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ABSTRACT 

 

Near-future space missions demand the delivery of massive payloads to deep 

space destinations. Given foreseeable propulsion technology, this is feasible only if we 

can design trajectories that require the smallest possible propulsive energy input. This 

research aims to design interplanetary space missions by using new low-energy 

trajectory methods that take advantage of natural dynamics in the solar system. This 

energy efficient trajectory technology, called the Interplanetary Super Highway (IPSH), 

allows long duration space missions with minimum fuel requirements. To develop the 

IPSH trajectory design method, invariant manifolds of the three-body problem are used. 

The invariant manifolds, which are tube-like structures that issue from the periodic orbits 

around the L1 and L2 Lagrangian points, can be patched together to achieve voyages of 

immense distances while the spacecraft expends little or no energy. This patched three-

body method of trajectory design is fairly well developed for impulsive propulsion. My 

research is dedicated to advance its capabilities by extending it to continuous, low-thrust, 

high specific impulse propulsion methods. 

The IPSH trajectory design method would be useful in designing many types of 

interplanetary missions. As one of its applications, my research is focused on Near-Earth 

Asteroids (NEAs) rendezvous mission design for exploration, mitigation, and mining. 

Asteroids have many valuable resources such as minerals and volatiles, which can be 

brought back to Earth or used in space for propulsion systems or space habitats and 

stations. Transportation to and from asteroids will require relatively massive vehicles 
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capable of sustaining crew for long durations while economizing on propellant mass. 

Thus, in the design of advanced NEA rendezvous missions, developing new technology 

for low cost trajectories will play a key role. 

In a second application study, the solar sail mission for Mars exploration is 

considered. By using solar radiation pressure, solar sails provide propulsive power. This 

thrust affects the three-body system dynamics such that the Sun-Mars L1 and L2 

Lagrangian points are shifted toward the Sun and the geometry of the invariant 

manifolds around L1 and L2 points is changed. By taking advantage of these features, a 

low-thrust trajectory for Mars exploration is developed. 
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NOMENCLATURE 

 

BCM Bi-Circular Model 

C Jacobi Integral 

CCM Concentric Circular Model 

DCM Differential Correction Method 

E Energy Integral 

f Solar Sail Factor 

GEO Geosynchronous Equatorial Orbit 

Isp Specific Impulse 

IPSH Interplanetary Super Highway 

LEO Low Earth Orbit 

NEA Near-Earth Asteroid 

PCR3BP Planar Circular Restricted 3-Body Problem 

rh Hill Radius 

S/C Spacecraft 

STM State Transition Matrix   

U Pseudo-Potential Energy Function 

𝑈̅ Effective Potential Energy Function  

μ Mass Parameter 
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1. INTRODUCTION  

 

Over the last half-century, many successful space missions have been launched. 

Most interplanetary mission trajectories have been designed through the traditional conic 

solution with the dynamical principles of the 2-body problem. For example, a Hohmann 

transfer, which is one of the simple solutions for the 2-body problem, has been used in 

many successful missions. However, it is not always practical and has limits in hardware 

capabilities and cost. By increasing the demand for new design technology which meets 

complex mission scenarios and economical requirements of using minimum fuel, many 

investigations have focused on low-energy trajectory methods. The Interplanetary Super 

Highway (IPSH) trajectory method, one of the well-known low-thrust trajectory 

methods, was developed based on the Circular Restricted 3-BodyProblem (CR3BP) [1]. 

The CR3BP can take advantage of natural dynamics using invariant manifolds which 

can connect around Lagrangian points like a chain of tunnels [1-4]. This dissertation 

explores the dynamics of CR3BP and is focused on designing energy efficient 

trajectories for interplanetary missions. 

 

1.1 Historical Contributions 

One of the remarkable contributions to the 3-body problem was started by two 

mathematicians, Leonhard Euler (1767) and Joseph-Louis Lagrange (1772) with 

identification of five equilibrium points in the restricted 3-body problem. Euler proposed 

the restricted 3-body problem in a rotating frame [5]. This model became the basic 
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foundation of recent researches on CR3BP.  He discovered three collinear points (L1, L2, 

L3) first and then Lagrange defined two equilateral points (L4, L5) later. Those five 

equilibrium points are commonly known as “Lagrangian points” or “libration points”. 

An object in the vicinity of Lagrangian points will be in a state of equilibrium [6]. These 

points have a significant role in the transfer trajectory design since the existence of 

periodic orbits and the tunnels around the points are discovered in later work.  

Another significant contribution was made by Carl Gustave Jacob Jacobi (1836) 

who discovered the Jacobi constant. His works focused on the integral of motion in the 

3-body problem [7]. By extending Jacobi’s work, George William Hill (1878) modeled 

the lunar orbit considering the effect of Sun. He demonstrated that the existence of 

regions which limit the motion of third body depends on the energy level [8]. These 

region called Hill’s curves of zero velocity defined the realms of the forbidden zone 

where the third body cannot enter.  

One of the innovative approaches to CR3BP was developed by Henri Poincare in 

the 19th century. He studied a natural motion of PCR3BP in its qualitative aspects with a 

surface section method called the Poincare section [9]. Based on these advances and the 

advent of modern computers, several space missions have been designed and launched 

based on 3-body problem. The first one was the ISEE-3 mission which transferred a 

spacecraft to a periodic orbit around Sun-Earth L1 point in 1978 [10, 11]. After that 

numerical techniques were combined with CR3BP by many researchers in the 1990s. 

Especially, the design algorithms developed by Wilson, Barden, and Howell were 

implemented in the Genesis Discovery mission which was launched in 2001 [12]. 
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Collecting a sample of solar wind particles, the spacecraft reached the Sun-Earth L1 orbit 

and came back to Earth with significantly low thrust. The Genesis mission manifested 

the usefulness of low energy transfer trajectories associated with invariant manifolds 

around Lagrangian points. 

 

1.2 Problem Statement 

Various techniques for low thrust trajectory design were proposed and developed 

over the last few decades. Among them, interplanetary transfer trajectory design 

methods associated with the invariant manifolds around Lagrangian points are one of the 

noted energy efficient trajectory design methods. In the restricted 3-body system 

formulation it is assumed that two massive particles move in their circular orbits while a 

third body of negligible mass freely moves around them in the same orbit plane without 

affecting the motion of two massive bodies. This simplified situation, called the Planar 

Circular Restricted 3-Body Problem (PCR3BP), leads us to fruitful insights into the 

motion of three bodies. By understanding of dynamics and energy states of 3-body 

system, a reasonably tractable mathematical model can be defined for the PCR3BP. 

However it is still challenging to obtain the solutions of transfer trajectory designs. A 

large amount of computationally precise effort is needed due to the high sensitivity of 

trajectories to initial conditions. To deal with this complex control problem, many 

different types of efficient tools were studied by Belbruno [13, 14], Howell [15], and Lo 

[1-4]. To find a systematically general and simple solution of PCR3BP, this research has 

focused on developing a new design approach, called 1-D search techniques in PCR3BP. 
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Furthermore, the results of this work may offer insight for the global structure of 

invariant manifolds and possibilities of advanced trajectory design.     

The basic background of the PCR3BP is introduced in Section 2 to provide the 

foundations of this study. The mathematical model of PCR3BP is developed based on 

the work of Conley [16] and W. S. Koon [1]. The energy states of the PCR3BP including 

the Jacobi integral and Hill’s region are also discussed. 

In Section 3, the invariant manifolds are investigated to understand the geometry 

of the multi-body problem. We developed the 1-D search method associated with the 

dynamics of PCR3BP. To compare with the 1-D search method, the general numerical 

method, specifically the differential correction method (DCM), is also reviewed. The 

results of preliminary trajectory design for NEA rendezvous mission are presented.  

In Section 4, we explore the special case of the 4-body problem which can be 

useful for Mars exploration. Assuming the use of solar sails, we studied the resulting 

changes in the natural motion and geometric structure in the restricted 4-body problem. 

A sample transfer trajectory from Earth to Mars is presented. 

In Section 5, we make concluding remarks and discuss recommendations for 

further investigations. 
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2. BACKGROUND: MATHEMATICAL MODEL 

 

2.1 The N-Body Problem 

Suppose that there are three bodies m1, m2, and m3 all executing circular motions 

in the same plane. Then typical motions can be described in two ways. First, when m2 

and m3 move in circular orbits around m1 as a center, as shown on the left in Figure 1, 

we call this Concentric Circular Model (CCM) [1]. This model can be applied to any 

interplanetary system within the solar system, such as the Sun-Earth-Mars system. 

Second, consider m2 and m3 to be in relatively small circular motions about their 

barycenter and that the m2-m3 barycenter is in a large circular orbit about m1. This 

situation, shown on the right in Figure 1, is called the Bi-Circular Model (BCM) [1]. 

This model can be applied to planet-satellite system with the Sun such as Sun-Earth-

Moon system. For Near Earth Asteroid (NEA) mission design, the BCM will be 

considered to produce an Earth to Asteroid trajectory via the Earth-Moon system to the 

Sun-Earth system. The CCM will be considered to describe the Sun-Earth-Mars system. 

 

 

Figure 1. Concentric circular model (left) and bi-circular model (right) 



 

6 

 

 To describe the motion of the third body, m3 effectively, let us explore the 

reference frames in the three-body system. In Figure 2, assume that the inertial frame is 

the X-Y plane which is the orbital plane of the two primaries. Since those two bodies are 

constantly moving, it is inconvenient to formulate the equation of motion for m3 in the 

inertial frame. Let us consider the m1-m2 rotating reference frame which is consist of the 

x-y plane in Figure 2. Note that the x-y frame rotates with the angular velocity of the 

primaries with respect to the X-Y frame. The transformation from inertial to rotating 

frame can be helpful to represent the equation of motion in PCR3BP.  

 

 

Figure 2. The n-body problem in inertial frame and rotating frame 

 

2.2 Normalized Units 

For the three-body problem in this research, the system units were used as non-

dimensional quantities. By generalizing the equation of motion with the normalized unit, 
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it is more convenient to describe the motion of bodies composing different systems. The 

fundamental parameters to be normalized in the system are length L, mass M, and time t. 

