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ABSTRACT 

 

Thin films techniques are widely used in microelectronic devices, optical 

coatings, batteries and solar cells, which would be applied under harsh environment 

spanning from outer space to nuclear plant where defects are easily generated, 

accumulate and eventually degrade the materials properties. Oxide and nitride thin films 

are widely used and mostly studied in such applications. Moreover, MgO and ZrN have 

been considered as promising candidates of Inert Matrix materials to reduce hazardous 

nuclear waste. Therefore, studies on the defects development, and more importantly, the 

enhanced damage tolerance by microstructural design are of great importance. However, 

only limited study has been conducted up-to-date. 

In this dissertation, interface mitigation effects on radiation damage have been 

explored in TiN/MgO epitaxial thin films. After ion implantation with He+ ions, no 

hardness variation is observed in the epitaxial multilayers, and high resolution TEM 

indicates no obvious ion damage in the MgO layers within the epitaxial multilayer 

samples. However, single layer MgO film shows a significant hardness increase of 

∼20% and high density point defect clusters are clearly identified. The results suggest 

that, in this system, epitaxial interfaces could act as effective point defect sinks in 

reducing the defect density and suppressing the ion-implantation induced hardening in 

MgO, and thus are responsible for the enhanced radiation tolerance properties.  

The grain size dependent response in nanocrystalline (nc) ZrN under high dose 

heavy ion implantation has been studied with Fe2+ ion, and it is found that the ZrN film 
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with the average grain size of 9 nm shows prominently self-healing effects as evidenced 

by suppressed grain growth, alleviated radiation softening, as well as reduced variation 

in electrical resistivity. In contrast, ZrN with the larger average grain size of 31 nm 

shows prominent softening and resistivity increase after implantation, attributed to the 

high density of vacancy like defect clusters formed inside the grains. The distinct 

implantation effects on microstructure, residual stress, grain growth, and electric 

resistivity of thin films with different grain sizes were discussed, and the influence of 

grain boundaries on enhanced tolerance to implantation damage in nc-ZrN is 

demonstrated.  

In order to further study the real-time response of the designed microstructures, 

and their kinetic interactions with defects. In-situ irradiation on MgO/ZrN multilayer 

systems with non-epitaxial interfaces as well as grain boundaries has been conducted, 

which shows clearly the cyclic process of the defects removal by high angle grain 

boundaries and effectively absorbed by interfaces. Another In-situ study on the 

MgO/TiN epitaxial films has demonstrated that the implantation induced defects migrate 

to the interfaces, and annihilate there, that improve the MgO tolerance against 

amorphization. The comparison has shown that the non-epitaxial interfaces are more 

effective in absorbing defects manifested by the higher mobility of defects migration 

towards the MgO/ZrN interfaces. The research findings could provide guidance for 

microstructural design of functional ceramic thin films for advanced technological 

applications under extreme conditions from outer space exploration to nuclear energy 

generation. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Background of the Nuclear Energy and Current Fuel Cycle  

 

Energy is vital to human life, and especially important in economy recovery and 

growth nowadays. Electricity is one of the most common energy forms in modern 

human history. The long term projection of electricity consumption will be 5 fold as it is 

now at year of 2050. Up to date, the energy generated globally is still heavily depending 

on fossil fuels. It is known, traditional energy sources like coal and oil are not renewable, 

and the CO2 associated with the combustion of them causes the severe climate change. 

Not to mention the pollution caused by combustion of fossil fuels in the rapidly 

developing countries such as China and India. Seeking new alternative energy sources, 

more importantly for those clean, safe and economic energy sources are of great interests 

of every country, in which many means should play a role, such as wind, hydropower, 

solar energy, and nuclear energy. However, they are way off from meeting our large and 

rapidly increasing energy demand. Among them, nuclear energy catches most of the 

attention, and has all the technology required for large scale application. Nuclear energy 

is greenhouse gases free, and a relatively clean energy form, as well as capable of 

generate large amount of energy. The current operating nuclear plants in US are only a 

handful of 104, but produces around 20% of the electricity nationwide. However, safety 
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issues such as what happened at Three Mile Island and Fukushima, spent fuel disposal 

and the proliferation problem have raised concerns significantly worldwide. 

Spent nuclear fuels are highly toxic, containing many radioactive isotopes with 

long half-lives. The current fuel cycle employed in the U.S. is incomplete, called the 

once-through nuclear fuel cycle, which is utilized in the light water reactors (LWR). Fig. 

1 schematically shows the fuel cycle. There is a complete front end, where uranium is 

mined, and U-235 is enriched, and fuel is assembled. After years of service in the plant, 

where energy is generated, the fuel becomes spent fuel, which requires a reliable storage 

solution. So far, there is only the high level waste (HLW) management capability in 

America as the back end of the current fuel cycle.   

 

Figure 1 The once-through LWR nuclear fuel cycle 
 

A reliable method of long-term storage of nuclear waste is nowhere close to 

practical use. Up to date, in America, all the nuclear wastes, over 65,000 tons, are stored 
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temporarily on site, and the building of permanent underground repository is nowhere 

close. The reliability of either the temporary storage or the ultimate disposal remains 

problematic, especially under the attack of natural disaster or terrorists. The proliferation 

issue of the weapon grade materials generated in the current nuclear fuel form could be 

another potential hazard. There are two types of conventional fuel forms that are most 

widely adopted: the low enriched uranium (LEU) and the mixed uranium-plutonium 

oxide (MOX) fuels. U-238 is used as the diluent in both of the conventional fuels where 

a critical density (3% ~ 5%) of the fissile part (U-235) allowing the sustainable and 

controllable nuclear reaction is embedded. However, U-238 could capture one neutron, 

and then undergoes two beta decay, becomes Pu-239, which is the most common 

plutonium isotope formed in nuclear plants. Take Pu-239 as an example, the half-life is 

~24000 years, the toxicity and long lasting radioactivity raise up the safety concerns on 

the spent fuel. Although over half of all the plutonium created is burnt in the fuel, there 

is still over 1% of the spent nuclear fuel are the different isotopes of plutonium. Weapon 

grade plutonium could be extracted from the spent fuel through reprocessing, and 

therefore proliferation issue could be serious when the piling up of spent fuel falls into 

the wrong hands. Therefore, a new fuel form is needed to close the current once-through 

fuel cycle, from which the spent fuel can be processed and made into new fuel for re-

burning to address the piling up of waste, proliferation issue as well as generate more 

energy. 
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1.2 Proposed Solutions (New Fuel Forms) and Materials Needed 

 

1.2.1 The Concept of Inert Matrix Fuel (IMF) 

 

Instead of using U-238, some neutron transparent materials are proposed to be 

the inert matrix materials. The employment of neutron transparent materials as matrix 

eliminates the plutonium breeding problem associated with the neutron capture of U-238. 

The fissile phase is either dissolved in the matrix or incorporated as macroscopic or 

microscopic inclusions. And with reprocessing of the current spent fuel, the transuranics, 

especially plutonium and the long time radioactive minor actinides such as americium, 

curium and neptunium will be extracted from the spent fuel, and made into new fuels for 

future burning on site, instead of bury those nuclear wastes. During the re-burning, the 

transuranics could decay into less hazardous elements, besides, more energy will be 

generated with less fissile materials and so as less and even no waste produced. This 

concept is called the Inert Matrix Fuel (IMF), which has been proposed and studied 

widely for the past two decades to solve the problems associated with the current fuel 

form. 

 

1.2.2 Materials Selection 

 

The searching and studying for suitable matrix materials have been widely 

conducted since the sixties of last century, and such exploration has resumed and 
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ramping up this century. Many materials are of great interest for scientists, they all share 

some common properties that meet the criteria of IMF technology: 

(a) Low neutron absorption cross section. In other words, the materials are required 

to be neutron transparent. According to the design, the spent fuel is exposed to 

neutron irradiation before disposal to transmute the high radiotoxic elements to 

less harmful one. Moreover, the neutron transparency increases the fission 

efficiency. 

(b) Compatibility with reactor materials, such as with the fissile phase, non-

reactivity with the cladding materials and structural materials, and low-solubility 

with the coolant. 

(c) Acceptable thermal conductivity, so that no significant thermal stress is built up 

inside the fuel. 

(d) High melting point, good mechanical properties and high density. 

(e) Outstanding radiation tolerance to achieve high burnup and safe operation. 

(f) Satisfying the requirements of reprocessing, such as dissolvable in certain 

chemical, and the fissile phase could be extracted. 

Several groups of materials are particularly promising as IMF candidates, 

including oxides, nitrides, carbides and some metal materials. However, none of them 

fits perfectly with all the criteria while they qualify some. For example, oxides are the 

most studied and widely understood one for decades, and most reactor knowledge is 

based on oxide based fuel, a lot of researches and experience were gained on UO2, MOX 

and even thorium oxides for the next generation nuclear reactor. Oxide candidates 
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provide the possibility of them being applied in the current operating plants. However, 

most oxides are thermally insulating, that results in poor efficiency and temperature 

building up in the fuel core. The plutonium segregation to the periphery and pore 

migration to the fuel core are also resulted from the thermal gradient built up. Nitrides 

are also of great interest to researcher because of their hardness, optical properties, 

thermally and electrical conductivity [1]. And many transition metal nitrides are 

refractory, inert to most chemical environments, and compatible to transuranic nitrides. 

The solid solution of transuranic-nitrides, including PuN, NpN, AmN, CmN, etc. with 

ZrN is considered as one of the primary fuel type candidates for the Advanced 

Accelerator Assisted (AAA) system. Moreover reprocessing can be achieved by using 

nitric acid. However, the manufacturing is difficult since the high melting points of the 

nitrides. Metals have good thermal conductivity, but very low melting points, that raises 

safety concern in plants when accidents occur. And the compatibility with sodium or 

water further questions the feasibility of metal matrix. 

The inert matrix materials must survive the environment of high temperature, and 

constantly bombarded by neutrons and other fissile products for years. In the oxides and 

nitrides family, MgO and ZrN poses multi-fold advantages, and they are considered as 

most promising candidates as inert matrix materials from the oxides and nitrides family 

respectively, and therefore chosen in this study. Besides, TiN is also used to synthesize 

different microstructures. Some carbides and metal studies in this field would be 

reviewed in the following sections as well. 
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1.3 Background of Radiation Damage in Materials 

 

1.3.1 Fission Products 

 

The fission reaction of a U-235 atom is triggered by the absorption of a neutron, 

and two fragments as well as three neutrons are produced from the split of the original 

U-235 atom. Some of the released neutrons are then captured by U-238 as discussed in 

section 1.1, or by other elements, while others can trigger subsequent fission reactions 

and produce more neutrons. The multiplication of neutrons, and therefore the continued 

fission reaction is called the chain reaction. 

The fission products include neutron, α and β particles as well as the energetic 

fission products from fissile element. Both α and β particles are produced by their 

respective decay cycles: β decay produces electrons or positrons from neutron 

transferring to proton or vice versa in the atomic nucleus with typical kinetic energy 

around 1MeV, but can range from a few keV to several tens of MeV, with speeds up 

close to light speed, however with the low mass of electrons, the momentum of beta 

particles is small. While α decay produces energetic helium nuclei with energy of about 

6 MeV. Neutrons are released usually with a kinetic energy of several MeV, and 

categorized as fast neutrons, which have low cross sections to induce fissions. The 

kinetic energy needs to be lowered below 1 MeV, and the neutrons become thermal 

neutrons to cause fission reactions. Scattering of a neutron may be elastic or inelastic. 

Elastic scattering is scattering in which no kinetic energy is lost from collision system, 
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while the momentum is conserved as well. Inelastic scattering transfers some energy and 

leaves the lattice atom in an excited state, or induces chemical reaction. The excited 

atom lowers itself to the ground state by emitting sub-particles and photons such as x-ray 

and gamma ray. Elastic scattering becomes gradually predominant the speed of neutrons 

is lowered, since the scattering cross-section of nuclei increases with slowing of 

neutrons. This interaction is simplified as purely ballistic process and the neutron energy 

is reduced by the subsequent collisions until it stops. Light atoms, such as H, O and C 

are used as moderators due to their close mass to neutron. They can slow the neutron 

energy efficiently so that the energy eventually is near equilibrium with the nuclei of the 

fuel. These moderated, or thermalized, neutrons have a much higher cross section with 

U-235 to produce fission events [2]. 

Incredible amount of energy is produced by the fission reaction of the fissile 

elements. Much of the energy is released in the form of kinetic energy via the expulsion 

of neutrons and fission products. The kinetic energy of fission products are in the range 

of approximately 70 to 100 MeV each. The sum of mass and energy of fission products 

equals to the original fissile element. In the case of UO2 fuel in a typical LWR, the 

spectrum of fission products ranges from Ge to Dy in the lanthanum series, and the 

distribution is similar of transuranics fission products [2]. 
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1.3.2 Fission Product Interaction with Matter 

 

The fission products then move through the matter at high velocity, and cause 

various type of interactions. The interactions of neutron with matter typically indicating 

the neutron interacting with nuclease owing to the negligible size of orbiting electrons 

compared to the nuclease. The interactions include scattering (elastic scattering, inelastic 

scattering) and absorption. The scattering was discussed previously, and the absorption 

of neutrons by the nuclease can occur via electric magnetic process where photos are 

emitted, or via charged particle emission as well as neutral process that another neutron 

is later emitted. The final absorption of neutron to the nuclease can be fission, where the 

original nuclease is broke into daughter products as discussed before. The Gamma 

interaction with matter includes photoelectric effects, Compton scattering, and Pair 

production. The electron interactions with matter include Bremmstrahlung (braking) 

radiation, and Cherenkov radiation. And the interactions between alpha particle and 

fission fragment with matter include radiation damage and electronic excitation. The 

radiation damage from the fission products is the interest of this research. 

 

1.3.3 Energy Loss and Stopping Power 

 

As an ion is moving through the lattice, it encounters lattice atoms on their lattice 

sites, and loses energy from the interaction with them, via which process, the implanting 

ion finally stops. There are two stopping mechanisms: nuclear stopping (Sn) and 
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electronic stopping (Se). The stopping of the projectile species are the results of the 

summation of these two mechanisms. The nuclear stopping is from the interaction of 

implant ions with nuclei, causing the scattering of ions, and displacement of nuclei. And 

the electronic stopping is through the interaction of the implant ions with the electrons of 

the lattice atom. The ion energy is reduced, and transferred to the excitation of electrons, 

or stripping the electrons off the lattice atom. The Pauli exclusion principle forbids the 

electrons share the same quantum state, and therefore, the projectile ions’ electrons 

excite the atomic electrons to jump to a higher state. The jump back of the excited 

electrons to the ground state will emit energy in the form of either photons or phonons, 

and this process is an inelastic collision event. This effect becomes less efficient, as the 

ion further slows down.. The target atoms could either be displaced or ionized that 

causing rapid repulsion, the “fission tracks” in swift ion irradiations are the evidence of 

these strong destructive forces produced during electronic interaction. At low energy 

region, the nuclear stopping increases with the kinetic energy of the implant ions, while 

at high kinetic energy region, due to the insufficient time for energy exchange with 

nuclei, the nuclear stopping drops. Heavier elements have higher nuclear stopping power 

than lighter elements. On the other hand, the electron stopping is proportional with the 

ion velocity, and it’s described as: 

𝑆𝑒(𝐸) = 𝑘𝑒√𝐸 

Where E is the energy of the ion at a certain point on its trajectory, and ke is a 

coefficient which is weakly related to the target atomic number and mass. For example, 

the ke for Si is 107 (eV)1/2/cm, and GaAs has a ke around three times greater [3]. For 
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example, implantations of As+, P+, B+ into Si, have different dominant stopping in the 

energy range 0 to 1 MeV. The electron stopping is dominant for B+ implantation in this 

range, due to the small atomic number, however for As+ implantation, the nuclear 

stopping is primary for energy smaller than 700 keV, and electron stopping surpasses the 

nuclear stopping when energy is greater than 700 keV. And for P+ implantation, which 

has the mediate atomic number, the crossover of nuclear stopping and electronic 

stopping is at 130 keV, below which nuclear stopping is greater than electronic stopping 

[4]. When the projectile velocity is greater than that of the average electrons in the lattice 

orbitals, the implant ions are stripped of all of the electrons and become highly positively 

charged. The stopping in this region is called the Bethe-Bloch stopping. The positively 

charged ions perturb the electrons around the trajectory and lose energy. As the velocity 

slows, the time spent near these electrons increases, and thus stopping increases as 

shown in the Fig. 2: 
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Figure 2 Stopping power of an implant ion in the target lattice. Area I is nuclear 
stopping dominant region, and area II is the region dominated by electronic 

stopping, area III is the Bethe-Bloch region [2]. 
 

