
UNIVERSAL SKEPTIC BINDER-DROID - TOWARDS ARRESTING

MALICIOUS COMMUNICATION OF COLLUDING APPS IN ANDROID

A Thesis

by

SRINATH NADIMPALLI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Guofei Gu
Committee Members, Ricardo Bettati

A. L. Narasimha Reddy

Head of Department, Dilma Da Silva

May 2015

Major Subject: Computer Science

Copyright 2015 Srinath Nadimpalli

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/79651112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Since its first release, Android has been increasingly adopted by people and com-

panies worldwide. It is currently estimated that around 1.1 billion Android devices

are in use. Even though Android was built with Security principles and comes with

a sound security model, it is a favorite target for malware authors. McAfee observed

a 76% year on year growth in Android malware during the year 2014 alone. Thus

malware is a predominant threat in Android ecosystem. A common attack vector for

Android malware is the use of colluding apps. Colluding apps involve two or more

applications and operate in two phases. In Phase 1, one application steals private

sensitive data of the user In Phase 2, the same application sends the data to another

application via covert communication channels. There are several covert channels

in Android frameworks. Until now, several solutions in the literature have focused

on preventing the extraction of sensitive data from the phone. We, to the best of

our knowledge, are the first to stop the flow of sensitive info via the covert channels.

We propose, Universal Skeptic Binder-Droid, an enhanced Binder module which en-

forces policies regarding the use of communication channels and prevents apps from

colluding. With our proposed system, we have the added advantage of dynamically

configuring policies at run time. Our initial implementation and results on our test

bed reflect on the effectiveness and the ease of use of such a system.

ii

DEDICATION

Dedicated to my loving and caring mother, father and sister...

No words can express my gratitude for your never ending love, support, kindness and

encouragement.

iii

ACKNOWLEDGEMENTS

During my Master’s thesis, I have been very lucky in receiving a lot of feedback,

input and encouragement from a lot of people. This work would not have been

possible had it not been for all of them.

Foremost, I would like to thank my advisor, Dr. Guofei Gu, for his consistent

support and guidance. Dr. Gu guided me towards the best direction, challenged me

in my thinking process, molded and honed my reasoning capabilities. I am forever

indebted to him for improving my reasoning skills and strengthening my ability

to objectively analyze concepts. I thank him profusely for making it increasingly

challenging to defend my ideas day after day, week after week. To say that getting

his approval for an idea is the biggest validation we seek is a gross understatement.

I hope I can influence people in the future as much as he has influenced me.

Secondly, I would like to thank my committee members, Dr. Ricardo Bettati and

Dr. A. L. Narasimha Reddy for their interest in my work. I also thank them for

their insightful comments that has significantly improved the quality of my work.

I have been very fortunate to be a part of the talented SUCCESS lab group. I

thank Guangliang Yang, Kevin Hong, Jialong Zhang, Haopei Wang, Lei Xu, Robert

Baykov, Abner Mendoza, Xu Yan, Visvanathan Thothathri and David Cox for their

valuable company. I thank Guangliang Yang for his assistance on my thesis and

I thank Zhaoyan Xu and several of my lab mates for the feedback they provided

throughout my Masters. Special thanks to Robert Baykov and Abner Mendoza, the

lab-mates I share my workspace with, for all the small talk, moments of laughter,

hope, happiness and for being my reality check with their extremely honest feedback.

It would be a great miss on my part if I do not thank the amazing friends at

iv

the Indian Graduate Students Association (IGSA). I’ve had the opportunity to meet

several amazing people during my term there and I am proud to be a part of the

premier organization serving Indian Aggies at Texas A&M.

Last but not the least, I thank my beloved parents and my sister for all their

support and encouragement. I owe them my life. Its not possible to describe their

unflinching support and encouragement for me and my dreams. I would not have

become what I am today had it not been for them.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES . x

1. INTRODUCTION . 1

2. BACKGROUND . 5

2.1 Android Ecosystem - A Primer . 5
2.1.1 Android Marketplaces . 5
2.1.2 Hardware Vendors . 6
2.1.3 Telecommunication Networks 6
2.1.4 Android Architecture . 6

2.2 Android Security Model . 11
2.2.1 Separation Of Concerns . 11
2.2.2 Android File-System Isolation 12
2.2.3 Android Permissions . 13

2.3 Covert Channels . 14

3. SURVEY . 16

3.1 Overview Of Security Challenges - A Classification 16
3.1.1 App Marketplaces . 16
3.1.2 Hardware Vendors . 19
3.1.3 Linux Kernel, Libraries And Framework Layer 21
3.1.4 Android Apps . 24
3.1.5 Defense In Depth . 26

3.2 Android Apps - Security Challenges And Their Solutions 27
3.2.1 Risk Due To Incorrectly Used API Issues And Its Solutions . . 27

vi

3.2.2 Risks Due To Malicious Behavior Of Apps And Their Solutions 32
3.3 Kernel, Libraries And Framework Layers - Security Challenges And

Their Solutions . 41
3.3.1 Kernel - Security Issues Due To Implementation Flaws And

Their Solutions . 41
3.3.2 Libraries And Framework Layer - Security Issues Due To Im-

plementation Flaws And Their Solutions 45
3.3.3 Kernel, Libraries And Frameworks Layers - Security Issues Due

To Design Flaws And Their Solutions 50
3.3.4 DAC Design Limitation - New Security Architectures 60

4. SYSTEM DESIGN . 64

4.1 Threat Model And Trust Model . 64
4.1.1 Threat Model . 64
4.1.2 Trust Model . 64

4.2 Motivation . 65
4.3 Overview . 66

4.3.1 Tracking Use Of Covert Channels 66
4.3.2 USB-Droid Modules . 67

4.4 USB-Droid Components - Detailed Description 69
4.4.1 PolicyManager . 69
4.4.2 PolicyInstaller . 70
4.4.3 PolicyDB . 70
4.4.4 PolicyServer . 70
4.4.5 Modifications To Service Manager 70

4.5 Challenges To Address . 71
4.5.1 USB-Droid Policy Syntax And Format 71
4.5.2 USB-Droid Policy Internal Representation 73

5. SYSTEM IMPLEMENTATION . 75

5.1 Android AOSP Branch . 75
5.2 USB-Droid Components’ Implementation 75

5.2.1 PolicyManager . 75
5.2.2 PolicyInstaller . 76
5.2.3 PolicyDB . 77
5.2.4 PolicyServer . 77

5.3 USB-Droid Use-Cases . 78
5.3.1 Policy Installation . 78
5.3.2 Policy Update . 78
5.3.3 Handling Transactions . 79

vii

6. SYSTEM EVALUATION . 80

6.1 Overhead Due To Policy Enforcement 80
6.2 Boot Time Impact . 81
6.3 Benchmarks . 82
6.4 Evaluation With Real World Apps And Malware 83

6.4.1 Negative Testing . 83
6.4.2 Positive Testing . 84

6.5 Benefits Observed . 87

7. DISCUSSION AND FUTURE WORK . 88

7.1 Discussion . 88
7.2 Future Work . 89

8. CONCLUSION . 90

REFERENCES . 92

viii

LIST OF FIGURES

FIGURE Page

2.1 Android System Architecture showing the kernel layer, runtime and
libraries layer, application framework layer and the applications layer 7

2.2 Android App Life-Cycle showing different states an app may be during
its lifetime . 8

3.1 Overview of Android Survey Taxonomy showing components of An-
droid ecosystem. Components include Google’s AOSP, hardware ven-
dors, telecommunication (carrier) networks, the Android Phone (refer
Fig. 3.2 for more details), app developers (malicious and benign) and
several App Markets (malicious and benign). A phone is complete us-
ing AOSP source code from Google, hardware from hardware vendors
and telecommunication infrastructure from carrier networks. Users
may download additional software from App Markets. App develop-
ers may release their apps to several marketplaces. 17

3.2 Security issues in Android phone - Overview. Security issues include
but not limited to abuse of hardware by malware, vulnerable libraries,
confused deputy attacks, privilege escalation attacks, data leakage at-
tacks, vulnerable apps, malware apps/libraries, co-existence of ad li-
braries and apps in the same process space. 21

3.3 Solutions to security challenges in the App layer 28

3.4 Security challenges in the Kernel layer 42

3.5 Solutions to Security challenges in the Kernel layer 63

4.1 Proposed Universal Skeptic Binder-Droid 68

ix

LIST OF TABLES

TABLE Page

2.1 Overt and Covert channels in Android 15

4.1 Table template to track app-channel usage 66

4.2 Tracking app-channel usage - A concrete example 67

6.1 Antutu Benchmarks with and without USB-Droid 83

6.2 Policy to identify communication via LOGS channel - Contact Stealer
malware communicates with Weather application to steal user con-
tacts [11]. Similar policies exist for other covert channels 85

6.3 Policy to identify zero permission app stealing user location, identity
and personal medical info . 86

x

1. INTRODUCTION

Android is a Linux based Operating System built for hand-held devices (smart-

phones, tablets) by Android Inc. before being acquired by Google in 2005. In

addition to developing the OS, Android Inc. also built handsets for their new OS [1],

[2]. In 2007, Google along with the collaboration of many other technological and

telecommunication companies formed the Open Handset Alliance (OHA). OHA’s

goal was to build the first truly open and comprehensive platform for mobile devices

[3]. The first commercial release of Android came a year later on 23rd September

2008. Along with the commercial release, Google announced the launch of Android

Market (later renamed to Google Play Store), an on-line marketplace where users

could install new applications and updates to existing applications. Thus, an en-

tire ecosystem comprising the marketplace, Android OS and hardware devices was

created.

Ever since its first release, the popularity of Android powered devices increased

rapidly. New members collaborated with the OHA consortium and contributed to

growth of the platform. Android’s user-base increased quickly over time. It is cur-

rently estimated that around 1.5 million Android devices are activated every day [4].

