens due to increasing the energy

barrier to magnetization rotation. In addition, domain theory calculations showed

that smaller specimens favor finer twin structures.

Cu-Al-Ni microwires with diameters ranging from 500 to 20 µm were tested in the

seminal work by Chen and Schuh using isothermal tensile testing and constrained

thermal cycling [25]. The Oligacrystalline microwires had a bamboo type microstruc-

ture where the consecutive grains completely spanned the wire diameter. Such a

microstructure alleviates the brittleness seen in the response of bulk Cu-Al-Ni SMAs

that arises from intergranular fracture due to the stress concentration and incom-

patibility at the grain boundaries during martensitic transformation. Size effect was

also observed in the response of the microwires with size-dependent transformation

temperatures, critical stresses to start transformation, as well as stress hysteresis.

The authors attributed the observed size dependence to:

1. The surface energy of austenite and matensite that can contribute to the size

dependence of stress hysteresis,

2. The stored elastic energy associated with martensitic transformation and its
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relief at the free surfaces leading to a lower reverse transformation stress, and

3. The obstacles and defects pinning the propagation of the transformation front

leading to an increase in the hysteresis of the smaller microwires.

Figure 8: The martensite start stress σfwd
s , and average transformation stresses σM

and σA, for 466 µm (hollow data points) and 26µm SMA wires (solid data points)
[25].

The experimental observations with regard to compression of micron and sub-

micron sized pillars of shape memory alloys are summarized in table 1.1. Also in-

cluded in the table, are the microstructural-based physical background giving rise to

the phenomena of size effect, as discussed in the corresponding papers.
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Table 1.1: Experimental observations in compression or bending of micron and sub-micron sized SMA pillars. All of the

pillars were manufactured using focused ion-beam (FIB) machining.

Reported Alloy;
Microstructure Transformation characteristics

Physical explanation

micropillar tests Pillar diameter(D) for size effect

Frick et al. †, 2007 [53] Ti-50.9 at%Ni ; 200 nm

to 2 µm

Aged (350 ◦C, 1.5 hr) [111] sin-

gle crystal containing 10 nm

Ni4Ti3 precipitates

Pseudoelastic behavior observed for 2

µm to 400 nm, diminishing with size

reduction. No pseudoelasticity for D ≤

200 nm. Transformation-induced plas-

ticity independent of size.

(a), (e), (f)

Frick et al. †, 2008 [51]

and 2010 [52]

Ti-50.9 at%Ni ; 1.03

µm, 273 nm, 173 nm

Aged (350 ◦C, 1.5 hr)

[111],[001], and [210] sin-

gle crystal containing 10 nm

Ni4Ti3 precipitates; and solu-

tionized (600 ◦C, 1.5 hr, water

quenched) polycrystalline with

70 µm grain diameter (GD)

Reversible Martensitic transformation

(MT) for all 1 µm pillars independent

of orientation, psuedoelastic hysteresis

inhibited for D ≤ 400 nm and sup-

pressed for D ≤ 200 nm regardless of

orientation and precipitation. Size in-

dependent yet orientation dependent

(unlike bulk) martensitic plastic flow

stress.

The transformation inhibiting

mechanism size dependent but

independent of orientation or

precipitate microstructure, (f)
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Table 1.1 Continued.

Reported Alloy;
Microstructure Transformation characteristics

Physical explanation

micropillar tests Pillar diameter(D) for size effect

San Juan et al. †, 2009

[127]

Cu-Al-Ni ; 825 nm [001]-oriented single-crystal,

free of precipitates

Reversible MT with minimal perma-

nent strain

(a) overruled, (b) and (c)

San Juan et al. †‡,

2008 [126]

Cu-Al-Ni ; 400 nm, 1.7

µm

[001]-oriented single-crystal,

free of precipitates

Reversible MT (both shape memory

and psuedoelaticity via formation of

martensite variants ≤ 25 nm in thick-

ness) with minimal permanent strain

Size effect not investi-

gated/observed compared

to the bulk material

Clark et al. †‡, 2010

[27]

Ti-50.9 at%Ni ; 1.2 µm

to 200 nm for bending,

2 µm to less than 200

nm for compression

Aged (450 ◦C, 1.5 hr, water

quenched) [111] single crystal

containing 50 nm Ni4Ti3 pre-

cipitates

MT observed (both shape memory and

psuedoelaticity) for diameters as low

as 200 nm, size independent plastic-

ity. Yielding in precipitate-free Ni sin-

gle crystal micropillars was size depen-

dent.

(a), (e)

Ye et al. ?, 2010 [157] NiTi ; 140 to 200 nm NiTi from vapor deposited thin

film. Mostly single crystal pil-

lars or with less than two grain

boundaries

B2 ↔ B19′ MT for samples ≤ 200 nm

and loaded to < 15% strain, multi-step

transformation indicative of consecu-

tive nucleation, no reverse transforma-

tion upon larger strains.

(a) overruled, (f), (g)

Manjeri et al. †, 2010

[99]

Ni-Ti (56.05 wt%Ni) ;

12.6 µm for the [101]

and 9.4 µm for the

[111]-oriented cylindri-

cal micropillar.

Aged (400 ◦C, 1.0 hr, water

quenched) [111] and [101] sin-

gle crystal containing Ni4Ti3

precipitates

Orientation dependent reversible MT

observed with minimal plastic residual

strain. Orientation dependent disloca-

tion yielding of stress-induced marten-

site.

Size effect not investi-

gated/observed compared

to the bulk material
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Table 1.1 Continued.

Reported Alloy;
Microstructure Transformation characteristics

Physical explanation

micropillar tests Pillar diameter(D) for size effect

Zhong et al. ∗, 2012

[160]

NiTi smooth pillars;

4.8 × 5.1 nm square

cross section

compression along < 100 > Irreversible twinning due to disloca-

tion pinning of BCO twins observed at

higher loads.

Nucleation stress peak and

subsequent plateau with large

hysteresis was observed.

Ozdemir et al. †, 2012

[112]

Ni54Fe19Ga27 ; 235 nm

to 10 µm

[110]-oriented precipitate-free

single crystal

Reversible two-stage MT observed,

with transformation-induced plasticity

(TRIP) at higher stresses, pseudoelas-

ticity suppressed for 235 nm pillar.

(a) overruled, (b) and (d),

no size effect observed in the

TRIP

San Juan and No † ??,

2013 [81]

Cu-AL-Ni ; 900 nm, 1.8

µm

[001]-oriented single crystal Micron scale: Increase of critical stress

to start MT prior to generation of dis-

locations. Sub-micron scale: reversible

MT, increased critical stress to start

MT for forward transformation and re-

duced one for reverse transformation.

(b), (c)

∗ Molecular Dynamics (MD) atomistic simulations performed.

† Pillar compression, and ‡ bending tests performed using nanoindenter.

? in situ TEM pillar compression as well as in situ diffraction tests performed.

?? in situ TEM pseudoelastic tensile tests performed.

(a) Gallium contamination on the pillar surface after FIB.

(b) Stabilization of austenite due to paucity of nucleation sites leading to an increase in the critical stress to start forward transformation or a

decrease in the Ms.
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(c) Stabilization of stress induced martensite due to relaxation of strain energy generated during loading at the free surfaces as a result of martensite

variants forming across the entire cross-section of the specimen. Hence, a decrease in the critical stress to start reverse transformation or an increase

in the As.

(d) Increase in the energy dissipation through martensitic transformation due to the refinement of martensite twin formations.

(e) The effect of precipitates blocking dislocations with spacing smaller than the geometry of the specimen.

(f) Interaction of stress-induced martensitic transformation and dislocations generated during forward transformation (TRIP) resulting in the

stabilization of martensite upon unloading.

(g) The martensitic transformation and recovery in the pillar substrate resulting in spurious hysteresis in the nominal stress-strain plots for

micropillar compression.
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Shape memory alloy thin films are promising candidates as small scale actuators

[135]. Their response denotes size effect in “2D” structures.

NiTi thin films were prepared by Busch et al. using DC magnetron sputtering

method [22]. Films were deposited up to 10µm in thickness and were crystalized in

order to develop martensitic transformation observed by DSC tests. The deposited

films showed similar mechanical properties to the bulk material but showed trans-

formation temperatures that were 100 ◦C lower than those of the parent material.

This was attributed to the refinement of grain size in the specimen and also oxygen

contamination that can alter the composition of the SMA.

In a work on Ni-Ti-Cu shape memory alloys, Ti50Ni50−αCuα (α = 10, 15, 25

atomic %) thin films were tested by electric resistance for the effect of the thickness,

5-100 µm, on the characteristics of martensite transformation. It was shown that

the transformation temperature decreases with the film thickness [11].

Kuninori, Sukedai, and Hashimoto investigated the size effect in the marten-

sitic transformation of Ti-50.2%Ni thin foils [87]. Martensitic transformation was

obstructed for thicknesses less than 100 nm. Thin films generally showed Ms tem-

peratures less than that of the bulk TiNi.

The martensitic transformation in NiTi thin films on Si substrates was studied ex-

perimentally for Ni50Ti50/SiO2/Si film composites [125]. NiTi was sputter deposited

to 1µm with a buffer SiO2 layer of 100 nm. The high level of residual stress state in

the film changes the self-accommodation of the martensitic transformation in shape

memory alloys. A cubic to tetragonal transformation of single crystalline material

has been also used to model the transformation in the SMA thin films. The the-

ory predicts considerable broadening of the temperature hysteresis of transformation

as well as irreversibility of martensite transformation due to the differences in mi-

crostructures which accommodate the film/substrate and the austentite/martensite
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interface constraints.

The thickness effect on the shape memory behavior of Ti-50.0 at.% Ni thin films

was investigated by Ishida and Sato [76]. The films were first deposited on glass

substrates in an amorphous form and then crystallized without the substrates. The

transformation strain and residual strain under a constant stress were shown to be

very sensitive to the film thickness when the thickness is less than the average grain

size, 5 µm. As a result, the transformation strain and residual strain demonstrated

a maximum around a thickness of 1-2 µm. For thicknesses of 5µm and above,

the transformation strain and residual strain were found to be almost constant.

The decrease in the transformation temperature and the increase in the difference

between the transformation start and finish temperatures were attributed to surface

oxidation as a result of the heat treatment. Surface oxidation reduces the amount

of Ti in the region beneath the surface oxide layer. This composition shift lowers

the transformation temperatures and also the composition gradient across this zone

increases the temperature range of the transformation. The transformation and

plastic strains increased by decreasing the film thickness from 5 to 2µm and decreased

by going to 1000 and 500 nm thicknesses. There is a constrain to transformation

due to the neighboring grains and its effect is in competition with the effect of the

surface oxide layers. The constraint from the neighboring grains will saturate (will no

longer be dependent on the thickness) as the thickness of the film becomes orders of

magnitude greater than the average grain size of the SMA. The surface oxide and the

affected zone beneath it lower the transformation temperatures. Also the gradients

of composition occurring due to that increases the transformation hysteresis in the

response [76].

In their work on SMA thin films, Fu et al. studied the effect of film thickness on

phase transformation of constrained Ti50.2Ni49.8 films deposited on silicon substrates.
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Ti50.2Ni49.8 films were prepared by co-sputtering of a Ti55Ni45(at.%) target (RF, 400

W) and a pure Ti target (70 W, DC). The actuation strain in the films were measured

using the change of curvature in response to thermal cycling. For the films with a

thickness below 100 nm, surface oxide and Ti-depleted adjacent regions establish

constraining effect leading to local residual stresses and low recovery capabilities in

the film [58].

The effect of film thickness on the phase transformations of radio-frequency (rf)

sputtered TiNi shape-memory thin films were investigated by Wan and Komvopoulos

using electrical resistivity (ER) measurements [149]. Thermal cycling was performed

on the specimens in the temperature range of -150 to 150 ◦C. The films with thick-

nesses greater than 300 nm showed a hysteresis in their ER response. TiNi films with

thicknesses lower than 300 nm had a smaller ER hysteresis and below about 50 nm

no hysteresis was observed. The results indicated that constraints introduced by the

film surface and film-substrate interface impose resistance on lattice distortion and

twinning. The inhibition of these mechanisms, which control self-accommodation

R-phase transformation, leads to the suppression and eventual disappearance of the

shape memory effect for film thickness less than ∼100 nm.

It is possible to manufacture SMA polycrystalline samples comprised of nano-

sized grains in order to attain enhanced properties. The altered behavior of such

samples represents size effect in “3D” structures.

Waitz et al. used high pressure torsion to manufacture NiTi alloy specimens with

a nanocrystalline microstructure. The specimens, after isothermal annealing, had

grain sizes in the range of 5350 nm. Upon cooling, the nanostructures went through

a partial transformation to B19 due to the pinning effect of the grain boundaries

on the formation of martensite. It was concluded that with decreasing the grain

size, the martensite twins were more refined, increasing the twin interfacial energy
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and leading, ultimately, to an increased energy barrier. Therefore, the martensitic

transformation is completely suppressed in grains smaller than 60 nm [147]. In a

separate work, Waitz et al. investigated nanocrystalline NiTi samples via trans-

mission electron microscopy (TEM) [146]. It was shown that even upon cooling to

very low temperatures, grains of a size less than about 50 nm do not transform to

martensite. To describe this size effect based on surface energy considerations, a

micromechanical model of a spherical inclusion was used to calculate the transfor-

mation energy of the nanograins. A transformation dragging force, indicative of the

barrier energy for martensitic transformation, was developed as a function of the

grain diameter allowing a critical grain size (50 nm) to be found below which the

martensitic transformation becomes prohibitive.

The martensitic transformation and the grain size effect in nanometer and mi-

crometer scales were analyzed quantitatively by Malygin in the framework of the

theory of diffuse martensitic transitions [98]. To that end, the phenomenological

thermodynamics of phase equilibrium and kinetics of phase formation were used.

The following three basic facts associated with the influence of a decreased grain

size or film thickness on the parameters of the martensitic transformation in shape

memory alloys were concluded:

1. A decrease in the critical transformation temperatures,

2. An increase in the transformation hysteresis, and

3. The existence of a critical grain size or film thickness below which the marten-

sitic transformation in the SMA is inhibited.

The behavior of shape memory alloys alters by going form a single crystal to a

polycrystalline form. This is due to the compatibility condition that the formation of
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martensitic variants has to satisfy between neighboring grains with different crystal-

lographic directions. Hence, the degree of symmetry in martensitic transformation

becomes important where SMAs undergoing higher symmetry transformations (for

example NiTi transforming from cubic to monoclinic compared to CuAlNi going form

cubic to tetragonal) show higher levels of recovery and shape memory effect in poly-

crystalline form [18]. Also as a result of satisfying compatibility between the grains,

the variant formation within a grain changes by distancing from the boundary [104].

The size of the grain imposes restrictions on the size of the twin formations too.

Finer twins require more energy to form and also dissipate more energy.

The effect of the austenite grain size on the temperature to start martensitic

transformation has been investigated by kinetic modeling [67,155]. Grain boundaries

provide a nucleation site for martensite transformation and the size of the grain

stabilizes the austenite (restricts martensitic transformation) by limiting the volume

of martensite units. As a result, a lower temperature is required in finely grained

austenite to start martensitic transformation, Ms.

Thermomechanical stability of martensitic phase transformation in Ni49.7Ti50.3

shape memory alloy, fabricated using equal-channel angular extrusion (ECAE), was

studied under cyclic loading in the work by Kockar et al. [86]. The average grain

sizes were between 100-300 nm. The experimental observations included an increase

in the critical stress level for dislocation slip due to grain refinement, change in the

transformation twinning mode in submicron grains, the presence of R-phase and

multi-martensite variants, or a small fraction of untransforming grains due to grain

boundary constraints. ECAE processing results in nano-range grains, partial R-

phase stabilization, and an increase in the stress to start dislocation plasticity, thus,

improved the cyclic stability of the alloy. Such small grain sizes influenced martensite

morphology and helped form compound twins with twin thicknesses on the order of
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a few nanometers.

Also, the effect of austenite grain size on the initiation of martensite transforma-

tion was studied by Guimares [66]. The results predicted the experimentally observed

stabilization of austenite to martensite transformation in Fe-31.9%Ni-0.02%C alloy

in the grain size range of 5 to 15µm.

Ti-50.0(at.%)Ni with average grain diameter of 27 to 80 nm, fabricated via cold

working (40 and 70%) and annealing, were experimentally investigated in [85]. The

results of differential scanning calorimetry, transmission electron microscopy, iso-

baric thermal cycling, and tensile tests demonstrated that hysteresis increased with

increasing the annealing temperature. This was attributed to an increase in the

average grain size.

Last but not least, the energy dissipation ratio in nanoindentation of equiatomic

NiTi SMA thin films with nano-sized grains was investigated by Wang et al [150].

The results demonstrated higher dissipation for thin films of smaller grain size under

lower indentation depths.

Ultimately, the physical attributes that give rise to the size effect phenomena, re-

viewed within the context of the aforementioned SMA structures, can be summarized

as below.

1. Although grain boundaries provide nucleation sites for martensite transforma-

tion, they impose constraining effect on the martensitic variant selection and

also size of the twins. Hence, grain boundaries contribute to a higher energy

barrier for transformation to take place. The martensitic transformation even-

tually suppresses for samples with grains smaller than a certain diameter.

2. The grain size in SMA thin films is smaller comparatively and gets close to the

characteristic thickness of the thin film contributing to a strong size effect.
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3. The constraining effect of the substrate and the surface oxide as well as the

adjacent oxygen affected zone play an important role. Also, the SMA thin films

have a biaxial internal residual stress state as a result of the manufacturing

process that affects the transformation properties.

4. The existence of a free surface in small-scale SMA structures and its high ratio

to the volume can provide relieving effect for the elastic strain energy in the

sample and also accommodate formation of martensite variants otherwise less

favorable to form.

5. Smaller samples have less probability of having martensite nucleation sites, i.e.

precipitates, lattice defects, etc; hence a higher level of stress is required to

start the martensitic transformation.

6. The heterogeneities in the SMA microstructure, resulting in spatial gradients

in the evolution of martensite, become more significant in smaller scales.
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1.3 Nonlocal methods in the modeling of inelastic material response

The term nonlocal encompasses a variety of generalized continuum theories that

do not follow the principle of local action, as defined by Noll [109] for “simple ma-

terials”. In other words, the constitutive material response for stress at a point in

these models depends on the history of strain and temperature at that point as well

as a neighborhood of it or the entire body. This is equivalent to the statement that

the state of the material body (such as stress) at a point X at any time t, S(X, t),

is a functional F of state variables (such as strain), E , at all points of the body:

S(X, t) = F
X∗∈V

[E(X∗)] (1.2)

In general, the functional F can be approximated by a series of spatial gradients

of E up to a desired order or by a series of volume integrals (suggesting to the integral

or gradient-based approaches discussed later) [44].

The development of nonlocal continuum theories stems from the inability of clas-

sical continuum theory in describing certain experimentally observed mechanical phe-

nomena.

The standard homogenization techniques cannot capture the dispersion of short-

wavelength elastic waves in microstructurally heterogeneous or discrete crystalline

media. The standard linear elastic continuum theory predicts a linear dispersion (the

relation between elastic wave frequency, ω, and wave number, k) for both long and

short wave-length waves, however, dispersion of elastic waves in crystalline materials

are experimentally shown to deviate from such classical predictions [148,152,156]. For

that purpose, strain-gradient and/or integral type elasticity models were considered

[79]. The standard continuum theory, also, predicts a singular state of stress at the tip

of a crack or center of a dislocation core. It is possible to eliminate these unphysical
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singularities using the nonlocal theories of elasticity [40,42,93]. In addition, standard

continuum mechanics theories have difficulty predicting size dependence in the elastic

torsional or flexural response of certain materials [16,23,26,83,92,151,154].

The size effect in the elastoplastic response of micron and submicron-sized speci-

mens, observed as increased plastic hardening of the structure, were captured using

various types of implicit and explicit strain-gradient plasticity models [46, 79]. The

hardness of several metals was shown to depend on the depth of indentation, be-

ing higher for smaller, nanoscale depths [63, 101, 144]. This phenomenon, called the

indentation size effect (ISE), was attributed to the decreasing gradients of strain

with an increasing indentation depth. Hence, strain gradient plasticity models were

used for modeling purposes base on the concept of geometrically necessary dislo-

cations that contribute to the enhanced hardening [48, 108]. The non-dimensional

moment-curvature response of thin (50−12.5µm in thickness) Ni foils in micro bend-

ing experiments around small cylindrical mandrills demonstrated dependence on the

thickness [134, 137]. Also, torsional stress-strain measurements performed on Cu

wires (15 − 170µm in diameter) showed a size dependent yield stress, with smaller

diameter wires being stronger [48]. The standard plasticity models, due to a lack of

intrinsic material length scales, cannot capture the observed size effect.

Moreover, the phenomenon of strain localization in materials with softening be-

havior as a result of growth and coalescence of voids and cracks was modeled using the

enriched continuum models, called localization limiters, including implicit, explicit,

and integral-type nonlocal plasticity models [15, 79]. Standard plasticity or damage

models with softening would lead to the loss of ellipticity in the governing differential

equations and an ill-posed boundary value problem that would demonstrate itself as

analytically-singular localization of the plastic deformation into a zone of zero width

(a curve in 2D or a surface in 3D) or mesh-sensitivity of the discretized numerical
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solution. The nonlocal material models assist the regularization of the problem by

allowing the inelastic strain to concentrate in a narrow band in a continuous fashion

preventing the pathological sensitivity to the discetization. The width of the local-

ization band depends on the characteristic length of the material determined by the

dominant heterogeneous features in the microstructure.

In general, if a characteristic length in the deformation field, such as the wave-

length or some size in the structure, approaches a certain internal length scale in

the material, second order effects become prominent and the standard continuum

theory needs to be enhanced through various nonlocal approaches to account for

those higher order effects. It is possible to account for such high resolution internal

microstructural features explicitly by considering the spatial variation of the mate-

rial properties in a lower scale (for example using an FEA model including detailed

microstructural features or an atomistic/molecular modeling approach). However,

this strategy requires extreme computational resources. The generalized nonlocal

continuum models, with either differential or integral character, introduce one or

more length scale(s) in the formulation. Any nonlocal continuum theory can be fully

justified only if it produces a model that gives physically valid results in a much

simpler fashion than that of a lower scale molecular theory.

Based on the definition by Rogula [124], any physical theory with a fundamental

form given by an (possibly nonlinear) operator, A, acting on a set of generalized

degrees of freedom, χ, under the generalized forces, J , as in

A [χ(X)] = J(X) (1.3)

is local if it bears no direct relation between χ(X) and J(Y ); X 6= Y and

X,Y ∈ R3.
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Another definition for locality is given based on the absence of characteristic

length scales in the model. If the constants that characterize the constitutive model

can not be combined into a parameter with the dimension of length, then the con-

stitutive form is invariant to an arbitrary scaling of the physical space, hence it is

local [124].

Any constitutive relation that can be categorized in the sense of both of the

above definitions is called strictly local. The models that are local according to the

first definition but contain a characteristic length scale are weakly nonlocal. Strain

gradient elasticity or strain gradient plasticity models are weakly nonlocal as these

theories are not form-invariant under the scaling of physical space. Finally, strongly

nonlocal theories, such as nonlocal integral or implicit gradient theories, are nonlocal

in the sense of both of the above definitions.

The micropolar theory of elasticity developed upon the early works of the Cosserat

brothers [30,33]. In a micropolar continuum, in addition to the classical displacement

degrees of freedom, each material point has three independent rotational degrees of

freedom [39]. The isotropic theory for a micropolar continuum consists of six elas-

tic constants (compared to two for the classical theory for a linear isotropic elastic

materiel) making the parameter identification and model calibration complicated. In-

spired by this, many nonlocal continuum theories were developed including Mindlin’s

theory of elasticity with microstructure [102] or the couple stress theory in which it

is assumed that surfaces transmit both force and moment traction vectors [142]. The

couple stress theory introduces both force and moment equilibrium equations as well

as a non-symmetric Cauchy stress tensor and a moment stress tensor.

Another branch of nonlocal elasticity theories includes gradient elasticity models.

In this theory, a.k.a Toupin-Mindlin theory, no new independent kinematic field is

introduced. However, the constitutive equations are assumed to depend in addition
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to the first, on the second and higher order gradients of displacement [64,103]. The

equilibrium equation is modified in this case to include the extra generalized stresses.

The nonlocal integral elasticity models consider the response functions for the

material to depend on a volume integral of the dependent variables over the en-

tire body [34, 35, 115]. As mentioned earlier, such models were intended for cases

where the lower-scale atomistic/molecular approaches were too costly and classical

local theories, on the other hand, fail to predict the observed experimental phenom-

ena. The weighting function used for the spatial integration cannot be uniquely

determined for a finite material body. Also, the weighting function has a decaying

character as the distance with the corresponding material point increases. There-

fore, its definition for the points near the material boundary becomes problematic

leading to a boundary layer type behavior even in the presence of a homogeneous

deformation [15].

The classical associated flow theory of plasticity with isotropic hardening (or

softening) can be given through the following set of equations.

dσij = Cijkl (dεkl − dεpkl) , dεpij = dλ
∂f

∂σij
(1.4)

where λ is the plastic multiplier determining the norm of increment of the plastic

strain εpij with respect to the yield surface f given by

f (σij, ε
p) = F (σij)− σY (εp) , σY (εp) = σY0 + h (εp) (1.5)

F (σij) is the equivalent stress which is equal to the Von-Mises stress F (σij) =

σeqv =
√

3
2
σ́ijσ́ij for the case of J2 plasticity. σY is the yield stress which is a function

of the accumulated plastic strain, εp, representing the isotropic hardening/softening

through h. The accumulated plastic strain that, here, plays the role of harden-
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ing/softening variable is given via

εp =

∫
dεp =

∫ √
2

3
ε̇pij ε̇pij dt (1.6)

The rate of change of the plastic multiplier during loading and unloading can be

found via the Kuhn-Tucker conditions

dλ ≥ 0 , f (σij, ε
p) ≤ 0 , dλ f (σij, ε

p) = 0 (1.7)

and the consistency condition ḟ = 0.

Such a model for a softening material behavior will lead to an ill-posed boundary

value problem (because of the loss of ellipticity of the governing differential equations)

that does not have a unique solution and ceases to continuously depend on the input

data. As mentioned before, its incorporation in a finite element framework will lead

to mesh sensitivity of the results. Nonlocal models help regularize the problem as

localization limiters.

The inelastic response of materials can be described by enhanced or generalized

nonlocal continuum models. For example, it is possible to generalize the classical flow

theory to a nonlocal integral type [15] by redefining the yield stress in equation (1.5)

to include the nonlocal accumulated plastic strain ε̄p.

f (σij, ε
p, ε̄p) = F (σij)− σY (εp, ε̄p) , ε̄p (X) =

∫
V

α (X,Y ) ε̄p (Y ) dY (1.8)

where α is the selected nonlocal weighting function that can be related to the

influence of the state of the material in a neighborhood of the point X and decays

with increasing distance. It is commonly assumed to be the Gaussian distribution
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function within which the material intrinsic length scale can be introduced. The

weighted averaging for ε̄p is performed over the entire material domain V .

The nonlocal integral model for plasticity, introduced by Eringen [41], was used

to describe the interaction of dislocations and also stress distribution at the crack

tips. The strain space plasticity framework similar to the classical plasticity theory

was used, however, the stress (or the elastic strain in other words) was determined

by integral averaging of the local stress on the material domain. The stress-space,

associated J2 plasticity version of Eringen’s model was also introduced [43].

Nonlocal integral plasticity models that incorporate a nonlocal plastic strain ten-

sor [14] or a nonlocal softening variable [20,145] were also developed.

The thermodynamics-based associative isotropic hardening/softening plasticity

model by Borino et al. was based on a nonlocal postulate of maximum plastic dissi-

pation [20]. To that end, it was assumed that the plastic dissipation affects not only

the point at which it occurs but also other material points in the body. Hence, the

first and second laws of thermodynamics must be enforced in a global fashion and ob-

taining their local form for a point accompanies a nonlocality residual term. The state

variables, except the internal variable representing softening/hardening, retained

their local form. The state equations were obtained using a nonlocal Clausius-Duhem

inequality followed by yielding laws for a nonlocal associative plasticity model. The

plastic flow and yielding laws were shown to be the necessary and sufficient conditions

for a nonlocal principle of maximum dissipation.