1.3.4 Displacement Threshold Energy (Ed) 

 

As the energetic ions moving through the lattice, they lose energy by exciting 

electrons, elastic collisions, or by inelastic collisions. Displacement of an atom from its 

lattice site requires a minimum energy transferred from the collision, which is the 

displacement energy or displacement threshold energy, Ed. If the energy transferred to 

the struck atom is smaller than Ed, the struck atom will only vibrate around its 

equilibrium position instead of being displaced, and pass the vibration to the surrounding 

lattice via the interaction between their potential fields. The energy transferred in this 

scenario would dissipate in the form of heat. The struck atom acquiring sufficient energy 
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from the collision overcome this potential and displace the surrounding lattice, in order 

to move through the lattice, and ends up in a site which is sufficiently far enough that the 

displaced atom won’t move to its original site immediately. In crystalline materials, the 

potential is not uniform along all the lattice directions. Different lattice directions have 

different densities of atoms and as such have different Ed. Along the directions of high 

symmetry, the displacement energy is relative low. The average displacement energy is 

generally reported due to the random direction of the recoils, which is very commonly 

considered to be 20~ 25 eV for metals estimated from the sublimation energy for most 

metals, which is about 5 eV. Considering about the twice more bonds broke in removing 

an atom in the interior than from the surface, plus the amount of energy needed for the 

atom reside in an interstitial site, and no sufficient time for the neighboring lattice 

relaxation, 4 to 5 times of this sublimation energy is usually used as the displacement 

energy in metals. The Ed is estimated about 40 eV for ionic ceramics [2]. If the 

interaction potential between lattice atoms is known, the displacement energy along a 

certain direction can be determined more accurately by summing the potential energy 

along the struck atom trajectory When the potential energy reaches a maximum, the 

corresponding site is called a saddle point, and the displacement energy is determined by 

the difference of the displaced atom at this saddle point with its original lattice 

equilibrium position [5].. 

In a simplified model, when the energy transferred exceeds Ed, the probability of 

displacement is 1, otherwise it’s 0. This step function is only strictly valid in an 

amorphous material at 0 K. Because of the influence of thermal energy of the lattice, and 
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the crystallinity on displacement energy, this function step is blurred with a certain width. 

The next step is to find the amount of displacements as a function of energy transferred, 

given this displacement probability. And therefore, a model is developed by Kinchin and 

Pease [6].  

 

1.3.5 Kinchin-Pease Approximation 

 

In order to obtain a simple method to calculate the average numbers of 

displacements in a solid material initiated by a primary knock-on atom (PKA) with a 

certain amount of energy T, several assumptions were made by Kinchin and Pease:  

1. Only the elastic collisions between atoms were considered in creation of the 

cascade.  

2. The displacement probability is 1 if T > Ed.  

3. No energy passes to the lattice in the collision, energy is conserved among the 

PKA and the recoil.  

4. Energy loss of electronic stopping is set with a cut-off energy Ec, below which 

the electronic stopping is neglected, and only atomic collisions take place and cause 

displacements. No additional displacements occur for energy greater than Ec, until the 

energy is reduced to this cut-off energy by electronic stopping. 

5. Hard-sphere model is used for the energy loss cross-section. 

6. The crystal structure of the target material is not considered, that the 

arrangement of atoms is assumed as random. 
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In the hard-sphere model for collisions, electronic stopping is ignored, and the 

same mass of the atoms is used. This model satisfactorily works for slow ions with close 

masses. The concept requires that a certain amount of energy (displacement threshold 

energy) must be obtained by the target atom to be displaced, and the projectile has just 

enough energy to be a replacement as illustrated as the stage in Fig. 3. Twice as this 

energy is required for the displacement a second lattice atom, and therefore a linear 

relation with a slope of ( 1
2𝐸𝑑

) is obtained. The Kinchin-Pease model tends to overestimate 

the number of vacancies induced by recoils, but provides a fast estimation of the extent 

of damage expected from a certain amount of energetic particles [2]. This method is used 

in the SRIM[7] calculation as the quick method, and is widely accepted in the radiation 

field as an estimation of the displacement per atom (dpa). 
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Figure 3 Kinchin-Pease model for the number of displacements as a function of 
PKA energy beyond Ed [5]. 

 

1.3.6 Defects Introduced by Irradiation 

 

Nuclear collisions become the primary stopping as the implant species slowed 

down.  Momentum and kinetic energy are conserved, and the displaced lattice atom 

becomes another projectile until all projectiles in the cascade no longer have the energy 

required to displace another atom and rest in the lattice. The Frenkel type defect consists 

of a vacancy, and the displaced atom as an interstitial, which is the most common initial 

defect generated under irradiation. Most of the Frenkel pairs immediately recombine via 

short diffusion path, the rest with large separation become isolated point defects, which 
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may further grow into clusters with same type of point defects. In ceramics, at room 

temperature, vacancies are considered immobile, while interstitials is mobile. With 

increasing temperature, the mobility of vacancies increases, and thus the recombination 

rate is increased as well. Therefore under annealing, vacancies can move and annihilate 

either with opposite type defects or on a free surface. The left vacancies may also 

agglomerate into voids, and if gas species trapped inside the voids, bubbles formation 

occurs. The difference between a void and a bubble is defined by pressure, a void 

surface has negative pressure, while the bubble surface has a positive pressure as a result 

of gas species trapped inside. Moreover, they could also cluster into vacancy loops, 

although is much less likely, due to the less mobility. 

On the other hand, interstitials can grow into dislocation loops more readily, 

which growth is limited by the stacking-fault energy (SFE) since the lattice sequence is 

interrupted, and also limited by the dislocation line energy which is related to the strain 

created around the loops. The movement of dislocation loops is usually very hard. Since 

the number of the vacancies roughly equals to the number of interstitials (given the 

number of substitutes is small), once the interstitial dislocation loops are formed, there is 

a lower drive for the corresponding vacancies to recombine with interstitials. These extra 

vacancies create vacancy bias, which increases the system energy. As a result, there is a 

tendency for these extra vacancies to reduce the total system energy by clustering into 

voids, bubbles, or vacancy loops. In this case, the diffusion barrier or energy required by 

vacancies to become mobile is relatively lower. 
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Besides the dislocation, voids and bubble formation, chemistry reaction also 

takes place under irradiation. Chemically active elements such as I, Nd, Zr, Mo, Pd, and 

Cs are produced in large quantity [2, 8], and these elements will react profoundly with 

the surrounding metals or with each other. For example, cesium and iodine are readily to 

form CsI gas which has corrosive effects on the cladding materials. Proton and α particle 

are essentially the nucleus of hydrogen and helium, and they pose a deterioration risk to 

the cladding, as these gas species would result in swelling and embrittlement. On the 

other hand, xenon, krypton and helium are also common fission products which are in 

large quantity and deposit large energy into the surrounding materials. However, the 

noble gases exclude the complex chemical reactions and therefore widely used in 

displacement damage studies. Kr and He are used for most of the irradiation conducted 

in this study. 

Helium is the most common product of decay and inelastic neutron capture. 

Helium is produced in large quantity over a very long period, since even if the fission 

reaction stops, the decay of other radioactive elements continues. The major problems 

concerning the large amount of helium are swelling. Due to the high temperature in 

nuclear fuel and the small size, helium diffuses rapidly, which further promote the voids 

formation and swelling. When considering fuel storage and advanced fuel forms which 

could achieve very high burnups, the estimated amount of helium produced could be 

more than five times than in the traditional UO2 fuel from a LWR. Although the helium 

produced in the decay has an energy that is much less than the fission products, but the 

damage (displacement damage and accumulation of helium) could accumulate 
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significantly over time. The accumulation of helium both in the fuel and in the cladding 

materials results in bubble formation, and swelling, and as helium accumulates at the 

grain boundaries of the cladding materials, embrittlement could occur. The importance 

of study xenon and krypton is because of the heavy atomic mass and the high kinetic 

energy that causes much tremendous displacement damage. So that, helium is usually 

used in research for study the bubble formation and behavior, and the displacement 

damage which related to defects accumulation, stress and crystal structure variation, and 

physical property degradation is often studies with the krypton irradiation.  

 

1.4 Background on the Key Materials Discussed in the Thesis 

 

1.4.1 MgO and Its Related Radiation Mechanisms Studies 

 

MgO has been widely studies for decades both experimentally and 

computationally. First of all, MgO is relative simple for study compared to more 

complex oxides. And it’s a well understood classic engineering ceramic. Due to its 

physicochemical properties, MgO has been of interest in a wide range of applications 

including protective coating in plasma display panels, catalysis, fuel cells and tunable 

broadband laser [9]. MgO doping has been reported to inhibit grain growth in ceramics 

and improve their fracture toughness effectively [10]. MgO thin film can grow 

epitaxially on multiple substrates including on Ge and GaAs, and on TiN buffer layer, 

which also make it interesting in many devices applications [11]. For example, MaO thin 
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film is also used as an oxide barrier in spin-tunneling devices, owing to the crystalline 

structure. The spin polarization of about 85% has been reported with MgO [12] 

compared to the 40–60% of the commonly used amorphous Al2O3 [13], and MgO is 

thermally more stable than alumina. The reported value of tunnel 

magnetoresistance, 600 % at room temperature and 1100 % at 4.2 K [14], is also 

considerably higher for MgO than that of Al2O3 (70% at room temperature [15]). 

Moreover, MgO also received attention as a material for immobilization and long-term 

nuclear waste storage, transmutation of high radioactive actinides, inert matrix materials 

for Advanced Fuel Cycle Initiative (AFCI) and proposed as insulators for fusion reactor 

diagnostics due to its neutron transparency, high thermal conductivity compared to other 

oxide materials, high resistance to high-energy particle irradiation [16-19]. The 

outstanding properties of MgO might also make it interesting for fusion reactor 

applications in the future.  

 

Compatibility  

 

The compatibility of MgO with fissile materials and actinides is well studied and 

the results are satisfactory, which provides the application for MgO as a matrix material 

candidate. An early experimental work [20] has shown that the PuO2-MgO phase 

diagram is a simple eutectic one with the eutectic point at around 2260 oC, with 40 mol % 

of PuO2 in the oxygen atmosphere. Phase diagrams were calculated by Zhang et al. in 

Pu-Mg-O and Am-Mg-O systems [21]. PuO2-MgO presents in an oxidizing atmosphere, 

http://en.wikipedia.org/wiki/Spin_polarization
http://en.wikipedia.org/wiki/Tunnel_magnetoresistance
http://en.wikipedia.org/wiki/Tunnel_magnetoresistance


 

21 

 

while in dry inert atmosphere PuO2 was reduced to PuO1.6. The PuO2-MgO system has a 

eutectic point at 40 to 60 mol % ratio at temperature 2503 K, whereas the PuO1.6-MgO 

system has a eutectic point at 2341 K with a mole ratio of 54 – 57 % of PuO1.6. In the 

calculated MgO- PuO1.6-PuO2 system, the author suggested the temperature should be 

below 2450 K or the ratio between PuO1.6 and PuO2 should be lower than 50% to avoid 

the presence of liquid phase. The calculated Am-Mg-O system has a low eutectic point 

at 1930 K at a partial oxygen pressure below 1 bar, and in order to increase the eutectic 

point, high partial oxygen is required, which would increases the corrosion on cladding. 

The author suggested MgO is not a good inert matrix material for transmutation of Am. 

The calculations of MgO-UO2 were reported to have simple eutectic phase diagram [22, 

23]. Epstein and Howland suggested the eutectic point is at 59 mol % of UO2 at 2159 oC, 

and Budnikov reported the eutectic point is about 2280 oC. However, experimental data 

is scarce to support the calculated results, and the calculated data varied from method to 

method. 

Moreover, there is no indication of chemical interaction between zircaloy and 

MgO was reported [24]. In inert atmosphere, MgO is reported inert in contact with Zr, 

and Nb, at 1400 oC and 1600 oC respectively. At 1800 oC, minor reaction is observed 

with products of ZrO2 and Nb2O5 respectively, and it is attributed to the surface 

dislocation and penetration [25]. Tolksdorf [26] suggested the presence of Mg in Zr may 

be beneficial, that the oxidized Zr with 1% MgO alloy shows a better resistance to 

corrosion and hydriding than Zircaloy-2. 
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There is a concern with the interaction between MgO and high pressure, high 

temperature water. Mg(OH)2 is thermodynamically favorable than MgO in the presence 

of water [27], where the free enthalpy of formation of MgO at 25 oC is -601.7 kJ/mol, 

while Mg(OH)2 is -924.7 kJ/mol at the same temperature. About 117% swelling would 

occur when Mg(OH)2 is completely formed from MgO, however hydration is not likely 

to happen in dead burned and pure fused MgO. Water dissociation causes highly 

hydroxilated surfaces in MgO. According to a theoretical analysis, water dissociation is 

forbidden on the MgO {100} face [28], and surfaces prior exposed to water inhibits 

further water dissociation. MgO-base fuel pin were studied in the cases to simulate 

cladding failure [24], hydride and corrosion were found on the cladding, and swelling, 

hydroxylation were found from MgO. Kurina et al. [29] suggested the fuel process is 

vital in the MgO-based fuel performance, sufficient heat treatment addressed the 

hydroxylation problem, that the MgO-based fuel remained intact after 50 hours in 300 

oC water, while the insufficiently treated samples broke into (U, Th)O2 powders, with 

MgO hydroxylated.  
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Physical properties 

 

The properties of MgO are summarized in Table 1 below: 

 
Table 1 Physical properties of MgO [30]. 
Melting point 2827 oC 

Thermal conductivity at 

500 oC 

1000 oC 

1500 oC 

2000 oC 

 

20 W/K m 

13 W/K m 

6 W/K m 

5 W/K m 

Lattice constant 4.212Å 

Specific heat [31] at 

27 oC 

227 oC 

727 oC 

1727 oC 

2727 oC 

 

0.929 kJ/(kg K) 

1.126 kJ/(kg K) 

1.272 kJ/(kg K) 

1.339 kJ/(kg K) 

1.360 kJ/(kg K) 

Chemical reactivity towards 

Iron 

Liquid sodium 

Water 

Nitric acid 

 

No reaction below 1100 oC 

No reaction 

Hydroxylation 

Low rate of dissolution 
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Crystal structure 

 

Magnesium oxide with ionic bonding between Mg2+ and O2- ions, has a NaCl 

structure. And the cations and anions occupy the sites as if in a face centered cubic 

(FCC) lattice respectively. The structure consists of two FCC sublattice, with one made 

from Mg2+ and another from O2-, interpenetrating with each other. MgO has a high 

melting point of ~2800 oC, and a density of 3.58g/cm3.  

 

Slip system 

 

The major slip systems of NaCl structures are: {111}<1𝟏�0>, {110}<1𝟏�0>, and 

{001}<1𝟏�0> systems [32].  

The {111} planes are the closet packed planes, and are the primary glide planes 

for FCC lattice, however, in the ionic case, like MgO, the strong columbic repulsion 

inhibit such glide. Due to the energy barrier for gliding from columbic repulsion, some 

half-slip systems are preferred in some cases. The possible half-slip systems are as 

illustrated in Fig. 4, below. Even {100} planes are more densely packed than {110} 

planes, deformation via gliding along {100} is not preferred at room temperature. The 

deformation of MgO occurs via slip along {110} at room temperature. But at high 

temperature slip along {100} plane becomes possible for MgO. The reason is the high 

repulsion between Mg2+ ions when gliding along {100} plane at room temperature.  
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(a) The half {111} <1𝟏�0> slip system 

 

(b) The half {110} <1𝟏�0> slip system 

 

(c) The half {001}<1𝟏�0> slip system 

Figure 4 Illustration of half slip on the major slip planes of NaCl structure [32] 
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Physical properties compared with UO2 

 

According to [33], the heat capacity of MgO can be expressed as: 

𝐶𝑃 = 47.26 + 5.68𝑇 − 0.87𝑇2 + 0.1𝑇3 −
1.05
𝑇2

 

Where Cp is in J/mol-K, the temperature range is 298 ~ 3105 K. The heat 

capacity of MgO increases with temperature. MgO has higher heat capacity than that of 

UO2 [34], which is beneficial especially in reactivity initiated accidents, when MgO can 

operate in lower temperature under a certain amount of energy deposited per unit mass 

compared to other materials with low heat capacity.  

Generally, the thermal conductivity of MgO is much higher than that of UO2 and 

MOX, according to Kirk et al. [35], it’s 2.7 times greater than that of UO2. The 

published values [34] indicate the single crystalline MgO possess the highest thermal 

conductivity, and the values decreases with increasing temperature. MgO has a superior 

thermal conductivity to most of the refractory ceramics proposed as IMF candidates, 

such as ZrO2, MgAlO4, and Al2O3. One exception is the SiC, that SiC has higher thermal 

conductivity. However, considering other properties, MgO stands out as one of the most 

promising IMF potential materials. 

MgO has higher thermal expansion coefficients than UO2 [34], which could 

possibly lead to separation with fissile phase, enhanced gas release, temperature building 

up in the fissile phase, and stress on cladding. The thermal expansion of MgO is 

isotropic due to the cubic crystal structure. 
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MgO has higher Young’s modulus than UO2 from room temperature up to 1250 

K [34], the values decreases linearly with increasing temperature. For example, the 

reported values are around 300 GPa [36] at room temperature, while UO2 is around 190 

GPa [37]. And the values are not influenced by grain sized reported by Nishida et al. 

from studying high purity polycrystalline MgO [38]. 

The fracture strength data [39, 40] have shown that below 600 oC, the fully dense 

MgO has greater fracture strength than UO2 while the studied UO2 with a 97% of 

theoretical density has higher values above 600 oC. 

The expected rate of weight loss of MgO under various atmospheres were 

examined by Lively and Murray [27]. A complete weight loss can occur rapidly at 

temperatures as high as 1600 oC in a reducing atmosphere and under vacuum, while it’s 

moderate in inert atmosphere, and insignificant in oxidizing atmosphere containing 

water vapor. 