Gartner [5] reports that approximately 0.8 billion Android powered devices were sold

in 2013. It was also estimated that sales of Android phones will reach 1 billion in

2014 [6].

This widespread adoption made Android a very attractive market for hobbyists,

independent developers, start-up companies and well-established companies (to mon-

etize). The open nature of Android system made it very easy to launch applications

into the marketplace. It is currently estimated that over 1 million applications exist

1

in the Play Store [7] and these apps have been downloaded over 50 billion times [4].

These statistics make us infer that an average user has downloaded, installed, used

and uninstalled around 50 applications.

Many apps store personal information of the owner - information ranging from

his/her personal contacts to sensitive bank account details on the device. Given the

huge user-base, the abundance of apps available for use, and the sensitivity of data

stored by the apps, it is only natural that malware authors exploit existing security

issues in Android ecosystem for their own benefit.

Malware authors have released malware that steals private user information from

the phone or cost the users monetary losses by sending SMS to premium numbers.

In a 2013 report [8], McAfee noted that around 17000 new Android malware were

found in the second quarter of 2013. In a recent report by McAfee [9], McAfee

labs observed the year-over-year growth of 76 percentage in mobile malware. These

clearly indicate that Android devices are facing an ever increasing threat of malware.

Zhou et al. [10] have studied and characterized Android malware and the com-

monly used attack vectors. Common attack vector used is to repackage malware

with other benign apps. The repackaged app is then installed on an unsuspecting

user device via a social engineering attack or fake marketplaces. The malware in the

repackaged app infects the phone/collects sensitive private data from the phone/user.

However to prevent suspicion and/or to elongate the attack vector, the malware com-

ponent communicates with another application on the phone to transmit the sensitive

data out of the phone. This is how repackaged apps work in achieving malicious ends

on Android powered devices.

To transmit sensitive data to the recipient app, the malware component can

use both overt and covert communication channels. An overt channel is a medium

through which two entities communicate via conventional methods (such as Shared-

2

Preferences, Intents, Internal/External storage). A covert channel is a medium

through which two entities communicate via non-conventional methods [11], [12].

These channels are inherited by Android via the Linux kernel or arise due to design

flaws in the Android framework. Existing work in the literature solves the issue of

colluding apps by tracking overt channels for flow/extraction of sensitive data by

the use of program modeling, data tainting etc. There has been very little work to

address communication via covert channels.

In our work, we address the colluding apps problem by stopping them from com-

municating via covert channels. To the best of our knowledge, we are the first to

develop a comprehensive system for achieving the same. We propose Universal Skep-

tic Binder-Droid (USB-Droid) - an enhancement to the Binder module of Android

framework. USB-Droid prevents collusion in covert channels by the use of policy

engine in the Binder layer. To make it easy for system administrators to use the

system, we design an easy to learn policy language syntax to define new policies.

Our contributions can be summarized as follows:

• Bringing all covert channels under the purview of Binder infrastructure (Binder

protocol and tokens, Binder driver and Service manager)

• A novel way of preventing apps from colluding by the use of policy engine in

the Binder layer

• An easy to learn policy language to define new policies

• Reference implementation of the proposal with minimal overhead

The rest of the thesis is organized as follows - section 2 provides the required

background information for our work, followed by an extensive survey of the Android

ecosystem in section 3. We present USB-Droid’s design in section 4, implementation

3

in section 5. We evaluated our proposal in section 6, propose future work and identify

limitations in section 7 and provide concluding remarks in section 8.

4

2. BACKGROUND

2.1 Android Ecosystem - A Primer

In this section, we provide a brief introduction to components within Android

ecosystem. This will provide sufficient background information for the reader to

understand the rest of the thesis with ease.

2.1.1 Android Marketplaces

Android Marketplaces are on-line/electronic software distribution platforms where

users can download new apps and/or download updates to apps already installed on

their devices. One reason why Android ecosystem thrives so well is the abundance

of apps that are available irrespective of multiple form factors (smart-phones and

tablets). These apps are available for download from several marketplaces. Some

notable marketplaces are Google’s Play Store [13], Amazon Appstore for Android

[14], the open source F-Droid [15], Baidu’s App Store [16], Anzhi [17], Tencent’s

App Gem [18]. All marketplaces other than Google’s Play Store are called alter-

native markets in the literature. In addition to allowing users to download apps

from the official Play Store, Android also allows installation of apps from alternative

marketplaces. This is termed as side-loading.

Developers make apps available for public download via the Play Store or alter-

native marketplaces. To publish apps (in the Play Store), one pays a one-time fee to

Google. The fees was $25 at the time of this writing. One determines the app’s con-

tent rating, availability (free/paid) and provides screen-shots and/or videos for the

users to “preview” the app before installing it. After submitting the above details,

one uploads the installation file (apk format). The detailed steps of releasing an app

are captured in the launch checklist [19].

5

2.1.2 Hardware Vendors

Android Operating System is an open source project with Google releasing every

new version’s source code to the open source community via the Android Open

Source Project (AOSP) [20]. Hardware vendors customize the source code released

into the AOSP channel with their brand specific changes. It is common for hardware

vendors to provide extraneous components and/or apps that come pre-installed with

every phone they release.

Hardware vendors also assemble the necessary hardware devices such as System-

on-Chip (SoC), Graphics Processing Units (GPU), Random Access Memory (RAM)

chips, Read Only Memory (ROM), removable storage (SD-Cards), display unit (LCD

or AMOLED), batteries, cameras and several sensors.

2.1.3 Telecommunication Networks

Telecommunication networks, also known as Carrier networks, provide and sup-

port the telecommunication infrastructure to Android smart-phones. This includes

telephony facilities, messaging services (SMS and MMS) and 2G/3G/4G data trans-

fer facilities.

2.1.4 Android Architecture

The architecture of Android OS is as shown in Fig. 2.1

2.1.4.1 Linux Kernel

The lowermost layer in the system architecture is the Linux kernel. It contains

essential hardware drivers that interface with hardware devices such as camera, dis-

play, memory, Wi-Fi, speakers, microphone etc... In addition to that, the kernel

provides essential system functionality such as memory management, process man-

agement and network management. The kernel used in Android is a vanilla open

6

Figure 2.1: Android System Architecture showing the kernel layer, runtime and
libraries layer, application framework layer and the applications layer

source version which is adapted for smart-phones and other hand held devices. Some

of the significant modifications include

• wakelocks,

• anonymous shared memory (ashmem),

• low memory killer (lowmem) and

• Binder

The most significant change is the Binder Inter-Process Communication mecha-

nism. Originally derived from the OpenBinder project, Android’s Binder module is

the basis for all Inter-Process Communication in Android. A kernel driver module,

called the Binder driver, facilitates communication between two objects. The com-

munication protocol is a server-client model based on ioctl(). Each Binder object

is identified by a token, called Binder token, which allows a binder to be uniquely

identified across process boundaries. Thus Binder supports invocation of remote

7

objects. When a process A wants to communicate with another process B, it uses

the Binder for communication. The source (A) first sends the request to the Binder

kernel module with details about the destination (B). Binder now has to figure out

the identify of the destination. This is achieved by means of ServiceManager mod-

ule. The ServiceManager module maintains a table of the system’s services and their

Binder objects. Given a service name, the ServiceManager will return its Binder

object if one exists, else create a new Binder object and return its reference. Once

B’s Binder reference is retrieved by the Binder driver, then it can forward A’s request

to B. Since Android does not support any of the SysV IPC mechanisms, the Binder

is the primary IPC mechanism inside Android. Binder IPC is heavily used inside the

framework modules.

The working of the Binder module is depicted in the Figure 2.2

Figure 2.2: Android App Life-Cycle showing different states an app may be during
its lifetime

8

Contrary to desktop workstations, smart-phones and other hand held devices

have limited battery life. Hence, the kernel is modified to go to sleep as soon as

possible and as frequently as possible. However, to allow apps complete their long-

running tasks, the kernel provides wakelocks. A wakelock prevents the kernel from

sleeping until all acquired wakelocks (by apps) are released.

Anonymous Shared Memory (ashmem) facilitates sharing memory between pro-

cesses and helps reclaim memory under duress. pmem allows sharing of physical

memory between processes. The kernel employs a Paranoid Networking philosophy

where the kernel gates all network devices.

2.1.4.2 Libraries

The layer above the Android kernel (in Fig. 2.1) contains several libraries that

are imported from third party open source projects. Some of the popular libraries in-

clude Webkit (HTML rendering engine), libc (Standard C library), SSL (OpenSSL),

SQLite (SQL database engine) and media framework.

2.1.4.3 Android Runtime

Android run-time layer consists of Core libraries and the Dalvik Virtual Machine

(DVM). The core libraries are a complementary set of libraries offering the same

functionality as that of Java’s core libraries. Application code written in Java is

translated to Dalvik bytecode and stored in .dex files (Dalvik EXecutable). The

generated dex files are then executed by the DVM. DVM is comparable in theory to

Java Virtual Machine (JVM) though it differs considerably in practice from JVM.

In Android OS 4.4, Google released an alternative run-time called the Android Run-

Time (ART) [21]. ART is designed to be faster than DVM and exhibits increased

install times for apps due to Ahead of Time compilation. As of Android 5.0, ART

runtime replaces DVM completely as the default runtime [22].

9

2.1.4.4 Android Framework

Above the run-time and the libraries layer (in Fig. 2.1) is the Android framework

layer. It serves as a middle-ware between the applications layer and the kernel layer

and provides most of Android’s unique features. The libraries provided in this layer

include Activity Manager, Package Manager, Window Manager, Telephony Manager,

Content Providers, Location and Notification Manager.