The unit of length, L is defined as the distance between the two primary bodies, m1 and 

m2, i.e. L = 𝑑1 + 𝑑2 in Figure 2. The unit of mass, M is defined as the summation of 

mass, M = 𝑚1 +𝑚2. The unit of time, t can be calculated assuming the orbital period of 

m1 and m2, called T, is 2π. So the conversion of those fundamental quantities into the 

normalized unit can be described as: 

d′ = Ld                                                        (2.1a) 

t′ =
𝑇

2𝜋
𝑡                                                        (2.1b) 

where d′, t′ are the dimensional units and d, t are the non-dimensional units for 

length and time respectively. Especially the mass parameter, μ can be represented as: 

μ =
𝑚2

𝑚1+𝑚2
                                                      (2.2) 

In the case that 𝑚1 is larger than 𝑚2, the non-dimensional mass of the first and 

second primaries are expressed as: 

μ1 = 1 − μ,           μ2 = μ                                         (2.3) 

 Note that the mass parameter μ and dimensional values of length L, velocity V, 

and the orbital period T in various interplanetary systems are shown in Table 1. Those 

values are provided from the Jet Propulsion Laboratory’s solar system dynamics website 

[1].  
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Table 1. The dimensional units of fundamental quantities in the solar system [1] 

System µ L V T 

Sun-Jupiter 9.537×10−4 7.784×108 13.102 3.733×108 

Sun-(Earth+Moon) 3.036×10−6 1.496×108 29.784 3.147×107 

Earth-Moon 1.215×10−2 3.850×105 1.025 2.361×106 

Mars-Phobos 1.667×10−8 9.380×103 2.144 2.749×104 

Jupiter-Io 4.704×10−5 4.218×105 17.390 1.524×105 

Jupiter-Europa 2.528×10−5 6.711×105 13.780 3.060×105 

Jupiter-Ganymede 7.804×10−5 1.070×106 10.909 6.165×105 

Jupiter-Callisto 5.667×10−5 1.883×106 8.226 1.438×106 

Saturn-Mimas 6.723×10−8 1.856×105 14.367 8.117×104 

Saturn-Titan 2.366×10−4 1.222×106 5.588 1.374×106 

Neptune-Triton 2.089×10−4 3.548×105 4.402 5.064×105 

Pluto-Charon 1.097×10−1 1.941×104 0.222 5.503×105 

 

2.3 Equation of Motion for PCR3BP 

In PCR3BP, we assume that a spacecraft m3 freely moves around the 

gravitational field governed by two massive bodies m1 and m2. All three bodies move in 

the same plane and the two primaries are in circular orbit about their center of mass. The 

position, velocity and acceleration for the m3 can be written in the m1-m2 rotating 

reference frame [6]. 

+𝑅𝜌 = 𝑥 𝑥̂ + 𝑦𝑦̂ + 𝑧𝑧̂                                            (2.4a) 

+𝑖𝜌̇ = +𝑅𝜌̇𝑥 + (𝜔𝑅/𝑖 × 𝜌) = (𝑥̇ − 𝜃̇𝑦)𝑥̂ + (𝑦̇ + 𝜃̇𝑥)𝑦̂ + 𝑧̇𝑧̂       (2.4b) 

+𝑖𝜌̈ = +𝑅𝜌̇ + ( 𝜔𝑅/𝑖 ×+𝑅𝜌̇)=(𝑥̈ − 2𝑦̇ − 𝑥)𝑥̂ + (𝑦̈ + 2𝑥̇ − 𝑦)𝑦̂ + 𝑧̈𝑧̂     (2.4c) 
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where the position 𝜌, velocity𝜌̇ , and acceleration 𝜌̈ in the rotating frame, +𝑅, 

and inertial frame, +𝑖, respectively. Also we assume that the non-dimensional angular 

velocity 𝜔𝑅/𝑖 = 𝜃 ̇ = 1 which means the frame rotates at a fixed rate.  

Let us consider a Newtonian approach to describe the force equation for m3. The 

law of motion with total force acting in the three-body problem can be represented as: 

𝐹 𝑖 = 𝑚𝑖𝑟̈ 𝑖 = ∑
𝐺𝑚𝑖𝑚𝑗

𝑟𝑖𝑗
3
𝑟 𝑖𝑗

𝑛
𝑗=1  (𝑖 ≠ 𝑗,  𝑛 = 3)                       (2.5) 

where G is a universal gravitational constant, 6.67384e-11 m3kg-1s-2, F is the force 

acting on each body, and 𝑟̈ 𝑖 is the acceleration vector in the inertial frame [17]. The 

equation of third body motion can be written as: 

𝐹 3 = 𝑚3𝑟̈ 𝑖 =
𝐺𝑚3𝑚1

𝑟313
𝑟 31 +

𝐺𝑚3𝑚2

𝑟323
𝑟 32                          (2.6) 

In Figure 2, we can find the geometric relationships such that 𝑟 31 = −d, 𝑟 32 =

−r. By using the non-dimensional units of length and time that we defined in section 

2.2, the position vectors can be normalized. 

L = 𝑑1 + 𝑑2 = 𝑟 12                                              (2.7a) 

𝑡∗ = √
𝐿3

𝐺(𝑚1+𝑚2)
                                                  (2.7b) 

{
 
 

 
 𝑑 =

𝑟
 13

𝐿

𝑟 =  
𝑟 
23

𝐿

𝜌 =
𝑟 
3

𝐿

                                                      (2.7c) 

By multiplying (𝑡∗)2/L and eliminating 𝑚3 in the equation (2.6), it can be 

expressed as: 
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𝑑2(𝑟 3 𝐿⁄ )

𝑑(𝑡 𝑡 
∗⁄ )
2 =  

𝐺𝑚1

𝑟313
(
(𝑡∗)2

𝐿
) 𝑟 31 +

𝐺𝑚2

𝑟323
𝑟 32 (

(𝑡∗)2

𝐿
)                    (2.8) 

To the above equation, we can apply the equation (2.7c). Then, the Newton’s law 

of motion can be described as: 

𝑑2𝜌

𝑑𝜏2
=  

𝐺𝑚1(𝑡
∗)2

𝑟313
𝑑 +

𝐺𝑚2(𝑡
∗)2

𝑟323
𝑟                                       (2.9) 

 where the position vector 𝑟 3 =  𝜌  and the non-dimensional time is defined as 

𝜏 = 𝑡 𝑡 
∗⁄ . Then 𝑡 

∗ can be substituted using the equation (2.7b). The acceleration vector, 

𝜌̈ in the inertial frame can be rewritten as: 

𝑑2𝜌

𝑑𝜏2
=  −

(1−𝜇)

𝑑3
𝑑 −

𝜇

𝑟3
𝑟                                       (2.10a) 

𝑑 = (𝑥 + 𝜇)𝑥̂ + 𝑦𝑦̂ + 𝑧𝑧̂                                    (2.10b) 

𝑟 = (𝑥 − 1 + 𝜇)𝑥̂ + 𝑦𝑦̂ + 𝑧𝑧̂                                (2.10c) 

 The normalized position vectors, 𝑑 and 𝑟 can be expressed in the x-y coordinate 

of the rotating frame. By combining the results of the equation (2.4c) and (2.10a), the 

following scalar, second-order, nonlinear set of differential equations is obtained. 

𝑥̂:     (𝑥̈ − 2𝑦̇ − 𝑥) = −
(1−𝜇)

𝑑3
(𝑥 + 𝜇) −

𝜇

𝑟3
(𝑥 − 1 + 𝜇)            (2.11a) 

𝑦̂:     (𝑦̈ + 2𝑥̇ − 𝑦) = −
(1−𝜇)

𝑑3
𝑦 −

𝜇

𝑟3
𝑦                                        (2.11b) 

𝑧̂:        z̈ = −
(1−𝜇)

𝑑3
𝑧 −

𝜇

𝑟3
𝑧                                                           (2.11c) 

Let us define the pseudo-potential energy function, U as: 

U =
1

2
(𝑥̇2 + 𝑦̇2) +

1−𝜇

𝑑
+
𝜇

𝑟
                                   (2.12) 
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Then we can derive the equations of motion for m3 relative to the m1-m2 rotating 

reference frame in non-dimensional coordinates.  

𝑥̈ − 2𝑦̇ =
𝜕𝑈

𝜕𝑥
                                                    (2.13a) 

𝑦̈ + 2𝑥̇ =
𝜕𝑈

𝜕𝑦
                                                    (2.13b) 

𝑧̈ =
𝜕𝑈

𝜕𝑧
                                                        (2.13c) 

Also the above equation can be expressed in the first-order form. By considering 

the planar circular motion on x-y plane, we can obtain the simplified equation of motion 

for the PCR3BP. 

𝑥̇ = 𝑣𝑥                                                        (2.14a) 

𝑦̇ = 𝑣𝑦                                                        (2.14b) 

𝑣𝑥̇ = 2𝑣𝑦 −
𝜕𝑈̅

𝜕𝑥
+ 𝐹𝑥                                            (2.14c) 

𝑣𝑦̇ = −2𝑣𝑥 −
𝜕𝑈̅

𝜕𝑦
+ 𝐹𝑦                                           (2.14d) 

where  the effective potential 𝑈̅ = −
1

2
(𝑥2 + 𝑦2) −

1−𝜇

𝑟1
−

𝜇

𝑟2
 ; 𝑟1 =

√(𝑥 + 𝜇)2 + 𝑦2 , 𝑟2 = √(𝑥 − 1 + 𝜇)2 + 𝑦2  ; Fx, Fy = x, y components of thrust.  

 

2.4 Equilibrium Points in PCR3BP 

To find equilibrium points in the PCR3BP, we assume that both velocity and 

acceleration relative to the rotating frame are zero. Let us set the right-hand sides of 

equation (2.14) to zero, i.e. 𝑥̇ = 𝑦̇ = 𝑣𝑥̇ = 𝑣𝑦̇ = 0 and Fx = Fy = 0. Then the position of 

the equilibrium points in the PCR3BP can be determined: 1) three unstable points on the 
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x-axis, called L1, L2, and L3, form a collinear formation solution 2) two stable points, 

called L4 and L5, form an equilateral triangle solution. These five equilibrium points, 

commonly referred as the Lagrange points, are illustrated in Figure 3.  

 

 

Figure 3. Lagrange points Li, i=1,…,5 in PCR3BP  

 

 If the third body, m3, is placed at the equilibrium points with zero velocity, it 

will remain at rest in the rotating frame. Therefore these points are useful for various 

space missions as a connecting hub or observing destination. Especially, the existence of 

the periodic orbit around the L1 and L2 points is an important feature to IPSH trajectory 

design method. More details will be discussed in following section in this paper.  