Weakly nonlocal constitutive models for inelastic material behavior include gra-

dients of the state variables (hence also called explicit gradient models) that capture

the effect of an infinitesimally small neighborhood around a material point. This can

be the higher gradients of the displacement field (or the gradients of total strain) [45]

or can be exclusive to the gradients of the internal variables such as the accumulated
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plastic strain [2, 6, 47] or the martensite volume fraction [119,140].

The early models of Aifantis [2, 3] and Coleman and Hodgdon [29] incorporated

the second gradient of the plastic strain in the yield function representing the in-

teraction of trapped and free dislocations as the kinetic nature for evolution of the

plastic deformation [4]. The motivation was capturing the structure and evolution of

the plastic flow localization in a small finite-sized region (the shear band) especially

in the post-localization regime. The response of the models in the elastic regime was

considered to be local. Higher order gradients of plastic strain (second and fourth

order) were also considered in the yield function and constitutive equation for the

flow stress to regularize the shear band localization [159]. The addition of intrinsic

length scales through these models provides a size for the localization of the shear

band (See [80] for a description of the regularization capability in such models using

a one-dimensional example). The generalized yield surface in the explicit gradient

theory based on the original Aifantis’s model can be written as

f(σij, ε
p) = σeqv − σY (εp) + C1(εp) (∇εp · ∇εp)m + C2(εp)∇2εp = 0 (1.9)

The aforementioned gradient theory with the Laplacian of equivalent plastic

strain was shown to be a generalization of Mindlin’s theory of elasticity with mi-

crostructure (or the micromorphic theory) when the independent micro-deformation

field variable is forced to coincide with the accumulated plastic strain as an additional

constraint [49].

The previous strain-gradient theory of plasticity was also developed through vari-

ational principles in the work of Mühlhaus and Aifantis [106]. The variation of a

potential functional was assumed to vanish upon equilibrium. The functional de-
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pended on the displacement field and also the field of the equivalent plastic strain.

It comprised of the elastic energy, the external work and the dissipated energy. The

Euler-Lagrange equations of the functional resulted in the equilibrium equation and

standard continuum boundary conditions as well as an additional differential equa-

tion for the effective plastic strain and its corresponding non-standard boundary

condition. The method, also, gave a framework for numerical implementation of the

model using finite element approach. The non-standard boundary condition, for the

case of second-gradient of the equivalent plastic strain, can be of the Neumann or

Dirichlet forms:

∂ε̇p

∂n
≡ n · ∇ε̇p = 0 or ε̇p = 0 (1.10)

which has to be satisfied at the material boundary and/or the a priori unknown

elastic-plastic interface with a unit normal n.

The problem of size effect in the torsion and bending of metallic bars was also in-

vestigated using the strain gradient models. As the thickness or diameter of the spec-

imens become comparable to the internal length scale of the material, the specimen

shows a size effect through an increased apparent hardening. Other phenomena ex-

plored are the formation of a boundary layer in shearing of a thin metal between two

rigid plates (observed in and motivated by dislocation dynamics simulations) as well

as indentation size effect in the nano/micro-indentation of metals and also the grain-

size dependence in the mechanical response of ultrafine grain and nanocrystalline

polycrystals [6–8, 143]. The coefficients of the gradient terms can be phenomeno-

logically derived based on observation of shear band width or calibration with the

size effect response plots. Also, a micromechanical approach in determination of the

coefficients were used (utilizing a self consistent scheme along with a volume integral

37



definition for the average effective plastic strain over the considered RVE). The Tay-

lor expansion for the average strain would lead to an expression for the coefficient

of the second gradient of plastic strain in (1.9) based on the characteristic geometric

features of the underlying heterogeneity [5].

Another class of strain gradient plasticity models were developed based on the

concept of geometrically necessary dislocations (GND). Dislocations, as line defects

in crystalline lattices, are kinematically divided to statistically stored dislocations

(SSD) and geometrically necessary dislocations (GND). SSDs result from random

entanglement of mobile dislocations leading to a homogeneous strain field with a

vanishing net Berger’s vector. GNDs, on the other hand, have a polarized net dis-

location density and result in a nonuniform plastic strain field. GNDs are required

to produce plastic strain gradients. It is then argued that both SSDs and GNDs

contribute to the plastic strain hardening and the observed size effect is a result of

the dominance of the contribution form GNDs in the case of a strain field with high

gradients. The flow stress, τ , is then assumed to be proportional to

τ ∝ Gb
√
ρs + ρG (1.11)

where ρG and ρs are the densities of GNDs and SSDs, respectively. b is the

magnitude of the Burger’s vector in the system considered and G the shear modulus.

ρG can be kinematically related to the gradient of accumulated plastic strain.

The three major experimental observations of size effect, i.e. torsion of thin wires,

bending of thin foils and micro/nano-indentation tests, represent such strain fields.

The phenomenological strain gradient model by Fleck and Hutchinson [45, 48]

is an extension of the couple stress gradient theory to the deformation theory of

plasticity. In the couple stress theory it is assumed that surfaces transmit both force
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and couple vectors. The elastic energy comprises, as work conjugates, contributions

from Cauchy stress tensor σij and the rate of strain tensor εij = 1
2

(ui,j + uj,i) as

well as couple stress tensor µij and the rate of curvature tensor χij ≡ θi,j (the

gradient of rotation vector associated with the displacement field θi = 1
2
εijkuk,j).

Application of the principle of virtual power leads to force equilibrium and moment

equilibrium equations with the corresponding force and moment traction boundary

conditions. For extension to plasticity, the strain and curvature tensors are additively

decomposed into elastic and plastic parts. The norm of the plastic curvature tensor

is defined as the scalar measure of the density of GNDs. A generalized measure of an

equivalent strain is considered that contains the effective strain and also the effective

curvature with a length scale multiplier. The generalized equivalent stress (as the

addition of effective stress and effective couple stress) is assumed to be related to

the equivalent strain through the derivative a power-law strain energy function. The

flow theory version is also derived based on assuming a yield surface as a function

of the equivalent stress. The rates of plastic strain and curvature tensors are given

based on the derivatives of the yield surface. The stress and elastic strain tensor and

couple stress and elastic curvature tensors are considered proportional using tensorial

elastic constants. The gradient-based nonlocality in the aforementioned model exists

for both the elastic and plastic regimes, making the model complicated with several

material constants as well as additional length scales.

In a subsequent work, Fleck and Hutchinson [46] presented their strain-gradient

theory based on the Toupin-Mindlin gradient elasticity theory [102, 103, 142]. The

Toupin-Mindlin theory can be connected with the couple stress theory by only con-

sidering those components of the strain gradient that correspond to the gradients

of rotation, i.e. a couple stress theory were the rotations are not independent and

constrained to the curvature resulting from the displacement field. The symmetric
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strain tensor, εij, and the gradient of displacement, ηijk ≡ uk,ij, are considered to

be the kinematic variables. Cauchy stress tensor σij is the strain energy work conju-

gate to εij and the higher order stress τijk to ηijk. A linear elastic isotropic material

using this model has 5 more material constants in addition to the classical Lame con-

stants. The principle of virtual power provides the generalized equilibrium equation

(σij,j + τijk,jk + bi = 0) and two traction boundary conditions. For generalization to

plasticity, the flow theory of strain gradient plasticity was derived by decomposing

ηijk to elastic and plastic parts. As before, a generalized effective stress, Σ, was

defined consisting of norms of both the Cauchy and the higher order stresses. Also,

a generalized effective plastic strain, Ep, was considered whose rate is given as the

derivative of the yield surface with respect to Σ. Ep combined the invariant of plastic

strain and three invariants of the plastic strain gradient with corresponding coeffi-

cient length scales. In addition, the elastic parts of the strain and strain gradient

tensor were related to the stress and higher order stress through derivatives of the

elastic strain energy.

εij = εeij + εpij , ηijk = ηeijk + ηpijk

ε̇eij = Mijkl σ̇kl , η̇eijk = Kijklmn τ̇lmn

Σ2 =
3

2
σ́ijσ́ij +

3∑
I=1

[
1

`2
I

τ́ijkτ́ijk

]
, Φ

(
Σ, σY

)
= Σ (σij, τijk)− σY (Ep) = 0

ε̇pij =
3

2h

σ́ij
Σ

Σ̇ , η̇pijk =
Σ̇

hΣ

3∑
I=1

[
1

`2
I

τ́ijk

]
(1.12)

A single crystal plasticity version of the theory was also given. In addition to the

previously mentioned size effect observations, the role of strain gradients in macro-

scopic strengthening of metal matrix composites containing rigid particle inclusions,
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the growth of micro-voids, and the evolution of the stress field at the tip of mode

I and II cracks were studied with this model [24, 153]. The macroscopic strength

of particle-reinforced metal-matrix composites was shown to not only depend on

the volume fraction of the particles but also on the particle diameter. An increased

strength is observed for smaller particles in the range form 0.1 to 10 µm as a result of

sharper gradients of plastic strain, hence GNDs, around the smaller particles. Such

a phenomena was also observed for two-phase alloys.

A generalization of the Aifantis gradient plasticity model was presented in [47]

by Fleck and Hutchinson. The elastic response in the new model was assumed to

follow the classical local theory. The third order plastic strain gradient tensor was

used to define a generalized effective plastic strain measure. Three length scales were

introduced, to that end, representing the rotation as well as stretch rate gradients

(corresponding to three quadratic invariants of the strain gradient tensor εpij,k con-

sidering the incompressibility of εpij). A generalized form of the principle of virtual

power was invoked were the displacement, plastic strain and gradient of plastic strain

contributed to the internal virtual power through their stress-like conjugates. In ad-

dition to the conventional traction vector, the conjugate vector to plastic strain was

also assumed to contribute to the external work applied on the boundary. Based

on this idea, a potential functional depending on the displacement and generalized

effective strain gradient field was developed the minimization of which provides the

rate form of the differential equation for the yield surface and the corresponding

non-standard boundary conditions on the elastic-plastic interface (similar to (1.9)

and (1.10) including only the Laplacian term).

The mechanism-based strain gradient theory, pioneered by Huang and Gao [60,74,

120,121,158,158], is a multiscale framework that extends the concept of Taylor model

in dislocation mechanics to the gradient plasticity. Two scales, namely microscale and
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mesoscale, were considered in an RVE. The stress σ̃ij and strain ε̃ij at the microscale

were assumed to vary according to a local dislocation plasticity definition based on

the Taylor model where the effect of the GNDs were accounted in the microscale yield

stress σ̃Y through the effective strain gradient, η, from the mesoscale; η = 1
2
b ρG.

(σ̃Y )2 = σ2
0 f

2(ε̃p) + 18α2G2b η (1.13)

The intrinsic material length scale introduced was proportional to ` ≡ 18α2 ( G
σ0

)2 b

with α = 0.3 being the constant of Taylor dislocation model. The zeroth-order aver-

age (volume integration over the RVE) of the microscale stress and strain provided

the mesoscale stress and strain, while the first-order average of them accounted for

the mesoscale higher order stress and the gradient of strain. The zeroth and first

order averages of a microscale variable ξ̃ are defined below.

ξ(0) =
1

VRV E

∫
V

ξ̃ dV , ξ(1) =
1

VRV E

∫
V

ξ̃ x̃ dV (1.14)

The generalized equilibrium equation, including the higher order stress and both

stress traction and higher order stress traction, was considered with non-standard

boundary conditions. The flow and deformation versions of this theory were devel-

oped which become identical for the case of an incompressible solid under propor-

tional loading. The flow theory of mechanism based gradient plasticity was numeri-

cally implemented in a finite element framework. The theory was used to investigate

the stress field around a stationary and steady state quasi-statically propagating

mode-I crack tip. It was shown that the stress level predicted by the mechanism-

based gradient plasticity is much larger than that of the classical plasticity due the

dominance of GNDs, however both theories predict a similar plastic zone size [78].

The problem of microindentation in crystalline materials was also investigated using
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this model to predict and characterize both the size effects form the indention depth

as well as the spherical indenter radius [118,121]. Also, the experimentally observed

particle size effect in metal-matrix composites (A356 aluminum alloy reinforced by

15 vol.% SiC particles of 7.5 or 16µm diameters [95]), attributed to the hardening ef-

fect of GNDs [122], and the problem of shear band localization [131,132] was studied

using the mechanism-based gradient plasticity model.

Gudmundson [65] presented a general thermodynamic framework that can be

used to derive many of the existing strain gradient plasticity models. A generalized

principle of virtual power was assumed that considers the contributions from elastic

strain εeij, plastic strain εpij, and the plastic strain gradient εpij,k along with their

respective work conjugates of Cauchy stress σij, microstress qij, and moment stress

mijk.

δWint =

∫
V

[
σij δε

e
ij + qij δε

p
ij +mijk δε

p
ij,k

]
dV

=

∫
V

[
σij δεij + (qij − σ́ij) δεpij +mijk δε

p
ij,k

]
dV

δWext =

∫
S

[
ti δui +Mij δε

p
ij

]
dS

δWint = δWext

σij,j = 0 , mij,k + σ́ij − qij = 0 , ti = σijnj , Mij = mijknj

(1.15)

Hence the principle of virtual power led to the balance equations and corre-

sponding standard and non-standard boundary conditions with respect to force and

moment force tractions. The balance law regarding microstresses is often denoted as

the microforce balance after Gurtin [69]. The microforce balance acts as a general-

ized flow rule in this context. The rates of the plastic strain and the gradient plastic
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strain were obtained based on satisfaction of the second law of thermodynamics (or

the dissipation inequality) through derivatives of a yield function. The yield func-

tion was defined based on a generalized accumulated stress and strain measures that

accommodated three different intrinsic material length scales. Connections between

this theory and strain-gradient theories of Aifantis and Fleck-Hutchinson were also

demonstrated. The presence of moment tractions, Mij, can be used in modeling

of the interface between two different plastically deforming phases. Example prob-

lems for bending of thin firms, torsion of thin wires and spherical void growth under

far-field hydrostatic tension were solved.

Gurtin and Anand [70, 94] developed a theory of strain gradient viscoplasticity

based on a generalized principle of virtual power consisting of power expenditures by

the rates of elastic strain, plastic strain, and plastic strain gradient. This resulted in

the macroscopic force balance law and the corresponding traction boundary condi-

tions and also the microscopic balance law (microforce balance) supplemented with

microtraction boundary conditions. The free energy for the material was assumed

to depend on the elastic strain and also on the curl of the plastic strain (defined as

the Burger’s tensor). This led to the introduction of two energetic and dissipative

material length scales. It is possible to introduce an additional length scale related

to strain hardening due to the accumulation of GNDs. Assuming constitutive equa-

tions for the microstresses (work conjugates to the plastic strain and its gradient)

consistent with the dissipation inequality (the isothermal form of the second law of

thermodynamics), the microforce balance equation provides a nonlocal flow rule in

terms of a tensorial differential equation for the plastic strain. The variational form

of this equation can be used for implementation in finite element algorithms.

In another work by Gurtin and Anand [71], the thermodynamics consistency of

the aforementioned models proposed by Aifantis and Fleck-Hutchinson was discussed.
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The gradient theories were derived using the generalized principle of virtual power.

It is shown that the generalized principle of virtual power based on the plastic strain

tensors and its third-order-tensor gradient (similar to the one used by [65, 70] as

in equation (1.15) can be reduced to the one using the accumulated plastic strain

and its gradient (first order tensor, used by [47, 106]) assuming that the direction

of the evolution of plastic strain is governed by the deviatoric part of stress. The

general thermodynamic framework was based on considering the microsrtess, π, and

micromoment, ζi, as work conjugates to the accumulated plastic strain, γp, and its

gradient, ∇γp, respectively. Hence, the first and second law of thermodynamics

(considering an isothermal process) led to

σij ε̇ij + πγ̇pij + ζi∇γ̇pi − ψ̇ ≥ 0 (1.16)

and assuming elastic and plastic (representing the defects) parts in the Helmholtz

free energy, the dissipation became

ψ = ψe(εe) + ψp(γp, ∇γpi )

Dp =

(
π − ∂ψp

∂γp

)
γ̇pij +

(
ζi −

∂ψp

∂∇γpi

)
∇γ̇pi ≥ 0

σeqv = π − ζi,i , πdis ≡ π − ∂ψp

∂γp
, ζdisi ≡ ζi −

∂ψp

∂∇γpi

(1.17)

The microforce balance, in (1.17)c, represents the flow rule in this theory. The

gradient plasticity models by Aifantis were obtained by assuming constitutive rela-

tions for πdis, ζdisi , and ψp. However, the Fletch-Huntchinson model was shown not

to be compatible with this thermodynamics-based framework.

The thermodynamic framework introduced by Polizzotto and Borino [117] was
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used to present a unified method for obtaining integral nonlocal as well as explicit

gradient elasticity and plasticity theories [116]. The nonlocal first and second laws of

thermodynamics in integral form can be localized for a single material point including

a nonlocality residual as an additional state variable. Gradient elasticity and explicit

gradient plasticity models could, therefore, be derived from this approach. The

concept of nonlocality energy residual was introduced in the works of Edelen, Laws,

and Eringen [34,35,41]. For the gradient plasticity model, the Helmholtz free energy

ψ (and also the internal energy) was assumed to depend on the elastic strain, the

effective plastic strain k, and its spatial gradients ∇k and ∇2k.

ψ = ψe
(
εij − εpij

)
+ ψp

(
k, ∇k, ∇2k

)
Dp = σij ε̇ij − ψ̇ +R ≥ 0 in V ,

∫
V ∗
R dV = 0 ∀V ∗ : V d ⊆ V ∗ ⊆ V

Dp = σij ε̇
p
ij −

(
∂ψp

∂k

)
k̇ −

(
∂ψp

∂∇k

)
∇k̇ −

(
∂ψp

∂∇2k

)
∇2k̇ +R = σij ε̇

p
ij +Xk̇ ≥ 0

(1.18)

V d was defined as the domain where the material points are under the nonlocal

long-range effect of each other. The vanishing integral for R (called the insulation

condition) provided the constitutive condition for X plus the corresponding nonstan-

dard boundary conditions. It was shown that the dissipation inequality Dp ≥ 0 can

be satisfied through the principle of maximum dissipation leading to the following

yielding and plastic flow equations.

f = f (σij, X) ≤ 0 , λ̇ ≥ 0 , λ̇f = 0

ε̇pij = λ̇
∂f

∂σij
, k̇ = −λ̇ ∂f

∂X

(1.19)
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An explicit gradient elasticity model was also obtained using this thermodynamic

approach.

The explicit strain-gradient plasticity models can be divided to lower order and

higher order ones. The higher order gradient theories, such as the ones by Aifantis

and Fleck and Hutchinson, include higher order stresses and non-standard bound-

ary conditions. On the other hand, the lower order gradient theories maintain the

features of classical local flow theory of plasticity except for the incorporation of

the strain gradient effect in the incremental tangential modulus. For that reason,

such models are extremely amenable to implementation in numerical frameworks,

specifically finite element method since they do not involve higher order stresses or

non-standard boundary conditions. The lower order models, yet, are not able to

predict the boundary layer phenomena related to the interface between grains or the

pinning effect of the plastic-rigid interfaces. Using such models, the uniform stretch-

ing of a thin film on a non-metallic substrate, for example, will not show any size

effect. Acharya and Bassani [1, 13] introduced one of the first versions of the lower

order strain gradient theories for dislocation plasticity.

σ̇ij = Cijkl (ε̇kl − ε̇pkl) , ε̇pij =

(
ε̇p

σeqv

)
σ́ij , σ̇eqv = h(εp, ∇2εp) ε̇p (1.20)

in which the gradient dependence was entered in the instantaneous plasticity

hardening function, h(εp, ∇2εp), rather than the yield function. The problem of size

effect in torsion of thin wires and hardening of metal-matrix composites (small hard

particles in a single crystal matrix) were studied using this lower order gradient theory

[13]. The lower order theory for the mechanism-based strain gradient plasticity was

also developed in [74].
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Niordson and Hutchinson [107] used a lower order gradient theory to investigate

the deformation of two finite and infinite metallic layers under a pure shear loading.

The results showed certain discontinuities (and mesh-size dependence) introduced by

the model (vertex-type shear localization).

In contrast to the explicit gradient, the implicit gradient models belong to the

category of the strongly nonlocal models. The explicit gradient models directly in-

clude the spatial gradients of the intended variable in the constitutive equations. The

implicit gradient models, on the other hand, include an integral nonlocal variable in

the constitutive equations that can be obtained via solution of a differential equation

over the material body domain.

The nonlocal accumulated plastic strain given by equation (1.8)b can be approx-

imated through a Taylor expansion to obtain

ε̄p(X) = εp(X) + C1∇2εp(X) + C2∇4εp(X) + · · · (1.21)

where the constants depend on the weight function α used (which includes the

intrinsic material length scale) and odd-order derivatives vanish due to the isotropy

of α. On the other hand, it is possible to find ε̄p exactly through the Green’s function

method by wisely choosing α (X,Y ) = G (X,Y ) to be the Green’s function of the

Helmholtz equation. Therefore

ε̄p(X)− C∇2ε̄p(X) = εp(X) ,
∂ε̄p

∂n
≡ n · ∇ε̄p = 0 on ∂V (1.22)

A Helmholtz partial differential equation is, hence, obtained for the nonlocal vari-

able with Neumann boundary conditions applied on the external boundary of the
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domain (and not on the evolving elastic-plastic boundary) and solved in a coupled

fashion with the equilibrium equation over the entire domain. The boundary condi-

tion, also, guarantees the equality in volume averages of the local and corresponding

nonlocal variable over the domain
∫
V
ε̄p dV =

∫
V
εp dV .

Engelen et al. [38] proposed an implicit gradient plasticity model in which the

nonlocal yield function was

f (σij, ε
p, ε̄p) = F (σij)− σY (εp, ε̄p) = σeqv − [1− ωp(ε̄p)]σY (εp) (1.23)

The rate of the plastic strain tensor was given through an associative flow rule;

ε̇pij = ε̇p ∂f
∂σij

. The point of departure from classical plasticity was the dependence

of the yield function on the nonlocal variable through the damage variable ωp that

increases from 0 to 1 upon complete failure of the material. The softening material

response and subsequent shear band localization was studied after implementation

of the model in a finite element framework. They demonstrated the effectiveness of

the implicit gradient model in contrast to the explicit models that are not able to

reach a stress-free state upon complete material failure. The finite strain version of

this model was also developed in [61].

Engelen et al. presented a comparison between the higher-order gradient plastic-

ity theories as for their ability in capturing the problem of size effect as well as shear

localization [37]. The pure beam bending of thin foils and one-dimensional problem

of localization in a bar in tension were studied using the strain gradient theories of

Fleck-Hutchinson 1997 [46], Fleck-Hutchinson 2001 [47], and the implicit gradient

theory of Engelen et al. [38]. Both the theories of Fleck-Hutchinson, unlike the im-

plicit nonlocal model, were able to predict strengthening effects comparable to the
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experimental results. The harmonic incremental solutions for a bar under uniform

tensile strain were considered using the previous models to examine their localized

behavior as bifurcation form a homogeneous state. The nonlocal implicit model, due

to the ability in capturing the nonlocal long range interactions in the plastic and elas-

tic regions, predicted the transition from hardening to softening regime and allowed

for a shear band with finite size. The localization predicted by Fleck-Hutchinson 1997

did not vanish at complete failure. But, it could predict finite-sized shear bands due

to the existence of gradient effects in both the elastic and plastic response. The

conclusions by Engelen et al. are presented in table 1.2 with ++ denoting the best,

+ a satisfactory, and – a performance with concerns or shortcomings.

Table 1.2: The performance of higher-order strain gradient models in predicting size
effect and localization in the elastic-plastic material response [37].

Gradient theory Size effect localization

Fleck-Hutchinson 1997 [46] ++ +
Fleck-Hutchinson 2001 [47] ++ –
Nonlocal implicit Engelen et al. [38] – ++

Phenomenological modeling of the inelastic, history-dependent, thermomechan-

ical response of shape memory alloys through internal variable approach has been

under development for the past decade [88]. Although the martensitic transformation

underlying the unique behavior of SMAs is diffusionless and shear-driven, the simi-

larities in the phenomenological modeling approaches with that of dislocation-based

plasticity is undeniable. To that sense, the higher-order nonlocal continuum models

developed to capture some of the experimentally observed phenomena in the response

of SMAs, such as transformation front localization and propagation or macroscopic
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size effect, follow the footsteps of gradient-enriched plasticity models [12,32,119].

Duval et al. [32] provided the nonlocal extension of an existing phonomenological

SMA constitutive model [113]. This nonlocal implicit gradient model was inspired

by the work of Engelen et al. [38]. In addition to the conventional internal variable of

martensite volume fraction (MVF) f , the integral average of it was also considered

as the nonlocal MVF f̄ . Similar to the implicit gradient plasticity models, f̄ was

obtained from an additional PDE with a Neumann-type boundary condition on the

domain boundary ensuring the equality of local and nonlocal MVF averaged over

the entire domain. The developed nonlocal model was implemented in the finite

element software package ABAQUS through the user element (UEL) feature. The

experimentally observed softening behavior (stress peak of nucleation and subsequent

stress plateau for propagation) in the SMAs was captured by gradually decreasing

the critical force for martensitic transformation through the nonlocal MVF resulting

in lower stresses required for propagation of martensite compared to its nucleation.

Therefore, the nonlocal model performed as a localization limiter improving the

otherwise pathological behaviors of the local models. The nucleation and propagation

of martensite transformation front in tensile loading of an SMA plate with a hole

was simulated with results showing the dependence of the localization width and

the stress peak of nucleation on the intrinsic length scale introduced in the model

through the nonlocal variable.

Another nonlocal implicit gradient SMA model was presented in the work of

Badnava et al. [12]. The model was based on a 3D extension of Brinson’s SMA

model [21] and was intended to capture the unstable softening and localization be-

havior of SMAs upon nucleation and propagation of martensite transformation. The

effectiveness of the model as a localization limiter was demonstrated through FEA

simulation of SMA structures after implementation in ABAQUS UEL.
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The explicit gradient-based SMA model of Qiao et al. [119] was inspired by the

strain gradient plasticity work of Gurtin and Anand [70]. This isothermal one-

dimensional model was intended to capture the size-dependent superelastic response

of SMA micro/nanopillars under compression tests. The Helmholtz free energy for

the material contained the gradient of martensite volume fraction through which an

energetic length scale was introduced. A generalized form of the principle of virtual

power was also used where the internal power expenditure was attributed to the work

of stress and elastic strain, as well as the microstresses conjugate to the martnesite

volume fraction and its gradient. The external power supply, in addition to the stress

traction, came form the work of microstress traction on the boundary conjugate to

the martensite volume fraction. This resulted in the stress equilibrium equation and

a balance equation regarding the microstresses (equivalent to the microforce balance)

as well as standard traction and non-standard microtraction boundary conditions.

Constitutive relations were assumed for the microstresses in which a second dissi-

pative length scale was introduced. Therefore, the microforce balance played the

role of the transformation partial differential equation giving the rate of martensite

volume fraction. The variational form of this equation was implemented in a 1D

finite element framework to simulate size effect in the response of Cu-Al-Ni SMA

micropillars under compression.

In the work by Sun and He [138], a multiscale continuum phenomenological strain-

gradient model was developed to study the effect of grain-size in the response of poly-

crystalline SMA specimens. The model was based on a nonlocal non-convex strain

energy function. The characteristic length scales introduced were the specimen size

L, grain size l, and the intrinsic material length scale ` related to the width of

austenite-martensite interface. The results demonstrated that the energy dissipation

during phase transformation is governed by the ratios of L
l

and l
`
. The martensitic
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transformation, hence dissipation, was diminished in the case of an SMA with large

grains close to the size of the specimen (denoting a single crystal behavior) or in

the case where the grains are of the order of nanometer in size close to the intrin-

sic length scale (denoting the transformation inhibition observed in ultrafine grain

SMAs). The microscopic domain nucleation, front propagation, and domain vanish-

ing for a 2D quasi-static stretching of a polycrystalline SMA strip was captured by

implementation of a Cahn-Hilliard phase field SMA model in an FE framework. The

results also showed the nucleation peak stress and multiple nucleation and vanishing

events as serrated stress-strain response plots as well as the effect of the governing

length scale ratios on the dissipation and stress hysteresis.