 

Radiation damage study 

 

MgO will be subject to fast neutrons with kinetic energy greater than 1 MeV, 

various energetic fission products, and high temperature if used as the matrix materials 

for IMF. Estimations have shown that the fuel center can be heated up to 700 ± 140 oC 

at a linear power of 590 W/cm in an MgO-PuO2 fuel form [41]. The radiation damage 

study of MgO is particularly crucial to examine the feasibility of its application as inert 

matrix material. 
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There are two irradiation damage mechanisms, i.e. radiolysis damage and 

displacement damage. Radiolysis damage arises from the decay of electronic excitations 

formed during the irradiation (non-impact), but displacement damage from the elastic 

collision of incident particles and target atoms (impact). Radiolysis damage was 

extensively revealed in alkali-halides, but was not suspected in MgO because the 

displacement energies for both ionic species are significant larger than the energy 

available from the excitation states. Displacement damage occurs only when the energy 

transferred from an incident particle is larger than the threshold displacement energy of 

either ionic species. For an incident particle of mass M1 and kinetic energy E, the 

maximum energy Emax transferred to a target atom (mass M2) is [9]: 

𝐸𝑚𝑚𝑚 = 4𝑀1𝑀2𝐸(1 +
𝐸

2𝑀1𝑐2
)/(𝑀1 + 𝑀2)2 

Where c is the speed of light, and E is in MeV and Emax is in eV. For example in 

the electron irradiation, the maximum kinetic energy transferred to O is about 52% 

higher than that of Mg atoms. The displacement energy for Mg and O varied, Zhang 

suggested the value of 60 eV for both [9], and Park et al. recommended 65 eV for Mg 

and 60 eV for O by using molecular dynamics simulation on different directions and 

take compared to the experimental values [42]. Groves and Kelly used 25 eV for both 

Mg and O species [43].  
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Electron irradiation 

 

The color centers were introduced to MgO nanocubes by electron irradiation with 

100 and 300 keV under TEM [9]. Squared nanoholes were observed on the electron-exit 

face, and the mechanism was attributed to the removal of MgO molecules as well as 

stoichiometric Mg and O species. Bulk O-vacancies (F type color centers) were 

confirmed by valence-electron energy-loss spectroscopy (VEELS). It is concluded that 

even when the incident-electron energy is smaller than the knock-on displacement 

threshold energy, MgO still can be sputtered in stoichiometric proportion.   

 

Neutron irradiation 

 

Fewer F+ centers were detected from annealed MgO in hydrogen prior to neutron 

irradiation [44]. The lenticular cavities formed under annealing could be the vacancy 

traps.  

Numerous studies have been conducted on the irradiation of MgO by neutron 

with various fluence and different temperatures [43, 45-48]. However, most of the 

fluences and temperatures used were lower than that in the light water reactor. The 

general damage of the neutron irradiated MgO studies are listed below: 

Generally, under energetic particle bombardment, atoms in the lattice would be 

displaced off their lattice sites, leaving vacancies behind, and the displaced atoms could 

be trapped in some relative empty space between other atoms, and form interstitials 
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there. More specifically, in MgO, either Mg ions or O ions could be displaced, and 

created vacancies and interstitials. Under further irradiation, or upon annealing, the point 

defects could coalesce to form extended defects, such as loops or even dislocation 

network. Isolated point defects (interstitials and vacancies) are first created under low 

fluences neutron irradiation. And interstitials loops are formed by coalesce of interstitials 

with increased fluences or upon annealing. Vacancies are considered immobile in MgO, 

and therefore remain in the isolated status. The nature of interstitials loops were reported 

to be perfect loops on {110} planes, with a burgers vector b = ½ <110>, the damage is 

black dots like, and most likely to be the glissile dislocation loops, and the dpa 

calculated was 0.075, and a slight lattice parameter increase was observed, it’s suggested 

that most of the interstitials annihilated immediately under irradiation [43]. The 

annealing coarsened the loops at higher than 800 oC, and at 1210 oC, no loops were seen 

[43]. Upon increasing temperatures or fluences, the size of loops grows, while the 

density of loops decreases. Stevanovic and Elston [46] have reported that, the size of 

loops were smaller than 5 nm in MgO after the irradiation with fast neutron fluence of 

4×1021 n/cm2 at 473 K, while the size were identified as 5 ~ 30 nm when irradiated with 

6×1021 n/cm2 at 923 K. Clinard et al. has reported loops elongation along <110> occurs 

under a higher fluence of 3×1022 n/cm2, and dislocation networks were identified upon 

further irradiation [45]. 

Besides the defects created by neutron irradiation, gaseous fission products are 

generated since the MgO is subject to transmutation by fast neutron bombardment. 

Helium and neon are reported to be produced by such transmutation [48]. Annealing 
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studies have found the bubble formation in the neutron irradiated MgO [47]. The 

mechanism was attributed to the vacancy condensation, and the cavities formed act as 

sinks for the helium and neon produced from the transmutation of Mg and O atoms. The 

vacancy condensation requires a threshold density of mobile vacancies, and therefore, 

the fluence and temperature should reach certain values to guarantee the amount of 

vacancies produced and the mobility of vacancies. According to Morgan and Bowen 

[47], the fluence should be above 1020 n/cm2, and the annealing temperature should be 

above 1500 oC. The bubbles were reported to have {100} surfaces. 

Volumetric swelling is found in fast neutron irradiated MgO, both in single 

crystal and polycrystalline cases. The expansion is isotropic, due to its crystal structure. 

And the trends are swelling increases with fluence [45, 49], but increasing the irradiation 

temperature prohibits swelling [34]. Recovery by annealing to some extent is reported, 

and the complete recovery is achieved in samples irradiated at low temperature and low 

fluences, while only partial recovery is achieved in samples irradiated at high 

temperature and high fluences. The coarse dislocations formed at high temperature and 

high fluences might prevent the recovery [50].  

Thermal conductivity is reduced after fast neutron irradiation, and only partial 

recovery is reported by a post-irradiation annealing study [46]. The irradiation was 

conducted under a fluence of 0.8 × 1020 n/cm2, and the measured thermal conductivity is 

44% less than its pre-irradiation counterpart at 300 oC. Annealing at 1000 oC for 24 

hours results in 15% reduction of thermal conductivity compared to un-irradiated 

sample. Besides, the neutron irradiation results in increase in hardness [43, 46, 51], 
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fracture strength [52], critical resolved shear stress [53], and decrease in Young’s 

modulus [46]. The interstitials loops formed might inhibit slip in neutron irradiated 

MgO, resulting in the hardening and fracture strength, critical resolved shear stress 

increase. Lattice parameters were reported to be increased after neutron irradiation, due 

to the interstitials formed. And annealed sample under hydrogen prior to irradiation 

showed higher lattice expansion, which could be explained by the excess amount of 

interstitials resulted from the vacancies trapped in cavities formed under annealing [44]. 

 

Effects of other fission products irradiation 

 

Elleman et al. have studied in the in-reactor performance of various ceramic 

materials which considered the candidates for inert matrix in IMF, and concluded the 

fission-fragment induced expansion in these materials follow this order [54]: 

MgO < SiO2 < BeO < Graphite < Al2O3 < ZrO2 < Pyrolitic Carbon < SiC 

The neutron fluence was less than 1017 n/cm2, where the dominant effects were 

made by the fission fragments. The irradiation was done at 45 oC in the Battelle research 

reactor. The stresses were calculated, and compared to their estimated failure values. 

According to Elleman, after irradiation, the tensile stress induced in MgO is only 13.1 

GPa, while the estimated failure stress is 103.4 GPa, and the compressive stress induced 

by irradiation is 101.4 GPa, compared to the approximate failure stress 1379 GPa. The 

study showed positive results for MgO subject to fission fragment irradiation. 
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Beauvy et al. [55] suggested that MgO-AnO2 based composites have the best 

performance irradiated by Kr or Cd with energy from 100 MeV to 1 GeV at room 

temperature, compared to other inert matrix candidates, Al2O3, MgAl2O4 and Y3Al5O12. 

The heavy ions used with swift energy as a way to simulate the fission product or recoil 

ion damage. 

When implanted with high dose metallic species, metallic precipitates or 

compounds could be formed in MgO, especially after annealing. The formation of alkali 

metal precipitates has been reported before [56]. Perez et al. [57] have reported the high 

dose iron implantation effects on single crystal MgO. Large concentration of defects is 

observed via optical absorption after irradiation with a fluence of 6 × 1016 ions cm−2 at 

room temperature. The defects are identified as color centers in both anionic sublattice 

as well as in cationic sublattice. Iron precipitates with diameter up to 2 nm with 

superparamagnetism and Fe2+ ions either as interstitials or substitional in the perturbed 

lattice are observed. An extensive dislocation network in the implanted area is observed 

under Transmission electron microscopy (TEM). Annealing at 700 oC completely 

removed the point defects, and the iron species is mainly aggregated into Fe2O3 particles, 

with a minor portion locate in the MgO matrix substitutionally. TEM reveals large spinel 

ferrite around 20 nm formed (MgFe2O4 or Fe3O4) when annealed at 800 oC, and further 

annealing up to 900 oC increases the ferrite particle size up to 30 nm. 

The hardening of MgO from ion irradiation is also reported as it in the neutron 

irradiated case. Burnett and Page [58] have reported the surface hardening of MgO after 

Ti+ irradiation ~ 1014 and 3.33 × 1015 /cm2. The irradiation also results in a more 
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chemically inert surface. A previous study of Burnett and Page has suggested that 

amorphization occurs when the Ti+ fluence is greater than 7 × 1016 /cm2. Aoki et al. [59] 

have reported similar phenomenon, that the hardening in the surface is found in MgO 

irradiated with 130 keV Ar+, 400 keV Xe2+ and 1.8 MeV Ar+ ions. The Vickers hardness 

is measured in this study, and the softening is found when increasing dose. The 

hardening mechanism is speculated to be similar to that induced by fast neutron 

irradiation, that effective defects production by atomic and electronic processes. The 

further softening upon higher dose is explained by the gas elements and vacancies 

produced. 

Dislocation TEM results of Horton et al. [60] reveal the damage in single crystal 

MgO induced by 2 MeV oxygen and 4 MeV iron ion irradiations is primarily consisting 

of dislocations. The damaged depth reaches well beyond the calculated value. The 

damaged profiles are peaked by two dislocation zones in both cases, where in between 

the density of dislocations is less compared to the rest of the profile. In the iron 

irradiated case, the lower dislocation peak zone is coincident with the peak implanted 

iron ions, while no such coincidence is found in the oxygen irradiated case. It is 

indicated that charged defects might influence the dislocation evolution. Zinkle et al. 

[61, 62] have studied the microstructural changes induced by irradiation in various 

ceramic inert matrix candidates, including Al2O3, MgO, Si3N4, SiC, and MgAl2O4 with 

variety of energetic ion species. The study concludes that dislocation loops nucleation is 

very difficult under light ion irradiation, and the defects evolution is strongly affected by 

the irradiation spectrum. The microstructure of MgO irradiated by 2.4 MeV Mg+ at room 
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temperature up to 10 displacements per atom (dpa) consists of mixture of dislocation 

loops and networks. And Zinkle suggests that the dislocation networks indicating a high 

point defect mobility, that amorphization would not be possible even under further 

irradiation at this situation without the assistance of impurity atoms. The concluded 

sequence of resistance to amorphization of the studied ceramics is: 

  SiC < Si3N4 < Al2O3 < MgAl2O4 < MgO 

The nature of dislocations formed in MgO under irradiation is less studied. 

Sonoda et al. [63] reported the observation of interstitial type dislocation loops on {110} 

planes with a burger’s vector b=1/2<110> under various particle irradiations. It is 

claimed that upon increasing the mass of the irradiation ions, formation rate of the loops 

increases while the growth rate decreases. 

Moreover, MgO is also studied in some large scale global in-reactor programs, 

either with or without fissile materials added [17-19]. 

 

Simulation 

 

Molecular dynamics [42] have shown the displacement energy threshold is very 

high for MgO, that it’s about 65 eV for an oxygen primary knock-on atom and about 90 

eV for magnesium. And other studies used the averaged value for both of Mg and O as 

60 eV. Park et al. recommended 65 eV for Mg and 60 eV for O by molecular dynamics 

simulation on different lattice directions and compared to other experimental works [42]. 
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Uberuaga et al. [64] have investigated the collision cascades in MgO at energies 

from 400 eV to 5 keV, via combining simulations from molecular dynamics, molecular 

statics, temperature accelerated dynamics, and density functional theory. The 

computational time scale was made capable to compare to experimental data. It revealed, 

at the lowest energy, lattice remained mostly intact with only isolated interstitials, 

vacancies, charge-neutral di-vacancies and di-interstitials. At 5 keV cascades, the most 

common defects were found to be isolated interstitials and di-interstitials. More vacancy 

clusters were found at this energy, and they were formed at the collisional phase, no 

vacancies were detected mobile in this study, while separated interstitials can form di-

interstitials by electrostatic attraction. The binding energy per atom of the interstitial 

clusters was found to increase from 3.6 to 5 eV when cluster size increased from 2 to 16 

atoms, the clusters became more stable with increasing size. While vacancies were found 

immobile, some interstitials clusters can diffuse quickly, there was a long-lived 

metastable state of hexa-interstitial diffuses one dimensionally on the nano-second scale 

at room temperature. The charging transfer effect was not considered due to the 

limitation of model used, which might overestimate the electrostatic force between 

opposite charged defects. The number of surviving Frenkel pairs was found to be about 

45% of the calculated value using Kinchin-Pease method, similar to the metal cases. 

The vacancy migration energy (likely oxygen vacancy) was found to be 2.1 eV, 

which is close to an experimental data 1.9 eV. Other simulation works have found the 

activation energy for the annealing of F centers in MgO, corresponding to the diffusion 
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of F centers was up to 3.4 eV [65]. Despite of the discrepancy of data, the immobility of 

vacancies in MgO at room temperature is confirmed.   

The long-time evolution of irradiation damage in MgO has been obtained by a 

variety of simulation methods [66]. It is concluded that point defects and small defect 

clusters were formed under low energy, on the order of 1 keV, collision cascades, while 

over long times, interstitials annihilate with vacancies and aggregate with other 

interstitials to form large clusters. And a type of cluster consists of six atoms was found 

to have extremely high mobility. For example the diffusion barrier for isolated Mg 

interstitial is 0.32 eV, and 0.40 eV for O interstitials, the trend was found that the 

mobility decreases with increasing the size of clusters. However, a hexa-interstitial has 

an extremely low diffusion barrier even lower than half of that of the isolated 

interstitials. 

When grain boundaries absorb defects, the interaction between the grain 

boundary with other defects will be altered significantly [67]. Excess interstitials were 

placed in the grain boundaries to simulate the radiation damage, and the interaction 

between vacancies with grain boundaries were studied. The results suggested the 

interaction is changed considerably and sensitive to the atomic structure of the grain 

boundaries. In a case, the formation energy of vacancies is significantly reduced on and 

close to the boundaries, indicating the annihilation would be more effective. 
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1.4.2 ZrN and Its Related Radiation Mechanisms Studies 

 

ZrN has many good properties that make them as inter matrix candidate 

materials, and moreover, they can be used in research as surrogate to study the 

transuranic-nitrides. The radiation response of ZrN serves as indicators of the radiation 

tolerance of transuranic-nitrides, due to their similarities in atomic radii and physical-

chemical properties [30, 68, 69]. ZrN has many physical properties even better than 

required by the Advanced Fuel Cycle Initiative (AFCI), and it’s chemically compatible 

with transuranic-nitrides. ZrN is strong, has a very high melting point, thermally 

conductive, and have similar thermal expansion coefficient with transuranic-nitrides. 

Moreover, it meets the requirement for processing. The density of ZrN is 7.09 g/cm3. 

 

Physical properties 

 

Many physical properties of ZrN is reviewed below and also compared to other 

transuranic-nitrides. The physical properties of ZrN are listed in Table 2 below [2]: 

 

 

 

 

 

 



 

39 

 

Table 2 Physical properties of ZrN 
Lattice constant 4.57  

Melting point 2953 oC 

Heat capacity (300 K) 40.4 J/(mol K) 

Thermal conductivity (300 K) 20 W/m-K [70] 

Young’s Modulus ~400 GPa 

Hardness ~20 GPa 

Coefficient of thermal expansion (𝛼𝑙, 300 K) 6 ~ 7 (× 10-6 )/K [71] 

 

Crystal structure 

 

Stoichiometric ZrN with Zr:N = 1:1, has the NaCl crystal structure, the same as 

MgO. However, the difference is the ionic radius of zirconium is much larger than that 

of nitrogen, that the cubic ZrN crystal can be considered at cubic zirconium stabilized by 

the nitrogen interstitials. Zirconium ions can still bound with each other, while nitrogen 

ions are too small and far from each. The coordination number for zirconium and 

nitrogen are both 12, with nitrogen locates in the octahedral interstitials of zirconium 

FCC sublattice, with the Zr ions colored in green and nitrogen in blue, the radii were not 

pictured according to ratio. The cystal lattice is compatible with UN and other 

transuranic mononitrides, the comparison is listed in Table 3 below: 
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Table 3 Comparison of ZrN with transuranic nitrides. 
Nitride Crystal structure Lattice constant 

(angstrom) 

Melting point (K) 

ZrN Cubic-NaCl 4.537 3253 

PuN Cubic-NaCl 4.906 3023 

NpN Cubic-NaCl 4.8979 3103 

UN Cubic-NaCl 4.89 3123 

 

Slip system 

 

The slip systems are similar with MgO, and TiN was reported to slip on the 

{110} planes with burger’s vector b = <1𝟏�0> [72]. Since the similarity with TiN, ZrN is 

also expected to have the same slip system at room temperature. Other slip systems were 

also reported, for example the {111}<1𝟏�0> system is demonstrated before [73], due to 

the stoichiometric difference from zirconium nitride samples. ZrN allows a wide range 

of nitrogen deficiency, and it is usually denoted as ZrN1-x. In an under stoichiometry 

case, the lots of vacancies exists in the anion sublattice, which might explain other lip 

systems. 
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Physical properties compared with transuranic nitrides 

 

The values and equations used are selected as recommended from [74], the most 

updated and assessed one. Since a considerable variety exists in the ZrN property values, 

the reason is attributed to the various stoichiometry. Kogel et al. developed a model to 

calculate the heat capacity of ZrN, and the correlation can be represented by the 

following equation:  

𝐶𝑃 = 45.86 + 6.82 × 10−3𝑇 −
5.54 × 105

𝑇2
 

Where Cp is the heat capacity with unit of J/mol K, and T in K. The heat capacity 

of PuN calculated by Kubaschewski [75] is: 

𝐶𝑃 = 44.89 + 1.548 × 10−2𝑇 

The heat capacity data of ZrN and PuN solid solution, (Pu, Zr)N, is estimated by 

using the Neumann-Kopp rule, since no such data is available. The correlation is 

expressed as: 

𝐶𝑃 = 𝑎𝑍𝑍𝑍𝐶𝑃,𝑍𝑍𝑍 + 𝑎𝑃𝑃𝑃𝐶𝑃,𝑃𝑃𝑃 

Where a is the molecular fraction of PuN and ZrN of the solid solution. 

