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ABSTRACT 

GPS is becoming a crucial element in daily life and in global information infrastructure. 

GPS nowadays is becoming more reliable thanks to the technology of A-GPS and D-

GPS which uses the Internet and cellular network to enhance the accuracy. However, 

there is still plenty of room for improvement in the GPS operations. A versatile 

experimental platform that allows researchers to directly receive raw data from satellites 

is critical to advance further research. 

We use a software defined radio (USRP) platform with open source GNSS software to 

perform the related experiments. We choose the USRP N200 as the software defined 

radio (SDR) for our work, because of its very good signal processing performance at an 

affordable price. Unlike mobile phones, or even most GPS chip evaluation kits. The GPS 

data received from USRP can be utilized to compute pseudo ranges based different 

satellites. And the pseudo range can be valuable when analyzing the accuracy of 

computing the locations. With the open source software, the users can easily access and 

customize their own software development to target the specific application. 

We built a portable experimental environment based the USRP to carry out field tests at 

various locations. Two additional limitations of GPS chip evaluation kits are their low 

quality clocks, and very limited computing resources for more sophisticated 

experiments.  
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This thesis will talk about this portable software platform and the project which was 

conducted on it to explore and investigate some crucial problems existing in today’s 

GNSS technology, for example, multipath problem and hybrid GNSS system problem. 

By investigating into these problems using SDR GNSS receiver, the benefits of adopting 

this software oriented approach will be talked about and how this approach in the future 

can save valuable research and experiment time will also be demonstrated.  
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NOMENCLATURE 

 

ASIC                           application-specific integrated circuit 

GPS                             Global Positioning System 

B/CS Bryan/College Station 

USRP                          Universal Software Radio Peripheral 

FPGA Field-programmable gate array 

UHD Universal Hardware Drive 

T Time 

DOT Texas Department of Transportation 

SDR                             Software Defined Radio 

RF                                Radio Frequency 

RINEX                         Receiver Independent Exchange Format 

KML                            Keyhole Markup Language 

PVT                             Position, Velocity, Time 

NEMA                         National Marine Electronics Association 

TOA                             Time of Arrival 

DOP                             Dilution of precision 

EN                                East and North 

SNR                             Signal to Noise Ratio 

ADC                            Analog to Digital Converter 
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CHAPTER I 

INTRODUCTION AND MOTIVATION 

I.1 Introduction 

Satellite based positioning services has gradually become popular and crucial in all kinds 

of applications. From transportation in sea, sky and ground to the positioning based 

mobile applications, it plays a big role by providing the instant location information 

which can assist the user to access the location based service [2]. 

Throughout the history, a long time ago, humans already developed navigation 

technology to explore the world. In ancient China, compass was used to guide the ships 

in transportation under severe weather conditions. 

But Navigation satellite was first designed until early 70s. Three satellites systems were 

developed before GPS, Transit and Timation from US Navy and 621B plan from the Air 

Force. At the beginning, this technology was only deployed for military use due to 

security issues [1]. 

Until December 1973, GPS project was eventually approved. The first satellite for GPS 

was launched in 1978 [1]. 15 years later, in August 1993, there were 24 satellites 

available in the sky. Same year in December, the GPS system became functional for 

basic operations. The GPS system has a rather short history from first launching to basic 
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functioning, but it is now available from civilian use to military use and its accuracy has 

been gradually improved thanks to the newly developed technology [1]. The ability of 

which, the Global Navigation Satellite System (GNSS) receiver can obtain the three-

dimensional location is the major achievement of the last 30 years. Furthermore, the 

ability of GNSS services, which can provide an accurate time references using its atomic 

clock, can help the synchronization of distributed computing, for example, ATM 

transactions, global communications and smart grids [2].  

 

As our world is becoming mobile, and embedded devices such as mobile phones, smart 

watches can provide us with the services based on the location information from its 

GNSS receiver, of which, the more accurate the internal receiver can achieve, the better 

service the application can provide for the users. It is important that the GNSS receiver 

can guarantee the positioning and timing and can be conscious of the factors which can 

affect the performance of calculating the position.  

 

In this thesis, we address this issue by proposing a research platform which is based on 

open source software and dedicated hardware system. The experiments conducted will 

be discussed and the results will be evaluated to demonstrate the performance of this 

research platform and how this platform can benefit the GNSS research and community. 

 

 

 



 

3 

 

I.2 Why do we need an SDR experimental system? 

 

This thesis mainly concerns about the signal quality received from the satellites and 

finding out the factors which may contribute to the accuracy and precision of calculating 

the positions. By utilizing the powerful GNSS-SDR, many real time navigation data can 

be collected and documented for the specific research use. For example, with the help of 

this research platform, the outdoor field tests can be carried out easily, the data received 

can be saved and plotted using external analytic software. Some GNSS research can use 

the recorded data as the validation for certain algorithms developed. Furthermore, the 

signal processing part can be reconfigured and designed using the software to find out 

the quality of analog to digital converter, phase lock loop and filters, etc.  

 

The GNSS research has always been a research topic involving with aerospace 

engineering, geology, electrical engineering and computer science, etc. This mixture of 

different subjects can be either a big challenge or the chance of collaborating. The goal 

of this research project is to contribute to the GNSS related research and provide a 

valuable tool for those researchers to easily acquire the navigation data [20].  

 

The objective of the project is to use the software platform to investigate into GNSS 

signal receiving problems and analyze the performance by utilizing different receiving 

configurations so that the users in the future can use this research as a reference to 
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design customized receiver. The data gathered from the research will be saved for future 

use. 

 

Software defined radio system we used in the experiments is USRP N200, which can 

provide a high-bandwidth, high dynamic range processing capability. It features a Xilinx 

Spartan 3A-DSP 1800 FPGA, 100MS/s dual ADC, 400MS/s dual DAC and Gigabit 

Ethernet connectivity which can streams large GNSS receiving data to be processed on 

host PC [4].  

 

The maximum stream data rate to the host PC can be up to 50MS/s. FPGA board can be 

reprogrammed to meet the customer needs. The UHD driver already provides the user 

with the ability to erase or upload the latest firmware. 

The technical details of USRP N200 are listed in Table 1-1: 
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USRP N200 Specifications Typical Unit 

ADC Sample Rate 100 MS/s 

ADC Resolution  14 bits 

ADC Wideband SFDR 88 dBc 

DAC Sample Rate 400 MS/s 

DAC Resolution 16 bits 

DAC Wideband SFDR 80 dBc 

Host Sample Rate (8b/16b) 50/25 MS/s 

Frequency Accuracy 2.5 ppm 

with GPSDO Reference 0.01 ppm 

Table 1-1 USRP N200 specification [4] 

 

 

N200 also can work together with all kinds of software like LabVIEW, GNU Radio, or 

even Simulink.  

 

Although GNSS simulation software is often accepted as the alternative way to conduct 

real-time GNSS signal processing experiment. They can’t represent the complexity of 

real-time live sky signal. The real world signal usually makes up of the signals reflected 

from the rooftop or walls of the building and these scenarios couldn’t be modelled 

perfectly just using simulator [5].  
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Another problem of using GNSS signal simulator is that the hardware/software system is 

so dedicated that the cost of modelling the signal can be quite high comparing to only 

capture the real-time outdoor signals.  