1.4 Goals

Any attempt to implement shape memory alloys in small size actuation or sensing

applications requires fundamental understanding of their behavior in smaller scales.

Similar to other inelastic phenomena, martensitivc transformation shows a size de-

pendent response where such key properties as critical stresses to start or finish the

transformation or the transformation hysteresis alter with the specimen size at scales

of below 100µm. The conventional constitutive models are not able to predict the

size effect due to a lack of characteristic length scale.

The purpose of this research is to develop a gradient-based continuum nonlocal

constitutive model for shape memory alloys based on a generalized thermodynamics-

based framework and also the thermodynamics of internal variables. In addition to

the conventional internal variables of martensite volume fraction and transformation

strain, the model using the internal variable theory contains the spatial gradient of

maretensite volume fraction and the transformation strain as an independent internal

variable. This enables introduction of energetic and dissipative length scales that
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contribute to a defined nonlocal parameter.

The various length scales combined into a nonlocal parameter can be calibrated

based on experimental observations constituting a non-homogeneous state of stress

and hence martensitic transformation. Compression of SMA micropillars, torsion of

SMA wires, and bending of SMA thin films are shown, herein, to provide a cali-

bration/prediction ground for the developed nonlocal model. The rest of the SMA

material properties can be measured, as in the classical way, from uniaxial stress-

strain and calorimetry experiments.

The developed gradient-based model will be used to study the response of three

SMA structural problems. Compression of SMA micropillars, bending of SMA thin

films, and torsion of SMA bars. The experimental observations for micropillar com-

pression of SMAs exist and show a significant size effect; i.e. increase in the critical

stress to start martensitic transformation in smaller micropillars. To the best knowl-

edge of the authors, experimental evidence for bending of SMA thin films has not

yet been published.
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2. BRIEF REVIEW OF CONTINUUM MECHANICS

In this chapter, the fundamentals of continuum mechanics, namely the kine-

matics, balance laws and constitutive equations, are reviewed. The reference text-

books, [68,91,97] , are recommended for more extensive discussions. A generalization

is made to the first law of thermodynamics by considering a set of generalized state

variables that are capable of performing work through generalized body and surface

forces.

The material is assumed to be controlled by changing the state of stress, σ,

and absolute temperature, T . A set of generalized variables Υ, related to the mi-

crostrucutre of the material, is also assumed in the current modeling framework as

independent variables. σ, T , and Υ can vary independently. The definition of Υ

as internal variables or internal degrees of freedom is discussed later in this chap-

ter. The dependent state variables that change in response to the changes in the

independent state variables are assumed to be

ε = ε̂ (σ, T,Υ) , q = q̂ (σ, T,Υ) , s = ŝ (σ, T,Υ)

µs = µ̂s (σ, T,Υ) , µb = µ̂b (σ, T,Υ) , G = Ĝ (σ, T,Υ)

(2.1)

The thermodynamic state of the material is completely characterized by the above

response functions 1. ε is the infinitesimal strain, q the heat flux vector, s is the

specific entropy and G the specific Gibb’s free energy. µs and µb are the general-

ized forces that perform as energy conjugates to Υ through surface or body action,

respectively.

1Coleman and Gurtin showed that it is necessary and sufficient to satisfy the 2nd law of ther-
modynamics if the response functions depend on the temperature only and not its spatial gradients
(of any order) and also if the Fourier’s constitutive law is used [28].
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The specific internal energy, u, appearing in the first law of thermodynamics is

a themodynamic potential that characterizes the thermodymaic state of the mate-

rial. However, Helmholtz free energy, ψ, and Gibbs free energy, G are commonly

used as the potential functions for derivation of the material constitutive relations.

Helmholtz free energy can be defined as the portion of the internal energy available

for doing work at a constant temperature and the Gibbs free energy as the portion

of the Helmholtz free energy that can be released as heat at constant applied stress.

ψ and G can be related to u through the following Legendre Transformations.

ψ = u− sT , G = u− 1

ρ
σ : ε− sT (2.2)

Tensors of any arbitrary rank can constitute the set of generalized state variables

Υ = {Υ1,Υ2,Υ3, · · · } and their corresponding generalized forces µs = {µs1,µs2,µs3, · · · }

and µb = {µb1,µb2,µb3, · · · } 2. It is possible to relate the variables Υi to different phys-

ical phenomena underlying the mechanism of microstructural rearrangement being

studied. For example, plastic deformation as a result of the movement of dislocations,

twinning of crystals, or slip of grain boundaries or transformation strain due to the

stress/temperature-induced martensitic transformation. This relation between any

mentioned mechanism and the chosen generalized state variable is point-wise but is

based on an average measure of those physical mechanisms. In the case of SMAs,

the volume average extent of transformation from the parent phase to the product

phase is considered without worrying about any crystallographic details such as twin

boundaries or habit planes. Their effect, on the other hand, is considered in the

terms related to mixture and interfacial energies within the free energy definition.

For the current study of an SMA gradient theory, martensitic transformation is

2It is assumed here that if Υi ∈ T m then µs
i ∈ T m+1 and µb

i ∈ T m.
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considered as the mechanism underlying the microstructural changes in the mate-

rial. Therefore, Υ is taken to represent the extent of martensitic transformation, or

martensite volume fraction at a point, ξ, and its spatial gradients, ∇ξ, · · · ,∇pξ, as

well as the martensitic transformation strain tensor, εtr, and its spatial gradients,

∇εtr, · · · ,∇qεtr. Hence, the set of generalized variables may include

Υ = {Υ1,Υ2, · · · ,Υp,Υp+1, · · · ,Υp+q}

Υ1 = ξ , Υ2 = ∇ξ , Υ3 = ∇∇ξ , · · · , Υp = ∇pξ

Υp+1 = εtr , Υp+2 = ∇εtr , Υp+3 = ∇∇εtr , · · · , Υp+q = ∇qεtr

(2.3)

or

Υ = {ξ,∇ξ,∇∇ξ, · · · ,∇pξ, εtr,∇εtr, · · · ,∇qεtr} (2.4)

By considering the spatial gradients of martensite volume fraction, it is possible

to extract information from the microscopic non-homogeneous microstructure of the

SMA material to enhance the continuum macroscopic representation of its behavior.

A vital assumption here is the independence of Υi; whether or not they are

related through spatial differentiation.
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2.1 Kinematics

The material body is assumed to occupy a region , Ω, of the 3D Euclidean space,

E (closure of an open and simply connected region, to be precise), with a boundary

∂Ω. A configuration of this material body, B, can be considered the reference con-

figuration with points in the body p ∈ B. A deformed configuration of this body is

defined through a one-to-one and smooth mapping, f , such that:

f t(B) = {x ∈ E| x = f(X, t), X ∈ B} (2.5)

Hence, the displacement of a material point can be defined via

u(X, t) = f(X, t)−X (2.6)

For infinitesimal gradients of displacement, the difference between the reference

configuration and the deformed configuration becomes negligible. Based on this, the

infinitesimal strain tensor, ε, can be defined.

ε =
1

2

[
(∇u) + (∇u)T

]
(2.7)

where the gradient can interchangeably be considered over the deformed or ref-

erence configurations.

2.2 Balance (Conservation) laws

The basic conservation laws of continuum mechanics are presented in this sec-

tion. First, an integral form is introduced and then the local form (as a differential

equation) is presented. The localization procedure, in going form the integral to the

PDE form, assumes a continuous and smooth function for all of the fields integrated.
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2.2.1 Principle of conservation of mass

The total mass of a continuum body cannot change with time or deformation.

D

Dt

(∫
Ω

ρdV

)
= 0 (2.8)

Here D
Dt

denotes material (or Lagrangian) time derivative and V is the volume of

the body with density ρ. The local form of this principle is given by:

∂ρ

∂t
+∇ · (ρv) = 0 (2.9)

where v = u̇ is the velocity of the material point with (.) representing material

time derivative.

2.2.2 Principle of conservation of linear momentum

The rate of change of linear momentum for a continuum body is equal to the

total sum of the surface and body forces applied to it.

D

Dt

(∫
Ω

ρvdV

)
=

∫
∂Ω

tdS +

∫
Ω

bdV (2.10)

in which b is the body force per unit volume. The surface forces are applied

through surface traction t. The local form of this relation is given by:

∇ · σ + b = ρv̇ (2.11)

σ is the symmetric Cauchy stress tensor which is related to surface traction

operating on a surface with a unit normal n as σn = t.
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2.2.3 Principle of conservation of angular momentum

Similarly, the rate of change of angular momentum in a continuum body should

be equal to sum of the moments applied to it through the surface traction and body

forces.

D

Dt

(∫
Ω

r × ρv dV

)
=

∫
∂Ω

r × tdS +

∫
Ω

r × bdV (2.12)

In the local form, this principle gives the symmetry of the the stress tensor,

σ = σT .

2.2.4 Generalized principle of conservation of energy

This principle, the first law of thermodynamics, states that the rate of change

of kinetic and internal energy for a continuum body is equal to the rate at which

external mechanical work is exerted on that body as well as external thermal energy

added/subtracted to it. The external work is performed partly due to the contact and

body forces. In addition, it is assumed that the the generalized state variables are

capable of performing work through generalized surface and body forces. No physical

justification is given for it here, however, one can argue that since the generalized

state variables contribute to the internal energy, an avenue must be opened for them

through external work in the balance of energy.

D

Dt

(∫
Ω

1

2
ρv · v dV +

∫
Ω

ρu dV

)
=

∫
∂Ω

t · vdS +

∫
Ω

b · vdV +

∫
∂Ω

−q · ndS +

∫
Ω

ρrdV

+

∫
∂Ω

(µsi · n) · Υ̇i dS +

∫
Ω

µbi · Υ̇i dV

(2.13)

in this equation u is the specific internal energy, q is the heat flux vector acting
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on the surface of the body and r is a body heat source. µsi and µbi are the generalized

surface and body forces, respectively.

In order to obtain the local form of this equation, the equilibrium equation (2.11)

and the following are taken into account.

∫
∂Ω

q · ndS =

∫
Ω

Div (q) dV∫
∂Ω

(µsi · n) · Υ̇i dS =

∫
∂Ω

(
µs∗i · Υ̇i

)
· n dS =

∫
Ω

Div
(
µs∗i · Υ̇i

)
dV

(2.14)

in which the divergence theorem is used assuming the required continuity and

smoothness for the functions. µs∗i is the adjoint of µsi that satisfies
(
µs∗i · Υ̇i

)
·n =

(µsi · n) · Υ̇i. Notice here that µs∗i · Υ̇i results in vectorial identities and hence

Div
(
µs∗i · Υ̇i

)
will be scalar quantities.

On the other hand, according to the definitions and identities given in the ap-

pendix B.3,

Div
(
µs∗i · Υ̇i

)
= µsi · ∇Υ̇i + Div (µsi ) · Υ̇i (2.15)

Therefore in the local form, the generalized principle of conservation of energy

reduces to:

ρu̇ = σ : ε̇−∇ · q + ρr + µsi · ∇Υ̇i +
[
Div (µsi ) + µbi

]
· Υ̇i (2.16)

For the special case given in equation (2.4) with p = q = 1, or
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Υ ≡ {ξ, εtr, ∇ξ, ∇εtr}

µs ≡ {µs1, µs2, µs3, µs4}

µb ≡ {µb1, µb2, µb3, µb4}

(2.17)

the generalized principle of conservation of energy will be

D

Dt

(∫
Ω

1

2
ρv · v dV +

∫
Ω

ρu dV

)
=

∫
∂Ω

t · vdS +

∫
Ω

b · vdV +

∫
∂Ω

−q · ndS +

∫
Ω

ρrdV

+

∫
∂Ω

(µs1 · n) ξ̇ + (µs2 · n) : ε̇tr + (µs3n) · ∇ξ̇ + (µs4 · n) · ∇ε̇tr dS

+

∫
Ω

µb1 ξ̇ + µb2 : ε̇tr + µb3 · ∇ξ̇ + µb4 · ∇ε̇tr dV

(2.18)

in the integral form and

ρu̇ = σ : ε̇−∇ · q + ρr

+
[
Div (µs1) + µb1

]
ξ̇ +

[
Div (µs2) + µb2

]
: ε̇tr +

[
Div (µs3) + µb3 + µs1

]
· ∇ξ̇

+
[
Div (µs4) + µb4 + µs2

]
· ∇ε̇tr + µs3 : ∇∇ξ̇ + µs4 · ∇∇ε̇tr

(2.19)

in the local form.

2.2.5 Entropy inequality

This inequality principle represents the second law of thermodynamics as the

rate of entropy production in a continuum body is always greater than or equal

to the external entropy supplied to it. The second law of thermodynamics in the

Clausius-Duhem form is given as:
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D

Dt

(∫
Ω

ρsdV

)
≥
∫
∂Ω

−q
T
· ndS +

∫
Ω

ρr

T
dV (2.20)

with s being the specific entropy. In its local form, the Clausius-Duhem inequality

is given as:

ρṡ ≥ −∇ ·
( q
T

)
+
ρr

T
(2.21)

The second law of thermodynamics, in principle, places restrictions on the nature

of energy conversion, making certain states inaccessible through any thermomechan-

ical process. The constitutive relations developed between the state variables must

not violate the second law of thermodynamics.

2.3 Constitutive equations

The problem of solving for the field variables for a continuum body is indeter-

minate without considering constitutive equations. They define a relation between

the dependent field variables, or response functions, and the independent ones; equa-

tions (2.1). Thermodynamic sate variables are the variables that completely char-

acterize the sate of a material body. If the variable is measurable and controllable,

for example through a surface action such as an imposed traction, it is called an

external sate variable. Internal variable of state (ISV), on the other hand, is iden-

tifiable and measurable, but it can not be linked to any external-force variable that,

similar to a body force or surface traction, may provide a means of control. There-

fore, these new ISVs do not perform work, i.e. they do not appear a priori in the

mechanical work statement in the first law of thermodynamics [100]. The internal

variables representing such microstructural or microscopic changes as martensitic

transformation or crystal dislocations can be observed through proper experimental
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apparatus such as in-situ TEM, however, cannot be independently controlled. The

constitutive equations, hence, give a relationship between the value of the dependent

state variables at time t, and the independent external state variables and the ISVs.

Such constitutive equations must be accompanied by evolution equation laws that

describe the evolution of the internal variables.

The generalized state variables Υ defined at the beginning of this chapter con-

tribute to the internal energy thorough their surface and body work conjugates.

According to the aforementioned definition, though, Υi cannot be denoted as in-

ternal state variables; they are rather the internal degrees of freedom related to the

microstructure.

In order to derive the constitutive equations, it is assumed that all the material

points in the continuum body at any time, t, go through admissible thermodynamic

processes that obey the 2nd law of thermodynamics.

The first and second laws of thermodynamics in equations 2.16 and 2.21 can be

combined. Using the Legendre transform, 2.2, for G it is possible to obtain:

−ρĠ− ρsṪ − ε : σ̇ + µsi · ∇Υ̇i +
[
Div (µsi ) + µbi

]
· Υ̇i ≥

∇ · q − T∇ ·
( q
T

)
=

1

T
q · ∇T

(2.22)

If the classical linear theory of heat conduction, or the Fourier’s law, is considered

for the thermal constitutive response of the material body

q = −K∇T (2.23)

where K = K(T ) is the positive-definite symmetric heat conduction tensor (T

is also assumed to be positive), then equation (2.22) reduces to the Clausius-Plank
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inequality, as another form for the second law of thermodynamics.

−ρĠ− ρsṪ − ε : σ̇ + µsi · ∇Υ̇i +
[
Div (µsi ) + µbi

]
· Υ̇i ≥ 0

−
(
ρ
∂G

∂σ
+ ε

)
: σ̇ − ρ

(
∂G

∂T
+ s

)
Ṫ + µsi · ∇Υ̇i +

[
Div (µsi ) + µbi − ρ

∂G

∂Υi

]
· Υ̇i ≥ 0

(2.24)

This equation shows that by assigning surface work to some generalized state

variables, Υ, the gradients ∇Υ appear in the rate of dissipation of energy.

If the set of generalized variables, Υ as given in equation (2.17) is used, then we

will have

−
(
ρ
∂G

∂σ
+ ε

)
: σ̇ − ρ

(
∂G

∂T
+ s

)
Ṫ

+

[
Div (µs1) + µb1 − ρ

∂G

∂ξ

]
ξ̇ +

[
Div (µs2) + µb2 − ρ

∂G

∂εtr

]
: ε̇tr

+

[
Div (µs3) + µb3 + µs1 − ρ

∂G

∂∇ξ

]
· ∇ξ̇ +

[
Div (µs4) + µb4 + µs2 − ρ

∂G

∂∇εtr

]
· ∇ε̇tr

+µs3 : ∇∇ξ̇ + µs4 · ∇∇ε̇tr ≥ 0

(2.25)

The second law of thermodynamics, or the Clausius-Plank inequality (2.25), is

sufficiently satisfied by considering the following constitutive equations.

ε = −ρ∂G
∂σ

, s = −∂G
∂T

, D ≥ 0 (2.26)

where
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D =[
Div (µs1) + µb1 − ρ

∂G

∂ξ

]
ξ̇ +

[
Div (µs2) + µb2 − ρ

∂G

∂εtr

]
: ε̇tr

+

[
Div (µs3) + µb3 + µs1 − ρ

∂G

∂∇ξ

]
· ∇ξ̇ +

[
Div (µs4) + µb4 + µs2 − ρ

∂G

∂∇εtr

]
· ∇ε̇tr

+µs3 : ∇∇ξ̇ + µs4 · ∇∇ε̇tr

(2.27)

Whether internal degrees of freedom or internal state variables, the above equa-

tions have to be complemented by evolution equations for the state variables Υ̇ =

{Υ̇i}, as well as constitutive equations for µs = {µsi} and µb = {µbi}, listed in (2.17).

In any case, it is possible to use the concept of generalized thermodynamic forces

and fluxes. The contribution to the rate of dissipation of energy, D or dissipation for

short, is considered to originate in the dissipative work of generalized thermodynamic

forces, Γ, and fluxes, Π̇.

In relation to equation (2.24)b, after including (2.26)a and b, one can write

Γ ≡ {
[
Div (µsi ) + µbi − ρ

∂G

∂Υi

]
, µsi} , Π ≡ {Υi ,∇Υi}

D = Γ1 · Π̇1 + Γ2 · Π̇2 = Γ · Π̇ ≥ 0

(2.28)

For the case of SMA response, by redefining the variables in equation (2.27), we

will have
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Γ1 ≡ Div (µs1) + µb1 − ρ
∂G

∂ξ
, Π1 ≡ ξ

Γ2 ≡ Div (µs2) + µb2 − ρ
∂G

∂εtr
, Π2 ≡ εtr

Γ3 ≡ Div (µs3) + µb3 + µs1 − ρ
∂G

∂∇ξ
, Π3 ≡ ∇ξ

Γ4 ≡ Div (µs4) + µb4 + µs2 − ρ
∂G

∂∇εtr
, Π4 ≡ ∇εtr

Γ5 ≡ µs3 , Π5 ≡ ∇∇ξ

Γ6 ≡ µs4 , Π6 ≡ ∇∇εtr

Γ ≡ {Γ1,Γ2,Γ3,Γ4,Γ5,Γ6} , Π ≡ {Π1,Π2,Π3,Π4,Π5,Π6}

D = Γi · Π̇i ≥ 0

(2.29)

A common approach to achieve a rate-independent response is to define a thresh-

old for Γ at which the dissipative mechanism activates. This can be done by assuming

the existence of a convex set K such that

∀Γ∗ ∈ K : D = (Γi − Γ∗i ) · Π̇i ≥ 0 (2.30)

No dissipation occurs if Γ is inside K. Equation 2.30 is denoted as Hill-Mandel’s

principle of maximum dissipation. A hypersurface

Φ (Γ,Π) = φ (Γ)− g (Π) (2.31)

can be defined in the space of generalized forces that defines the convex boundary

of the convex set K. In the case of dislocation plasticity, Φ = 0 is the well-known

yield surface. Φ can also be associated to the dissipation potential the result of

which is the normality in the space of generalized forces. To that end, the state of
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generalized variables is considered to be the one that maximizes the dissipation D;

or

Max
{
D = Γi · Π̇i | Γ , Φ(Γ,Π) ≤ 0

}
(2.32)

Upon defining a Lagrangian, L, the minimization problem here is solved through

the Lagrange method of multipliers.

L = −Γi · Π̇i + λ̇Φ(Γ,Π) (2.33)

It is shown that the problem in (2.32) is equivalent to finding the minimum of L

or

∂L

∂Γi

= −Π̇i + λ̇
∂Φ

∂Γi

= 0 (2.34)

on the condition that the following Kuhn-Tucker conditions are satisfied:

1. Φ(Γ,Π) is convex in Γ and Φ ≤ 0

2. λ̇ ≥ 0

3. λ̇Φ(Γ) = 0

Therefore, the rates of the generalized fluxes can be found via

Π̇i = λ̇
∂Φ

∂Γi

= λ̇
∂φ

∂Γi

(2.35)

demonstrating the associativity of the response in the space of generalized forces.

The existence of time derivative on both sides does not imply any rate-dependent
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response as it can be viewed as differential with respect to an evolution or loading

parameter. A discussion is, also, provided in the Appendix A.2 for various coupling

options possible in forming the surface Φ.

The rate of the Lagrange multiplier can be determined from the consistency

condition.

Φ̇ = φ̇− ġ = 0 ,
∂φ

∂Γi

· Γ̇i + λ̇

(
∂g

∂Πj

· ∂φ
∂Γj

)
= 0 (2.36)

It is customary for φ (Γ) to be assumed a homogeneous function of degree k. In

that case the dissipation, (2.29c) satisfying the second law of thermodynamics, can

be obtained from:

D = Γ · Π̇ = λ̇

(
Γi ·

∂φ

∂Γi

)
= kλ̇φ = kλ̇g ≥ 0 (2.37)

The form of the function Φ along with the presumed generalized state variables

can result in various types of partial differential equations needed to be solved to

obtain the generalized state variables.

2.3.1 Connection with the gradient theories based on the microforce balance law

As discussed in section 1.3, several nonlocal gradient-based theories of plasticity

postulate an additional balance law that incorporates the configurational or micro-

scopic forces associated with the effective or accumulated plastic strain [71,94]. This

microscopic force balance or microforce balance law [69] can be obtained form a

generalized form of the principle of virtual power. In that, it is assumed that mi-

crotractions act as work conjugates to the generalized variable of the accumulated

plastic strain and contribute to the external power. Also, internal power contribution

is assumed for the accumulated plastic strain and its gradient.
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As an example, equation (3.9) from Gurtin and Anand [71] is rewritten here.

Wext =

∫
∂P

(t(n) · u̇+ χ(n)γ̇p) dA+

∫
P

b · u̇ dV

Wint =

∫
P

(
T : Ėel + πγ̇p + ξ · ∇γ̇p

)
dV

(2.38)

Following Gurtin and Anand’s notation, the scalar microstress π is the power-

conjugate to the accumulated plastic strain γ̇p = ‖Ėp‖ and ξ a vector microstress

conjugate to ∇γ̇p. χ(n) is the surface microtraction. It is, then, assumed that

Wint =Wext for any arbitrary subregion P of the body and for any consistent virtual

velocities V =
(
u̇, Ėel, γ̇p

)
.

The generalized principle of virtual power results in the conventional and micro-

force balance laws

Div(T ) + b = 0 , τ − π + Div(ξ) = 0 (2.39)

as well as standard traction and microtraction boundary conditions

t(n) = Tn , χ(n) = ξ · n (2.40)

τ is the (Von-Mises) equivalent stress. Furthermore, the dissipation inequality as

given in equation (6.13) of [71] is

D = πdisγ̇
p + ξdis · ∇γ̇p ≥ 0 , πdis = π − ∂ψ

∂γp
, ξdis = ξ − ∂ψ

∂∇γp
(2.41)

where ψ = ψ̂
(
Eel, γp, ∇γp

)
is Helmholtz free energy. By replacing π and ξ in
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the microforce balance (2.39)b, we will have

τ − πdis −
∂ψ

∂γp
+ Div

(
ξdis +

∂ψ

∂∇γp

)
= 0 (2.42)

which is equation (6.15) in [71]. The postulated microforce balance law in con-

junction with constitutive equations for πdis and ξdis effectively act as the flow rule

for the gradient plasticity theory.

It will be shown here that this equation can be obtained following the general

model established in the previous section. This, however, is going to be performed

for the shape memory response; i.e. by replacing the accumulated plastic strain with

the martensite volume fraction.

To that end, it is assumed that the generalized variables are

Υ ≡ {ξ, εtr, ∇ξ}

µs ≡ {µs1}

µb ≡ {µb1, µb3}

(2.43)

µs1, is the surface power conjugate to ξ. Also, µb1 and µb3 are, respectively, the body

power conjugates to ξ and ∇ξ in the generalized first law of thermodynamics (2.18).

The dissipation in equation (2.27) reduces to

D =

[
Div (µs1) + µb1 − ρ

∂G

∂ξ

]
ξ̇ +

[
−ρ ∂G

∂εtr

]
: ε̇tr +

[
µb3 + µs1 − ρ

∂G

∂∇ξ

]
· ∇ξ̇ ≥ 0

(2.44)

Hence, the list of generalized forces and fluxes turn into
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Γ1 ≡ Div (µs1) + µb1 − ρ
∂G

∂ξ
, Π1 ≡ ξ

Γ2 ≡ −ρ
∂G

∂εtr
, Π2 ≡ εtr

Γ3 ≡ µb3 + µs1 − ρ
∂G

∂∇ξ
, Π3 ≡ ∇ξ

Γ ≡ {Γ1,Γ2,Γ3} , Π ≡ {Π1,Π2,Π3}

D = Γi · Π̇i ≥ 0

(2.45)

At this point, constitutive assumptions are considered for the generalized forces

and fluxes. Firstly, it is assumed that Γ3 ≡ 0, therefore

µs1 = ρ
∂G

∂∇ξ
− µb3 (2.46)

In addition, the transformation surface in equation (2.31) is considered to have

the form

Φ (Γ,Π) = φ (Γ)− g (Π) =
√

Γ2 : Γ2 + Γ1 − Y = 0 (2.47)

or

Φ =
√

Γ2 : Γ2 + Div

(
ρ
∂G

∂∇ξ
− µb3

)
+ µb1 − ρ

∂G

∂ξ
− Y = 0 (2.48)

Now, if the form of the Gibbs free energy is such that

Γ2 ≡ −ρ
∂G

∂εtr
= σ (2.49)

then
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Φ = τ + Div

(
ρ
∂G

∂∇ξ
− µb3

)
− ρ∂G

∂ξ
+ µb1 − Y = 0 (2.50)

equivalent to the microforce balance in equation (2.42) augmented with the con-

stitutive relations πdis ≡ Y − µb1 and ξdis ≡ −µb3.

2.3.2 Reformulation of the gradient theory with internal variables

In order to capture the microstructural changes in an SMA material body due to

the solid-state martensitic phase transformation, the approach of thermodynamics

with internal variables is chosen. According to the discussion in section 2.3, the

internal variables based on their definition can not perform work through surface or

body forces. The internal variable theory is recovered by dismissing the generalized

forces, µs and µb, or equivalently by setting them to zero in all of the previous

relations such as in equation (2.24).

ε = −ρ∂G
∂σ

, s = −∂G
∂T

, µs ≡ 0 , µb ≡ 0 , D = −ρ∂G
∂Υ
· Υ̇ ≥ 0 (2.51)

In this sense, observing

Υ ≡ {ξ, εtr, ∇ξ, ∇εtr} (2.52)

equation (2.27) reduces to

D =

[
−ρ∂G

∂ξ

]
ξ̇ +

[
−ρ ∂G

∂εtr

]
: ε̇tr +

[
−ρ ∂G

∂∇ξ

]
· ∇ξ̇ +

[
−ρ ∂G

∂∇εtr

]
· ∇ε̇tr ≥ 0

(2.53)
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It is acknowledged that the equivalence of “non-existence” versus “being present

with zero value” is a point of controversy [123]; nonetheless the final outcome is

equivalent for the purpose of the current constitutive formulation.