According to this rule, the heat capacity of (Pu, Zr)N solid solution lies between the 

values of PuN and ZrN, with PuN having higher values than ZrN. Other capacity of 

transuranic nitrides with ZrN solid solution can only be estimated from (Pu, Zr)N values, 

due to the lacking of data reported.  
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The thermal conductivity data reported from Hedge et al is mostly recommended, 

and a parabolic correlation to fit the data is expressed as [74]: 

𝑘𝑍𝑍𝑍 = 1.423 + 2.042 × 10−2𝑇 − 6.404 × 10−6𝑇2 

Where k is the thermal conductivity in W/m-K and T in K. The data of PuN is 

selected from the values reported by Arai [76], and a fitted expression is as: 

𝑘𝑃𝑃𝑃 = 6.906 + 7.653 × 10−3𝑇 − 2.011 × 10−6𝑇2 

Arai has also reported the thermal conductivity of NpN, and the correlation is as: 

𝑘𝑁𝑁𝑁 = 7.89 + 1.27 × 10−2𝑇 − 4.32 × 10−6𝑇2 

No data of (Pu, Zr)N solid solution thermal conductivity is available, and an 

estimation has been adopted from the similarities between UN and ZrN in terms of 

crystal structure, and lattice parameters [74]. The effect of UN content in the (Pu, U)N is 

measured before [76]. The accordingly effect of ZrN content in (Pu, Zr)N solid solution 

is expressed as: 

𝑘(𝑃𝑃,𝑍𝑍)𝑁 = (1 −�1 − 𝑥𝑍𝑍𝑍)𝑘𝑍𝑍𝑍 + �1 − 𝑥𝑍𝑍𝑍{𝑥𝑍𝑍𝑍𝑘𝑚 + (1 − 𝑥𝑍𝑍𝑍)𝑘𝑃𝑃𝑃 

𝑘𝑚 = −8.432 + 14.438𝑥𝑍𝑍𝑍 + 0.014𝑇 − 1.957 × 10−6𝑇2 − 1.549 × 10−3𝑥𝑍𝑍𝑍𝑇 

Where XZrN is the molecular fraction of ZrN in the solid solution. Other 

transuranic-nitride and ZrN thermal conductivities can be estimated by using this 

method, since no literature data is available for these values.  
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Radiation tolerance 

 

Displacement energy threshold 

 

There is no direct report on the displacement threshold energy of ZrN, but by 

comparing with other similar ceramics, the reasonable range could be obtained. In GaN, 

the average displacement energy of N is 32.4 eV, while it’s 73.2 eV for Ga, with the 

minimum Ed is 17 eV and 39 eV respectively both along < 1010 >. In 3C-SiC, the 

minimum displacement energies are 20 eV and 49 eV along <100> for C and Si 

respectively [77].  Yang et al. used the value of 35 eV for Zr and 25 eV for N based on 

the estimation of ZrC [78]. 

 

Radiation damage studies on ZrN 

 

Despite its great potential, there are only handful studies [78-81] exploring the 

radiation response of ZrN, with mostly promising results. Some of the available studies 

are reviewed below: 

 

High doses of argon were implanted into ZrN thin films with residual stress 

measurements made by GIXRD. Up to 4 × 1016 Ar/cm2 at 100 keV was implanted, 

which produced up to 12 atomic % argon in the lattice. The result was that, at the 1% 

atomic concentration of implanted Ar area, both of the lattice parameter and the 
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compressive residual stress were reduced, and it’s concluded that the implanted Ar 

resided at the substitutional sites and softening was found attributed to the energy 

accompanying the implantation process. While at the 12 atomic % Ar implanted area, 

the residual stress was barely affected, where the lattice parameter reduction continues 

but less rapidly. It’s suggested that at the area, Ar bubbles were formed [82]. 

Another study on zirconium nitride was performed to assess the effect of 

radiation damage by heavy ions at cryogenic and elevated temperatures. Xenon and 

krypton were used as heavy ions at 300 keV to displacement damage up to 200 dpa. 

Implantations were conducted at cryogenic, 350 oC, 580 oC , and 800 oC . 

Amorphization was not observed at low temperatures nor was bubble formation 

observed at elevated temperatures, however, defect migration was observed at elevated 

temperatures. Nanoindenter results showed the onset of defect saturation. Helium release 

studies were performed to show the effect of increasing damage by Xe to 40 dpa [80]. 

Nanocrystalline (nc)-ZrN remained intact after various types of swift heavy ion 

irradiations, such as 167 MeV Xe, 250 MeV Kr, and 695 MeV Bi [83]. Blistering tends 

to occur in annealed nc-ZrN irradiated with hydrogen or helium, but is suppressed by 

swift heavy ion irradiation of Xe at 167 MeV following the helium irradiation, the 

mechanism is attributed to swift heavy ion induced epitaxial crystallization [79].  

ZrN films were synthesized by sputtering, and later subject to cobalt implantation 

reported by Zanghi et al., with a very high fluence to reach a concentration of 10 ~ 30% 

in the doped zone at room temperature [84]. No amorphization was observed, and Co 

coalesced into Co clusters were found. The reason was attributed to the high stability of 
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the matrix and the Co-N bonds are not favored chemically. Similar precipitation was 

found in Cu and Ni implanted AlN. 

Slight electrical resistivity decrease was reported in neutron irradiation 

performed at moderate flux. While the decrease was seen in ZrN, electrical resistivity 

increase was observed in ZrC and NbC [2].  

Irradiation under 2.6 MeV proton at 800 oC showed no amorphization or 

precipitates, and no voids or bubble formation were detected at a dose of 0.75 dpa. The 

irradiated microstructure mainly consisted of a high density of dislocation loops and 

point defects, and some of the loops were of vacancy-type in nature [78]. 

 

1.4.3 TiN and Its Related Radiation Mechanisms Studies 

 

Titanium nitride (TiN) is a common material for abrasive and hard tool coating , 

and also used as decorative coating for its gold-tone appearance, which is  seen on 

coated drill bits and other  machining tools [85, 86]. It is proven to be very affordable for 

common tasks as titanium is plentiful.  The nitriding of Ti is easy and the technique is 

very mature and often used.  Despites some difference, TiN is very similar with respect 

to ZrN, and TiN has been the subject of much research for its outstand chemical-physical 

properties. TiN also has the NaCl cubic structure, which is common for most transition 

metal nitrides as well as MgO studied in thesis. And similar with other cubic metal 

nitrides, the intrinsic anion sublattice vacancies exist and are difficult to characterize. 

Moreover, the phase diagram of TiN is similar to that of ZrN. However, there are some 
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differences. First, there is a line compound of a N to Ti ratio  about  0.36 with ε crystal 

structure.  And there are both sub- and super-stoichiometric phases of titanium nitride. 

Pulsed laser deposition (PLD) technique has been commonly used for synthesis of TiN 

films due to its capability of allowing for a precise control of crystallinity, stoichiometry, 

and defects concentration [87, 88]. 

 

Physical properties 

 

TiN has a high hardness (20 ~ 35 GPa), and very hard TiN films were 

synthesized by PLD at 300 OC [89], another study by the same author reported a 

hardness up to 40 GPa[90]. Moreover, TiN has a very high melting point (close to 3000 

oC), refractory material with good wear resistance, very low electric resistivity, and good 

thermal conductivity and stability  [90].  TiN is also a superconductor with a reasonably 

high Tc. Table 4 summaries some of the properties of TiN. 

Table 4 physical properties of TiN 
Lattice constant 4.26  

Melting point 2950 oC 

Heat capacity (300 K) 37.4 J/(mol K) [33] 

Thermal conductivity (300 K) 110 W/m-K 

Young’s Modulus ~590 GPa 

Hardness 20~40 GPa [90] 

Coefficient of thermal expansion (𝛼𝑙, 300 K) 9.36 (× 10-6 )/K 
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Radiation tolerance 

 

The radiation study on non-metals were mostly focused on electronic or magnetic 

properties [91, 92]. However, the radiation tolerance of TiN has not well studied besides 

its heavy use in industry [93]. Perry has shown the gas and metal implantation into 

monolithic TiN has the effect on the residual stress and strain distribution by grazing 

incidence angle X-ray diffraction (GIXRD) [94-96]. [94]Perry also conducted Ar and Kr 

implantation into TiN, and found little effects on the lattice parameter and residual stress 

with either of the gas implantation of 1%, but precipitate into bubbles at 4% implantation, 

and Ar slightly reduces the lattice parameter and made the residual stress more tensile, 

while Kr had the opposite effects [97].  Transmission electron microscope (TEM) studies 

together with the GIXRD depth profiles showed that, wlarge doses of a heavy ion 

implantation generated a damage profile far beyond the calculated distribution of 

displacement damage and implant ion range, which reached up to 10 times greater than 

the calculated depth [2]. 

 

1.5  Key Defects Mitigation Mechanisms and Approaches for Materials 

 

1.5.1 Grain Boundary and Interface Related Approaches 

 

In general nc metallic and ceramic materials have abundant grain boundaries 

(GBs), which are effective defect sinks for radiation induced point defects. Molecular 
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dynamics (MD) simulations show that GBs in Cu can absorb and then reemit interstitials 

in to grain interior to combine with vacancies in close proximity to high angle GBs [98]. 

The GB sink strength appears to increase with increasing misorientation angle in Cu as 

revealed by the change in width of GB denuded zones [99]. Wang et al. shows that nc-

TiN with an average grain size of 8~100 nm showed greater radiation tolerance than its 

coarse grained counterpart, as evidenced by the diminishing damage zone subjected to 

He ion irradiations [93]. Similarly nc metals [100-102] have shown enhanced radiation 

tolerance. In situ studies on nc-Ni show that high angle GBs can effectively capture and 

annihilate defect clusters and dislocation segments [100].  

Other defect sinks, such as layer interfaces, have been increasingly investigated 

to absorb radiation induced point defects and their clusters [103-106]. There are limited 

studies on radiation response of nitride based multilayers. In a He ion irradiated study on 

MgO/TiN multilayer, the suppression of defect accumulation was shown in the MgO 

layers, whereas a high-density of defect clusters were identified in the single layer MgO 

film. In parallel, in AlN/TiN systems, no amorphization was seen in AlN layers of the 

AlN/TiN multilayers, while an obvious amorphized layer was identified in the single 

layer AlN film [107, 108], which actually result in higher amount of interfaces and thus 

better radiation tolerance properties. 
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1.5.2 The Major Approaches Taken in the Thesis Work 

 

In this study, both grain boundaries effects and interfaces effects on the radiation 

damage accumulation and annihilation were explored, as well as compositional effects 

were also discussed. MgO thin films were synthesized into epitaxial film via the 

epitaxial growth on single crystalline TiN film as a buffer layer by domain matching. 

Besides, polycrystalline MgO films were grown on the polycrystalline ZrN, and non-

epitaxial interfaces between MgO and ZrN were also incorporated. Different grain sizes 

of MgO were achieved by the confinement effects of the MgO layer thicknesses between 

ZrN layers, and by varying the deposition temperature. Moreover, ZrN thin films with 

different grain sizes were synthesized by the pulsed laser deposition (PLD) at different 

temperatures. 

Therefore the grain size effects, and the different interface (epitaxial interfaces as 

in MgO/TiN and no-epitaxial interfaces as in MgO/ZrN) in nature effects on the 

radiation induced defects evolution and annihilation was explored by combining ex-situ 

ion irradiation and in-situ ion-irradiation techniques. The radiation tolerance was 

measured by the variation of nano-hardness (softening or hardening), crystallinity 

(amorphization), microstructure (defects density, grain growth), and electric resistivity 

before and after radiation.  
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CHAPTER II  

EXPERIMENTAL 

 

2.1  Pulsed Laser Deposition (PLD) 

 
Lasers are of great interest in many areas, for both scientific and industrial 

purposes due to their high energy, coherency and monochromatic charasristics. 

Monochromaticity allows the control of the depth of heat treatment and selectivity. The 

high energy of the laser beam and its directionality permit a high spatial resolution on 

the materials exposed. . The applications include laser annealing of semiconductors, 

surface cleaning by desorption and ablation, improved surface hardening with laser-

induced rapid quenching, and pulsed laser deposition for growing thin films. The pulsed 

laser deposition technique is used for deposition of the MgO, and metal nitrides studied 

in this thesis. 

The PLD system consists of the laser source, optical components, vacuum 

chamber, and the pumping system as shown in Fig. 5. The laser is generated by a KrF 

excimer gas with a wavelength of 248 nm. The pulse duration is 20 to 25 ns. Via the 

aperture, reflective mirror, and focus lens, the beam is directed and focused on to the 

target surface inside the vacuum chamber. The chamber houses a rotating target mount 

and substrate stage which is directly facing the target with a distance of 5 cm. Heating 

stage is connected with the substrate mount, and a temperature range from room 

temperature up to 800 oC can be adjusted, and monitored. The vacuum is achieved by a 

two stage pumping system, which includes a scroll mechanical pump and a 
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turbomolecular pump, and the vacuum is obtained below 10-8 mbarr. A compact pressure 

gauge is assembled with the chamber, which utilizing a Pirani gauge in the low vacuum 

(ambient to 10-2 mbarr), and an ionizing gauge at the high vacuum range (below 10-4 

mbarr). 

The interaction between the laser and the target consists of three stages. First, the 

electro-magnetic energy of the beam is transferred to the target as electric excitation, and 

later chemical energy, thermal energy, causing local melting, and target materials 

evaporation. The second stage involves the interaction between laser beam and the 

evaporated target materials, forming plasma. Plasma is a hot gas-like phase of materials, 

which is quasi-electric neutral, consisting electrons, ions, as well as atoms and molecules. 

In the third stage, the plasma expands and eventually condenses on the substrate surface. 

Because of the high kinetic energy of the ad-atoms on substrate surface, impinge species 

would reside at nucleate sites via random walk, and growing as grains or epitaxial film.   

The advantages of pulsed laser deposition include reproduction of the target 

stoichiometry, high kinetic energy provided to the ad-atoms, little contamination, and a 

good control of thin film properties. 
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Figure 5 Picture of PLD system where the laser source, optical path, vacuum 
chamber, and pumping system are shown. 

 

By choosing the appropriate parameters such as target materials, laser energy 

density, partial gas pressure, pulse repetition rate, and deposition temperature, thin films 

of many materials with various microstructures can be deposited.  

 

2.2  Ion Implantation 

 
2.2.1 Ex-situ Irradiation Technique 

 

Ion implantation is a powerful technique for surface analysis, material property 

modification, which is widely used in micro-electronics fabrication, via which energetic 

ions are implanted into substrates such as Si, the energy of implants varies from 1 keV to 

1 MeV, and the average implant depth ranges from 10 nm ~ 10 µm. The dose ranges 
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from 1012 / cm2 to 1018 / cm2, depending on the different applications. And this 

technique is also employed to improve surface properties of materials or to create new 

phases, due to its capability of controlling doping with chosen impurities. For example, 

metal nanoparticles synthesis in silica glasses [109, 110], and doping of lithium niobate 

in rare earth [111] have been reported by using ion implantation for production of 

materials with interesting optical properties. Ion implantation is also a primary tool for 

study of the fission-products radiation-damage including defects generation, crystal 

structure change (such as amorphization), and chemical-physical properties change etc. 

Rate, dose, incident angle and implantation temperature can be manipulated during the 

implantation to achieve a desired implant concentration, depth and damage level. 

Different elements with various energies can be selected for the implantation  to simulate 

damage in a nuclear reactor or to modify the properties of the implanted materials, such 

as surface structure of a thin film, dope in the semiconductor, alter the chemistry, and 

etc. For example, Xe and Kr are the common fission products, and released with 

sufficiently high energy to produce large damage cascades, which may displace many 

more lattice atoms per each implanted atom and eventually cause defects and 

deterioration in the implanted materials. Ion-implantations with these noble gases into 

materials of interest can provide valuable data regarding the damage produced, and how 

to mitigate such damage. The implantation temperature is controlled to study different 

defect mechanism, for example, implantations at cryogenic temperatures provides 

information of the defects accumulation since the recombination rate of defects is low at 

such temperature, and high temperature implantation demonstrate how defects interact 
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with each other and with the microstructure. It is a commonly used approach in the 

research of radiation damage on metals, and increasingly used in the studies in ceramics. 

The ex-situ irradiation conducted in this study is done by the ion implantation. He+ and 

Fe2+ ions were used for the implantation, after which other characterization techniques 

were used to study the variation due to radiation damage. And it is specified as ex-situ 

irradiation because of the difference of this technique with the in-situ irradiation one.  