 

So why don’t we use an evaluation kit or Microcontroller based hardware system? In 

Table 1-2 displays the comparison of USRP platform and other platforms: 

 

 

Comparison USRP based hardware SiGe GN3S 

Sampler 

GNSS 

Simulator 

Bandwidth 25 MHz 2 - 4 MHz 16 MHz 

Center 

Frequency 

0.8 -2.35 GHz 1575.42 

MHz 

1575.42 MHz & 

1602 MHz 

Constellation GPS/GLONASS/Galileo/Compass GPS/Galileo GPS/GLONASS 

Sampling 

Frequency 

Complex, up to 25 Msps Real, up to 

16 Msps 

complex, 16.368 

Msps 

Quantization 14 bit 2 bit 2 bit or 4 bit 

Table 1-2 GNSS front-ends comparison [6] 

 

 

From the Table 1-2, USRP platform can have a wider bandwidth and radio frequency 

coverage different from other RF front-ends [6]. Another important contrast with normal 

front-ends is that the software utilized GNSS-SDR can record the pseudorange from 
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satellites and generate the RINEX file format file which can be used as the experimental 

data for signal spoofing and multipath detection problems. While most other platforms 

wouldn’t provide the user with the pseudorange information [6]. 

At the beginning stage of the research, we were thinking of using SiGe GN3S Sampler 

v3 as the platform, but it is already out of stock and the sampling time is only 160s 

which is quite short for our research to observe the signal to noise ratio of the satellites 

in urban canyon environment.  

 

Another method of obtaining the RINEX file is through Continuously Operating 

Reference Station (CORS). “Global Navigation Satellite System (GNSS) data consisting 

of carrier phase and code range measurements” can be provided [7]. In Bryan/College 

Station, there is only one CORS – TXBX in Figure 1-1, which can sample the data every 

5 seconds [7]. The location of the CORS is static and it has the non-blocking skyview of 

satellites which somehow limit the research scope of exploring the effects of multipath 

signal. The CORS station can only capture the GLONASS and GPS data, which also 

restrict the scope of research of the hybrid GNSS systems.  
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Figure 1-1 CORS station in Bryan [7] 

 

       

So why not a mobile phone? As it is known, nowadays mobile phones are equipped with 

dedicated GNSS chip which provides the location based services and applications 

without knowing what exactly how the GNSS chip can obtain the information from the 

satellite. For example, the location framework provided by Apple iOS can directly tell 

the user geographical coordinates as well as the accuracy of the measurement. Same as 

Android devices whose Java package contains the functions to get the user coordinates 

[2]. To conclude, mobile phones just provide the coding instructions for the users which 

can abstractly obtain the information necessary of the service. But the user has no idea 

about which satellite’s data can be observed or has the ability to modify the internal 

receiver configurations. Furthermore, with the development of new GNSS systems, the 

receiver designer needs the opportunity to modify the existing receiver and design the 

new receiver based on that [2].          
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From the comparison with various GNSS receivers, it is necessary for the receiver 

designers to adapt software defined radio paradigm. The RF front-end, such as USRP, 

can perform the frequency down conversion before other signal processing procedure, 

the software itself can deal with the signal and data processing which provides high 

flexibility for the developers to fully access and modify the whole receiver [2]. The 

detailed discussion about this flexible software framework is on later this chapter as well 

as chapter 3. 

 

I.3 Basic principles for GNSS receiver 

 

The procedure for the GNSS receiver of receiving the signal from the satellites is in 

Figure 1-2. The signals are captured by the front-end antenna, the signal is usually quite 

small, and is amplified by the analog circuits. The frequency of the signal is down 

converted to the necessary frequency range [9]. After that, ADC can transform the signal 

from analog to digital.  

 

The procedure in the last paragraph is the hardware parts of the receiver, then the signal 

needs processing using the software. As we can see here, the hardware part takes 

responsibility of preprocessing the signal and is configured to be static. But the software 

part of the receiver has more flexibilities in configurations. The software can be 

configured to change the functionality of radio frequency signals, both for the amplitude 
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or the frequency of the signal. In this project, we gained lots of benefits of using this 

software approach shown as the computer in Figure 1-2 to save hardware developing and 

debugging time. 

 

 

 

Ethernet

Data file

Radio Frequency Front-end

GNSS-SDR 
software  

Figure 1-2 Overall hardware/software System [2] 
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Figure 1-3 Multi-Channel receiver architecture [8] 

 

 

In the above Figure 1-3 shows the architecture for multi-channel GNSS receiver case.  

 

I.4 Advantages of using software approach 

 

Using software approach can handle the data received from various kinds of hardware 

system. And different kinds of data can be rewritten and converted to each other 

depending on the data type received for the specific hardware so that using the software 

approach provides a flexible way of sampling and processing data. 
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With the development of new algorithms for tracking satellites and receiving the data. 

The software can be redesigned to feature the users’ need without designing the new 

hardware system.  

 

In this thesis, we use GNSS-SDR as mentioned before, official website claims that 

GNSS-SDR “implements a global navigation satellite system software defined receiver” 

using the C++ programming language [21]. The design of GNSS-SDR architecture 

allows all kinds of customization and “provides an interface to different” RF front-end 

receivers [21]. The user can design a GNSS software by defining the dataflow and signal 

processing methodology to implement in C++ code. 

 

The following diagram Figure 1-4 demonstrates the overall dataflow scheme of the 

software architecture. 
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Figure 1-4 Architecture of GNSS-SDR software package [3] 

 

 

Some additional advantages of using this architecture are:  

This software platform can provide the code with high efficiency and high reusability. 

The documentation contains the description of the framework so that the user can refer 

to that as the development guidelines.  

 

This platform has also been tested and optimized on various hardware and takes 

advantages of the multicore processors on the host computers. In addition, from the 

diagram on the left side, the platform can process the data either in real time mode or 

post-processing mode [21]. The real-time signal is processed once the signal is coming 

and the post-processing mode uses the data saved as raw bit files to process.  
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The software platform can acquire the signal and track the satellites available. It then 

decodes the navigation messages and saves the necessary information to compute the 

position. Either the observed data can be saved as RINEX file which contains the 

pseudorange and users can use external GNSS software to analyze and visualize the 

data, or the software itself can create a computed position saved in KML file format.  
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CHAPTER II 

BACKGROUND KNOWLEDGE 

II.1 Introduction 

 

It is important to understand some concepts of the navigation technology to better design 

the new algorithms for SDRs. This chapter starts with how the receiver can calculate the 

position, to the characteristics of the satellite signals (GPS) and how the signal can be 

processed. As the knowledge base of the GNSS technology is quite large and different 

navigation systems, such as GPS, Galileo, Beidou, are operated using various 

technologies. The chapter will mainly focus on the GPS technology and the general 

operation of the GPS system. 

 

II.2 Concept of Time of Arrival (TOA) 

 

The satellite itself is at the known location and the receiver’s location is not yet known. 

GPS technology utilizes the TOA to calculate the receiver location. From definition, 

“TOA is the time needed for the signal to travel from the satellite to the receiver” [9].  

 

This time interval, which is also called the propagation time of the satellite signal, can be 

multiplied by the signal speed, generally speed of light, to obtain the distance from the 

satellite to the receiver, however this is not quite accurate as there are many unknown 

propagation contributing factors which can somehow change this distance [9].  
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II.3 Determine the position 

 

In the following Figure 2-1 is the demonstration of the measurement from the satellite to 

the receiver. The receiver is located somewhere on the sphere. The satellite is at the 

center of the sphere. 

 

 

A

R1

 

Figure 2-1 One satellite condition 

 

 

With two satellites on the diagram below, a similar sphere centered at B with the radius 

R2, also we have the previous sphere centered at A with radius R1. Under this 

circumstance, the position of the receiver can be either at the location of the two dots in 

Figure 2-2.  