The formulation of gradient-based constitutive models using the internal variable

approach will be discussed in details in the ensuing chapters.
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3. GRADIENT-BASED RATE-DEPENDENT SMA CONSTITUTIVE

MODELING

In order to develop a rate-dependent nonlocal model for the response of shape

memory alloys, the formulation for modeling of linear viscolestic solids is adopted.

The thermodynamics with internal variables is followed in this section with Υ =

{εtr, ξ,∇ξ,∇εtr}. ξ denotes the martensite volume fraction which is a measure of

the extent of transformation from austenite to martensite phase; 0 ≤ ξ ≤ 1. εtr

is the transformation strain tensor which is the apparent inelastic strain as a result

of that martensitic transformation. The spatial gradients of both these internal

variables, ∇ξ and ∇εtr, are also introduced independently as internal variables. The

constitutive equations (or complementary laws) are obtained as linear relationship

between generalized thermodynamic forces and fluxes. To that end, the Clausius-

Plank inequality in equation (2.24) is rewritten here, ignoring the generalized body

and surface forces.

−ρĠ− ρsṪ − ε : σ̇ ≥ 0

−
(
ρ
∂G

∂σ
+ ε

)
: σ̇ − ρ

(
∂G

∂T
+ s

)
Ṫ

−ρ
(
∂G

∂εtr
: ε̇tr +

∂G

∂ξ
ξ̇ +

∂G

∂∇ξ
· ∇ξ̇ +

∂G

∂∇εtr
· ∇ε̇tr

)
≥ 0

(3.1)

which is sufficiently satisfied by the following constitutive equations.
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ε = −ρ∂G
∂σ

, s = −∂G
∂T

Dtr = −ρ
(
∂G

∂εtr
: ε̇tr +

∂G

∂ξ
ξ̇ +

∂G

∂∇ξ
· ∇ξ̇ +

∂G

∂∇εtr
· ∇ε̇tr

)
≥ 0

(3.2)

Dtr in relation (3.2)c is the rate of energy dissipation due to the microstructural

changes subsequent to martensitic transformation. This can arise from formation of

martensite twinning and variant boundaries and/or the propagation of the transfor-

mation front. Based on this, it is possible to define the rate of evolution of the internal

variables, Υ̇, as the generalized thermodynamic fluxes and attribute corresponding

thermodynamic forces, Γ, to them. Hence,

Υ̇ = {ε̇tr, ξ̇, ∇ξ̇, ∇ε̇tr} , Γ = {ςD, π, π̄, τ} , Γ = −ρ∂G
∂Υ

(3.3)

or

ςD = −ρ ∂G
∂εtr

, π = −ρ∂G
∂ξ

, π̄ = −ρ ∂G
∂∇ξ

, τ = −ρ ∂G

∂∇εtr
(3.4)

To obtain the constitutive (phenomenological) equations, the generalized ther-

modynamic forces, in the neighborhood of equilibrium, are assumed to be a linear

function of the rate of evolution of the internal variables or the fluxes.

Dtr = Γ ·Υ̇ , Γ = L Υ̇ or Γi = Lij Υ̇j , Υ̇ = AΓ or Υ̇i = Aij Γj (3.5)

with Onsager reciprocal relations [97]
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L = LT or Lij = Lji , A = AT or Aij = Aji (3.6)

It is shown that the Onsager reciprocal relations can be derived as a result of the

principle of maximum dissipation (see section A.1).

Equation (3.5b) can be rewritten in terms of the individual thermodynamic forces.

ςD = Aε̇tr +Bξ̇ +C∇ξ̇ +D∇ε̇tr

π = E : ε̇tr + aξ̇ + b · ∇ξ̇ + F · ∇ε̇tr

π̄ = Hε̇tr + lξ̇ +M∇ξ̇ +N∇ε̇tr

τ = Oε̇tr +Qξ̇ + S∇ξ̇ + V ∇ε̇tr

ςDij = Aijkl ˙εtrkl +Bij ξ̇ + Cijk ξ̇,k +Dijklm
˙εtrkl,m

π = Eij ˙εtrij + a ξ̇ + bi ξ̇,i + Fijk ˙εtrij,k

π̄i = Hijk
˙εtrjk + li ξ̇ +Mij ξ̇,j +Nijkl

˙εtrjk,l

τijk = Oijklm
˙εtrlm +Qijk ξ̇ + Sijkl ξ̇,l + Vijklmn ˙εtrlm,n

(3.7)

The tensor for transformation strain, εtr, is assumed to be symmetric (later it

can be proved from (3.2)a and the decomposition of symmetric total strain tensor

into elastic and transformation parts). This means the conjugate force, ςD, to trans-

formation strain must be a symmetric second order tensor as it is the derivative of

the free energy with respect to εtr. This is also the case for the force conjugate to the

gradient of the transformation strain; τijk = τjik. Therefore, the tonsorial constants

in equation (3.7) must have the following symmetries.

77



Aijkl = Ajikl = Aijlk , Bij = Bji , Cijk = Cjik

Dijklm = Djiklm = Dijlkm , Eij = Eji , Fijk = Fjik

Hijk = Hikj , Nijkl = Nikjl , Qijk = Qjik , Sijkl = Sjikl

Oijklm = Oijkml = Ojiklm , Vijklmn = Vijkmln = Vjiklmn

(3.8)

In addition, due to the Onsager reciprocity property stated in equation (3.6), the

subsequent symmetries ought to be taken into account.

Bij = Eij , Cijk = Hijk , Dijklm = Oijklm

li = bi , Fijk = Qijk , Nijkl = Sijkl

(3.9)

The symmetry observed in the material response places another restriction on

the phenomenological equations in (3.7). That is, for instance and without loss of

generality, the conjugate force to the transformation strain, ςD, must remain the

same if the direction of transformation strain changes according to the symmetry of

the material.

for ςDmn = F
(
εtrij , ξ,i, ε

tr
ij,k

)
:

∀Q ∈ S , QimQjn ς
D
ij = F

(
QkiQlj ε

tr
kl, Qli ξ,l, QpiQqj Qrk ε

tr
pq,r

) (3.10)

where S is the symmetry group of the material and Q is an orthogonal transfor-

mation with QQT = I and det(Q) = +1. For the linear relationship given in (3.7)a,

we will have:
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for ςDmn = Amnij ε
tr
ij :

QimQjn ς
D
ij = Amnij QkiQlj ε

tr
kl ⇒ ςDmn = QpmQpnQriQsj Apqrs ε

tr
ij

Amnij = QpmQpnQriQsj Apqrs

(3.11)

which means that Amnij must be invariant under any orthogonal transformation

belonging to the symmetry group of the material.

In order to proceed the development in this section, an isotropic response is

assumed for the shape memory alloy modeled. This means that S = Orth+, the

group of proper orthogonal transformations with Q ∈ Orth+ → det(Q) = +1.

Therefore, the tensorial constants of equation (3.7) have to be isotropic tensors.

According to the results of B.1, the odd-ranked tensors should be eliminated for the

case of isotropy. Therefore, equation (3.7) can be reduced to:

ςDij = Aijkl ˙εtrkl +Bij ξ̇

π = Bij
˙εtrij + a ξ̇

π̄i = Mij ξ̇,j +Nijkl
˙εtrjk,l

τijk = Nijkl ξ̇,l + Vijklmn ˙εtrlm,n

(3.12)

Isotropic tensors of up to rank 6 are given in table B.2, based on which, the tensor

constants in equation (3.12) can be written. Also the symmetry requirements given

in equations (3.8) and (3.9) have to be considered. The results are given in the

following:
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Bij = B δij , Eij = E δij , Mij = M δij

Aijkl = A1 δijδkl + A2 (δikδjl + δilδjk) , Nijkl = N1 (δijδkl + δikδjl) +N2 δilδjk

Sijkl = S1 (δijδkl + δikδjl) + S2 δilδjk

Vijklmn = V1 (δijδklδmn + δjkδinδlm + δikδjnδlm + δijδkmδnl) + V2 (δijδknδlm)

+ V3 (δjkδilδmn + δjkδimδnl + δikδjlδmn + δikδjmδnl)

+ V4 (δilδjmδkn + δjlδknδim)

+ V5 (δjlδkmδin + δklδimδjn + δilδjnδkm + δklδinδjm)

(3.13)

as well as

B = E , S1 = N1 , S2 = N2 (3.14)

where 11 scalar material constants are introduced.

Considering the reduced form of the material constant tensors in equation (3.13),

the generalized forces listed in (3.12) can be rewritten as
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ςDij =A1δij ˙εtrkk + A2

(
˙εtrij + ˙εtrji

)
+Bδij ξ̇ = A ˙εtrij +B ξ̇δij

π =E δij ˙εtrij + a ξ̇ = a ξ̇

π̄i =Mδij ξ̇,j +N1

(
˙εtril,l + ˙εtrli,l

)
+N2

˙εtrkk,i = Mξ̇,i + 2N1
˙εtrij,j

τijk =S1

(
δij ξ̇,k + δikξ̇,j

)
+ S2 δjkξ̇,i + V1

(
δij ˙εtrkn,n + δjk ˙εtrll,i + δik ˙εtrnn,j + δij ˙εtrkl,l

)
+ V2

(
δij ˙εtrll,k

)
+ V3

(
δjk ˙εtrin,n + δjk ˙εtrli,l + δik ˙εtrlj,l

)
+ V4

(
˙εtrij,k + ˙εtrji,k

)
+ 2V5

(
˙εtrjk,i + ˙εtrki,j

)
=N1

(
δij ξ̇,k + δikξ̇,j

)
+N2 δjkξ̇,i + 2V1δij ˙εtrkn,n + 2V3δjk ˙εtrin,n + V3δik ˙εtrjn,n

+ 2V4
˙εtrij,k + 2V5

(
˙εtrkj,i + ˙εtrki,j

)
(3.15)

It is assumed for the above derivation that the transformation strain tensor is

traceless tr (εtr) = 0. The dissipation due to the martensitic transformation can be

calculated using the above results.

D =A ˙εtrij ˙εtrij + aξ̇2 +Mξ̇,i ξ̇,i + (2N1 +N2) ˙εtrij,j ξ̇,i

+ 3V3
˙εtrij,j ˙εtrik,k + 2V4

˙εtrij,k ˙εtrij,k + 4V5
˙εtrij,k ˙εtrik,j ≥ 0

(3.16)

Here, it was also assumed that the trace of the transformation strain vanishes.

As a result of this assumption, the terms with coefficients of V1 and B will not

yield any contribution to the dissipation and hence their corresponding terms in the

formulation of generalized forces are ignored. Furthermore, the generalized stress

ςDij must be replaced with its deviatoric part ς́D. Based on this, the set of equations
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relating the generalized forces and fluxes can be rewritten.

ς́Dij =A ˙εtrij

π =a ξ̇

π̄i =M ξ̇,i + 2N1
˙εtrij,j

τijk =N1

(
δij ξ̇,k + δikξ̇,j

)
+N2 δjkξ̇,i + 2V3δjk ˙εtrin,n + V3δik ˙εtrjn,n

+ 2V4
˙εtrij,k + 2V5

(
˙εtrkj,i + ˙εtrki,j

)
(3.17)

As it can be seen, the relation between the forces and fluxes is almost decoupled in

the evolution equations of (3.17). This result is due to assuming a linear relationship

between the generalized forces and the rate of internal variables as well as considering

an isotropic and isochoric response for the SMA. The constitutive formulation is

concluded by considering a form for the Gibb’s free energy

G = Ĝ
(
σij, T, ˙εtrij, ξ, ξ,i, ˙εtrij,k

)
(3.18)

based on which the strain and the generalized forces can be obtained via (3.2)

and (3.4). The effect of the degree of the polynomial form assumed for the free

energy and the corresponding coupling terms are discussed in more details in the

subsequent chapters.
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4. GRADIENT-BASED RATE-INDEPENDENT SMA CONSTITUTIVE

MODELING

The development of a thermodynamically consistent gradient-based model for the

SMAs, using the internal variable approach (thermodynamics with internal variables,

T.I.V ), is discussed in details in this chapter.

The development, to that end, begins with forming a specific Gibbs free energy

for the material as a function of the state variables; the controllable external state

variables, stress and temperature, as well as the internal state variables [100]. The

strain and entropy are chosen, in accordance with the second law of thermodynamics,

to be the derivatives of the Gibbs free energy with respect to stress and entropy.

Ultimately, a dissipation potential is formulated in order to obtain rate-independent

evolution equations for the internal variables.

To begin, the dependent and independent state variables are introduced.

ε = ε̂ (σ, T,Υ) , q = q̂ (σ, T,Υ) , s = ŝ (σ, T,Υ) , G = Ĝ (σ, T,Υ)

Υ ≡ {ξ, {∇ξ,∇∇ξ, · · · ,∇nξ}, {∇εtr,∇∇εtr, · · · ,∇mεtr}} (4.1)

A small-strain framework is assumed here with infinitesimal gradients of displace-

ment. The set of internal variables Υ includes εtr, the tensor for transformation

strain, and ξ, the volume fraction of martensite phase in the SMA. Also included are

the spatial gradients of the martensite volume fraction and the transformation strain

tensor up to orders n and m. Without loss of generality, it is assumed henceforth

that m = n.
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σ and εtr belong to the space of symmetric second order tensors. ∇nξ and

∇nεtr, also, have the following symmetry with respect to the coordinates within an

orthonormal basis:

σij = σji , εtrij = εtrji , εtrij, k1···kn = εtrji, k1···kn (4.2)

ξ, i1···in = ξ, (i1···in) , εtrij, k1···kn = εtrji, (k1···km) (4.3)

Identities in (4.2) are due to the principle of conservation of linear momentum (see

section 2.2.3), and the symmetry of the infinitesimal strain tensor, equation (2.7).

Equation (4.3), on the other hand, comes form the continuity of the field being

differentiated. By (k1 · · · kn) any combination of symbols form k1 to kn is implied.

The constitutive are derived such that the second law of thermodynamics is satis-

fied through any admissible thermodynamic process. Therefore, the conventional first

and second laws of thermodynamics are invoked, assuming the Fourier’s law (2.23)

for heat conduction, in order to reach the Clausius-Plank inequality:

−ρĠ− ρsṪ − ε : σ̇ ≥ 0

−
(
ρ
∂G

∂σ
+ ε

)
: σ̇ − ρ

(
∂G

∂T
+ s

)
Ṫ

−ρ

[
∂G

∂εtr
: ε̇tr +

∂G

∂ξ
ξ̇ +

n∑
k=1

(
∂G

∂∇kξ
· ∇kξ̇ +

∂G

∂∇kεtr
· ∇kε̇tr

)]
≥ 0

(4.4)

Assuming that all the constitutive variables and their rates are independent, the

Clausius-Plank inequality, and hence the second law of thermodynamics as previously

mentioned in section 2.3, are satisfied given the following constitutive equations:
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ε = −ρ∂G
∂σ

, s = −∂G
∂T

(4.5)

Therefore the dissipation associated with the phase transformation and also the

generalized thermodynamic forces conjugate to the dissipative internal variables will

be established.

Dtr = Γ · Υ̇ = ςD : ε̇tr + πξ̇ +
n∑
k=1

π̄k · ∇kξ̇ +
n∑
k=1

τ k · ∇kε̇tr ≥ 0 (4.6)

where Υ̇ denotes the set of generalized thermodynamic fluxes with corresponding

thermodynamic forces, Γ, given by

Γ = −ρ∂G
∂Υ

(4.7)

that is

ςD = −ρ ∂G
∂εtr

, π = −ρ∂G
∂ξ

, π̄k = −ρ ∂G

∂∇kξ
, τ k = −ρ ∂G

∂∇kεtr
(4.8)

It is common to consider the martensitic transformation a volume preserving

process; i.e. tr (εtr) = 0. Therefore, the hydrostatic part of the generalized stress,

ςD, does not contribute to the rate of energy dissipated, Dtr, hence only its deviatoric

part will be considered for determining the evolution of the internal variables.
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ς́ij = ςij −
1

3
tr
(
ςD
)
δij , tr

(
ς́D
)

= ς́ii = 0 (4.9)

It is assumed here that a transformation surface exists such that it defines the

region for the thermoelastic state of the SMA material. The transformation surface

is a function of the generalized forces and any admissible state of the material must

satisfy the condition imposed by it.

Φ (Γ) = Φ
(
ς́D, π, π̄1, · · · , π̄n, τ 1, · · · , τ n

)
≤ 0 (4.10)

The rate of the internal variables, or the generalized thermodynamic fluxes, are

commonly assumed to be linear or nonlinear functions of the generalized thermody-

namic forces. For a rate-independent response, the case considered here, the fluxes

are associated to the forces through derivatives of a transformation potential [96].

One approach uses the principle of maximum dissipation, PMD, such that the fluxes

will be the normals to the transformation surface. Normality of the fluxes in the

space of the generalized forces and also convexity of the transformation surface are

the results of the PMD and satisfaction of the 2nd law of thermodynamics. Accord-

ing to PMD, the transformation state of the SMA material, belonging to the set of

admissible states, is the one that maximizes the dissipation Dtr; or

Max
{
Dtr = Γ · Υ̇ | Γ , Φ(Γ) ≤ 0

}
(4.11)

This is a minimization programming which is solved through the Lagrange method
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of multipliers. A Lagrangian, Ltr, is defined as

Ltr = −Γ · Υ̇ + λΦ(Γ) (4.12)

with the multiplier, λ, introduced and it is shown that the problem in (4.11) is

equivalent to finding the minimum of Ltr or

∂Ltr

∂Γ
= −Υ̇ + λ

∂Φ

∂Γ
= 0 (4.13)

provided that the following Kuhn-Tucker conditions are satisfied:

1. Φ(Γ) is convex and Φ ≤ 0

2. λ ≥ 0

3. λΦ(Γ) = 0

Therefore the rates of the internal variables can be found via

ε̇tr = λ
∂Φ

∂ςD
, ξ̇ = λ

∂Φ

∂π
, ∇kξ̇ = λ

∂Φ

∂π̄k
, ∇kε̇tr = λ

∂Φ

∂τ k
(4.14)

subjected to the aforementioned Kuhn-Tucker conditions. Hence, the response is

associative in the space of generalized thermodynamic forces.

Next is to assume a form for the transformation surface Φ(Γ). For Φ to be a

general anisotropic convex function of ς́D, π, π̄1, · · · , π̄n, and τ 1, · · · τ n satisfying

the second law of thermodynamics as the for forward and reverse martensitic trans-

formations, it is sufficient to have
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Φfwd
(
ς́D, π, π̄1, · · · , π̄n, τ 1, · · · , τ n

)
= φ− Y

Φrev
(
ς́D, π, π̄1, · · · , π̄n, τ 1, · · · , τ n

)
= φ+ Y

(4.15)

φ = ϕ̃(ς́D) + ϕ̌(π) +
n∑
k=1

ϕ̄k(π̄k) +
n∑
k=1

ϕ̂k(τ k)

where various ϕ are homogeneous of degree 1, convex functions of their respective

variables. A general quadratic form is commonly assumed such that:

ϕ̃(ς́D) =
(
ΛI
ijrs ς́ij ς́rs

) 1
2 , ϕ̌(π) = π

ϕ̄k(π̄k) = −ΞIIk · π̄k −
(
π̄k ·ΛIIkπ̄k

) 1
2

ϕ̂(τ ) = −ΞIIIk · τ k −
(
τ k ·ΛIIIkτ k

) 1
2

(4.16)

with no summation over k. Here, notice that if π̄k or τ k ∈ T m then ΞIIk or

ΞIIIk ∈ T m and ΛIIk or ΛIIIk ∈ T 2m. The tensors Λ and Ξ can be assigned the

required symmetry in order to achieve the directional dependence of the yield surface

and flow observed in the response of the SMA. Y is a constant that is equal to one-half

of the amount of energy dissipation in a full transformation path.

φ given by equation (4.15) can result in multiple forms of differential equations.

For example, consider π̄1 = −ρ ∂G
∂∇ξ = a∇ξ and π̄2 = −ρ ∂G

∂∇2ξ
= b∇2ξ which can be

part of an isotropic SMA constitutive model including ξ, ∇ξ, and ∇2ξ as internal

variables. Hence, one can have first order and second order differential terms, in-

cluding the Laplacian ξ,ii, within the definition of the partial differential equation for

the transformation surface.
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π̄1
i = a ξ,i ϕ̄1(π̄1) = −A

√
ξ,i ξ,i

π̄2
ij = b ξ,ij ϕ̄2(π̄2) = −B ξ,ii −

√
C ξ2

,ii +D ξ,ij ξ,ij

(4.17)

It is possible to eliminate λ from equations (4.14) such that the rate of evolution of

the internal variables will be proportional to ξ̇ since ξ̇ = λ∂Φ
∂π

= λ. This implies that

ξ̇ plays the role of the plastic multiplier as in the analysis of dissipation surfaces and

flow in plasticity. ξ̇ can, furthermore, be determined via the consistency condition.

According to the Kuhn-Tucker condition (iii) whilst ξ̇ = λ 6= 0 → Φ = 0, thus

the consistency condition during forward or reverse transformation (fwd/rev) can be

obtained considering the transformation surface in (4.15):

Φ̇fwd/rev = 0

∂Φ

∂σ

fwd/rev

: σ̇ +
∂Φ

∂T

fwd/rev

Ṫ+
∂Φ

∂εtr

fwd/rev

: ε̇tr +
∂Φ

∂ξ

fwd/rev

ξ̇

+
n∑
k=1

∂Φ

∂∇kξ

fwd/rev

· ∇kξ̇ +
n∑
k=1

∂Φ

∂∇kεtr

fwd/rev

· ∇kε̇tr = 0

(4.18)

which leads to the following for the evolution of martensite volume fraction.

ξ̇ = −
∂φ
∂σ

: σ̇ + ∂φ
∂T
Ṫ

∂φ
∂ξ

+ ∂φ
∂εtr

: ∂φ
∂ςD

+
∑n

k=1
∂φ
∂∇kξ

· ∂φ
∂π̄k +

∑n
k=1

∂φ
∂∇kεtr

· ∂φ
∂τk

(4.19)

Once the evolution of internal variables are given by the derivatives of the trans-
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formation surface as in equation (4.14), the dissipation due to martensitic transfor-

mation can be obtained.

Dtr = λ

(
∂Φ

∂Γ
· Γ
)

= λ

(
∂φ

∂Γ
· Γ
)

= λ φ (Γ) =

 Y ξ̇, ξ̇ > 0

− Y ξ̇, ξ̇ < 0
(4.20)

In which Euler’s homogeneous function theorem is used as φ(Γ) is continuously

differentiable and homogeneous of degree one. The satisfaction of the second law

of thermodynamics is guaranteed through equation (4.20). This equation requires

careful attention.

Firstly, the rates of internal variables ξ and ∇kξ and also εtr and ∇kεtr are not

totally independent as they are related by a spatial gradient. This imposes a certain

restriction on the transformation surface as below.

∇
(
λ
∂Φ

∂π

)
= λ

∂Φ

∂π̄1
, ∇

(
λ
∂Φ

∂ςD

)
= λ

∂Φ

∂τ 1

∇
(
λ
∂Φ

∂π̄k

)
= λ

∂Φ

∂π̄k+1
, ∇

(
λ
∂Φ

∂τ k

)
= λ

∂Φ

∂τ k+1

(4.21)

The first one of the above constraints is trivially satisfied in light of ξ̇ = λ and

(4.14)c. A discussion about such restrictions on the transformation surface can also

be found in [128].

Secondly, as observed in equation (4.20), the inelastic energy dissipation does

not explicitly depend on the rate of the gradient of martensite volume fraction and

transformation strain. This is a consequence of the specific form assumed for the

transformation surface, (4.15), and also the rates of ξ and ∇ξ as well as εtr and

∇εtr. However, the nonhomogeneous distributions of the martensitic volume fraction
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and the transformation strain in the material contribute to the dissipation through

changing the evolution of ξ as a result of their influence on the transformation surface.

4.1 The most general anisotropic 3rd-degree SMA gradient model

In this section, an anisotropic gradient-based constitutive model for shape mem-

ory alloys is presented, with Υ considered as internal variables.

X ≡ {σ, T, Υ} , Υ ≡ {ξ, ∇ξ, εtr, ∇εtr} (4.22)

The derivation of the constitutive response follows the procedure laid out so far

from the beginning of this chapter. Only the key equations will be discussed in this

section. The form for the Gibbs free energy

G = Ĝ (X ) = Ĝ
(
σ, T, ξ, ∇ξ, εtr, ∇εtr

)
= Ĝ

(
σij, T, ξ, ξ,i, ε

tr
ij , ε

tr
ij,k

)
(4.23)

is commonly selected to be a polynomial in terms of the variables considered to

determine the state of the material. Depending on the level of coupling between

variables and on the physical phenomena sought to be captured, the polynomial

function can be truncated to within a certain degree. This form can be influenced

by the material symmetry considered as well [19,136].

The Gibbs free energy per unit volume can be given by ρG. It is possible to

define a reference state, X 0, for the free energy as below.

G0 = Ĝ (X 0) = Ĝ (0, T0, 0, 0, 0, 0) (4.24)

It is possible to establish the Taylor’s expansion of the free energy with respect to

this reference state in order to achieve a polynomial form for the free energy function.

91



Ĝ (X ) = Ĝ (X 0 + (X −X 0)) = G0 + DXG(X 0) [X −X 0]

+
1

2!
D2

XG(X 0) [X −X 0,X −X 0]

+
1

3!
D3

XG(X 0) [X −X 0,X −X 0,X −X 0]

+O(X 4)

(4.25)

Implicit in this equation is the assumption of continuity and differentiability of

the Gibbs free energy up to the desired order.

Based on this expansion, the most general anisotropic Gibbs free energy with a

polynomial form including terms upto 3rd-degree can be obtained.

The free energy includes all possible couplings between the state variables with

their corresponding coefficient tonsorial material constants. The material constants

are the derivatives of the free energy calculated at the reference state. For example,

the compliance tensor is obtained from

Aijkl =
1

2

∂2 G

∂σij ∂σkl
(4.26)

This leads to the following major and minor symmetries.

Aijkl = Aklij , Aijkl = Aijlk = Ajikl (4.27)

The dimensions of the material constants follow the physics involved.
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ρ G
(
σ, T, ξ, εtr, ∇ξ, ∇εtr

)
= ρ G0 (4.28)

+
(
ξPijkl + TQijkl + Fijklmn σmn +Nijklmn ε

tr
mn +Oijklm ξ,m + Aijklmno ε

tr
mn,o + Aijkl

)
σij σkl

+
(
ξĀijkl + TB̄ijkl + Sijklmn ε

tr
mn + Zijklm ξ,m + Fijklmno εtrmn,o + Cijkl

)
σij ε

tr
kl

+
(
Bijklmno εtrmn,o + ξ Vijkl + T Uijkl +Kijklmn ε

tr
mn + τijklm ξ,m +Bijkl

)
εtrij ε

tr
kl

+
(
Cijlmn ε

tr
lm,n + Lij ξ +Mij T +Wklij σkl + Yklij ε

tr
kl + Lijk ξ,k + Cij

)
ξ,i ξ,j

+
(
Hijklmn σij + Kijklmn ε

tr
ij + Uklmn ξ + Vklmn T

)
ξ,k ε

tr
lm,n

+
(
Ñijklmnopq ε

tr
op,q + H̃ijklmnpq σpq + J̃ijklmnpq ε

tr
pq + K̃ijklmnp ξ,p + L̃ijklmn ξ + M̃ijklmn T

)
εtrij,k ε

tr
lm,n

+
(
Iijlmn ξ εtrlm,n + Jijlmn T εtrlm,n +Dij ξ + C̄ijk ξ ξ,k + D̄ijk T ξ,k +Nij ξ

2 + Eij T + Pij ξT +Qij T
2 + αij

)
σij

+
(
Lijlmn ξ εtrlm,n + Mijlmn T ε

tr
lm,n + Fij ξ +Oij ξ

2 +Kij T + K̄ij Tξ + Sij T
2 + Ēijk ξ ξ,k + F̄ijk T ξ,k + βij

)
εtrij

+
(
Dmni σmn + Emni ε

tr
mn + gi T + fi ξ + ri Tξ +mi ξ

2 + oi T
2 + ai

)
ξ,i

+
(
Ãijklmn ε

tr
lm,n + B̃ijklm σlm + C̃ijklm ε

tr
lm + D̃ijkl ξ,l + Ẽijk ξ + F̃ijk T + Oijk Tξ + Dijk ξ

2 + Eijk T 2 + α̃ijk

)
εtrij,k

+
(
l T 2 + d T + b

)
T +

(
k ξ2 + c ξ + a

)
ξ +

(
p T + n ξ + f

)
Tξ
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The generalized forces, according to equation (4.14), as well as the transformation

surface given in (4.15) and (4.16) can be rewritten for this case.