 

2.2.2 In-situ Irradiation Technique 

 

TEM is a powerful tool for the characterization of defects (dislocation loops, 

voids, and bubbles) in solids induced by ion or electron irradiations. For example, 

bright-field and dark-field imaging, electron diffraction, and chemical analysis, such as 

energy dispersive X-ray spectroscopy (EDS), have been widely utilized to characterize 

irradiation induced defects, structural change, as well as chemical variation [112]. In-situ 

irradiation technique incorporates the conventional TEM with ion implantation that 

allows recording of  the microstructural evolution under well-controlled irradiation 

conditions, which provides critical information for understanding the defects generation, 

development and annihilation processes when they take place. In-situ irradiation 

technique was first originated from the utilization of the energetic electrons to produce 

point defects in conventional TEM sample under high voltage electron microscopy. With 

decades of development, this technique has been used to study the microstructural 

change under radiation in metals, ceramics, and semiconductors. In-situ irradiation 
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technique  can bridge the gap of length and time scales between  the simulations and ex-

situ experiments [113]. 

 

 
2.3 Hardness by Nanoindentation 

 
 

Nanoindentation is a surface sensitive technique that the penetration depth is 

controlled to be in the nanometer scale.  Usually a very small diamond indenter tip with 

certain geometry is used to measure the hardness and elastic modulus of the sample.  A 

precise control is done by a computer of navigating the nanoindenter across the sample 

surface, and the load force as well as displacement was tracked by the software. 

Hardness and modulus data is later calculated based on the loading-unloading curve 

recorded. The accuracy of the measurement is highly dependent on the sample surface, 

such as smoothness, orientation, and chemistry (whether surface oxide layer exists), and 

error may also come from the tip not being perfectly sharp. Usually, the measurement is 

taken at a depth below 50 nm from the sample surface, and within 10% of the thin film 

thickness to avoid the surface as well as the substrate influence on the hardness 

measurement.  

 
2.4 X-ray Diffraction 

 

 X-ray diffraction (XRD) is a commonly used non-destructive analytical 

technique to identify the structure (crystal orientation, crystallite size, stress) and 
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chemical composition of crystalline materials. Constructive interference occurs when the 

Bragg’s condition is satisfied by the interaction of x-ray with the crystal structure, shown 

in Fig. 6. As an incident x-ray beam with wavelength λ at an incident angle θ illuminates 

on the crystal planes, the difference of path length between diffracted beams from 

consecutive planes with interplanar spacing d is calculated as 2𝑑 sin 𝜃. For constructive 

interference, this value must equal to an integral multiples of wavelength, i.e. nλ, where 

n is a whole number, as given by the equation below: 

𝑛𝑛 = 2𝑑 sin 𝜃          

 

 

Figure 6 Illustration of Bragg’s diffraction. 
 

As the incident angle θ is varied, the Bragg diffraction is satisfied for certain 

crystallite orientations in a polycrystalline sample. For an x-ray source of known 

wavelength, the angle of the diffracted beam is measured and recorded, and from the 

interplanar spacing d of reflections can be calculated. This is the most basic form of 

XRD measurement and analysis, referred to as powder diffraction, that the 

polycrystalline sample with random orientation distribution is measured. Thin film 
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analysis requires a set of advanced XRD techniques, such as grazing incidence angle 

XRD, rocking-curve analysis, reciprocal space mapping, and pole figure measurement, 

for characterizing epitaxy, texture, determining lattice constant, defects, and surface 

roughness. 

 

2.5 Transmission Electron Microscopy 

 

 TEM is a very powerful tool for the characterizations of materials that offers 

information of sample crystallography, defects, and chemistry with a sub-nanometer 

resolution. The imaging is formed via the interaction of transmission high energy 

electron beam with an ultra-thin sample foil (thinned below 100 nm to ensure electron 

transparency). The resolving power of TEM is much higher of the optical microscope 

due to the high energy and thus small wavelength of electrons. The resolution is given 

by the Rayleigh criterion as: 

𝑅 =  0.61𝜆
𝑛 𝑠𝑠𝑠𝑠

          

 where λ is the wavelength of the illumination electron beam, n is the refractive 

index of the lens, and α is the half angle of the maximum cone of beam. The wavelength 

λ in nm of an electron beam at an accelerating voltage V is calculated as: 

𝜆 =  1.22
√𝑉
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The accelerating voltage of 200 kV is used in this study, and therefore resulting in a 𝜆 

value of 0.0027 nm, and therefore the resolution of TEM can reach to a sub-nanometer 

scale. 

Shown in Fig. 7. are the components of a typical TEM, consisting of four main 

parts: the electron source, several sets of electromagnetic lenses, the sample stage, and 

the image acquisition systems, all of which are contained under a high vacuum column. 

There are two basic modes of operation: the imaging mode and the diffraction mode, 

which provide information of the sample image with contrast and electron diffraction 

pattern respectively. The mode can be changed by adjusting the focal length of the 

intermediate lens. 
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Figure 7 Block diagram showing the layout and major components of a TEM [114]. 
 

 

Inserting appropriate objective apertures could improve the contrast of the 

imaging, allowing only certain diffraction beam coming from the interested regions to 

pass through, which is often used to obtain the dark-field image from a certain diffracted 

orientation. 
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 Specific information can be obtained by additional imaging techniques in TEM, 

such as the atomic scale crystallography can be imaged by high-resolution TEM 

(HRTEM). And elemental mapping is possible with the technique of electron dispersive 

x-ray spectroscopy (EDS) and electron energy loss spectroscopy. The electron beam, in 

this case is a focused beam rastering across the sample, and the signal such as 

characteristic x-ray is generated. STEM imaging provides contrast related to the atomic 

mass since it uses a high angle annular dark-field (HAADF) detector to collect 

elastically scattered electrons. 
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CHAPTER III  

ENHANCED ION IRRADIATION TOLERANCE PROPERTIES IN TIN/MGO 

NANOLAYER FILMS* 

 

3.1 Overview 

 

Interface mitigation effects on ion irradiation induced damage are explored in 

TiN/MgO nanolayer thin films with nanolayer thickness varied from 10 nm to 50 nm. 

After ion irradiation with He ions to a fluence of 4 × 1016 cm−2 at 50 keV, no hardness 

variation is observed in the nanolayer samples based on the nano-indentation 

measurement, and high resolution TEM indicates no obvious ion damage in the MgO 

layers in the nanolayered samples. However, single layer MgO film shows a significant 

hardness increase of ∼20% and high density point defect clusters (∼5 nm) are clearly 

identified. These results suggest that, in this system, nanolayer interfaces could act as 

effective point defect sinks and be responsible for the enhanced radiation tolerance 

properties. 

 

 

 

 

                                                 

* This chapter is reprinted from Journal of Nuclear Materials, 434 (2013), L. Jiao, et al, Enhanced ion 
irradiation tolerance properties in TiN/MgO nanolayer films, 217-222, Copyright (2012), with permission 
from Elsevier. 
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3.2 Introduction 

 

Ion irradiation damage mechanisms in MgO have been extensively studied for 

decades [115]. MgO has a simple rock salt structure, high melting temperature, relatively 

high thermal conductivity compared with other well-studied refractory ceramics, such as 

ZrO2, MgAlO4, and Al2O3 [24]. Moreover, it’s compatible with reactor materials and 

has a low thermal neutron absorption cross-section [25]. These features make MgO an 

envisioned candidate for Inert Matrix Fuel (IMF) application, which could deal with the 

proliferation problems associated with the current fuel forms [24]. However, MgO is 

sensitive to radiation damage, and irradiation hardening has been widely observed [116]. 

It is the result of hampered dislocation slip and solid-solution hardening. More 

specifically, in MgO, isolated point defect clusters are commonly formed under light ion 

irradiations as well as some heavy ion implantations at low temperatures. At elevated 

temperatures, the density of point defect clusters reduced either by annihilation of 

opposite point defects or formation of obvious interstitial loops. In some cases, 

secondary phases such as metal precipitates were identified. Under certain high damage 

circumstances, eventually amorphization started, and the hardness decreased to a lower 

value than that of the unimplanted one [63, 117, 118]. Very few work has been 

conducted to enhance the radiation tolerance properties of MgO, e.g., Chen and 

Abraham reported the suppression of radiation damage of MgO through Li doping [119]. 

However, the question remains on whether extended defect clusters and accumulation 

can be suppressed by this approach. 
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Recently, radiation tolerance properties of nanostructured materials have 

attracted significant research interests owing to the observed enhanced radiation 

tolerance properties in various nanomaterials including metals and ceramics. For 

example, Zhang et al. reported that the immiscible interface acts effectively in reducing 

radiation damage, such as swelling, helium bubbles formation, and radiation hardening 

in several metallic multilayer systems, including Cu/Nb, Cu/V, Al/Nb, and Fe/W [120-

123]. The defects annihilation effects of grain boundaries in nanocrystalline ceramic 

materials was first demonstrated in TiN films [93]. Moreover, Shen et al. provided a 

thermodynamic explanation of the grain boundary effects which could either enhance or 

harm the radiation tolerance depending on the grain sizes and the system chosen [124]. 

Atomic-scale simulations have been carried out for several metal multilayer cases. For 

example, Misra et al. reported that the greatly reduced formation energy of interfacial 

point defects drastically drives the vacancies and interstitials formed in radiation cascade 

into the interface, where they get recombined [125]. These simulation studies provide a 

guide to understand the mechanism of interface mitigation effect in metallic nanolayer 

systems. Nevertheless, although plenty of irradiation studies have been carried out on 

various bulk ceramics, as well as bulk and thin film metallic systems both 

experimentally and theoretically, similar studies on nanostructured or nanolayered 

ceramics were scarce [126]. 

In this work, MgO-based nanolayer thin films have been synthesized to explore 

the interface-mitigation mechanism in MgO, one of the well-studied ceramic materials 

for ion irradiation tolerance properties. For this study, a transition metal nitride, TiN, is 
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chosen as the interlayer material based on the following considerations: (1) TiN is 

considered as a good radiation tolerant material, in addition to its outstanding 

mechanical properties and thermal stability [58]; (2) More importantly, decent epitaxial 

growth of MgO can be achieved with TiN as they are both face centered cubic with very 

closely matched lattice parameters (aTiN = 0.426 nm and aMgO = 0.419 nm measured by 

XRD). The epitaxial MgO/TiN nanolayers synthesized in this study minimize the 

contributions from grain boundaries and other defects, and therefore provide a relatively 

clean model system to illustrate the interfacial effects on irradiation damage. This study 

could provide a design guideline for ceramic nanomaterials with enhanced radiation 

tolerance properties. 

 

3.3 Experimental Details 

 

TiN/MgO nanolayer thin films were deposited by a pulsed laser deposition 

technique in a high vacuum chamber with a KrF excimer laser (Lambda Physik Compex 

Pro 205, λ = 248 nm, 10 Hz). Laser beam was focused to obtain an energy density of 

approximately 5 J cm−2 at 45° angle of incidence. Targets were hot-pressed 

stoichiometric TiN and MgO obtained from Plasma Materials, Inc. The nanolayer films 

were deposited at a typical growth rate of 0.3 Å/pulse for TiN and for 0.25 Å/pulse for 

MgO with a base pressure of approximately 10−7 Torr and deposition temperature of 

700 °C. Prior to film deposition, Si (0 0 1) substrates were cleaned in acetone and 
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methanol followed by etching in buffered hydrofluoric acid to remove native silicon 

oxide layer on surface. 

A TiN seed layer of about 100 nm was first deposited on silicon substrate to 

grow epitaxial cubic TiN/MgO nanolayers for all samples. Four different sets of 

TiN/MgO nanolayer films with various individual layer thicknesses of 5 nm, 10 nm, 

20 nm and 50 nm were deposited. For comparison, samples of single layer TiN and MgO 

films were deposited as well. The total thickness was controlled to be 500 nm including 

the TiN seed layer for all sets. X-ray diffraction was used to measure the lattice 

parameters. The samples were then irradiated at room temperature with He ions to a 

fluence of 4 × 1016 cm−2 at 50 keV. Microstructural evolution was characterized by high 

resolution TEM (HRTEM) using a JEOL 2010 analytical electron microscope with a 

point-to-point resolution of 0.23 nm and an accelerating voltage of 200 kV. All TEM 

samples were prepared under the same conditions (including a final ion polishing step 

with 3 keV Ar+ beam for less than 1 h). Ion milling damage induced by the TEM sample 

preparation is minimal as seen from the minimal amorphous edge from the TEM sample 

and the amount of damage is comparable in all the samples. 

Hardness of all films was measured by a Hysitron Tribo-nanoindenter. The 

measurements were performed using a standard Berkovich diamond tip under a constant 

load mode with the load varied from 2500 to 4000 μN. In order to minimize any 

substrate effect on hardness measurements, the penetration depth was controlled to be 

less than 20% (∼100 nm) of total film thickness. Hardness was calculated based on the 

average of at least 60 indentation experiments per sample. 
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 3.4 Results and Discussion 

 

SRIM 2008 [127] was used to simulate the damage profile in single layer TiN 

and MgO caused by He ion irradiation for planning the ion implantation experiments. 

The peak displacements per atom (dpa) are 3.1 and 2.1 at the depth of 190 nm and 

230 nm from film surface for TiN and MgO, respectively, both are within the film 

layers. He ions were chosen here to simulate the impact of alpha particles generated 

from the nuclear reactions and to compare with previous studies using the He irradiation 

effects on both metals and ceramics [93, 120, 128]. Room temperature ion irradiation is 

selected for this work to allow defects accumulate rapidly at relative low dosage and 

avoid the complexities of interlayer mixing for the nanolayer samples. The overall dpa 

was estimated by averaging the displacements of the two sublattices, even though there 

is a difference in the displacement energy for the sublattices, and light gas ions are likely 

to produce defects in anion sublattice [118]. The dpa range selected for this study is 

comparable to a previous report on ion irradiation damage of MgO where obvious defect 

clusters and small dislocation loops were clearly observed at doses up to 10 dpa 

(including the displacements of both Mg and O sublattices) [62]. In addition, the damage 

peaks in the nanolayer sets are expected to be within the film layers if no interface effect 

is taken into consideration. 

TiN single layer sample shows no obvious variation in microstructure based on 

the TEM images (not shown here) after ion irradiation, which was attributed to its robust 

ion-irradiation tolerance properties. For the as-deposited MgO single layer samples, the 
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MgO layer appears clear with a sharp interface with the TiN seed layer, as shown in Fig. 

8 (a). However, after the He ion irradiation, an obvious damaged layer with a high 

density of small defect clusters, 200 nm to 400 nm away from the top surface can be 

identified by the dark contrast, which is consistent with the SRIM simulation result, i.e., 

the peak displacement damage and the peak implanted ion area both located within 

200–400 nm, as illustrated in Fig. 8 (b). Moreover, the interface between MgO and the 

TiN seed layer is not as clear as the as-deposit one, which indicates possible radiation 

induced intermixing. Based on the corresponding SAED patterns for both the samples 

before and after ion irradiation, the epitaxial quality of the MgO layer is maintained after 

ion irradiation, only with slightly broadened (0 0 2) diffraction spots as indicated in the 

SAED pattern. This might be caused by the defect clusters formed in the MgO layer due 

to ion irradiation. 
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Figure 8 Low magnification bright field XTEM micrographs and selected area 
diffraction (SAD) patterns of 400 nm MgO single layer films with 100 nm TiN seed 
layer on Si (0 0 1) substrate, (a) as-deposited and (b) ion-irradiated with He+ 50 keV 

at a dose of 4 × 1016 cm−2. 
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Fig. 9 (a) and (b) show the low magnification cross-sectional TEM images of the 

ion irradiated MgO single layer film under bright field (BF) and dark field (DF), 

respectively. High density defect clusters are clearly observed in both BF and DF modes 

and shown as opposite contrast in the two imaging modes. The average cluster size is 

around 5 nm, as circled in the enlarged images (inset in Fig. 9 (a) and (b)). Similar defect 

clusters with similar sizes were reported in previous studies of ion irradiated MgO [129]. 

Irradiation damage evolution in MgO with various energetic particles has been well 

documented, such as studies with light gas ions (Ne, Xe, He, and H) alkali (Li, Na, K, 

and Rb), iron, indium, or gold ions. Point defects accumulation under room temperature 

irradiations was widely reported [118]. Those damages have been identified as point 

defect clusters mainly based on these studies [118, 130]. After irradiation, interstitials 

and vacancies are created. At room temperature, the vacancies are immobile and remain 

isolated. Whereas for interstitials, they can aggregate to from clusters, and gradually 

form interstitial loops [66]. Previous reports have argued that those defect clusters which 

are around several nanometers, are interstitial clusters, and even some interstitial loops. 