 

17 

 

A

R1

B

R2

 

Figure 2-2 Two satellite condition 

 

 

 

Adding one more sphere, which is C, with the radius R3, shown in Figure 2-3 below. The 

only receiver which is at the intersection of these three spheres is dot on the diagram 

which is the position of the receiver.  
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A

R1

B

R2

C

R3

 

Figure 2-3 Three satellite condition 

 

 

The three satellites condition can help determine the position of the receiver in a 2 

dimensional plane. However, in a 3 dimensional space, we need at least 4 satellites 

which means 4 measurements of the distance from the satellites to determine the position 

of the user. This can be demonstrated as the following. Two spheres can intercept each 

other to obtain a circle. And another sphere can intercept the circle to obtain 2 possible 
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locations shown as Figure 2-2. Yet another satellite is required to determine the position 

shown as Figure 2-3. 

 

The three diagrams above assume that the measurement between the satellite and the 

user is accurate, no errors included. However, in reality, the distance measured between 

the receiver and satellites contains some unknown discrepancy as the user clock is 

different from satellite atomic clock [9]. In order to resolve this discrepancy, yet another 

satellite (5th) is needed [9].  

 

As discussed before, the least satellites required to obtain the user location are just 4. 

 

II.4 Basic functions to determine the user position 

 

Assume that we have three known points r1 (x1, y1, z1), r2 (x2, y2, z2), r3 (x3, y3, z3) and an 

unknown point ru (xu, yu, zu) [9]. If the measurement of the distance between the 

unknown point and 3 known points are already acquired, we can obtain the following 

three equations [9]. 

ρ1 = √(𝑥1 − 𝑥𝑢)2 + (𝑦1 − 𝑦𝑢)2 + (𝑧1 − 𝑧𝑢)2 

                                      ρ2 = √(𝑥2 − 𝑥𝑢)2 + (𝑦2 − 𝑦𝑢)2 + (𝑧2 − 𝑧𝑢)2                   (2.1) [9]                      

ρ3 = √(𝑥3 − 𝑥𝑢)2 + (𝑦3 − 𝑦𝑢)2 + (𝑧3 − 𝑧𝑢)2 
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The functions can solve the xu, yu, zu.. In theory, as these functions are second order, they 

may have two solutions. The functions are nonlinear, so they can be linearized to solve 

the equations. 

 

Once acquired, these functions can be used to solve for the user location. As when GPS 

is working, each satellite can send the signal simultaneously with its own information 

tags and the receiver need to acquire these signals in a certain time frame to calculate the 

position.  

 

Assume that a satellite sends the signal at t1, and the receiver receives the signal later at 

t2. The certain satellite i have a distance with the user as  

                                           ρ𝑖 =  c(𝑡2 − 𝑡1)                               (2.2) 

In this equation, the distance is calculated by multiply the speed of light with the time 

difference between the receiver and satellite [9].  

 

In reality, obtaining the exact psudeorange is difficult. The actual satellite sending signal 

time t’
1 and receiver receiving time t’

2 have the relationship as the following [9], 

𝑡1
′ = 𝑡1 + ∆𝑏𝑖 

                                           𝑡2
′ = 𝑡2 + 𝑏𝑢                                (2.3) 

In 2.3, ∆𝑏𝑖 is the clock discrepancy of the satellite and bu is the user clock discrepancy. 

Not only the clock can contribute to the measurement of the pseudorange, but also 



 

21 

 

several other factors can influence the measurement accuracy, the overall equation can 

be expressed as [9]: 

𝜌𝑖
′ = 𝜌𝑖 + ∆𝐷𝑖 − 𝑐(∆𝑏𝑖 − 𝑏𝑢) + 𝑐(∆𝑇𝑖 + ∆𝐼𝑖 + 𝑣𝑖 + ∆𝑣𝑖)  (2.4) [9] 

In 2.4, ∆𝐷𝑖 is the factor of the discrepancy of the satellite position, ∆𝑇𝑖, ∆𝐼𝑖 is error 

caused by troposphere and ionosphere delaying, vi is the noise error inside the receiver 

and ∆𝑣𝑖 is the timing correction due to the theory of relativity [9].  

 

Some discrepancy can be solved using a dual frequency receiver such as troposphere and 

ionosphere errors. But the error caused by the user clock is not solvable using the 

information received from the satellite. It is still an unknown in the equations, so the 

functions in 2.1 need to be revised as the following [9]: 

ρ1 = √(𝑥1 − 𝑥𝑢)2 + (𝑦1 − 𝑦𝑢)2 + (𝑧1 − 𝑧𝑢)2 + 𝑏𝑢 

ρ2 = √(𝑥2 − 𝑥𝑢)2 + (𝑦2 − 𝑦𝑢)2 + (𝑧2 − 𝑧𝑢)2 + 𝑏𝑢 

ρ3 = √(𝑥3 − 𝑥𝑢)2 + (𝑦3 − 𝑦𝑢)2 + (𝑧3 − 𝑧𝑢)2 + 𝑏𝑢 

                     ρ4 = √(𝑥4 − 𝑥𝑢)2 + (𝑦4 − 𝑦𝑢)2 + (𝑧4 − 𝑧𝑢)2 + 𝑏𝑢    (2.5) [9] 

In such equation, we have 4 functions for 4 unknown xu, yu, zu and bu, if the functions are 

linear, we can obtain the values of 4 unknowns. But in 2.5, the functions are nonlinear, if 

we still wish to obtain the solutions these functions need to be linearized. 
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According to the functions listed for 2.5, it is hard to find out the 4 unknown as the 

functions are not linear. To solve this problem, the functions need to be linearized. The 

listed function can be transformed to: 

        ρ𝑖 = √(𝑥𝑖 − 𝑥𝑢)2 + (𝑦𝑖 − 𝑦𝑢)2 + (𝑧𝑖 − 𝑧𝑢)2 + 𝑏𝑢      (2.6) [9] 

We can differentiate the function above and get the result as: 

δρ𝑖 =
(𝑥𝑖 − 𝑥𝑢)δ𝑥𝑢 + (𝑦𝑖 − 𝑦𝑢)δ𝑦𝑢 + (𝑧𝑖 − 𝑧𝑢)δ𝑧𝑢

√(𝑥𝑖 − 𝑥𝑢)2 + (𝑦𝑖 − 𝑦𝑢)2 + (𝑧𝑖 − 𝑧𝑢)2
+ δ𝑏𝑢

=
(𝑥𝑖 − 𝑥𝑢)δ𝑥𝑢 + (𝑦𝑖 − 𝑦𝑢)δ𝑦𝑢 + (𝑧𝑖 − 𝑧𝑢)δ𝑧𝑢

ρ𝑖 − 𝑏𝑢
+ δ𝑏𝑢 

(2.7) [9] 

δ𝑥𝑢, δ𝑦𝑢, δ𝑧𝑢, δ𝑏𝑢 are the unknowns in the equation. We can assign the initial values for 

xu, yu, zu, bu to just find out the values for the new unknowns in 2.7 [9]. Using new 

solutions for δ𝑥𝑢, δ𝑦𝑢, δ𝑧𝑢, δ𝑏𝑢, we can modify the original xu, yu, zu, bu values 

iteratively [9]. Repeat the above modifications, the values of δ𝑥𝑢, δ𝑦𝑢, δ𝑧𝑢, δ𝑏𝑢 can be 

limited to preliminary thresholds [9]. Then the new values for xu, yu, zu, bu can be 

utilized as the final solution for the function [9]. 

 

When δ𝑥𝑢, δ𝑦𝑢, δ𝑧𝑢, δ𝑏𝑢 are unknowns, the equation of (2.7) becomes linear functions. 