2.1.4.5 Applications Layer

The top-most layer in the architecture (in Fig. 2.1) is the applications layer. All

apps are present in this layer. There are two types of applications namely stock

apps and user apps. Stock apps come pre-installed with the phone whereas user

apps are available for download from the Play Store and alternative marketplaces.

Applications can be built in Java using the SDK or in native code using the Native

Development Kit (NDK) [23]. Each app includes a special file called Android Man-

ifest. The manifest is an XML file that uniquely identifies the app by its package

name. It also declares all the components and permissions the app uses.

2.1.4.5.1 Android Apps Components

The basic building block of an Android app is a component. There are four

types of components in Android, namely Activities, Services, Broadcast Receivers

and Content Providers. An activity is the user interface shown to a user and is asso-

ciated with one functionality of the app. Services handle all background processing

for an app. Broadcast Receiver handle communication between Android OS and

applications. Content Providers facilitate sharing of data between applications.

10

2.1.4.5.2 Android Apps Execution Life-Cycle

As a user interacts with an app, each activity transitions between four states

during its life-cycle:

• Running - This is the state where an activity is running and a user is interacting

with it.

• Paused - This is the state where an activity is partially obscured by another

activity.

• Stopped - This is the state where an activity is completely obscured by another

activity. The activity is no longer running.

• Destroyed - This is the state where a previously Paused/Stopped activity is

dropped from memory. Dropping an activity from memory may happen when

there is demand to make space for new activities.

2.2 Android Security Model

In this section, we present the security model currently employed in the Android

OS. Android’s security model is inspired by Linux’s security model. We discuss

enhancements made by Android security model and present how isolation is achieved

by Android. We present how resources are protected by virtue of permissions and

identify security trade-offs made in the model.

2.2.1 Separation Of Concerns

Android was designed with security in mind and its model takes after the Linux

security model. Android uses the idea of UID to achieve isolation of apps and

strengthens it further. In Android, every app is assigned a unique UID and GID

11

during installation. The app’s resources are configured to be accessible by only the

UID-GID pair created during installation. Thus, all resources of an app are accessible

by the app alone. Owing to the above enhancement and Linux’s Separation of

Concerns, one app cannot access any other app’s data.

However, under legitimate conditions, it may be required that one app uses data

available in another app (with possibly different package names). Android OS allows

this as an exception to the aforementioned separation of concerns. An application

developer can indicate two different apps to share the same UID (SharedUID). By

virtue of separation of concerns, only these two apps can access each other’s data.

No other app can access data of either of these two apps. Thus, two or more apps can

share data between each other. However, it should be ensured that all the packages

are signed using the same digital signature.

2.2.2 Android File-System Isolation

Apps store their data under the /data/data/app package name directory - where

app package name is the full package name of the app (eg: com.android.example).

The permissions of that directory are set as follows: The owner of the directory is

set to the current UID. The group and world permissions are not set. Thus, only

apps with the same UID can access each other’s files. Only a root user (superuser)

can access all files.

The above isolation pertains only to the internal file-system storage. External

storage media such as SD-cards do not come under the purview of isolation. Thus

data written to external storage (SD Cards) lacks permission control. An application

developer can overcome this by assigning permissions to files written on external

storage. While doing so, it is recommended that he/she adhere to the Principle

of Least Privilege. The Principle of Least Privilege states that enough permissions

12

should be assigned to do what needs to be done and no more [24].

2.2.3 Android Permissions

Android apps are designed on the “consumer model” paradigm where apps are

consumers of data protected by permissions. Each app has to be granted permissions

for accessing the data/resources held by the permissions. During installation the user

is presented with a list of permissions that the app requests. He/she can grant all

permissions or deny all permissions. (all-or-none). Currently, Android does not

allow granting a subset of the requested permissions.

Allowing the user to make this decision enables him to understand what per-

missions are required by the app and evaluate the risk in granting the requested

permissions. It also assures the user that the app cannot do more than what he/she

allowed it to do during installation.

Android OS provides several permissions that are broadly classified under four

categories. The categories are arranged in a non-decreasing order of risk:

• Normal - these permissions cause no harm to data stored on the phone and

are granted to apps by default.

• Dangerous - these permissions can cause harm to data and are always shown

to the user for review.

• Signature - these permissions are granted automatically to a requesting app if

it has the same signature as that of the app which created the permission.

• SignatureorSystem - these permissions are typically available for the Android

team and device manufacturers.

It should be noted that only Normal and Dangerous permissions are available for

third party app developers. This largely reduces the attack space since the availabil-

13

ity of Signature and SignatureorSystem permissions can cause serious consequences

if they are misused.

In addition to system defined permissions, it is also possible for app developers

to define their own permissions. All permissions are to be declared in the Android-

Manifest.xml file. This file is packaged along with the app installer (apk file) and is

processed by the PackageManager during installation.

2.3 Covert Channels

A covert channel of communication is defined as the medium of communication

which has not been designed by the Android designers for communication between

two or more communicating bodies. Chandra et al [12] conduct a systematic study of

the covert communication channels. These channels have been identified by various

work [25, 26, 27, 28] and were systematized by [12]. Based on their systemization,

we note down two levels of covert channels - viz OS level and Hardware level. The

various overt and covert channels are enumerated below.

Based on our analysis and review of pertinent literature [11],[12], we observed the

following properties of colluding channels.

1. There are two communicating parties - Sender and Receiver - and a channel

2. For a covert channel to be effective, it needs a bandwidth of greater than 100

bps [29]

3. The channel supports either sending one bit at a time or multiple bytes at a

time

4. The channel is repeatedly used by the sender and receiver to transmit data.

5. When an application writes a value to the channel, it overrides the previously

written value. Only one value is valid at any point of time.

14

Table 2.1: Overt and Covert channels in Android
Channel Name Type Level Synch Remarks
Shared Pref Overt Application Async
External/Internal
storage
(files)

Overt Application Async Reading/Writing to files for
communication

Intents Overt Application Async
System Log Overt Application Sync Reading/Writing to logs for

communication
UNIX
Socket
Communi-
cation

Overt OS Sync Reading/Writing to sockets
for communication

Bluetooth/NFC Overt Application
/OS

Sync Reading/Writing via Blue-
Tooth/NFC for communica-
tion

System Set-
tings

Covert Application Sync each setting can have only
one valid value at a time.
writing a new value over-
writes the older value

Automatic
Intents

Covert Application Sync Limited number of intents ex-
ist that support broadcast op-
erations

Threads
Enumera-
tion

Covert OS Sync Uses the /proc, /sys for oper-
ation

UNIX Sock-
etDiscovery

Covert OS Sync Communication viachecking
if socket isopen/closed - Open
is bit 1, Closed is 0.

Free space in
FS

Covert OS Sync encode data as a seriesof free
space values. Fillup the disk
accordingly.

Reading
/proc, /sys

Covert OS Sync Uses the /proc, /sys for oper-
ation

Battery Covert OS Sync same as automatic intents
Phone Covert OS Sync

/Async
Use the last called number
(ASCII text) for communica-
tion. API supports only last
called number

15

3. SURVEY

3.1 Overview Of Security Challenges - A Classification

Android ecosystem has several security challenges despite being designed with

security in mind. We classify challenges based on the components they manifest

in. This helps us understand security challenges in Android ecosystem easily. An

overview of our classification is found in Fig. 3.1.

3.1.1 App Marketplaces

The major challenges that marketplaces face are summarized below:

• Efficient and automatic app vetting process (for malware and malware-like

behavior)

• Integrity of developer identity and safe delivery of content

• Fragmented and numerous marketplaces

3.1.1.1 Efficient And Automatic App Vetting Process

There were incidents where malware were distributed through Google Play Store

and other marketplaces. Malware authors are not deterred from releasing their mal-

ware through Google Play Store as the one-time cost to start publishing an app

is very low ($25) compared to the profit from their malware. Changing the fees

structure in an attempt to curb malware from being published, would deter some

legitimate app developers from using Play Store.

It can be seen that malware poses a serious threat to marketplaces. Stopping

it from spreading keeps the marketplaces clean. Cleaner marketplaces attract more

16

Figure 3.1: Overview of Android Survey Taxonomy showing components of Android
ecosystem. Components include Google’s AOSP, hardware vendors, telecommuni-
cation (carrier) networks, the Android Phone (refer Fig. 3.2 for more details), app
developers (malicious and benign) and several App Markets (malicious and benign).
A phone is complete using AOSP source code from Google, hardware from hardware
vendors and telecommunication infrastructure from carrier networks. Users may
download additional software from App Markets. App developers may release their
apps to several marketplaces.

users (as users prefer cleaner marketplaces to those infested with malware). A mar-

ketplace frequented by many users attracts more developers (to release apps). A

wide range of developers and apps enriches a marketplace. A vibrant marketplace

attracts more users and the cycle of market-users-developers repeats itself thereby

increasing the hygiene of the ecosystem.

It is evident that clean marketplaces increase the hygiene of the ecosystem. Hence,

17

all marketplaces must put in place vetting measures to address the threat of malware.

The ideal vetting process will be highly efficient and fully automatic removing all

malware apps and apps exhibiting malware like behavior from marketplaces. As

several thousand apps gets submitted per day, human involvement in the vetting

process should be as minimum as possible. Also, the process should be efficient to

scale well. To this end, Google runs a security service called Bouncer [30] which

is believed to check apps for known malware and malware like behavior. Security

measures in alternative marketplaces are largely nonexistent.

3.1.1.2 Integrity Of Developer Identity & Safe Delivery Of Content

Earlier we saw that around 1 million apps exist in the PlayStore alone. The total

number of unique apps may increase when we consider all marketplaces. This deluge

of apps can be largely attributed to the popularity of Android powered devices and

also to the ease of publishing apps to marketplaces. While Google Play Store requires

a developer to pay a one-time nominal amount to start publishing apps, alternative

marketplaces merely require the publisher to have a valid and active email address

to publish their apps. This ease of publishing comes at a serious price.