For example, Groves and Kelly concluded these loops are unfaulted interstitial 

dislocation loops with Burgers vectors b = ½ 〈1 1 0〉 approximately on {1 0 0} planes 

in fast neutron irradiation [43]. Similar observation was reported for He irradiated cases 

as well as other irradiation with various implant species [60, 131, 132]. Moreover, 

multiple computational methods revealed the high mobility of interstitial clusters 

especially the metastable hexa-interstitial clusters, and the immobility of isolated 

vacancies formed in collision cascades at room temperature in MgO.  
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Figure 9 low magnification XTEM micrographs of the ion-irradiated MgO single 
layer films with He+ 50 keV ions at a dose of 4 × 1016 cm−2, (a) bright field and (b) 
dark field images taken in the area about 230 nm from the surface showing the 
defects clusters with sizes around 5 nm. The insets in (a and b) are the enlarged 

TEM images to show the nature of the small point defect clusters. 
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The immobile tetra-interstitial and larger interstitial clusters could be the nucleus 

of interstitial dislocation loops [66]. However, no obvious dislocation loops or He 

bubbles were identified in the ion irradiated MgO single layer sample. Since the dose of 

implanted He is relatively low (the peak concentration of He is 0.62 cm−3 at 250 nm in 

MgO), it’s difficult to trace the exact locations of He ions in the film. It is highly 

possible that the He ions are trapped in the isolated vacancies in the film, and further 

stabilized the vacancies formed there [128]. Vacancies are considered immobile under 

current experiment condition in the first place, and after stabilized by the implanted 

helium, the tendency to aggregate to form voids and eventually bubbles is further 

reduced. Voids were not observed for the case of MgO after various kinds of irradiation 

even up to very high damage level [45]. At room temperature, the mobility of point 

defects could be relatively low [133]. Thus only small localized defect clusters are 

formed and no observable voids or helium bubbles were observed. Dislocation loops and 

dislocation networks have been previously reported in certain irradiated MgO samples 

after annealing [118]. 
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Figure 10 Low magnification bright field XTEM micrographs and selected area 
diffraction (SAD) patterns of 400 nm TiN/MgO nanolayer films, each individual 

layer is 10 nm, with 100 nm TiN seed layer on Si (0 0 1) substrate, (a) as-deposited 
and (b) ion-irradiated with He+ 50 keV at a dose of 4 × 1016 cm-2. 
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Compared with the single layer MgO case, no such obvious point defect clusters 

and other related damage were found in all the nanolayer samples. Taking the 10 nm 

TiN/MgO nanolayer sample as an example, as shown in Fig. 10, the interfaces between 

the TiN layers and MgO layers are distinguishable and clean with some minor local 

intermixing for the irradiated sample. Cross-section high resolution TEM images of both 

the as-deposit one (Fig. 11 (a)) and the irradiated one (Fig. 11 (b)), taken from the 

middle range of the nanolayers where the peak damage was observed in the MgO single 

layer case, show clear lattice fringes in TiN and MgO layers and sharp interfaces with no 

visible defect clusters. Moreover, the diffraction pattern shows no obvious variation after 

irradiation. Similar to the 10 nm sample, the 20 nm/ 20 nm and 50 nm/ 50 nm samples 

also show no or very minor microstructure variation based on TEM studies (not shown 

here). The enhanced ion irradiation tolerance properties in the nanolayer samples are 

evident compared to the MgO single layer ones. 
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Figure 11 HRTEM micrographs of TiN/MgO 10 nm nanolayer sample taken from 
the depth of 200 nm with insets are the zoomed in images from which lattices are 
clearly shown: (a) as-deposited and (b) ion-irradiated with He+ 50 keV ions at a 

dose of 4 × 1016 cm−2. 



 

75 

 

Besides the systematic microstructural analysis, a detailed mechanical properties 

measurement was conducted for all the samples. Hardness values before and after ion 

irradiation as a function of nanolayer thickness are plotted in Fig. 12. For each sample, 

more than 60 data points were collected and averaged. The error estimation was based 

on the standard derivation as well as the equipment errors.  Regardless of the errors for 

the measurements, the hardness variation is obvious for both the as-deposited and the ion 

implanted films. There is a minor hardness reduction (~5%) in the single layer TiN film 

after irradiation, whereas a ~20% hardness enhancement was observed in the single layer 

MgO film. However, for all the nanolayer cases, no obvious hardness variation was 

found between the before and after ion irradiation samples. This is consistent with the 

TEM observation where no obvious microstructure variation (e.g., the formation of point 

defect clusters) was observed in all the nanolayer samples after ion irradiation in contrast 

to the high density defect clusters observed in the single layer MgO samples. Both of the 

hardness values for the nanolayer samples before and after irradiation follow the same 

trend, i.e. the hardness increases with decreasing the nanolayer thickness. Based on the 

model by Chu et al, when the individual layer thickness is relatively large, similar to the 

thickness range in this study, the mechanical behavior of multilayer films follow a 

similar trend as the Hall-Petch relationship, i.e., the nanolayer thickness decreases, the 

yield strength or hardness increases [134]. A minor hardness reduction could be seen for 

the 10 nm and 20 nm samples after irradiation. However, the reduction is still within the 

standard deviation of the hardness data.  
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Figure 12 Averaged hardness vs. nanolayer thickness for as-deposited and ion-
irradiated TiN/MgO nanolayer films. Hardness variation of single layer of TiN and 

MgO is plotted for comparison as well. 
 

Enhanced ion irradiation tolerance properties in these nanolayer sets are evident 

based on the above microstructure and mechanical studies. Defect clusters are clearly 

shown in the irradiated single layer MgO, and the density of defects increases with the 

implantation depth. A similar phenomenon in various bulk ceramics was observed and 

reviewed by Zinkle [61], where a nominal defect free zone exists near the surface and 

defect sinks, and defect clusters with moderate to high density were only found around 

the peak ion implanted region. The irradiation induced hardening in MgO was 

commonly observed, and the mechanism was based on defect hampered slip [43, 58, 63]. 

One possible mechanism for the helium irradiation induced damage in ceramics is that 

the implanted He ions stabilize the immobile vacancies and prevent their annihilation 

with interstitials, and therefore the mobile interstitials aggregate to form defect clusters. 

This possibly leads to that those clusters were only found around the regions with the 
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highest concentration of implanted ions. For the nanolayer cases, TiN and MgO are quite 

different materials, provided they both possess NaCl structure and close lattice constants. 

The lattice parameters are: aTiN=0.426nm and aMgO=0.419nm in this as-deposited film 

measured by XRD, the measurement form the high resolution TEM is consistent with 

this value. Therefore, the lattice mismatch is 1.7%, and the nominal mismatch 

dislocation spacing is around 6nm along the interface. The dislocations along interfaces 

could be sinks to trap those point defects as well as those implanted He ions. It was 

reported that the bubbles prefer to aggregate along grain boundaries and interfaces [135]. 

With the lower concentration near interfaces, vacancies cannot be stabilized, and 

therefore the annihilation with interstitials increases. In addition, interstitials are 

attracted towards interfaces so that the accumulation is hindered. Therefore the 

nanolayered samples show obvious enhanced ion irradiation tolerance properties than 

their bulk counter parts, e.g., single layer MgO layer for this study. A concern may be 

raised on the effect of TiN layers since TiN itself is considered as a robust radiation 

tolerance material. However, the contribution from TiN is considered to be minor 

compared with the dominant interfacial effect. This is because that no hardness variation 

was observed in all the nanolayer samples with various nanolayer thicknesses, i.e., the 

sample with thinner TiN nanolayers show a similar enhanced radiation tolerance effect 

as the samples with thicker TiN nanolayers. Further experiment is ongoing to 

differentiate the contributions from the TiN layers and the heterogeneous interfaces. 

Another question remains is on which type of interfaces is more effective for mitigating 

ion irradiation damages. In this study, MgO and TiN nanolayer system with small lattice 
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mismatch is selected for this study based on the excellent epitaxial growth of the 

MgO/TiN nanolayers to minimize the possible contribution from high angle grain 

boundaries. Even with high quality epitaxial growth of MgO and TiN nanolayers, 

various heterogeneous interfacial defects including misfit dislocations and associated 

interfacial strains still exist and all contribute to the mitigation of  the ion irradiation 

induced damages that leads to the enhanced radiation tolerance properties. Another 

possibility is the interfacial charge redistribution and differences in mobility and 

chemical potential might attract the point defects towards the interfaces, and therefore 

those defects could be annihilated there [136, 137]. More detailed studies are undergoing 

to explore the interface induced mitigation effects. Nevertheless, this work gains 

important fundamental understanding of interface behavior under ion irradiation in 

MgO-based ceramics, enlightens future nanostructured ceramic design, and shows a 

great potential to enhance the ion irradiation tolerance properties of MgO-based ceramic 

materials with nanostructure designs for future nuclear applications. 

 

3.5 Conclusion 

 

The radiation tolerance properties of MgO can be enhanced by introducing 

nanolayer interfaces, e.g., TiN nanolayers. The nanolayer thickness ranging from 5 nm 

to 50 nm is tested for radiation tolerance properties for this typical system. No hardness 

reduction or increase due to ion irradiation induced damage was observed in all 

nanolayered samples, compared to the obvious hardening in single layer MgO film. High 
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resolution TEM study shows no obvious damages in all the nanolayer samples, i.e., high 

epitaxial quality and clear interfaces remain after ion irradiation. These results strongly 

support that, interface effect could be a dominant factor in enhancing the ion irradiation 

tolerance properties of the MgO/TiN system in this study. 
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CHAPTER IV  

RADIATION TOLERANT NANOCRYSTALLINE ZRN FILMS UNDER HEAVY 

IONS IRRADIATION* 

 

4.1 Overview 

 

ZrN, a refractory ceramic material, finds many potential applications in advanced 

nuclear reactors. However the grain size dependent radiation response in nanocrystalline 

(nc) ZrN under high dose heavy ion irradiation has not yet been studied to date. Here we 

compare the radiation response of nc-ZrN films (with a respective average grain size of 

~9 and 31 nm) to Fe2+ ion irradiations up to a damage level of 10 displacements-per-

atom (dpa). The ZrN film with the average grain size of 9 nm shows prominently 

enhanced radiation tolerance as evidenced by suppressed grain growth, alleviated 

radiation softening, as well as reduced variation in electrical resistivity. In contrast, ZrN 

with the larger average grain size of 31 nm shows prominent radiation softening and 

resistivity increase, attributed to the high density of defect cluster formed inside the 

grains. The influence of grain boundaries on enhanced irradiation tolerance in nc-ZrN is 

discussed. 

 

 

                                                 

* This chapter is reprinted with permission from Jiao, L., et al., Radiation tolerant nanocrystalline ZrN 
films under high dose heavy-ion irradiations. Journal of Applied Physics, 2015. 117(14): p. 145901. 
Copyright (2015), AIP Publishing LLC. 
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4.2 Introduction 

 

Nitride-based nuclear fuels have been proposed for next generation nuclear 

energy systems, owing to their high thermal conductivity compared to actinide oxides, 

high actinide density, and simple phase equilibria [138]. Among most nitrides, ZrN is 

one promising candidate for inert fuel matrices because of its high melting point, 

superior hardness, low vapor pressure, high thermal conductivity and excellent 

compatibility with nitride based nuclear fuels and zirconium cladding alloys. In addition, 

ZrN forms a solid solution with the fuels and act as the inert matrix to lower the high 

fission density [30]. In addition, nitride-based fuels with inert fuel matrices have the 

potential of proliferation resistance, and the idea of recycling of actinides is well 

established by reprocessing this form of nuclear fuel because of the solubility of ZrN in 

nitric acid. Thus the environmental impact could also be alleviated by reducing the long-

lived radiation sources [78]. ZrN has also been used as a model material to evaluate and 

characterize the irradiation response of nitride based nuclear fuels because of its 

similarity in crystal structure (NaCl-type) and chemistry to many actinide mono-nitrides 

[2].  

Despite its great potential, there are only handful studies [78-81] exploring the 

radiation response of ZrN, with mostly promising results. For example, bulk ZrN has 

demonstrated promising tolerance to low-energy, light or heavy ion irradiations: 
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Irradiation under 2.6 MeV proton at 800 oC showed no amorphization or precipitates, 

and no voids or bubble formation were detected at a dose of 0.75 dpa. The irradiated 

microstructure mainly consisted of a high density of dislocation loops and point defects, 

and some of the loops were of vacancy-type in nature [78]. Xenon and krypton were 

used in another radiation study at 300 keV up to 200 dpa under cryogenic and elevated 

temperatures. No amorphization was observed at low temperatures, and nor was bubble 

formation detected at elevated temperatures [80]. Nanocrystalline (nc)-ZrN remained 

intact after various types of swift heavy ion irradiations, such as 167 MeV Xe, 250 MeV 

Kr, and 695 MeV Bi [83]. Blistering tends to occur in annealed nc-ZrN irradiated with 

hydrogen or helium, but is suppressed by swift heavy ion irradiation of Xe at 167 MeV 

following the helium irradiation, the mechanism is attributed to swift heavy ion induced 

epitaxial crystallisation [79]. There is little systematic, in-depth study on grain size 

dependent radiation damage in nc-ZrN.  

In general nc metallic and ceramic materials have abundant grain boundaries 

(GBs), which are effective defect sinks for radiation induced point defects. Molecular 

dynamics (MD) simulations show that GBs in Cu can absorb and then reemit interstitials 

in to grain interior to combine with vacancies in close proximity to high angle GBs [98]. 

The GB sink strength appears to increase with increasing misorientation angle in Cu as 

revealed by the change in width of GB denuded zones [99]. Wang et al. shows that nc-

TiN with an average grain size of 8~100 nm showed greater radiation tolerance than its 

coarse grained counterpart, as evidenced by the diminishing damage zone subjected to 

He ion irradiations [93]. Similarly nc metals [100-102] have shown enhanced radiation 



 

83 

 

tolerance. In situ studies on nc-Ni show that high angle GBs can effectively capture and 

annihilate defect clusters and dislocation segments [100].  

Other defect sinks, such as layer interfaces, have been increasingly investigated 

to absorb radiation induced point defects and their clusters [103-106]. There are limited 

studies on radiation response of nitride based multilayers. In a He ion irradiated study on 

MgO/TiN multilayer, the suppression of defect accumulation was shown in the MgO 

layers, whereas a high-density of defect clusters were identified in the single layer MgO 

film. In parallel, in AlN/TiN systems, no amorphization was seen in AlN layers of the 

AlN/TiN multilayers, while an obvious amorphized layer was identified in the single 

layer AlN film [107, 108], which actually result in higher amount of interfaces and thus 

better radiation tolerance properties. 

In this study, 900 keV Fe2+ ions up to a fluence of 6×1015 cm-2 were implanted in 

nc-ZrN films with selected grain sizes. The influences of grain boundary on radiation 

response were carefully studied by exploring in detail the evolution of microstructures, 

mechanical and electrical properties. Mechanisms of enhanced radiation tolerance in nc-

ZrN are discussed. 

 

4.3 Experimental 

 

Pulsed laser depositions of nc-ZrN thin films were performed in a high vacuum 

chamber with a KrF excimer laser (Lambda Physik 210 with wavelength of 248 nm, at a 

frequency of 10 Hz). ZrN target was a hot-pressed stoichiometric target obtained from 
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Plasmaterials Inc. ZrN films with thickness of 500 nm were deposited at room 

temperature (RT), 200, 500 and 700 oC on Si (100) substrates, and are referred to as RT-

dep, 200-dep, 500-dep, and 700-dep ZrN films, respectively, throughout the text. Before 

deposition, the Si substrates were cleaned using acetone, methanol, and etched in a 

diluted HF solution to remove the oxidation surface layer. RT-dep and 500-dep films 

were then irradiated at room temperature with 900 keV Fe2+ ions at a 40o incidence angle 

to a fluence of 6 × 1015 ions/cm2, and the irradiated samples are referred as RT-dep/rad 

and 500-dep/rad hereafter. A depth dependent damage profile was provided by the 

stopping and range of ions in matters (SRIM) simulation [7] by using Kinch-Pease 

method. Following ion irradiation, microstructural evolution of the as-deposited and 

post-irradiated films was characterized by transmission electron microcopy (TEM) using 

an FEI Tecnai G2 F20 ST analytical transmission electron microscope with a point-to-

point resolution of 0.24 nm. Lattice parameters, strain and stress were analyzed by 

grazing incidence X-ray diffraction (GIXRD) scan with a grazing angle of 1o using a 

PANalytical Empyrean facility.  

Hardness of all the as-deposited and irradiated films was measured with Hysitron 

Tribo-nanoindenter. The measurement was performed using a standard Berkovich 

diamond tip using a quasi-static approach under a constant peak load mode with the load 

varied from 4000 to 7000 μN. Different contact depth was chosen for each sample to 

avoid surface and substrate effects. The contact depth was strictly controlled to less than 

20% (∼100 nm) of the total film thickness. A plateau of hardness is typically observed 

around contact depth of 60 nm, and these values were chosen as the average hardness of 
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the films for future discussion. Each hardness data point and its standard deviation are 

calculated based on at least sixteen indentation experiments per indentation depth. 

Calibration was done by using a standard fused quartz sample. An area function was 

obtained and applied in the measurements. Electrical resistivity of all the as-deposited 

and post-irradiated samples was measured by a four point probe method.  

 

4.4 Results 

 

The depth dependent Fe ion concentration and damage profile for 500 nm thick 

ZrN at an ion energy of 900 keV is calculated using the SRIM code [7]. As shown in Fig. 

13, the peak damage reaches 10 dpa at a depth ~ 160 nm from the surface, whereas the 

maximum Fe2+ ion concentration is only ~ 0.45 at.% at 350 nm underneath film surface. 

The major of film is subject to a damage level above 5 dpa throughout the film. GIXRD 

scans of RT-dep/rad and 500-dep/rad in Fig. 14 show that irradiated films have a better 

crystallinity than as-deposited ones, as indicated by increasing peak intensity and 

narrower full width at half maximum (FWHM) of diffraction peaks. All of the as-

deposited films have shown an out-of-plane lattice expansion, indicated by the left shift 

of peak positions from the standard bulk reflection positions (marked by the vertical 

dash lines). After irradiation, diffraction peaks in both films have migrated towards the 

dash lines. Furthermore the peak position in RT-dep/rad sample almost returns to the 

bulk value.  