And the function can be expressed in matrix [9]: 

                                       [

δρ1

δρ2

δρ3

δρ4

] = [

𝛼11 𝛼12 𝛼13 1
𝛼21 𝛼22 𝛼23 1
𝛼31 𝛼32 𝛼33 1
𝛼41 𝛼42 𝛼43 1

] [

δx𝑢

δy𝑢

δz𝑢

δb𝑢

]       (2.8) 

  𝛼𝑖1 =
𝑥𝑖−𝑥𝑢

ρ𝑖−𝑏𝑢
              𝛼𝑖2 =

𝑦𝑖−𝑦𝑢

ρ𝑖−𝑏𝑢
            𝛼𝑖3 =

𝑧𝑖−𝑧𝑢

ρ𝑖−𝑏𝑢
      (2.9) 
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From the matrix listed above, the solution can be expressed as: 

                      [

δx𝑢

δy𝑢

δz𝑢

δb𝑢

] = [

𝛼11 𝛼12 𝛼13 1
𝛼21 𝛼22 𝛼23 1
𝛼31 𝛼32 𝛼33 1
𝛼41 𝛼42 𝛼43 1

]

−1

[

δρ1

δρ2

δρ3

δρ4

]          (2.10) [9] 

As discussed above, the solution obtained for the unknowns still needs the iterative 

method to find out the final acceptable solution for the location and the value which can 

terminate the iterative procedure is as the following: 

                   δx𝑢 = √δx𝑢
2 + δy𝑢

2 + δz𝑢
2 + δb𝑢

2
           (2.11) 

 

In general, the location of the user can be obtained use the pseudorange from 4 satellites 

or more.  

 

When the receiver can obtain the pseudorange from more than 4 satellites, all of the 

information will be utilized to find out the location similar to 4 satellites scenario. If we 

have more than 4 satellites, the equation (2.6) is the same as before: 

ρ𝑖 = √(𝑥𝑖 − 𝑥𝑢)2 + (𝑦𝑖 − 𝑦𝑢)2 + (𝑧𝑖 − 𝑧𝑢)2 + 𝑏𝑢     (2.12) [9] 

The only difference is the matrix of the 4 satellites (2.8) can be expanded as the 

following: 

            

[
 
 
 
 
 
δρ1

δρ2

δρ3

δρ4

⋮
δρ𝑛]

 
 
 
 
 

=

[
 
 
 
 
 
𝛼11 𝛼12 𝛼13 1
𝛼21 𝛼22 𝛼23 1
𝛼31 𝛼32 𝛼33 1
𝛼41 𝛼42 𝛼43 1
⋮ ⋮ ⋮ ⋮

𝛼𝑛1 𝛼𝑛2 𝛼𝑛3 𝛼𝑛4]
 
 
 
 
 

[

δx𝑢

δy𝑢

δz𝑢

δb𝑢

]           (2.13) [9] 



 

24 

 

𝛼𝑖1 =
𝑥𝑖−𝑥𝑢

ρ𝑖−𝑏𝑢
              𝛼𝑖2 =

𝑦𝑖−𝑦𝑢

ρ𝑖−𝑏𝑢
            𝛼𝑖3 =

𝑧𝑖−𝑧𝑢

ρ𝑖−𝑏𝑢
     (2.14) 

And (2.13) can be expressed as: 

                                       δρ = αδx                                  (2.15) [9] 

   δρ =  

[
 
 
 
 
 
δρ1

δρ2

δρ3

δρ4

⋮
δρ𝑛]

 
 
 
 
 

, δx = [

δx𝑢

δy𝑢

δz𝑢

δb𝑢

] , α =

[
 
 
 
 
 
𝛼11 𝛼12 𝛼13 1
𝛼21 𝛼22 𝛼23 1
𝛼31 𝛼32 𝛼33 1
𝛼41 𝛼42 𝛼43 1
⋮ ⋮ ⋮ ⋮

𝛼𝑛1 𝛼𝑛2 𝛼𝑛3 𝛼𝑛4]
 
 
 
 
 

 

δρ, δx are both vectors and α is the matrix: 

δρ = [𝛿𝜌1 𝛿𝜌2 … 𝛿𝜌𝑛]𝑇 

δx = [𝛿𝑥𝑢 𝛿𝑦𝑢 𝛿𝑧𝑢 𝛿𝑏𝑛]𝑇 

                 𝛼 =

[
 
 
 
 
 
𝛼11 𝛼12 𝛼13 1
𝛼21 𝛼22 𝛼23 1
𝛼31 𝛼32 𝛼33 1
𝛼41 𝛼42 𝛼43 1
⋮ ⋮ ⋮ ⋮

𝛼𝑛1 𝛼𝑛2 𝛼𝑛3 𝛼𝑛4]
 
 
 
 
 

               (2.16) [9] 

 

The solution of the equation above can be expressed as: 

                       δx = [𝛼𝑇𝛼]−1𝛼𝑇δρ                    (2.17)  [9] 

δx can be solved using least square estimation. It has the better solution as we have more 

known values than just using 4 satellites [9]. 

 

As we have more known values than before, the iterative method used for equation 2.10 

will be also applied to 2.17, the difference is the repeating times of the iterative methods 
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can be vastly reduced as 2.17 uses least square estimation which converge the final 

solution much faster, less than 10 iterations [9].  

 

 

II.5 User location in spherical coordinate system and DOP 

 

The previous part of calculating the user position is based on cartesian coordinates. 

Actaully the earth itself is not an ideal sphere. 

 

The user location is expressed in longitude, latitude and height. Longitude is centered at 

the equator from -90 degree to 90 degree and latitude is centered at prime meridian in 

Greenwich Observatory, ranging from -180 degrees to 180 degrees. The height is just the 

latitude from the surface of the earth [9].  

 

User p is located at (xu, yu, zu). The distance d from the center of the sphere to the user p 

is just [9]: 

d =  √𝑥𝑢
2 + 𝑦𝑢

2 + 𝑧𝑢
2    (2.18) 

 

The altitude L is: 

 L =  tan−1(
𝑧𝑢

√𝑥𝑢
2+𝑦𝑢

2
)         (2.19) [9] 
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The longitude l is: 

         l =  tan−1(
𝑦𝑢

𝑥𝑢
)          (2.20) [9] 

 

The height h is, where re is the radius of the earth. 

              h =  r − 𝑟𝑒         (2.21) [9] 

Obviously when calculating the user position, some conversions are needed to transform 

from the Cartesian coordinates to spherical coordinates. There are lots of further 

discussion about how to determine the location as the earth is not an ideal sphere, in this 

thesis, we are not focusing on the coordinate system conversion. If interested, several 

good references are given [10].  

 

The term dilution of precision (DOP) is used to describe the precision of measuring the 

user location [10]. The DOP depends on the geometry of the distribution of the satellites 

in the sky, in reference [10], it has the detailed discussion of how to calculate the DOP. 

In this thesis, only the definition will be given as: 

GDOP =  
1

𝜎
√𝜎𝑥

2 + 𝜎𝑦
2 + 𝜎𝑧

2 + 𝜎𝑏
2    (2.22) [9] 

𝜎 is the root mean square errors of the pseudorange. 

𝜎𝑥, 𝜎𝑦, 𝜎𝑧   are the root mean square errors on the xyz directions. 

 𝜎𝑏 is just the root mean square error of the user clock [9].  

The 3D dilution of precision PDOP is defined as: 

PDOP = 
1

𝜎
√𝜎𝑥

2 + 𝜎𝑦
2 + 𝜎𝑧

2           (2.23) [9] 
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The 2D dilution of precision HDOP is [9]: 

HDOP = 
1

𝜎
√𝜎𝑥

2 + 𝜎𝑦
2                   (2.24) [9] 

 

And the vertical dilution of precision VDOP is [9]: 

VDOP =
𝜎𝑧

𝜎
                                               (2.25) [9] 

 

And the time dilution of precision TDOP is [9]: 

 TDOP =
𝜎𝑏

𝜎
                                              (2.26) [9] 

 

The smaller the DOP is, the better geometry the user select the satellites as demonstrated 

as in Figure 2-4 and 2-5: 
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Figure 2-4 Poor DOP [11] 

 

 

 

Figure 2-5 Good DOP [11] 

 

 

The good DOP proves that the coverage volume of the space is the maximized [11] 
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CHAPTER III  

EXPERIMENT SETUP 

III.1 Introduction 

 

In this chapter, the details of setting up the experimental platform and designing various 

experiments to test the performance of the SDR will be demonstrated.  