ςD = −ρ ∂G
∂εtr

, π = −ρ∂G
∂ξ

, π̄ = −ρ ∂G
∂∇ξ

, τ = −ρ ∂G

∂∇εtr
(4.29)

ε̇tr = λ
∂Φ

∂ςD
, ξ̇ = λ

∂Φ

∂π
, ∇ξ̇ = λ

∂Φ

∂π̄
, ∇ε̇tr = λ

∂Φ

∂τ
(4.30)

Φfwd
(
ς́D, π, π̄, τ

)
= φ− Y , Φrev

(
ς́D, π, π̄, τ

)
= −φ− Y

φ = ϕ̃(ς́D) + ϕ̌(π) + ϕ̄(π̄) + ϕ̂(τ ) (4.31)

where

ϕ̃(ς́D) =
(
ΛI
ijkl ς́ij ς́kl

) 1
2 , ϕ̌(π) = π

ϕ̄(π̄) = −ΞII
i π̄i −

(
ΛII
ij π̄i π̄j

) 1
2

ϕ̂(τ ) = −ΞIII
ijk τ̄ijk −

(
ΛIII
ijklmn τijk τlmn

) 1
2

(4.32)
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4.2 The most general isotropic 3rd-degree SMA gradient model

Material symmetry applies certain restrictions to the constant tensors included

in the Gibbs free energy, equation(4.28). The response of the material for the case

of isotropy is obtained in the following.

The response functions in equation (4.1) are isotropic if and only if for any or-

thogonal transformation Q

∀Q ∈ Orth+ :

QkiQlj ε̂kl
(
σij, T, ξ, ξ,i, ε

tr
ij , ε

tr
ij,k

)
=

ε̂ij
(
QkiQlj σkl, T, ξ, Qji ξ,j, QkiQlj ε

tr
kl, QmiQnj Qlkε

tr
mn,l

)
Qji q̂j

(
σij, T, ξ, ξ,i, ε

tr
ij , ε

tr
ij,k

)
=

q̂i
(
QkiQlj σkl, T, ξ, Qji ξ,j, QkiQlj ε

tr
kl, QmiQnj Qlk ε

tr
mn,l

)
ŝ
(
σij, T, ξ, ξ,i, ε

tr
ij , ε

tr
ij,k

)
=

ŝ
(
QkiQlj σkl, T, ξ, Qji ξ,j, QkiQlj ε

tr
kl, QmiQnj Qlk ε

tr
mn,l

)
Ĝ
(
σij, T, ξ, ξ,i, ε

tr
ij , ε

tr
ij,k

)
=

Ĝ
(
QkiQlj σkl, T, ξ, Qji ξ,j, QkiQlj ε

tr
kl, QmiQnj Qlk ε

tr
mn,l

)

(4.33)

For Ĝ to be isotropic, the coefficient tensors in equation(4.28) must be isotropic.

For example, selecting only the term related to the elastic energy and ignoring other

contributions, without loss of generality, we can have :
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Gel = Ĝel (σij) = Aijkl σij σkl :

Ĝel (QkiQlj σkl) = AijklQmiQnj σmnQrkQsl σrs = QimQjnQkrQlsAmnrs σij σkl

Ĝel (σij) = Ĝel (QkiQlj σkl)

Aijkl = QimQjnQkrQlsAmnrs

(4.34)

which means that the components Aijkl must not change under any orthogonal

transformation belonging to the group of proper orthogonal transformations; (4.34)d.

Isotropic tensors of rank up to 6 are discussed in the Appendix B.1.

The isotropic tensors of even rank can be expressed as linear combinations of

Kronecker deltas, δij. The isotropic odd-ranked tensors (except rank one) are given

by linear combinations of Kronecker deltas and permutation tensors, εijk. There is

only one isotropic tensor of rank 2 and 3, that being the δij and εijk respectively.

There are three independent isotropic tensors of rank 4, fifteen for rank 6, and 91 for

rank 8 [84]. Hence, the material constant tensors can be expanded in terms of such

fundamental tonsorial combinations. For example:

Aijkl = A1δijδkl + A2δikδjl + A3δilδjk (4.35)

Furthermore, the material constants are the derivatives of the Gibbs free en-

ergy with respect to their corresponding state variables. Hence, they follow certain

symmetries as the order of differentiation is irrelevant under the assumption of a

sufficiently continuous free energy function. For instance:

96



Hijklmn =
1

2

∂3 G

∂σij ∂ξ,k ∂εtrlm,n

Hijklmn = Hkijlmn = Hijlmnk = Hlmnijk = Hlmnkij = Hklmnij

(4.36)

This type of symmetry requirement eliminates all of the isotropic odd-ranked tensors

as they include linear combinations of the permutation tensor. In the case of coupling

between the gradient of martensite volume fraction and stress:

Dijk =
∂2 G

∂σij ∂ξ,k
= λ εijk

Dijk = Dkij ⇒ λ εijk = −λ εijk ⇒ λ = 0

(4.37)

Additional symmetries must be considered due to the fact that σ and εtr are

symmetric second order tensors plus εtrij,k = εtrji,k. Therefore for H considered in (4.36):

Hijklmn = Hjiklmn = Hijkmln (4.38)

The 15 independent constants included in each of H,K,U or V, as isotropic rank-

six tensors, must reduce to only one due to the restrcitions imposed by the type of

equations given in (4.36) and (4.38).

The constraint due to the isochoric martensitic transformation, furthermore, must

be addressed. The terms involving εtrii or εtrii,j do not contribute to the Gibbs free

energy and hence the corresponding material constants become indeterminate.

The Gibbs free energy for the case of isotropic material response can be obtained

by rewriting the constant tensors included in (4.28) in terms of their isotropic invari-
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ants, albeit considering the aforementioned restrictions. Thus we will have:

ρ G
(
σ, T, ξ, εtr, ∇ξ, ∇εtr

)
= ρ G0 (4.39)

+
(
α + ξD1 + ξ2N6 + TE1 + TξP3 + T 2Q3

)
tr (σ)

+
(
A1 + ξP1 + TQ1 + tr (σ)F1

)
tr (σ)2 + 2

(
A2 + ξP2 + TQ2 + 3tr (σ)F2

)
tr
(
σ2
)

+ 8F5 tr
(
σ3
)

+ 2
(
C2 + ξĀ2 + TB̄2 + 2tr (σ)N2

)
tr
(
σεtr

)
+ 8N5 tr

(
σ2εtr

)
+ 8S5 tr

(
σεtr

2
)

+ 2
(
B2 + ξV2 + TU2 + tr (σ)S2

)
tr
(
εtr

2
)

+ 8K5 tr
(
εtr

3
)

+
[(
c1 + ξL1 + TM1 + tr (σ)W1

)
δij + 2W1σij + 2Y1ε

tr
ij

]
ξ,iξ,j

+
(
H̃ijklmnpq σpq + J̃ijklmnpq ε

tr
pq

)
εtrij,k ε

tr
lm,n

+ 4
(
ξL̃5 + TM̃5 + Ã5

)
εtrij,j ε

tr
ik,k + 2

(
ξL̃10 + TM̃10 + Ã10

)
εtrij,k ε

tr
ij,k

+ 4
(
ξL̃11 + TM̃11 + Ã11

)
εtrij,j ε

tr
ik,j + 2

(
D̃1 + ξŨ1 + T Ṽ1 + tr (σ) H̃1

)
ξi ε

tr
ij,j

+ 2
[(
ξj ε

tr
ik,k + ξi ε

tr
jk,k

)
+
(
εtrij,n + εtrni,j + εtrnj,i

)
ξn

] (
H̃1 σij + K̃1 ε

tr
ij

)
+
(
l T 2 + d T + b

)
T +

(
k ξ2 + c ξ + a

)
ξ +

(
p T + n ξ + f

)
Tξ

In this equation, the notation for the scalar constants are chosen based on their

corresponding tensor. The rank-8 tensors, as listed, are not expanded due to the

prohibitive large number (91) of scalar constants involved. As described before, four

conditions are taken into account for the coefficient tonsorial material constants in

order to derive equation (4.39) from equation (4.28).

1. isotropy,

2. Major symmetry as a result of interchangeability in differentiation of G with

respect to state variables,
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3. Minor symmetry as a result of symmetry in σ, εtr, and ∇εtr,

4. tr (εtr) = 0 due to the volume-preserving assumption for the transformation

strain.

For example:

Wijkl =
1

2

∂3 G

∂σij ∂ξ,k ∂ξ,l
= W1

(
δijδkl + δikδjl + δilδjk

)
, Cij =

1

2

∂2 G

∂ξ,i ∂ξ,j
= c1

(
δij

)

The constitutive variables and generalized forces are similarly given by equa-

tions (4.5) and (4.8). The response of the SMA in this section is supposed to be

isotropic; i.e. any directional dependence in the thermoelastic response, transforma-

tion surface, and also evolution of martensitic volume fraction and thus transforma-

tion strain is neglected.

Hence in equation 4.16, the tensors Ξ, being of odd rank, vanish and the tensors

Λ can be rewritten in terms of the fundamental isotropic tensors.

ϕ̃(ς́D) = H

(
3

2
ς́ij ς́ij

) 1
2

, ϕ̄(π̄) = −
(
π̄ · π̄
`2
d1

) 1
2

(4.40)

ϕ̂(τ ) = −
(

1

`2
d2

τijkτijk +
1

`2
d3

τijkτkji +
1

`2
d4

τjjiτkki +
1

`2
d5

τiikτkjj +
1

`2
d6

τkiiτkjj

) 1
2

The six constants `d can be regarded as dissipative length scales. Hence the

forward and reverse transformation surface will be

Φfwd
(
ς́D, π, π̄, τ

)
= φ− Y , Φrev

(
ς́D, π, π̄, τ

)
= −φ− Y
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φ = ϕ̃(ς́D) + π + ϕ̄(π̄) + ϕ̂(τ ) (4.41)

As a result, the rates of internal variables given in (4.14) are simplified to:

ξ̇ = λ , ∇ξ̇ = −λ 1

|`d1 |
π̄√
π̄ · π̄

ε̇tr = λ
3

2
H

ς́D√
3
2
ς́D : ς́D

∇ε̇tr = −1

2
λ

2
`2d2
τijk + 1

`2d3
(τkji + τkij) + 1

`2d5
δiiτknn + 1

`2d6
(δikτjnn + δjkτinn)(

1
`2d2
τijkτijk + 1

`2d3
τijkτkji + 1

`2d4
τjjiτkki + 1

`2d5
τiikτkjj + 1

`2d6
τkiiτkjj

) 1
2

(4.42)

4.3 The simplified SMA gradient model including ∇ξ and ∇εtr: model I

In this section, a simplified version of the general isotropic SMA model introduced

in section 4.2 is considered. The free energy is decomposed into local and nonlocal

parts with no coupling between the local state variables and the nonlocal internal

state variable. For the nonlocal part of the free energy, only three quadratic terms

including ξi and εtrij,k are retained. The Gibbs free energy in equation (4.39) is

simplified to:

G(σ, T, εtr, ξ,∇ξ,∇εtr) = Glocal(σ, T, εtr, ξ) +Gnonlocal(∇ξ,∇εtr) (4.43)

The local and nonlocal parts are given as below.

100



Glocal(σ, T, εtr, ξ) = − 1

2ρ
σ : S(ξ)σ − 1

ρ
σ :
[
α(ξ)(T − T0) + εtr

]
+ c(ξ)

[
(T − T0)− T ln

(
T

T0

)]
− s0(ξ)T + u0(ξ) +

1

ρ
f(ξ)

Gnonlocal(∇ξ,∇εtr) =
1

2ρ

(
a1`

2
1 ξi ξi + a2`

2
2 ε

tr
ij,k ε

tr
ij,k + a3`

2
3 ξ,i ε

tr
ij,j

)
(4.44)

S(ξ) is the phase-dependant isotropic fourth-order compliance tensor defined lin-

early (rule of mixtures) with respect to the compliance of the austenite SA and

martensite SM phases. α(ξ) is the phase dependent effective coefficient of thermal

expansion. The material parameters c, s0, and u0 are the effective specific heat, ef-

fective specific entropy at a reference state, and the effective specific internal energy

at the reference state, respectively. They, too, follow a rule of mixture with respect

to their corresponding value for austenite and martensite phases; i.e.

S = SA +
(
SM − SA

)
ξ ,

α = αA +
(
αM −αA

)
ξ , s0 = sA

0 +
(
sM

0 − sA
0

)
ξ

u0 = uA
0 +

(
uM

0 − uA
0

)
ξ , c = cA +

(
cM − cA

)
ξ

(4.45)

In addition, f(ξ) is the hardening function attributable to the obstacles inhibiting

the propagation of the transformation phase front, affecting the phenomenological

stress-strain response of the SMA. f(ξ) can take various forms, form linear to smooth

hardening, as discussed in [89] and [90]. The energetic length scale `1 to `3 are

introduced here with corresponding constant coefficients a1 to a3 (with dimensions

of energy per volume). The material constants included in the local part of the free
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energy can be related to the common SMA properties such as the transformation

temperatures and the Clausius-Clapeyron slopes on the stress-temperature phase

diagram. This will be further discussed in the upcoming sections.

The response of shape memory alloys can be directional or anisotropic in the

thermoelastic behaviour, including an anisotropic elastic response or heat conduction

and thermal expansion. Also the transformation surface as well as the transformation

strain can show anisotropy. As mentioned earlier, an isotropic response is assumed

for the thermoelastic as well as the trasnformation behaviour of the SMAs in this

section.

The constitutive variables and thermodynamic forces can be determined via (4.5)

and (4.8) using the free energy form given in (4.44).

ε = −ρ∂G
∂σ

= S(ξ)σ +α(ξ) (T − T0) + εtr

s = −∂G
∂T

=
1

ρ
σ : α+ c ln

(
T

T0

)
+ s0

ςD = −ρ ∂G
∂εtr

= σ

π = −ρ∂G
∂ξ

=
1

2
σ :
(
SM − SA

)
σ + σ :

(
αM −αA

)
(T − T0)

− ρ(cM − cA)

[
(T − T0)− T ln

(
T

T0

)]
+ ρ∆s0T − ρ∆u0 −

∂f

∂ξ

π̄i = −ρ∂G
∂ξi

= −a1`
2
1 ξi −

1

2
a3`

2
3 ε

tr
ij,j

τij,k = −ρ ∂G

∂εtrij,k
= −a2`

2
2 ε

tr
ij,k −

1

4
a3`

2
3 (δij ξk + δik ξj + δjk ξi)

(4.46)

Also, the transformation surfaces in equation (4.40) are simplified to:
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Φfwd = φ− Y , Φrev = −φ− Y , φ = ϕ̃(ς́D) + ϕ̌(π) + ϕ̄(π̄) + ϕ̂(τ )

ϕ̃(ς́D) = H

(
3

2
ς́ij ς́ij

) 1
2

, ϕ̄(π̄) = −
(

1

`2
d1

π̄iπ̄i

) 1
2

, ϕ̂(τ ) = −
(

1

`2
d2

τijkτijk

) 1
2

(4.47)

which can be rewritten by substituting for the generalized forces determined

in (4.46).

ϕ̃(ς́D) = H

(
3

2
σ́ijσ́ij

) 1
2

ϕ̄(π̄) = − 1

`d1

[(
a1`

2
1

)2
ξiξi +

1

4

(
a3`

2
3

)2
εtrij,jε

tr
ik,k + a1`

2
1a3`

2
3 ξi ε

tr
ij,j

] 1
2

ϕ̂(τ ) = − 1

`d2

[(
a2`

2
2

)2
εtrij,kε

tr
ij,k +

15

16

(
a3`

2
3

)2
ξiξi + a2`

2
2a3`

2
3 ξi ε

tr
ij,j

] 1
2

(4.48)

In which σ́ij are the components of the deviatoric stress and the newly introduced

dissipative length scales, `d1 and `d2 , are assumed to be positive. As for the nonlocal

constants, this model has three ones introduced through the Gibbs free energy and

two through the transformation surface. It can be seen that the incorporation of εtrij,k

in the Gibbs free energy and subsequently its corresponding thermodynamic force,

τij,k, in the transformation surface results in identical contributions to the transfor-

mation surface, however, through different material constants (see equation 4.48 a

and b).

The rates of the internal variables can thus be obtained.
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˙εtrij =
3

2
H

σ́ij√
3
2
σ́ijσ́ij

ξ̇

ξ̇,i =
1

`d1

a1`
2
1 ξi + 1

2
a3`

2
3 ε

tr
ij,j√

π̄iπ̄i
ξ̇

˙εtrij,k =
1

`d2

a2`
2
2 ε

tr
ij,k + 1

4
a3`

2
3 (δij ξk + δik ξj + δjk ξi)
√
τij,kτij,k

ξ̇

(4.49)

In order to further investigate the contribution form the gradient of transforma-

tion, the model is reduced for a one-dimensional problem were only a single com-

ponent of stress is nonzero; σij = δ1iδ1j. In this case, it is possible to directly

integrate the equation for evolution of transformation strain, (4.49)a , such that

εtr11 = Hξ, εtr22 = −1
2
Hξ, εtr33 = 1

2
Hξ. Hence the surfaces for forward and reverse

transformations will become:

H |σ11 (x)|+ π −M

∣∣∣∣dξ (x)

dx

∣∣∣∣ = ±Y (4.50)

where

M =
a1`

2
1 + 1

2
Ha3`

2
3

`d1
+

1

`d2

√
3

2
(a2`2

2)
2
H2 +

15

16
(a3`2

3)
2

+ a2`2
2a3`2

3H
2 (4.51)

This shows that the 1D transformation surface, as a result of the nonlocal terms

in this model, identifies as a first order differential equation and the nonlocal material

constants can be grouped in a nonlocal parameter, M. Specifically, due to the fact

that the transformation strain evolves proportional to the martensite volume fraction,
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including ∇εtr results in additional restrictions and constants without changing the

form of the transformation surface that needs to be finally solved in conjunction with

the equilibrium equation.

Inspired by this outcome, ∇εtr will be excluded form the next simplified SMA

gradient model and the focus of the study will be given to the coupling of ∇ξ with

other state variables.

4.4 The simplified SMA gradient model including only terms with ∇ξ: model II

The general isotropic SMA model introduced in section 4.2 is simplified in this

section to only include the terms with ∇ξ without considering ∇εtr. The Gibbs free

energy cannot be decomposed as before, as the cubic terms provide coupling between

the local and nonlocal state variables.

G(σ, T, εtr, ξ,∇ξ,∇εtr) =− 1

2ρ
σ : S(ξ)σ − 1

ρ
σ :
[
α(ξ)(T − T0) + εtr

]
+ c(ξ)

[
(T − T0)− T ln

(
T

T0

)]
− s0(ξ)T + u0(ξ) +

1

ρ
f(ξ)

+
1

2ρ

[
a1`

2
1 ∇ξ · ∇ξ + a2`

2
2 ∇ξ · σ∇ξ + a3`

2
3 T ∇ξ · ∇ξ

+ a4`
2
4 ξ ∇ξ · ∇ξ + a5`

2
5 ∇ξ · εtr∇ξ + a6`

2
6 tr (σ) ∇ξ · ∇ξ

]
(4.52)

Six energetic length scales are introduced in this model that attribute to the

coupling between ∇ξ and the rest of the state variables 1. The material constants

a1, a4 and a5 have dimensions of energy per volume, while a3 has dimension of

energy per volume per temperature, and a2 and a6 are dimensionless. Because of

being originated from the same tensorial constant, there exists a relation between

1Notice that the nonlocal length scales here are independent of the ones in (4.44).

105



the constants coupling σ and ∇ξ; i.e. a2`
2
2 = 2 a6`

2
6. The material constants, listed

in equation (4.45), follow a similar linear rule of mixture.

Identically, the constitutive variables and thermodynamic forces can be deter-

mined via (4.5) and (4.8) using the free energy form given in (4.52).

ε =− ρ∂G
∂σ

= S(ξ)σ +α(ξ) (T − T0) + εtr

− 1

2

[
a2`

2
2 (∇ξ ⊗∇ξ) + a6`

2
6 (∇ξ · ∇ξ) I

]
s =− ∂G

∂T
=

1

ρ
σ : α+ c ln

(
T

T0

)
− 1

2ρ
a3`

2
3 (∇ξ · ∇ξ) + s0

ςD = −ρ ∂G
∂εtr

= σ − 1

2
a5`

2
5 (∇ξ ⊗∇ξ)

π =− ρ∂G
∂ξ

=
1

2
σ :
(
SM − SA

)
σ + σ :

(
αM −αA

)
(T − T0)

− ρ(cM − cA)

[
(T − T0)− T ln

(
T

T0

)]
+ ρ∆s0T − ρ∆u0 −

∂f

∂ξ

− 1

2
a4`

2
4 (∇ξ · ∇ξ)

π̄i =− ρ∂G
∂ξi

= −a1`
2
1 ∇ξ − a2`

2
2 σ∇ξ − a3`

2
3 T ∇ξ

− a4`
2
4 ξ ∇ξ − a5`

2
5 ε

tr∇ξ − a6`
2
6 tr (σ) ∇ξ

(4.53)

The transformation surfaces will be:

Φfwd = φ− Y , Φrev = −φ− Y , φ = ϕ̃(ς́D) + ϕ̌(π) + ϕ̄(π̄)

ϕ̃(ς́D) = H

(
3

2
ς́ij ς́ij

) 1
2

, ϕ̄(π̄) = −
(

1

`2
d1

π̄iπ̄i

) 1
2

(4.54)

which can be rewritten by substituting for the generalized forces determined

in (4.53).

The rates of the internal variables can thus be obtained.
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ε̇tr =
3

2
H

ς́D√
3
2
ς́D : ς́D

ξ̇ , ∇ξ̇ = − 1

`d1

π̄√
π̄ · π̄

ξ̇ (4.55)

in which

ς́D = σ́ − 1

6
a5`

2
5

[
3 (∇ξ ⊗∇ξ)− (∇ξ · ∇ξ) I

]
ς́D : ς́D = σ́ : σ́ − a5`

2
5 ∇ξ · σ́∇ξ +

1

6

[
a5`

2
5 (∇ξ · ∇ξ)

]2
(4.56)

The rate of martensite volume fraction is determined through the consistency

condition; Φ̇ = 0 or (4.19) repeated here.

ξ̇ = −
∂φ
∂σ

: σ̇ + ∂φ
∂T
Ṫ

∂φ
∂ξ

+ ∂φ
∂εtr

: ∂φ
∂ςD

+ ∂φ
∂∇ξ ·

∂φ
∂π̄

+ ∂φ
∂∇εtr ·

∂φ
∂τ

= −
∂φ
∂σ

: σ̇ + ∂φ
∂T
Ṫ

A (4.57)

in which we have:

∂φ

∂σ
=

3

2
H

ς́D√
3
2
ς́D : ς́D

+
a2`

2
2

`d1

[π̄ ⊗∇ξ + 1
2

(π̄ · ∇ξ) I
√
π̄ · π̄

]
+
(
SM − SA

)
σ +

(
αM −αA

)
(T − T0)

∂φ

∂T
=σ :

(
αM −αA

)
+ ρ(cM − cA) ln

(
T

T0

)
+ ρ∆s0 +

a3`
2
3

`d1

π̄ · ∇ξ√
π̄ · π̄

(4.58)
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and

A =3H
a5`

2
5

`d1

1√
π̄ · π̄

1√
3
2
ς́D : ς́D

π̄ ·
[
σ́∇ξ − 1

3
a5`

2
5 (∇ξ · ∇ξ) ∇ξ

]
+ 2

a4`
2
4

`d1

1√
π̄ · π̄

(π̄ · ∇ξ)

− 1

`d1

[ (
a1`

2
1 + a3`

2
3 T + a4`

2
4 ξ + a6`

2
6 tr (σ)

)
+
a2`

2
2 σ + a5`

2
5 ε

tr

π̄ · π̄
: (π̄ ⊗ π̄)

]
− ∂2f

∂ξ2

(4.59)

It shows that the evolution of martensite volume fraction, (4.57), is effected by

the heterogeneity in its distribution coupled with the temperature and also the stress

tensor.

The model presented in this section contains a total of six independent nonlocal

constants adding to the complexity of the problem as for as parameter identification

and model calibration. In the next section, a simplified version of this model is

studied by retaining only `1 and `d1 .

4.5 The simplest SMA gradient model including a quadratic term in ∇ξ: model III

The most basic SMA gradient model, discussed in this section, includes the norm

of ∇ξ in the free energy. This can be viewed as the simplification of either of the

models discussed before by only retaining the first length scale.

G(σ, T, εtr, ξ,∇ξ) = Glocal(σ, T, εtr, ξ) +Gnonlocal(∇ξ) (4.60)

with the local and nonlocal parts given as:
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Glocal(σ, T, εtr, ξ) = − 1

2ρ
σ : S(ξ)σ − 1

ρ
σ :
[
α(T − T0) + εtr

]
+ c

[
(T − T0)− T ln

(
T

T0

)]
− s0(ξ)T + u0(ξ) +

1

ρ
f(ξ)

Gnonlocal(∇ξ) =
1

2ρ
a1`

2
1 ∇ξ · ∇ξ

(4.61)

The conventional local material constants and nonlocal terms are defined similar

to the ones in sections 4.3 and 4.4 (also see equation (4.45)).

The constitutive relations and generalized thermodynamic forces will be:

ε = −ρ∂G
∂σ

= S(ξ)σ +α(ξ) (T − T0) + εtr

s = −∂G
∂T

=
1

ρ
σ : α+ c ln

(
T

T0

)
+ s0

ςD = −ρ ∂G
∂εtr

= σ

π = −ρ∂G
∂ξ

=
1

2
σ :
(
SM − SA

)
σ + σ :

(
αM −αA

)
(T − T0)

− ρ(cM − cA)

[
(T − T0)− T ln

(
T

T0

)]
+ ρ∆s0T − ρ∆u0 −

∂f

∂ξ

π̄i = −ρ∂G
∂ξi

= −a1`
2
1 ∇ξ

(4.62)

For the purpose of model III, the transformation surfaces Φ(Γ) are slightly mod-

ified for the forward and reverse processes.

Φfwd = φfwd − Y , Φrev = −φrev − Y (4.63)

φfwd/rev = ϕ̃(ς́D) + ϕ̌(π) + ϕ̄fwd/rev(π̄) (4.64)
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ϕ̃(ς́D) = H
√

3J2, ϕ̄fwd(π̄) = − 1

`fwd
2

√
π̄ · π̄, ϕ̄rev(π̄) = − 1

`rev
2

√
π̄ · π̄ (4.65)

J2 is the second invariant of the deviatoric part of the generalized stress tensor

conjugate to transformation strain, ς́D = ςD − 1
3
tr(ςD) and the constant H is the

maximum achievable transformation strain. Therefore, ϕ̃ is a Mises type transfor-

mation surface. `2, introduced based on dimensional grounds, can be regarded as

the dissipative length scale that has different values during the forward or reverse

transformation processes; hence `fwd
2 and `rev

2 .

After expansion of equation (4.65) using equation (4.62), the nonlocal transfor-

mation surface for the forward and reverse transformation will be

ϕ̃(ς́D) + π + ϕ̄fwd(π̄)− Y = 0, ξ̇ > 0

Φfwd =H

√
3

2
σ́ : σ́ +

[
1

2
σ :
(
SM − SA

)
σ + ρ∆s0 T − ρ∆u0 −

∂f

∂ξ

]
− a1`

2
1

`fwd
2

√
∇ξ · ∇ξ − Y = 0

(4.66)

ϕ̃(ς́D) + π + ¯ϕrev(π̄) + Y = 0, ξ̇ < 0

Φrev =−H
√

3

2
σ́ : σ́ −

[
1

2
σ :
(
SM − SA

)
σ + ρ∆s0 T − ρ∆u0 −

∂f

∂ξ

]
+
a1`

2
1

`rev
2

√
∇ξ · ∇ξ − Y = 0

(4.67)

The difference in coefficients of thermal expansion and specific heat between
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martensite and austenite phases is ignored in deriving the above equations; i.e. cA =

cM and αA = αM . As observed, the transformation surface for the nonlocal model

is the solution of a differential equation.