 

86 

 

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0

5

10

 F
e 

io
n 

co
nc

en
tra

tio
n 

(a
t%

)

Depth (nm)

surface

900 keV Fe2+ into ZrN to fluence of 6×1015 cm-2

 

DP
A

 

Figure 13 SRIM simulation of depth dependent damage profile (solid line) and Fe 
concentration (dash line) of ZrN subjected to 900 keV Fe2+ ions to the fluence of 

6×1015cm-2 at an incident angle of 40o. Peak damage (10 dpa) occurs at 160 nm from 
the surface, whereas the peak Fe concentration (0.45 at. %) is at the depth of 350 

nm. 
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Figure 14 GIXRD profiles of as-deposited ZrN specimens at room temperature 
(RT-dep) and 500 oC (500-dep), and the corresponding irradiated specimens (RT-

dep/rad and 500-dep/rad). The peaks of irradiated specimens (solid line) shift right 
as compared to the as-deposited films (dash line). The dotted lines show the 
standard reflections, indicating the existence of compressive stress in the as-

deposited films and the reduction of the stress in the irradiated films. 
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Comparison of plan-view dark field (DF) TEM images in Fig. 15 a-b show that 

radiation has led to insignificant grain growth in RT-dep ZrN film, and the inserted 

selected area diffraction (SAD) patterns in both specimens contain continuous 

diffraction rings. However, a prominent grain coarsening is in 500-dep/rad specimen 

(Fig. 15 c-d). The significant grain growth has led to the dotted SAD pattern in Fig. 15 d. 

Grain size distribution statistics have been obtained by measuring at least 100 grains 

from each DF image, and the results are plotted in Fig. 15 e-h. The average grain size 

has grown from 9 nm (Fig. 15 e) in RT-dep film to 12 nm (Fig. 15 f) in RT-dep/rad film, 

whereas the grain size increases from 31 nm (Fig. 15 g) in 500-dep film to 62 nm (Fig. 

15 h) in 500-dep/rad film. The standard deviation increases as the grain size increases. 
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Figure 15 Plan-view dark field TEM images illustrating radiation induced grain 
growth in ZrN films. (a) RT-dep ZrN film had nano-grains and the inserted 

selected area diffraction (SAD) pattern shows continuous ring. (b) RT-dep/rad ZrN 
film had slight increase in grain size and insignificant variation of diffraction 
pattern.  (c) 500-dep ZrN had larger grain size and discontinuous arcs in SAD 

pattern. (d) 500-dep/rad ZrN had prominent grain coarsening and dotted 
diffraction pattern. Grain size frequency distribution charts clearly show the gran 
size and standard deviation statistics in (e) RT-dep ZrN film, (f) RT-dep/rad ZrN 

film, (g) 500-dep ZrN film, (h) 500-dep/rad ZrN film.
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Figure 15 Continued.

Defect clusters have been identified in both irradiated films. A very low density 

of defect clusters was observed in RT-dep/rad ZrN film, and they are mixed with Moiré 

fringes (due to overlapping of nanograins), as shown in Fig. 16 (a1) and high resolution 

TEM (HRTEM) micrograph in Fig. 16 (a2). Whereas a higher density of defect clusters 

have been observed within the grains of 500-dep/rad film. The columnar grain/domain 

boundaries are labeled in Fig. 16 (b1). The density of defect clusters increases with 
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depth into the film. HRTEM micrograph revealed two types of typical regions, with and 

without defect clusters. The inverse fast Fourier transformed (IFFT) filtered image for 

the box in clear lattice region shows little distortion. In contrast, the IFFT of defected 

regions shows the highly distorted (200) planes containing various types of defect 

clusters (including vacancy (red) and interstitial (yellow) loops and other types of defect 

clusters (circled in green). 

Figure 16 (a1) Bright field TEM image of RT-dep/rad ZrN with arrows indicating 
moiré fringes generated by overlapped grains, (a2) HRTEM of RT-dep/rad ZrN, 

showing the low density of defect clusters mixed with moiré fringes, (b1) TEM 
image of 500-dep/rad ZrN. The dashed white lines are columnar grain boundaries, 
and the high density of defect clusters inside grains is shown. (b2) HRTEM image 
of 500-dep/rad ZrN showing the high density of defect clusters. Inverse FFT of the 
boxed areas of a clear lattice position showing clear (200) displacing (up box and 

IFFT), and another position around a defect cluster (down box and IFFT) showing 
highly distorted (200) planes with mask applied on (200) diffraction spots, both 

interstitial and vacancy type loops as well as many other dislocations can be found 
as marked out. 
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Figure 16 Continued.

The hardness of all the as-deposited and irradiated samples vs. the inverse square 

root of grain size d is plotted in Fig. 17. The dashed line indicates a clear inverse Hall-

Petch relationship for all as-deposited films before irradiation. Among all the as-

deposited films, RT-dep and 500-dep films were irradiated. Radiation induced softening 

for RT-dep/rad is, 1.5 GPa, less significant than that of 500-dep/rad film, 5.5 GPa). 

The evolution of electrical resistivity showed a contrary behavior of RT-dep/rad 

and 500-dep/rad films compared with their unirradiated counterparts. Specifically 

radiation leads to the decrease of the resistivity of RT-dep films by 26%, whereas the 
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resistivity of 500-dep/rad film is 78% greater than its unirradiated counterparts as plotted 

in Fig. 18.  
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Figure 17 Hardness vs. the inverse of square root of grain size d, showing the 
inverse Hall-Petch effect of nc-ZrN before irradiation (data points with open 

symbols, the inverse Hall-Petch effect is outlined by the dashed line), and the true 
softening, ΔHtrue, of samples after irradiation (data points with closed symbols). 
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Figure 18 Correlation between average grain size and resistivity of ZrN films 
before and after irradiation. The scattered data was obtained by a four point probe 

measurement. And the curve was calculated by MS model. 
 
 
 
4.5 Discussion 

 

4.5.1 Microstructural Evolution 

 

Radiation induced defects and their grain size dependence 

 

No amorphization was observed in either of the irradiated films, while better 

crystallinity was shown in both films after irradiation. In irradiated coarse grained 500-
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dep/rad ZrN films, various types of defect clusters have been observed. FFT filtered 

images of the films showed clear difference between the highly distorted (200) planes of 

the defective area and the straight (200) planes of the defect-free zone in Fig. 16 (b2). 

The lattice distortion can be attributed to the localized point defect clusters. Both 

interstitial- and vacancy-type loops can be identified. Additionally there are other types 

of defect clusters identified in the irradiated specimen, marked in green dashed circles, 

wherein clusters of dislocations with opposite signs are identified. Similar defect clusters 

were reported by Yong et al. in bulk ZrN with large grains (several microns) irradiated 

by 2.6 MeV protons at 800 oC, and were speculated as vacancy-type pyramidal 

dislocation loops [78]. Since the HRTEM images in the current study only provide the 

2D projection of these defect clusters, future research is needed to further identify the 

nature of these defects.  

In comparison to coarse grained ZrN films, the defect cluster density in RT-

dep/rad film with smaller grain sizes is much lower. There are several mechanisms that 

may lead to enhanced size dependent radiation tolerance. First, it is likely that a large 

number of nitrogen interstitials and vacancies are attracted to grain boundaries whereby 

they annihilate with one another. Although at room temperature vacancies are 

considered less mobile in ZrN, they may have much higher mobility in the vicinity of 

grain boundaries [93]. Second, a recent simulation study has suggested that, in irradiated 

polycrystalline MgO, the interaction between defects and grain boundaries are very 

strong, and became even stronger when the boundaries were damaged. When the MgO 

grain boundaries were loaded with excess interstitials to mimic the damage in irradiated 
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polycrystalline MgO,  depending on the atomic structure of boundary, in some cases, the 

vacancies formation energy at or close to the grain boundaries were drastically decreased, 

that the vacancies can be spontaneously annihilated with the interstitials at the grain 

boundaries or at sites close to the grain boundaries [67]. This interstitial emission 

mechanism is similar to the one reported in metal [98, 139]. Such mechanisms might be 

applicable in ZrN in this study as ZrN and MgO has similar crystal structure. Third, it is 

likely that some defect clusters are absorbed by grain boundaries. A recent In-situ 

radiation studies on nanocrystalline Ni shows that defect clusters, ~ several nm in 

diameter, can be captured by high angle grain boundaries.  

 

Radiation induced grain growth 

 

Radiation induced grain growth has been studied in nanocrystalline metals, such 

as FeZr [140]. In general the smaller grains are vulnerable to grain growth as the density 

of high angle grain boundaries and hence driving force for grain coarsening is much 

greater than counterparts with larger grains. Hence it is natural to anticipate more 

prominent grain growth in RT-dep/rad ZrN film than in the 500-dep/rad film. 

Surprisingly, the average grain size in the RT-dep/rad film,only increased from 9 to 12 

nm, by 33%, while the grain size grew significantly in the 500-dep/rad film, from 31 to 

62 nm, by 100%. Radiation induced grain growth is in general related to the density of 

radiation induced defect clusters. A higher density of defect clusters, observed in 500-

dep/rad film may accelerate grain coarsening.  
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4.5.2 Size Dependent Alleviation of Irradiation Softening  

 

Irradiation induced hardening is a universal phenomenon in metallic materials 

and is typically attributed to increasing resistance to the propagation of dislocations by 

irradiation induced defect clusters [78, 80]. Irradiation induced hardening is also 

frequently reported. For instance the hardness of MgO thin films irradiated by helium 

ions was found to increase  by 20% [107]. However, in this study, radiation induced 

prominent softening in ZrN films as shown in Figure 17 and Table 5. Irradiation 

softening has also been reported in TiN irradiated with He+ ion [107]. The softening 

could be related to the generation of nitrogen vacancy since the displacement energy is 

lower in the anion sublattice, and nitrogen interstitials are mobile under irradiation. 

Additionally the magnitude of irradiation softening is ~ 1.5 GPa for RT-dep/rad, much 

lower than that in 500-dep/rad films, ~ 5.5 GPa.  
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Table 5 Residual stresses of various ZrN films measured using XRD profiles. 
 

 
out of plane 

strain εz 

Modulus 

E (GPa) 

In-plane residual stress 

relaxation  

(σres
irradiatted - σres

as-deposited) 

Δσres (GPa) 

Softening from 

relaxation 

ΔHrelax (GPa) 

True softening 

ΔHtrue (GPa) 

RT-dep 2.08% 170 ± 10 

6.64 -4.44 -3.0 
RT-dep/rad 0.16% 170 ± 10 

500-dep 0.96% 200 ± 10 

2.49 -1.65 -6.5 
500-dep/rad 0.39% 170 +/- 10 
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In order to better understand grain size dependent variation of irradiation 

softening, two complexities shall be taken into consideration, including grain growth and 

residual stress. First, grain growth may contribute to the hardness change. An inverse 

Hall-Petch effect was outlined by the dash line in Fig. 17, that is the smaller the grain 

size, the lower the film hardness. Such effect has also been reported in nc-ZrN 

previously [141]. As radiation induces grain coarsening in nc-ZrN films, the true 

softening in irradiated specimens should be estimated by comparing with as-deposited 

specimens with similar grain size. Given there is a linear dependence between film 

hardness and d-1/2, the magnitude of true irradiation softening (ΔHtrue) for RT-dep/rad 

specimen was estimated to be ~ 3 GPa, still much lower than that in 500-dep/rad ZrN 

films, ~ 6.5 GPa. 

Second, residual stress in films could also change the measured film hardness. In 

general a compressive (tensile) residual stress would increase (decrease) film hardness 

[142-144]. XRD studies show that as-deposited films have compressive stress, whereas 

radiation leads to alleviation of residual compressive stress. Compressive stress is 

commonly observed in nanocrystalline films [81]. Relaxation of compressive stress will 

also result in softening. The in-plane residual stress, σres can be calculated using a biaxial 

stress model: 

𝜎𝑟𝑟𝑟 = −(𝐸/2ν) × 𝜀𝑍          

where, E is the Young’s modulus, ν is the Poisson’s ratio, and εz is the out-of-plane 

strain that can be measured from XRD experiments by using the (111) diffraction. 

Young’s modulus of films is measured from nanoindentation experiments. The measured 
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values of E and εz, and calculated residual stresses are listed in Table 5. The in-plane 

compressive stress is commonly seen in PVD deposited nanocrystalline films [81].  

The equibiaxial residual stress consists of a plastic-deformation independent 

hydrostatic stress component σH and a plastic-deformation sensitive shear deviatoric 

stress σD [142]: 

𝜎𝑟𝑟𝑟 = 𝜎𝐻 + 𝜎𝐷          

and the corresponding 3D expression in matrix would be: 
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The term σD has a component along the out-of-plane direction, -2/3σres, which 

directly results in the hardness increment [142]. The hardness increase induced by 

residual compressive stress could thus be estimated as:  

∆𝐻𝑟𝑟𝑟 = −2
3
𝜎𝑟𝑟𝑟          

Consequently irradiation softening due to the relaxation of residual compressive 

stress can be estimated from the variation in residual stresses of the films before and 

after irradiation: 

∆𝐻𝑟𝑟𝑟𝑟𝑟 = −2
3
∆𝜎𝑟𝑟𝑟 = −2

3
(𝜎𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜎𝑟𝑟𝑟

𝑎𝑎−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)     

The calculated results are listed in Table 5, and the true softening, ΔHtrue, is also 

listed for comparison. For RT-dep/rad film the estimated ΔHrelax is -4.44 GPa, which is 
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comparable to the measured ΔHtrue (-3.0 GPa). Therefore the irradiation softening in RT-

dep/rad ZrN film may be primarily caused by the significant stress relaxation. On the 

other hand, for the 500-dep/rad film ΔHrelax is estimated as -1.65 GPa, much lower than 

the ΔHtrue, ~6.5 GPa. Hence the relaxation of residual stress alone cannot completely 

account for the measured radiation softening. Such prominent irradiation softening in 

500-dep/rad ZrN films with larger grain size could be attributed to the much higher 

density of defects induced by radiation. The accumulation of vacancies and their clusters 

could significantly reduce the bonding strength between Zr and N and lead to substantial 

irradiation softening, as reflected by the reduction of the Young’s modulus from 200 to 

170 GPa.  

 

4.5.3 Size Dependent Variation of Electrical Resistivity in Irradiated ZrN Films 

 

Electrical resistivity of materials is sensitive to defects density. The electrical 

resistivity of irradiated metallic materials is typically greater than their unirradiated 

counterparts as radiation often significantly increase the density of point defect and their 

clusters. Radiation leads to anticipated prominent increase in electrical resistivity in the 

500-dep/rad ZrN films. However the opposite phenomenon is observed in RT-dep/rad 

ZrN film irradiated at the same condition: that is radiation induces a decrease in 

electrical resistivity. To understand this unusual phenomenon, we need to first 

understand the influence of grain size on electrical resistivity of solid materials.   
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The model proposed by Mayadas and Shatzkes (M-S model) [145] correlates 

average grain size to electric resistivity of solid materials. This model has been 

successful applied to explain size effect on electrical resistivity of various metallic 

materials [146, 147]. Here the model is adopted as ZrN has high conductivity 

(comparing to most ceramic materials) and metallic type of electrical transport properties. 

In the M-S model, grain boundaries are considered as major obstacles that scatter charge 

carriers, and thus increase the overall resistivity. The enhanced resistivity ρ  can be 

described as follow: 

1
3 11ln3

2
31

−
2









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


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 +−3+− = 

α
ααρρ αo        

where, ορ  is the intrinsic resistivity, ~30 μΩ • cm for ZrN. α is the scattering parameter, 

and can be calculated by: 

R
R

d −
=

1
λα            

where λ is the electron mean free path, d is the average grain size, and R is the reflection 

coefficient for carriers striking a grain boundary, which is typically in the range of 0.2 – 

0.5. [148]. λ is chosen as 50 nm, similar to TiN, as the ZrN and TiN has very similar 

chemical and physical properties [149].  

By using R = 0.5, a solid line generated by the M-S model is generated in Fig. 18, 

which captures the major trend for a majority of data for as-deposited and irradiated ZrN 

films. The comparison (between experimental results) and modeling implies that the 
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reduction of electrical resistivity in RT-dep/rad ZrN film is mainly due to radiation-

induced grain coarsening. However it’s worth noting that the resistivity of 500-dep/rad 

sample has a significant deviation from the M-S model, that is radiation induces an 

increase of resistivity by ~ 78%, although the grain size of the films has doubled. Such 

prominent increase in resistivity of 500-dep/rad Zr film could be attributed to the high 

density of defect clusters in these irradiated films. These defect clusters and lattice 

distortion scatter electrons more frequently [150]. Therefore, the relation for estimation 

of electron scattering parameter, α, could be revised as follows: 

R
R

d −
=

1
βλα  

where, a new factor, β, is introduced to describe how many times electrons are scattered 

by defect clusters or lattice distortions within a grain. And from the measured resistivity 

for 500-dep/rad ZrN films, β is estimated to be ~ 5. This simplified estimation implies 

that the distortion caused by defects and their clusters, regardless of the dramatic grain 

growth in 500-dep/rad sample, scatter electrons ~5 times more frequently than that in 

unirradiated films.  