To calculate the collinear equilibrium points, the critical condition for the 

effective potential function 𝑈̅ is: 

𝑑

𝑑𝑥
(𝑈̅(𝑥, 0)) = −𝑥 +

1−𝜇

(𝑥−𝜇)2
+

𝜇

(𝑥−1+𝜇)2
= 0                      (2.15) 
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Let the position x be δ + 1 − μ where the separated distance from the second 

primary, δ is negative for the L1 point and positive for the L2 point. By substituting δ +

1 − μ for x making δ the unknown, the equation (2.15) can be represented as: 

  𝐿1:              δ = − (
𝜇(1+𝛿)2+(1−𝜇)𝛿4

(1+𝛿)2+2(1−𝜇)
)

1

3
≅ −𝑟ℎ = −(

𝜇

3
)1/3                      (2.16a) 

𝐿2:              δ = (
𝜇(1+𝛿)2−(1−𝜇)𝛿4

(1+𝛿)2+2(1−𝜇)
)

1

3
≅ 𝑟ℎ = (

𝜇

3
)1/3                                (2.16b) 

Where rh, denotes the Hill radius, which is the radius of the Hill’s region in the 

PCR3BP. Equations (2.16) represent iterative sequences wherein, starting at zero, 

successive values of δ are substituted into the right-hand sides to generate the next 

iterates. These sequences are rapidly convergent. 

 

2.5 Energy State Dynamics: Jacobi Constant, Hill’s Region 

The motion of the particle, m3, is impossible when its kinetic energy is negative. 

This impenetrable area, called the forbidden zone, can be calculated by the energy 

integral of motion, E (C=-2E, C is Jacobi integral). This energy integral can exist since 

the equation of motion for the PCR3BP are Hamiltonian and time independent. The 

energy integral can be expressed as a function of the position and velocities. 

𝐸 =
1

2
(𝑥2̇ + 𝑦2̇) + 𝑈̅                                            (2.17)                  

Based on this energy level, we can divide the phase space of the PCR3BP into 

five possible cases. As seen in Figure 4, a projection of the energy surface, called the 

Hill’s region, can be plotted in the blue zone, while the forbidden realm is shown in red 

zone. The five cases are divided based on a critical energy levels Ei i=1,..,5 which 
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correspond to the energy of a particle at rest at the Lagrange point Li, i=1,…,5. For 

example, the spacecraft m3 cannot move between the m1 and m2 regions due to lower 

energy than E1. By increasing the energy level, the neck region between m1 and m2 

regions will be opened up. If the energy of spacecraft is slightly above E2 such as case 3, 

m3 can move around the realm of m1 and m2, even the exterior realm too.  

 

 

Figure 4. Five possible motions for energy state phase of the PCR3BP 
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3. DESIGN TRAJECTORY WITH GEOMETRY OF N-BODY PROBLEM 

 

3.1 Invariant Manifolds 

The investigation of invariant manifolds was developed by the French 

mathematician Henri Poincare who was dedicated to the study of abstract dynamical 

stability of systems in the late 19th century [9]. Based on his mathematical foundation, 

later researchers focused on mapping the geometry of the N-body system. A geometrical 

view for the N-body system considers the set of all possible states of the system in the 

phase space. Among the possible sets of trajectories, one can discern trajectory sets that 

trace out all the points in a connected subspace of phase space. Such a set is called an 

invariant manifold, which is a cylinder type tube structure winding around the 

equilibrium points in the N-body system. Particles can be transported through the 

invariant manifolds between large regions of the energy surface by winding around the 

periodic orbits near L1 and L2, called Lyapunov orbits. The characteristics of the 

invariant manifolds issuing from the periodic orbits is investigated in this section. 

To generate invariant manifolds, it is necessary to do numerical computation. 

First the traditional computation method is examined briefly, then an advanced but 

simple method is addressed in detail. Commonly the Differential Correction Method 

(DCM) used to generate the Lyapunov orbit and associated manifolds are accurate 

enough for space mission design. This method consists in successive approximations 

using the State Transition Matrix (STM) along with a reference trajectory [19, 20]. For 

the first period of a Lyapunov orbit, the STM is called the monodromy matrix, Φ. The 



 

16 

 

eigenvalues and eigenvectors of the monodromy matrix determine the characteristics of 

the local geometry in the system. Given the eigenvectors of the monodromy matrix, the 

initial guess of the stable manifold, 𝑋𝑠 and unstable manifold, 𝑋𝑢 can be described as: 

                                                  𝑋𝑠 = 𝑥0 + 𝑑𝑉𝑠                                                    (3.1a) 

  𝑋𝑢 = 𝑥0 + 𝑑𝑉𝑢                                                   (3.1b) 

where 𝑉𝑠 and 𝑉𝑢 denote the stable and unstable eigenvectors, respectively, of the 

monodromy matrix at point 𝑥0, and d is initial displacement. By integrating the equation 

of motion for PCR3BP with the different initial positions along the periodic orbit, the 

local approximation of the stable and unstable manifolds can be calculated. As an 

example, let us consider the Lyapunov orbit around the Earth-Moon L1 point [21]. In 

Figure 5, both unstable (red) and stable (blue) manifolds are illustrated. Both manifolds 

which are departing (unstable) and approaching (stable) to the periodic orbits are 

generated by the position components for 50 different points along the orbits.  

The Eigen-basis of the system dynamics can provide simple portraits of the 

Lyapunov orbits. By following the centerline of the invariant manifolds, the global form 

of these tubes can be simply mapped. Let us assume that the radius of the Lyapunov 

orbit approaches zero. Then the resulting one-dimensional paths imply the proper initial 

conditions to the interior and exterior realm. These trajectories are the minimum energy 

paths within the tubes. By taking a small perturbation in the direction of the eigenvector, 

the initial one-dimensional trajectory initially following the periodic orbit enclosing the 

Lagrange point evolves to form tube-like surface, as illustrated in Figure 6. Two sets of 
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initial conditions respectively with the interior and exterior directions for the stable and 

unstable manifolds are shown in Table 2. Note that 𝛼 is very small positive constant. 

 

 

Figure 5. Unstable (red, top) and stable (blue, bottom) manifolds from the periodic 

orbits around Earth-Moon L1 point 
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Figure 6. Initial one-dimensional trajectory from the periodic orbits around Earth-

Moon L1 point to unstable (red, top) and stable (blue, bottom) manifold direction 

 

Table 2. Initial conditions for unstable and stable manifolds 

            Initial Conditions 

Unstable manifold to 

the exterior realm 
(𝑥̃ 𝑦 𝑣𝑥 𝑣𝑦)𝑡=0 = 𝛼[1 −𝜎 𝜆 −𝜆𝜎] 

Unstable manifold to 

the interior realm 
(𝑥̃ 𝑦 𝑣𝑥 𝑣𝑦)𝑡=0 = 𝛼[−1 𝜎 −𝜆 𝜆𝜎] 

Stable manifold to  

the exterior realm 
(𝑥̃ 𝑦 𝑣𝑥 𝑣𝑦)𝑡=0 = 𝛼[1 𝜎 𝜆 𝜆𝜎] 

Stable manifold to 

the interior realm 
(𝑥̃ 𝑦 𝑣𝑥 𝑣𝑦)𝑡=0 = 𝛼[−1 −𝜎 −𝜆 −𝜆𝜎] 
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3.2 1-D Search Technique 

Let us define the centerline of invariant manifolds as the limiting case where the 

tube width and the extent of the boundary Lyapunov orbit approach zero. In PCR3BP, 

one can express the equation of motion for m3 in second-order differential equation 

form: 

𝑥̈ − 2𝑦̇ =
𝜕𝑈̅

𝜕𝑥
                                                    (3.2a) 

𝑦̈ + 2𝑥̇ =
𝜕𝑈̅

𝜕𝑦
                                                    (3.2b) 

where  𝑈̅ =
1

2
(𝑥2 + 𝑦2) +

1−𝜇

𝑟1
+

𝜇

𝑟2
,  𝑟1 = √(𝑥 + 𝜇)2 + 𝑦2, 𝑟2 =

√(𝑥 − 1 + 𝜇)2 + 𝑦2. 

 

3.2.1 Linearization in the Vicinity of L1 and L2 points 

To describe the geometry of invariant manifolds in three-body dynamics, we can 

simply consider the equations of motion linearized near the equilibrium points. Consider 

that 𝑥 = 𝑥𝐿 + 𝜉, where 𝑥𝐿 represents the L1 or L2 point, 𝜉 is relatively small. Then we 

can express the equation of motion for m3 in terms of 𝜉 and y: 

𝜉̈ − 2𝑦̇ =
𝜕𝑈̅

𝜕𝑥
                                                    (3.3a) 

𝑦̈ + 2𝑥̇ =
𝜕𝑈̅

𝜕𝑦
                                                    (3.3b) 

This can also be rewritten in the first-order form such that: 

𝜉̇ = 𝑣𝑥                                                       (3.4a) 

𝑦̇ = 𝑣𝑦                                                      (3.4b) 
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𝑣𝑥̇ = 2𝑣𝑦 −
𝜕𝑈̅

𝜕𝜉
(𝑥𝐿 + 𝜉, 𝑦)                                          (3.4c) 

𝑣𝑦̇ = −2𝑣𝑥 −
𝜕𝑈

𝜕𝑦
(𝑥𝐿 + 𝜉, 𝑦)                                       (3.4d) 

To linearize the above equations, the second-order partial derivative of the 

pseudo potential, U, can be calculated. Then we can expand 
𝜕𝑈̅

𝜕𝜉
, 
𝜕𝑈̅

𝜕𝑦
 about 𝜉 = 0, 𝑦 = 0.  

Therefore the linearized first-order form of the equations of motion for PCR3BP 

become: 

𝜉̇ = 𝑣𝑥                                                        (3.5a) 

𝑦̇ = 𝑣𝑦                                                        (3.5b) 

𝑣𝑥̇ = 2𝑣𝑦 + 𝑎𝑥                                                   (3.5c) 

𝑣𝑦̇ = −2𝑣𝑥 − 𝑏𝑦                                                (3.5d) 

where a = − (
𝜕2𝑈̅

𝜕𝑥2
) = 1 +

2(1−𝜇)

|𝑥𝐿+𝜇|3
+

2𝜇

|𝑥𝐿−1+𝜇|3
,    𝑏 = −(

𝜕2𝑈̅

𝜕𝑦2
) =

(1−𝜇)

|𝑥𝐿+𝜇|3
+

𝜇

|𝑥𝐿−1+𝜇|3
− 1. To simplify the equation, we can define a new term, 𝜇̅: 

𝜇̅ =
(1−𝜇)

|𝑥𝐿+𝜇|3
+

𝜇

|𝑥𝐿−1+𝜇|3
                                             (3.6) 

Then a = 1 + 2𝜇̅ , 𝑏 = 𝜇̅ − 1, x = 𝑥𝐿 + 𝑥̃, and 𝑥̃ ≪ 𝑟ℎ. The energy integral E* 

represents the energy surface that passes through the equilibrium points.  

