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ABSTRACT 

 

Comparative Genomic Analysis of Adaptive and Economic Traits Related Genes in 

Southern Pines.  (August 2010) 

Tomasz Edmund Koralewski, B.S., Kazimierz Wielki University in Bydgoszcz, Poland; 

M.S., University of Technology and Agriculture, Bydgoszcz, Poland 

Chair of Advisory Committee: Dr. Konstantin V. Krutovsky 

 

Four major Southern pines, Pinus echinata Mill., P. elliottii Engelm., P. palustris Mill. 

and P. taeda L. are evolutionarily young and closely related.  They have not been 

intensely researched except P. taeda.  In this study we addressed the questions of exon-

intron structure, nucleotide variation and neutrality in adaptive and economic traits 

related genes, and phylogenetic relationships between these pines.  Using publically 

available data in the NCBI databases, we first developed a series of statistical regression 

models.  We defined functional relationships between the parameters that can be easily 

estimated from a small data sample (e.g. mean exon length and exon/gene ratio), and 

parameters that are difficult to assess (e.g. number of genes and exons).  Second, we 

examined the effects of selection upon the set of studied genes in the four pines.  We 

collected data from individuals representing all four Southern pines and merged them 

with previously published data, and applied four neutrality tests: Tajima’s D, McDonald-

Kreitman (MK), Hudson-Kreitman-Aguade (HKA), and synonymous-nonsynonymous 

nucleotide substitutions ratio.  Finally, we analyzed phylogenetic relationships between 
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the four Southern pines, and with respect to other selected pine species (P. radiata, P. 

pinaster and P. sylvestris), for which the nucleotide sequence data orthologous to the 

sequences newly generated in this study were available in the NCBI GenBank.  We 

applied Maximum Parsimony, Maximum Likelihood and Bayesian Inference 

approaches.   

Based on the statistical models we expect about 13-14 thousand genes in an 

organism with the mean exon length of 334.8 bp (like P. taeda).  This number could be 

higher in plants (20-21 thousand).  Furthermore, we identified signatures of selection in 

some of the studied genes, and demonstrated that different parts of a gene could be under 

different forms of selection.  Therefore, the results of the neutrality tests performed at 

the entire gene level could be misleading.  Finally, using twelve nuclear loci we 

confirmed very tight phylogenetic relationships within the subsection Australes, but the 

conclusions were not robust.  Using two exclusive sets of three genes led to robust but 

conflicting results.  Therefore, we demonstrated that conclusions about “species” trees 

based on “gene” trees may be misleading, especially for closely related species. 
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1.  INTRODUCTION 

 

Four major Southern pines, Pinus echinata Mill. (shortleaf pine), P. elliottii Engelm. 

(slash pine), P. palustris Mill. (longleaf pine) and P. taeda L. (loblolly pine) grow in a 

diverse area that stretches from subtropical to warm temperate climate across thirteen 

Atlantic coast and Southern states.  They provide enormous, multiple benefits to the 

ecosystem and human society. 

Southern pine forests play a very important ecological role in carbon sequestration 

and climate change mitigation (Johnsen et al. 2001; van Minnen et al. 2008; Fahey et al. 

2010; Malmsheimer et al. 2008).  They provide habitat for many microbial, fungal, plant 

and animal species directly (e.g. for arthropods, birds and deer; Dickson and Segelquist 

1979; Melchiors et al. 1985; Collins et al. 2002) and indirectly for species living in 

understory and litter layers (Carey and Johnson 1995; Holmes and Robinson 1988).  

Their seeds are an important food source for birds and rodents (Schultz 1999), and 

seedlings are browsed by larger animals (Michael 1985).  They are keystone species and 

vital components of various management policies, e.g. soil erosion control, soil 

stabilization and watershed protection, and may play an important role in fire ecology 

through forest stand regeneration (Schultz 1999).  They are also a recreational and 

ornamental component of the landscape. 

 

____________ 
This dissertation follows the style of Tree Genetics & Genomes. 
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Southern pines are among the most economically important crops cultivated in the 

USA (USDA Forest Service), providing lumber and pulp.  They are also a great potential 

source for biofuel and alternative energy production (e.g. Frederick et al. 2008). 

Despite the ecological and economic value, and with the exception of loblolly pine, 

the Southern pines are not as intensely researched as other crops.  The loblolly pine is 

the most studied conifer species and has become a model species for conifers (Krutovsky 

et al. 2004).  Although the genomic studies in pines are hindered by their large genome 

size (e.g. loblolly pine genome is ~24Gb, i.e. a few times larger than human genome; 

Grotkopp et al. 2004), significant progress has been made in comparative mapping and 

nucleotide polymorphism studies in recent years (e.g. Krutovsky et al. 2004; Krutovsky 

and Neale 2005; Neale and Ingvarsson 2008; Brown et al. 2004).  The complete genome 

sequence for P. taeda is underway (USDA AFRI 2010).  Because no other closely 

related coniferous species has been entirely sequenced, complete assembly and 

annotation is likely to be a very time-consuming process and pose multiple challenges. 

In two previous large-scale studies on P. taeda, 34 drought-stress response, drought 

resistance and wood-quality related genes were analyzed for nucleotide diversity, 

linkage disequilibrium (LD) and signatures of selection (Gonzalez-Martinez et al. 2006a; 

Brown et al. 2004).  Both samples included up to 32 individuals originating from various 

locations of the natural range of loblolly pine.  In both studies the authors found low 

level of LD, moderate nucleotide diversity, and no population genetic structure.  Despite 

some potential signatures of selection identified, the authors failed to reject neutrality in 

both studies.  In addition, Gonzalez-Martinez et al. (2006a) did not find any evidence of 
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selection acting upon an amino acid.  However, only in the latter study were interspecific 

comparisons done, where P. pinaster was used as an outgroup.  Interspecific tests, such 

as MK (McDonald and Kreitman 1991) and HKA (Hudson et al. 1987), are better suited 

for distinguishing the effects of demographic events from the effects of selection.  We 

largely expanded this analysis via including multiple pine species.  Applying these tests 

to the four Southern pines is particularly important because these species went through a 

severe bottleneck during the last glacial period that ended about 15,000 years ago.  

During this time their range is thought to have been constricted to two refugia, central 

Florida and the Caribbean, and Southern Texas and Mexico (Jackson et al. 2000; Wells 

et al. 1991; Schmidtling et al. 1999; Al-Rabab'ah and Williams 2002). 

The recent common ancestry, common history and greatly overlapping habitat make 

relationships between the four Southern pines difficult to dissect.  This problem has been 

addressed in larger phylogenetic studies on the genus.  They have consequently been 

placed within subsection Australes; however, despite various methods applied and use of 

morphological and molecular data from both chloroplast and nuclear genomes, 

consensus about the ancestry within this group has not been reached (e.g. Grotkopp et al. 

2004; Gernandt et al. 2005; Eckert and Hall 2006).  We also largely expanded this 

phylogenetic analysis via including multiple additional genes. 

In this study we focused on gene structure, nucleotide variation in wood quality and 

drought hardiness related genes, and phylogenetic relationships between the four 

Southern pines, in order to understand adaptive and evolutionary processes in these 

species and in the genus (Krutovsky and Neale 2005; Gonzalez-Martinez et al. 2007; 
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Gonzalez-Martinez et al. 2006a; Gonzalez-Martinez et al. 2006b).  The main objectives 

of this study were to: 

1) examine exon-intron structure and alternative splicing across evolutionarily diverse 

well-studied model organisms, and create regression models that could be used in 

pines for predicting genome-wide characteristics, such as number of all genes and 

number of all exons, based on parameters that are much easier to estimate, e.g. 

exon length and exon-gene ratio; 

2) find selection signatures in wood quality and drought hardiness-related genes in the 

four Southern pines using neutrality tests; 

3) refine the phylogenetic relationships between the four Southern pine species within 

the subsection Australes, and with other pine species in the family Pinaceae using 

genomic nucleotide sequence data. 

The ability of predicting the genome-wide characteristics in the species, whose 

genomes have not been completely sequenced, including loblolly pine, will help guide 

the process of annotation and assembly of the genomic sequences.  As more data become 

available, the regression models may be fine-tuned which will increase their precision. 

The application of the neutrality tests to the expanded set of species and number of 

individuals will not only increase the statistical power of the data, but also allow for 

more thorough interspecific comparisons within the group of Southern pines.  The data 

used for these analyses will also be used to investigate the phylogenetic relationship 

within this closely related group of Southern pines. 
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2.  EVOLUTION OF INTRON-EXON STRUCTURE AND ALTERNATIVE 

SPLICING: WHAT WE LEARNED FROM COMPLETELY SEQUENCED 

GENOMES AND CAN PREDICT FOR NON-MODEL SPECIES 

 

2.1.  Overview 

Despite significant advances in high-throughput DNA sequencing, many important 

species remain understudied at the genome level.  Using NCBI GenBank database we 

performed a genome-wide analysis of such characteristics as alternative splicing, number 

of genes, gene products and exons in 36 completely sequenced model species.  We 

created statistical regression models to fit these data and applied them to loblolly pine, 

an important species whose genome has not been completely sequenced yet.  Using 

these models, the genome-wide characteristics, such as exon length and exon-gene ratio, 

can be predicted based on parameters estimated from available genomic data. 

 

2.2.  Introduction 

Recent advances in high-throughput DNA sequencing led to significant progress in 

complete genome sequencing and opened unprecedented opportunities for comparative 

genome studies (Chi 2008; Mardis 2008; von Bubnoff 2008; Wheeler et al. 2008).  The 

complete genome sequences are publicly available from constantly growing databases, 

such as the National Center for Biotechnology Information (NCBI) GenBank, and can be 

readily analyzed and compared for a number of evolutionarily distant species.  The early 

comparisons revealed that the number of genes and metabolomic complexity 
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progressively increase as species become more evolutionarily advanced (Adami et al. 

2000; Lynch and Conery 2003; Graveley 2001; Valentine 2000), but their anatomical, 

morphological, physiological and behavioral complexity does not linearly correlate with 

the total number of genes discovered.  For instance, whereas the number of protein 

coding genes in the human genome is only 14% greater than in the roundworm 

Caenorhabditis elegans, the evolutionary differences between these two species are 

immense.  This suggests that regulatory and post-transcriptional processes might play an 

increasingly more important role throughout evolution.  There are numerous 

mechanisms, processes and structures that affect gene regulation, such as methylation, 

chromatin structure, regulatory elements, transcription factors, polyadenylation, 

posttranslational modifications and compartmentalization of proteins, and others (for 

review see Orphanides and Reinberg 2002).  However, alternative splicing (AS) is the 

only post-translational process that can increase proteomic complexity and number of 

various proteins without increasing the number of genes.  Due to post-transcriptional 

modification and rearrangement of exons in the process of AS, additional variants are 

created among the mature mRNA transcripts (e.g. Black 2003; McKeown 1992).  AS 

can promote adaptive and evolutionary potential of species without increasing the 

number of genes and maintenance cost that could be associated with it.  For instance,  

the total hypothetical number of various proteins encoded by the DSCAM gene can reach 

38,016 in Drosophila melanogaster (Black 2000).  Therefore, one may expect that more 

evolutionarily advanced organisms have more elaborated and complex AS.  We 

addressed this hypothesis in more detail in our study.  Our objectives were to examine 
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exon-intron structure in genomes of completely sequenced and fully annotated species, 

to infer AS data and to use this information for defining relationships between genes and 

proteomic complexity.  We expect that these relationships can be used to predict the 

anticipated exon-intron structure and proteomic complexity in non-model species with 

large genomes, such as pines, that may remain unsequenced for a while.  We applied our 

findings to loblolly pine (Pinus taeda L.), one of the most-studied coniferous species, 

which has a very large genome of 24.56 pg (~24 Gb; Grotkopp et al. 2004); complete 

genome sequencing for loblolly pine is underway (USDA AFRI 2010), but is still 

problematic and unavailable.  The obtained knowledge is also essential for 

understanding the genetic control of the metabolomic complexity and functionality in the 

studied species and the evolutionary significance of AS in general. 

 

2.3.  Materials and methods 

Selection of completely sequenced species for analysis.  We selected the 36 most-

annotated and featured species (Table 1) from eukaryotic genomic assemblies available 

in the NCBI GenBank (Benson et al. 2009).  For 10 species in our set (Arabidopsis 

thaliana, Caenorhabditis elegans, Drosophila melanogaster, Encephalitozoon cuniculi, 

Eremothecium gossypii, Homo sapiens, Mus musculus, Oryza sativa, Saccharomyces 

cerevisiae and Schizosaccharomyces pombe), data have been also entirely or almost 

entirely supported by records other than those provided by the NCBI GenBank.  AS in 

rice was not documented in the present NCBI GenBank genome annotation, although it  
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Table 1  Exon-intron gene structure in completely sequenced genomes of 36 species 
 

Taxonomic 
group Species 

Genes Protein 
coding / 

Total 
gene 
ratio  

CDSs Exons 

Exon length CDS length 
Exon / 
Gene 
ratio All Protein 

coding Mean SD Median Mean SD Median 

Excavata Leishmania braziliensis 7,898 7,897 0.9999 7,898 7,998 1,844.8 1,732.2 1,383.0 1,868.2 1,771.0 1,395.0 1.013 

Leishmania infantum 7,993 7,993 1.0000 7,993 8,069 1,839.9 1,660.6 1,401.0 1,857.6 1,720.0 1,401.0 1.010 

Trypanosoma brucei 9,336 8,772 0.9396 8,772 8,774 1,506.2 1,472.2 1,158.0 1,506.5 1,472.3 1,158.0 1.000 
Chromalveolata Cryptosporidium parvum 3,885 3,396 0.8741 3,396 3,440 1,821.1 1,942.4 1,321.5 1,844.7 1,945.5 1,341.0 1.013 

Guillardia theta 742 632 0.8518 632 648 851.1 747.6 625.5 872.6 745.2 633.0 1.025 

Hemiselmis andersenii 524 471 0.8989 471 471 1,018.3 808.6 774.0 1,018.3 808.6 774.0 1.000 

Plasmodium falciparum 5,300 5,263 0.9930 5,267 12,651 949.6 1,767.0 201.0 2,280.8 2,588.6 1,386.0 2.404 

Theileria parva 4,089 4,035 0.9868 4,035 14,447 393.2 680.8 159.0 1,408.0 1,230.2 1,080.0 3.580 
Amoebozoa Dictyostelium discoideum 13,322 13,322 1.0000 13,331 30,441 686.9 1,016.4 314.0 1,569.2 1,510.9 1,149.0 2.285 
Fungi Aspergillus fumigatus 9,859 9,630 0.9768 9,630 28,259 504.0 679.7 274.0 1,479.0 1,114.2 1,248.0 2.934 

Aspergillus niger 14,420 14,086 0.9768 14,086 50,371 370.4 565.1 176.0 1,324.4 1,103.9 1,089.0 3.576 

Candida glabrata 5,499 5,271 0.9585 5,272 5,356 1,485.5 1,104.1 1,239.0 1,509.2 1,097.6 1,260.0 1.016 

Cryptococcus neoformans 6,407 6,273 0.9791 6,475 39,350 257.2 327.8 150.0 1,608.8 1,105.8 1,371.0 6.273 

Debaryomyces hansenii 7,081 6,866 0.9696 6,872 7,227 1,274.3 1,036.1 1,059.0 1,340.5 1,026.7 1,113.0 1.053 

Encephalitozoon cuniculi* 2,029 1,996 0.9837 1,996 2,011 1,072.3 812.2 846.0 1,080.4 810.2 852.0 1.008 

Eremothecium gossypii* 4,971 4,714 0.9483 4,714 4,940 1,406.1 1,109.2 1,164.0 1,474.7 1,093.9 1,228.5 1.048 

Gibberella zeae 11,619 11,619 1.0000 11,619 37,454 477.2 699.6 242.0 1,538.2 1,233.6 1,272.0 3.224 

Kluyveromyces lactis 5,504 5,331 0.9686 5,331 5,461 1,377.1 1,062.9 1,146.0 1,410.7 1,054.8 1,173.0 1.024 
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Table 1  Continued 
 

Taxonomic 
group Species 

Genes Protein 
coding / 

Total 
gene 
ratio  

CDSs Exons 

Exon length CDS length 
Exon / 
Gene 
ratio All Protein 

coding Mean SD Median Mean SD Median 

Fungi Neurospora crassa 10,093 9,699 0.9610 9,709 26,598 533.5 747.1 241.0 1,462.6 1,199.4 1,215.0 2.742 

Pichia stipitis 5,816 5,816 1.0000 5,816 8,383 1,025.5 954.8 816.0 1,478.1 1,043.1 1,251.0 1.441 

Saccharomyces cerevisiae* 6,136 5,861 0.9552 5,861 6,185 1,412.6 1,132.8 1,179.0 1,490.7 1,149.2 1,224.0 1.055 
Schizosaccharomyces 
pombe* 5,374 5,083 0.9459 5,084 9,844 722.9 964.7 338.0 1,400.4 1,101.6 1,140.0 1.937 

Ustilago maydis 6,604 6,495 0.9835 6,495 11,373 1,052.2 1,242.2 569.0 1,842.4 1,363.9 1,509.0 1.751 

Yarrowia lipolytica 7,180 6,660 0.9276 6,661 7,402 1,295.4 1,086.6 1,089.0 1,439.7 1,084.8 1,191.0 1.111 
Viridiplantae Arabidopsis thaliana* 28,245 26,977 0.9551 30,705 138,876 236.8 316.5 134.0 1,208.0 883.6 1,041.0 5.148 

Oryza sativa 29,102 26,777 0.9201 26,777 128,267 250.2 353.9 132.0 1,198.3 868.4 1,023.0 4.790 

Ostreococcus 'lucimarinus' 7,603 7,603 1.0000 7,603 9,767 944.8 1,109.6 744.0 1,213.7 1,210.1 966.0 1.285 
Metazoa 
(Nematoda) 

Caenorhabditis briggsae 17,363 16,429 0.9462 16,429 98,457 209.8 228.2 149.0 1,257.1 1,104.2 996.0 5.993 

Caenorhabditis elegans* 21,172 20,174 0.9529 23,759 124,949 203.1 227.9 146.0 1,322.0 1,423.6 1,029.0 6.194 
Metazoa 
(Arthropoda) 

Anopheles gambiae 12,423 11,971 0.9636 12,500 48,875 358.2 470.5 205.0 1,454.4 1,533.1 1,077.0 4.083 

Drosophila melanogaster* 14,807 13,887 0.9379 17,837 56,580 401.0 560.7 216.0 1,719.8 1,868.3 1,266.0 4.074 

Drosophila pseudoobscura 11,875 9,606 0.8089 9,707 39,256 383.9 448.9 222.0 1,553.0 1,396.3 1,206.0 4.087 
Metazoa 
(Mammalia) 

Canis lupus familiaris 19,384 19,380 0.9998 31,837 194,624 169.2 243.8 124.0 1,748.3 1,599.6 1,311.0 10.043 

Homo sapiens* 25,074 23,055 0.9195 27,904 201,083 174.5 277.6 124.0 1,548.4 1,852.9 1,128.0 8.722 

Mus musculus* 26,314 25,533 0.9703 27,159 200,714 179.4 271.6 125.0 1,420.9 1,633.0 1,002.0 7.861 

Pan troglodytes 23,962 23,881 0.9966 40,767 177,922 170.2 240.3 122.0 1,440.1 1,342.4 1,095.0 7.450 

* The most annotated species (see Materials and Methods for details) 
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has been reported previously (Campbell et al. 2006; Severing et al. 2009).  Therefore, 

this species was excluded from the AS analysis. 