The energetic and dissipative intrinsic length scales, `1 and `2, are combined

in a new material parameter, the nonlocal parameter M. M has dimensions of

length×energy/volume. Appearing in the transformation surface and used later on

for the analysis of various SMA structures, M is given by:

Mfwd/rev ≡ a1
`2

1

`
fwd/rev
2

(4.68)

A connection can be made to the nonlocal parameter given in equation (4.51) by

discarding the extra length scales.

The rates of evolution for internal variables can also be obtained.

ε̇tr =
3

2
H

σ́√
3
2
σ́ : σ́

ξ̇ = Λ(σ)ξ̇ , ∇ξ̇ =
1

`2

∇ξ√
∇ξ · ∇ξ

ξ̇ (4.69)

Based on this, the gradient of martensite volume fraction evolves only in the

direction of the current gradient in ξ. This is the outcome of the isotropic forms and

the extent of coupling between variables assumed for the free energy, (4.60)-(4.61),

as well as the transformation surface, (4.65). It can be shown that in case of a rate-

dependent formulation with linear constitutive equations relating the generalized

thermodynamic forces to the fluxes, the restriction imposed from isotropy lead to

a similar relationship for the rate of martensite volume fraction (see section 3).

However, notice that this limitation is not the case for the model in section 4.4 due

to the coupling terms with the temperature and stress tensor.
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Also, the consistency condition during forward or reverse transformation (fwd/rev)

can be shown to result in:

[
Λ(σ) +

(
SM − SA

)
σ
]

: σ̇+ρ∆s0 Ṫ

−

∂2f fwd/rev

∂ξ2
+ a1

(
`1

`
fwd/rev
2

)2
 ξ̇fwd/rev = 0

(4.70)

As before, the gradient of martensite volume fraction does not explicitly appear

in the consistency condition. In order to describe the effect of ∇ξ in the present

constitutive model, equations (4.69) and (4.70) are re-written below:

ξ̇fwd/rev =

[
Λ(σ) +

(
SM − SA

)
σ
]

: σ̇ + ρ∆s0 Ṫ
∂2f fwd/rev

∂ξ2
+ Mfwd/rev

`
fwd/rev
2

∇ξ̇fwd/rev =
1

`
fwd/rev
2

∇ξ√
∇ξ · ∇ξ

ξ̇

(4.71)

Both of the above equations have to be simultaneously satisfied when the marten-

site volume fraction ξ is evolved as a field variable. The value for the gradient, ∇ξ

though, directly influences the transformation surfaces; as stated in (4.66) and (4.67).

To consummate the modeling section, it is necessary to introduce the hardening

function. A linear form can be chosen for the hardening function f(ξ) with the

relevant material constants bM , bA, µ1, and µ2 :

f(ξ) =


1
2
ρbMξ2 + (µ1 + µ2) ξ, ξ̇ > 0

1
2
ρbAξ2 + (µ1 − µ2) ξ, ξ̇ < 0

(4.72)
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In addition, a smooth hardening function can be introduced that results in a con-

tinuous transition between the linear elastic and transforming regimes, for example,

in a uniaxial stress-strain loading plot. It’s differentiated form is given by:

∂f(ξ)

∂ξ
=


1
2
b1

[
1 + ξn1 − (1− ξ)n2

]
+ b3, ξ̇ > 0

1
2
b2

[
1 + ξn3 − (1− ξ)n4

]
− b3, ξ̇ < 0

(4.73)

where n1 to n4 and b1 to b3 are constants.

Finally, it is interesting, as for implementation of the nonlocal model in compu-

tational frameworks, to determine the continuum mechanical and thermal tangent

moduli. The continuum tangent stiffness tensor, L, and continuum tangent thermal

modulus, Θ, are defined as:

L ≡ dσ

dε
, Θ ≡ dσ

dT
(4.74)

In order to proceed, the Hook’s law in equation (4.62)a is written in an incre-

mental form (again ignoring the difference in coefficients of thermal expansion).

dε = S(ξ) dσ +α dT +
[
Λ(σ) +

(
SM − SA

)
σ
]

dξ (4.75)

During fwd/rev transformations, the consistency condition (4.70) holds. Hence

dε =

(
A
g

+ S(ξ)

)
dσ +

{
ρ∆s0

g

[
Λ(σ) +

(
SM − SA

)
σ
]

+α

}
dT (4.76)
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A(σ) =
[
Λ(σ) +

(
SM − SA

)
σ
]
⊗
[
Λ(σ) +

(
SM − SA

)
σ
]

g =
∂2f

∂ξ2
+

M

`2

(4.77)

in which A(σ) is a fourth order tensor with major and minor symmetries and g

is a new scalar variable depending on the spatial gradient of the martensite volume

fraction. From this equation, though, it is possible to derive the corresponding

tangent moduli as below.

L =

(
A
g

+ S(ξ)

)−1

Θ = −
(
A
g

+ S(ξ)

)−1{
ρ∆s0

g

[
Λ(σ) +

(
SM − SA

)
σ
]

+α

} (4.78)

The effect of the nonlocal parameter can be realized by investigating the denom-

inator g and the transformation surfaces (4.66) and (4.67). The hardening in the

response of shape memory alloys, related to the distance between the start and fin-

ish lines for transformation on the stress-temperature phase diagram, contributes to g

through the second derivative of the hardening function f(ξ), which is non-negative.

That is in the case of linear hardening, the larger ρbM or ρbA, the lower the compli-

ance or the higher the stiffness. Nonlocality has a similar effect; i.e. by increasing

the gradients in the spatial distribution of martensite volume fraction surrounding

any continuum point, the response of the material at that point shows more stress to

continue the transformation. This feature can be useful in dealing with the problem

of transformation strain localization and loss of ellipticity encountered in numerical
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modleing of SMAs showing a softening behavior.

For the purpose of analyzing various SMA structures in the subsequent sections,

reduction of the current model to 1D is presented.

In case of a uniaxial sate of stress with σx being the only nonzero component

of the stress tensor σ, the differential equation for the transformation surfaces in

equations (4.66) and (4.67) reduce to the following ordinary differential equations.

Φfwd =H |σ|+
[

1

2

(
1

EM
− 1

EA

)
σ2 + ρ∆s0 T − ρ∆u0 −

(
ρbMξ + µ1 + µ2

)]
−Mfwd

∣∣∣∣dξdx

∣∣∣∣− Y = 0

(4.79)

Φrev =−H |σ| −
[

1

2

(
1

EM
− 1

EA

)
σ2 + ρ∆s0 T − ρ∆u0 −

(
ρbAξ + µ1 − µ2

)]
+ Mrev

∣∣∣∣dξdx

∣∣∣∣− Y = 0

(4.80)

with EA, EM ,νA, and νM being the elastic moduli and Poisson ratios of austenite

and martensite phases, respectively. In the above equations, the linear hardening

rule, equation (4.72), is used.

If the smooth hardening rule given in equation (4.73) is used, the transformation

surfaces can be written as
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Φfwd =

H |σ|+
[

1

2

(
1

EM
− 1

EA

)
σ2 + ρ∆s0 T − ρ∆u0 −

1

2
b1

[
1 + ξn1 − (1− ξ)n2

]
− b3

]
−Mfwd

∣∣∣∣dξdx

∣∣∣∣− Y = 0

(4.81)

Φrev =

−H |σ| −
[

1

2

(
1

EM
− 1

EA

)
σ2 + ρ∆s0 T − ρ∆u0 −

1

2
b2

[
1 + ξn3 − (1− ξ)n4

]
+ b3

]
+ Mrev

∣∣∣∣dξdx

∣∣∣∣− Y = 0

(4.82)
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5. ANALYSIS OF SMA STRUCTURES

The proposed SMA nonlocal constitutive models are used to investigate the re-

sponse of three different structures commonly encountered in microactuators i.e.

wires, thin films and micropillars.

Uniaxial stretching of an SMA homogenous prismatic bar is analytically investi-

gated only to verify that the gradient-based model recovers the results of a conven-

tional SMA model in the case of a uniform deformation. In addition, the torsion of

SMA wires is studied in which the variation of stress, and hence the martensitic vol-

ume fraction, over the diameter of the wire demonstrates the size dependent features

of the gradient-based model.

The compression of an SMA micropillar is modeled as 1D uniaxial compression

of an SMA bar with a variable cross section. Similar to to the thin film bending

problem, an analytical closed-form solution is derived for the forward transformation

during loading and the loading-unloading cycle of the micropillar compression is

studied using numerical solutions.

Also, the actuation of an SMA thin film is analytically modeled for forward

transformation as a beam under pure bending. The loading-unloading response of the

SMA beam under pure bending, including the forward and reverse transformation,

is numerically modeled. This analysis is performed for pure torsion of an SMA bar

as well.

As models I to III incorporate the gradients of martensitic volume fraction and

transformation strain, the response of a homogeneous SMA specimen under a ho-

mogeneous state of stress using the proposed gradient model should reduce to the

conventional local response. The validity of this statement is investigated in the next

117



section for uniaxial loading of a 1D SMA bar.

5.1 Uniaxial stretching of an SMA prismatic bar

The purpose of this section is to show that the proposed nonlocal model yields a

local response if the material undergoes an entirely homogenous state of deformation.

A prismatic bar of SMA is assumed to undergo a uniaxial isothermal loading at a

temperature above the austenite finish temperature, Af . The bar is isothermally

loaded from austenite so that the transformation to martensite occurs. The schematic

for the 1D boundary value problem, considering the symmetry (at the left end) and

boundary conditions, is shown in Figure 9. It is assumed that the state of the bar,

including the internal variable martensite volume fraction, is symmetric about the

left end.

Figure 9: Schematic including boundary conditions for uniaxial loading of an SMA
bar.

The kinematic and equilibrium equations, along with the equation for decompo-

sition of strain result in the following.

εx =
∂u

∂x
,

∂σx
∂x

= 0 , εx =
σx

E(ξ(x))
+Hξ(x) (5.1)
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The stress does not vary through the length of the bar. The equation for trans-

formation surface, after equation (4.79), is also rewritten as in:

H |σx|+
[

1

2

(
1

EM
− 1

EA

)
σ2
x + ρ∆s0 T − ρ∆u0 −

(
ρbMξ + µ1 + µ2

)]
−Mfwd

∣∣∣∣dξ(x)

dx

∣∣∣∣− Y = 0

(5.2)

The constant terms (material properties) in the equation above can be rearranged

for brevity (for their definition refer to equation (4.45) and model description in

section 4.5). Also, it is assumed that σx ≥ 0 along the SMA bar. However, no

assumption is made on the sign of dξ
dx

. Therefore, the transformation differential

equation (5.2) reduces to:

Hσx + Aσ2
x +Bξ(x)±Mfwd dξ(x)

dx
+D = 0 ⇒ Bξ(x)±Mfwd dξ(x)

dx
= F (5.3)

This differential equation for the martensitic volume fraction as the dependent

variable has the following general solution.

ξ(x) =
F

B
+ ζ e±

B
Mfwd x (5.4)

The first term on the r.h.s refers to the local solution and the second term is the

contribution from the nonlocal part of the model. Upon satisfying the symmetry

boundary condition, dξ
dx
|x=0 at the left end, the nonlocal part vanishes, ζ = 0. There-

fore the martensite volume fraction will only depend on the stress with a constant
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homogenous distribution along the bar.

ξ
∣∣∣
fwd

=
F

B
=
Hσx + 1

2

(
1
EM − 1

EA

)
σ2
x + ρ∆s0 T − ρ∆u0 − (µ1 + µ2)− Y

ρbM
(5.5)

and a similar analysis for the reverse transformation results in the following for

the martensite volume fraction.

ξ
∣∣∣
rev

=
Hσx + 1

2

(
1
EM − 1

EA

)
σ2
x + ρ∆s0 T − ρ∆u0 − (µ1 − µ2) + Y

ρbA
(5.6)

The typical pseudoelastic response of shape memory alloys, based on equations (5.5)

and (5.6), is shown in Figure 10. σfwd
s and σfwd

f are the stresses to start and finish

the forward transformation to martensite at the current temperature and σrev
s and

σrev
f are the stresses to start and finish the reverse transformation to austenite, re-

spectively.

The material constants used in the model can be found based on the following

critical transformation start and finish conditions for a stress-free heating and cooling

path.

1. At the start of forward transformation, T = Ms, ξ = 0.

2. At the end of forward transformation, T = Mf , ξ = 1.

3. At the start of reverse transformation, T = As, ξ = 1.

4. At the end of reverse transformation, T = Af , ξ = 0.

5. The Gibbs free energy and thus the hardening function, f(ξ), must be continu-

ous; i.e. f(ξ = 1)
∣∣
fwd

= f(ξ = 1)
∣∣
rev

. The form of f is given in equation (4.72)
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Figure 10: A typical stress-temperature phase diagram and pseudoelastic loading
path for shape memory alloys.

for the linear hardening rule. Notice that this condition for ξ = 0 is triv-

ially satisfied. For the smooth hardening function, ∂f(ξ)
∂ξ

is explicitly given

in (4.73). Hence the continuity condition can be written in the integral form

as
∫ 1

0
∂f fwd(ξ)

∂ξ
dξ =

∫ 1

0
∂f rev(ξ)
∂ξ

dξ.

6. By taking the differential of (5.5) and (5.6) and letting dξ to vanish, it is possi-

ble to recover the slopes of the transformaion regions on the stress-temperature

phase diagram at a specific stress (for here the calibration stress σ = σ∗). This

leads to a relation for ρ∆s0 based on the forward and reverse transformation

slopes, CM ≡ dσ
dT
|fwd
σ=σ∗ and CA ≡ dσ

dT
|rev
σ=σ∗ .

The results of the conditions listed above are summarized in table (5.1) for the

linear hardening and in table (5.2) for the smooth hardening rules.

The SMA model in this form cannot capture a response with different Clausius-
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Clapeyron slopes, as per the last equation in table (5.1) or (5.2), hence CA = CM .

In addition, based on the stress-temperature phase diagram, ignoring the varia-

tion in the slopes of the forward and reverse transformation regions, such a relation-

ship can be assumed for the case of linear hardening:

σfwd
s = CM (T −Ms) , σfwd

f = CM (T −Mf )

σrev
s = CA (T − As) , σrev

f = CA (T − Af )
(5.7)

Table 5.1: Material constants used in the local part of the SMA constitutive model
using the linear hardening function.

Y = 1
4
∆s0 (Ms +Mf − As − Af )

ρbM = −ρ∆s0 (Ms −Mf )

ρbA = −ρ∆s0 (Af − As)

µ1 + ρ∆u0 = 1
2
ρ∆s0 (Ms + Af )

µ2 = −1
4
ρ∆s0 (Mf −Ms + Af − As)

ρ∆s0 = −
[
H +

(
1
EM − 1

EA

)
σ∗
]
CM , ρ∆s0 = −

[
H +

(
1
EM − 1

EA

)
σ∗
]
CA
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Table 5.2: Material constants used in the local part of the SMA constitutive model
using the smooth hardening function.

Y = 1
2
ρ∆s0 (Ms − Af )− b3

b1 = ρ∆s0 (Mf −Ms)

b2 = ρ∆s0 (As − Af )

b3 = −b1

4

(
1 +

1

n1 + 1
− 1

n2 + 1

)
+
b2

4

(
1 +

1

n3 + 1
− 1

n4 + 1

)
ρ∆u0 = 1

2
ρ∆s0 (Af +Ms)

ρ∆s0 = −
[
H +

(
1
EM − 1

EA

)
σ∗
]
CM , ρ∆s0 = −

[
H +

(
1
EM − 1

EA

)
σ∗
]
CA

5.1.1 Experimental measurement of the SMA material properties: model III

The models developed herein contain several local and nonlocal material con-

stants. The nonlocal model III introduces three independent length scales `1, `fwd
2 ,

and `rev
2 in addition to the SMA material constants already being used in the classical

local Boyd-Lagoudas SMA model [88]. Based on the nonlocal constants, two param-

eters Mfwd and Mrev can be identified in the transformation differential equation.

The material constants used in nonlocal modeling for shape memory alloys are cate-

gorized in table (5.3). The dissipative length scales, `fwd
2 and `rev

2 , are excluded from

this table since they do not independently appear in the solution of the SMA struc-

tures studied in the next section. This is because the solutions of the transformation

surfaces, (4.79) and (4.80), are considered for those one-dimensional problems rather

than the rate forms in equation (4.71).

As and Af denote the temperatures to start and finish reverse transformation

from martensite to austenite at zero stress. Also, Ms and Mf are the temperatures
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Table 5.3: SMA material properties used in the developed nonlocal model.

Thermoelastic Constants Transformation Properties Nonlocality

νA
[· · · ]

EA

[MPa]
αA [

1
◦C

] As , Af
[◦C]

CA
[
MPa
◦C

]
H [%]

Mrev

[MPa ·mm]
νM EM αM Ms , Mf CM Mfwd

at which the forward transformation from austenite to martensite starts and finishes

at zero stress. Martensitic transformation is driven by stress, in addition to temper-

ature, and hence the transformation temperatures change in the presence of stress.

In this regard, a stress-temperature phase diagram is commonly associated to every

shape memory alloy on which CA and CM are the slopes of reverse and forward

transformation bands, respectively (see Figure 10, CA = CM for the current model).

The relation between the material parameters expressed in the course of model

development and the more common SMA properties listed in table (5.3) was estab-

lished in this section using the problem of isothermal uniaxial stretching of an SMA

bar (table (5.1)). Although trivial at the first glance, the solution to this problem

verifies the fact that the nonlocal models developed herein reduce to the original clas-

sical SMA model for the cases where no structural or loading attributions exist that

can give rise to the spatial gradients of martensite volume fraction or transformation

strain.

Calibration of the nonlocal parameters, Mfwd and Mrev, have to be performed

utilizing specially designed experiments. To this end, bending of SMA beams with

various thicknesses, torsion of SMA thin wires with various diameters, or compres-

sion of tapered SMA pillars with different diameters are promising, as they activate

nonlocality through non-homogeneous loading or variation in the structure. To the

best knowledge of the authors, there are no experimental results published for bend-
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ing of SMA thin films with different thicknesses, although this has been done for the

case of dislocation plasticity using aluminum foils [137]. Experimental observations

for compression of SMA micropillars, on the other hand, are available and will be

used for calibration of the current SMA nonlocal model.

5.2 Compression of an SMA micropillar

In this section, the compression of SMA pillars with micron size is investigated.

The experimental response of such a structure shows a size effect which can include

an increase in the critical stresses for transformation and also in energy damping

through increased stress hysteresis. The compressive response of an SMA micropillar

during loading is analytically derived using the developed nonlocal models II and III.

To that end, the micropillar is modeled as a uniaxial bar with a taper from the top

surface to the bottom (Figure 11). Again, it is assumed that the pillar is loaded at

a constant temperature above the austenite finish temperature, Af , of the SMA.

The bottom end of the micropillar, as connected to the substrate, is assumed to

remain untransformed due to the pinning effect at the interface. The kinematic and

equilibrium equations can be written as:

εx =
∂u(x)

∂x
,

∂σx(x)

∂x
+
∂σxy(x)

∂y
+
∂σxz(x)

∂z
= 0 (5.8)

Considering the taper, η = D−d
h

, and the variation in the area with the taper, a

uniaxial state of the stress can be approximated based on the compressive force f :

Apillar =
π

4

(
D − D − d

h
x

)2

, σx(x) = − 4f

π (D − ηx)2 , σxy = σxz ∼= 0 (5.9)
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𝑢 = 0   ;  𝜉 = 0 

ℏ 

𝜉 

𝑥 

ℎ 

0 

Figure 11: Schematic, including boundary conditions, for compression of a supere-
lastic SMA micropillar with top and bottom diameters of d and D and height of
h.

Notice that such a stress state is an approximation and does not exactly satisfy

the equilibrium equation.
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5.2.1 Solution with model II

The SMA gradient-based model II established in section 4.4 is now used to study

the behavior of the SMA micropillar under compression. The decomposition of strain

for εx(x) can be obtained by rewriting equation (4.53)a for this 1D case

εx =
σx
E(ξ)

+ α (T − T0) + εtrx −
1

2

(
a2`

2
2 + a6`

2
6

)(∂ξ
∂x

)2

=
σx

E(ξ(x))
+ α (T − T0) + εtrx (x)− 3

2
a6`

2
6

(
∂ξ

∂x

)2
(5.10)

Although normal strain components in the y and z directions exist as a result of

this loading, only the relation for εx(x) is explicitly written to serve the purpose of

finding the force-contraction response of the pillar. The total strain in equation (5.10)

is decomposed to elastic, thermal and transformation parts. The last term, however,

is related to the effect the gradients have on the strain in the material.

The rest of the constitutive variables, used for derivation of the model, are also

obtained from equation (4.53).

ςDx = σx −
1

2
a5`

2
5

(
∂ξ

∂x

)2

, ς́D : ς́D =
2

3

[
σx −

1

2
a5`

2
5

(
∂ξ

∂x

)2
]2

(5.11)

The components of ςD other than ςDx are zero.

π =
1

2

(
1

EM
− 1

EA

)
σ2
x + ρ∆s0 T − ρ∆u0 −

∂f fwd

∂ξ
− 1

2
a4`

2
4

(
∂ξ

∂x

)2

(5.12)

In order to find a relation for the components of the vector π̄, one must know
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the components of the transformation strain, εtr. According to equation (4.55)a, the

rate of transformation strain can be obtained from

˙εtrx = H ξ̇ sgn(σ̄x) , ˙εtry = ˙εtrz = −1

2
˙εtrx (5.13)

where σ̄x = σx− 1
2
a5`

2
5

(
∂ξ
∂x

)2
. This can be readily integrated, by assuming σ̄x(x) ≤

0 a priori to the solution, such that

εtrx = −H ξ , εtry = εtrz = −1

2
εtrx (5.14)

Therefore, we will have

π̄x = −
[
a1`

2
1 + a2`

2
2 σx + a3`

2
3 T + a4`

2
4 ξ + a5`

2
5 ε

tr
x + a6`

2
6 tr (σ)

] ∂ξ
∂x

= −
[
a1`

2
1 + a3`

2
3 T + a4`

2
4 ξ + a5`

2
5 ε

tr
x + 3 a6`

2
6 σx

] ∂ξ
∂x

π̄y = π̄z = 0

(5.15)

So the transformation surfaces finally take the form

ϕ̃(ς́D) = H

(
3

2
ς́ij ς́ij

) 1
2

= H

∣∣∣∣∣σx − 1

2
a5`

2
5

(
∂ξ

∂x

)2
∣∣∣∣∣

ϕ̄(π̄) = −
(

1

`2
d

π̄iπ̄i

) 1
2

= − 1

`d

∣∣a1`
2
1 + a3`

2
3 T + a4`

2
4 ξ − a5`

2
5 Hξ + 3 a6`

2
6 σx

∣∣ ∣∣∣∣∂ξ∂x
∣∣∣∣

(5.16)

Φfwd = ϕ̃(ς́D) + π + ϕ̄(π̄)− Y = 0

Φrev = −ϕ̃(ς́D)− π − ϕ̄(π̄)− Y = 0

(5.17)
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For the current problem , the stress σx is known from equation (5.9)b and hence

σ̄x ≤ 0. Also, ∂ξ
∂x
≥ 0. Therefore to find the distribution of martensite volume fraction

under a certain stress, the differential equations for the transformation surface must

be solved considering the boundary condition shown in Figure 11.

For the forward transformation

Φfwd =

−H

[
σx −

1

2
a5`

2
5

(
∂ξ

∂x

)2
]

+
1

2

(
1

EM
− 1

EA

)
σ2
x + ρ∆s0 T − ρ∆u0

− ∂f fwd

∂ξ
− 1

2
a4`

2
4

(
∂ξ

∂x

)2

− 1

`d

∣∣a1`
2
1 + a3`

2
3 T + a4`

2
4 ξ − a5`

2
5 Hξ + 3 a6`

2
6 σx

∣∣ ∂ξ
∂x
− Y = 0

(5.18)

The boundary conditions required to solve this differential equation can be iden-

tified as

ξ(~) = 0 ,
dξ

dx

∣∣∣
~

= 0 (5.19)

which ensures the continuity of ξ(x) and dξ(x)
dx

across the interface, x = ~, be-

tween the top region where forward transformation is occurring and the bottom

region where it is still loading elastically (Figure 11). They also enable a solution to

determine ~.

For the reverse transformation
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Φrev =

H

[
σx −

1

2
a5`

2
5

(
∂ξ

∂x

)2
]
− 1

2

(
1

EM
− 1

EA

)
σ2
x − ρ∆s0 T + ρ∆u0

+
∂f rev

∂ξ
+

1

2
a4`

2
4

(
∂ξ

∂x

)2

+
1

`d

∣∣a1`
2
1 + a3`

2
3 T + a4`

2
4 ξ − a5`

2
5 Hξ + 3 a6`

2
6 σx

∣∣ ∂ξ
∂x
− Y = 0

(5.20)

Similarly, the boundary condition for the above is the continuity of ξ(x) and dξ(x)
dx

across the interface, x = h́, where the transition form the reverse transformation to

elastic unloading takes place. The two boundary conditions can be used for solving

the above differential equation and also determining x = h́.

ξ obtained form the above equations can be replaced in equation (5.14) to find

the transformation strain along the pillar axis. Therefore, the total strain is given

by

εx =
σx

E(ξ(x))
+ α (T − T0)−Hξ(x)− 3

2
a6`

2
6

(
∂ξ

∂x

)2

(5.21)

Ultimately, the deformation at the top of the micropillar can be determined form

the relation below:

u(x) =

∫ x

0

εx(τ) dτ + u(0) , u(0) = 0 (5.22)
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5.2.2 Solution with model III

The decomposition of strain using model III, as in equation (4.46)a, is more

straightforward.

εx =
σx

E(ξ(x))
−Hξ(x) (5.23)

Noting that σx ≤ 0 , the forward transformation differential equation becomes:

−Hσx(x) +

[
1

2

(
1

EM
− 1

EA

)
σx(x)2 + ρ∆s0 T − ρ∆u0 −

∂f fwd

∂ξ

]
−Mfwd

∣∣∣∣dξ(x)

dx

∣∣∣∣− Y = 0

(5.24)

In order to establish a closed-form integration for the above, the linear hardening

function

∂f fwd

∂ξ
= ρbMξ(x) + µ1 + µ2 (5.25)

as well as E = EA = EM must be assumed.

The stress is maximum at the top and therefore the transformation starts and

propagates from the top to the bottom of the pillar, dξ(x)
dx
≥ 0, with the interface

between the transforming-elastic regions at x = ~. Hence, the transformation dif-

ferential equation can be rewritten in terms of the volume fraction of martensite

as:

Bξ(x) + Mfwd dξ(x)

dx
= −

[
N +

4fH

π (D − ηx)2

]
, ξ(~) = 0 ,

dξ

dx

∣∣∣
~

= 0 (5.26)
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Here it is assumed that ξ and ∇ξ are continuous at the forward transformation

front. This means that the martensite volume fraction and its derivative along x are

zero at the elastic-transforming interface. Also

B =− ρbM = −H
(
σfwd

f − σfwd
s

)
N =ρ∆s0 T − ρ∆u0 − (µ1 + µ2)− Y = −Hσfwd

s

(5.27)

The general solution to the differential equation in (5.26) is:

ξ(x) = −N
B

+ ζ e−
B

Mfwd x − 4fH

πMfwd

[
1

η (D − ηx)
+

B

Mfwd

1

η2
Ei(−z) ez

]
z =

B

ηMfwd
(D − ηx)

(5.28)

where Ei(z) is the exponential integral function with the following definition and

differentiation properties.

Ei(z) = −
∫ ∞
−z

e−τ

τ
dτ or Ei(z) =

∫ z

−∞

eτ

τ
dτ

g(t) = −etEi(−t) ⇒ dg

dt
= g(t)− 1

t

(5.29)

Using the prescribed boundary condition at the interface between the top trans-

forming and the bottom elastic austenitic regions, the integration constant ζ and the

location of the front ~ can be determined to complete the solution.