𝐸∗ =
1

2
(𝑣𝑦

2 + 𝑣𝑦
2 − 𝑎𝑥2 + 𝑏𝑦2)                                    (3.7) 

 

3.2.2 Geometry of Solutions with the Eigen State Analysis 

The linearized equation of motion around the L1 or L2 points, the equation (3.5), 

can be represented in matrix form: 
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𝑑

𝑑𝑡
(

𝑥̃
𝑦
𝑣𝑥
𝑣𝑦

) = [

0 0 1 0
0 0 0 1
𝑎
0

0
−𝑏

0 2
−2 0

](

𝑥̃
𝑦
𝑣𝑥
𝑣𝑦

)                                  (3.8) 

By adopting the Eigenvectors as the new coordinate system, we can better 

understand the geometry of the phase space. The Eigen state can be calculated 

straightforwardly from the above matrix forms, 𝑋̇ = 𝐴𝑋. 

When setting det (𝐴 − 𝜆𝐼) = 0, the characteristic equation is found to be: 

𝜆4 + 𝜆2(2 − 𝜇̅) + (1 + 𝜇̅ − 2𝜇̅2) = 0                                (3.9) 

Then the eigenvalue of the linearized equations are of the form ±𝜆 and ±𝑖𝜐. 

𝜆1,2 = ± [
𝜇̅−2+√9𝜇̅2−8𝜇̅

2
]
1/2

= ±𝜆                              (3.10a) 

𝜆3,4 = ±𝑖 [
2−𝜇̅−√9𝜇̅2−8𝜇̅

2
]
1/2

= ±𝑖𝜐                            (3.10b) 

The eigenvectors, 𝜐 = (𝑢1, 𝑢2, 𝑤1, 𝑤2) can be calculated from the relations with 

the eigenvalues: 𝐴𝜐 = 𝜆𝜐. The corresponding eigenvectors can be expressed in matrix 

form: 

[𝑢1    𝑢2 𝑤1 𝑤2] = [

1 1 1 1
−𝜎 𝜎 −𝑖𝜏 𝑖𝜏
𝜆
−𝜆𝜎

−𝜆
−𝜆𝜎

𝑖𝜐 −𝑖𝜐
𝜐𝜏 𝜐𝜏

]                        (3.11) 

where σ =
2𝜆

𝜆2+𝑏
> 0 ,     𝜏 = − (

𝜐2+𝑎

2𝜐
) < 0. Then the linearized equation of 

motion near the libration points can be expressed in the new coordinate system 

(𝜉, 𝜂, 𝜁1, 𝜁2):  
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(

𝑥̃
𝑦
𝑣𝑥
𝑣𝑦

) = [

1 1 1 1
−𝜎 𝜎 −𝑖𝜏 𝑖𝜏
𝜆
−𝜆𝜎

−𝜆
−𝜆𝜎

𝑖𝜐 −𝑖𝜐
𝜐𝜏 𝜐𝜏

](

𝜉
𝜂
𝜁1
𝜁2

)                              (3.12) 

In these Eigen state coordinates, the differential equation can simply described in 

new coordinate system (𝜉, 𝜂, 𝜁1, 𝜁2): 

𝜉̇ = 𝜆𝜉                                                      (3.13a) 

𝜂̇ = −𝜆𝜂                                                   (3.13 b) 

𝜁1̇ = 𝜐𝜁2                                                   (3.13 c) 

𝜁2̇ = −𝜐𝜁1                                                   (3.13d) 

E = λξη +
υ

2
(𝜁1

2 + 𝜁2
2)                                        (3.14) 

The solution can be conveniently written as: 

𝜉(𝑡) =  𝜉0𝑒
𝜆𝑡

𝜂(𝑡) = 𝜂0𝑒
−𝜆𝑡

𝜁1(𝑡) = 𝜁10𝑐𝑜𝑠𝜐𝑡 + 𝜁20𝑠𝑖𝑛𝜐𝑡

𝜁2(𝑡) = 𝜁20𝑐𝑜𝑠𝜐𝑡 − 𝜁10𝑠𝑖𝑛𝜐𝑡

                                   (3.15) 

 

3.2.3 Centerline of Invariant Manifolds 

The unstable manifolds winding around the Lyapunov orbits in L1 or L2 points 

would be in the form: 

(

𝜉
𝑦
𝑣𝑥
𝑣𝑦

) = 𝛼𝑒𝜆𝑡 (

1
−𝜎
𝜆
−𝜆𝜎

) + 2𝑅𝑒 [𝛽𝑒𝑖𝜈𝑡 (

1
−𝑖𝜏
𝑖𝜈
𝜈𝜏

)]                        (3.16) 

Note that |𝛽| determines the radius of the manifold tube. By letting the radius 

approach zero, |𝛽| → 0, the exact solution for the initial conditions can be obtained. The 



 

23 

 

resulting one-dimensional path, called the centerline of the tube, implies the proper 

initial conditions needed for entry into the interior or exterior realm. These trajectories 

are the minimum energy paths within the tubes. The trajectory can be described in the 

linearized approximation: 

(

𝜉
𝑦
𝑣𝑥
𝑣𝑦

) = 𝛼𝑒𝜆𝑡 (

1
−𝜎
𝜆
−𝜆𝜎

) + 𝐻.𝑂. 𝑇.      (𝛼 > 0)                      (3.17) 

With these initial conditions, we can use the full nonlinear equation of motion to 

determine a centerline of the invariant manifolds. The equation of motion can be applied 

to calculate the centerline of tube as the solution for the second-order differential 

equations. Let us define new independent variable, 𝑠 ≡ 𝑒𝜆𝑡. This can be easily expressed 

as: 

𝑑

𝑑𝑡
=

𝑑𝑠

𝑑𝑡

𝑑

𝑑𝑠
=

𝑑

𝑑𝑡
[𝑒𝜆𝑡]

𝑑

𝑑𝑠
= 𝜆𝑠

𝑑

𝑑𝑠
                                  (3.18)  

Then the equations of motion can be expressed in (𝜉, 𝑦, 𝑣𝑥, 𝑣𝑦) coordinates with 

the new variable, s, as: 

𝑑𝜉

𝑑𝑠
=

1

𝜆𝑠
𝑣𝑥                                                       (3.19a) 

𝑑𝑦

𝑑𝑠
=

1

𝜆𝑠
𝑣𝑦                                                      (3.19b) 

𝑑𝑣𝑥

𝑑𝑠
=

2

𝜆𝑠
𝑣𝑦 −

1

𝜆𝑠

𝜕𝑈̅

𝜕𝜉
(𝑥𝐿 + 𝜉, 𝑦)                                          (3.19c) 

𝑑𝑣𝑦

𝑑𝑠
= −

2

𝜆𝑠
𝑣𝑥 −

1

𝜆𝑠

𝜕𝑈̅

𝜕𝑦
(𝑥𝐿 + 𝜉, 𝑦)                                       (3.19d) 

Note that the initial condition can be obtained at s = 1.    
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       (

𝜉
𝑦
𝑣𝑥
𝑣𝑦

) = 𝛼(

1
−𝜎
𝜆
−𝜆𝜎

)                                           (3.20) 

The above equations demonstrate the existence of the centerline in the invariant 

manifolds. To set up the initial condition summarized in Table 2, the centerlines of 

unstable and stable manifolds for both exterior and interior realms can be calculated.  

 

3.2.4 Symmetries of Homoclinic and Heteroclinic Orbits 

 One of the important characteristics of invariant manifolds is the existence of the 

trajectories, called the homoclinic orbits, which are symmetric about the x-axis. The 

homoclinic orbits in both the interior and exterior realms was investigated by Conley 

(1968) and McGehee (1969) [16, 22]. Homoclinic orbits start from and return to the 

same Lagrange point, while Heteroclinic orbits connect two different Lagrange points. 

Through the heteroclinic orbits, which are linked with the invariant manifolds of the L1 

and L2 Lyapunov orbits in the neck region, the homoclinic orbits in interior and exterior 

realms can be connected to each other. To examine the symmetry of the homoclinic 

orbits, let us bring back the equations of motion in the first-order form.  

𝑥̇ = 𝑣𝑥                                                        (3.21a) 

𝑦̇ = 𝑣𝑦                                                        (3.21b) 

𝑣𝑥̇ = 2𝑣𝑦 + 𝑥 −
2(1−𝜇)(𝑥+𝜇)

𝑟13
+
2𝜇(𝑥−1+𝜇)

𝑟23
                             (3.21c) 

𝑣𝑦̇ = −2𝑣𝑥 + 𝑦 −
(1−𝜇)

𝑟13
−

𝜇

𝑟23
                                      (3.21d) 

where  𝑟1 = √(𝑥 + 𝜇)2 + 𝑦2 and 𝑟2 = √(𝑥 − 1 + 𝜇)2 + 𝑦2. 



 

25 

 

To validate the symmetry on the x-axis, we can transform the variables: ỹ = −y 

and t̂ = −t. Then the equation of motion can be represented as: 

𝑑𝑥

𝑑𝑡̃
= −𝑣𝑥                                                     (3.22a) 

𝑑𝑦̃

𝑑𝑡̃
= 𝑣𝑦                                                        (3.22b) 

𝑑𝑣𝑥

𝑑𝑡̃
= −(2𝑣𝑦 + 𝑥 −

2(1−𝜇)(𝑥+𝜇)

𝑟13
+
2𝜇(𝑥−1+𝜇)

𝑟23
)                      (3.22c) 

𝑑𝑣𝑦

𝑑𝑡̃
= −(−2𝑣𝑥 − 𝑦̃ +

(1−𝜇)

𝑟13
𝑦̃ +

𝜇

𝑟23
𝑦̃)                            (3.22d) 

where  𝑟1 = √(𝑥 + 𝜇)2 + 𝑦̃2 and 𝑟2 = √(𝑥 − 1 + 𝜇)2 + 𝑦̃2. When we assume 

that 𝑣̃𝑥 = −𝑣𝑥, the equations (3.22) match exactly with the equations (3.21). Hence, the 

equations (3.22) with initial conditions, (𝑥0, −𝑦0, −𝑣𝑥0, 𝑣𝑦0), are a mirror image of the 

trajectory which is generated by the equations (3.21) with initial conditions, 

(𝑥0, 𝑦0, 𝑣𝑥0, 𝑣𝑦0).  Expressed in the x-y plane, this homoclinic orbit shows the symmetry 

about the x-axis. In a similar manner, the heteroclinic orbits associated with the L1 and 

L2 Lyapunov orbits are approximately symmetric about the y-axis with small μ.  