 

Source of data.  All genomic data were downloaded from the FTP directory of the NCBI 

GenBank (ftp://ftp.ncbi.nih.gov/genomes/MapView/).  Sequences for P. taeda were 

downloaded from the Nucleotide database from the NCBI GenBank. 

 

Genomic data analysis.  Genomic data were analyzed using Perl scripts specifically 

written for this study.  The downloaded files were screened, and chromosome ID, 

position and orientation of the exons on the chromosome, feature ID, AS type, transcript 

accession number, and group label were traced, partitioned and analyzed.  Pseudogenes, 

mitochondrial, plastid and insufficiently annotated genes were excluded from further 

analysis.  Total numbers of genes, protein coding genes and their coding sequences 

(CDSs) were calculated for each species.  The number of exons and their boundaries 

were determined based on the coding structure of each protein coding gene ID recorded 

in their corresponding CDS section.  For each gene supported by more than one CDS, 

the alternative coding sequences were compared with each other.  Cases when 

corresponding exons had different boundaries or no matching counterpart were qualified 

as AS variants.  Average and median lengths were calculated for both exons and CDSs.  

The exon estimates were computed based on all unique exons found in the genome.  All 

CDSs, including alternatively spliced forms, were considered for estimation of the 

average and median CDS lengths.  The exon/gene ratio was defined as the average 
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number of exons per protein coding gene.  AS ratio was defined as the ratio between the 

number of alternatively spliced and all protein coding genes.  AS variants were 

categorized using the binary approach described by Nagasaki et al. (2006).  Shannon’s 

index H and equitability E were calculated for genes with AS to reflect richness and 

distribution evenness of AS forms (Shannon 1948). 

 

Parameter estimation for Pinus taeda.  In total, 99 complete CDS sequences 

representing protein coding genes in P. taeda were downloaded from NCBI GenBank, 

and their CDS structure and length were analyzed.  The data were prescreened by a Perl 

script and rearranged manually.  The majority of these sequences represented 

mRNA/cDNA.  Only five CDSs represented genomic sequences and could provide 

complete information about exon-intron structure.  Average and median CDS and exon 

lengths were calculated based on this information.  Using the mean exon length and 

regression models developed based on the genomic data for other species (see below), 

we computed the expected total number of exons, total number of genes, exon/gene 

ratio, and total number of protein coding genes for P. taeda.  Software package JMP 

version 5 was used for the statistical analysis. 

 

2.4.  Results 

Analysis of complete genomes.  The main results are summarized in Table 1.  General 

trends demonstrated an increase in the number of genes, gene products and total number 

of exons as species advance evolutionarily.  The exon/gene ratio also increases, but the 
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average exon length becomes shorter whereas CDS length remains relatively constant.  

The results of regression analysis and estimates of the parameters are summarized in 

Table 2. 

 

Average exon length as a predictor.  A very strong negative correlation was observed 

between mean exon length and total number of exons (r2 = 0.937, r2
adj = 0.936; Fig. 1A).  

The negative correlation was weaker but statistically significant between mean exon 

length and either number of protein coding genes (r2 = 0.712, r2
adj = 0.703; Fig. 1B) or 

the total number of genes (r2 = 0.706, r2
adj = 0.697, Fig. A1, Appendix A).  Mean exon 

length also strongly negatively correlated with exon/gene ratio (r2 = 0.957, r2 adjusted = 

0.956; Fig. 1C).  In all these cases the correlations were not linear.  No statistically 

significant correlation was observed between mean exon length and mean CDS length (P 

= 0.132; Fig. A2, Appendix A). 

Similar correlations were observed for median exon length, and the r2 values were 

close to those obtained for mean exon length (see Table 2 for details). 

Both average and median exon lengths become shorter in more advanced organisms 

(Fig. 2A). 
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Table 2 Predicted values for exon-intron gene structure and alternative splicing (AS) parameters for an organism with mean 
and median exon lengths of 334.8 and 198.0 bp, respectively, such as observed in Pinus taeda, based on results of 
regression analysis 

 

Response (y) Factor (x) R2 R2
adj 

P-value at 
95% CI Figure Predicted 

95% CI at 
population level 

95% CI at 
individual level 

lower upper lower upper 
Number of exons Mean exon length 0.937 0.936 <0.0001 1A 53,374 47,887 58,860 20,093 86,655 
Number of protein coding genes Mean exon length 0.712 0.703 <0.0001 1B 13,288 11,780 14,797 4,824 21,752 
Exon / Gene ratio Mean exon length 0.957 0.956 <0.0001 1C 4.245 4.049 4.441 3.146 5.344 
Number of all genes Mean exon length 0.706 0.697 <0.0001 A1 13,871 12,270 15,471 4,891 22,850 
Mean CDS length Mean exon length 0.065 0.038 0.1321 A2 -     
Number of protein coding genes Number of exons 0.897 0.894  <0.0001 1D -     
Number of protein coding genes Number of all genes 0.996 0.996 <0.0001 1E -     
Number of all genes Number of exons 0.891 0.888  <0.0001 A3 -     
Number of protein coding genes Exon / Gene ratio 0.648 0.638  <0.0001 A4 -     
Number of exons Exon / Gene ratio 0.864 0.860 <0.0001 1F -     
AS Mean exon length 0.615 0.576 0.0025 A5 0.018 0 0.053 0 0.117 
AS Exon / Gene ratio 0.498 0.448 0.0103 A6 -     
AS Number of CDSs 0.725 0.698 0.0004 A7 -     
Number of exons Mean exon length 0.999 0.998 0.0175 - 71,010* 49,220 92,801 29,385 112,636 
Number of protein coding genes Mean exon length 0.997 0.994 0.0351 - 19,785* 13,411 26,159 7,063 32,508 
Number of all genes Mean exon length 0.990 0.980 0.0632 - 20,923* 8,371 33,474 0 45,975 
Number of exons Median exon length 0.852 0.848 <0.0001 - 59,904 51,343 68,465 8,737 111,070 
Exon / Gene ratio Median exon length 0.903 0.901 <0.0001 - 3.658 3.382 3.934 2.007 5.308 
Number of all genes Median exon length 0.710 0.701 <0.0001 - 12,342 10,853 13,831 3,441 21,243 
Number of protein coding genes Median exon length 0.715 0.707 <0.0001 - 11,827 10,422 13,231 3,432 20,221 
Median CDS length Median exon length 0.035 0.006 0.2767 - -     

* Models constructed based on 3 plant species; see text for details 
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A  Correlation of number of exons and mean exon length 
 

 
 
Fig. 1 Correlations of number of exons and mean exon length (A), number of protein 

coding genes and mean exon length (B), exon/gene ratio and mean exon length 
(C), number of protein coding genes and number of exons (D), number of protein 
coding genes and number of all genes (E), and number of exons and exon/gene 
ratio (F) based on 36 species studied.  The most annotated species are 
represented by solid markers.  Three plants in the dataset are marked by circle.  
95% confidence intervals are presented for both population (internal dashed line) 
and individual (external dashed line) levels 
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B  Correlation of number of protein coding genes and mean exon length 
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C  Correlation of exon/gene ratio and mean exon length 
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D  Correlation of number of protein coding genes and number of exons 
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E  Correlation of number of protein coding genes and number of all genes 
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F  Correlation of number of exons and exon/gene ratio 
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A  Mean (black) and median (gray) exon lengths averaged over taxonomic groups 
 

 
 
Fig. 2 Mean (black) and median (gray) exon lengths (A), number of all (black) and 

protein coding (gray) genes (B), exon/gene ratio (C) averaged over taxonomic 
groups, and ratio of alternatively spliced genes in five species (D) 
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B Number of all (black) and protein coding (gray) genes averaged over taxonomic 
groups 
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C  Exon/gene ratio averaged over taxonomic groups 
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D  Ratio of alternatively spliced genes in five species 
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Number of genes and exons in genomes.  Also strong and nonlinear but positive 

correlations were found between the number of genes and number of exons (r2 = 0.897, 

r2
adj = 0.894 for protein coding genes, Fig. 1D; r2 = 0.891, r2

adj = 0.888 for the total 

number of genes, Fig. A3, Appendix A). 

A very strong positive correlation was observed between the total number of genes 

and number of protein coding genes (r2 = 0.996, r2
adj = 0.996; Fig. 1E).  The total 

numbers of genes and protein coding genes were higher in more complex organisms 

(Fig. 2B). 

 

Exon/gene ratio as a predictor.  Strong positive linear correlation was observed between 

exon/gene ratio and the total number of exons in the genome (r2 = 0.864, r2
adj = 0.860; 

Fig. 1F).  In general, exon/gene ratio increases with the evolutionary progress of a 

taxonomic group (Fig. 2C).  The relationship between exon/gene ratio and the number of 

protein coding genes was also strongly positive but rather nonlinear (r2 = 0.648, r2
adj = 

0.638; Fig. A4, Appendix A). 

 

Alternative splicing.  AS data were inferred from the annotated genomic data for 12 

analyzed species.  The five most annotated species (A. thaliana, C. elegans, D. 

melanogaster, H. sapiens and M. musculus) were analyzed in more detail (Table 3).   
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Table 3  Alternative splicing types observed in five most studied species 
 

Species ES IR A3 A5 ME A5A3 ESA3 A5ES MEA3 A5ME ESES A5ESA3 Other N A R H Hmax E 

Arabidopsis 
thaliana 

106 

0.049 

428 

0.197 

960 

0.443 

396 

0.183 

4 

0.002 

195 

0.090 

11 

0.005 

9 

0.004 

0 

0.000 

0 

0.000 

15 

0.007 

10 

0.005 

34 

0.016 

1,787 0.066 1.138 7.38 7.49 0.985 

Caenorhabditis 
elegans 

407 

0.230 

194 

0.110 

527 

0.298 

318 

0.180 

34 

0.019 

59 

0.033 

9 

0.005 

12 

0.007 

1 

0.001 

0 

0.000 

104 

0.059 

18 

0.010 

86 

0.049 

1,251 0.062 1.177 6.95 7.13 0.975 

Drosophila 
melanogaster 

464 

0.293 

292 

0.184 

297 

0.187 

165 

0.104 

102 

0.064 

62 

0.039 

31 

0.020 

16 

0.010 

2 

0.001 

0 

0.000 

79 

0.050 

9 

0.006 

67 

0.042 

1,008 0.073 1.284 6.66 6.92 0.964 

Mus musculus 423 

0.413 

128 

0.125 

133 

0.130 

72 

0.070 

35 

0.034 

32 

0.031 

18 

0.018 

5 

0.005 

5 

0.005 

1 

0.001 

126 

0.123 

5 

0.005 

41 

0.040 

714 0.028 1.064 6.40 6.57 0.974 

Homo sapiens 1,519 

0.510 

92 

0.031 

468 

0.157 

262 

0.088 

124 

0.042 

41 

0.014 

25 

0.008 

19 

0.006 

2 

0.001 

0 

0.000 

294 

0.099 

20 

0.007 

114 

0.038 

1,834 0.080 1.210 7.26 7.51 0.966 

ES – exon skipping; IR – intron retention; A3 – alternative 3' splice site; A5 – alternative 5' splice site; ME – mutually 
exclusive exons; N – number of alternatively spliced genes; A – alternative splicing ratio (proportion of alternatively 
spliced genes); R – ratio of the total number of protein products to the total number of protein genes; H – Shannon's index; 
Hmax – maximum possible value of Shannon's index, where for a given n, H is a maximum and equal to logn, when all the 
Pi are equal (i.e., 1/n); E – Shannon's equitability (E=H/Hmax).  Complex cases are denoted as combinations of these 
abbreviations.  The numbers in italics are proportions of the type relative to all types. 
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Among the five most common AS types, alternative 3' splice sites type (A3) was the 

most frequent in A. thaliana and C. elegans, but exon skipping (ES) was the most 

frequent in D. melanogaster, M. musculus and H. sapiens. 

The frequency of the ES type increases following organism complexity and reaches 

more than 51% of all AS types in human (Fig. 3).  It is accompanied by a decrease in the 

intron retention (IR), A3 and alternative 5' splice sites (A5) types.  The most common 

type in A. thaliana is A3 (44.3%), followed by IR (19.7%). 

 

Alternative splicing ratio.  The AS ratio, that is the ratio of the alternatively spliced 

genes and the total number of protein coding genes was highest (0.186) in Pan 

troglodytes among all analyzed species.  When only the most-annotated species were 

considered, the highest AS ratio was observed in human (0.080), followed by the one in 

D. melanogaster (0.073) and A. thaliana (0.066) (Table 3).  In general, the ratio 

increases with evolutionary progress (Fig. 2D). 

AS negatively correlated with exon length and occurred more frequently in 

organisms with shorter exons (Fig. A5, Appendix A; r2 = 0.615).  Similarly, AS 

increases as exon/gene ratio (r2 = 0.498; Fig. A6, Appendix A) and the total number of 

CDSs (r2 = 0.725; Fig. A7, Appendix A) increase. 

Among the five most-annotated species, both Shannon’s diversity index and 

equitability were highest in A. thaliana (H = 7.38, E = 0.985; Table 3) showing high 

richness and evenness of distribution.  Second high value (H = 7.26) was observed in 

human, but the evenness was lower (E = 0.966). 
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Fig. 3  Relative frequency of alternative splicing types in five species 
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Predictions for other species with large genomes such as Pinus taeda.  The mean and 

median transcript lengths were practically the same (1278 bp) in P. taeda, based on 

available 99 complete CDSs (Table 4).  However, the mean and median exon lengths 

were very different – 334.8 and 198 bp, respectively.  These estimates are very 

preliminary and based only on 21 exons.  An additional 43 complete exons were 

identified in partial CDSs.  Their length was shorter – 166.2 bp on average, but these 

estimates could be biased toward shorter exons due to the PCR-biased amplicon 

resequencing.  Based on the regression models created for the 36 complete genomes, we 

computed estimates for a hypothetical species with an average exon length such as the 

one observed in P. taeda (Table 2).  The predicted exon/gene ratio was 4.245, very close 

to the observed 4.000 in P. taeda (95% CI on individual level: 3.146 to 5.344).  The 

predicted total number of exons, genes and number of protein coding genes were 53,374 

(95% CI on individual level: 20,093 to 86,655), 13,871 (95% CI on individual level: 

4,891 to 22,850) and 13,288 (95% CI on individual level: 4,824 to 21,752), respectively.  

The estimates differed slightly when median exon length was used (see Table 2 for 

details). 