 

This chapter includes more descriptions of the software and hardware architecture and 

how this architecture can affect the measurement of the GNSS real time signals. The 

purpose of each experiment will also be discussed to ensure the data collected were valid 

and ready to analyze. Also, every part of the experiment platform will be displayed and 

explained. 

 

III.2 Setup the hardware experimental platform 

 

The overall system setup is shown as Figure 3-1:  

Here is the list of the parts on the platform: 

A. Power supply or battery pack 

B. Ethernet connection with host computer 

C. Bias tee with a constant voltage supply 

D. USRP with daughterboard and GPS clock kit 

E. Active antenna 
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Figure 3-1 Hardware setup for the experiment platform 

 

 

Part A: Power supply or battery pack 

We use a 9V battery to connect the bias-tee which connects to the RF2 port of USRP. 

The power supply can be either from a plug which can provide normally 6V 3A to the 

USRP or we can use an external battery pack, which can last from 2 hours to 4 hours 

based on its capacity. On the experimental platform, battery WKA6-14A and WKA6-12F 

were used. 

 

For WKA6-12f, under 6V and discharging rate at 3A, the total time of discharging is 

approximately 2 hours, while for WKA6-14a, the discharging time is more than 3 hours. 
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But 2 – 3 hours is not sufficient for the whole day test, so some experiments which can 

observe the periodicity of the satellites can be modified to a certain time frame of the 

day to detect the same sets of satellites.  

 

For some field experiments, while there is no power plug available, the battery is the 

only power source for the experiment. Some interesting effects were noted during the 

experiment using the external battery pack. The pseudorange which was obtained from 

the experiment sometimes has the abrupt drift from the graph and bounce back after 

some time, the assumption made here is the battery pack sometimes fails to deliver 

enough current to the SDR, when the clock of SDR wasn’t stabilized, it would lead to 

transient errors. That being said, the majority of the psudeorange measurement are not 

affected.  

 

Part B: Ethernet connection with host computer 

The Ethernet cable is just the connection between the computer and USRP N200.  

 

Part C: Bias tee with constant voltage supply 

Here is another picture of the bias-tee with the battery in Figure 3-2： 
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Figure 3-2 Bias-tee with battery 

 

 

Our experiment requires the receiver to keep a low noise figure. The GNSS antenna 

itself has integrated a low noise amplifier (LNA) which can provide a GNSS signal gain 

for the daughterboard [22]. The bias-tee can achieve the goal that the desired signal can 

be amplified before attenuated by other components. In this experiment, ZFBT-6G+ is 

utilized. 

 

There are two general approaches to provide DC power to the LNA integrated in the 

antenna. One is the daughterboard can internally provide the power. The other is to 

connect bias-tee with the independent power supply. In our field test, the battery is 
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utilized. The bias-tee itself acts as the RF signal path which also isolates the input DC 

component, which always requires a capacitor to AC couple the signal as the following 

model: 

 

 

USRP RF port 
(RF only)

DC power

Active 
antenna 
(RF + DC)

 

Figure 3-3 Schematic of a bias-tee [12] 

 

Part D: USRP with daughterboard and GPS clock kit 

The following Figure 3-4 and Table 3-1 displays the GPSDO kits used to stabilize the 

clock in the experiment and its specifications: 
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Figure 3-4 GPSDO kits 

 

 

GPSDO Module Specifications 

1 PPS accuracy 50ns to UTC RMS (1-sigma) GPS locked 

GPS Frequency L1,C/A 1574MHz 

GPS Antenna Active (5V compatible) or passive 

Sensitivity Acquisition -142 dBm, Tracking -168 

dBm 

TTFF Cold Start: < 45 sec, Warm Start: 1 sec, 

Hot Start: 1 sec 

Warm Up Time / Stabilization 

Time 

<5 min at 25C to 1E-08 Accuracy 

GPS Receiver 50 channels, Mobile, WAAS, EGNOS, 

MSAS capable 

Table 3-1 Module Specification of GPSDO [13] 

 

 

The RF daughterboard used in the experiment is WBX, which is a wide bandwidth 
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transceiver providing up to 100mW of power and its noise figure is 5dB. WBX can 

provide 40MHz of bandwidth capacity and ranges from 50MHz to 2.2GHz, which 

means that the 1.575GHz GPS signals can be successfully sampled using WBX.  

WBX daughterboard also features 2 quadrature front ends, one for transmitting signal, 

one for receiving the signal. The transmit antenna can be TX/RX port, while the receive 

antenna can be appended to TX/RX or RX2 port.  

 

The following Figure 3-5 shows the WBX daughterboard used in the experiments: 

 

 

 

Figure 3-5 WBX daughterboard 
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III.3 Setup the software experimental platform 

 

To connect to the host computer, the Ethernet cable needs to be plugged in and open the 

Ubuntu terminal to input the command to set the USRP to Ethernet IP address: 

sudo ifconfig eth0 192.168.10.1  

The detailed set of commands can be found at 

http://files.ettus.com/manual/page_usrp2.html [23].  

 

One important thing about the Ubuntu Ethernet connection is that, the network manager 

can manage the Ethernet port as the DHCP port which resets the connection with the 

USRP N200. If the connection is constantly lost, we either can use the Linux command 

to give the Ethernet port with the constant IP address or directly disable the network 

manager of controlling the Ethernet connection to let the network manager ignore the 

connection with USRP. 

 

If we wish to check if there are any GNSS signals available for the antenna, we can open 

GRC which is the graphical user interface for GNU radio and open the file in 

/gnuradio/gnuradio/gr-uhd/examples/grc/uhd_fft.grc 

After we set the center frequency to 1.575E09 Hz, if there are any GPS signals available, 

with the bias tee attached. The waterfall diagram obtained from GNU Radio may have 

several brighter colored yellow lines around the center frequency as in Figure 3-6: 

http://files.ettus.com/manual/page_usrp2.html
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Figure 3-6 Waterfall 

 

 

In Figure 3-7 are the diagrams for the spectrum and scope of the GNSS signals： 

 

 

 Figure 3-7 Spectrum and scope of the signal 
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To designate the USRP as a GNSS receiver, the software package has to be installed and 

for this particular application, we use GNSS-SDR. The official website is: www.gnss-

sdr.org and the setup procedure can be referred to the documentation on the website. 

 

One thing need to mention here is that there are two ways to install GNU Radio or UHD 

driver. One is to use the Python Build Overlay Managed Bundle System (PyBOMBS), it 

automatically installs the software needed for GNSS-SDR such as GNU Radio, UHD, 

rtl-sdr etc. The other way is to manually install each software according to their manuals, 

this process is tedious but can ensure that each software can be installed correctly as 

each bundle of software can have several versions, manually installing the software can 

make sure the version is concurrent with other software bundles. 

 

If the software is set up correctly, we can open the Ubuntu terminal again and change to 

the /home/rtds/gnuradio/gnss-sdr/install. 

To use the GNSS-SDR software, we can choose a configuration file inside folder 

/home/rtds/gnuradio/gnss-sdr/conf 

And input the command: gnss-sdr –config_file=gnss-sdr_GPS_L1_USRP_realtime.conf, 

here we use a configuration file designated for GPS L1 signals. We can also use the 

hybrid mode configuration file which is gnss-sdr_hybrid which can acquire both the 

Galileo and GPS signals and utilize the information acquired from both GNSS system 

and combine them to generate the RINEX file to help locating the position, one of the 

http://www.gnss-sdr.org/
http://www.gnss-sdr.org/
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experiment is designated to conduct this hybrid system experiment in Chapter IV. 