It is trivial to create an email account using fake details. Once a fake email

account impersonating a trusted developer is created, it is easy to trick people to

install apps from the fake developer. This may also lead the users to install malicious

apps (malware). Thus, marketplaces must take more efforts in establishing non-

repudiable identity of developers. Once a developer identity is established, it can be

used in enforcing security policies. In addition to establishing identity, marketplaces

must provide secure downloads to prevent Man-In-The-Middle attacks.

18

3.1.1.3 Fragmented And Numerous Marketplaces

In section 2.1, we presented a (non-exhaustive) list of several marketplaces that

developers may release apps to. There are many more marketplaces that serve specific

niches of Android ecosystem. This proliferation and specialization of app market-

places gives Android users a wide range of options to choose from. However, having

multiple marketplaces becomes a major challenge for enforcing security policies. If

there were limited marketplaces, security policies may be enforced easily (though

that might limit the choices users may have). While a consolidation of marketplaces

may seem impractical, all marketplaces must put in measures to ensure the integrity

of developer identity, safe delivery of content and removal of malware from market-

places.

There has been significant work in the literature that identifies security short-

comings of app marketplaces and proposes enhancements that can be integrated to

existing app markets.

3.1.2 Hardware Vendors

Hardware vendors manufacture devices by assembling hardware, installing OS

and other software. Security challenges in this component are listed below

• Risk due to fragmented OS distribution and slow (or no) updates

• Risk due to Vendor specific software

• Risk due to Vendor specific hardware

3.1.2.1 Risk Due To Fragmented OS Distribution And Slow (Or No) Updates

Android ecosystem suffers from a critical security challenge due to hardware ven-

dors’ phone support policy.

19

Hardware vendors discontinue support for phones after a few (about 2) years

leaving users with out-of-date and heavily vulnerable software. To understand the

gravity of this situation, we find that as of Dec 1, 2014 there are about 10% of Android

phones that still run GingerBread OS [31]. A quick search in the CVE database for

Android reveals that GingerBread suffers from several high impact security issues.

While it may be reasoned that users may install the latest OS version (if available)

from external sources, it must be taken into account that not all users will be technical

enough to install (flash) a custom ROM onto their phones. Additionally, there is

the risk of bricking the phone. Moreover rooting a device may not possible due to

legal restrictions. These technical/legal difficulties aggravate the problem - first the

software is vulnerable and second the software might not be easily replaced (requires

rooting a phone and/or flashing a custom ROM).

This is a crucial security challenge as users are forced to use the vulnerable

software until they replace their devices. We also note that this is an area that needs

a lot of work to address this seemingly trivial yet critical challenge.

3.1.2.2 Risk Due To Vendor Specific *ware

It is a common practice for hardware vendors to provide extraneous components

(such as apps, widgets, drivers) that come pre-installed with every phone they release.

As was noted earlier, hardware vendors are allowed to use permissions that fall into

the highly privileged Signature and SignatureorSystem categories. It is imperative

that components using these privileges must be free of any vulnerabilities.

Thus it can be seen that hardware vendors have a profound impact in the security

of Android ecosystem. Yet this is one of the least addressed areas in security research

of Android ecosystem.

20

Figure 3.2: Security issues in Android phone - Overview. Security issues include but
not limited to abuse of hardware by malware, vulnerable libraries, confused deputy
attacks, privilege escalation attacks, data leakage attacks, vulnerable apps, malware
apps/libraries, co-existence of ad libraries and apps in the same process space.

3.1.3 Linux Kernel, Libraries And Framework Layer

The Linux kernel serves as an interface between the higher level framework mod-

ules/apps and the lower level hardware devices such as the display unit, camera,

audio, Wi-Fi and internal flash memory devices. The framework and libraries layer

along with the Dalvik run-time provide the greatest portion of Android’s function-

ality. Readers are referred to sections 2.1.4.1 through 2.1.4.4 for background infor-

mation on these layers.

Though the kernel, libraries and framework layers are often depicted with well

21

defined boundaries, all three layers are essentially libraries that are used by the upper

layers of Android. Considering them this way helps us bring out their similarities

and consolidate security challenges in these layers. An illustration of the security

issues in Android phones is shown in Fig. 3.2.

The security challenges in these layers are listed below:

• Implementation Flaws in the kernel, libraries and framework layers

• Design Flaws in the kernel, libraries and framework layers

– Design flaws that lead to abuse of kernel artifacts

– Design flaws that lead to abuse of hardware

– Design flaws that lead to several permission usage/leakage issues

– Design limitations due to Discretionary Access Control

3.1.3.1 Implementation Flaws In The Kernel, Libraries And Framework Layers

Security issues due to implementation flaws are primarily due to bugs in imple-

mentation. For example, incomplete validation of function parameters in a function

of futex.c allowed local users to gain root privilege or allowed them to crash the ker-

nel. This is a serious security issue that originated due to a bug in implementation.

3.1.3.2 Design Flaws In The Kernel, Libraries And Framework Layers

Some security issues arise due to flaws in designing the usage of modules on

Android. For example, a common attack vector in Android phones is the abuse of

/procfs and /sysfs. The functionality of these components is very similar to that

of Linux’s /procfs and /sysfs. While the use of /procfs and /sysfs by themselves

is not a security issue, the use of such components in the Android kernel without

22

requiring permissions is a security issue. Several work have utilized these design flaws

to extract sensitive information from apps. We present such work in section 3.3.3.1.

Common security challenges due to design flaws are

1. flaws that lead to abuse of kernel artifacts

2. flaws that lead to abuse of hardware

3. flaws that lead to abuse/bypass permission model such as over-privileged apps,

native code permission issues and permission leakage

Permissions are fundamental to app isolation in Android. Permissions are en-

forced in two layers - in framework layer and in kernel layer [32]. Kernel enforces

permission checking when the app requests network/file-system operations. The

framework layer enforces permissions that were allowed by the user during installa-

tion.

One challenge is the effectiveness of permission request screen. The effect of

app permission request screen is studied in the literature. Researchers have found

the permission warning screen to be largely ineffective as there is little context to

understand why an app requests permissions and how the permissions are used.

Researchers have also proposed new ways of making it effective. These works are

presented in section 3.3.3.3.2.

Another challenge is over-privileged apps. Over-privileging an app occurs when an

app requests for permissions beyond those that it actually requires. Over-privileged

apps are a security risk as they request more information/access than they need

(violates principle of least privilege) and also increases the attack space. Section

3.3.3.3.2 presents solutions that address the problem of over-privileged apps.

Apps may use custom/third party native code (C/C++/assembly) libraries for

high performance components. These libraries are given the same privileges as that

23

of the app using them. This is a security risk since untrusted third party code is

given the same privilege as that of trusted code. Section 3.3.3.4 presents solutions

to this challenge.

Yet another challenge is the risk of privilege escalation/leakage. Privilege es-

calation/leakage could allow a low permission app to gain permissions of a high

permission app. We present solutions that address this challenge in section 3.3.3.4.1.

Orthogonal to the above flaws, we look at a design limitation of Android’s access

control mechanism. Android OS runs on a modified Linux kernel which employs

Discretionary Access Control (DAC) as the resource access control mechanism. DAC

restricts access to objects based on identity of entities they belong to. Users can use

their discretion to share (with others) access to resources they own. Complementary

to DAC, another access control mechanism called Mandatory Access Control (MAC)

exists. MAC allows centralized policy enforcement of access control and provides

system wide guarantees for controlling access. Individual users cannot modify these

policies either intentionally or accidentally. MAC can protect resources better and

makes enforcing security policies easier than DAC. We look at solutions that advocate

the use of MAC in the kernel layer to increase system security in section 3.3.4.

3.1.4 Android Apps

Apps give the Android ecosystem its extensibility and are thus a critical part of

the ecosystem. Security issues in this layer can be broadly classified into two

• Security risks due to incorrectly used API issues (Benign apps)

– Issues with SSL APIs

– Issues with equally privileged Third Party Components

• Security risks due to malicious Behavior of apps (Malicious apps)

24

3.1.4.1 Risks Due To Incorrectly Used API Issues (Benign Apps)

Android’s libraries layer, framework layer and third party libraries provide API for

apps to use. Some of these API may be simple to use while others are complicated.

When developers use these API in their apps, they may inadvertently use them

incompletely/incorrectly. Such incomplete/incorrect usage could be susceptible to

vulnerabilities. A befitting example is the incomplete implementation of SSL in

apps due to which attackers can decrypt encrypted content on the fly.

It is common practice for a free app developer to make money from his/her app

by adding an ad library. The ad library serves ads to users and the developer receives

money whenever a user clicks on an ad. The ad library lives in the same process

space as that of the host app. Thus, the app can interfere with the ad library’s

functionality and vice-a-versa. This puts both the app and the ad library at risk.

Every developer would want his app’s data to remain secure. Similarly an ad library

provider would want to prevent bogus clicks on ads. The app and the ad library may

be benign by themselves but they need to protect themselves from being abused due

to incorrect usage of their API.

In section 3.2.1.1 we discuss these challenges and their solutions in detail.

3.1.4.2 Risks Due To Malicious Behavior Of Apps (Malicious Apps)

The bigger challenge in the app layer is the prevalence of malware. Malware are

released intentionally to exploit vulnerability in apps/OS. Malware could be released

as an app/as a library in other apps.

Android OS was designed to ensure isolation of apps. All apps request for per-

missions at install-time. Users may choose to grant/deny all permissions to proceed

with/abort installation. This policy works good for securing apps in isolation but

it does not prevent two or more seemingly innocuous apps from colluding with each

25

other to expose user’s private sensitive info. We present several solutions that address

colluding apps in section 3.2.2.