 

2.5.  Discussion 

Despite significant progress in sequencing technologies, complete genomic data are still 

limited for eukaryotic organisms; and, more importantly, only a few extensively studied 

model species have been well annotated and featured.  The most abundant data have 

been collected for microbial, fungal and some animal genomes, while vascular plants 
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Table 4  Exon and CDS lengths in Pinus taeda based on complete CDS sequences 
 

Feature CDS Exon 
Number 99 21 
Mean length, bp 1278.3 334.8 
Median length, bp 1278.0 198.0 
Standard deviation 667.3 296.7 
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have been understudied.  Only a few species have been completely sequenced and 

annotated in this underrepresented group so far, such as Arabidopsis thaliana, Oryza 

sativa, Vitis vinifera, Physcomitrella patens, and, recently, Populus trichocarpa, which 

remains relatively poorly annotated and featured.  Therefore, due to insufficient 

experimental data, it is very likely that not all gene transcripts and AS products have 

been recorded in GenBank even for the best-studied species; this can cause 

underestimation of AS ratios in our study.  As more experimental data are collected, the 

situation gradually improves with every new genome build that updates the number of 

genes, exons, and their locations on the chromosome.  AS has different types, occurs at 

different developmental stages and tissues, and can be affected by environmental factors 

(Mano et al. 1999; Iida et al. 2004).  AS is still insufficiently studied, and, therefore, not 

all AS events and types are well documented in the databases.  Moreover, precise 

inference is made more difficult due to incomplete annotation, along with different 

stringency criteria, customary thresholds to classify true and erroneous AS events, and 

various gene models used in different species.  To avoid these complications, we limited 

our analyses only to extensively studied completely sequenced genomes.  However, we 

hope that the results obtained can be used for predictions in insufficiently studied and 

incompletely sequenced organisms, such as pine in our study. 

 

Alternative splicing ratio.  In general, both AS and number of genes are higher in more 

evolved organisms (Figs. 2B, D).  However, surprisingly the AS rate was not always as 

high in more evolutionarily advanced species as expected and did not correlate linearly 
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with their evolutionary progress.  For instance, the ratio observed in D. melanogaster 

(0.073) was higher than in A. thaliana (0.066), but very close to the one in human 

(0.080).  This could suggest that a relatively small number of genes in D. melanogaster 

compared to human (14,807 vs. 25,074, respectively) is compensated by a higher AS 

rate that increases proteomic and metabolomic complexity.  We cannot completely 

exclude that the discrepancies are explained by insufficient AS data, but we can 

conclude in general that both the number of genes and the AS rate increase in more 

evolutionarily advanced species.  Certainly, more experimental data are needed to 

increase the precision of estimates and predictions of AS ratios.  For instance, a number 

of studies demonstrated AS in rice (McGuire et al. 2008; Campbell et al. 2006; Severing 

et al. 2009), but it is not documented in rice genomic data from the NCBI GenBank 

database, a likely indication that annotation of the rice genome is still in progress. 

A substantially higher AS rate for shorter exons found in the study (Fig. A5) is 

consistent with previous studies that suggested that both tandem exon duplication 

(Kondrashov and Koonin 2001) and insertion of noncoding intron sequences 

(Kondrashov and Koonin 2003) could promote AS.  Both within-gene duplication and 

AS would have less drastic effect on functionality of final proteins when they both deal 

with mutually exclusive exons (ME) that have shorter lengths.  In addition, converting a 

part of an intron into an exon via AS has the risk of including a stop codon.  This risk is 

higher when alternative exon sequences are longer. 

Although not as drastic, more exons per gene is also associated with a higher AS rate 

(Fig. A6).  This can be observed from the above described correlation of exon length and 
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AS because more exons per gene mean both shorter exons (assuming a constraint on the 

final gene product length) and more options for AS.  Exon/gene ratio, similarly to AS, 

increases in evolutionarily advanced species (Figs. 2C, D).  More advanced species also 

show higher numbers of CDSs.  AS increases as number of CDSs increases (Fig. A7), 

playing an important role in creating higher proteomic complexity. 

Previous studies reported the ES type of AS as the most frequent in mammals 

(Nagasaki et al. 2005; Sammeth et al. 2008).  Our results are consistent with these 

findings.  ES accounted for 51.0% of AS in human and 41.3% in mouse.  Moreover, 

frequency of ES increases with complexity.  Kim et al. (2007) used a modified approach 

that required the final number of ESTs in the compared organisms’ genes to be the same 

to mitigate the bias in data availability for the studied species.  They also found a high 

frequency of ES in mammals (~ 40%) and low IR (~10%). 

It is the opposite in plants, where IR type was the most frequent (over 50%) in both 

rice and thale cress (Wang and Brendel 2006; Severing et al. 2009).  The A3 was the 

second most frequent type, while ME was the least frequent type.  Nagasaki et al. (2005) 

reported that IR accounted for over 42% of AS events in thale cress and 55% in rice.  

Although our analysis also found a very low level of ME in thale cress (0.2%), the most 

abundant type was A3 (44.3%) followed by IR (19.7%).  Assuming that none of the 

classes is underrepresented in the dataset we used, this could indicate that IR tends to be 

overestimated in the EST/cDNA based studies, possibly due to the highest incidence of 

nonsense-mediated mRNA decay (NMD)-targeted products in this class.  Wang and 

Brendel (2006) estimated that ~43% of AS events in Arabidopsis are potential NMD 
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candidates, with IR showing the highest incidence of 40-48%.  Conversely, Kim et al. 

(2007) found the rate of IR in Arabidopsis (~30%) less than A3 (~40%).  In their study, 

ES accounted for approximately 5% of all types.  McGuire et al. (2008) found that in A. 

thaliana IR accounted for 38.7% of splice variants, only slightly more than A3 (36.8%) 

and ES (7.7%) events.  These results show great sensitivity to the methods and 

assumptions used.  McGuire et al. (2008) discussed how including unspliced alignments 

may affect the outcomes. 

 

Alternative evolutionary scenarios for plants.  This study demonstrates that plants and 

animals may have used different mechanisms and strategies for developing proteomic 

and metabolomic complexity.  The AS rate is low in plants compared to animals, 

whereas the number of genes is high (Figs. 2B, D).  This could indicate that animals 

have evolved a more efficient system of managing the genomic information that allows 

them to increase proteomic complexity with the same or smaller number of genes.  

Flowering plants could have relied primarily on duplications (from exon shifting to 

entire chromosome or genome duplications that are common in flowering plants; Cui et 

al. 2006), duplication modifications and divergence.  In contrast, large genomes in genus 

Pinus (class Coniferopsida) might be a result of retrotransposon expansion rather than 

polyploidy (Morse et al. 2009).  Cui et al. (2006) found no evidence of recent genome 

duplications in P. taeda nor P. pinaster, and Grotkopp et al.(2004) estimated that the 

genome sizes varied from 22.10 pg to 36.89 pg in pines, with the putative common 
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ancestor’s genome of 32.09 pg.  Nevertheless, sporadic polyploidy has been observed in 

gymnosperms (for review see Ahuja 2005). 

In order to check how well our regression models fit the real data, we compared the 

values observed in the three plants in our dataset with those predicted by the models.  

The total numbers of exons predicted based on the observed average exon length in 

Oryza sativa and Arabidopsis thaliana were underestimated in both cases (predicted 

92,581 and 102,910 vs. observed 128,267 and 138,876, respectively), but the observed 

values were only slightly greater than the 95% confidence interval upper limit at the 

individual level (126,092 and 136,543, respectively; Fig. 1A).  The observed number of 

exons in the primitive alga Ostreococcus ‘lucimarinus’ (9,767) was close to the 

predicted number (10,021) and fell within 95% CI. 

Similarly, the observed numbers of protein coding genes (Fig. 1B) in both higher 

plants (26,977 in thale cress and 26,777 in rice) were only slightly higher than the upper 

95% CI limit at individual level (26,282 and 25,445, respectively), and predicted values 

were underestimated (17,694 and 16,888, respectively).  The total observed number of 

genes (Fig. A1) for the two species, again, fell only slightly above the 95% individual 

level CI (28,245 > 27,591 for thale cress and 29,102 > 26,715 for rice; predicted values: 

18,480 and 17,637, respectively).  In both cases the numbers observed in the alga fell 

within the 95% CI. 

The discrepancy between Viridiplantae and other kingdoms can also be observed in 

the relationship between exon count and number of genes (Fig. 1D, Fig. A3), as well as 

exon/gene ratio and number of protein coding genes (Fig. A4).  In our models the values 
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for the two higher plants fall outside the upper 95% CI at the individual level in all these 

cases.  Interestingly, comparison of the two evolutionarily youngest groups in kingdoms 

Metazoa and Viridiplantae reveals much longer exons in plants (236.8 bp in A. thaliana 

and 250.2 bp in O. sativa) than in mammals (ranging from 169.2 bp in Canis lupus 

familiaris to 179.4 bp in M. musculus), demonstrating that the processes that reduce 

exon length have been slower in plants.  Body plan complexity is much greater in 

mammals than in angiosperms, and shorter mammalian exons coupled with lower 

number of genes could indicate greater pressure towards efficient use of gene space.  

The highest values of Shannon’s index and equitability observed in A. thaliana (Table 3) 

indicated more even AS distribution than in four animal species, despite their higher 

evolutionary position.  Perhaps AS is not the main mechanism in achieving the observed 

complexity level in plants.  If AS is correlated with exon length, then longer exons in 

plants can imply that the pressure for greater AS rates is not as strong as in the case of 

higher animals.  Other mechanisms, such as more frequent duplications and elevated 

retrotransposon activity in plants could be responsible for the high number of genes, and 

also greater exon lengths, through intron loss.  Indeed, studies on animal species have 

shown a negative correlation between gene family size and AS frequency (Su et al. 

2006; Hughes and Friedman 2008; Kopelman et al. 2005).  This could explain not only 

lower rates of AS observed in plants but also the different patterns of AS forms, 

potentially increasing chances of NMD, a phenomenon not very well studied in plants 

(Campbell et al. 2006).  Conversely, building upon the theory proposed by Lynch and 

Conery (2003), Babenko et al. (2004) suggested that intron gain/loss is not a commonly 
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ongoing process, but rather may be triggered by certain dramatic evolutionary events 

that lead to long-term bottlenecks.  Therefore the observed differences in exon lengths 

could be merely due to chance of the ancestors being affected by drastic events in the 

past.  These conclusions seem to be supported by Sammeth et al. (2008), showing rather 

abrupt differences between invertebrates and vertebrates. 

Current genomic data are insufficient to build separate robust regression models for 

plants.  The conclusions about the total number of exons, the total number of genes and 

the total number of protein coding genes in P. taeda may therefore be biased; and the 

true values may be close to the upper 95% CI limit on the individual level, higher than 

the ones predicted by the proposed models (see below). 

 

Short exons promote genomic complexity.  The strong relationship between exon length 

and total number of exons (Fig. 1A) as well as exon length and exon/gene ratio (Fig. 1C) 

suggest that shorter exons increase potential for AS.  Indeed, a much higher ratio of AS 

was observed in organisms with shorter exons (Fig. A5).  However, more evolutionarily 

advanced organisms not only have shorter exons, but also more genes (Fig. 1B, Figs. 2A, 

B, and Fig. A1).  The presence of shorter exons increases the potential for exon shuffling 

along with exon duplications; and, as a complement of AS, both increase proteomic and 

metabolomic complexity.  It is likely that both evolved simultaneously and 

synergistically to amplify their effects on increasing physiological, behavioral and 

morphological complexity of the organisms through positive feedback loop-like 

mechanisms. 
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No statistically significant correlation was found between exon length and CDS 

length (Fig. A2).  Since 3-dimensional protein structure and binding sites determine 

protein functionality, the length of the coding sequence seems to be of primary 

importance, and therefore the variation in the transcript length may be constrained.  This 

could suggest that in the process of evolution, partitioning of the ancestral coding 

sequences has been occurring rather than extension through e.g. hypothetical stacking of 

coding blocks together.  Such a process could have stimulated splicing out duplicated 

exons, eventually leading to alternatively spliced forms. 

At the genome level, most of the species with less than 10,000 genes had a very 

small number of exons (Fig. 1D and Fig. A3).  Consequently, the number of exons per 

gene was low in these species (Fig. 1F, Figs. 2B, C and Fig. A4).  These observations 

show a general trend of genomic complexity increasing in evolutionarily advanced 

species. 

The shortest exons identified in some of the analyzed species (including three plants) 

were only 1 bp long.  We did not find any peer-reviewed publications experimentally 

confirming this observation.  In previous studies Long et al. (1995) identified single base 

pair exons, and Deutsch and Long (1999) identified exons as short as 1 amino acid in a 

number of species including A. thaliana and human, although the exact length in bp is 

not clear.  An experimental approach is necessary to find support for these structures and 

to verify that it is not an artifact resulting from exon/intron model assumptions.  For 

instance, Kondrashov and Koonin (2001) used 9 bp as threshold. 

 



38 
 

Implications for Pinus taeda.  Due to the small sample size, the P. taeda exon length 

estimate may be significantly biased.  An alternative would be to include in the study 

completely sequenced exons from only partially sequenced genes.  However, in this 

scenario shorter exons would be overrepresented due to the PCR amplicon length bias 

(typically a few hundred bp), making the mean and median underestimated.  The 

observed exon/gene ratio was 4.000 based on 5 CDSs and 20 exons.  This estimate is 

very close to the predicted exon/gene ratio of 4.245, based on the regression model, 

when the average exon length was the predictor or 3.658 when the median exon length 

was used (Table 2).  The predicted values based on the average exon length for the other 

two higher plants analyzed were also close to the observed values (5.970 vs. 5.148 in 

thale cress and 5.654 vs. 4.790 in rice).  The observed values for all three species fell 

inside the 95% CI at the individual level. 

The number of protein coding genes and total number of genes expected in an 

organism with the average exon length of 334.8 bp (such as in P. taeda) is 13,871 and 

13,288, respectively.  These values seem to be underestimated as far as P. taeda is 

concerned, especially when compared with the other analyzed plants. Moreover, there 

are currently about nineteen thousand unique sequences in the NCBI UniGene database 

for P. taeda.  The model severely underestimates the number of genes in the other two 

vascular plants described above as well.  The number of protein coding genes in A. 

thaliana is underestimated by about 34.4% and O. sativa by about 36.9%.  If P. taeda  

followed this bias, and the expected number of protein coding genes was also 

underestimated by approximately 35%; that would mean about 7,155 underestimated 
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genes, which would raise the predicted number of protein coding genes to about 20,443 

in this species, making this number more realistic. 

Regression models that are based exclusively on the three examined plants and that 

follow the same logic as in the case of the 36 studied genomes also demonstrated that 

higher numbers are expected for loblolly pine (Table 2).  The total number of genes 

expected would be 20,923 (upper limit is 45,975 at 95% confidence level; model 

significant at 93.7% confidence level) and the number of protein coding genes 19,785 

(upper limit is 32,508 at 95% confidence level).  These numbers seem to be more 

realistic when compared to the observed values in other higher plants, especially 

considering broad confidence intervals. 

 

2.6.  Conclusions 

This study confirmed the general trend of increasing number of genes, gene products, 

and exons in the genome, along with higher exon/gene ratio and AS ratio as species 

become more complex.  We demonstrated that parameters easily computable from small 

data samples (e.g. exon length or exon/gene ratio) are relatively good predictors of 

characteristics that are difficult to assess, such as total number of genes, gene products 

and exons.  We also showed that taxonomic kingdoms may require different model 

calibration as their strategies to increase complexity throughout evolution have been 

different.  As more genomic data become available and more species representing 

various taxonomic groups are annotated, these models can be tuned or applied to specific 

monophyletic groups, which will improve precision of the predictions. 
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3.  MOLECULAR EVOLUTION OF ADAPTIVE AND DROUGHT 

RESISTANCE RELATED GENES IN FOUR SOUTHERN PINES FROM 

SUBSECTION AUSTRALES 

 

3.1.  Overview 

Four major Southern pines, Pinus echinata Mill., P. elliottii Engelm., P. palustris Mill. 

and P. taeda L. are evolutionarily relatively young and closely related species.  Due to 

their diverse habitat that covers the area from coastal plains to southern uplands of 13 

southeastern states they have likely accumulated substantial variation in drought 

resistance loci.  We searched for signatures of selection in 33 drought resistance related 

genes using neutrality tests such as Tajima’s D, HKA, MK and synonymous-

nonsynonymous substitutions ratio.  Our study revealed statistically significant patterns 

of nucleotide variation that are consistent with balancing selection (e.g. in cinnamyl 

alcohol dehydrogenase and caffeoyl CoA O-methyltransferase 1 genes) and purifying 

selection (e.g. in early response to drought 3 gene), as well as combinations of different 

forms of selection (e.g. in cinnamate 4-hydroxylase 1 and putative wall-associated 

protein kinase genes) and demographic events (such as bottleneck and population 

expansion) that possibly affected some loci. 

 

3.2.  Introduction 

Loblolly (Pinus taeda L.), slash (P. elliottii Engelm.), shortleaf (P. echinata Mill.), and 

longleaf (P. palustris Mill.) pines are four major closely related Southern pines of the 
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subsection Australes (section Trifoliis, genus Pinus).  Their current natural area stretches 

from warm-temperate to subtropical climate of 13 southeastern states.  P. echinata is the 

northernmost, and P. elliottii is the southernmost species, although their areas greatly 

overlap.  Loblolly pine populations are mostly continuous.  Extensive out-crossing and 

wind pollination result in high gene flow and low population structure at the neutral 

markers (Al-Rabab'ah and Williams 2002; Schmidtling et al. 1999; Gonzalez-Martinez 

et al. 2007; Eckert et al. 2010). 

The natural range of the Southern pine populations is very broad, and they have 

likely accumulated much variation in adaptive trait-related genes (Schmidtling 2001) 

that allowed them to successfully adapt to different habitats and to expand into areas of 

diverse temperatures and rainfall.  Specifically, they are relatively well adapted to 

drought conditions.  Considering furthermore that the Southern pines are evolutionarily 

young species, we have a rare opportunity to study adaptive and evolutionary processes 

“in progress” via comparing their nucleotide variation. 