132



ζ =

{
N

B
+

4fH

πMfwd

[
1

η (D − η~)
+

B

Mfwd

1

η2
Ei(−z̄) ez̄

]}
e

B

Mfwd ~

z̄ =
B

ηMfwd
(D − η~) , ~ =

1

η

(
D −

√
4f

πσfwd
s

) (5.30)

Having determined the distribution of martensite volume fraction, the total strain

can be obtained using equation (5.23) and the displacement via:

u(x) =

∫ x

0

εx(τ) dτ + u(0) = −
∫ x

0

[
4f

πE (D − ητ)2 +Hξ(τ)

]
dτ (5.31)

Additionally, the following nondimensional number is introduced for the problem

of compression of the micropillar which will later be used for presentation of the

results:

$ =
Mfwd

BD
η (5.32)

For the purpose of comparison, it is also helpful to present the local solution to

the problem of uniaxial SMA micropillar under a compressive force as defined in the

aforementioned boundary value problem. The conventional local SMA constitutive

model is used to that end [88].
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ξlocal(x) = − 1

B

[
N +

4fH

π (D − ηx)2

]
, εlocal

x (x) = − 4fH

Eπ (D − ηx)2 −Hξ
local(x)

(5.33)

It can be shown for the micropillar compression that the reverse transformation

begins at the top surface and penetrates towards the base of the pillar upon un-

loading. The interface between the region of reverse transformation and the region

where unloading takes place elastically is denoted by h́ and the transformation fin-

ishes when h́ reaches ~. A closed-from analytical solution is, as well, possible to

derive for the unloading step using the reverse transformation differential equation

Hσx(x)−
[

1

2

(
1

EM
− 1

EA

)
σx(x)2 + ρ∆s0 T − ρ∆u0 −

∂f rev

∂ξ

]
+ Mrev dξ(x)

dx
− Y = 0

(5.34)

and by taking into account the required continuity boundary conditions across

the reverse transformation front, i.e. the continuity of ξ and dξ(x)
dx

at x = h́. The

loading-unloading solution is, nonetheless, obtained numerically and presented in

chapter 6.
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5.3 Simple torsion of an SMA bar: model II

The solution for the torsion of an SMA bar using the nonlocal model II is obtained

in this section. It is assumed that the bar has a circular cross section representing a

wire with a diameter of D. A opposite and equal torque T is applied to the ends of

the wire (Figure 12). Also, it is assumed that the wire is initially in a fully austenitic

state at a temperature above Af .

𝑟 

𝜉 

𝜚 

x 

y 

𝐷
2

 

D 

𝑇 

0 

er eθ 

r 
θ 

Figure 12: Simple torsion of an SMA bar with a circular cross section showing, to
the right side, a typical distribution for martensite volume fraction during forward
transformation.

The twist per unit length of the circular bar is denoted by Θ, a constant. Due to

the symmetry existing in the problem, the polar coordinate system will be used for

the analysis where none of the variables are a function of θ. For this problem, it is

135



assumed that the radii on the cross section remain straight. The shear strain in the

plane perpendicular to the axis is, hence, given by

uθ = rΘz , εθz =
1

2

(
∂uθ
∂z

+
1

r

∂uz
∂θ

)
=

1

2
rΘ (5.35)

The state of stress in the SMA bar, satisfying the boundary conditions for end

moments and traction-free side surfaces, is considered to be

σij = 0 \ σθz (5.36)

Therefore, the equilibrium equation reduces to

∂σθz
∂z

= 0 ,
1

r

∂σθz
∂θ

= 0 (5.37)

which are all satisfied in the case of σθz = σ̂θz(r). This implies that ξ = ξ̂(r).

Also, for the regions in the material undergoing elastic loading σθz = GrΘ where

G = E
2(1+ν)

.

The relation for total strain, according to model II, is given in equation (4.53)a.

For the case of this problem, after considering the fact that martensite volume frac-

tion changes only with radial location, ξ = ξ̂(r), the θz component of strain tensor

can be written as

εθz =
σθz

2G(ξ)
+ εtrθz −

1

2
a6`

2
6

(
∂ξ

∂r

)2

(5.38)

The generalized stress tensor, ςD, conjugate to transformation strain can be de-

termined by simplifying equation (4.53)c which finally leads to
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ς́D : ς́D = 2σ2
θz +

2

3

[
1

2
a5`

2
5

(
∂ξ

∂r

)2
]2

(5.39)

In this sense then

ϕ̃(ς́D) = H

√√√√3σ2
θz +

[
1

2
a5`2

5

(
∂ξ

∂r

)2
]2

(5.40)

which means, after equation (4.55)a, the rate of transformation strain can be

given by

ε̇tr =
3

2
H

ξ̇√
3σ2

θz +
[

1
2
a5`2

5

(
∂ξ
∂r

)2
]2
ς́D (5.41)

or in terms of components

˙εtrrr = −2 ˙εtrθθ = −2 ˙εtrzz = Hξ̇
−1

2
a5`

2
5√

3σ2
θz +

[
1
2
a5`2

5

(
∂ξ
∂r

)2
]2

(
∂ξ

∂r

)2

˙εtrθz =
3

2
H

ξ̇√
3σ2

θz +
[

1
2
a5`2

5

(
∂ξ
∂r

)2
]2
σθz , ˙εtrrθ = ˙εtrrz = 0

(5.42)

As observed, in this simple torsion problem in addition to transformation shear

strains, model II results in transformation strain in normal directions as well. There-

fore by the start and propagation of transformation in the bar, the cross section may

undergo swelling or warping. This point can be used for identification and calibration

of the nonlocal parameter a5`
2
5.

Furthermore, (4.53)d reduces to
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π =
1

2

(
1

GM
− 1

GA

)
σ2
θz + ρ∆s0 T − ρ∆u0 −

∂f fwd/rev

∂ξ
− 1

2
a4`

2
4

(
∂ξ

∂r

)2

(5.43)

The generalized force π̄ in component form can be given by

π̄r = −
[
a1`

2
1 + a3`

2
3 T + a4`

2
4 ξ + a5`

2
5 ε

tr
rr

] ∂ξ
∂r

π̄θ = −a5`
2
5

∂ξ

∂r
εtrrθ

π̄z = −a5`
2
5

∂ξ

∂r
εtrrz

(5.44)

The last two components vanish in light of the relations given for the rate of

transformation strain components, equation (5.42)c. Hence, we will have

ϕ̄(π̄) = −
(

1

`2
d

π̄iπ̄i

) 1
2

= − 1

`d

∣∣a1`
2
1 + a3`

2
3 T + a4`

2
4 ξ + a5`

2
5 ε

tr
rr

∣∣ ∣∣∣∣∂ξ∂r
∣∣∣∣ (5.45)

Without loss of generality, it is reasonable to assume that σθz ≥ 0 and ∂ξ
∂r
≥ 0.

Therefore, the forward transformation surface will become

Φfwd =

H

√√√√3σ2
θz +

[
1

2
a5`2

5

(
∂ξ

∂r

)2
]2

+
1

2

(
1

GM
− 1

GA

)
σ2
θz + ρ∆s0 T − ρ∆u0 −

∂f fwd

∂ξ

− 1

2
a4`

2
4

(
∂ξ

∂r

)2

− 1

`d

∣∣a1`
2
1 + a3`

2
3 T + a4`

2
4 ξ + a5`

2
5 ε

tr
rr

∣∣ ∂ξ
∂r
− Y = 0

(5.46)
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The boundary conditions required to solve this differential equation is determined

by considering the interface between the elastic and transforming regions in the

circular bar. The forward transformation begins at the outer surface while the inner

core is still loading elastically. The schematic for the distribution of martensite

volume fraction in this case is shown in Figure 12 where % denotes the radial position

of the interface. Hence

ξ(%) = 0 ,
dξ

dr

∣∣∣
%

= 0 (5.47)

due to the zeroth and first-order continuity of ξ(r). (5.46) and (5.47) enable one

to find %.

For the reverse transformation

Φrev =

−H

√√√√3σ2
θz +

[
1

2
a5`2

5

(
∂ξ

∂r

)2
]2

− 1

2

(
1

GM
− 1

GA

)
σ2
θz − ρ∆s0 T + ρ∆u0 +

∂f rev

∂ξ

+
1

2
a4`

2
4

(
∂ξ

∂r

)2

+
1

`d

∣∣a1`
2
1 + a3`

2
3 T + a4`

2
4 ξ + a5`

2
5 ε

tr
rr

∣∣ ∂ξ
∂r
− Y = 0

(5.48)

Similarly, the boundary conditions for the above is the continuity of ξ(x) and dξ(r)
dr

across the interface, x = %́, where the transition form the reverse transformation to

elastic unloading takes place.

For this problem the differential equations for the transformation surfaces, (5.46)

or (5.48) , have to be solved in a coupled fashion with the equations for the rate

of transformation strain, (5.42), and the equation for the decomposition of strain,
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(5.38), in order to find the distribution of ξ(r) and σθz(r).

Ultimately, it is possible to find the relation between the twist per length in the

bar Θ, as the loading parameter, and the applied torque.

T (Θ) = 2π

∫ D
2

0

σθz(r) r dr (5.49)

The complexity of the problem here prohibits one from obtaining any closed-form

solution. In the next section, pure bending of an SMA beam is considered and its

solution for model III is developed.

5.4 Pure bending of an SMA beam: model III

The deflection of SMA thin film actuators is investigated in this section. It is

considered that a slender prismatic SMA beam (with a width of W and height of

2h) undergoes a state of pure bending (Figure 13) such that the Euler-Bernoulli

assumptions hold, i.e. the planar sections remain planar and perpendicular to the

neutral axis and rotate with reasonably small slopes, hence:

u(y) = −y tan(θ) = −y∂v(x)

∂x
, εx = −y ∂

2v

∂x2
= κy (5.50)

Where κ is the curvature of bending deformation. We assume that the only

nonzero component of stress is the normal stress on the cross section, σx.

∂σx(y)

∂x
= 0 (5.51)

Moreover, the decomposition of strain in the axial x direction using the SMA
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Figure 13: Pure bending of an SMA beam showing, to the right side, a typical dis-
tribution for martensite volume fraction through the (half) thickness during forward
transformation.

gradient-based model II results in

εx =
σx

E(ξ(x))
+Hξ(x) (5.52)

Firstly, the loading of the beam, that causes the start of forward transformation

on the outermost layers, is investigated with the purpose of finding an analytical non-

dimensional response. The state of the beam including stress, strain and martensitic

volume fraction reduce to a one-dimensional problem with variation along the thick-

ness of the beam or y direction; σx(y), εx(y), ξ(y). Normal stress in the x direction

is the only nonzero component of the stress tensor, therefore J2 = 1
3
σ2
x. The defor-

mation is isothermal at a temperature above Af thus the loading begins while the

beam is entirely in an austenite state. The loading causes the transformation to

martensite to begin at the outer layer and propagate towards the neutral axis. The

interface between transforming outer layers and the elastic austenitic inner layers of

the beam is denoted by r on the y axis, ξ(y = r) = 0. Due to the 1D nature of the
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stress state, the forward transformation equation is going to be as given in (4.79) for

the SMA gradient-based model III.

H |σx(y)|+
[

1

2

(
1

EM
− 1

EA

)
σx(y)2 + ρ∆sfwd

0 T − ρ∆u0 −
(
ρbMξ(y) + µ1 + µ2

)]
−Mfwd

∣∣∣∣dξ(y)

dy

∣∣∣∣− Y = 0

(5.53)

in which a linear hardening function is used. Considering the symmetry about the

neural axis, only the top portion of the beam is studied hence σx ≥ 0 and, therefore,

dξ
dy
≥ 0. The material constants in the above equation can be collected together to

reach:

Hσx(y) + Aσx(y)2 +Bξ(y)−Mfwd dξ(y)

dy
+D = 0 (5.54)

with the new introduced constants, of forward transformation with linear hard-

ening, as of:

A =
1

2

(
1

EM
− 1

EA

)
, B = −ρbM = −H

(
σfwd

f − σfwd
s

)
D = ρ∆sfwd

0 T − ρ∆u0 − (µ1 + µ2)− Y = −Hσfwd
s

(5.55)

Equation (5.54) is a differential equation that requires a boundary condition for

its solution. Obviously, the condition at the boundary of the elastic-transforming

regions or, ξ(r) = 0, must be satisfied. But this relation gives the constant of

integration for (5.54) as a function of r which is still an unknown parameter of
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loading. Implicit in the analysis of the nonlocal constitutive model developed here is

the fact that the forward or reverse transformation front entails a smooth transition

form the elastic to the transforming region; i.e. all the state variables, including

∇ξ(X), must be continuous across the interface. In a poly-crystalline SMA sample,

the transformation front progresses by the martensitic transformation first occurring

in the grains with favorable crystalline direction to the stress direction and then

gradually transitioning to the elastic behavior in the transformed regions. This can

be simulated by having a smooth scalar field variable, ξ. Thus, the condition at the

elastic-transforming boundary cannot be short of:

ξ
∣∣∣
y=r

= 0 ,
dξ

dy

∣∣∣
y=r

= 0 (5.56)

Satisfaction of the boundary conditions in (5.56) gives a relation for both the

constant of integration in the ODE of (5.54) as well as the location of the elastic-

transforming boundary r with respect to the current curvature, κ, as the loading

parameter. It is worth mentioning that the transition to the fully martensitic region

is not going to be smooth in terms of ξ, i.e. ∇ξ will not be continuous across the

finish transformation front.

Interestingly, using (5.56) in the equation for forward transformation surface (5.54),

we will have

[Hσx(y) +D]y=r = 0 ⇒ σx(r) = σfwd
s ⇒ r =

σfwd
s

EAκ
(5.57)

The loading here is proportional. So in light of equation (4.69)a, it is possible to

directly integrate the rate of evolution of transformation strains
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˙εtrx = H ξ̇ sgn(σx) , ˙εtry = ˙εtrz = −1

2
˙εtrx (5.58)

to obtain:

εtrx (y) = Hξ(y) , σx(y) = E(ξ) (κy −Hξ(y)) (5.59)

In order for a closed from solution to be obtainable, the difference in the elastic

modulus of austenite and martensite is ignored ; i.e. E = EM = EA which means

A = 0 . The differential equation in equation (5.54) (with A = 0) is linear first order

with a general solution given by

ξ(y) = −
Mfwd

EH(
B
EH
−H

)2κ−
D
EH

+ κy
B
EH
−H

+ ζ e

 B
EH
−H

Mfwd

EH

y


(5.60)

Which after applying the boundary condition in equation (5.56) and replacing ζ,

yields

ξ(y) = −D +HEκy

B − EH2
− HEMfwd

(B − EH2)2κ

1− e

B − EH2

Mfwd
(y−r)

 (5.61)

The first term on the r.h.s of the above equation pertains to the local part of the

model and gives a bilinear distribution in ξ, while the second term is the exponential

contribution from the nonlocal part. The moment, M , applied to the beam section

corresponding to the current curvature, κ, can be readily calculated from:

M(κ) =

∫ h

−h
Wσx(y) y dy = 2W

∫ h

0

σx(y) y dy (5.62)
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using equation (5.59) and (5.61) in the integration of (5.62) results in:

M∗ = κ∗ +
3

β − 1

{
1

2

Mfwd∗

β − 1

(
κ∗ − 1

κ∗

)
+

1

3
κ∗ +

1

6

(
1

κ∗

)2

− 1

2

−
(
Mfwd∗

β − 1

)2

κ∗

(1− Mfwd∗

β − 1

)
e

β − 1

Mfwd∗

1−
1

κ∗


−
(

1

κ∗
+

Mfwd∗

β − 1

)}

(5.63)

which is the equation of Moment-Curvature in a non-dimensional form for pure

bending of an SMA beam.

The non-dimensional parameters introduced in (5.63) are defined. The non-

dimensional moment, M∗, and non-dimensional curvature are obtained based on

a normalization using the critical moment and curvature to start the forward trans-

formation, M fwd
s and κfwd

s .

M∗ =
M

M fwd
s

=
M

2
3
Wh2σfwd

s

, κ∗ =
κ

κfwd
s

=
Eh

σfwd
s

κ (5.64)

In addition, Mfwd∗ can be defined as the non-dimensional form of the nonlocal

parameter as well as the non-dimensional hardening or β.

β =
B

EH2
, Mfwd∗ =

1

EH2

Mfwd

h
or

Mfwd∗

β − 1
=

1

h

Mfwd

B − EH2
(5.65)
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It is also helpful to write down the local non-dimensional response of the SMA

beam or:

M∗ = κ∗ +
3

β − 1

{
1

3
κ∗ +

1

6

(
1

κ∗

)2

− 1

2

}
(5.66)

Comparing equations (5.63) and (5.66) reveals the size effect in the response

for pure bending of SMA beams. The first term on the r.h.s of both equations

pertains, clearly, to the elastic portion of the SMA behaviour; i.e. M∗ = κ∗. This

portion is size independent as the nonlocality is only considered for the inelastic part

of the response. Nonetheless, the rest of equation (5.66) is also size independent,

as there is no effect from the thickness of the beam in the hardening parameter

β. Therefore, the moment-curvature response using the conventional local model

cannot principally capture the size effect in the pure bending of SMAs because it

can be fully normalized with respect to the thickness h. The response according to

the local constitutive model, on the other hand, is able to capture the size effect, all

thanks to the non-dimensional local parameter Mfwd∗ which depends on the thickness;

Mfwd∗ = 1
EH2

Mfwd

h
. Hence by changing Mfwd∗ either through Mfwd or h, the moment-

curvature response of the beam changes.

The analysis of the reverse transformation can be performed by following similar

steps to the above. Upon unloading, the reverse transformation first begins where

the differential equation, (4.80) re-written below, is first satisfied.

−Hσx(y)− Aσx(y)2 +B′ξ(y) + Mrev dξ(y)

dy
+D′ = 0 (5.67)
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B′ = ρbA = H (σrev
s − σrev

f )

D′ = −ρ∆srev
0 T + ρ∆u0 + (µ1 − µ2)− Y = Hσrev

f

(5.68)

It can be shown that the reverse transformation begins at the outer layer and

propagates towards the neutral axis with progression of unloading. The interface

between the region of reverse transformation and the region where unloading takes

place elastically is denoted by r′. The reverse transformation finishes when r′ reaches

r. Although extremely lengthy, it is possible to develop a closed-from analytical

response for unloading step as well. Equation (5.67) can be integrated considering

the continuity of ξ and dξ(y)
dy

at y = r′.

However, a numerical algorithm is developed to solve both of the ODEs in (5.54)

and (5.67) for forward and reverse transformations using the finite difference method.

The results of this analysis are presented in chapter 6.
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6. RESULTS AND DISCUSSIONS

The results of the developed solutions for the response of SMA structures, studied

in chapter 5, are presented in this section. Specifically, the loading and unloading of

the SMA micropillar and SMA beam are analyzed using the solutions developed with

the SMA gradient-based model III. Numerical solution for the system of equations

expressed in sections 5.2.2 and 5.4 are considered for the purpose of this chapter.

First, the effect of the nonlocal parameter defined in the gradient-based model

III is investigated within a parametric analysis of the SMA micropillar compression

as well as beam bending problems.

Second, an attempt is made to calibrate the introduced nonlocal parameter using

the experiential results for the compression of Ni-Fe-Ga SMA micropillars expressed

in the work of Ozdemir et al. [112]. The model can qualitatively predict the hardening

observed in the results as the diameter of the pillars decreases.

6.1 Parametric study for the effect of the nonlocal parameter

A parametric study of the effect of the nonlocal parameter introduced in the

gradient-based SMA model III is performed in this section. The linear hardening

function is considered here for the response of the local part of the model with the

calibration stress σ∗ = 0. Where nondimensional numbers could not be realized, the

SMA material properties listed in table (6.1) are used for the local part of the SMA

constitutive model. They are selected from the properties of a typical NiTi shape

memory alloy.

First, the effect of changing the geometry of the micropillar on its compressive

stress-strain response is investigated. Modeling is performed both using the conven-

tional local SMA constitutive model and also the nonlocal gradient-based model III
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Table 6.1: SMA material properties used in the presentation of the modeling results.

Thermoelastic Constants Transformation Properties

EA = 85000
[MPa]

As = 27 Af = 47
[◦C]

CA = 10 [
MPa
◦C

] H = 5.5 [%]

EM = 75000 Ms = −53 Mf = −73 CM = 10 T = 67 [◦C]

1. The pillars studied have various dimensions listed in table (6.2). In addition, they

have the material properties as given in table (6.1) and are loaded under a compres-

sive force applied at the top surface while at a constant temperature T = 67◦C > Af .

In compression of a micropillar, the nominal stress S∗ is defined as the compressive

force divided by the mid-height cross sectional area of the pillar. Also, the nominal

strain ε∗ is defined as the displacement at the top of the pillar normalized by its

height. Due to having higher stresses, the transformation starts at the top of the

pillar and propagates to the bottom by further loading.

The nominal stress-strain responses are plotted in figures 14 to 16.

In Figure 14, the pillars are proportionally increased in size while maintaining

the similarity in the geometry; as listed in the first row of table (6.2). The re-

sponse predicted by the local conventional model is essentially the same for all of

the micropillars. However, the nonlocal model with Mrev = Mfwd = 1 mm.MPa

demonstrates an increase in the hardening as the pillar becomes smaller.

Figure 15 demonstrates the response of three micropillars that have similar heights

and tapers. A higher stress is required to begin the transformation as the pillar di-

ameter increases which is evident in the results of the local model. Therefore, it is

difficult to associate any observed hardening in the response to the nonlocality and

size effects.

1Please refer to section 5.2.2 for description of notation and model parameters.
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Table 6.2: The dimensions of the pillars used for the parametric studies in figures 14
to 16.

Case
Top Diameter Bottom Diameter Height Taper Angle

d µm D µm h µm θ = tan−1
(
D−d
2h

)
Figure 14

(a) 1 5 10 11.31◦

(b) 2 10 20 11.31◦

(c) 4 20 40 11.31◦

Figure 15

(a) 1 5 10 11.31◦

(b) 6 10 10 11.31◦

(c) 11 15 10 11.31◦

Figure 16

(a) 1 5 10 11.31◦

(b) 3 5 10 5.71◦

(c) 5 5 10 0.0◦

The comparison between the local conventional and nonlocal modeling results for

pillars with similar bottom diameters and heights is shown in Figure 16. For the case

of the straight pillar, due to a lack of taper and hence nonhomogenity in the stress

field, the gradient-based model reduces to the local conventional model. Hence the

stress-strain response from two models does not differ.

As noted, the first case represented by pillars with similar geometries is the most

suitable to investigate the size effect since it allows for separation of the material

response form the structural response (Figure 16). The nondimensional parameter

studied for this case is $ = Mfwd

BD
η where the taper is defined as η = D−d

h
with D, d,

and h being the bottom and top diameters and the height of the pillar. It is assumed

for the parametric study in this section that the nonlocal parameters take the same

value for the forward and reverse transformations Mrev = Mfwd. $ combines the

nonlocal parameter with the geometric aspects of the pillar that contribute to the

nonhomogeneity in the distribution of stress and martensite volume fraction.
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 µ
m

This is case #1 of the parametric study

(a) (b) (c)

Figure 14: Effect of the geometry on the nominal compressive stress-strain response
of the SMA micropillars shown in the inset as for modeling with (left) Mrev = Mfwd =
1 mm.MPa and (right) Mrev = Mfwd = 0 (local model).

Figure 17 illustrates the nominal stress-strain results for various choices of the

parameter $.

On one hand, if either the taper in the pillar increases while keeping the same

material, or if materials with higher nonlocal parameters Mfwd are used in pillars

of same geometry, the response of the pillar would demonstrate a hardening effect.

On the other hand, if the dimensions of the pillar increase proportionally without

changing the aspect ratios and the taper, its response becomes closer to that of

the classical nonlocal model, thus capturing the size effect observed in the SMA

micro/nanopillars.

This phenomenon is additionally explained by the plots in Figure 18. While the

conventional local model predicts a completed transformation for the top portion of
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This is case #2 of the parametric study

(a) (b) (c)

Figure 15: Effect of the geometry on the nominal compressive stress-strain response
of the SMA micropillars shown in the inset as for modeling with (left) Mrev = Mfwd =
1 mm.MPa and (right) Mrev = Mfwd = 0 (local model).

the pillar and a narrow transforming region, the nonlocal model, however, results

in lower amounts of transformation and a wider transforming region. It is worth

mentioning that the nonlocal aspect of the model is tied to the existence of nonho-

mogeneity in the stress state of the structure. This can arise from the heterogeneity

in the material properties. It can also be due to loading and boundary conditions or

the geometry being considered resulting a nonhomogeneous state of stress.

Furthermore, the effect of the nonlocal parameter Mfwd (mm.MPa) on the pure

bending of SMA beams is investigated2. For an SMA beam with W = 1 (mm), the

plot of the nondimensional moment vs. nondimensional curvature is illustrated in

Figure 19. It is, again, assumed that Mrev = Mfwd.

2Please refer to section 5.4 for description of notation and model parameters.
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This is case #3 of the parametric study

(a) (b) (c)

Figure 16: Effect of the geometry on the nominal compressive stress-strain response
of the SMA micropillars shown in the inset as for modeling with (left) Mrev = Mfwd =
1 mm.MPa and (right) Mrev = Mfwd = 0 (local model).

The case where the non-dimensional nonlocal parameter vanishes, Mfwd∗ = 0,

pertains to the local conventional model . Inclusion of the nonlocal effect in the

model results in a macroscopic hardening effect. More energy is dissipated due to

the existence of the nonlocal term and therefore more flexural work is required to

achieve a certain level of curvature.

This plot can act as the characterization point for the nonlocal parameter. Given

an SMA with known local properties (as listed in table 6.1 for example), it is pos-

sible to determine the value of the nonlocal parameter by calibrating with respect

to the nondimensional flexural response of SMA samples with varying thicknesses.

Figure 20 shows the variation in the distribution of martensite volume fraction for

this SMA beam under a curvature of κ∗ = 3.3 during loading and κ∗ = 1.6 during
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Figure 17: Effect of the nonlocal parameter $ = Mfwd

BD
η on the nominal stress-strain

response of an SMA micropillar under compression.

unloading. Through the nonlocal model, the inelastic energy generated contributes

both to the martensitic transformation and also its gradient. The higher the nonlo-

cal effect, the lower the total amount of transformation. Note that the conventional

local model, (Mfwd∗ = 0), results in a linear distribution of ξ, as expected from the

linear choice for the hardening function. Also as expected, note that the model does

not capture any size effect in the elastic regime.
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(a) During loading at S∗ = 1730MPa

(b) During unloading at S∗ = 433MPa

Figure 18: Effect of the nonlocal parameter $ = Mfwd

BD
η on the distribution of marten-

site volume fraction in SMA pillar of figure 17.
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Figure 19: Effect of the nonlocal parameter Mfwd∗ = 1
EAH2

Mfwd

h
on the nondimen-

sional moment-curvature response of an SMA beam with W = 1.
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(a) During loading at κ∗ = 3.3

(b) During unloading at κ∗ = 1.6

Figure 20: Effect of the nonlocal parameter Mfwd∗ = 1
EAH2

Mfwd

h
on the distribution

of martensite volume fraction in SMA beam of figure 19.
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6.2 Qualitative prediction of the SMA micropillar experiemtal resulst

The capability of the proposed nonlocal model in capturing size effect in the

compression of SMA micropillars and bending of SMA thin films was qualitatively

shown so far. Pillars of various diameters and beams of various thicknesses from the

same shape memory alloy show different responses. As the diameter of the SMA

pillar or thickness of the SMA beam increases, its response becomes closer to that

of the bulk material. This is supported by the fact that by moving away from small

scales, the inelastic (either phase transformation or dislocation plasticity) behavior of

the materials become independent of the size and can be nondimensionalized based

on the mode and complexity of the deformation. SMA pillars of smaller diameters

and beams of smaller thicknesses, according to Figures 19 and 17, show a hardening

effect demonstrating the experimentally established “smaller is stronger”.

In section 1.2, an overview of the experimental observations for size effect in

the response of shape memory alloys was presented. Figure 7, obtained form the

work of Ozdemir et. al. [112], is demonstrated again in this section (Figure 22). It

shows the nominal stress-strain response for compression tests on Ni54Fe19Ga27 shape

memory alloy (SMA) single crystalline micropillars with various diameters D. Due

to the existing taper in the geometry, D is taken to be the average diameter. The

scanning electron microscopy images of 10 and 5 µm micropillars before and after

the compression test are shown, as an example, in Figure 21. The red arrows point

to the twin marks on the surface of the pillars. From these images, the corresponding

sizes of the pillars, i.e. the top diameter d, the bottom diameter D, and the height

h are obtained and listed in table 6.3.