Alternatively, a malicious app may exploit a benign app to achieve a malicious

end. This is called as the confused deputy attack. The confused deputy is a benign

app (the victim app) that receives a (malicious) command from a malicious app.

It assumes the command to be legitimate and faithfully executes it thus helping a

malicious app in infecting/extracting sensitive info.

Privilege escalation occurs when a malicious app, with little or no permissions,

requests a legitimate app with desired sensitive permissions, to execute privileged

tasks on its behalf.

Repackaged apps affect developers adversely as cloned apps try to cash in on the

victim app’s popularity. Clone-ware also affects users as they may be used as vectors

for malware distribution. However, given two apps that are closely similar to each

other, it is not possible to label one app the clone of the other without sufficient

ground truth. Due to this limitation, a common solution is to identify pairs (or

groups) of apps that are clones of each other and provide these pairs (or groups) for

manual analysis and resolution.

We present several categories of solutions that address this challenge. Section

3.2.2.1 presents isolation based approaches. Section 3.2.2.2 present approaches that

trace system calls and monitor for malicious calls. Section 3.2.2.3 provides solutions

that use tainting to address the problem of malware. Finally, we present signature

based or policy based solutions in section 3.2.2.4.

3.1.5 Defense In Depth

It may be recollected that we listed malware as a security challenge in the mar-

ketplaces and also in the apps layer. Similarly, we listed confused deputy attacks as

26

a security challenge in kernel layer and the app layer. These issues are too broad to

be solved completely at any one component of the ecosystem. For example, malware

vetting processes in the marketplaces have to be very fast, efficient and fully auto-

matic. Malware removal mechanisms at the app layer may use well-defined rules and

detailed monitoring over a relatively longer duration of time. Having multiple layers

of defenses provides sufficient redundancy in addressing the ever-growing challenge

of malware.

This is a practical example of defense in depth. Each component of the ecosystem

can address a challenge as best as it can - and multiple layers come together to address

a challenge comprehensively.

3.2 Android Apps - Security Challenges And Their Solutions

It may be recollected from section 3.1.4 that the challenges in the Apps layer are:

• Risk due to incorrectly used API issues (Benign apps)

– Incomplete implementation of SSL in apps

– Incorrect use of Third Party Components

• Risk due to malicious behavior of apps (Malicious apps)

Identifying and solving security issues in applications layer (Fig. 2.1) has received

a lot of focus in the literature. A systemization of solutions to address the above

challenges is shown in Fig. 3.3.

3.2.1 Risk Due To Incorrectly Used API Issues And Its Solutions

The solutions to address the challenge of incorrectly used API may be classified

according to the problem they solve:

• Solutions to incomplete use of SSL in apps.

27

Figure 3.3: Solutions to security challenges in the App layer

• Solutions to incorrect use of third party components

3.2.1.1 Incomplete Implementation Of SSL In Apps

Security bugs in apps using SSL primarily arise due to an inadequate understand-

ing of the working of SSL. Moreover, Android expects developers to implement code

for verifying digital certificates. Not all developers are fully aware of the inner work-

ings of certificates to correctly implement the required code. This makes matters

worse when developers may not understand the consequence of the choices. This

28

inadvertently opens their application to malicious attacks.

To demonstrate the same, Sounthiraraj et al. [33] built an automated detection

mechanism called SMV-Hunter to identify man in the middle vulnerabilities (MITM)

in apps that use SSl. To identify such vulnerabilities in an app, they used a combi-

nation of static analysis and dynamic analysis. SMV-Hunter used static analysis to

build a method call graph and to identify the entry points of the app. Using a custom

UI automation tool, SMV-Hunter runs dynamic analysis to identify MITM vulnera-

bilities. To mitigate the search space explosion problem, static analysis guides their

dynamic analysis module.

Orthogonally, Fahl et al. [34], [35] conducted vulnerability analysis on SSL im-

plementations in apps. They used static and manual analysis to identify common

SSL implementation issues - such as developers

1. trusting all certificates (without verifying),

2. using self-signed testing certificates in production builds,

3. passing sensitive data in plain-text and

4. not guarding (their apps) against SSL stripping [36].

These issues can be exploited to expose encrypted data in transit. Due to the

complexity of SSL implementation, developers “get-it-to-work” code freely available

from blogs and programming assistance websites. While these codes work, they may

not always ensure that the data being sent via SSL is secure and immune from being

eavesdropped.

To address this problem, it can be observed that it would benefit developers to

merely configure SSL options rather than implementing SSL functionality. So, they

29

built a framework module that provides all required SSL functionality and over-

rides existing SSL implementations. Developers can configure the module’s settings

according to their needs but cannot disable/override the security options.

3.2.1.2 Incorrect Use Of Third Party Components

It is common knowledge that free apps embed ad libraries (third party libraries)to

drive revenue. However, these libraries run at the same privilege level as that of the

apps. Thus, both the app and ad library can be manipulated by each other.

Common attacks that are possible are

1. display forgery,

2. size manipulation,

3. input forgery,

4. click-jacking,

5. focus stealing,

6. ancestor redirecting,

7. data privacy attacks (eavesdropping attacks).

Shekhar et al. [37] proposed mitigating these attacks by splitting the ad library

and the app into separate processes with different UID (AdSplit). Since Android

implements uid based isolation (inherent to Linux), the two entities will be isolated

from each other thus preventing the above mentioned attacks. Once split, the man-

ifest file (AndroidManifest.xml) is updated to reflect the splitting and the apk file is

regenerated.

30

A major drawback with AdSplit is that the app’s signature is broken when it is

disassembled and packaged back. This can be avoided if Android provides a mecha-

nism to embed third party components into the app’s UI. Roesner et al. [38] designed

and built LayerCake. LayerCake adds a new activity called EmbeddedActivityView.

Using the EmbeddedActivityView, it is possible for developers to design user inter-

faces with components embedded in them, control access to them without worrying

about the aforementioned security issues.

It may be seen that these solutions specifically target the ad libraries and other

third party components that need to be displayed on the UI. However, several third

party components - such as native code libraries - are used by apps. These com-

ponents also run at the same privilege level as the app and are still vulnerable to

incorrect usage. Section 3.2.2.1 presents solution to this problem.

Bhoraskar proposed Brahmastra [39] to help test the third party components

inside an app. Due to the asynchronous nature of Android, it is quite possible for

the search space to explode when running dynamic analysis. To help limit the search

space, the authors performed static analysis of the app and identified execution

paths that test a third party library inside an app. Once the paths are identified,

Brahmastra rewrites the app to automatically test these execution paths. To reduce

the time taken to test, Brahmastra jump starts from a random node on the execution

path optimistically. If it fails to execute properly it picks an earlier node to start

from. Since it targets the paths to reach the third party component, it does not suffer

from the space explosion problems traditional UI testing tools face. This makes this

technique a good option to test third party components for vulnerabilities/threats.

Octeau et al. developed a tool EPICC [40] to help analysts understand the flow

of data/control across apps. The tool mapped all inter component communication by

redefine Inter-Component Communication (ICC) as an Interprocedural Distributive

31

Environment (IDE) problem. IDE has been well studied to identify data and control

flow between multiple procedures. The authors identified all entry and exit points

and matched each exit point to an entry point. However, it should be noted that

this work merely identifies inter-component communication and should be used along

with several other tools to understand malicious app behavior.

3.2.2 Risks Due To Malicious Behavior Of Apps And Their Solutions

Several solutions have been proposed to address the challenge of malicious apps.

They may be broadly classified into the following:

• Isolation based approaches

• System call/Framework API tracking approaches

• Tainting based approaches

• Signature/Policy based approaches

We describe each of the approaches in detail below.

3.2.2.1 Isolation Based Approaches

Solutions in this category employ some form of isolation to separate malicious

entities (apps/components) from benign ones. Isolation can be achieved by the use

of virtualization or by the use of process isolation. Major challenges for solutions in

this category are

1. Overhead incurred due to isolation mechanisms

2. Effectiveness of isolation

3. Selective behavior of malware (VM-aware threats)

32

Wu et. al. proposed Airbag [41], a virtualization based isolation approach to

isolate known good applications from unknown applications. To reduce the overhead

of virtualization, Airbag shares kernel space among multiple virtual instances. Each

instance has its own copy of

1. App Isolation Runtime (AIR),

2. filesystem and namespace instances,

3. services and daemons.

Airbag also provides mechanisms to multiplex accesses from native and all Airbag

instances. All trusted applications run on one instance (the native instance). Each

untrusted application runs in a separate Airbag instance. Thus the unknown app is

isolated from every other instance and thus cannot affect any benign apps/services.

However, the user needs to specify which app needs to be isolated. It should be

noted that Airbag is that the basic unit of isolation is an app. If a benign app has a

malicious native library, then we have to isolate the entire app to isolate and contain

untrusted behavior.

Sun et. al. proposed NativeGuard [42] to handle such malicious native libraries.

Native libraries are commonly used by apps for performance benefits (compared to

Java code). NativeGuard protects benign apps from malicious native libraries by

1. Isolating native libraries into a separate process - thus they cannot access app’s

resources

2. Limiting permissions - not providing the native component all permissions that

the app has

To support JNI calls in this separated environment, a stub and a set of tram-

polines are set up which help in executing JNI calls. It may be recalled that this

33

approach is similar to AdSplit [37] except that NativeGuard achieves isolation of

native libraries whereas Adsplit achieves isolation of ad libraries.

3.2.2.2 System Call/Framework API Tracking Approaches

System call tracking is a common technique used in addressing the threat of mal-

ware. The challenge in solutions is the limited resources available on mobile devices.

Smart-phones have limited computation power and are limited in the support of

computationally intensive tasks.