To detect signatures of selection in nucleotide variation, a number of neutrality tests 

have been developed (for review see Kreitman 2000).  The null hypothesis of no 

selection is based on the neutral theory of molecular evolution proposed by Kimura 

(1968), which considers mutation and genetic drift as major factors that affect nucleotide 

genetic variation and population genetic structure.  We used the HKA (Hudson et al. 

1987), Tajima’s D (Tajima 1989), MK (McDonald and Kreitman 1991) and synonymous 

and nonsynonymous nucleotide substitutions ratio (Li et al. 1985; Nei and Gojobori 

1986) tests in our study; these are among the most common tests. 
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Tajima’s D statistic compares two within-species estimates of nucleotide diversity: 

one based on the number of segregating sites in the sample and predictions of neutral 

theory and the other based on the average number of pairwise nucleotide substitutions 

observed in the dataset.  Positive values of the statistic are an indication of the excess of 

polymorphic alleles and may be a result of balancing or positive selection or a recent 

bottleneck.  Negative values are an indication of the excess of rare alleles and could be a 

signature of a selective sweep or a recent population expansion. 

The HKA test is a conservative approach based on the prediction that under 

neutrality the interspecific divergence would positively correlate with within-species 

polymorphism.  The dataset should contain interspecific nucleotide sequence data from 

two or more genomic regions and intraspecific data from the same regions examined in 

both species, including population data for at least one of the species.  The test examines 

whether the neutral mutation rates in the two loci vary significantly.  The method is best 

suited for detecting balancing selection and processes that reduce variation, such as 

recent selective sweeps. 

The MK test also uses interspecific data.  It compares nonsynonymous nucleotide 

substitutions causing amino acid replacements with synonymous substitutions within the 

coding regions of the same locus.  Under neutrality, the ratio of the fixed 

nonsynonymous and synonymous substitutions between species should be equal to the 

ratio of nonsynonymous to synonymous polymorphic substitutions within species.  

Although statistically simpler than HKA, the MK test is considered more powerful. 
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Synonymous and nonsynonymous nucleotide substitutions ratio is an alternative 

approach based on intraspecific variation.  Typically, two equivalent approaches have 

been used.  Li et al. (1985) proposed comparing the number of nonsynonymous 

substitutions per nonsynonymous site (KA) and the number of synonymous substitutions 

per synonymous site (KS), or KA/KS ratio.  Nei and Gojobori (1986) proposed using the 

rate of nonsynonymous (dN) and synonymous (dS) substitutions, or dN/dS ratio.  Both 

approaches indicate deviation from neutrality when the ratio is significantly greater than 

one (KA/KS > 1 or dN/dS > 1 – signature of positive selection) or smaller than one (KA/KS 

< 1 and dN/dS < 1 – signature of negative or purifying selection).  The significance can be 

tested through the Z-test score, where Z = (dN−dS)/(Var(dS)+Var(dN))½, generally, a one-

tailed test; positive values indicate excess of nonsynonymous substitutions (signature of 

positive selection), while negative values indicate excess of synonymous substitutions 

(signature of negative or purifying selection). 

In a previous study on loblolly pine, Brown et al. (2004) analyzed nucleotide 

diversity and linkage disequilibrium (LD) in 19 adaptive trait related genes in 32 

individuals sampled from various locations within the species’ natural range except 

Florida.  Among them, 14 trees were first-generation selections from natural stands for 

the breeding program started in the mid 1950s, and 18 were second-generation breeding 

material.  Their results demonstrated high absolute values of Tajima’s D statistic in a 

few genes.  However, the authors failed to reject neutrality. 

Gonzalez-Martinez et al. (2006a) studied 18 drought-stress response related genes in 

loblolly pine.  The sample included 32 megagametophytes.  Out of a total of 31 trees, 22 
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were unrelated first-generation selections from the southeastern range of the species 

(including Florida) and 9 were second-generation selections from the parents from the 

Atlantic Coastal Plain provenance.  Using Tajima’s D they identified a possible selective 

sweep at early response to drought 3 (erd3) gene, but pointed out that genetic 

hitchhiking or a recent population expansion could produce a similar effect.  This result 

was not confirmed by the MK test, which is more robust to a potential bias due to 

demographic processes.  Similarly, no robust conclusion was reached for caffeoyl CoA 

O-methyltransferase 1 (ccoaomt-1) despite significant and positive Tajima’s D statistic.  

A sliding window approach allowed for identification of a few regions in genes putative 

wall-associated protein kinase (ppap12) and ug-2_498 with statistically significant 

Tajima’s D.  No selection acting upon amino acid sequences was identified from the 

ratio of nonsynonymous and synonymous substitutions. 

These two studies examined in total 34 various drought tolerance, drought-stress 

response and wood-quality related genes in loblolly pine.  Both confirmed a low level of 

LD, moderate nucleotide diversity, and failed to identify significant population genetic 

structure.  We used loblolly pine primers designed in these two studies to amplify and 

sequence the same orthologous genes in the four Southern pine species and to use their 

sequences in a comparative genomic study.  Our objective was to identify signatures of 

selection in the studied genes, given the extended data set for loblolly pine and new 

sequence data obtained for the other three species.  The readily available genomic 

resources for loblolly pine, one of the most studied coniferous species, greatly helped us 

examine the other three Southern pines. 
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3.3.  Materials and methods 

Source of data.  The DNA was extracted from megagametophytes of four pine species: 

loblolly (Pinus taeda L.), slash (P. elliottii Engelm.), shortleaf (P. echinata Mill.), and 

longleaf (P. palustris Mill.) pines.  PCR primers previously developed by Brown et al. 

(2004) and Gonzalez-Martinez et al. (2006a) were used to amplify and resequence the 

total of 51 amplicons (33 genes; Table 5) following standard PCR procedures.  One or 

two unrelated megagametophytes of each species were sequenced.  To minimize 

sequencing errors, both forward and reverse strands were sequenced, and a consensus 

sequence was obtained for each individual megagametophyte using the Sequencher 

computer program (ver. 4.2, Gene Codes Corporation, Ann Arbor, Michigan, USA, 

http://www.genecodes.com/).  Data representing population sets for loblolly pine 

(Gonzalez-Martinez et al. 2006a; Brown et al. 2004)  were downloaded from the PopSet 

database of GenBank (http://www.ncbi.nlm.nih.gov/).  These two population sets were 

based on different individual trees, except two trees that were sequenced in both studies.  

The sequences for these two trees were pruned to make a non-redundant set.  This set 

was included in the analysis together with newly-generated sequences of other species.  

Three loci were sequenced in both Brown et al. (2004) and Gonzalez-Martinez et al. 

(2006a) studies: ccoaomt-1, phenylalanine ammonia-lyase 1 (pal-1) and s-adenosyl 

methionine synthetase 2 (sams-2), and their sequences were combined to expand the 

population sets and respective multiple sequence alignments.  For 4-coumarate:CoA 

ligase (4cl; 4th segment of the gene, 4cl-4), coumarate 3-hydroxylase  
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Table 5  Pine species, genes and number of individual nucleotide sequences studied 
 

Gene Abbreviations P. 
echinata 

P.  
elliottii 

P. 
palustris 

P. 
 taeda 

P. 
 radiata 

P. 
sylvestris Reference 

4-coumarate:CoA ligase 4cl 1 1 1 1   This study 
   32   Brown et al. 2004 

4-coumarate:CoA ligase 
(amplicon 4) 

4cl-4 1 2 2 2   This study 
   32   Brown et al. 2004 
 2  32 2 2 Ersoz 2006 

arabinogalactan 4 agp-4 2 2 2 2   This study 
   32   Brown et al. 2004 

arabinogalactan 6 agp-6 2 2 1 1   This study 
   32   Brown et al. 2004 

arabinogalactan-like 
(amplicon 2) 

agp-like 2 2 2 2   This study 
   32   Brown et al. 2004 

alpha tubulin α-tubulin 2 2 2 2   This study 
   32   Brown et al. 2004 

aquaporin, membrane 
intrinsic protein 

aqua-MIP 2 2 2 2   This study 
   32   Gonzalez-Martinez et al. 2006a 

coumarate 3-hydroxylase c3h 2 2 2 2   This study 
   28   Brown et al. 2004 

coumarate 3-hydroxylase 
(amplicon 1) 

c3h-1 2 2 2 2   This study 
   28   Brown et al. 2004 
   32   Ersoz 2006 

cinnamate 4-hydroxylase 1 c4h-1 1 1 1 1   This study 
   32   Brown et al. 2004 

cinnamate 4-hydroxylase 1 
(amplicons 1, 4, and 5) 

c4h-1 2 2 2 2   This study 
    32   Brown et al. 2004 
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Table 5  Continued 
 

Gene Abbreviations P. 
echinata 

P.  
elliottii 

P. 
palustris 

P. 
 taeda 

P. 
 radiata 

P. 
sylvestris Reference 

cinnamate 4-hydroxylase 2 c4h-2 2 2 2 2   This study 
   32   Brown et al. 2004 

cinnamyl alcohol 
dehydrogenase 

cad 1 1 1 1   This study 
   28   Brown et al. 2004 

caffeoyl CoA 
O-methyltransferase 1 

ccoaomt-1 or 
ccoaomt 

0 1 1 1   This study 
   32   Brown et al. 2004 
   32   Gonzalez-Martinez et al. 2006a 

cinnamoyl CoA reductase ccr or ccr-1 2 2 2 2   This study 
   32   Brown et al. 2004 

cellulose synthase A3 cesA3 1 2 2 1   This study 
   32   Brown et al. 2004 

caffeate 
O-methyltransferase 2 

comt-2 1 1 1 1   This study 
   32   Brown et al. 2004 

calcium-dependent protein 
kinase 

cpk3 2 2 2 2   This study 
   32   Gonzalez-Martinez et al. 2006a 

dehydrin 1 dhn-1 1 0 0 1   This study 
   32   Gonzalez-Martinez et al. 2006a 

dehydrin 2 dhn-2 2 2 2 2   This study 
   32   Gonzalez-Martinez et al. 2006a 
 2   2 2 Ersoz 2006 

early response to 
drought 3 

erd3 1 1 1 1   This study 
   32   Gonzalez-Martinez et al. 2006a 
 2   2 1 Ersoz 2006 

glycine 
hydroxymethyltransferase 

glyhmt 1 1 1 1   This study 
   32   Brown et al. 2004 
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Table 5  Continued 
 

Gene Abbreviations P. 
echinata 

P.  
elliottii 

P. 
palustris 

P. 
 taeda 

P. 
 radiata 

P. 
sylvestris Reference 

water-stress inducible 
protein 3 

lp3-3 1 1 1 2   This study 
   32   Gonzalez-Martinez et al. 2006a 

putative cell-wall protein lp5-like or lp5 1 0 0 0   This study 
   32   Gonzalez-Martinez et al. 2006a 

metallothionein-like mt-like 1 1 1 1   This study 
   32   Gonzalez-Martinez et al. 2006a 
 2   2  Ersoz 2006 

phenylalanine  
ammonia-lyase 1 

pal-1 or pal 0 1 1 1   This study 
   32   Brown et al. 2004 
   32   Gonzalez-Martinez et al. 2006a 

protein phosphatase 
 2C-like 

pp2c 1 1 1 1   This study 
   32   Gonzalez-Martinez et al. 2006a 

putative wall-associated 
protein kinase 

ppap12 1 1 1 1   This study 
   32   Gonzalez-Martinez et al. 2006a 

LIM domain protein 1  
(LIM transcription factor) 

ptlim1 1 1 1 1   This study 
   32   Brown et al. 2004 

LIM domain protein 2  
(LIM transcription factor) 

ptlim2 0 1 1 1   This study 
   32   Brown et al. 2004 

cysteine protease rd21A-like 0 1 1 1   This study 
   32   Gonzalez-Martinez et al. 2006a 
   1 2 1 Ersoz 2006 

s-adenosyl methionine 
synthetase 1 

sam-1 1 1 1 1   This study 
   32   Brown et al. 2004 
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Table 5  Continued 
 

Gene Abbreviations P. 
echinata 

P.  
elliottii 

P. 
palustris 

P. 
 taeda 

P. 
 radiata 

P. 
sylvestris Reference 

s-adenosyl methionine 
synthetase 2 

sams-2 or sam-2 1 1 1 1   This study 
   32   Brown et al. 2004 
   32   Gonzalez-Martinez et al. 2006a 

chloroplast Cu/Zn 
superoxide dismutase 

sod-chl 1 1 1 1   This study 
   32   Gonzalez-Martinez et al. 2006a 

unknown; drought stress 
responsive (University of 
Georgia uniscript 
sequence #2_498) 

ug-2_498 1 1 0 0   This study 
   32   Gonzalez-Martinez et al. 2006a 
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(c3h; 1st segment, c3h-1), dehydrin 2 (dhn-2), erd3, metallothionein-like (mt-like), and 

cysteine protease (rd21A-like) genes additional sequences from GenBank (Ersoz 2006) 

were included for P. taeda, P. elliottii, P. radiata and P. sylvestris (Table 5). 

 

Multiple alignments and coding regions assignment.  Multiple nucleotide alignments 

were done using BioEdit (ver. 7.0.9.0; Hall 1999) and SeaView (ver. 4.0; Galtier et al. 

1996) software that implements the MUSCLE algorithm (Edgar 2004).  Genes that were 

sequenced in multiple segments using several (but usually overlapping) amplicons 

generated by different primer pairs were concatenated and analyzed as a single sequence 

with the assumption that these segments represent the same gene.  Sequences with 

extended gaps due to missing data (i.e. resulting from poor quality of the sequencing 

output) were excluded if an alternative sequence from the same species was available.  

The coding regions were assigned following available genomic data submitted to 

GenBank, primarily using the population sets submitted by Brown et al. (2004) and 

Gonzalez-Martinez et al. (2006a).  Additional genomic and EST sequences from other 

pines and conifers, such as Picea sitchensis and Pseudotsuga menziesii were used to 

define exon-intron structure, if needed. 

 

Neutrality tests.  The loblolly pine nucleotide sequences newly generated in this study 

were merged into a single population set for each gene together with sequences 

downloaded from GenBank.  Neutrality tests were performed using the DnaSP software 

(ver. 5.00.07; Librado and Rozas 2009).  Tajima’s D (Tajima 1989) test was run with the 
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sliding window option, where window length and step were 100 bp and 25 bp, 

respectively.  Indels were excluded from the analysis and were not counted in the sliding 

window length.  The HKA test (Hudson et al. 1987) was run for all nucleotide 

substitutions, while substitutions only in coding regions were considered in the MK test 

(McDonald and Kreitman 1991; Kreitman 2000; for review see Wray et al. 2003) .  

These two tests were used to compare the loblolly pine set with three other Southern 

pine species (P.echinata, P. elliottii and P. palustris), and, in a few cases, also with P. 

radiata and P. sylvestris (Table 6).  Additionally, neutrality was tested through analysis 

of synonymous/nonsynonymous substitutions ratio as implemented in the MEGA 

software (ver. 4.1; Tamura et al. 2007).  Z-test was run to test the null hypothesis.  Sites 

with gaps or missing data were deleted in pairwise comparisons.  Standard error was 

computed through bootstrap with 1,000 replicates.  The Nei-Gojobori’s nucleotide 

substitution model was used to calculate dS and dN (Jukes and Cantor 1969). 