 

If the configuration file needs the assisted GPS (A-GPS), this line of script can be set to 

be true to read the XML assisted GPS file to the C++ modules like below: 

GNSS-SDR.SUPL_gps_enabled=true 

 

For USRP N200, the device target should be set to A:0: 

;#subdevice: UHD subdevice specification (for USRP1 use A:0 or B:0) 

SignalSource.subdevice= A:0 

 

If the GPS channels needs to be set to track the particular satellites, we can use the 

following example to write: 

;######### SPECIFIC CHANNELS CONFIG ###### 

;#The following options are specific to each channel and overwrite the generic options 

;######### CHANNEL 0 CONFIG ############ 

;Channel0.system=GPS 

;Channel0.signal=1C 

;#satellite: Satellite PRN ID for this channel. Disable this option to random search 

;Channel0.satellite=11 

;######### CHANNEL 1 CONFIG ############ 

;Channel1.system=GPS 

;Channel1.signal=1C 
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;Channel1.satellite=18 

The channels can be configured to lock to a particular satellite. 

When the software starts working, the console from the Ubuntu will output which 

satellites’ navigation information is ready and the longitude and latitude of the position  

 

Figure 3-8 is the general diagram of the software. The software itself has two very 

important planes. One of them is control plane illustrated in Figure 3-8 as 

GNSSFlowgraph block. It is in charge of creating a flow graph. User can define 

customer receiver by changing the functions of the control plane. Another plane is signal 

processing plane which can implement signal processing functions and define 

implementations according to configuration file which can integrate into 

GNSSBlockInterface in Figure 3-8. 



 

41 

 

 

Figure 3-8 General UML diagram [2] 
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CHAPTER IV 

EXPERIMENT DESIGN AND ANALYSIS 

IV.1 Introduction 

 

This chapter contains all the verification of the assumptions proposed before. The data 

collection part was carried out on several locations both on campus of Texas A&M or 

off campus, so that the results can be more robust. The experiment proposed and 

designed can help illustrate how well the signal reception is for our research platform 

which takes into account of various factors such as weather, algorithms of calculating 

PVT, pseudorange quality and multipath in urban canyons. By conducting these 

experiments, the quality of the signal reception of this research platform was fully 

investigated so that in the future the researchers can have a better sense of how well this 

platform can contribute to the GNSS research and why using this platform can save time 

and increase the efficiency of validating assumptions and ideas. 

 

IV.2 Experiment motivations 

 

The experiment listed in this chapter mainly focuses on those factors which can 

contribute to the GNSS location precision and error. The results obtained from the 

experiments can help us better understand the performance and limitations of this 

research platform. Here is the list of the possible error factors and possible comparison 

experiments can be conducted in Table 4-1. 
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Source Error Distribution [m] Difference with 

Ionosphere delays 10 CORS 

Troposphere delays 1 weather 

PRN Code Noise 1 N/A 

SV Clock 1 model correction/post-

processing 

SV Ephemeris Data 1 model correction/post-

processing 

Psuedo-Ranqe Noise 1 N/A 

Receiver Noise 1 signal 

Multipath Error 0.5 no blocking condition 

Numerical behavior 5 Intermediate Results 

Typical Error with Basic 

GPS 

15 Actual Location 

Table 4-1 GNSS error source [24] 

IV.3 Experiment design and statistics

The basic procedures of conducting an experiment is listed below in Figure 4-1: 
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Figure 4- 1 Experimental procedure 

The major performance criteria consist of two parts, Figure 4-2 can demonstrate the 

relationship between them. 

X-Axis

Y-
Ax

is

Probability
Density

Accuracy

Value
Precision

Reference
Value

Figure 4-2 Accuracy VS Precision [21] 

Set up system

• Connect hardware part together

• Configure the software environment (solve driver and library conflict)

Propose the 
experiment

• Design the experiment based on the assumptions

• Write the configuration script according to the design

Satellite 
Visibility

• Use GPredict to find out the satellite information

• Change the SDR channel according to the satellite position

SDR 
configuration

• Change the signal processing setup algorithm

• Change positioning calculation algorithm

Field test

• Take the experimental platform outside to collect data

• If doing comparison experiment, the comparing factor is the only variable which can be changed

Post processing 
data

• Use RTKlib, GPStk to analyze and visualize the data

• Use MATLAB, GNUplot to write personal data processing script
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The precision has the mean value which is not the reference value. The difference 

between them is the accuracy. 

To describe the precision of the value measured, several statistical terms will be used as 

below: 

DRMS: It is the root mean square of the squared x, y direction (longitude, latitude) 

errors, which is √𝜎𝑥
2+𝜎𝑦

2 meaning 65% of the points are in DRMS circle.

2DRMS: It is twice the DRMS of the x, y direction (longitude, latitude) errors which is 

2√𝜎𝑥
2+𝜎𝑦

2 meaning 95% of the points are in 2DRMS circle.

CEP: It is the radius of a circle centered at the average of the points containing 50% of 

the measured position points which are equal to 0.56𝜎𝑥 + 0.62𝜎𝑦. 

Delta (latitude, longitude): The difference of the measured average longitude and 

latitude to the actual SDR’s latitude and longitude in meters. In the following 

experiment, latitude and longitude also represent north and east measurement. 

IV.4 Compare software defined radio with Continuously Operating Reference 

Station (CORS) 

Aim: This experiment aims to find out the performance of software defined radio in a 

field test with CORS as well as the ionosphere effect on positioning. CORS information 

is downloadable online including its RINEX files, coordinates, log files and IGS 

ephemeris. 
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Method: The SDR was placed around 50 meters from the CORS satellite and its RINEX 

file was also saved. Both CORS and SDR has no blocking from buildings or trees so that 

this experiment is free from multipath transmission. 

Results and analysis: In Figure 4-3 shows the comparison of the pseudorange for SDR 

on the left and CORS on the right, the pseudorange plot below was obtained from the 

SDR and CORS RINEX file, x-axis is the point number, y axis is the pseudorange in 107 

meters. 

 Figure 4-3 Pseudorange comparison USRP and CORS 
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From the first comparison in Figure 4-3, it is possible that the USRP still has some clock 

drifting issues which create some gaps in the pseudorange as all the pseudorange drifts at 

the same time. These clock drifts may impact the final position calculated using the 

algorithm in GNSS-SDR, but it can also be modified and adjusted using some open 

source software to move the points which are ambiguous. In the second comparison in 

Figure 4-3, the SDR has some gap in the pseudorange at initialization, which possibly 

means the acquisition algorithm need to initialize the data collected first. Also data 

collected from SDR is denser then CORS data on the diagram. The increment for SDR 

are 0.1 second while CORS is 1 second. From the Google Earth plot, it is clear that due 

to some pseudorange drift shown in Figure 4-3, the positioning of the SDR also 

sometimes drifts away from the actual location. But most of the time, the positioning of 

the SDR is within 10 meters from the actual location displayed as yellow arrow in Figure 

4-4. 

Figure 4-4 Google Earth location plot near DOT 
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IV.5 Effect of weather 

Aim: This experiment is designed to find out if the weather can contribute to the 

accuracy and precision of the GNSS SDR, when the weather is cloudy, the troposphere 

can add the signal path length to the receiver, without the corrections on this factor, the 

experimental results can be quite different when the weather is sunny (low troposphere 

effect) or when the weather is cloudy (high troposphere effect) [14]. 

Method: Place the SDR on the rooftop of HRBB (computer science and engineering) and 

record the GNSS data for 5 minutes. The rooftop has no blocking of viewing the 

satellites in the sky and the weather. Record GNSS data in different weather condition, 

sunny or cloudy as Figure 4-5 shows. 