Portokalidis et al. [43] proposed Paranoid Android. Paranoid Android records

system calls and sends them to a remote server. The remote server executes the same

system calls on an emulator fitted with several security mechanisms. If any of the

security mechanisms flags the call as malicious, then the remote server can remotely

kill execution on the phone. Paranoid Android suffers from practical complexities

due to asynchronous calling mechanism, IPC, concurrency issues and manipulation

of stored execution flow. Moreover emulator aware malware may not exhibit their

malicious behavior when run in an emulator.

Reina et. al built a behavior analysis tool that aides in malware analysis. Cop-

perDroid [44] is a QEMU based out-of-box malware modelling tool. It tracks all

system calls by monitoring the change in processor privilege level from supervisor

(privileged) mode to normal (user) mode. For each system call, its parameters are in-

spected. Since there are innumerous system calls, the authors build a unmarshalling

oracle which can unmarshall all parameters of a system call. The tool outputs the

system calls and re-interprets the system parameters in a human-readable format for

quicker understanding of how malware behaves.

Yang et al. proposed DroidMiner [45], an in-box malware modeling tool that

tracks framework level APIs, Content Providers. DroidMiner employs machine learn-

34

ing extensively to model malware. For each app, a signature based on the framework

APIs used is generated and encoded as a bit vector. Association rule mining algo-

rithms are run on this bit vector to identify the most common API that malware

uses. When a new app is encountered, a signature is generated for it and it is checked

against the rules generated. Based on the output of the checks, DroidMiner decides

if an app is malicious or not.

Dietz et al. [46] addressed the problem of privilege escalation by tracking prove-

nance. Provenance identifies origin from which information flows. An IPC request

is added to a call stack showing all the upstream callers. If all the callers have been

granted the desired permission, the IPC request is allowed to go through. Otherwise,

it is blocked immediately.

Backes et al. [47] proposed SCIPPA on the similar lines of QUIRE [46]. The

primary difference between SCIPPA and QUIRE is that QUIRE expects the app

to generate the IPC call stack whereas in SCIPPA the system builds the call stack.

Once such a stack is constructed, the call stack is sent to the recipient process for

permission checks. The recipient process may check if all applications in the call

stack have the required permissions to execute an operation or may abort the call

if not. Both SCIPPA and QUIRE use provenance of system calls as a mechanism

to thwart privilege escalation, confused deputy attacks, intent spoofing and intent

hijacking. Though privilege escalation and confused deputy attacks are addressed,

data leaks due to colluding apps are not addressed by these mechanisms.

3.2.2.3 Tainting Based Approaches

Taint analysis tracks the flow of externally modified input and warns if the flow

reaches sensitive system functions. Tainting is a form of black-listing.

Enck et al propose a taint-based mechanism to identify and prevent sensitive

35

information from leaking from the phone. Their tool TaintDroid [48] taints and

tracks sensitive information flow between two apps or between the system-app to

automatically identify information leak. TaintDroid modifies the framework layer

and the Binder layer heavily. However, TaintDroid is limited to Java based code and

does not track sensitive information leak via the native code. Subsequently a tool

called DroidBox based on TaintDroid was developed and made available for public

use [49]. Yet another tool named Andrubis was developed on top of TaintDroid and

DroidBox. Andrubis is offered as a on-demand malware detection service [50].

While TaintDroid (and other tools built on top of it) provide tainting of Java

based code, native code tainting was largely left unexplored. Qian et. al. proposed

NDroid to taint and track flow of sensitive information across native code. NDroid

is implemented on the QEMU emulator with the following changes.

1. a native instruction tracer

2. a DVM hook engine to track JNI related functions

3. a system library hook to track system calls and

4. a tainting engine to propogate taint across the native layer.

Arzt et al. proposed FlowDroid [51] a tainting mechanism that primarily uses

static analysis for taint propogation and for identifying information leak. In sharp

contrast with TaintDroid and other tainting mechanisms which employ dynamic

analysis, FlowDroid is a static analysis mechanism. Arzt et al. propose mechanisms

to model an app’s lifecycle by statically analyzing AndroidManifest.xml and the app’s

code. Once modeled, taint tracking is made available by forward taint propogation

and an optional on-demand backward analysis to reduce the false positives that may

be incurred due to static code analysis. It is notable that FlowDroid does not suffer

36

from problems such as malware detecting the presence of detection mechanism (such

as TaintDroid) or code coverage. Yet FlowDroid would fail considerably when run

on obfuscated code or encrypted code.

3.2.2.4 Signature/Policy Based Approaches

Solutions under this category use signature/policies to detect and stop the spread

of malware. These solutions can be implemented as framework level or app level.

3.2.2.4.1 Framework Level Solutions

Enck et al. [52] proposed Kirin - a lightweight app certification procedure. Kirin

define rules that indicate suspicious behavior. Once identified, the rules are stored

on the phone. During an app’s installation, Kirin validates app’s permissions against

the rules previously stored. If a rule matches, installation of the app is blocked. If

not, installation proceeds to completion. While this model works well for known

patterns, it falls short when an unknown pattern is encountered. Hence this solution

can only be used in conjunction with other security solutions.

Chen et al. [53] designed Pegasus based on the assumption that malicious apps

use API differently than benign apps. The idea is to use the permission event graphs

(PEG) to identify context and sequence of API used. Using static analysis, PEG

captures the application artifacts (buttons etc), system artifacts (events etc) and

the interaction between the two. From the constructed PEG, event sequences are

extracted and policies are defined. A run-time monitor enforce the policies on the

device. They aim this tool to be one of the many tools that analysts use to identify

malware.

Wang et al. [54] studied the threat of unauthorized origin crossing to address the

threat of confused deputy attacks (permission leakage/permission escalation). They

37

propose MORBS to label every message with its origin. Developers specify white-

lists policies to allow certain origins and black-lists to deny certain other origins. A

reference monitor is employed to enforce the white-lists/black-lists policies during

run-time thus preventing unauthorized origin crossing attacks. The authors also

suggest building origin based protection mechanism into the Android platform.

Zhang et al [55] proposed DroidSIFT a partial classifier as against the signa-

ture based or machine learning based binary classifiers. They built a database of

dependency graphs for apps containing contextual information such as entry points

of apps, constants in the API. The weights in the graph are assigned automatically

with heavy weights assigned to sensitive API and lighter weights assigned to regu-

lar API. Based on these graphs, bit vectors are generated for benign and malware

apps. For a new app, they extracted features and check with the features generated

from the database. Based on the percentage of match, they claim that the app is

malware/benign.

3.2.2.4.2 App Level Solutions

Previously we presented that operated on the system level. We now look at

solutions that operate in the app layer. Ongtang et al. [56] identify the need to

move toward app-centric security model from the current system security model.

The authors suggest that apps should be able to specify conditions when other apps

can interact with it. They should be able to provide a white-list/blacklist of apps

they can interact with and they should also be able to exercise security requirements.

These protections should be available in addition to the system protections. The

authors design SAINT with install-time and run-time enhancements to Android.

Xu et al. [57] proposed an app level mechanism called Aurasium to mitigate

privacy losses due to colluding apps. Aurasium repackages application to harden

38

them. Since the original signature is lost, the authors propose using unique certificate

for each unique vendor. This proposal allows the use of shared userid. The authors

define policies for ensuring privacy, preventing SMS, MMS abuse and preventing

privilege escalation. The enforcement of the policies is done by the Aurasium Security

Manager which serves as a monitoring mechanism.

Contrary to above approaches, Ongtang et al. [58] addressed the issue of policing

content on the phone to solve the following Digital Rights Management (DRM) issues

- binding content to phone, allowing content to be accessible by specific apps and

facilitating additional constraints on the usage of content.

During transmission of content, the authors protect content in transmission by

using Identity Based Encryption (IBE). While the content resides on the phone, a

reference monitor is used to mediate and control the policy.

Solutions that address the issue of repackaged apps use the intuition that repack-

aged apps will be very similar except for a few changes. A challenge for these solutions

is the presence of library code.

• DroidMOSS [59],

• DNADroid [60] &

• AnDarwin [61] that address the issue of cloneware.

DroidMOSS [59] tackled the issue of repackaged apps (cloneware) by the use of

Fuzzy Hashing to identify similarities between apps.

1. Feature Extraction: This involves statically extracting DEX bytecode from the

apk file.

2. Fuzzy hashing: Once dex code is extracted, the authors use a sliding window

algorithm to break the entire source code into smaller pieces. Each of these

39

pieces is hashed individually. Finally all the intermediate hashes are hashed

again to generate the final hash for an app.

3. Similarity Matching: Once the hashes are generated, DroidMOSS uses a se-

quence matching algorithm to identify the edit distance and thus the similarity

between two applications. Repackaged applications will be very similar except

for a few changes. To prevent noise due to ad libraries, the authors employ a

white-list based approach to discard library code.

Crussell et al. [60] proposed DNADroid to identify cloned apps based on similarity

in description and metadata. Using description and metadata similarity is a fairly

reasonable assumption since cloneware seek to mislead users by posing as official apps.

Once a pair of apps is identified, they built a program dependency graph for each

app. The two graphs are compared to identify pair-wise similarity. The similarity

score for a pair of cloned apps will be significantly high. DNADroid outputs the pair

of apps along with a similarity score.

While this approach is reasonable, identifying possible pairs for an app is a time-

consuming task given the abundance of apps in the marketplaces. Crussell et al. [61]

proposed AnDarwin To address this limitation.

For each app (similar to DNADroid) program dependency graphs are built. These

graphs are used to represent the app by vector notation. Since all apps are repre-

sented by vectors, identifying similarity is reduced to the problem of identifying

similarity of vectors. Location Sensitive Hashing (LSH) is used to cluster similar

apps. Jaccard’s index is used to measure similarity. To prevent identifying these li-

braries as false positives, AnDarwin excludes such library code from similarity scores

using a threshold based approach.