By combining the symmetric homoclinic and heteroclinic orbits, the interior and 

exterior realms of the PCR3BP can be connected. Therefore, using the centerline of the 

invariant manifolds and their symmetries, a sequence of one-dimensional searches 

allows us to design the trajectory around the Lagrange points. 
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3.3 Preliminary Design for NEA Rendezvous Mission 

As one of the 1-D search technique applications, Near-Earth Asteroids (NEAs) 

rendezvous mission design is considered. Since NEAs continually pose a threat to the 

safety of Earth, NEAs exploration and mitigation are crucial tasks for defending our 

planet. There is also a huge possibility of extracting valuable materials from asteroids. 

They have many valuable resources that can be brought back to Earth or used in space 

for spacecraft propulsion systems or space habitations. To find fuel-optimized 

trajectories to NEAs, the IPSH method is fully exploited to transfer from the Earth-

Moon system to the Sun-Earth system.  As in Figure 7, the overall mission trajectory is 

divided into four phases: Phase 1) LEO orbit to the Lyapunov orbit around Earth-Moon 

L1 point; Phase 2) Earth-Moon L1 Lyapunov orbit to Earth-Moon L2 point; Phase 3) 

Earth-Moon L2 point to Sun-Earth L2 point; and Phase 4) Sun-Earth L2 point to NEA. 

 

 

Figure 7. Asteroid rendezvous mission trajectory 
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Computationally, it is more convenient to generate the symmetric heteroclinic 

orbit between Lyapunov orbit in Earth-Moon L1 point and Earth-Moon L2 point in the 

neck region. Therefore we started in the neck region of the Earth-Moon system to 

generate the trajectory of phase 2 first by integrating the equations in reverse time and 

starting from the Earth-Moon L2 point stable manifold. A 1 metric ton (1MT) spacecraft 

using ion engines with the specific impulse, Isp = 3000 s, can take the centerline of 

unstable manifolds to the interior realm at the Earth-Moon L2 point using negligible 

thrust. Note that the appropriate initial perturbations for the unstable manifolds to the 

interior realm are used from Table 2. Then, as seen in Figure 8, the S/C encircles the 

Moon twice and then reaches to the Earth-Moon L1 point in 43.7 days. To obtain the 

outward bound trajectory, we simply start at the Earth-Moon L1 Lyapunov orbit and 

integrate in forward time. 

 

 

Figure 8. Phase 2 from Earth-Moon L1 periodic orbit to Earth-Moon L2 point 
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When the S/C reaches the Lyapunov orbit of the Earth-Moon L1 point, the 

trajectory to Earth (LEO/GEO) can be generated in reverse time. The Earth-Moon L1 

point has been chosen as a connecting place for phase 1 because it results in the 

maximum number of opportunities to take on supplies, exchange crew or deal with 

emergencies. With the initial conditions for stable manifolds to the interior realm at the 

Earth-Moon L1 periodic orbit, the S/C slowly spirals back into the Earth. As seen in 

Figure 9, a small amount (0.24 N) of kick-start thrust is necessary for 4.2 months, 

consuming 96 kg of fuel. The total trip time is 156 days (5.2 months), which is longer 

than the traditional transfer methods like Hohmann Transfer, but the total ∆V is 

significantly reduced to 2.698 km/s. Through the Lyapunov orbit in Earth-Moon L1 

point, which is the crucial link between phase 1 and phase 2, the S/C can travel from the 

interior realm to the exterior realm of the Earth-Moon system. 

 

 

Figure 9. Phase 1 from LEO to Earth-Moon L1 periodic orbit 
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3.3.1 4-Body Dynamics for Coupled Two 3-Body Systems 

Now we can proceed to investigate the trajectory of phase 3, which is to connect 

from the Earth-Moon L2 point to the Sun-Earth L2 point. To consider the transfer 

trajectory from the Earth-Moon system to the Sun-Earth system, the four-body dynamics 

are implemented as two coupled three-body problems [1]. The four bodies, Sun-Earth-

Moon-S/C, can be split in two perturbed three-body problems as Sun-Earth-Spacecraft 

(CCM) perturbed by the Moon and Earth-Moon-Spacecraft (BCM) perturbed by the 

Sun. The geometry of the four-body problem [1] is illustrated in Figure 10. The 

equations of motion for this four-body problem can be described as: 

𝑥̇ = 𝑢                                                       (3.23a) 

𝑦̇ = 𝑣                                                       (3.23b) 

𝑢̇ = 𝑥 + 2𝑣 − 𝐶𝐸(𝑥 + 𝜇𝑀) − 𝐶𝐸(𝑥 − 𝜇𝐸) − 𝐶𝑠(𝑥 − 𝑥𝑆) − 𝛼𝑆𝑥𝑆         (3.23c) 

𝑣̇ = 𝑦 − 2𝑢 − 𝐶𝐸𝑦 − 𝐶𝑀𝑦 − 𝐶𝑠(𝑦 − 𝑦𝑆) − 𝛼𝑆𝑦𝑆                        (3.23d) 

where  𝐶𝑖 =
𝜇𝑖

𝑟𝑖
3   𝑓𝑜𝑟 𝑖 = 𝐸,𝑀, 𝑆 ,   𝛼𝑆 =

𝑚𝑆

𝛼𝑆3
 . 

 In Figure 11, the thrust-free trajectory obtained via a one-dimensional search of 

the correct phasing of the Earth-Moon L2 departure is shown in the Earth-Moon rotating 

frame (left) and the Sun-Earth rotating frame (right). For 39.4 days, the S/C travels the 

immense distance from unstable manifolds to the exterior realm without fuel 

expenditure.  
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Figure 10. Geometry of the four-body problem (Sun-Earth-Moon-Spacecraft) 

 

 

Figure 11. Phase 3 from Earth-Moon L2 point to Sun-Earth L2 point in Earth-

Moon rotating frame (left) and in Sun-Earth rotating frame (right) 
 

Phase 4 is the trajectory, called the Grand Tour [23, 24], from the Sun-Earth L2 

point via Near-Earth Asteroids which visit both regions that are ~0.15 AU below and 

above the Earth’s orbit, and then back to the original point. During the segment of the 
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trajectory indicated by the red line in Figure 12, the S/C departs from Sun-Earth L2 point 

through the unstable manifold to the exterior realm direction by executing a small thrust, 

0.264N for 138 days. The small increment of the thrust changes the energy state of the 

system so that the neck region of the forbidden zone opens outward as you can see in 

Figure 13. Therefore the S/C can enter the internal region of the Sun-Earth system. By 

passing through the interior realm, the S/C coasts along the blue line in Figure 12. When 

it approached to the wall of forbidden zone, the S/C can be pushed in the opposite 

direction with a second small thrust, 0.264N for another 138 days. Finally, it can travel 

the unpowered return trajectory in the exterior realm (sky-blue line) and back to the Sun-

Earth L2 point. During this 9.2 months grand tour to reach NEAs, the total ∆V is 5.708 

km/s which consumes 214.06 kg of fuel mass. The summary of total trip time and ∆V is 

shown in Table 3.  

 

 

Figure 12. Asteroid rendezvous mission trajectory: phase 4 grand tour  
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Figure 13. Transformation of forbidden zone around neck region by increasing 

energy state 

 

Table 3. Summary of cost for NEAs rendezvous mission 

 
 

TOF [days] 
 

∆𝐕 [𝐤𝐦/𝐬] 

   Phase 1: LEO to Earth-Moon L1 156 2.698 

   Phase 2: Earth-Moon L1 to L2 43.7 0 

   Phase 3: Earth-Moon L2 to Sun-Earth L2 39.4 0 

   Phase 4: Grand Tour 604.5 5.708 

Total 843.6 (=2.3 yrs) 8.406 
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4. DESIGN TRAJECTORY FROM EARTH TO MARS 

 

By using the low-energy trajectory method, ISPH, a novel design of a solar sail 

mission for Mars exploration can be developed. Invariant manifolds, which are winding 

around the Lagrangian points, can be helpful to transfer a spacecraft with almost no fuel 

consumption. This energy efficient method makes Mars exploration mission more 

attainable. Moreover, the topology of invariant manifolds can be transformed by 

deploying solar sails. Solar sails provide a propulsive power using solar radiation 

pressure.  Assuming the sail is isotropic, that is, it produces a radiation force equivalent 

to a spherical reflector, and the effect of the solar sail on the system dynamics is to 

modify the gravitational constant of the Sun, while the centrifugal force in the rotating 

frame remains the same. Therefore, the Sun-Mars L1 and L2 Lagrangian points will be 

shifted toward the Sun and the geometry of the invariant manifolds around L1 and L2 

points will be changed. By taking advantage of these features, a low-thrust trajectory for 

Mars exploration is developed.  

The PCR3BP will be considered since Earth and Mars are nearly co-planar 

planets. The first stage is the trajectory from Earth to Sun-Earth L2 point. When the 

spacecraft reaches Sun-Earth L2 point, the solar sail can be launched with a slight nudge 

into the invariant manifold leading to the exterior realm. At this second stage, the 

spacecraft leaves the neck regions and obtains an extra acceleration from the solar 

radiation pressure force. Meantime the centrifugal force, Fc has to be conserved for the 

three bodies. Let define a factor, 𝑓 = (𝐹𝑚1)𝑓𝑖𝑛𝑎𝑙 (𝐹𝑚1)𝑖𝑛𝑖𝑡𝑖𝑎𝑙⁄ , where Fm1 is the Sun’s 
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gravitational force and f = 1 means no solar sail effect as an initial state. When f becomes 

close to zero, Sun’s gravitational force will be cancelled by increasing the solar radiation 

pressure force, FSRP. The acceleration depends on the reflectivity of the solar sail 

material and also its size. Assume that the solar sail is large enough to cancel Sun’s 

gravitational force by solar pressure here. Then the Sun-Mars Lagrangian points move 

toward the Sun as f becomes smaller. Also the configuration of invariant manifolds for 

Sun-Mars system will be changed along with the Lagrangian points. Here we can get an 

advantage by reducing the distances of the L1 and L2 points from the Sun. It means that 

the positions of the Sun-Mars L1 and L2 points can be closer to the spacecraft, which is 

near Sun-Earth L2 point. At the last stage, the spacecraft can transfer to the approached 

Sun-Mars L1 point with a small thrust.  