The capability of the nonlocal SMA constitutive model in predicting the observed

size effect in the response of the micropillars is investigated. To that end, model III
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(a) (b) 

(c) (d) 

Figure 21: SEM images of the Ni54Fe19Ga27 micropilars before and after deformation.
(a)-(b) the 10 µm and (c)-(d) the 5 µm micropillars. Red arrow shows the twinning
marks on the surface [112].

as developed and described in section 4.5, is used as it contains fewer numbers of

nonlocal material constants that need to be identified and calibrated. Figure 22

contains the stress-stress responses of the pillars with average diameters form 10µm

to 420 nm as well as that of the bulk material. As verified in section 5.1, for a

homogeneous prismatic bar of SMA, the stress-strain outcome of the nonlocal models

is reduced to that of the conventional local model. Therefore, it is possible to calibrate

the SMA material properties used in the local part of the model using only the data
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Table 6.3: The dimensions of the pillars used for the calibration/prediction of the
experimental results in [112] for compression of Ni54Fe19Ga27 SMA micropillars.

Micropillar’s Nominal Diameter
Top Diameter Bottom Diameter Height Taper Angle

d µm D µm h µm θ = tan−1
(
D−d
2h

)
10 µm 9.11 10.49 18.13 2.18◦

5 µm 4.66 5.35 9.10 2.16◦

1 µm 0.79 1.09 2.00 4.30◦

585 nm 0.46 0.64 1.17 4.29◦

420 nm 0.33 0.46 0.84 4.29◦

available in [112] for the response of the bulk material at two different temperatures

of T = 22◦C and 30◦C. This is shown in Figure 23 with the calibrated material

constants presented in table 6.4. To that end, the smooth hardening function with

properties given in table 5.2 is used.

Table 6.4: SMA material properties (local) calibrated using the plots shown in Figure
23 for the stress-strain response of the bulk Ni54Fe19Ga27 SMA.

Thermoelastic Constants Transformation Properties

EA = 12
[GPa]

As = −8 Af = 14
[◦C]

CA = 4.7 [
MPa
◦C

]
H = 6.15 [%]

EM = 25 Ms = 0 Mf = −83 CM = 4.7

σ∗ = 400 MPa n1 = 0.96 n2 = 0.31 n3 = 0.50 n4 = 0.15

Next step is to determine the values of the nonlocal parameters Mfwd and Mrev

as described in section 5.1.1. For that purpose, the behavior of SMA structures with

non-uniform deformation, due to either the structure itself or to a nonhomogenous
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loading, must be investigated such that the nonlocal part of the model is activated.

For the current problem, the taper in the pillar provides a nonhomogneous state of

stress, hence a non-homogenous distribution of martensite volume fraction, along the

axis that involves the nonlocal part of the SMA constitutive model. An schematic

is presented in figure 24 that illustrates the geometry of the pillars to the scale. As

seen form the schematic and also the last column of table 6.3, the taper in the pillars

is small (∼ 3◦).

This can be further analyzed by modeling the response of the micropillars under

compression using only the conventional local model with the SMA material prop-

erties (table 5.2) obtained via calibration of the bulk material response (Figure 23).

The results are shown in Figure 25. The local conventional model obtains an almost

identical response for all of the micropillars with no size effect. This requires the use

of the SMA nonlocal constitutive model.

With the conventional SMA properties already calibrated using the bulk ma-

terial response, the nonlocal pararmeters, Mfwd and Mrev, can be determined by

calibrating the analysis results of section 5.2.2 with the experimental responses of

the Ni54Fe19Ga27 micropillars. This is performed in Figure 26 were the compressive

stress-strain plot of the 1µm micropillar was used in order to obtain

Mfwd = 0.09 , Mrev = 0.02 mm.MPa (6.1)

It is, hence, possible to predict the response of the other micropillars as shown in

Figures 27 and 28. The model is capable of predicting the size effect and hardening

observed in a qualitative fashion which is acceptable considering only having the

two additional nonlocal parameters at one’s avail. A more accurate prediction calls

for considering other aspects of the response of the micropillars. As mentioned by

161



Ozdemir et al. [112] and observed in Figure 22, the Ni54Fe19Ga27 SMAs undergo a

two-stage transformation when tested in bulk that ceases from happening in the small

scales. Previous works on the superelastic behavior of Ni-Ga-Fe ferromagnetic single-

crystal shape memory alloys reported a two-stage transformation from the parent

austenite phase (Cubic L21) to a 10M/14M modulated martensite (Monoclinic) and

to a L10 martensite (Tetragonal) under an isothermal stress-strain response [36, 73,

139]. As the temperature of the loading changes, the sequence of inter-martensitic

transformation also changes (Figure 29). Hamilton et al. [73] mentioned that by

increasing the temperature, the transformation steps evolve form A � 10M �

14M � L10 to A � 14M � L10 in tension and form A � 10M � 14M to

A� 14M � L10 to A� L10 in compression.

Such a phenomenon also occurs while reducing the size of the specimen to the

micron and submicron region. The current model can take into account only a sin-

gle stage of transformation, as the response in Figure 23 was captured by averaging

the two-stage step through the hardening of the single-stage transformation. Effec-

tive modeling and prediction of the response of Ni54Fe19Ga27 micropillars cannot be

achieved without considering this phenomenon.
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(a) The superelastic stress-strain response

(b) The critical stresses for the start of martensitic transformation as well as
martensitic plastic yield as a function of the micropillar diameter.

Figure 22: The size effect in compression of Ni54Fe19Ga27 SMA micropillars with
various diameters D [112].
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𝑇 = 22 ℃ 𝑇 = 30 ℃ 

Figure 23: Calibration of the local SMA material properties using the experimental
compression response of the bulk Ni54Fe19Ga27 SMA at two different temperatures.
(solid line) Experiments [112], (dashed line) SMA constitutive model.
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Figure 24: The schematics of the micropillars studied with dimensions given in table
6.3.
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Figure 25: The isothermal room temperature compressive stress-strain response of
the SMA micropillars, with the geometries shown in the inset, using the local SMA
constitutive model.
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Figure 26: The isothermal room temperature compressive stress-strain response of
the bulk Ni54Fe19Ga27 shape memory alloy and the 1µm micropillar used for the
calibration of the SMA nonlocal constitutive model. (solid line) Experiments [112],
(dashed line) SMA constitutive model.
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Figure 27: The isothermal room temperature compressive stress-strain response
of Ni54Fe19Ga27 shape memory alloy micropillars. (solid line) Experiments [112],
(dashed line) SMA nonlocal model prediction.
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Figure 28: The isothermal room temperature compressive stress-strain response
of Ni54Fe19Ga27 shape memory alloy micropillars. (solid line) Experiments [112],
(dashed line) SMA nonlocal model prediction.

168



0

50

100

150

200

250

300

350

400

450

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

C
o

m
p

re
ss

iv
e

 S
tr

e
ss

 (
M

P
a)

 

Compressive Strain  

22 °C

30

40

0

50

100

150

200

250

300

350

400

450

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

C
o

m
p

re
ss

iv
e

 S
tr

e
ss

 (
M

P
a)

 

Compressive Strain 

60 °C

70

80

Figure 29: The superelastic stress-strain response of the bulk Ni54Fe19Ga27 SMA at
different temperatures (Data obtained form Figure 11 in [112]).
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7. CONCLUSIONS AND FUTURE WORK

The response of shape memory alloy (SMA) structures in small scales show a devi-

ation from that of the bulk material. Ni54Fe19Ga27 ferromagnetic SMA micropillars,

for instance, demonstrated a significantly increased hardening in their compressive

stress-strain response as the diameter of the micropillars approached the micron and

submicron scales [112]. A review of the experimentally observed size effect in shape

memory alloy structures was presented with a categorization according to the dimen-

sionality of the specimens tested. From nano particles and powders to 3D specimens

with ultrafine grains, reducing the size of an external characteristic dimension as

compared to the internal or intrinsic characteristic lengths dominating the marten-

sitic transformation and its underlying mechanisms, contributed to the size effect.

For the compression of SMA micro/nanopillars, as summarized in table 1.1, the

scarcity of martensite nucleation sites with reduction in the diameter, refinement of

twin formations, and relaxation effect form the free surfaces, are given as some of

the physical grounds for the observed enhanced hardening as well as the change in

the dissipation in the stress-strain response.

The conventional constitutive models, due to their lack of intrinsic length scales,

are not able to capture such an experimentally observed size effect. A variety of

nonlocal generalized continuum theories have been developed in order to model this

behavior. These models include nonlocal implicit and explicit strain gradient theories

for dislocation plasticity which were used to model the torsional response of thin

wires, bending of thin films, growth of micron sized voids, and indentation size effect

among many other observed phenomena.

In the current work, a generalized gradient-based, thermodynamically consistent
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constitutive framework is established aimed at modeling the response of shape mem-

ory alloys. In this framework, the existence of some generalized surface and body

forces are presumed that contribute to the free energy as work conjugates to the gen-

eralized variables of martensite volume fraction, transformation strain tensor, and

their spatial gradients. The rate of evolution of the generalized variables can be ob-

tained by invoking the principal of maximum dissipation after assuming a generalized

transformation surface. The generalized transformation surface, in this gradient-

based theory, is a differential equation in terms of the generalized thermodynamic

forces. For conventional constitutive theories, the equation for the transformation

surface is an algebraic one. The connection between this framework and the theories

that use a configurational force (microforce) balance law is established by showing

the latter to be a specific case of a generalized transformation surface.

In addition, gradient-based SMA constitutive models based on the theory of in-

ternal variables were deduced from the developed generalized constitutive modeling

framework. The constitutive models, in this case, comprise of the conventional inter-

nal variables of martensitic volume fraction and transformation strain as well as their

spatial gradients. Three different versions for such gradient based constitutive mod-

els were developed which included various energetic and dissipative length scales

that can be calibrated experimentally. The length scales contribute to additional

hardening in the structural SMA response.

The developed gradient-based internal variable constitutive models were simpli-

fied for 1D. A boundary value problem, defined by such models, contains the differ-

ential equation for the transformation surface including the gradients of internal vari-

ables as well as the equilibrium equation. Such a boundary value problem is solved

analytically and, where impossible, numerically for pure bending of SMA beams,

simple torsion of SMA cylindrical bars, and compression of SMA micro/nanopillars.
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The most simplified version of the gradient-based SMA constitutive model, con-

taining only the additional gradient of martensite volume fraction, can capture the

size effect in the response of these structures demonstrating a stronger response for

smaller sizes. Also, the calibrated model is shown to be able to qualitatively predict

the experimentally observed response of Ni-Fe-Ga micropillars under compression,

as presented in Ozdemir et al [112].

Future Work

The energetic and dissipative length scales were included in the current inter-

nal variable constitutive modeling framework in a phenomenological fashion. The

nonlocal parameter, M, in the gradient-based model III for example, represents the

lower-scale microstructural effects in a continuum scale model. As proposed herein,

it is possible to phenomenologically calibrate the nonlocal parameter as a material

constant using, for example, nondimensional results from pure bending of SMA thin

films.

The contribution from the nonlocal part of the model is closely coupled with the

existence of nonhomogeneity in the stress state of the structure and hence the distri-

bution of martensite volume fraction. This may be originated from either geometric

or material heterogeneities. Nonetheless, if the state of the stress and martensite

volume fraction are uniform, for example in uniaxial loading of an SMA wire, the

model prediction reduces to the conventional one. Thus, the nonlocal model loses its

capability in predicting any size effect for that case. The model can be enhanced by

inclusion of additional terms in the free energy related to the surface energy of the

SMA structure that can contain information from length scales such as, for the case

of the wire, the surface to volume ratio of the structure.

The size effect was also observed in more complicated experiments such as nanoin-
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dentation of shape memory alloys. The effective hardness was shown to be dependent

on the depth of indentation being larger for lower depths [9]. Modeling such a behav-

ior deems near impossible using analytical techniques. Therefore, implementation of

the proposed gradient based constitutive model in a finite element numerical frame-

work constitutes one of the necessary next steps in this work.

The response of Ni54Fe19Ga27 single crystal micropillars was modeled using cer-

tain assumptions in order to simplify the analysis. Such a ferromagnetic SMA, in

its bulk form, demonstrates a two-stage inter-martensitic transformation [36,73,139]

that is inhibited when the size is reduced to the micron scale. The gradient-based

SMA constitutive model as well as the corresponding conventional local SMA consti-

tutive model are not capable of capturing such a transformation. In the current mi-

cropillar analysis, the two-stage transformation was approximated by a single-stage

counterpart with an averaged hardening. In order to achieve a more quantitative

prediction for the compressive response of the micropillars, it is necessary to develop

a gradient-based constitutive model that incorporates the various phases of marten-

site as internal variables in its reduced local or conventional form. This contribution

also remains to be implemented as a future work.
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APPENDIX A

ON SOME PROPERTIES OF THE DISSIPATION POTENTIAL

A.1 Principle of maximum dissipation and Onsager reciprocal relations

In the theory of irreversible thermodynamics it is assumed that in the neighbor-

hood of equilibrium, the constitutive equations are given by:

Ji = Lij χj , χi = Aij Jj (A.1)

in which J is the vector of generalized thermodynamic fluxes and χ the vector

of generalized thermodynamic forces. The dissipation due to the inelastic process

considered is:

D ≡ χ · J = χmJm (A.2)

The principle of maximum dissipation states that from all admissible fluxes J (that

may be constrained by internal constrains, boundary conditions, or conservation

laws), the ones hold that maximize the dissipation D according to the equivalence

relation D(J ,χ) ≡ χ · J [72].

χ = Max{D | χ ; D = χ · J} (A.3)

Using the method of Lagrange multipliers, a Lagrangian is formed.

Lχ = D + λ (D − χ · J) ,
∂Lχ
∂χ

= 0 ⇒ (1 + λ)
∂D

∂χ
− λ = 0J (A.4)
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Multiplying (inner product) both sides of equation (A.4) by χ we will have:

(1 + λ)
∂D

∂χ
· χ = λχ · J = λD ⇒ 1 + λ

λ
=

D
∂D
∂χ
· χ

(A.5)

Furthermore, rearranging (A.4) using equation (A.5) and D = χ · Lχ, it is

possible to obtain:

J =
χ ·Lχ

χ ·
(
L + LT

)
χ

(
L + LT

)
χ (A.6)

On the other hand, J = Lχ after (A.1). Hence, both equations (A.1) and (A.6)

are satisfied iff L = L+LT

2
; that is the tensor L must be symmetric.

A.2 State of coupling in the gradient-based rate-independent constitutive

modeling with internal variables

The method used in this dissertation for the constitutive modeling of inelastic

material response using a gradient based internal variable approach includes assum-

ing the existence of one yield/transformation function that acts as a potential to

obtain the rates of internal variables. Assume the internal variable α and its spa-

tial gradient ∇α with respective conjugate thermodynamic forces γ1 and γ2. The

dissipation, therefore can be written as

γ1 = −ρ∂G
∂α

, γ2 = −ρ ∂G

∂∇α
, D = α γ1 +∇α · γ2 ≥ 0 (A.7)

It is possible to relate the rates α̇ and ∇α̇ to one or two yield/transformation

surfaces after invoking the principle of maximum dissipation. Depending on the

existence of coupling between internal variables in the free energy G, three different

cases may follow.

1. Explicit Coupling
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In this case, one yield/transformation surface Φ (γ1,γ2) is assumed. Also, it is

assumed that a coupling between α and ∇α exists in the free energy function, G.

The rates of internal variables, therefore, can be given by

α̇ = λ
∂Φ (γ1,γ2)

∂γ1

, γ1 = γ̂1 (α,∇α)

∇α̇ = λ
∂Φ (γ1,γ2)

∂γ2

, γ2 = γ̂2 (α,∇α)

(A.8)

2. Implicit Coupling

In this case two surfaces Φ1 (γ1) and Φ2 (γ2) are defined with two respective

Lagrange multipliers. A coupling is assumed to exist between α and ∇α in the free

energy function, G. Therefore

α̇ = λ1
∂Φ1 (γ1)

∂γ1

, γ1 = γ̂1 (α,∇α)

∇α̇ = λ2
∂Φ2 (γ2)

∂γ2

, γ2 = γ̂2 (α,∇α)

(A.9)

3. No Coupling

Here it is assumed that that two surfaces exist. Also, no coupling between α and

∇α is considered in the free energy G. This results in

α̇ = λ1
∂Φ1 (γ1)

∂γ1

, γ1 = γ̂1 (α)

∇α̇ = λ2
∂Φ2 (γ2)

∂γ2

, γ2 = γ̂2 (∇α)

(A.10)
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which shows that α and its spatial gradient ∇α can be solved for completely

separate from each other.

It is concluded that there is no need for including the gradients of internal vari-

ables, unless a coupling (either explicit or implicit) is assumed in the constitutive

relations or evolution equations.
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APPENDIX B

TENSOR ALGEBRA AND TENSOR CALCULUS

B.1 Isotropic tensors of rank up to 6

Tensors can, in general, be defined as multilinear transformations over a finite

dimensional vector space. An orthonormal basis, {e1, . . . , en}, is considered for the

inner product, n-dimensional vector space {V , .}. The basis can be used for obtaining

the components of tensors and vectors. For the purpose of this dissertation, V is

assumed to be the three dimensional Euclidean vector space, R3. The space of zero-

order, T 0, and first-order tensors, T 1, are isomorphic to the scalar field R and the

underlying vector space R3, receptively. Similarly, tensor A ∈ T q of rank q can be

defined as the multilinear transformation:

A [·] : T s → T r , q = r + s (B.1)

The orthonormal basis {e1, e2, e3} constructs a natural orthonormal basis for the

space of qth rank tensors T q and defines the components of A ∈ T q with respect to

that basis.

A = [Ai,j,...,q] =
∑

i,j,...,q=1,2,3

Ai,j,··· ,q
(
ei ⊗ ej ⊗ · · · ⊗ eq

)
(B.2)

The components of the tensors depend on the basis and if a new basis is formed

by rotation through an orthogonal transformation, the new components follow the

transformation law. In other words, with respect to a new basis {é1, é2, é3} such

that éi = Qei, the new components Ái,j,...,q are given as:
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Ái,j,...,q = QîiQĵj · · ·Qq̂q Aî,ĵ,...,q̂ (B.3)

with Q being a proper orthogonal transformation QQT = QTQ = I and Q ∈

Orth+, det(Q) = +1.

An isotropic tensor is the one whose components are invariant under any proper

orthogonal transformation.

Ái,j,...,q = Ai,j,...,q (B.4)

All scalars (tensors of rank zero) are isotropic and there is no isotropic vector

(tensor of rank one). Every isotropic tensor with an even rank can be expressed

as a linear combination of the products of Kronecker deltas, δij. In that sense,

isotropic second order tensors are given by Aij = λδij. Also, every isotropic tensor

of odd rank can be expressed by linear combination of terms formed by products of

Kronecker deltas and permutation tensors, εijk [77,84]. Kearsley and Fong [84] refer

to such products of Kronecker deltas or Kronecker deltas and permutation tensors

as fundamental isotropic Cartesian tensors (FICT). The number of dependent and

independent FICT terms in tensors of up to rank 8 are shown in table B.1.

Table B.1: The number of dependent and independent FICT terms in tensors of up
to rank 8 [84].

Rank q 2 3 4 5 6 7 8

Number of distinct FICTs 1 1 3 10 15 105 105
Number of linearly independent FICTs 1 1 3 6 15 36 91

The linear combination, or reduction equations, of FICT terms for tensors of
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rank 2 to 6 is given in table B.2. This constitutes the forms for developing isotropic

material constant tensors of various ranks. Such forms are also available in [84] for

ranks 7 and 8.

Table B.2: The isotropic tensors up to rank 6 [84].

Rank Linearly independent fundamental isotropic tensors

2 δij

3 εijk

4 δijδkl , δilδjk , δikδjl

5 εijkδlm , εijmδlk , εijlδmk , εikmδlj , εiklδmj , εimlδjk

6
δijδklδmn , δijδkmδnl , δijδknδlm , δjkδilδmn , δjkδimδnl

δjkδinδlm , δikδjlδmn , δikδjmδnl , δikδjnδlm , δilδjmδkn

δjlδkmδin , δklδimδjn , δilδjnδkm , δjlδknδim , δklδinδjm

The interesting point here is the existence of isotropic third and fifth rank ten-

sors. In many cases of material constitutive modeling, the dependent or independent

variables being related through tensorial material constants include symmetries (e.g.

σ = σT ) that must be imparted to the tensors for material constants. Since the

isotropic odd-ranked tensors involve linear combinations of the permutation tensor,

they vanish under the symmetry requirements. For example if the isotropic third

order tensor D ∈ T 3 has to obey a symmetry such as Dijk = Dikj, we will have

(according to table B.2):

Dijk = λ εijk , λ εijk = −λ εikj = λ εikj ⇒ λ = 0 (B.5)

Similar arguments can be developed for the fifth and seventh-rank tensors.
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Therefore, material properties represented by odd-ranked tensors, such as the

piezoelectric tensor, only exist in the case of anisotropic material response.

B.2 The derivative of tensor valued functions

Assume the tensor function

F : D ⊂ T r → T s (B.6)

to have a domain D as an open subset of T r. The function takes values in

the space of r-th rank to the space of s-th rank tensors. Also F is assumed to be

continuous and differentiable in a neighborhood of A ∈ D.

The derivative of F operating on H ∈ T r is defined as:

F (A+H) = F (A) + DF (A) [H ] + o (H) (B.7)

as ‖H‖ → 0. The Landau, little o, denotes a function depending on ‖H‖, the

norm of H , that goes to zero faster than H ; i.e. lim‖H‖→0
o(H)
H

= 0.

The derivative, in general, can also be obtained through the following.

DF (A) [H ] =
d

dα
F (A+ αH) |α=0 = ∂AF (A) ·H ∀H ∈ T r (B.8)

The “·” here represents a general tensorial contraction operation. If A is sym-

metric, the derivative must be symmetric too and thus we will have:

∂AF (A) = Sym [∂AF (A)] (B.9)

Given F and G as two differentiable tensor functions defined on the same domain

D ⊂ T r,
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F : D ⊂ T r → T p , G : D ⊂ T r → T q (B.10)

It is possible to define a product function E with the assumption that it is sepa-

rately linear in F and G

E(A) := Ê (F (A), G(A)) : T p × T q → T s (B.11)

The derivative of the product function E can be obtained through the product

rule as below:

DE(A)[H ] = Ê (DF (A)[H ], G(A)) + Ê (F (A),DG(A)[H ]) , ∀H ∈ T r

(B.12)

Moreover, assume F to be differentiable at A ∈ D and G to be differentiable at

F (A) ∈ G, i.e.

F : D ⊂ T r → T q , G : G ⊂ T q → T s (B.13)

The composite function, E(·) := G◦F (·), is also differentiable at A ∈ D through

the chain rule.

DE(A)[H ] = DG(F (A)) [DF (A)[H ]] , ∀H ∈ T r (B.14)

For further development, real scalar valued functions are considered with A ∈ D

being a tensor of arbitrary order.
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F : D ⊂ T r → R (B.15)

B.2.1 Functions of the form: F (v) = v ·Av

Where v ∈ T 1 is a vector and A ∈ T 2 is a second-order tensor. Based on the

previous definition in equation (B.8):

d

dα
F (v + αh) |α=0 =

d

dα
(v + αh) ·A (v + αh) |α=0 =

d

dα

(
v ·Av + αv ·Ah+ αh ·Av + α2h · h

)
|α=0 =(

ATv +Av
)
· h

(B.16)

Hence

∂vF (v) = ATv +Av (B.17)

And if A is symmetric, A ∈ Sym (T 2):

∂vF (v) = 2Av (B.18)

B.2.2 Functions of the form: F (v) = v ·Au

Where v, u ∈ T 1 are vectors andA ∈ T 2 is a second-order tensor. The derivative

can be readily determined.

d

dα
F (v + αh) |α=0 =

d

dα
(v + αh) ·Au|α=0 =

Au · h
(B.19)
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Therefore

∂vF (v) = Au (B.20)

B.2.3 Functions of the form: F (A) = tr (AnB)

Where A, B ∈ T 2 are second-order tensors and n = 1, 2, . . . . The derivative is

calculated using the previous definition.

d

dα
F (A+ αH) |α=0 =

d

dα
tr [(A+ αH)nB] |α=0 =

d

dα
(A+ αH)n : BT |α=0 =

d

dα
(A+ αH)n |α=0 : BT =

d

dα

[
An + α

n−1∑
i=0

AiHAn−1−i + α2

n−2∑
i=0

AiHAn−1−i + · · ·

]
α=0

: BT =(
n−1∑
i=0

AiHAn−1−i

)
: BT =

[
n−1∑
i=0

(
An−1−iBAi

)T]
: H

(B.21)

which means

∂AF (A) =
n−1∑
i=0

(
An−1−iBAi

)T
(B.22)

If A is symmetric, A ∈ Sym (T 2):

∂AF (A) =
n−1∑
i=0

Ai Sym (B)An−1−i (B.23)
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B.2.4 Functions of the form: F (A) = u ·AnBv

Where v, u ∈ T 1 are vectors and A, B ∈ T 2 are second-order tensors. F can

be rewritten as:

F (A) = u ·AnBv = An : (u⊗Bv) = tr (AnL) , L = (u⊗Bv)T (B.24)

The results of the last section B.2.3 is used to obtain the derivative of F .

∂AF (A) = ∂Atr (AnL) =
n−1∑
i=0

(
An−1−i (u⊗Bv)Ai

)T
(B.25)

And in the case of symmetric A

∂AF (A) =
n−1∑
i=0

Ai Sym (u⊗Bv)T An−1−i (B.26)

The derivations in this section are summarized in table B.3.
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Table B.3: The derivatives of tensor valued functions commonly used in material
constitutive model development*.

Function F (v) Derivative ∂vF (v)

v ·Av 2Av

v ·Au Au

Function F (A) Derivative ∂AF (A)

tr (AB) = A : BT Sym (B)

tr (A2B) = A2 : BT Sym (B)A+A Sym (B)

tr (A3B) = A3 : BT Sym (B)A2 +A Sym (B)A+A2 Sym (B)

u ·ABv Sym (u⊗Bv)T

u ·A2Bv Sym (u⊗Bv)T A+A Sym (u⊗Bv)T

* A in this table is assumed to be a symmetric second order tensor A ∈ Sym (T 2),

B ∈ T 2 a second order tensor, and u, v ∈ T 1 vectors.

B.3 Some useful formulas

The gradient of a tensor or tensor valued function A (X) can be described ac-

cording to the previous definition of tensorial derivatives in Appendix B.2.

Grad (A (X)) = ∇A (X) ≡ ∂XA (X) , DA (X) [h] = ∇A (X) · h ∀h ∈ R3

(B.27)

Based on this definition, the divergence can also be introduced.

Div (A (X)) ·H = Div (A∗ (X) ·H) ≡ tr (∇ (A∗ (X) ·H)) (B.28)

For all constant tensors H ∈ T s−1 if A ∈ T s.
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It is worth mentioning that for the above relation, the adjoint of A denoted by

A∗ is one that satisfies the following for all non-zero vectors v ∈ R3 .

v · (A ·H) = H · (A∗ · v) (B.29)

Also for tensor fields A (X) ∈ T s and B (X) ∈ T s−1

Div (A∗ ·B) = A · ∇B +B ·Div (A) (B.30)

The following formulas can be deduced for a scalar-valued field a (X), vector

fields u (X) and v (X), and a second-order tensor field A (X).

Div (v) ≡ tr (∇v)

∇ (av) = a∇v + v ⊗∇a

Div (av) = aDiv (v) + v · ∇a

∇ (u · v) = (∇v)T u+ (∇u)T v

Div (u⊗ v) = uDiv (v) + (∇u)v

Div
(
ATv

)
= A · ∇v + v ·Div (A)

Div (aA) = aDiv (A) +A∇a

∇ (Div (v)) = Div
(

(∇v)T
)

(B.31)
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