 

3.4.  Results 

Data for 33 genes were collected, and coding regions in 32 genes were assigned (there 

was no available data to assign exon-intron structure for ug-2_498).  Due to poor quality 

of the sequence reads water-stress inducible protein 1 (lp3-1) gene was dropped from 

the final analysis.  For the same reason some of the sequences were significantly 

trimmed.
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Table 6  Interspecific HKA and MK neutrality tests 
 

Gene Amp 
Number of sequences HKA, P MK, P 

Piec Piel Pipa Pita Pira Pisy Piec-
Pita 

Piel-
Pita 

Pipa-
Pita 

Pira-
Pita 

Pisy-
Pita 

Piec-
Pita 

Piel-
Pita 

Pipa-
Pita 

Pira-
Pita 

Pisy-
Pita 

4cl 5 1 1 1 33 0 0 0.732 0.198 0.998 - - 0.200 0.465 1.000 - - 
4cl-4 1 1 4 2 66 2 2 0.602 0.599 0.566 0.304 0.707 - - - - - 
agp-4 1 2 2 2 34 0 0 0.804 0.562 0.801 - - - - - - - 
agp-6 2 2 2 1 33 0 0 0.791 0.867 0.984 - - - - - - - 
agp-like 1 2 2 2 34 0 0 - - 0.326 - - - - - - - 
aqua-MIP 1 2 2 2 34 0 0 - 0.090 - - - - - - - - 
α-tubulin 2 2 2 2 34 0 0 0.937 0.505 0.631 - - - - - - - 
c3h 5 2 2 2 30 0 0 0.835 0.479 0.485 - - - 1.000 1.000 - - 
c3h-1 1 2 2 2 62 0 0 0.963 1.000 0.453 - - - - - - - 
c4h-1 5 1 1 1 33 0 0 0.510 0.791 0.873 - - 1.000 - 0.533 - - 
c4h-1 3 2 2 2 34 0 0 0.686 0.524 0.881 - - - - - - - 
c4h-2 1 2 2 2 34 0 0 0.866 0.866 0.866 - - - - 0.182 - - 
cad 1 1 1 1 29 0 0 0.846 0.846 0.582 - - - - 1.000 - - 
ccoaomt-1 or 
ccoaomt 1 0 1 1 65 0 0 - 0.982 0.847 - - - - - - - 

ccr or ccr-1 2 2 2 2 34 0 0 0.691 0.902 0.984 - - - - - - - 
cesA3 2 1 2 2 33 0 0 0.762 0.862 0.855 - - - - - - - 
comt-2 2 1 1 1 33 0 0 0.976 0.874 0.349 - - 1.000 1.000 0.545 - - 
cpk3 1 2 2 2 34 0 0 0.764 0.509 0.764 - - - - - - - 
dhn-1 1 1 0 0 33 0 0 0.868 - - - - - - - - - 
dhn-2 1 2 4 2 34 2 2 0.437 0.842 0.754 0.901 0.932 0.455 - - 0.444 0.684 
erd3 1 1 3 1 33 2 1 0.649 0.855 0.790 0.649 0.870 0.333 - 0.333 0.333 0.500 
glyhmt 1 1 1 1 33 0 0 0.953 0.953 0.953 - - - - - - - 
lp3-3 1 1 1 1 34 0 0 1.000 1.000 1.000 - - - - - - - 
lp5-like or lp5 1 1 0 0 32 0 0 0.665 - - - - - - - - - 
mt-like 1 1 3 1 33 2 0 0.767 0.556 0.870 0.871 - - - - - - 
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Table 6  Continued 
 

Gene Amp 
Number of sequences HKA, P MK, P 

Piec Piel Pipa Pita Pira Pisy Piec-
Pita 

Piel-
Pita 

Pipa-
Pita 

Pira-
Pita 

Pisy-
Pita 

Piec-
Pita 

Piel-
Pita 

Pipa-
Pita 

Pira-
Pita 

Pisy-
Pita 

pal-1 or pal 1 0 1 1 65 0 0 - 0.659 0.883 - - - - - - - 
pp2c 1 1 1 1 33 0 0 0.304 - - - - 0.286 0.333 0.250 - - 
ppap12 1 1 1 1 33 0 0 0.728 0.496 0.489 - - 1.000 - - - - 
ptlim1 1 1 1 1 33 0 0 - 0.080 - - - - - - - - 
ptlim2 1 0 1 1 33 0 0 - 0.960 0.960 - - - - - - - 
rd21A-like 1 0 1 1 34 2 1 - - - - - - - 0.400 - 1.000 
sam-1 1 1 1 1 33 0 0 0.924 0.785 0.197 - - - - - - - 
sams-2 or 
sam-2 1 1 1 1 65 0 0 0.961 0.549 0.373 - - - 1.000 - - - 

sod-chl 1 1 1 1 33 0 0 0.971 0.751 0.987 - - - - - - - 
ug-2_498 1 1 1 0 32 0 0 - - - - - - - - - - 

Note: Amp – number of amplicons; Piec - Pinus echinata Mill., Piel - P. elliottii Engelm., Pipa - P. palustris Mill., Pita - P. 
taeda L., Pira - P. radiata D. Don, and Pisy - P. sylvestris L. 
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Tajima’s D.  Two genes showed statistically significant positive values (Table 7).  The 

D statistic was 2.08 in cinnamyl alcohol dehydrogenase (cad; P < 0.05) and 3.18 in 

ccoaomt-1 (P < 0.01), mainly due to silent mutations in both cases (P < 0.10 in cad and 

P < 0.01 in ccoaomt-1).  The result was also confirmed by the sliding window; in 

ccoaomt-1 P values in both introns were < 0.01, and in the first two exons < 0.05.  In 

cad, the strongest evidence came from the first two exons and the intron (P < 0.05). 

The sliding window approach allowed us to identify nearly significant positive D 

value in the first exon of arabinogalactan 4 (agp-4; P < 0.10).  Although overall D was 

not significant, D based on nonsynonymous substitutions was significantly positive (P < 

0.05) and almost significant based on coding regions P < 0.10. 

Highly significant positive Tajima’s D values were observed for all synonymous 

substitutions in ppap12 (P < 0.05) and at the 3’ end of the coding region (P < 0.001). 

Weakly positive values (P < 0.10) were also observed in sams-2 at the 3’ end of the 

coding region and the beginning of 3' untranslated region (UTR). 

Similarly, in cinnamate 4-hydroxylase 1 (c4h-1) the sliding window identified 

significantly positive D values for the beginning of the first exon (P < 0.05) despite 

insignificant overall D. 

Positive but insignificant values (P < 0.10) were observed in certain regions of 4cl.  

After adding the set of 32 P. taeda sequences studied by Ersoz (2006)  for the fourth 

amplicon of the gene (4cl-4), the region corresponding to the end of the second intron 

and beginning of the third exon demonstrated significant D (P < 0.01). 
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Table 7  Tajima's D neutrality test (Pinus taeda) 
 

Gene Amp Seq D P Dcoding P Dsyn P Dnonsyn P Dsilent P 
Sliding window, bp (D) 

P<0.10 P<0.05 P<0.01 

4cl 5 33 1.184 >0.10 0.152 >0.10 0.514 >0.10 -1.272 >0.10 1.373 >0.10 

1185-1284 (1.866); 
1210-1309 (1.866); 
1235-1334 (1.866); 
1260-1454 (1.866); 
1505-1604 (1.971); 
1530-1629 (1.971); 
1555-1654 (1.971); 
1805-2071 (1.971) 

  

4cl-4 1 66 1.668 >0.10 1.315 >0.10 1.315 >0.10 n.a. n.a. 1.668 >0.10 
 93-192 (2.160); 

118-217 (2.445); 
168-267 (2.402) 

143-242 (2.684) 

agp-4 1 34 0.304 >0.10 1.773 <0.10 -0.240 >0.10 2.212 <0.05 -0.805 >0.10 144-243 (1.718)   

agp-6 2 33 0.222 >0.10 -0.534 >0.10 -0.551 >0.10 -0.413 >0.10 0.465 >0.10 72-171 (-1.684); 
147-246 (-1.610) 

122-221 (-1.895)  

agp-like 1 34 0.566 >0.10 - - - - - - 0.566 >0.10    

α-tubulin 2 34 -1.614 <0.10 -0.799 >0.10 -0.799 >0.10 n.a. n.a. -1.614 <0.10 

402-501 (-1.650); 
427-526 (-1.686); 
452-569 (-1.703); 
477-594 (-1.592) 

  

aqua-MIP 1 34 -1.434 >0.10 -0.188 >0.10 -0.188 >0.10 n.a. n.a. -1.434 >0.10    
c3h 5 30 -1.641 <0.10 -1.256 >0.10 n.a. n.a. -1.256 >0.10 -1.428 >0.10    
c3h-1 1 62 -1.525 >0.10 -1.387 >0.10 -1.080 >0.10 -1.071 >0.10 -1.315 >0.10    

c4h-1 5 33 -0.583 >0.10 -0.236 >0.10 -0.805 >0.10 0.668 >0.10 -0.801 >0.10 1840-2043 (-1.728) 1-117 (2.126); 
43-142 (2.126) 

 

c4h-1 3 34 -0.670 >0.10 -0.241 >0.10 -0.798 >0.10 0.648 >0.10 -1.241 >0.10  1-117 (2.149);  
43-142 (2.149) 
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Table 7  Continued 
 

Gene Amp Seq D P Dcoding P Dsyn P Dnonsyn P Dsilent P 
Sliding window, bp (D) 

P<0.10 P<0.05 P<0.01 
c4h-2 1 34 -0.177 >0.10 -0.177 >0.10 0.155 >0.10 -1.068 >0.10 0.155 >0.10    

cad 1 29 2.077 <0.05 1.026 >0.10 0.293 >0.10 1.595 >0.10 1.823 <0.10 

 1-144 (2.094); 
245-344 (2.405); 
270-369 (2.094); 
295-394 (2.094) 

 

ccoaomt-1 
or  
ccoaomt 

1 65 3.177 <0.01 1.565 >0.10 1.565 >0.10 n.a. n.a. 3.177 <0.01 

 1-149 (2.120); 
200-299 (2.089); 
225-324 (2.427); 
250-349 (2.504); 
275-374 (2.504); 
325-440 (2.504); 
350-465 (2.089) 

75-174 (2.692); 
100-199 (2.927); 
125-224 (2.927); 
150-249 (2.927); 
175-274 (2.750); 
300-399 (2.736) 

ccr or  
ccr-1 2 34 -0.535 >0.10 -0.475 >0.10 -0.475 >0.10 n.a. n.a. -0.535 >0.10    

cesA3 2 33 -1.699 <0.10 -1.744 <0.10 -1.744 <0.10 n.a. n.a. -1.699 <0.10 866-965 (-1.744)   
comt-2 2 33 0.363 >0.10 0.022 >0.10 0.006 >0.10 0.031 >0.10 0.494 >0.10    
cpk3 1 34 0.216 >0.10 0.297 >0.10 0.549 >0.10 -0.483 >0.10 0.356 >0.10    
dhn-1 1 33 -0.389 >0.10 -0.110 >0.10 -0.050 >0.10 -0.143 >0.10 -0.427 >0.10    
dhn-2 1 34 0.639 >0.10 0.186 >0.10 0.376 >0.10 -0.130 >0.10 0.912 >0.10    
erd3 1 33 -2.103 <0.05 -1.502 >0.10 n.a. n.a. -1.502 >0.10 -1.888 <0.05    
glyhmt 1 33 0.434 >0.10 -0.472 >0.10 -0.472 >0.10 n.a. n.a. 0.434 >0.10    
lp3-3 1 34 -0.694 >0.10 -0.694 >0.10 n.a. n.a. -0.694 >0.10 n.a. n.a.    
lp5-like or 
lp5 1 32 -0.292 >0.10 -0.256 >0.10 -0.192 >0.10 -0.323 >0.10 -0.243 >0.10    

mt-like 1 33 -0.283 >0.10 -1.272 >0.10 n.a. n.a. -1.272 >0.10 0.182 >0.10    
pal-1 or 
pal 1 65 -1.139 >0.10 -1.089 >0.10 -0.558 >0.10 -1.075 >0.10 -0.953 >0.10 345-497 (-1.586)   
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Table 7  Continued 
 

Gene Amp Seq D P Dcoding P Dsyn P Dnonsyn P Dsilent P 
Sliding window, bp (D) 

P<0.10 P<0.05 P<0.01 
pp2c 1 33 -1.140 >0.10 -1.140 >0.10 -1.140 >0.10 n.a. n.a. -1.140 >0.10    

ppap12 1 33 0.723 >0.10 0.723 >0.10 2.500 <0.05 -0.389 >0.10 2.500 <0.05 
89-188 (-1.728); 
114-213 (-1.728) 

239-338 (2.172); 
289-388 (2.500); 
314-393 (2.500) 

264-363 (2.731) 

ptlim1 1 33 -1.552 >0.10 - - - - - - -1.552 >0.10    
ptlim2 1 33 -1.609 <0.10 -1.058 >0.10 -1.140 >0.10 -0.466 >0.10 -1.728 <0.10    
rd21A-like 1 34 -1.087 >0.10 -1.475 >0.10 -1.224 >0.10 -1.138 >0.10 -0.914 >0.10    
sam-1 1 33 -1.431 >0.10 -1.388 >0.10 -1.388 >0.10 n.a. n.a. -1.431 >0.10    

sams-2 or 
sam-2 1 65 0.904 >0.10 0.948 >0.10 0.948 >0.10 n.a. n.a. 0.904 >0.10 

293-392 (1.774); 
318-417 (1.774); 
343-442 (1.774) 

  

sod-chl 1 33 0.382 >0.10 -0.454 >0.10 -0.828 >0.10 0.106 >0.10 0.401 >0.10    
ug-2_498 1 32 -1.224 >0.10 - - - - - - - -  315-437 (-2.008)  

Note: Amp – number of amplicons; Seq – number of sequences. 
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Negative overall value of D was observed in erd3 (P < 0.05), based primarily on the 

silent substitutions. 

In other genes overall D was not statistically significant.  However, the sliding 

window approach revealed negative D for the first exon in arabinogalactan 6 (agp-6; P 

< 0.05) and for the middle region of ug-2_498 (P < 0.05). 

Nearly significant overall D was found in c3h (D = -1.64; P < 0.10).  However, in a 

set with additional sequences studied by Ersoz (2006), the overall D was insignificant in 

the first segment (c3h-1).  In alpha tubulin (α-tubulin) both overall D and D based only 

on silent mutations were -1.61 (P < 0.10), where most substitutions were in the first 

intron.  Weakly negative D was observed in pal-1 (P < 0.10) in the 3' UTR.  In LIM 

domain protein 2 (ptlim2) the overall D was -1.61 (P < 0.10), not much different from D 

based only on silent mutations (D = -1.73, P < 0.10) which became significant  

(D = -1.89, P < 0.05) for sequences studied by Brown et al. (2004). 

Despite strong positive D observed in c4h-1 and ppap12, the sliding window 

approach revealed a weakly negative D (P < 0.10) at the end of the second intron in c4h-

1 and near the beginning of the sequence in ppap12. 

Weakly negative values for overall D, as well as for D based on coding, synonymous 

and silent substitutions (P < 0.10), were found in cellulose synthase A3 (cesA3).  Based 

on sliding windows, this was mostly attributed to the region directly upstream of the 3' 

UTR (P < 0.10). 
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HKA and MK tests.  None of the results produced by the HKA test were statistically 

significant (Table 6).  The P-value in the comparison P. taeda vs. P. elliottii was almost 

significant in aquaporin membrane intrinsic protein (aqua-MIP) and LIM domain 

protein 1 (ptlim1; P = 0.09 and 0.08, respectively).  Similarly, no significant results were 

observed in the MK test. 

 

Synonymous and nonsynonymous substitutions ratio.  For the loblolly pine sets, 

synonymous and nonsynonymous ratio test showed highly significant values in 4cl (P = 

0.001; although the P-value changed to 0.057, when only the fourth segment with the 

expanded population set was analyzed), cinnamate 4-hydroxylase 2 (c4h-2; P = 0.019), 

and putative cell-wall protein (lp5-like; P = 0.004; Table 8).  In several other genes the 

P-values were between 0.050 and 0.100, i.e. in ccoaomt-1 (P = 0.087), cesA3 (P = 

0.051), and dhn-2 (P = 0.080).  In other species the sample size was very limited and 

consisted of sets from 2 to 4 individuals.  In P. palustris, the P-value was 0.046 for c4h-

1 (amplicons 1, 4 and 5), and 0.086 in 4cl-4.  In P. echinata 0.075 and 0.095 for c4h-2 

and cinnamoyl CoA reductase (ccr), respectively.  In P. elliottii, the P-value was also 

relatively low, but still insignificant for dhn-2 (P = 0.088) and erd3 (P = 0.076).  In 

many cases the values for species other than loblolly pine could not be computed due to 

an insufficient number of individuals. 
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Table 8  Ratio of nonsynonymous (dN) and synonymous (dS) nucleotide substitutions 
 

Gene Amp P. echinata P. elliottii P. palustris P. taeda P. radiata P. sylvestris 
P Z P Z P Z P Z P Z P Z 

4cl 5 n/c n/c n/c n/c n/c n/c 0.001 -3.286 - - - - 
4cl-4 1 n/c n/c 1.000 0.000 0.086 -1.730 0.057 -1.924 1.000 0.000 0.154 -1.436 
agp-4 1 1.000 0.000 0.461 -0.739 0.311 1.018 0.343 0.951 - - - - 
agp-6 2 0.560 -0.584 1.000 0.000 n/c n/c 0.285 -1.073 - - - - 
agp-like 1 1.000 0.000 1.000 0.000 0.336 0.967 1.000 0.000 - - - - 
α-tubulin 2 0.311 -1.017 0.348 -0.942 1.000 0.000 0.349 -0.940 - - - - 
aqua-MIP 1 1.000 0.000 1.000 0.000 1.000 0.000 0.210 -1.261 - - - - 
c3h 5 0.291 -1.062 0.149 -1.453 0.307 -1.026 0.162 1.406 - - - - 
c3h-1 1 1.000 0.000 0.305 -1.030 1.000 0.000 0.744 0.328 - - - - 
c4h-1 5 n/c n/c n/c n/c n/c n/c 0.122 -1.559 - - - - 
c4h-1 3 0.125 -1.547 0.289 -1.064 0.046 -2.018 0.331 -0.975 - - - - 
c4h-2 1 0.075 -1.796 1.000 0.000 1.000 0.000 0.019 -2.386 - - - - 
cad 1 n/c n/c n/c n/c n/c n/c 0.425 -0.801 - - - - 
ccoaomt-1 or 
ccoaomt 1 - - n/c n/c n/c n/c 0.087 -1.724 - - - - 

ccr or ccr-1 2 0.095 -1.681 0.146 -1.465 0.307 -1.027 0.133 -1.513 - - - - 
cesA3 2 n/c n/c 0.319 1.000 0.312 -1.016 0.051 -1.972 - - - - 
comt-2 2 n/c n/c n/c n/c - - 0.230 -1.206 - - - - 
cpk3 1 1.000 0.000 0.231 -1.203 1.000 0.000 0.107 -1.626 - - - - 
dhn-1 1 n/c n/c - - - - 0.131 -1.519 - - - - 
dhn-2 1 1.000 0.000 0.088 -1.721 1.000 0.000 0.080 -1.768 0.298 1.045 0.509 -0.663 
erd3 1 n/c n/c 0.076 -1.789 n/c n/c 0.152 1.443 1.000 0.000 n/c n/c 
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Table 8  Continued 
 

Gene Amp P. echinata P. elliottii P. palustris P. taeda P. radiata P. sylvestris 
P Z P Z P Z P Z P Z P Z 

glyhmt 1 n/c n/c n/c n/c n/c n/c 0.181 -1.345 - - - - 
lp3-3 1 n/c n/c n/c n/c n/c n/c 0.233 1.200 - - - - 
lp5-like or lp5 1 n/c n/c n/c n/c n/c n/c 0.004 -2.973 - - - - 
mt-like 1 n/c n/c 1.000 0.000 n/c n/c 0.159 1.418 1.000 0.000 - - 
pal-1 or pal 1 - - n/c n/c n/c n/c 0.383 -0.875 - - - - 
pp2c 1 n/c n/c n/c n/c n/c n/c 0.293 -1.056 - - - - 
ppap12 1 n/c n/c n/c n/c n/c n/c 0.231 -1.204 - - - - 
ptlim1 1 n/c n/c n/c n/c n/c n/c 1.000 0.000 - - - - 
ptlim2 1 - - n/c n/c n/c n/c 0.876 -0.157 - - - - 
rd21A-like 1 - - n/c n/c n/c n/c 0.143 -1.473 1.000 0.000 n/c n/c 
sam-1 1 n/c n/c n/c n/c n/c n/c 0.136 -1.502 - - - - 
sams-2 or sam-2 1 n/c n/c n/c n/c n/c n/c 0.186 -1.330 - - - - 
sod-chl 1 n/c n/c n/c n/c n/c n/c 0.617 -0.501 - - - - 
ug-2_498 1 - - - - - - - - - - - - 

Note: Amp – number of amplicons; n/c – non-computable. 
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3.5. Discussion 

Southern pines are an evolutionarily relatively young and closely related group.  It 

has been hypothesized that during the last glacial period that ended about 15,000 years 

ago (equivalent to about 500 generations of loblolly pine), their range was within the 

regions of central Florida and the Caribbean (Wells et al. 1991; Schmidtling et al. 1999; 

Jackson et al. 2000).  In addition, Mexico and Southern Texas (including Lost Pines) 

have been proposed as a western refuge of Pinus taeda (Al-Rabab'ah and Williams 2004; 

Wells et al. 1991; Schmidtling et al. 1999).  It implies two historically separated refuges 

of loblolly pine: east and west of the Mississippi river, respectively (Al-Rabab'ah and 

Williams 2002). 