 

4.1 Investigation for Omni-directional Solar Sail Power 

Consider a spacecraft moving around under the massive m1 and m2 gravitational 

fields. Assume that the three bodies are in the same plane and that m1 and m2 are around 

in a circular orbit about their center of mass. The equations of motion for the three-body 

problem can be described as: 

𝑚1𝑥1̈ =
−𝐺𝑚1𝑚2

|𝑥1−𝑥2|3
(𝑥1 − 𝑥2)                                      (4.1a) 

𝑚2𝑥2̈ =
𝐺𝑚1𝑚2

|𝑥1−𝑥2|3
(𝑥1 − 𝑥2)                                      (4.1b) 

𝑚𝑥̈ = 𝑓
𝐺𝑚1𝑚

|𝑥−𝑥2|3
(𝑥1 − 𝑥) +

𝐺𝑚2𝑚

|𝑥−𝑥2|3
(𝑥2 − 𝑥) + 𝐹                  (4.1c)        
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where the solar sail factor is 𝑓 = (𝐹𝑚1)𝑓𝑖𝑛𝑎𝑙 (𝐹𝑚1)𝑖𝑛𝑖𝑡𝑖𝑎𝑙⁄ , which will affect the 

equations of motion only for m1,  Fm1 is the Sun’s gravity force, and F is an additional 

thrust. Alternatively the equations of motion can be written as: 

𝑥̈ − 2𝑦̇ = −
𝜕𝑈̅

𝜕𝑥
                                                  (4.2a) 

    𝑦̈ + 2𝑥̇ = −
𝜕𝑈̅

𝜕𝑦
                                                  (4.2b)                                   

where the effective potential 𝑈̅ = −
1

2
(𝑥2 + 𝑦2) − 𝑓

1−𝜇

𝑟1
−

𝜇

𝑟2
; 𝑟1 =

√(𝑥 + 𝜇)2 + 𝑦2;  𝑟2 = √(𝑥 − 1 + 𝜇)2 + 𝑦2. For the advanced approach to describe the 

motion of this Sun-Mars system, the four body dynamics of Sun, Earth, Mars, and 

spacecraft can be considered later. To calculate L1 and L2 positions, the equilibrium 

points need to be solved. The PCR3BP allows five equilibrium point solutions, which 

are including the collinear equilibria on the x-axis (y=0) L1, and L2.  

For L1 and 𝑥 < (1 − 𝜇):                                     𝑓
(1−𝜇)

(𝑥+𝜇)2
−

𝜇

(𝑥−1+𝜇)2
− 𝑥 = 0                (4.3a) 

For L2 and 𝑥 > (1 − 𝜇), (𝑥 − 1 + 𝜇) > 0:   𝑓
(1−𝜇)

(𝑥+𝜇)2
+

𝜇

(𝑥−1+𝜇)2
− 𝑥 = 0                 (4.3b)                      

By using 𝑥 = 𝛿 + 1 − 𝜇, the equations can be expressed in 𝛿. Equation (4.3) 

defines recursive sequences obtained by successive substitution of 𝛿 into the right hand 

side. The infinite sequences are convergent. 

L1: 𝛿 = −(
𝜇(1+𝛿)2+(1−𝜇)𝛿2(1−𝑓+𝛿2)

(1+𝛿)2+2(1−𝜇)
)
1/3

                             (4.4a) 

L2:   𝛿 = √
(𝜇−𝛿3)

(1−𝜇)
+ 𝑓

𝛿2

(1+𝛿)2
                                           (4.4b)                      
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As seen in Figure 14, both the distances of Sun-Mars L1 and L2 points from the 

Sun decrease from their initial state by reducing the solar sail factor f. It means that the 

Sun-Mars L1 and L2 points can shift toward the Sun. The factor f can be changed by the 

solar sail effect, dragging the Sun-Mars L1 point near the spacecraft that is around the 

Sun-Earth L2 point. It is like docking the spacecraft over the Sun-Mars L1 point. The 

configuration of the invariant manifolds around the Sun-Mars L1 and L2 points will be 

transformed, since it is formed with Lyapunov orbit around the L1 and L2 points. 

Therefore, the Sun-Mars L1 point can meet the Sun-Earth L2 point around f = 0.291. The 

forbidden zone, which is inaccessible for a given energy, and its neck region are shown 

in Figure 15.  

 

 

Figure 14. Sun-Mars L1 and L2 points change by reducing f 
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Figure 15. Sun-Mars L1 and L2 points shifting toward to Sun by reducing f 

 

The change of the invariant manifold structure in the four-body system by 

reducing f will be studied in a geometrical view. This framework of tube dynamics leads 

us to find intersected regions between Sun-Earth manifolds systems and the Sun-Mars 

system. Based on the previous research done by German and Frabcesco [25-27], two 

circular restricted three-body systems with similar mass parameters cannot approach one 

another even in developing the manifolds for a long integration time. Therefore various 

researchers designed the transfer trajectory from one system to another combining with 

the traditional differential correction method, or shooting method. However, the system-

to-system trajectory design directly through manifolds can possibly be done by this 

research with solar sail effect. We will explore the limited case of 4-body problem and 

design advanced transfer trajectories with significantly reduced ∆𝑉 compared with 

previous work.  
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4.2 Limited Case of 4-Body Problem 

Consider a simple case of a 4 body problem with Sun-Earth-Mars-S/C system. It 

can be divided into two 3-body models with specific assumptions. First, the two 

components of the models are the planar circular restricted 3-body problems with Sun-

Earth-S/C systems and Sun-Mars-S/C systems. Second, the Sun is at the origin of the 4-

body problem. In this case, the circular orbits of the Earth and Mars are described 

proportionally with their semi-major axes and orbital periods. These assumptions have a 

limit of mathematical precision with errors of the order of  since  has different values 

for each case of Earth and Mars. However, the difference is small enough (less than 

3x10-6) to be ignored. Simply using these assumptions to the limited case of 4-body 

model, a basic tractable formulation can be developed. This can be a guideline of 4-body 

dynamics to enhance understanding of the mathematical and geometrical framework to 

describe the modification of the structure for the 4-body system due to the effects of the 

solar sail. The results show that system-to-system transfer trajectories can be designed 

by changing the configuration of the invariant manifolds. 

4.2.1 Equations of Motion for the Limited Case of 4 Body Problem 

Assume the Sun is at the origin when the Earth and Mars are on their circular 

orbits. To describe this limited 4-body problem in the Sun-Earth rotating frame, let us 

define the dimensionless quantities for position x, time t, mass parameter . 

  𝑥 =
𝑥̃

|𝑟𝐸̃|
(4.5) 

where 𝑥̃ is the position vector of S/C and  𝑟𝐸̃ is the position vectors of Earth. 
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  𝑡 = 𝑡̃Ω                                                      (4.6) 

where 𝑡̃ is time and Ω is angular velocity of Sun-Earth rotating frame, Ω = √
𝑚𝑠𝐺

|𝑟𝐸|3
 

  𝜇𝐸 =
𝑚𝐸

𝑚𝑆
,     𝜇𝑀 =

𝑚𝑀

𝑚𝑆
                                          (4.7) 

Where mS, mE, mM are the mass of the Sun, Earth and Mars respectively. Note 

that 𝜇𝐸 and 𝜇𝑀 are the mass parameters for the Sun-Earth system and the Sun-Mars 

system. Since the distance between the Sun and the Earth is set to unity, the relative 

position and angular velocity of Mars can be calculated in the Sun-Earth rotating frame. 

  𝑟 =
|𝑟𝑀̃|

|𝑟𝐸̃|
= 1.5235                                              (4.8) 

𝜔𝑀 = 1 −
𝑇𝑀

𝑇𝐸
= 0.5317                                          (4.9) 

where 𝑟𝑀̃ is the position vectors of Mars, 𝜔𝑀 is angular velocity of Mars, 𝑇𝐸 and 

𝑇𝑀 are the orbital periods of the Earth and Mars, respectively. With these dimensionless 

components, the equations of motion of the limited 4-body problem can be expressed in 

x-y plane. 

𝑥̈ = 2𝑦̇ + 𝑥 − 𝑓
𝑥

𝑅3
+ 𝜇𝐸

(1−𝑥)

𝑅𝐸
3 + 𝜇𝑀

(𝑟𝑥−𝑥)

𝑅𝑀
3 + 𝐹𝑥                (4.10a) 

𝑦̈ = −2𝑥̇ + 𝑦 − 𝑓
𝑦

𝑅3
+ 𝜇𝐸

𝑦

𝑅𝐸
3 + 𝜇𝑀

(𝑟𝑦−𝑦)

𝑅𝑀
3 + 𝐹𝑦                (4.10b) 

where R, RE, RM are the distances between the Sun and S/C, Earth, and Mars, 

respectively: R = √𝑥2 + 𝑦2, 𝑅𝐸 = √(1 − 𝑥)2 + 𝑦2, 𝑅𝑀 = √(𝑟𝑥 − 𝑥)2 + (𝑟𝑦−𝑦)2. The 

position of Mars can be described in terms of rx and ry: 𝑟𝑥 = 𝑟𝑐𝑜𝑠(−𝜔𝑀𝑡 + 𝜑0), ∶  𝑟𝑦 =

𝑟𝑠𝑖𝑛(−𝜔𝑀𝑡 + 𝜑0) with 𝜑0 is the initial phase angle of Mars. The factor by which the 

solar sail decreases the solar gravitational parameter is denoted by f. The external force 
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divided by the S/C mass is expressed in two components, Fx and Fy. In Figure 16, the 

geometry of 4-body systems is shown. 