Figure 4-5 Weather sunny (left) cloudy (right) 
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Results and analysis: The overall scatter points on Google Earth for both sunny and 

cloudy weather is in Figure 4-6 and the red line is the cloudy weather, green line is the 

sunny weather: 

Figure 4-6 Google Earth plot weather effect 

From Figure 4-6, it is clear that in cloudy weather the calculated location is varying 

more than in good weather. In Figure 4-7, the longitude and latitude data are converted 

to east and north position in meters and plotted to demonstrate the how big the varying is 

on both longitude and latitude. The high troposphere graph is the cloud weather and the 

low troposphere graph is the sunny weather. From Figure 4-7, the cloudy weather’s 

location data is varying much bigger than the sunny weather’s location data. 
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Figure 4-7 East and north plot of weather (0 is their own average) 
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In Table 4-2, error analysis data in meters are listed: 

Low troposphere 

effect 

High troposphere 

effect 

Standard deviation East 6.12 2.94 

Standard deviation North 10.44 3.77 

CEP 9.77 3.96 

2drms 24.2 9.57 

Delta East (to actual) 2.86 8.42 

Delta North (to actual) 1.73 7.78 

Table 4-2 Statistics analysis effect of weather 

From Table 4-2, the standard deviation of longitude and latitude demonstrates that the 

troposphere can change the precision of the location by around 5 meters in this 

experiment. In Figure 4-8, the precision scatter plot of the sunny (good weather) and 

cloudy (bad weather) is shown. From the plot, it is noticed that the troposphere managed 

to affect the precision of the location in this experiment. It is also observed from Table 

4-2 that the delta value of longitude and latitude from the actual location is different. The 

cloudy weather has a higher accuracy in this experiment. The explanation here is when 

we located the actual location on Google Map, it wasn’t exactly the actually the position 

of the SDR was placed. This may cause some errors of accuracy. 
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Figure 4-8 Weather precision 
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IV.6 Effect of Multipath 

Introduction: GNSSS data from USRP can be utilized for the improvement of the 

reception of the signals. For examples, in urban canyons, the GNSS signals can often be 

blocked by skyscrapers or buildings which leave less available satellites to be detected 

which cause the multi-path problem [15]. Figure 4-9 depicts such scenario: 

Figure 4-9 Multipath in urban canyon [16] 

The direct-path signal from the satellites and the reflected signal from the buildings or 

rooftops as saw from Figure 4-9 are the two types of signals which the GNSS receiver 

can acquire. 
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To solve the multi-path problem, lots of research were conducted on the integrity of 

signals which compare the multi-path signal and direct-path signal and use the special 

multipath limiting antennas to reduce the problem [17]. 

However, in an urban canyon, if the satellite is blocked from the line of sight, no direct-

path can be identified, and the only signal acquired from the receiver is just the 

multipath signal. And the multipath signal couldn’t be used as the satellite signal to 

calculate the position. 

Thus, those methods based on the comparison of the direct-path signal couldn’t be 

utilized. Under such circumstances, it is necessary to develop a new methodology to 

solve the problem of multi-path signal in urban canyons and validate such methodology 

on software defined radio. 

To explain the skyplot, it is an interesting graphic that combines some of the information 

presented in the other graphics. Basically, the skyplot tracks the movement of satellites 

in terms of elevation (inclination) and azimuth (North, South, East, West). At various 

points along each track, one can obtain the hour of the day (in military time) [18]. In 

Figure 4-10 is the skyplot with the tracks of satellites in an urban canyon. 
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Figure 4-10 Skyplot of satellites 

Aim: This experiment is trying to figure out the effect of urban canyon and how the 

selection of the satellites can reduce this effect. This experiment is quite useful to 

validate the effectiveness choosing the direct satellite signal. 

Method: The input needed for this experiment is the viewshed skyplot as well as the 

track of each satellites on the skyplot. The viewshed skyplot can be generated using 

different methods such as fisheye camera to capture the sky in urban canyons [25]. In 

our case, the viewshed skyplot is obtained using the shape files of the building and the 

height of each building in the urban canyon. 
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After obtaining the viewshed skyplot, the experiment can start comparing the accuracy 

of the receiver by selecting the satellites whose elevation is high enough so that no 

multipath signal can be generated to reach the receiver or randomly select the satellites 

which are visible to the receiver. In random selecting case, there is chance that the signal 

received from the satellite is reflected as the elevation of the satellites is not tall enough 

to avoid the reflection. 

The SDR can be placed inside a small urban canyon on campus and record roughly the 

same length of data for random selecting satellite case and fixed channel case. The 

results of the comparison will be displayed on Google Earth, EN graph which can 

 Figure 4-11 Viewshed skyplot near HRBB 
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demonstrate whether or not selecting the satellites without the concern of multipath 

would help improve the accuracy and precision of GNSS positioning. 

Results: The SDR was placed near the Ross and Spence St. The generated viewshed 

skyplot from the python code which was implemented is in Figure 4-11. Using random 

search, the SDR can sometimes capture the signal strength which is above the threshold 

but below the average of other satellites. This can be an indication of a multipath signal 

which was reflected and received and this scenario can change the pseudorange 

measured from the actual satellite thus changes the accuracy and precision of locating 

the SDR [19]. 

We did find out some signals may be reflected as they weren’t in the viewshed and their 

signal strength is the lower than the satellites in the viewshed. It is the satellite G4 which 

is not in the viewshed in Figure 4-12 but still appears in the pseudorange calculations. 

Figure 4-12 Satellite G04 not in viewshed 
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The arrow points to G4. If we compare the SNR plot generated from RTKlib of G04 left 

with another satellite G30 right in Figure 4-13. 

G30 is in the viewshed and its SNR is around 10 dB more than G4 which is not in the 

viewshed. 

Using the random search method, some potential multipath signal can be received and 

used as the calculation of the position. To fully eliminate such scenario, we can fix the 

channels of SDR to only receive the signal in the viewshed which means the effect of 

multipath can be reduced. The detailed setup of random search and fixed channel search 

can be referred to Chapter 3. 

Figure 4-13 SNR comparison 
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We only selected the satellites which are in the viewshed in Figure 4-14. 

And its SNR plot of a fixed satellite is in Figure 4-15 

Figure 4-15 SNR fixed channel 

Figure 4-14 Fix channel skyplot 
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The fixed channel method has no suspicious satellite whose signal received can be 

reflected on the wall or rooftop of buildings and the SNR of the satellites is higher than 

the SNR of satellites not in the viewshed. 

The overall positioning on the Google Earth is as the following, the red line is the result 

of the random search method which may have multipath effect and the blue line is the 

fixed channel method solution which has smaller multipath affection, the arrow points to 

the point where SDR was placed in Figure 4-16. 

Figure 4-16 Fixed channel and random search near HRBB 
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Detailed statistics of the positioning are in Table 4-3. 

Fixed Channel 

(avoid multipath) 

Random Search 

(possible multipath) 

Standard deviation East 2.7 7.8 

Standard deviation North 4.5 10.4 

CEP 4.3 10.8 

2drms 10.5 26.1 

Delta East (to actual) -6.6 -19.7 

Delta North (to actual) -9.58 -55 

Table 4-3 Statistics analysis fixed and random search 

The East and north position plot is in Figure 4-17: 
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Figure 4-17 East and north plot (0 is their own average) 

And the precision scatter plot is in Figure 4-18. Same as the weather effect experiment. 

From the statistics table and scatter plot, it is clear that the random search method 
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somehow captures the signal which is different from the fixed channel search signal and 

change precision and accuracy of positioning. The detailed multipath effect on the 

pseudorange from the G4 is still unknown. But from the analysis above, it can be 

concluded that if SDR is inside the urban canyon. The way of avoiding or minimizing 

the multipath signal is to set the receiving channels to the satellites in the viewshed and 

ignore those satellites not in the viewshed. 