Therefore, in the case of Southern pines, recent demographic expansion could 

seriously affect nucleotide variation and complicate the search for signatures of selection 

caused by adaptive processes.  Both demographic events and selection can leave similar 

signatures in the genomes that are often very difficult to dissect.  In this study multiple 

tests were applied to examine the data from multiple perspectives.  None of them, 

however, allowed for robust conclusions regarding adaptive (positive) selection. 

Although dissection of selection from recent demographic events could be facilitated 

through interspecific comparisons (Kreitman 2000; Hudson et al. 1987; McDonald and 

Kreitman 1991), our dataset was still too limited.  Only the P. taeda population set had 

sufficient representation.  In the other three species, more than two samples per gene 

were available only in P. elliottii.  Both MK and HKA tests failed to reject neutrality in 
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all loci.  The evidence of selection was the most pronounced in aqua-MIP and ptlim1, 

but still insignificant (HKA test, P = 0.09 and 0.08, respectively). 

The ranges of the four Southern pines are largely overlapping.  Therefore, selection 

pressure and molecular evolution in adaptive traits genes could be similar.  An outgroup 

species which faces adaptive challenges different than the four studied pines could be 

very informative in the case of these interspecific tests. 

 

Evidence of balancing selection.  Several genes showed positive values of Tajima’s D, a 

result that is consistent with balancing or positive selection.  The overall Tajima’s D was 

positive and significant in ccoaomt-1 and cad (P < 0.01 and < 0.05, respectively).  The 

Z-test score was negative in both genes and nearly significant in ccoaomt-1 (P = 0.087), 

but insignificant in cad.  These results are inconsistent and difficult to interpret because 

they may reflect the combination of both factors – demographic and selective.  This 

pattern could indicate balancing selection acting in coding (cad) and both coding and 

noncoding (ccoaomt-1) regions, as well as slightly negative selection in combination 

with fast recent expansion following a bottleneck. 

Brown et al. (2004) attributed the high positive value of D in ccoaomt-1 and cad to 

the predominant presence of two haplotypes with multiple fixed differences.  Gonzalez-

Martinez et al. (2006a) presented a similar conclusion regarding ccoaomt-1.  In the case 

of cad, the expanded set with an additional sequence obtained in this study only slightly 

affected the D value.  In the case of ccoaomt-1, both population sets from the 

abovementioned studies were merged with the newly sequenced data in this study and 
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slightly increased D (D = 3.18 vs. 2.81 and 2.49 in previous studies, respectively).  

Along with the Z-test outcomes, this result leads to a more elaborate and complex 

conclusion. 

The sliding window approach was useful in cases where overall Tajima’s D was not 

significant.  Agp-4 showed statistically significant Tajima’s D due to nonsynonymous 

substitutions (P < 0.05) in the last exon right before the 3' UTR.  In ppap12 Tajima’s D 

was significant for the synonymous substitutions (P < 0.05), and sliding window 

detected a region with P < 0.01.  In sams-2 the sliding window showed P < 0.10 mostly 

over the 3' UTR.  However, other tests failed to reject neutrality in these three genes.  

Tajima’s D was significantly positive (P < 0.05) in a short region of the first exon of 

c4h-1.  The Z-test also rejected neutrality at this locus in P. palustris (P = 0.046); 

however, the result is not very reliable because the set consisted of only two individuals.  

This pattern indicates that some regions of the locus can be under selection, while other 

regions are selectively neutral, and that different forms of selection can affect different 

regions of the same gene.  Therefore, overall D statistic and lack of significance can be 

misleading sometimes due to averaging opposite effects. 

In 4cl overall Tajima’s D was positive but not significant despite highly significant 

negative Z-test score (P = 0.001).  The sliding window approach attributed much of the 

positive Tajima’s D signal to sites within introns (P < 0.10).  After including an 

additional 32 P. taeda sequences from population sets for the 4cl-4 segment studied by 

Ersoz (2006), the Tajima’s D raised (P < 0.01 around intron-exon junction) and Z-test 

became less significant (P = 0.057).  This pattern could indicate weak purifying selection 
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acting upon the introns and reducing variability in closely linked regions of the gene.  

This can indicate that introns are not entirely neutral and can be under balancing or 

purifying selection (Collins 1988; Castillo-Davis et al. 2002; Carvalho and Clark 1999), 

acting to lower the cost of transcription, ensure correct splicing and appropriate level of 

affinity for regulatory factors. 

In general, despite some significant positive Tajima’s D values, the Z-test failed to 

find any significant signs of strong positive selection.  This is consistent with the 

previous studies on loblolly pine (Brown et al. 2004; Gonzalez-Martinez et al. 2006a). 

 

Evidence of purifying selection.  Apart from erd3, the only gene with statistically 

significant overall Tajima’s D (P < 0.05), signatures of possible purifying or negative 

selection were found also in a few other loci.  In cesA3 the Tajima’s D score was almost 

significantly negative, which was also in agreement with the nearly significant outcome 

of the Z-test. 

When five amplicons in c4h-1 were considered, apart from regions showing positive 

D values, an area in an intron showed negative D with P < 0.10.  Similarly, in ppap12 a 

part of a coding region was identified as under possible selection with P < 0.10 for 

Tajima’s D sliding window test.  These are very interesting examples of how different 

sections of one gene can be affected by various potentially opposite factors. 

Two loci (ug_2-498, and coding region in agp-6) demonstrated negative Tajima’s D 

values when sliding window was applied, although other tests did not support these 

findings.  Nearly significant negative values were identified in α-tubulin, c3h, pal-1, and 
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in ptlim2.  These results might show the possibility of a weak purifying selective 

pressure that was not detectable by other tests. 

In addition, purifying selection was indicated by the Z-test at 95% confidence level 

in c4h-2 and lp5-like genes in P. taeda.  Two other genes demonstrated nearly 

significant values (P < 0.10; dhn-2 in P. taeda and ccr in P. echinata).  Although these 

results were not supported by significant results from other tests, the Z-test is considered 

as very robust and may indicate purifying selection in these cases. 

 

Recent population expansion vs. selection.  Perhaps the biggest challenge in studies on 

selection is discriminating between natural selection and demographic events.  In this 

study some genes demonstrated negative Tajima’s D values due to silent substitutions, 

while Z-test values were not statistically significant.  In others, neutrality was not 

rejected.  Although negative Tajima’s D values could indicate also a recent population 

expansion, when coupled with significant or nearly significant values of the Z-test they 

could be a strong signature of purifying selection.  Similarly, positive Tajima’s D values 

alone could indicate a fast expansion following a bottleneck, but when accompanied by 

significant or nearly significant negative Z-test values they can be a strong signature of 

balancing selection.  In many cases the strongest evidence for Tajima’s D values came 

either from synonymous/silent substitutions or was strongly localized and detected via 

sliding window. 

Highly localized significant Tajima’s D values could be an indication of selection 

rather than a result of recent population expansion.  Gonzalez-Martinez et al. (2006a) 
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found no or little evidence for population substructure or recent expansion in the studied 

area using 21 unlinked nuclear microsatellite markers representing most of loblolly pine 

linkage groups.  FST was also low among the three studied regions.  Al-Rabab’ah and 

Williams (2002) found only slight population differentiation across the loblolly pine 

range, but identified genetic differentiation between the two main parts of the loblolly 

pine range, i.e. east and west of the Mississippi river, respectively.  If we assume, 

however, that the observed pattern is due to recent post-glacial expansion (demographic 

event), then this genome-wide effect would be observed in most if not all studied loci, 

while selection usually affects only a few genes, and its effect could be very different 

depending on the form of selection. 

The wide spectrum of results from these tests is an indication of various factors 

influencing pine genomes.  It is often very difficult, if not impossible, to discriminate the 

demographic effects from signatures of selection.  It is evident that the processes shaping 

variation on the molecular level are not homogeneous.  Highly significant positive 

Tajima’s D scores in certain loci and highly significant negative D in others cannot be 

easily explained by the population expansion alone.  Very likely, both population 

expansion and selective pressure for more efficient water use have been acting 

simultaneously.  Further studies focusing not only on P. taeda but also on other Southern 

pines and outgroup species that face different environmental challenges may help to 

resolve this problem. 
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3.6.  Conclusions 

Despite extensive sequencing efforts, the amount of data available for studies of 

evolution at the molecular level in pines is still limited.  In this study the data for P. 

taeda came from an expanded data set, but is still based mostly on a little more than 30 

individuals for most loci.  However, despite a relatively small sample size, we 

demonstrated that various functional parts of a gene can have different signatures of 

selection that can be opposite and cancel each other at the locus level.  To make better 

use of the available tests, a pine species that faces other adaptive challenges should be 

included for interspecific comparisons. 
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4.  PHYLOGENETIC RELATIONSHIPS BETWEEN FOUR MAJOR 

SOUTHERN PINE SPECIES FROM SUBSECTION AUSTRALES, GENUS 

PINUS 

 

4.1.  Overview 

The phylogenetic relationships between four closely related Southern pines, Pinus 

echinata Mill., P. elliottii Engelm., P. palustris Mill., and P. taeda L. from subsection 

Australes have not been unambiguously classified.  These evolutionarily young species 

share the habitat, face similar adaptive challenges, and were similarly affected by the 

recent ice age.  In addition, similar phenology promotes hybridization documented 

within this group.  Using Maximum Parsimony, Maximum Likelihood, and Bayesian 

Inference methods, 12 nuclear loci (4-coumarate:CoA ligase, arabinogalactan 6, 

cinnamyl alcohol dehydrogenase, caffeoyl CoA O-methyltransferase 1, cellulose 

synthase A3, dehydrin 2, early response to drought 3, putative cell-wall protein, 

metallothionein-like, phenylalanine ammonia-lyase 1, cysteine protease, and s-adenosyl 

methionine synthetase 2) were examined in these and three other pine species.  The 

results demonstrated that interpretation of phylogenetic relationships between the 

Southern pines depends heavily on the subsets of genes selected.  Alternative and in 

some cases conflicting phylogenies were reconstructed. 
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4.2.  Introduction 

Pines represent genus Pinus (order Coniferales, family Pinaceae) that consists of 110-

120 species and constitutes a nearly ubiquitous group across the Northern Hemisphere 

(Eckert and Hall 2006).  They belong to the most important crops in the USA (USDA 

Forest Service) and worldwide.  Pines are keystone species; pine forests play a very 

important ecological role and provide important habitat for numerous species.  Recent 

estimates suggest that Pinus diverged from their most recent common ancestor 

approximately 123-156 MYA (Gernandt et al. 2008) or maximum 225 MYA (Eckert and 

Hall 2006). 

Four major Southern pines investigated in this study, loblolly (Pinus taeda L.), slash 

(P. elliottii Engelm.), shortleaf (P. echinata Mill.), and longleaf (P. palustris Mill.) 

belong to subsection Australes (section Trifoliis, genus Pinus).  Pines from this 

subsection are thought to have begun to diverge 5-18 MYA (Willyard et al. 2007; see 

Axelrod 1986 for a discussion on fossil records), and, therefore, are a relatively young 

group with eleven species according to the traditional classification (Little and 

Critchfield 1969).  Although their current habitats greatly overlap, stretching across 13 

Southern states, P. palustris and P. elliottii could have been separated during the 

Pleistocene, and P. taeda was constricted to two refugia, while P. echinata’s range was 

probably continuous (Schmidtling 2003).  The close relationship between these species 

is supported by natural hybridization that occurs between P. taeda and P. echinata 

(Smouse and Saylor 1973; Mergen et al. 1965) and between P. palustris and P. elliottii 

(Mergen 1958; see Price 1989 for examples of other natural hybrids in pines).  Recent 
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phylogenetic studies demonstrated that dissecting the ancestry within this group is 

problematic (Grotkopp et al. 2004; Eckert and Hall 2006; Gernandt et al. 2005). 

Modern studies on classification of pines began in the early twentieth century.  

Pioneering work by Shaw (1914) laid foundations for the later studies by Little and 

Critchfield (1969), which became a classic reference in pine phylogeny.  Subsequent 

development of molecular techniques provided researchers with genetic markers, such as 

allozymes (e.g. Shurkhal et al. 1992; Wu et al. 1999; Krutovskii et al. 1994), random 

amplified polymorphic DNA (e.g. RAPD; Wu et al. 1999), and later more informative 

DNA sequence markers, such as SNPs (Gernandt et al. 2005; Gernandt et al. 2001). 

The taxonomic classification of Pinus has been fine-tuned multiple times.  New 

molecular data have helped to verify the existing views on the relationships within the 

genus.  Regarding subsection Australes, twenty-one morphological characters were used 

in the study by Adams and Jackson (1997).  They found a very close relationship 

between P. taeda, P. pungens and P. palustris but failed to infer which one was more 

ancestral.  Grotkopp et al. (2004) studied relationships between genome sizes and 

phylogeny, environmental factors, and biological traits.  They used the supertree 

approach and confirmed the tight relationship between P. palustris and P. taeda.  They 

suggested that P. pungens, P. echinata, P. elliottii, and P. radiata are more distant to this 

clade.  This hypothesis was challenged by Gernandt et al. (2005).  The strict consensus 

tree for 101 species based on 2 chloroplast genes demonstrated closer relationship 

between P. taeda and P. pungens, placing P. echinata, P. elliottii and P. palustris as 

sister taxa to this clade.  Eckert and Hall (2006) used 4 chloroplast loci to study 
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phylogeny of 83 pines.  They confirmed tight relationships between Southern pines, but 

P. taeda, P. elliottii and P. pungens were grouped in one clade, while P. radiata, P. 

palustris and P. echinata were in another.  Apparently, more analyses with additional 

nuclear loci need to be done to resolve these controversies.  In our study, 12 nuclear loci 

were used including newly sequenced; that is 3-4 times more than the number of genes 

used in other studies. 

The objective of this study was to refine the phylogenetic relationships between P. 

echinata, P. elliottii, P. palustris and P. taeda, employing twelve nuclear protein coding 

genes.  P. pinaster (subsection Pinaster or Pinus, depending on different classifications, 

respectively), P. sylvestris (subsection Pinus) and P. radiata (section Pinus, 

classification to a subsection is controversial; Millar 1999) were used as outgroups. 

 

4.3.  Materials and methods 

Source of data, species selection and outgroup species identification.  The NCBI 

GenBank was scanned for nucleotide sequences available in other pines for the genes 

studied in Chapter 2 of this dissertation.  Three pine species, P. pinaster, P. sylvestris, 

and P. radiata, were identified with 5, 9 and 12 common genes, respectively (Table 9).  

Nucleotide sequence data for P. radiata were the most complete, and, therefore, it was 

considered the best candidate for an outgroup for the Southern pines in the study.  

Analysis based on all 12 genes could be performed for this group of five species.  