 

 
Figure 16. Geometry of the limited 4-body problem 

 

Let us investigate the existence of the force-free Lagrange points, 𝑥𝐸
∗, 𝑥𝑀

∗ in the 

limited 4-body problem. For the Sun-Earth system, the Sun-Earth Lagrange points can 

be calculated when 𝜇𝑀 = 0. 

 𝑥𝐸
∗ = 1 + 𝛿                                              (4.11a) 

For L1:                              𝛿 ←  − (
1

3
[𝜇𝐸(1 + 𝛿)

2 + 3𝛿4 + 𝛿5 + 𝛿2])
3

                (4.11b) 

For L2:                              𝛿 ←  √𝜇𝐸 + 𝑓
𝛿2

(1+𝛿)2
− 𝛿3                                             (4.11c) 

To get the distance from the origin of the Sun-Mars Lagrange points, solve δ 

after replacing 𝜇𝐸 by 𝜇𝑀 in the equation (4.11). 
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𝑥𝑀
∗ = 𝑟(1 + 𝛿)                                              (4.12a) 

For L1:                              𝛿 ←  − (
1

3
[𝜇𝑀(1 + 𝛿)

2 + 3𝛿4 + 𝛿5 + 𝛿2])
3

                (4.12b) 

For L2:                              𝛿 ←  √𝜇𝑀 + 𝑓
𝛿2

(1+𝛿)2
− 𝛿3                                             (4.12c) 

 Note that the x-y position of the Sun-Mars L1 and L2 points can be expressed in 

the Sun-Earth rotating frame. 

(𝑥𝑀
∗)𝑆𝐸 = 𝑥𝑀

∗cos (−𝜔𝑀𝑡 + 𝜑0)                              (4.13a) 

(𝑦𝑀
∗)𝑆𝐸 = 𝑦𝑀

∗sin (−𝜔𝑀𝑡 + 𝜑0)                              (4.13a) 

For the example trajectory, we can assume that the initial phase angle of Mars is 

𝜑0 = 4.4139 = 252.9°. The mission scenario is: First, the solar sail is deployed at the 

Sun-Earth L2 point and embarks onto the unstable manifolds to the exterior realm. 

Second, the value of the solar sail factor, f is decreased in proportion to the mission time 

starting from f = 1 to 0.83. By applying those conditions to the equation of motion 

(4.10), the trajectory from the Sun-Earth L2 point to the vicinity of the Sun-Mars L1 

point can be obtained. The trajectories in the Sun-Earth and Sun-Mars rotating frame are 

shown in Figures 17 and 18. As the factor f is changed, both the Sun-Earth and Sun-

Mars Lagrange points are shifted toward to the Sun. Since the factor f is decreased 

discretely in three steps from 1 to 0.83, discontinuous points in the motions of Sun-Earth 

L1 and L2 points can be found in Figure 18.  Interestingly, there is a bounce back motion 

of S/C trajectory in the vicinity of the Sun-Mars L1 point. In Figure 19, the Sun-Mars L1 

point is moved toward to the Sun while the factor f is decreased. Then the S/C penetrates 

a little beyond the Sun-Mars L1 point but turns back to the interior realm of the Sun-
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Mars system again. It is necessary to investigate the energy state and the eigen state 

analysis of this resulting motion with the factor f. 

 

 

Figure 17. S/C trajectory from the Sun-Earth L2 point to the vicinity of the Sun-

Mars L1 point in the Sun-Earth rotating frame 

 

 

Figure 18. S/C trajectory from the Sun-Earth L2 point to the vicinity of the Sun-

Mars L1 point in the Sun-Mars rotating frame 
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Figure 19. Close up of the trajectory near the Sun-Mars L1 point in the Sun-Mars 

rotating frame 

 

4.2.2 Energy State and Eigen State for the Limited Case of 4-Body Problem  

 To understand the bounce back motion with decreasing f, let us explore the 

geometry of the system near the neck region. The energy integral for the Sun-Earth-S/C 

system in the Sun-Earth rotating frame can be expressed in: 

𝐸𝑆𝐸 =
1

2
(𝜈𝑥

2 + 𝜈𝑦
2) −

1

2
(𝑥2 + 𝑦2) −

𝑓

𝑅
−
𝜇𝐸

𝑅𝐸
                            (4.14) 

 The spacecraft can move around the interior and exterior realms through the neck 

region near the L1 and L2 points when the energy level of the system is between E2 and 

E3. It is this case 3 (𝐸2 ≤ 𝐸 ≤ 𝐸3) which is one of the typical energy regimes of the 

PCR3BP (See Figure 4). Let us take the value of ESE = -1.50045 while the factor f is 1. 

This value of the energy is just enough to open the neck regions slightly as seen in 
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Figure 20. However if we put f = 0.83 and use ESE = -1.32482 to maintain the neck 

region open, the forbidden zone is entirely shifted to the left side of the Earth in Figure 

21. It means that the energy state of the system can be affected by changing the value of 

the factor f.  

 

 

Figure 20. Forbidden zone for the Sun-Earth-S/C system in the Sun-Earth rotating 

frame when f = 1 and ESE = -1.50045 

 

 

Figure 21. Forbidden zone for the Sun-Earth-S/C system in the Sun-Earth rotating 

frame when f = 0.83 and ESE = -1.32482 
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 To investigate the relationship between the energy integral and the solar sail 

factor f, we can fix one parameter and change the other one. In Figure 22, the factor f is 

decreased from 1 to 0.9991 while the value of energy is set to ESE = -1.50045. The neck 

region with two throats is closed so that the S/C cannot move from the interior to the 

exterior realm. Also the thickness of the forbidden zone is increased when the factor f is 

decreased. It means that the required energy limit to maintain the neck region open in the 

energy state phase is increased by reducing the solar sail factor f. In Figure 23, the 

energy ESE is increased from -1.50045 to -1.50001 while the factor f is kept at1. Then the 

forbidden zone becomes thinner and is shifted to the left slightly while the neck region 

opens widely upwards. The two throats of the neck region are reduced to one throat at 

ESE = -1.50001 and then entirely disappear when ESE is larger than -1.3. Therefore 1) the 

critical limits of the energy level to open the neck region are increased while the factor f 

is decreased and 2) the entire forbidden zone is shifted slightly toward the Sun’s 

direction while ESE is increased. In Figure 24, the forbidden zone can keep a neck region 

open by increasing the energy ESE over the critical limits while the solar sail factor f is 

decreasing. 
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Figure 22. Forbidden zones when f is decreasing with fixed energy ESE = -1.50045 (f 

= 1 (left), f = 0.9999 (middle), f  = 0.9991 (right)) 

 

 

Figure 23. Forbidden zones when ESE is increasing with fixed f = 1 (ESE = -1.50045 

(left), ESE = -1.50023 (middle), ESE = -1.50001 (right)) 

 

 

Figure 24. Forbidden zones with different f and energy ESE (f = 1, ESE = -1.5001 

(left), f = 0.9, ESE = -1.3933 (middle), f = 0.82, ESE = -1.31(right)) 
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To further investigate the bounce back motion with decreasing f, we can examine 

the eigen states of the limited case of 4-body system. Assume linearization near the Sun-

Mars L1 and L2 points. Then the equation of motion can be simplified by following the 

steps of eigen-analysis previously discussed in section 3.2 (see equation 3.8). 

𝑑

𝑑𝑡
(

𝑥̃
𝑦
𝑣𝑥
𝑣𝑦

) = [

0 0 1 0
0 0 0 1
𝑎
0

0
−𝑏

0 2
−2 0

](

𝑥̃
𝑦
𝑣𝑥
𝑣𝑦

)                                  (4.15) 

where  x = 𝑥𝐿 + 𝑥̃, and 𝑥̃ ≪ 𝑟ℎ. Then the energy integral for the Sun-Mars 

System: 

𝐸𝑆−𝑀 =
1

2
(𝑣𝑦

2 + 𝑣𝑦
2) + 𝑈̅(𝑥, 𝑦) 

                  =
1

2
(𝑣𝑦

2 + 𝑣𝑦
2) −

1

2
(𝑥2 + 𝑦2) −

𝑓

𝑅
−
𝜇𝑀

𝑅𝑀
             (4.16) 

 Eigenvectors and eigenvalues can be calculated with parameter 𝜇̅. 

 a = −
𝜕2𝑈̅

𝜕𝑥2
|
𝑥=𝑥𝐿, 𝑦=0

= 1 +
2𝑓

|𝑥𝐿|3
+

2𝜇𝑀

|𝑥𝐿−1|3
= 1 + 2𝜇̅                    (4.17a) 

𝑏 = −
𝜕2𝑈̅

𝜕𝑦2
|
𝑥=𝑥𝐿, 𝑦=0

 =
𝑓

|𝑥𝐿|3
+

𝜇𝑀

|𝑥𝐿−1|3
− 1 = 𝜇̅ − 1                     (4.17b)             

   𝜇̅ =
𝑓

|𝑥𝐿|3
+

𝜇𝑀

|𝑥𝐿−1|3
                                           (4.17c) 

 Eigenvalues and corresponding eigenvectors are: 

𝜆1,2 = ± [
𝜇̅−2+√9𝜇̅2−8𝜇̅

2
]
1/2

= ±𝜆                              (4.18a) 

𝜆3,4 = ±𝑖 [
2−𝜇̅+√9𝜇̅2−8𝜇̅

2
]
1/2

= ±𝑖𝜐                           (4.18b) 
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[𝑢1    𝑢2 𝑤1 𝑤2] = [

1 1 1 1
−𝜎 𝜎 −𝑖𝜏 𝑖𝜏
𝜆
−𝜆𝜎

−𝜆
−𝜆𝜎

𝑖𝜐 −𝑖𝜐
𝜐𝜏 𝜐𝜏

]                  (4.18c) 

σ =
2𝜆

𝜆2+𝑏
> 0 ,      𝜏 = −(

𝜐2+𝑎

2𝜐
) < 0                                   (4.18d) 

 Based on the obtained eigenvectors, we can describe the equation of motion for 

the limited 4-body problem into the first-order form. It is useful to track the contour of 

the Lyapunov orbit around the Lagrange points. By using the 1-D search technique, the 

global structure of the invariant manifolds can be mapped simply. Let us explore the 

significant changes in the configuration of the invariant manifolds when the factor f is 

decreased. As an example, we tracked the centerline of the invariant manifolds near the 

Sun-Mars L2 point while the factor f is decreased. The initial conditions for each case of 

unstable and stable manifolds can be obtained from the calculated eigenvalues in the 

equation 4.18. For case 1, we assumed that the spacecraft left in the exterior realm 

direction through unstable manifolds starting at the Sun-Mars L2 point. The initial 

condition for the case 1 is (𝑥̃ 𝑦 𝑣𝑥 𝑣𝑦)𝑡=0 = 𝛼[1 −𝜎 𝜆 −𝜆𝜎] so that the S/C 

can follow the centerline of the unstable manifolds. As seen in Figure 25, the S/C 

trajectories with different value of f are shown in Sun-Mars rotating frame. When the 

factor f is 1, meaning no solar sail effect, the S/C travels like a shape of a scallop shell 

around the forbidden zone and coms back to the starting point. By deploying the solar 

sail so that it reduced the value of the factor f, the size of the scallop shell gets bigger. 