40

3.3 Kernel, Libraries And Framework Layers - Security Challenges And Their

Solutions

In this section, we discuss the security challenges in the kernel and framework

layers and their solutions in the literature. The challenges in this layer can be

categorized as

• Security risks due to Implementation Flaws in the kernel, libraries and frame-

works layers

• Security risks due to Design Flaws in the kernel, libraries and frameworks layers

– Design flaws that lead to abuse of kernel artifacts

– Design flaws that lead to abuse of hardware

– Design flaws that lead to several permission usage/leakage issues

An overview of all security issues in these layers is available in Fig. 3.4

3.3.1 Kernel - Security Issues Due To Implementation Flaws And Their Solutions

The kernel is responsible for interfacing with the hardware and for providing

features such as

1. memory management,

2. process management,

3. file system management,

4. inter-process communication etc...

The kernel runs in supervisor mode which is highly privileged when compared to user

mode. Hence, any implementation flaw in this layer would prove very detrimental to

security of user data on the phone.

41

Figure 3.4: Security challenges in the Kernel layer

Several examples that show the gravity of exploitable implementation flaws are

as follows:

1. Zygote DOS attack

2. Root Access Vulnerability

42

3. Hidden Device Admin vulnerability

4. libsysutils

5. vold

6. ashmem access issue

3.3.1.1 Zygote DOS Attack

Zygote is a daemon that is launched during system boot process, enables code

sharing across VM instances and is responsible for launching apps in Android. Zygote

listens on a socket to receive requests from the SystemService component to launch

processes. The SystemService component is not owned by the root whereas Zygote

is owned by the root. To allow the non-root process to communicate with the root

process, the permissions on Zygote were set to be world readable and world writable

(666). This allowed arbitrary apps to send requests to Zygote which were executed.

When the socket is flooded with requests, it creates processes for each request and

quickly runs out of memory. This triggers safety mechanisms in Android which

reboot the device. Thus, the device can be forced into an endless reboot loop. More

details about the attack can be found at [62].

3.3.1.2 Root Access Vulnerability

[63] discusses about a root access vulnerability that can be exploited to achieve su-

pervisor privilege or crash the kernel. Using a specially crafted FUTEX REQUEUE

command, it is possible for local users to gain root privilege since the futex requeue

function of kernel/futex.c does not check that the two futex addresses provided are

different. Once supervisor access is achieved, the local user may crash the kernel or

to execute arbitrary commands under the high privilege mode.

43

3.3.1.3 Hidden Device Admin Vulnerability

[64], [65] present a malware that achieves root privilege and installs itself as a

device administrator. The malware uses several well known exploits to gain root

privilege. After installation, the malware hides itself so that the user does not see

the device admin. Once device admin privilege is gained, the malware can irreversibly

modify the contents of the phone. It is also possible for the malware to reset the

phone to factory state.

3.3.1.4 Libsysutils

Android versions 2.2.x through 2.2.2 and 2.3.x suffer from a buffer overflow in

libsysutils shared library. By sending the wrong number of arguments to Framework-

Listener::dispatchCommand method, a use-after-free error is triggered [66]. This

exploit allows remote attacks to execute arbitrary code.

3.3.1.5 Vold

The volume manager daemon (vold) allowed local users to gain root privileges

[67]. By sending a negative index to a incompletely validated signed integer check

in DirectVolume::handlePartitionAdded, a memory corruption is triggered. Once

triggered, it is possible to execute arbitrary code and gain root privilege. This was

also referred to as GingerBreak.

3.3.1.6 Ashmem Access Issue

Ashmem is a mechanism by which memory can be shared between two processes.

Due to an implementation issue, it is possible for local applications to cross the

application sandbox boundaries and gain privileges [68]. Once higher privileges are

gained, it is possible for the user to run arbitrary code on the device. This exploit

works on Android versions prior to 2.3.

44

3.3.1.7 Solutions To Security Issues In The Kernel Layer

While it is trivial to roll-out fixes to the several exploits made public, it should be

recollected that there are still 10% (as of Dec 2014) of Android devices that still run

GingerBread (Android 2.X). This puts into perspective the gravity of these issues.

Another way to address such vulnerabilities is to implement something similar

to MoCFI [69] in iOS application. Davi et al. [69] identify malicious behavior by

identifying deviation in control flow of an iOS application. For each app, the authors

statically build a control flow graph. This graph is stored in binary format and is

validated at run time by a run time component. During run time, if any deviation

is flagged to prevent the change of flow thus mitigating control flow attacks. The

authors build a framework for iOS given its susceptibility to buffer overflow and

return to libc attacks. A similar framework can be built for Android.

3.3.2 Libraries And Framework Layer - Security Issues Due To Implementation

Flaws And Their Solutions

The libraries layer provides the basic C libraries and other third party libraries

that were imported into Android OS. The framework layers provides the core of An-

droid’s functionality. These libraries provide the basic primitives that are needed to

achieve SSL communication, 3D, 2D rendering capabilitis, storing data in databases

etc... It is essential that these primitives do not have any vulnerabilities/implemen-

tation flaws. We present several implementation flaws that puts sensitive data to

risk

3.3.2.1 Security Risks Due To Implementation Flaws In The Libraries Layer

1. Webkit

2. OpenSSL implementation

45

3.3.2.2 Security Risks Due To Implementation Flaws In The Framework Layer

1. Risks due to WebView’s implementation flaws

(a) Fracking

(b) Code Injection

(c) Improper implementation of trust base

2. Risks due to default export of Content Providers

3. Risks due to PackageManager’s implementation flaws

(a) Master Key Vulnerability

(b) FakeID vulnerability

(c) Privilege Escalation during upgrade

3.3.2.2.1 Webkit

Improper validation of floating point data in WebKit library used in Android

prior to 2.2 allows remote users to run arbitrary code. It is also possible to cause

denial of service by crashing the application via a specially crafted HTML document

with a non-standard NotANumber (NaN) representation [70].

3.3.2.2.2 OpenSSL Implementation

Kim et al. [71] conducted a vulnerability analysis on the SSL implementation

(OpenSSL library) in Android. If OpenSSL’s pseudo random number generator

(PRNG) can be predicted then malware authors can exploit this to leak sensitive

data even if it is encrypted. Based on their analysis, they observed that it is possible

to predict the PRNG due to boot time entropy hole of Linux PRNG. The boot time

46

entropy hole of Linux PRNG can be fixed by saving the PRNG before shutdown and

loading it during boot time. This will thwart predicting the PRNG and keep all SSL

sessions secure.

3.3.2.2.3 Risks Due To WebView Implementation Flaws - And Their Solutions

WebView [72] allows apps to show web content and behaves like a mini-browser.

Yet, it does not provide the traditional security features as a browser does. Tra-

ditional browsers provide content isolation between applications where web-pages

cannot access applications in the system. They also provide isolation based on ori-

gin. These security features ensure that untrusted web content is isolated from the

general purpose applications. Since WebView does not offer these security features,

it is vulnerable to attacks.

Luo et al. [73] created proof-of-concept attacks on WebView to demonstrate its

vulnerability. They demonstrated two types of attacks - attacks on the app from

the web-page and attacks on the webpage from malicious apps. These attacks were

possible due to holes in sandboxing flaws in WebView.

In addition to the above attacks, Georgiev et al. [74] exposed vulnerabilities in

third-party WebView frameworks such as PhoneGap. In addition to providing a

WebView library, PhoneGap also allows access of local resources from a browser.

This access is not protected by the same origin policy. This allowed attacks where a

phone’s local resources were accessed by a malicious webpage’s code. They referred

to these attacks as Fracking. To prevent such attacks, they proposed NoFrak which

operates in a device-independent, platform-independent manner with no changes to

existing PhoneGap based apps.

While traditional based apps are susceptible to attacks, Jin et. al conducted simi-

lar analysis on HTML5 based apps [75]. HTML5 based apps interact via several data

47

channels and hence should be susceptible to more attacks than traditional HTML

web apps. They demonstrated how a person’s location can be tracked and plotted

on a map using a specially crafted 2D barcode image on a third party barcode scan-

ning app. They also build a tool NoInjection [75] that provides countermeasures (by

rewriting unsafe javascript API) to prevent such attacks.

These attacks clearly show how vulnerable WebView is against abuse of its fea-

tures. To prevent abuse of benign app from a malicious webpage and vice-a-versa,

it is essential that WebView provides browser-like security guarantees.

3.3.2.2.4 Risks Due To Default Export Of Content Providers - And Their

Solutions

Until Android 4.2, the Content Provider component of apps was exported by

default. If a component is exported, it is made available for other apps to use. This

exposed all private data of the component unless the developer manually disabled it.

Zhou et al. [76] address this problem via the ContentScope. ContentScope iden-

tifies unintentional passive content leaks and content pollution. Content pollution

occurs when an app’s private data is polluted by a malicious app. ContentScope

parses all the apps to identify the use of content providers. Once a set of candidate

apps is selected, ContentScope identifies vulnerabilities by constructing a control flow

graph. The authors check if an execution path exists to a publicly available content

provider in the graph. If such a path exists, it can be accessed by malicious apps to

leak/pollute the app’s content.

48

3.3.2.2.5 Risks Due To PackageManager Implementation Flaws - And Their

Solutions

PackageManager (PackageManagerService) is a framework module that is respon-

sible for installing apps and updating the OS. Xing et. al. conduct a vulnerability

analysis on PackageManagerService to identify possible vulnerabilities in the phone

upgrade process [77]. It should be recollected that any vulnerability in the Pack-

ageManagerService is extremely critical as it is possible to gain control of critical

system resources during the phone upgrade process. Based on their analysis, Xing

et al demonstrated that it is possible to

1. Harvest permissions

2. Grab system resources by declaring system sharedUIDs

3. Contaminate data of old apps during upgrade process

4. Grabbing system resources and denying service to processes, users.

The authors build a tool SecUP to automatically detect such vulnerabilities.