Figure 4-18 Precision plot near HRBB 
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Figure 4-18 Continued 

IV.7 Using hybrid GNSS system versus using single GNSS system 

Introduction: With the development of GNSS system, the receivers nowadays have the 

ability to receive the signal from a hybrid GNSS system. For example, mobile phones 

using iOS or Android system can support both GPS and GLONASS navigation signal. In 

an urban canyon, as discussed before if the number of satellites which can directly send 

the signal to the receiver is lower than 4, the receiver can’t locate itself in Chapter 1. 
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However, if the receiver can use satellites signal from multiple GNSS system, the 

number of satellites is greater than 4, the receiver can locate itself. 

Aim: This experiment tends to find out how well the hybrid GNSS system comparing 

with single GNSS system by measuring the accuracy and precision of positioning. 

Method: As the GNSS-SDR software can only support the reception of Galileo and GPS 

system, and there are only four Galileo satellites are in operational state, in which one of 

them is in repair. Our research group tried really hard to find out if there are any chances 

of doing real-time experiment, but we found out that is not the purpose of this 

experiment. So in this experiment, the data was already recorded and played back by 

SDR. The simulated results can still help to demonstrate the aim of the experiment. The 

recorded data can be played back using the option in GNSS-SDR software configuration 

file which can set the signal source to file signal source. 

Results: Use the simulated data as showed in the table below, the hybrid system using 

both Galileo and GPS satellites has the worst performance comparing with single GNSS 

system. 
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8 GPS 8 Galileo 4 GPS and 

3 Galileo 

Standard 

deviation East 

1.1 1.37 1.89 

Standard 

deviation North 

1.7 1.27 2.42 

CEP 1.7 1.56 2.57 

2drms 2 3.7 6.2 

Delta East (to 

actual) 

-0.56 1.19 -1.81 

Delta North (to 

actual) 

1.32 1.92 3.6 

Table 4-4 Hybrid system versus single GNSS system in [m] 

But the accuracy and precision of using hybrid system is within the 5 meters which 

means that the hybrid system can’t perform as the same as the single GNSS system, but 

Hybrid system can work well when the single GNSS system doesn’t have enough 

satellites available as shown in Figure 4-19 on the accuracy and precision plot. One 

possible reason is perhaps the hybrid system only has 7 satellites comparing to single 

GPS or Galileo system which has 8 satellites. 
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Figure 4-19 Accuracy and precision plot GNSS system [2] 

If the hybrid system can have the exact number of the satellites, the result can be 

improved which can shrink the size of the green circle in Figure 4-19 and Table 4-4. 
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IV.8 Least square methods

Aim: GNSS-SDR software uses the least square method to calculate the position and 

speed, but the difference of using different averaging values is still unknown. This 

experiment is just testing the performance of using two separate least square averaging 

values. 

Method: Place the SDR on the rooftop of HRBB with only the difference of least square 

averaging values. In the first run, the averaging value is 500, and in the second run. The 

value is 100. 

Results: statistics table and the graphical plot of different averaging values are as the 

following. 



69 

Figure 4-20 Google Earth Plot of different averaging number 

In Figure 4-20, the red line is the averaging number 500 plot and blue line is the 

averaging 100 plot. The less the number of averaging, the more fluctuations of the 

location are. 

Here is their east and north location plot, it is obtained using the same methodology the 

experiment of the effect of weather. 
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Figure 4-21 East and north plot least square (0 is their own average) 
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Average 500 Average 100 

Standard deviation East 0.24 2.27 

Standard deviation North 0.64 5.7 

CEP 0.52 4.7 

2drms 1.36 12.26 

Delta East (to actual) 36.3 35.92 

Delta North (to actual) -13.2 -23.56 

Table 4- 5 Statistics analysis of different averaging 

Figure 4-22 least square averaging precision plot 
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Figure 4-22 Continued 

Using the same methodology in effect of weather experiment to analyze the GNSS data 

in Table 4-5. The EN plot and scatter plot are shown in Figure 4-21 as well as Figure 4-

22. It can be observed that the higher of the averaging number of the algorithm the better

the accuracy and precision of positioning is. The possible reason is the algorithm used in 

the software package is not that sophisticated which means the user can implement 

customer design of calculating the position. 
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IV.9 Using SDR as a moving receiver 

 

Introduction: GPS navigation products can be seen every day in cars, and it measures the 

moving location and speed. If the SDR can only measure the static location, that would 

restrict the ability of the receiver to improve the algorithm to calculate the position and 

speed in real-time.  

 

Aim: This experiment is trying to test the locating ability of the platform to see if 

whether or not the current least square algorithm is good enough for moving object test 

and whether the algorithm can be improved to conduct such experiment. 

 

Method: The SDR is placed on the moving car. The antenna is attached to the top of the 

car. The route of the moving car was recorded as well as the calculated moving path of 

the receiver. Compare the two routes and find out if the algorithm of the receiver can be 

improved. The actual route is from Google Map. 
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Results: Figure 4-21 is the comparison of the actual route of the car driving from CORS 

in Bryan to Texas A&M campus with the route measured using the SDR. 

In Figure 4-21, on the left is the actual route, on the right is the measured route from the 

software. 

 

From the comparison of the graph it can be observed that SDR in the moving car may 

not give a good measurement of the actual route as the least square algorithm uses the 

method which averages the raw location points and merges to a more precise location 

point which can be observed on the measured route plot as the spikes of the red line. The 

 Figure 4-23 Actual route (left) VS measured route (right) 
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ambiguous points swinging from the actual route are possibly those pseudorange drifting 

from the actual ones in pseudorange comparison experiment. Without these spikes, the 

route is similar to the actual one. We believe the commercialized navigation GPS such as 

Garmin and TomTom can use a more sophisticated method such as Kalman filter to 

eliminate the effect of the inaccuracy of the pseudorange from initialization or possibly 

clock drifting. 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

V.1 Conclusions 

 

In this thesis, we built a portable GNSS research platform which is feasible to carry out 

experiments to verify the factors which can contribute to the accuracy and precision of 

SDR locating ability. The open source software GNSS-SDR provided us with the 

reconfigurable architecture which can be modified to track the specific GNSS satellite 

signal and use the hybrid system to validate those key factors in SDR positioning. For 

example, the effect of troposphere, ionosphere and PVT algorithm.  

 

By conducting various experiments at different locations, we can find out that the results 

obtained from real-time experiment can demonstrate some critical issues in GNSS signal 

reception, for instance, the multipath problem and user clock problems. The 

experimental results are not only providing us with how crucial for a particular location 

the signal reception condition is, but also guiding us to develop the new algorithm and 

new methodology for minimizing the effect of those factors which can cause errors in 

positioning. From the experimental data analysis, it can be verified that we can change 

the configuration of the SDR and develop new methodology to minimize the errors 

contributing to the positioning and those experimental data can be reused and played 

back for the future GNSS research needs. The software itself can create the RINEX file, 
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NEMA file and PVT file which can be post-processed and evaluated in various GNSS 

software to save future research and debugging time. 

 

V.2 Future work 

 

The SDR itself still has some issues with the user clock which can sometimes make the 

experiment results suspicious. In the future, the atomic clock can be attached to the 

USRP to minimize the effect of the user clock. The software uses the least square 

method to calculate the position, the results gained in real-time can be linear not random, 

we have to develop our own more sophisticated algorithm to calculate. Last but not least, 

although the data can be post-processed using DGPS and corrections, it is desirable that 

the software itself can obtain the information of the GNSS signals coming through 3G or 

LTE network.  
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