Therefore, in the first stage of the analysis we examined the feasibility of using P. 

radiata as an outgroup.  We identified eight shared genes that could be used for all seven  
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Table 9  Pine species, genes, and 4 combinations of data studied 
 

Gene Abbreviation P. 
echinata 

P. 
elliottii 

P. 
palustris P. taeda P. pinaster P. radiata P. sylvestris 

4-coumarate:CoA ligase 
(amplicons 1-4) 4cl + + + + - AY634350.1 EU392780.1 

arabinogalactan 6 
(amplicon 1) agp-6-1 + + + + - AY634318.1 - 

cinnamyl alcohol 
dehydrogenase cad + + + + - AF060491.1 - 

caffeoyl CoA O-
methyltransferase 1 

ccoaomt-1 or 
ccoaomt - + + + AM502291.1 EU394088.1 EU394089.1 

cellulose synthase A3 
(amplicon 1) cesA3-1 + + + + - EU392879.1 EU392880.1 

dehydrin 2 dhn-2 + + + + EU020010.1 EU394115.1 EU394116.1 

early response to  
drought 3 erd3 + + + AY874639.1* EU020011.1 EU394093.1 EU394094.1 

putative cell-wall protein lp5-like + - - AY867662.1 - EU394124.1 EU394125.1 

metallothionein-like mt-like + + + + - EU394130.1 - 

phenylalanine  
ammonia-lyase 1 pal-1 or pal - + + + EU120508.1 EU394102.1 EU394103.1 

cysteine protease rd21A-like - + + AY867788.1* EU020015.1 EU394108.1 EU394109.1 

s-adenosyl methionine 
synthetase 2 

sams-2 or  
sam-2 + + + + - EU394098.1 EU394099.1 

Note: "+" – sequences generated in this study; "-" – data not available; * – sequences generated in this study were used for 8 
genes and 7 species combination. 
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species (combination 8-7; Table 10 and Fig. 4) and could be a good compromise 

between the number of species and the number of nucleotide sites. 

The second stage involved three configurations of the dataset, representing various 

combinations of number of genes and species.  All 12 genes were studied in six species 

(excluding P. pinaster; combination 12-6), 9 genes in 5 species (excluding P. pinaster 

and P. radiata; combination 9-5), and 5 genes in all 7 species (combination 5-7; Table 

10 and Figs. 5-7).  In all analyses P. sylvestris and P. pinaster (if included) were 

considered as outgroups.  At this stage, two new sequences of P. taeda sequenced in this 

study and described in Chapter 2 of this dissertation were replaced with longer 

sequences downloaded from the NCBI GenBank, i.e. early response to drought 3 (erd3) 

and cysteine protease (rd21A-like), and an additional sequence was included for putative 

cell-wall protein (lp5-like) gene. 

 

Multiple alignments.  The DNA sequences were aligned using BioEdit ver. 7.0.9.0 (Hall 

1999) and ClustalW multiple alignment algorithm (Thompson et al. 1994), and fine-

tuned manually.  Four amplicons for 4-coumarate:CoA ligase (4cl) gene sequenced in 

this study were concatenated.  Conversions from FASTA to PHYLIP and NEXUS 

formats were done using SeaView ver. 4.0 (Galtier et al. 1996).  Following the 

alignment, the sequences for all genes for each species were concatenated. 
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Table 10  Six combinations of data studied 
 

Gene 
Combination of number of genes (first number) and 

species (second number) 
8-7 12-6 9-5 5-7 3-6 a 3-6 b 

4cl +* + + - - + 

agp-6-1 - + - - - - 

cad - + - - - - 

ccoaomt-1 or ccoaomt + + + + - + 

cesA3-1 + + + - - + 

dhn-2 + + + + + - 

erd3 + + + + + - 

lp5-like - + + - - - 

mt-like - + - - - - 

pal-1 or pal + + + + - - 

rd21A-like + + + + + - 

sams-2 or sam-2 + + + - - - 

Note: "+" and "-" mean that gene was either included or not in the combination, 
respectively; * – only amplicon 4 was used (4cl-4). 
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Fig. 4 Cladograms (MP - PAUP and BEST) and phylograms (ML - GARLI, ML - 

RAxML, and BI - MrBayes) for the dataset of 8 genes and 7 species.  Bootstrap 
values (MP and ML) and posterior probability values (BI and BEST) are shown 
at the nodes 
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Fig. 5 Cladograms (MP - PAUP and BEST) and phylograms (ML - GARLI, ML - 

RAxML, and BI - MrBayes) for the dataset of 12 genes and 6 species.  Bootstrap 
values (MP and ML) and posterior probability values (BI and BEST) are shown 
at the nodes 
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Fig. 6 Cladograms (MP - PAUP and BEST) and phylograms (ML - GARLI, ML - 

RAxML, and BI - MrBayes) for the dataset of 9 genes and 5 species.  Bootstrap 
values (MP and ML) and posterior probability values (BI and BEST) are shown 
at the nodes 
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Fig. 7 Cladograms (MP - PAUP and BEST) and phylograms (ML - GARLI, ML - 

RAxML, and BI - MrBayes) for the dataset of 5 genes and 7 species.  Bootstrap 
values (MP and ML) and posterior probability values (BI and BEST) are shown 
at the nodes 
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Phylogenetic analysis.  MP analysis was performed using PAUP* 4.0 b10 (Swofford 

2003).  Most parsimonious trees were found through the heuristic search with 200 

random addition sequences followed by tree bisection-reconnection (TBR) branch 

swapping.  Alignment gaps were treated as missing data and multiple states as 

uncertainty.  Bootstrap analysis involved 500 replicates, and majority consensus rule was 

applied to generate a consensus phylogenetic tree. 

ML analysis was done using RAxML ver. 7.2.6 (Stamatakis et al. 2008; Stamatakis 

et al. 2005; Stamatakis 2006) on the CIPRES cluster (http://www.phylo.org/), and 

GARLI ver. 1.0 (Zwickl 2006), both with 100 bootstrap replicates.  RAxML, one of the 

fastest implementations of ML inference (Stamatakis et al. 2007), was run under the 

assumptions of the general time-reversible model (Tavaré 1986), GTR+Г, where Г is the 

shape parameter of the gamma distribution of the substitution rates over sites (Yang 

1993).  GARLI employs genetic algorithms for the parameter optimization and was run 

under HKY+Г without partitioning of the data.  The bootstrap analyses were 

summarized using SumTrees ver. 2.0.2 (Sukumaran and Holder 2010). 

BI was performed using MrBayes ver. 3.1.2 (Huelsenbeck and Ronquist 2001; 

Ronquist and Huelsenbeck 2003) on the Brazos Cluster at Texas A&M University 

(http://brazos.tamu.edu/).  The analyses ran for 100,000,000 generations.  Sampling 

frequency was set to 5,000, and number of runs and number of chains were both set to 4.  

The outputs were inspected for stationarity using three criteria: the plot of the log 

likelihood values, the standard deviation of split frequencies, and the potential scale 
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reduction factor (PSFR) values.  The burn-in was determined individually for each 

analysis. 

BEST ver. 2.3 (Liu 2008) was used for Bayesian estimation of species trees (Table 

11).  The analyses ran for approximately 74, 63, 80, and 55 million generations for 

combinations 8-7, 12-6, 9-5, and 5-7, respectively, with 2 runs, 2 chains each, and with 

sampling frequency of 5,000.  

 

Data partitioning and model selection.  For the purpose of these tests, data partitions 

were extracted out of each of the four datasets (i.e. containing 8, 12, 9, and 5 genes) 

using SeaView ver. 4.0, and saved in separate files.  For the ML analysis, jModelTest 

ver. 0.1.1 (Posada 2008; Guindon and Gascuel 2003) was run for non-partitioned data.  

Akaike information criterion (AIC) was used to infer the model for GARLI, which does 

not consider data partitions.  RAxML allows for data partitioning and uses much faster 

algorithms, therefore was run for four configurations of partitions (Table 12): no 

partitioning, two partitions (codon positions 1 and 2 jointly, and codon positions 3 and 

noncoding sites jointly), three partitions (codon positions 1 and 2 jointly, codon 

positions 3, and noncoding sites), and four partitions (codon positions 1, 2 and 3, and 

noncoding sites).  Based on the likelihood scores, AIC was calculated and the best 

configuration selected. 

For the purpose of BI, seven configurations were tested: no partitions, codon 

positions 1 and 2 jointly, codon positions 3 and noncoding sites jointly, and four separate 

partitions for codon positions 1, 2 and 3, and noncoding sites.  jModelTest was run for 
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Table 11  jModelTest results for BEST analysis 
 

Gene 

Combination of number of genes (first number)  
and species (second number) 

8-7 12-6 9-5 5-7 
n model n model n model n model 

4cl 519 JC 1914 K80+G 1914 K80 - - 
agp-6-1 - - 596 F81 - - - - 
cad - - 483 JC - - - - 
ccoaomt-1 or 
ccoaomt 593 JC 593 JC 593 JC 593 JC 

cesA3-1 668 F81 668 F81 668 F81 - - 
dhn-2 590 K80 586 K80 586 K80 590 K80 
erd3 885 F81 883 F81 883 F81 883 F81 
lp5-like - - 513 F81 513 F81 - - 
mt-like - - 456 JC - - - - 
pal-1 or pal 497 JC+G 497 JC 497 JC 497 JC+G 
rd21A-like 983 TrN+G 983 HKY 983 HKY 983 HKY+G 
sams-2 or sam-2 544 JC 544 JC 544 JC - - 

Note: "-" – gene was not used in this combination; n – number of sites. 
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Table 12 Partitioning configurations for each dataset according to AIC (based on RAxML results) and BIC (based on 
jModelTest) 

 

Combination* Criterion 
Partitioning 

No partitions 1-2, 3-N 1-2, 3, N 1, 2, 3-N 1, 2, 3, N 

8-7 
AIC 17,262.5 17,123.6 17,072.8 17060.8 17,013.3 
BIC 17,401.3 17,336.6 17,359.3 17,319.0 17,341.7 

12-6 
AIC 27,640.9 27,401.7 27,257.3 27244.0 27,100.0 
BIC 27,796.6 27,596.4 27,490.6 27,483.7 27,377.9 

9-5 
AIC 22,528.2 22,321.7 22,195.8 22226.2 22,100.3 
BIC 22,669.9 22,499.5 22,392.2 22,448.1 22,340.8 

5-7 
AIC 11,990.6 11,881.2 11,849.7 11842.1 11,810.5 
BIC 12,109.2 12,064.8 12,103.0 12,065.6 12,103.8 

3-6 a 
AIC 7,913.6 7,833.6 7,821.2 7818.8 7,806.3 
BIC 8,004.7 7,970.1 8,014.4 7,997.0 8,041.3 

3-6 b 
AIC 9,921.6 9,874.8 9,774.6 9799.8 9,699.6 
BIC 10,029.6 10,007.3 9,953.2 9,997.9 9,943.8 

Note: * Combination of number of genes (first number) and species (second number);  
N – noncoding sites; 1-2 – codon positions 1 and 2 jointly; 3-N – codon positions 3 and noncoding sites jointly; 1, 2, 3, 
N – four separate partitions for codon positions 1, 2 and 3, and noncoding sites, respectively.  In italics are the minimum 
values for each combination for both AIC and BIC. 
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each of these sets and the Bayesian Information Criterion (BIC) scores were recorded 

(Table 13).  BIC scores were calculated for all five possible combinations of these seven 

partitions (e.g. codon partitions 1 and 2 jointly, and codon positions 3, and noncoding 

sites), such that each combination ensured complete coverage of the dataset.  Following 

this algorithm, models were selected for ML and BI. 

 

Partitioned Bremer Support (PBS).  TreeRot ver. 3 (Sorenson and Franzosa 2007) and 

PAUP* were used to infer support for the nodes provided by each gene in the dataset 

containing 12 genes (Table 14). 

 

Phylogenetic trees visualization.  The trees figures were prepared using FigTree ver. 

1.2.2 (http://tree.bio.ed.ac.uk/software/figtree/).   

 

4.4.  Results 

The results of maximum parsimony (MP), maximum likelihood analysis (ML) and 

Bayesian inference (BI) did not allow for unambiguous placement of P. radiata as a 

sister species to the clade comprising the four Southern pines (Fig. 4), showing fairly low 

bootstrap support.  The Approximately Unbiased (AU) test (Shimodaira 2002) 

implemented in CONSEL (Shimodaira and Hasegawa 2001) was used to assess 

topologies with seven alternative positions of P. radiata with regards to the four Southern 

pines.  The test’s result failed to reject only one of the alternatives, that placed P. radiata 

as a sister species to P. echinata.  This topology was absent from the results produced 
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Table 13  Model selection (jModelTest results) for partitions in each dataset 
 

Combination* Partition n AIC BIC 
-ln(L) AIC k model -ln(L) BIC k model 

8-7 

no partitions 5,279 8,632.1 17,296.3 16 HKY+G 8,632.1 17,401.3 16 HKY+G 
codon pos. 1 & 2 2,208 3,341.5 6,713.0 15 HKY 3,336.5 6,796.2 16 HKY+G 
codon pos. 3 & N 3,071 5,205.9 10,443.9 16 HKY+G 5,205.9 10,540.4 16 HKY+G 

codon pos. 1 1,105 1,646.1 3,322.1 15 HKY 1,646.1 3,397.3 15 HKY 
codon pos. 2 1,103 1,644.1 3,316.2 14 F81 1,638.1 3,381.4 15 HKY 
codon pos. 3 1,103 1,881.9 3,789.7 13 K80+G 1,883.9 3,851.9 12 K80 

N 1,968 3,294.9 6,621.8 16 HKY+G 3,294.9 6,711.2 16 HKY+G 

12-6 

no partitions 8,716 13,834.8 27,697.6 14 HKY+G 13,834.8 27,796.6 14 HKY+G 
codon pos. 1 & 3 3,855 5,645.1 11,314.1 12 F81 5,639.3 11,386.0 13 HKY 
codon pos. 3 & N 4,861 8,045.8 16,119.6 14 HKY+G 8,045.8 16,210.4 14 HKY+G 

codon pos. 1 1,929 2,730.0 5,484.0 12 F81 2,730.0 5,550.7 12 F81 
codon pos. 2 1,926 2,815.9 5,655.8 12 F81 2,815.9 5,722.6 12 F81 
codon pos. 3 1,926 3,209.9 6,447.8 14 HKY+G 3,209.9 6,525.7 14 HKY+G 

N 2,935 4,733.6 9,495.2 14 HKY+G 4,733.6 9,578.9 14 HKY+G 

9-5 

no partitions 7,181 11,281.7 22,587.4 12 HKY+G 11,281.7 22,669.9 12 HKY+G 
codon pos. 1 & 2 3,156 4,576.1 9,174.2 11 HKY 4,576.1 9,240.8 11 HKY 
codon pos. 3 & N 4,025 6,579.6 13,183.1 12 HKY+G 6,579.6 13,258.7 12 HKY+G 

codon pos. 1 1,579 2,247.7 4,515.4 10 F81 2,247.7 4,569.0 10 F81 
codon pos. 2 1,577 2,273.3 4,566.7 10 F81 2,273.3 4,620.3 10 F81 
codon pos. 3 1,577 2,571.0 5,165.9 12 HKY+G 2,571.0 5,230.3 12 HKY+G 

N 2,448 3,913.7 7,851.5 12 HKY+G 3,913.7 7,921.1 12 HKY+G 
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Table 13  Continued 
 

Combination* Partition n AIC BIC 
-ln(L) AIC k model -ln(L) BIC k model 

5-7 

no partitions 3,546 5,989.2 12,010.4 16 HKY+G 5,989.2 12,109.2 16 HKY+G 
codon pos. 1 & 2 1,528 2,371.1 4,772.3 15 HKY 2,366.2 4,849.7 16 HKY+G 
codon pos. 3 & N 2,018 3,546.7 7,125.4 16 HKY+G 3,546.7 7,215.1 16 HKY+G 

codon pos. 1 765 1,175.8 2,379.6 14 F81 1,175.8 2,444.5 14 F81 
codon pos. 2 763 1,158.4 2,344.8 14 F81 1,153.2 2,406.0 15 HKY 
codon pos. 3 764 1,337.8 2,705.5 15 HKY 1,337.8 2,775.1 15 HKY 

N 1,254 2,182.2 4,396.4 16 HKY+G 2,178.5 4,478.2 17 TrN+G 

3-6 a 

no partitions 2,452 3,951.6 7,929.3 13 HKY 3,951.6 8,004.7 13 HKY 
codon pos. 1 & 2 1,110 1,668.6 3,361.2 12 F81 1,663.5 3,418.1 13 HKY 
codon pos. 3 & N 1,342 2,229.2 4,484.3 13 HKY 2,229.2 4,551.9 13 HKY 

codon pos. 1 556 828.8 1,681.5 12 F81 828.8 1,733.4 12 F81 
codon pos. 2 554 817.9 1,659.9 12 F81 817.9 1,711.7 12 F81 
codon pos. 3 555 928.8 1,881.6 12 F81 931.3 1,925.8 10 K80 

N 787 1,292.5 2,610.9 13 F81+G 1,295.2 2,670.5 12 F81 

3-6 b 

no partitions 3,175 4,958.4 9,944.8 14 HKY+G 4,958.4 10,029.6 14 HKY+G 
codon pos. 1 & 2 1,321 1,896.5 3,811.0 9 JC 1,896.5 3,857.7 9 JC 
codon pos. 3 & N 1,854 3,022.2 6,072.3 14 HKY+G 3,022.2 6,149.7 14 HKY+G 

codon pos. 1 661 914.4 1,852.8 12 F81 914.4 1,906.7 12 F81 
codon pos. 2 660 931.8 1,887.6 12 F81 931.8 1,941.5 12 F81 
codon pos. 3 659 993.9 2,013.7 13 HKY 993.9 2,072.1 13 HKY 