 

4.6 Conclusion 

 

The heavy ion irradiation response of nc-ZrN films, with an average grain size of 

9 nm and 31 nm show clear grain size dependences.  The RT-dep/rad ZrN film with a 
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smaller average grain size has much lower density of defect clusters than that in the 500-

dep/rad ZrN with a larger grain size. Furthermore smaller grains appear to effectively 

curtail grain growth, mitigate irradiation softening and irradiation induced variation of 

electrical resistivity. This study suggests the abundant high angle grain boundaries in 

ZrN can significantly boost the radiation tolerance of irradiated ZrN as manifested by 

stability of microstructure and mechanical and electrical properties, and hence increase 

the odds for applications of nc ZrN as promising fuel clads for advanced nuclear reactors. 
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CHAPTER V                                                                                                                     

IN-SITU IRRADIATION STUDY OF MGO BASED MULTILAYERS: GRAIN 

BOUNDARY AND INTERFACE EFFECTS ON RADIATION DAMAGE 

DEVELOPMENT 

 

5.1 Overview 

 

The mitigation effect of grain boundaries and interfaces were investigated via in-

situ Kr2+ irradiation. The results are that both epitaxial interfaces and non-epitaxial 

interfaces were identified as defect sinks, with the polycrystalline like non-epitaxial 

interfaces acting more efficiently. Grain boundaries were found to be both the initiation 

site and annihilation site of defects, and a cyclic accumulation and removal of defects by 

grain boundaries were first observed. The mechanisms were attributed to the kinetic 

evolution of grain boundaries and their influence on different type of defect clusters. 

Grain growth was observed as the results of radiation enhanced diffusivity, and high 

mobility of the charge-neutral interstitials. 

 

5.2 Introduction 

 

MgO has been widely studies for decades both experimentally and 

computationally. First of all, MgO is relative simple for study compared to more 

complex oxides, i.e., MgO has a simple rock salt structure, high melting temperature 
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close to 3000 oC, relatively high thermal conductivity compared with other well-studied 

refractory ceramics, such as ZrO2, MgAlO4, and Al2O3 [24]. And it’s a well understood 

classic engineering ceramic. Due to its outstanding physicochemical properties, MgO 

has been of interest in a wide range of applications including protective coating in 

plasma display panels, catalysis, fuel cells and tunable broadband laser [9]. Moreover, 

it’s compatible with reactor materials and has a low thermal neutron absorption cross-

section [25], which make MgO an envisioned candidate for Inert Matrix Fuel (IMF) 

application, which could deal with the proliferation problems associated with the current 

fuel forms [24].  MgO also received attention as a material for immobilization and long-

term nuclear waste storage, transmutation of high radioactive actinides, and proposed as 

insulators for fusion reactor diagnostics due to its neutron transparency, high thermal 

conductivity compared to other oxide materials, high resistance to high-energy particle 

irradiation [16-19]. Therefore the radiation tolerance of MgO is of significant 

importance, especially how the radiation induced damage accumulation in MgO, and 

how they interact with microstructure will provide guidance the microstructural design 

for applications mentioned above. 

Ion irradiation damage in MgO has been extensively explored for decades [115]. 

However, MgO is sensitive to radiation damage, e.g., the irradiation hardening in MgO 

has been widely observed [116]. It is the result of hampered dislocation slip and solid-

solution hardening. Very few work has been conducted to enhance the radiation 

tolerance of MgO. For example, the suppression of radiation damage of MgO has been 

reported by Chen and Abraham through Li doping [119]. However, the question remains 
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on whether extended defect clusters and accumulation can be suppressed by this 

approach. 

Recently, radiation response of nanostructured materials have gained significant 

research interests due to the observed enhanced radiation tolerance properties in various 

nanomaterials including metals and ceramics. In general nano-crystalline (nc) metallic 

and ceramic materials have abundant grain boundaries (GBs), which are demonstrated as 

effective sinks for radiation induced point defects. Molecular dynamics (MD) 

simulations have shown that GBs in Cu can absorb and then re-emit interstitials into 

grain interior to combine with vacancies in close proximity to high angle GBs [98], and 

the sink strength increases with misorientation angle as revealed by the change in width 

of defects denuded zones close to GBs [99]. Wang et al. has reported that nc-TiN 

showed greater radiation tolerance than its coarse grained counterpart, as evidenced by 

the diminishing damage zone subjected to He ion irradiations [93]. Similarly nc-metals 

[100-102] have shown enhanced radiation tolerance. Moreover, Shen et al. provided a 

thermodynamic explanation of the grain boundary effects which could either enhance or 

harm the radiation tolerance depending on the grain sizes and the system chosen [124]. 

Other defect sinks, such as layer interfaces, have been increasingly investigated 

both experimentally and computationally, in absorption of radiation induced point 

defects and their clusters [103-106]. For example, Zhang et al. have reported that the 

immiscible interface acts effectively in reducing radiation damage, such as swelling, 

helium bubbles formation, and radiation hardening in several metallic multilayer 

systems, including Cu/Nb, Cu/V, Al/Nb, and Fe/W [120-123]. And Misra et al. reported 
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that the greatly reduced formation energy of interfacial point defects drastically drives 

the vacancies and interstitials formed in radiation cascade into the interface where they 

recombined in an atomic-scale simulation [125]. 

Nevertheless, similar studies on nanostructured or nanolayered ceramics were 

scarce [126]. There are limited studies on radiation response of nitride based multilayers. 

In a He ion irradiated study on MgO/TiN multilayer, the suppression of defect 

accumulation was shown in the MgO layers epitaxially grown between TiN layers, 

whereas a high-density of defect clusters were identified in the single layer MgO film 

counterpart. In parallel, in a He ion implanted AlN/TiN systems, no amorphization was 

identified in AlN layers of the AlN/TiN multilayers, while an obvious amorphized layer 

was observed in the single layer AlN film [107, 108], which are attributed to the higher 

amount of interfaces acting as defect sinks that prevent the defects accumulation or 

amorphization, and thus improve the radiation tolerance properties. 

In this work, MgO-based nanolayered thin films with different layer thickness as 

well as different grain sizes have been synthesized to explore the grain boundary as well 

as interface mitigation mechanism on radiation induced defects accumulation in MgO. 

For this study, transition metal nitrides, ZrN and TiN, are chosen as the interlayer 

material due to their good radiation tolerance in addition to the outstanding mechanical 

properties and thermal stability and decent epitaxial growth of MgO can be achieved on 

TiN as the same crystal structure and close lattice parameter. Moreover, non-epitaxial 

MgO/ZrN multilayers were synthesized as they have bigger lattice constant difference 

(aZrN = 0.457 nm, aMgO = 0.419 nm), and polycrystalline MgO layers with different grain 
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sizes were deposited by PLD via varying deposition temperature. The epitaxial 

MgO/TiN nanolayers synthesized in this study minimize the contributions from grain 

boundaries, and therefore provide a relatively clean model system to illustrate the 

epitaxial interfacial effects on irradiation damage. And the radiation response of 

polycrystalline MgO between ZrN layers is only influenced by the grain boundaries. 

And the damage behavior is affected both by grain boundaries and non-epitaxial 

interfaces in the thin MgO layers between ZrN. A preliminary comparison is made 

between the MgO/TiN epitaxial interface with the MgO/ZrN non-epitaxial interface in 

terms of the absorption speed of radiation induced defects. 

 

5.3 Experiments 

 

MgO based multilayer thin films were deposited by a pulsed laser deposition 

technique in a high vacuum chamber with a KrF excimer laser (Lambda Physik Compex 

Pro 205, λ = 248 nm). Laser beam was focused with an energy density of 

approximately 5 J cm−2 at an incident angle of 45o. Targets were hot-pressed 

stoichiometric ZrN, TiN and MgO obtained from Plasma Materials, Inc. The nanolayer 

films were deposited at a typical growth rate of 0.3 Å/pulse for TiN and ZrN and for 

0.25 Å/pulse for MgO with a base pressure of approximately 10−7 Torr and deposition 

temperature ranging from room temperature up to 700 oC in order to achieved the 

desired grain sizes. Prior to film deposition, Si (0 0 1) substrates were cleaned in acetone 
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and methanol followed by etching in buffered hydrofluoric acid to remove native silicon 

oxide layer on surface. 

For sample 1 and 2, a TiN seed layer of about 100 nm was first deposited on 

silicon substrate to grow epitaxial cubic TiN/MgO nanolayers. A 400 nm of MgO was 

grown on the TiN seed layer as Sample 1 as shown in Fig. 19 (a), while Sample 2 

consists of 40 nm of TiN or MgO grown alternatively on the TiN seed layer as shown in 

Fig. 19 (b). Sample 3 consists of ZrN/MgO multilayers with different MgO layer 

thicknesses, i.e. 20 nm, 40 nm, and 130 nm, while keeping the ZrN 10 nm as in Fig. 19 

(c). The total thickness was controlled to be 500 nm including the TiN seed layer for all 

sets. The samples were then irradiated at room temperature with Kr2+ ions to a fluence 

up to 1.56 × 1015 cm−2 at 1 MeV at Argonne National Lab. Microstructural evolution 

was characterized by high resolution TEM (HRTEM) using a JEOL 2010 analytical 

electron microscope with a point-to-point resolution of 0.23 nm and an accelerating 

voltage of 200 kV. All TEM samples were prepared under the same conditions 

(including a final ion polishing step with 3 keV Ar+ beam for less than 1 h). Ion milling 

damage induced by the TEM sample preparation is minimal as seen from the minimal 

amorphous edge from the TEM sample and the amount of damage is comparable in all 

the samples. 
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(a)                                             (b)                                                (c) 

Figure 19 (a) Epitaxial MgO on TiN, (b) epitaxial MgO/TiN multilayers with layer 
thickness of about 40 nm, (c) polycrystalline MgO/ZrN multilayer samples with 
MgO of 20 nm, 40 nm, and 130 nm while ZrN is 10 nm, the terminating layer is 

ZrN of about 20 nm. 
 

5.4 Results and Discussion 

 

5.4.1 Defects Evolution and Removal by Interface in the Epitaxial MgO Layers 

 

In sample 2 as shown in Fig 19 (b), there is a high density of horizontal pre-

existing defects, likely being introduced by the deposition process. Under the irradiation, 

these pre-existing defects were quickly annihilated by interfaces with TiN, and vacancies 

in the interior of the films. The pre-existing defects lie on the {100} planes, and glide 

with a <100> burger’s vector towards interfaces. As discussed in Chapter III, the misfit 

dislocation on the TiN/MgO interfaces act as defect sinks, those unstable pre-existing 
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defects frozen by the deposition were activated by the energy deposited by the 

irradiation, and quickly move to the nearby defects sinks, either towards the interfaces or 

the vacancies in the film. As shown in Fig. 20. Though the defects have aligned on the 

{100} planes, the moving was not always on the same rate. It is surprising that the 

mobility of these pre-existing defects is high under the low irradiation dose, 0.001 dpa. 

The mobility is 1.5 nm/s. The movement was also seen towards the other interfaces on 

an opposite direction as shown in Fig. 20, the mobility is ~ 1.1 nm/s. The defects 

mobility decreases rapidly as the unstable amount of pre-existing defects quickly 

annihilated. 

 

 

Figure 20 Pre-existing defects moving towards MgO/TiN epitaxial layer interfaces 
 

The pre-existing defects were quickly removed by either interfaces or opposite 

defects in the film. As shown in Fig. 21 (a), most of the pre-existing defects were 
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removed around 0.016 dpa. At the same time, the radiation induced defects grow and 

develop. The radiation induced defects accumulate steadily after all the pre-existing 

defects were removed. And the defects induced by radiation were found to be relatively 

stable, with a mobility of around 0.3 nm/s towards the epitaxial MgO/TiN interfaces. As 

discussed in Chapter III that those defects are interstitial defect clusters as shown in Fig. 

21 (b). The major difference from the pre-existing defects is the alignment of defects is 

along {110} planes, as it’s the primary slip planes in NaCl crystal structure, with 

increasing the fluence, some of the aligned defects grow into clusters with greater 

diameters. In the last, a high density of defect clusters can be identified, while at the 

same dose, the single layer MgO sample was amorphized, as shown in Fig. 22. The 

mechanism is likely attributed to the strain from the TiN layers in the multilayer 

MgO/TiN, which increase the energy barrier for MgO in the multilayer to be amorphized, 

the similar mechanism was reported in Fe/Y2O3 before [106]. 
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Figure 21 Low density of pre-existing defects remained at 0.016 dpa as in (a), the 
radiation induced defects start to accumulate as shown in (b). 

 

  

 

Figure 22 At the end of irradiation up to 0.64 dpa, the comparison between 
multilayer MgO/TiN (a), and the single layer MgO on TiN seed layer (b). A high 
density was observed in the multilayer, while single layer MgO was amorphized. 
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5.4.2 Cyclic Accumulation and Removal of Irradiation Introduced Damage in 

Polycrystalline MgO 

 

High angle grain boundaries of MgO removes defects effectively via cyclic 

removal of radiation induced defects. The defects were first initiated around grain 

boundaries, since the formation energy of point defects are low due to the loose bonding 

on the grain boundaries. And then defects accumulate inside the grains, finally take up 

the whole interior of grain. It’s surprising to see that, when the accumulation reached the 

maximum, the removal of defects was activated as shown in the Fig. 23. The mechanism 

can be explained in two folds: (a) the mutual influence between grain boundaries and 

defects, (b) the mobility change dependence on the evolution of defect clusters.  
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Figure 23 (a) Snapchat of cyclic accumulation and removal of defect clusters in 
polycrystalline MgO, (b) Illustration of defect concentration with time and dpa in 

the polycrystalline MgO. 
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On one hand, the evolution of grain boundaries is one factor in determining the 

cyclic behavior. With the damage accumulated in the grain boundaries, the formation 

energy for point defects is also changing, that at a typical point, the accumulation of 

defects would be reversed to removal of defects. More specifically, when grain 

boundaries were loaded with interstitials, the formation energy of vacancies on the grain 

boundaries is further reduced. And vacancies relatively far from the grain-boundary 

could be annihilated with the interstitials on the grain boundaries. These mechanism is 

called the interstitials-reemitting mechanism, was firstly reported in a simulation work 

on Cu. Moreover, vacancies close to grain boundaries have higher mobility, which can 

become mobile, given the fact that vacancies in MgO are considered immobile at room 

temperature.  

The long-time evolution of irradiation damage in MgO has been obtained by a 

variety of simulation methods [66]. It is concluded that point defects and small defect 

clusters were formed under low energy, on the order of 1 keV, collision cascades, while 

over long times, interstitials annihilate with vacancies and aggregate with other 

interstitials to form large clusters. And a type of cluster consists of six atoms was found 

to have extremely high mobility. For example the diffusion barrier for isolated Mg 

interstitial is 0.32 eV, and 0.40 eV for O interstitials, the trend was found that the 

mobility decreases with increasing the size of clusters. However, a hexa-interstitial has 

an extremely low diffusion barrier even lower than half of that of the isolated interstitials. 

The cyclic movement could be explained that the diffusivity of interstitials is highly 

influenced by the evolution of defects. In the beginning, interstitials formed preferred at 
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the grain boundaries, due to the lower formation energy because of the loose bounds 

there, and when boundaries are damaged, it further reduces the formation energy for 

point defect. For example, when an O vacancy is created, the coordinated Mg atoms 

would be easier to displace from their original sites by irradiation collision. Therefore, 

the damage starts from the grain boundaries, and always accumulates or propagates from 

the front edge of the defective zoon, which caused the lattice distortion and forming the 

dark contrast under TEM. During the process of accumulation of point defects, the 

defective zoon occupies the whole interior of grains, and defects evolve at the same time, 

clusters with more interstitials formed. The mobility decreases with the size of clusters 

increase and finally become immobile, such as the tetra-interstitial clusters. They might 

initiate the interstitial loops there, however when clusters grow to a certain point, for 

example the hexa-interstitial cluster, the mobility maybe be improved significantly, that 

the immobile defects becomes mobile again, and therefore they tend to move to the 

closest defect sinks and annihilated there. It is worth noting that, some clusters may stop 

at the immobile status, and forming extended clusters or even loops locally, which 

explains at the last part, defect clusters were observed inside grains. In the case of the 

hexa-interstitials and octa-interstitials, the long range one dimensional diffusion along 

<110> in their metastable states could result in an experimentally detectable signature. 

At the same time, the MgO grains undergoes lattice restoration via radiation 

induced diffusivity, and damaged grain boundaries were activated by loaded defects and 

latter drove defects back and annihilated there, latter resulting in grain growth. The 

diffusion of clusters towards grain boundaries assist the grain growth in the way that 
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they reside at a lower energy sites with the neighboring grains along their orientation 

which results in grain growth, as shown in Fig. 24 below. The grain growth is more 

obvious in the larger grains in 130 nm MgO layer.  

 

 

 

 

 

 

 

 

 

 

 



 

119 

 

 

 

Figure 24 Grain growth before and after irradiation, (a) bright field TEM image of 
MgO multilayers before irradiation, (b) dark field image of the MgO multilayer 

before irradiation, (c) Bright field image of the same sample before irradiation, (d) 
Dark-field image of the MgO multilayer after irradiation, (e) MgO grain size in the 
thin layer before irradiation, (f) MgO grain size in the thin layer after irradiation, 
(g) MgO grain size in the thick layer before irradiation, (h) MgO grain size in the 

thick layer after irradiation. 
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5.5 Conclusion 

 

The in-situ irradiation experiments on MgO based thin films revealed that, after a 

1 MeV Kr2+ ion irradiation to a fluence of 1.56 × 1015 cm−2, single layer MgO was 

amorphized, while epitaxial MgO/TiN remains crystallinity, with a high defects density 

observed. The defects irradiation induced defects in MgO/TiN case has a low mobility, 

and the defect density and size grow with irradiation dose. As comparison, in a 

polycrystalline MgO multilayer with thin ZrN film, high mobility of irradiation induced 

defects was observed. The initiated from grain boundaries and interfaces, and eventually 

annihilated in the grain boundaries and interfaces as defect sinks. Several clear cyclic 

defects accumulation and removal was identified. The surprising in-situ self-healing 

effects were firstly reported in this study.   
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