Also a number of the bounce back motion by hitting the forbidden zone barrier is 

reduced during the one cycle of motion. This behavior can be explained by the 
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relationship between the energy integral and the factor f. When f is decreased, the criteria 

of the energy level for E2 and E3 are increased. So when the energy level of the entire 

system still remains the same with no additional thrust, the thickness of the forbidden 

zone is increased. That increases the size of scallop shell trajectory since the S/C hits the 

forbidden zone barrier and bounces off slowly during the one cycle of the motion. In 

Figure 25, the outer radius of the S/C trajectories are increased from 1 to 1.5 by reducing 

the factor f. For case 2, the S/C follows the centerline of the unstable manifolds to the 

interior realm direction at Sun-Mars L2 point. The initial condition for case 2 is 

(𝑥̃ 𝑦 𝑣𝑥 𝑣𝑦)𝑡=0 = 𝛼[−1 𝜎 −𝜆 𝜆𝜎]. In Figure 26, when the factor f is 1, the 

S/C flies near Mars many times to reach the Sun-Mars L1 point. As f is decreased slowly, 

the S/C trajectory is trapped in a halo orbit between Mars and the Sun-Mars L2 point. So 

the S/C cannot connect with the Sun-Mars L1 point. For case 3, we assumed that the S/C 

left in the exterior realm direction through stable manifolds starting at Sun-Mars L2 

point. The initial condition for the case 3 is (𝑥̃ 𝑦 𝑣𝑥 𝑣𝑦)𝑡=0 = 𝛼[1 𝜎 𝜆 𝜆𝜎] 

while time direction is -1. The S/C trajectories are quite similar to the case 1 as you can 

see in Figure 27. However, the S/C starts to fly in the opposite direction of case 1. For 

the last case, the S/C travels through stable manifolds to the interior realm direction 

starting at the Sun-Mars L2 point. The initial condition for case 4 is 

(𝑥̃ 𝑦 𝑣𝑥 𝑣𝑦)𝑡=0 = 𝛼[−1 −𝜎 −𝜆 −𝜆𝜎] while time direction is -1. The S/C 

trajectories also show the same behaviors of case 2, but in the opposite direction. In 

Figure 28, the S/C captured in a halo orbit between Mars and the Sun-Mars L2 point 

when the factor f is below 0.99. 



 

50 

 

 

Figure 25. S/C trajectory from the Sun-Mars L2 point into unstable manifolds to 

the exterior realm 

 

 

Figure 26. S/C trajectory from the Sun-Mars L2 point into unstable manifolds to the 

interior realm 
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Figure 27. S/C trajectory from the Sun-Mars L2 point into stable manifolds to the 

exterior realm 

 

 

Figure 28. S/C trajectory from the Sun-Mars L2 point into stable manifolds to the 

interior realm 
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4.3 Transfer Trajectory from Earth to Mars with Solar Sail 

To avoid any bounce back motion of the S/C trajectory, it is necessary to 

calculate the required energy to maintain the neck region open for the reduced value of 

the factor f. By tracking the centerline of the invariant manifolds with different f, we can 

have a glimpse of the changes in the global structure of the manifolds. Therefore we can 

design the advanced transfer trajectory from Earth to Mars by benefiting from these 

features: 1) when the solar sail is deployed, it cancels the Sun’s gravitational force by 

reducing the value of factor f; 2) when the factor f is reduced, the Sun-Mars Lagrange 

points are shifted towards the Sun’s direction; 3) the criteria of energy to maintain the 

neck region open are increased with decreasing f; 4) the structure of the invariant 

manifolds which are changed by decreasing f can be simply mapped using the 1-D 

search technique.  

To design a transfer trajectory from the Sun-Earth L2 point to Mars, let us 

explore the centerline of unstable manifolds with different f. Assume that the S/C departs 

from the Sun-Earth L2 point through the unstable manifolds to the exterior realm. In 

Figure 29, when f = 1, the S/C trajectory has a scallop shape around the forbidden zone 

of the Sun-Earth system in Sun-Earth rotating frame. Even if we propagate the trajectory 

for a long time, the S/C will not reach the Mars orbit. By using the reduced f = 0.8 at the 

time of departure, the S/C trajectory starts to intersect the Mars orbit. If the factor f is 

decreased to below 0.6, the S/C will pass Mars orbit and circle further away from the 

Sun. In Figure 30, the S/C trajectories with different f are shown in the Sun-Mars 

rotating frame. In the initial state at f = 1, the S/C moves around the orbit of Sun-Earth 
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L2 points. But when f = 0.9, it starts to show the bounce back motions by hitting the 

forbidden zone of Sun-Mars system. Especially there are rewind points of the S/C 

trajectory when f = 0.85. The S/C flies to the Sun-Mars L2 point and comes back near the 

Sun-Earth L2 point again when f = 0.8. This retro trajectory can be useful to transfer to 

Mars.  

 

 

Figure 29. S/C trajectory from the Sun-Earth L2 point to the Sun-Mars L1 point in 

the Sun-Earth rotating frame 
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Figure 30. S/C trajectory from the Sun-Earth L2 point to the Sun-Mars L1 point in 

the Sun-Mars rotating frame 
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By taking advantage of the work described above, an example trajectory from the 

Sun-Earth L2 point to Mars can be designed. In this case, we assume that the S/C departs 

from Earth to the Sun-Earth L2 point via the Earth-Moon system as in the NEA 

rendezvous mission described in section 3.3. The initial conditions of the S/C remain the 

same: the mass of S/C is 1 MT and the specific impulse, Isp is 3000s. As you can see in 

Figure 31, the S/C escapes from the Sun-Earth L2 point through the unstable manifolds 

to the exterior realm and starts to deploy the solar sails. For 1.05 years (=384.3 days), the 

S/C coasts along the manifolds and then f is reduced to 0.9. By reducing f, the Sun-Mars 

Lagrange points are moved toward the Sun and the structure of the manifolds is also 

changed.  After travelling 74.45 days, the factor f is reduced to 0.80085. Then the S/C 

flies over the Sun-Mars L2 point and turns back toward Mars. The S/C approaches to 

Mars less than 0.0001396 AU (=2,090 km), below than the Martian geostationary orbit 

altitude of 13,634 km. 

 

 

Figure 31. Transfer trajectory from Sun-Earth L2 point to Mars in Sun-Mars 

rotating frame 
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The time of flight for the retro trajectory is 829.6 days. Therefore the total flight 

time of the transfer trajectory from Earth to Mars is approximately 2.93 years and the 

energy consumption is only 2.698 km/s. This interesting retro trajectory is achieved 

without fuel expenditure by using the interplanetary super highway method with solar 

sail. The summary of the cost is shown in Table 4. 

 

Table 4. Summary of cost for transfer trajectory from Earth to Mars 

 
 

TOF [days] 
 

∆𝐕 [𝐤𝐦/𝐬] 

Earth to Sun-Earth L2 point 239.1 2.698 

Sun-Earth L2 point to Mars 

f = 1 384.3 0 

f = 0.9 74.45 0 

f = 0.80085 370.8 0 

 829.6 0 

Total 1068.7 (=2.93 yrs) 2.698 
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5. SUMMARY AND FUTURE WORK  

 

The overall purpose of this paper is to develop advanced mission design with 

interplanetary transfer trajectory methods which can provide the minimum fuel cost for 

complex and long duration space missions. To develop this new low-energy trajectory 

method, called IPSH method, the dynamical properties of the PCR3BP were considered. 

Also it was essential to explore the characteristics of the invariant manifolds winding 

around the Lagrange points in the three-body system. With understanding of dynamical 

symmetries and energy state dynamics, computationally simplified methods for IPSH 

trajectory designs can be achieved. A simple method, called 1-D search technique, can 

depict the centerline of the invariant manifolds issuing from the periodic orbits around 

the Lagrange points. It allows us to see at a glance the global structure of the invariant 

manifolds. For a meaningful design exercise, NEAs rendezvous mission was discussed 

in four phases. In phase 1, a 1MT spacecraft slowly spiraled away from Earth LEO to 

Earth-Moon L1 point by using small thrust. Then the S/C followed the thrust-free 

trajectory to reach Earth-Moon L2 point in phase 2. By considering four-body dynamics 

into two segments of three-body dynamics, the system-to-system transfer trajectory from 

Earth-Moon L2 point to Sun-Earth L2 point were described in phase 3. Lastly, the S/C 

travelled the grand tour of the NEAs by executing small burns and coasting 

stable/unstable manifolds and returned back to Sun-Earth L2 point. The total trip time is 

843.6 days with ∆V = 8.406 km/s. 
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For a second application study, the Mars exploration mission with solar sail was 

considered. The propulsive power obtained from the solar sail can affect the three-body 

dynamics by changing the geometry of invariant manifolds near the Lagrange points. A 

limited case for four-body system was formulated with Earth, Mars, and S/C while Sun 

is at origin. The significant changes in energy state and manifold structure due to the 

solar sail factor f were investigated in depth. Therefore, we found that those changes can 

be useful to design energy efficient trajectories for various interplanetary space mission. 

As an example, a thrust-free trajectory from the Sun-Earth L2 point to Mars was 

developed.  

 This research contributed to broaden the understanding of the natural dynamics 

of the solar system and to design advanced transfer trajectories with significantly 

reduced ∆V. The developed 1-D search technique can efficiently reveal the geometrical 

framework for the whole tube-structure of the invariant manifolds based on the 

centerline. With extended research on the general solution of the multi-body problem 

and the effect of solar sails, it can be possible to develop an advanced design tool of low-

thrust trajectory for various interplanetary space missions.  
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