N 1,195 1,962.1 3,952.3 14 HKY+G 1,962.1 4,023.5 14 HKY+G 

Note: * – Combination of number of genes (first number) and species (second number); N – noncoding sites; n – sample size 
(number of characters); k – number of parameters.  In italics are the partitions included in BI analysis. 
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Table 14  Partitioned Bremer Support (PBS) values for the genes in each dataset 
 
Combi
nation

** 
Node ccoaomt-1 

or ccoaomt dhn-2 erd3 cesA3-1 pal-1 
or pal 

rd21A-
like 

sams-2 
or 

sam-2 
agp-6-1 lp5-

like 
mt-
like cad 4cl Total 

12-6 

whole tree 24 29 33 8 14 35 12 6 27 8 6 48 250 
1  (P. echinata,  
P. taeda) 3 -1 -2 0 1 0 0 0 -2 0 0 2  

2  (P. echinata,  
P. taeda, P. elliottii) 3 -1 -2 0 1 0 0 0 -2 0 0 2  

3  (P. echinata,  
P. taeda, P. elliottii,  
P. palustris) 

3 -0.50 -2 0 1 -0.50 0 0 -1 0 0 1  

9-5 

whole tree 17 26 30 6 12 31 11 - 20 - - 42 195 
1  (P. elliottii,  
P. palustris) 1 0 0 1 0 -1 0 - 0 - - 0  

2  (P. echinata,  
P. taeda) 0 -1 0 0 0 0 0 - 0 - - 2  

8-7 

whole tree 36 33 30 8 20 43 12 - - - - 14* 196 
1  (P. echinata,  
P. palustris,  
P. elliottii, P. taeda,  
P. radiata) 

0 11 7 0 0 0 0 - - - - -1*  

2  (P. elliottii, P. taeda) -1 2 4 -1 0 0 0 - - - - -3*  
3  (P. echinata,  
P. palustris) -0.33 2 1.33 -0.33 0 0 0 - - - - -

1.67*  

4  (P. echinata,  
P. palustris,  
P. elliottii, P. taeda) 

1.50 1 -1 0 0.50 -0.50 0 - - - - -
0.50*  
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Table 14  Continued 
 
Combi
nation

** 
Node ccoaomt-1 

or ccoaomt dhn-2 erd3 cesA3-1 pal-1 
or pal 

rd21A-
like 

sams-2 
or 

sam-2 
agp-6-1 lp5-

like 
mt-
like cad 4cl Total 

5-7 

whole tree 36 33 31 - 20 44 - - - - - - 164 
1  (P. echinata,  
P. palustris,  
P. elliottii, P. taeda,  
P. radiata) 

0 11 7 - 0 0 - - - - - -  

2  (P. elliottii,  
P. taeda) 1 -0.50 2 - 0.50 1 - - - - - -  

3  (P. echinata,  
P. palustris) 0 2 0 - 0 0 - - - - - -  

4  (P. echinata,  
P. palustris,  
P. elliottii, P. taeda) 

3 0 -2 - 1 -1 - - - - - -  

Note:  * – only amplicon 4 was used (4cl-4); ** – Combination of number of genes (first number) and species (second 
number). 
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by MP, ML or BI.  Therefore, the hypothesis that P. radiata is not a sister lineage (and 

thus, appropriate outgroup) for the four Southern pines could not be rejected with this 

dataset. 

None of the four dataset combinations unambiguously resolved the phylogenetic 

relationships between the studied species.  For the combinations 8-7 (Fig. 4) and 5-7 

(Fig. 7), most analyses grouped P. echinata with P. palustris, and P. elliottii with P. 

taeda.  Although the bootstrap support varied between the methods, the topology of 

these two clades was consistent except for MP in combination 8-7.  Interestingly, the AU 

test rejected all alternative hypotheses to the ML tree except for P. radiata being a sister 

species to P. echinata. 

On the contrary, the combinations 12-6 (Fig. 5) and 9-5 (Fig. 6) indicate the closest 

relationship between P. echinata and P. taeda.  Although the bootstrap support for this 

clade was as low as 58 in MP and ML in combination 12-6, this topology was supported 

across all methods.  The clade P. elliottii – P. palustris was supported by all methods 

only in the combination 9-5 and was not resolved when 12 genes were analyzed.  P. 

radiata, analyzed in combination 12-6, was placed as an ancestral taxon to the four 

Southern pines by ML analysis conducted by RAxML and BI using MrBayes, while 

GARLI (ML) and PAUP* (MP) failed to resolve these relationships. 

Trees produced by MrBayes (BI) topologically matched the trees produced by 

RAxML (ML) in all the cases except for combination 9-5, where RAxML failed to 

resolve relationship between P. taeda and P. echinata, and MrBayes showed high 

posterior probability for this clade (0.97).  Although bootstrap values used in ML and 
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MP methods cannot be directly compared with the posterior probability values produced 

by BI (Cummings et al. 2003), both are in consensus for the clade support in general.  

Specifically, the posterior probability values tend to be excessively higher than the 

expectations in the range 0.85-1 (Cummings et al. 2003), and, therefore, are more prone 

to lead to erroneous conclusions (Erixon et al. 2003).  This seems to be the case also in 

this study. 

The BEST approach produced trees that were in agreement with MrBayes and 

RAxML except for the combination 9-5, where posterior probabilities were very low 

(Fig. 6). 

The model selected for GARLI was HKY+Г (no partitioning of the data is currently 

available in this software; Table13).  Only in the case of combination 3-6a, this model 

assumed no Г parameter.  In the RAxML analyses GTR+Г model was used.  The tested 

partitioning configurations included 4, 3, 2 and no partitions.  For all datasets, however, 

the optimal AIC value under GTR+Г assumptions was achieved for 4 partitions (Table 

12). 

The conflicting results regarding relationships between the four Southern pines were 

consistent because the discrepancies depended on the dataset and not on the method 

used.  The partitioned Bremer support (PBS) test (Table 14) identified those genes that 

support a particular clade (positive values), or an alternative one (negative values).  The 

distinction is specifically noticeable for the dataset 12-6, where genes 4cl, caffeoyl CoA 

O-methyltransferase 1 (ccoaomt-1) and phenylalanine ammonia-lyase 1 (pal-1) 

supported all three nodes, while genes dehydrin 2 (dhn-2), erd3 and lp5-like supported 
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an alternative (Table 14 and Fig. 5).  The analysis of these results led to selection of two 

triplets of genes: dhn-2, erd3 and rd21A-like (support for the node P. taeda and P. 

elliottii), and 4cl, ccoaomt-1 and cellulose synthase A3 (cesA3-1; support for the node P. 

taeda and P. echinata), combinations 3-6a and 3-6b, respectively.  This approach 

allowed for significant improvement in bootstrap and posterior probability scores in all 

four methods used (except BEST, that was not used here; Figs. 8 and 9).  As expected, 

the topologies between these two combinations varied by the way the four Southern 

pines were coupled, and also by the position of P. radiata. 

 

4.5.  Discussion 

As the nucleotide sequence data are becoming more abundant, data processing is 

becoming more challenging.  Although the dataset in this study included only 12 loci 

and 7 species, the analysis of the total evidence might be misleading.  Low bootstrap 

support or posterior probability could be interpreted as insufficient data coverage.  In 

this case joint analysis of the whole dataset introduced additional uncertainty as far as 

the final phylogeny is concerned. 

The outcome of the PBS test shows that the genes that provided support for the 

cluster of P. taeda and P. elliottii (dhn-2, erd3 and rd21A-like) are involved in drought 

and dehydration recognition and response (see Ersoz 2006 for the summary on selected 

genes function; Table 15).  These genes strongly supported two clades: P. elliottii – P. 

taeda and P. echinata – P. palustris in MP, ML (GARLI), and BI analyses.  In addition, 
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MP - PAUP ML - GARLI 

  
 
ML - RAxML 

 
BI - MrBayes 

  
 

 
 

  
 
Fig. 8 Cladograms (MP - PAUP and BEST) and phylograms (ML - GARLI, ML - 

RAxML, and BI - MrBayes) for the dataset of 3 genes (dhn-2, erd3 and rd21A-
like) and 6 species.  Bootstrap values (MP and ML) and posterior probability 
values (BI) are shown at the nodes 
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MP - PAUP ML - GARLI 

  
 
ML - RAxML 

 
BI - MrBayes 

  
 

 
 

  
 
Fig. 9 Cladograms (MP - PAUP and BEST) and phylograms (ML - GARLI, ML - 

RAxML, and BI - MrBayes) for the dataset of 3 genes (4cl, ccoaomt-1 and 
cesA3-1) and 6 species.  Bootstrap values (MP and ML) and posterior probability 
values (BI) are shown at the nodes 
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Table 15  Function of selected genes (Ersoz 2006) 
 

Gene Function 
4cl enzyme; mono-lignol biosynthesis 
ccoaomt-1 
or ccoaomt enzyme; mono-lignol biosynthesis 

cesA3-1 enzyme; cell wall biosynthesis 
dhn-2 enzyme; drought response 

erd3 transcription factor; dehydration recognition 
and response 

rd21A-like enzyme; drought response 
 

 



95 
 

 
 

the position of P. radiata was very well-supported as a sister taxon to P. echinata – P. 

palustris clade, proving its place within subsection Australes.  Only RAxML-based ML 

analysis showed low bootstrap support, although the topology did not vary from the 

other three approaches. 

The dataset that included the other gene triplet (4cl, ccoaomt-1 and cesA3-1), 

associated with wood quality, very strongly supported another clade (P. echinata – P. 

taeda).  The clade P. elliottii – P. palustris was also well defined, but with a 

considerably lower bootstrap support in MP and ML (GARLI) analyses.  In this case, P. 

radiata was also very well supported, however, positioned as an ancestral species in 

relation to all four Southern pines.  Interestingly, these three genes play a role in cell-

wall biosynthesis (Ersoz 2006).  This dichotomy clearly shows that various evolutionary 

adaptations may affect differently phylogenetic relationships within the subsection. 

An additional important factor is hybridization occurring between the Southern 

pines, as described in both natural and artificial settings (Mergen 1958; Smouse and 

Saylor 1973; Mergen et al. 1965; Price 1989).  Gene flow that occurred between the 

species at different times in their history can also complicate their relationships via 

introducing different selective alleles at different times.  Therefore, these similarities 

may be not only characteristic of a close relationship between two species, but also 

reflect parallel adaptation and opportunistic gene exchange. 

A recent study on multiple species from subgenus Strobus (Syring et al. 2007) using 

an intron from IFG8612 revealed high levels of polymorphisms shared among the 

species.  The authors concluded that the likely reason for this is incomplete lineage 
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sorting.  It is very likely that in the case of Australes we deal with a similar phenomenon.  

In this study only one sequence per gene per species was used.  Data from multiple 

alleles per species could help investigate this phenomenon in Australes. 

 

4.6.  Conclusions 

This study confirmed very tight relationships within the subsection Australes.  The 

dataset consisting of 12 loci was sufficient to show that in the case of Australes not only 

the amount of genetic data but also their partitioning and configuration may severely 

impact the conclusions.  Using only three genes proved to be sufficient to achieve very 

high bootstrap support (MP and ML) and posterior probability values (BI), but still can 

be misleading in identifying true phylogenetic relationships.  This study clearly 

demonstrated that the phylogenetic trees that are based on a limited number of genes 

could be very different, and very likely represent “gene” trees, rather than “species” 

trees.  Therefore, trees obtained in the study based on the small number of genes should 

be considered very cautiously and critically.  Moreover, proper partitioning may help to 

understand the ancestral relationships between the species more than the amount of data 

used. 
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5.  CONCLUSIONS 

 

The four major Southern pines, Pinus echinata Mill. (shortleaf pine), P. elliottii Engelm. 

(slash pine), P. palustris Mill. (longleaf pine) and P. taeda L. (loblolly pine), are an 

important component of the Southeastern ecosystem and the landscape of the thirteen 

states.  They provide multiple benefits to human society, playing an important role in 

landscaping, erosion control and watershed management, as well as being an important 

source of timber and pulp for industry.  They are the keystone species that provide 

habitat and protection for numerous species of microorganisms, fungi, plants and 

animals. 

These four pine species share common evolutionary history, ancestry, and vastly 

sympatric or overlapping area.  Affected by the harsh conditions of the recent glacial 

period that ended about 15 thousand years ago, and being well adapted to climatic 

conditions of their current range that stretches from subtropical to warm temperate, they 

have likely accumulated significant variation in the adaptive trait loci. 

Despite the multiple benefits that they provide, they have not been as intensely 

studied as loblolly pine, and knowledge about the organization of their genomes is 

limited.  In addition, their recent dynamic evolutionary history creates additional 

opportunities to study evolutionary processes in progress.  Although the complete 

sequencing of the loblolly pine genome is on the way, due to its large size, complete 

assembly and annotation will require much time and effort. 
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We used already available data for completely sequenced organisms, data newly 

collected in this study, and publically available data for selected wood-quality and water-

stress related genes in loblolly pine.  We proposed novel comparative genomic 

approaches to further our understanding of genome-wide characteristics in incompletely 

sequenced non-model species, such as the four Southern pines.  We investigated the 

effect of selection pressures in these selected genes, and analyzed phylogenetic 

relationships between these pine species.  We answered three specific questions:  (1) 

What can be predicted about the genome-wide characteristics of loblolly pine, based on 

the genomic data of completely sequenced species?  (2) What effects has selection had 

upon the set of studied genes in the four Southern pines?  (3) What are the phylogenetic 

relationships between the four Southern pines, and with respect to other selected pine 

species? 

To predict the genome-wide characteristics of loblolly pine, we developed a series of 

statistical regression models.  Using data publically available in NCBI GenBank, we 

inferred relationships between the parameters that can be relatively easily estimated from 

available data (such as mean exon length and exon/gene ratio), and parameters that are 

difficult to assess (e.g. number of protein coding genes, number of all genes and exons).  

We confirmed the general trend of increasing number of genes, gene products, and exons 

in the genome, along with higher exon/gene ratio and alternative splicing (AS) ratio as 

species become more evolutionarily advanced.  Although our results indicate that 

different taxonomic kingdoms may have followed various evolutionary paths and may 

require different calibration of the model parameters, the number of completely 
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sequenced evolutionarily distant plant species should be extended to allow further 

conclusions.  

To elucidate the effects of selection on drought tolerance, drought-stress response 

and wood-quality related genes, we used previously published data (Ersoz 2006; 

Gonzalez-Martinez et al. 2006a; Brown et al. 2004) and expanded the dataset by newly 

acquired sequences in this study for the four Southern pines.  Despite the relatively small 

dataset of a little over 30 P. taeda individuals in most loci, and no more than 4 

individuals from the other species, we found signatures of selection in some of these 

genes studied.  In addition, we demonstrated that different parts of a gene could be under 

different forms of selection and could mislead neutrality tests performed at the entire 

gene level.  To better discriminate between the effects caused by selection and those 

caused by recent demographic events, a more distant pine species that faces other 

adaptive challenges should be included for interspecific comparisons; more complex 

models that include both selection and demographic events should be tested using 

coalescence approaches. 

To resolve the relationships between the four Southern pines, we studied three 

additional pine species, i.e. P. radiata, P. pinaster and P. sylvestris, for which the 

nucleotide sequence data orthologous to the sequences newly generated in this study are 

available in the NCBI GenBank.  We confirmed very tight phylogenetic relationships 

within the subsection Australes.  The study of 12 genes demonstrated that both the 

number of genes and their partitioning can greatly affect the conclusions for this group 

of Southern pines.  Within this dataset we identified two triplets of genes that supported 
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alternative topologies for the four Southern pines, each with high bootstrap support and 

posterior probability values, depending on the method applied.  We demonstrated that 

drawing conclusions about species trees should be done with caution because the 

phylogenetic trees based on a limited number of genes could be very different and likely 

represent “gene” trees rather than “species” trees.  In addition, appropriately applied data 

partitioning may be a useful tool in more detailed understanding of the ancestral 

relationships between the species. 

As the most studied coniferous species, loblolly pine has become a model species for 

conifers (Krutovsky et al. 2004).  Before the complete genomic data are available, the 

regression models developed in this study will help bridge the gap in understanding the 

structure of the pine genomes and genomes of other incompletely sequenced non-model 

species, until more data are collected.  New genomic data for pines and other 

evolutionarily distant plants will help fine-tune the proposed models.  Moreover, we 

demonstrated that newly obtained nucleotide sequence data can be combined with 

already publically available data and used to expand the sample size needed for study.  

To better elucidate the molecular evolution in the studied genes, interspecific tests 

should be used, as they are better suited for dissecting the demographic effects from 

selection.  For this purpose incorporating data from more distant pine species that face 

other adaptive challenges should be considered.  Finally, we advanced knowledge about 

the relationships between the four Southern pines, which will certainly continue to grow 

as more data are collected. 
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APPENDIX A 

SUPPLEMENTARY FIGURES FOR SECTION 2 

 

 
 
Fig. A1  Correlation of number of all genes and mean exon length 
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Fig. A2  Correlation of mean CDS length and mean exon length 
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Fig. A3  Correlation of number of all genes and number of all exons 
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Fig. A4  Correlation of number of protein coding genes and exon/gene ratio 
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Fig. A5 Correlation of alternative splicing ratio and mean exon length.  Only species 
with alternative splicing were considered 
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Fig. A6 Correlation of alternative splicing ratio and exon/gene ratio.  Only species with 

alternative splicing were considered 
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Fig. A7 Correlation of alternative splicing ratio and number of all CDSs.  Only species 

with alternative splicing were considered 
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