BlueBox security [78] detected a vulnerability on Android OS starting 2.1. It was

disclosed that Android does not verify the certificate chain of the app. This allows

an arbitrary app to claim the identify of another arbitrary entity. Once a fake ID is

achieved, the app is given the privileges of the victim entity.

Yet another critical vulnerability discovered in PackageManager is the Master

Key Vulnerability [79]. Due to improper checks for digital signatures of applications,

it is possible for attackers to execute arbitrary code. The vulnerability was due to

the presence of multiple entries of AndroidManifest.xml file - where one entry is

validated but the other entry is installed. This modification does not violate the

cryptographic signature of the app but allows the attacker to execute arbitrary code.

49

3.3.3 Kernel, Libraries And Frameworks Layers - Security Issues Due To Design

Flaws And Their Solutions

This section deals with security issues due to design flaws in the kernel, libraries

and framework layers. A design flaw is a shortcoming that may have been over-

looked during the design phase of a module/component/entity. Such a flaw could

be exploited for malicious purposes and can be used to extract private sensitive

information of the user. We present three major categories of design flaws

1. Design flaws that lead to abuse of kernel artifacts

2. Design flaws that lead to abuse of hardware

3. Design flaws related to permission model

3.3.3.1 Design Flaws That Lead To Abuse Of Kernel Artifacts

We present security issues due to design flaws in the kernel. These flaws lead to

the abuse of kernel artifacts such as

1. Misusing telephony

2. Weakness in ASLR

3. Dynamic code loading

4. Abuse of /sysfs and /procfs

Poeplau et al. conduct a study of dynamic code loading techniques in Android

[80]. Dynamic code loading is a common evasion technique for malware and is likely

a source of vulnerabilities which can be exploited to load malware. Since Android

provides several ways of loading code such as - DexClassLoaders, Runtime.exec, JNI

50

etc.. - the authors build a detection tool to detect dynamic code loading. To enforce

integrity checks to prevent uncontrolled code loading, the authors suggest the use of

application verifiers - which essentially ”sign” the code and use whitelists to allow

code loading. It is assumed that the application verifiers can be trusted.

A common attack vector in Android is the abuse of public resources within An-

droid. Typical examples include /procfs, /sysfs, shared memory etc...

Chen et al demonstrated a mechanism to infer the content of the active application

without peeking into the screen [25]. The authors track the usage of shared memory

via tools available publicly in the /sysfs and /procfs partitions. In an offline training

phase, training data is built with the activity transition graph and features (shared

memory, CPU). In the online detection phase, these features are tracked by publicly

available tools and are used to infer which activity is currently active. Once inferred,

it is possible to hijack activity or to peek into the camera to gather sensitive data

(check images)

Along the lines of [25], Lin et. al used the ADB proxy to “milk” Android screen

for sensitive information [26]. To detect sensitive information, the authors built a

database of CPU, memory usage, network usage, app workflow and app fingerprint

information for each application. To reduce the size of the database, the authors built

the database for only high value targets - such as banking apps. Once generated,

the authors use the collected data to figure which app is currently running. Once a

banking app is detected, ScreenMilker used ADB proxy to take screenshots of the

app. Subsequently image analysis is applied to extract sensitive data.

Zhou et al. [27] try to glean a user’s identity, location and personally identifiable

information using a Zero Permission App (ZPA) - an app that requests no dangerous

permissions at all! Instead they focus on Android’s publicly available resources to

reveal user’s identity and location.

51

Firstly, the authors fingerprinted (and recorded) network usage of a set of apps

to understand how each app works. Secondly, they use publicly available resources

to observe network usage. Based on the network data fingerprint captured in An-

droid’s public locations, the authors infer which app was used. It is surprising that

all information was inferred using only publicly available data. To mitigate these

exposures, the authors suggest reviewing all publicly available data in Android OS.

If any data has to be kept public, they suggest adding permissions to access such

data.

Schlegel et al. [28] identified a new attack vector for stealing personal information.

They demonstrated how credit card details can be extracted by using a sensory

malware called SoundComber. The attack proceeds as listed below: The malware

detects calls placed to banks and uses speech recognition signatures to identify the

exact step in the Interactive Voice Recognition process where credit card information

is input by the user. Once credit card information is extracted, it is communicated via

covert communication channels such as changing vibration/sound settings, turning

displays on/off etc to a colluding app. The colluding app uploads the details to a

remote server thus completing the attack.

To address the threat of sensory malware, the authors implement a reference

monitor which disables call recording when a predefined list of hot-lines are called.

They also propose muting tone sounds while entering numbers on a keypad and

isolating telephony via finer permissions.

3.3.3.2 Design Flaws That Lead To Abuse Of Hardware

We look at how USB channel can be used to cause irreversible damage to phones.

USB channel attacks are commonly overlooked by researchers since an attacker has

to gain physical proximity to the device. Once he gains physical proximity, there is

52

very little that can be done to protect the resource (asset).

Wang et al. [81] exposed vulnerability of smart-phones due to security weaknesses

in USB connectivity. They demonstrated three classes of attacks: attacks from

computer to phone, attacks from phone to computer and attacks from phone to

phone. They demonstrated attacks that could reimage a phone or infect the phone

with malware. Thus, it is clearly evident that leaving the USB channel unmonitored

leads to irreversible loss of data. To mitigate these attacks, the authors propose

that USB channel be monitored via firewall-like mechanism called USB firewall.

Additionally, they also propose employing authentication mechanisms to establish a

USB connection (similar to Bluetooth).

Aviv et al. [82] investigated gleaning identity, screen lock PIN and private data

of the user using accelerometer data. The authors consider two attack scenarios -

one where an attacker has a database of known usage patterns and the other where

such info is not available. They use logistic regression algorithm to classify newly

recorded pattern against patterns stored in the database. If a database of patterns

does not exist, then the recorded pattern is split into smaller components and is run

through hidden Markov models algorithms for classification. Using these algorithms,

the authors were able to predict unlock patterns and PIN on repeated attempts

with an accuracy of 73% and 43% respectively. They suggest restricting sampling

rate of accelerometer and possibly disabling access to accelerometer during sensitive

operations (such as key lock/unlock, entering PIN) to thwart these attacks.

3.3.3.3 Design Flaws Related To Permission Model

Security issues due to design flaws in the permission model arise due to

1. Permission Usage

2. Permission leakage

53

3.3.3.3.1 Permission Usage

In this section, we present common issues with permission usage.

1. Overprivileging apps

2. Native code privilege issues

3.3.3.3.2 Overprivileging Apps

Over-privileged apps pose a threat to security since malicious apps can exploit

them to leask permissions. Peng et al. [83] recognized the need to rank risks/apps in

an attempt to discourage over-privileging. This is similar to the User-Access Control

prompt in Windows Vista/7/8+ and it’s subsequent effect in making applications

use less administrative features to prevent unnecessary UAC prompts (which affect

user experience). The risk scoring function should be monotonic and should honor

the principle of least privilege. It should give high scores to malicious apps and over-

privileged apps. They use Naive Bayes machine learning method with information

priors to build the scoring function.

During install-time, users are presented with a list of permissions that need to

be granted without any contextual information as to how the permission is going to

be used by the app. Pandita et al. [84] used natural language processing to read

through the application’s description to identify sentences which describe how the

permission will be used. This will provide more context to the install permission

screen. While more data about use of permissions is certainly welcome, chances are

that this might confuse users more.

On the same lines of WhyPer, Qu et al proposed Autocog [85] which measured

app description to permission fidelity. Autocog employed natural language processing

to understand sentence structure and models the relation between descriptions and

54

permissions. The relation is built by analysis of app descriptions. While whyper

compares an app’s description with the developer documentation, Autocog compares

one app’s description with other apps’ descriptions.

Gorla et al [86] proposed CHABADA a mechanism to check app behavior against

app descriptions. They represented each app by a topic and cluster all apps (available

in the marketplaces) into clusters based on the topic. Once the clusters are generated,

they model permissions used in the cluster. They check app behaviors by recording

deviation from the model to detect unadvertised behavior.

Au et al. [87] studied the usage of various documented and undocumented per-

missions (PScout) in Android framework. Using static analysis, they mapped API

calls to permissions. They also constructed call graphs over the entire android frame-

work and conducted a backward reachability search to identify entry points. Based

on their analysis they found that there are very little redundancy in permissions.

Additionally, permissions are not heavily connected. They also found that across

successive versions, the number of permissions increases but is largely consistent

with the increase in code size.

Complementary to other approaches, VetDroid checks and restricts the usage of

the same once they are granted. Zhang et al. [88] propose VetDroid as a means to

check and restrict usage of permissions. They identify points where apps exercise API

guarded by permissions as Explicit Permission Use Points. They also identify places

where resources held by permissions are used in the app. These points are referred

to Implicit Permission Use Points. Any place where these two points intertwine is

a good location for information to leak through. They model permission usage as a

graph. Once the usage graphs are generated, a behavior profiler runs to search all the

permission use graphs. The profiler discards graphs with no dangerous permissions

and displays the rest of the graphs. VetDroid can be used by malware analysts as

55

it provides more contextual information about the use of permissions in an app. It

can also help detect subtle vulnerabilities in apps.

3.3.3.4 Native Code Privilege Issues

Android allows applications to be developed using native code. Native code has

the same privilege level as that of the apps.

Fedler et al [89] proposed ways of controlling native code execution in an attempt

to prevent native code attacks on Android. They propose ways of monitoring the

chmod syscall to prevent on the fly changes to executability of binaries, controlling

executability of binaries at system level and other path based restriction mechanisms.

Ho et al [90] proposed a mechanism to contain malware infections on an infected

device. To identify malware on the phone, PREC labeled all calls from third party

native code. After labeling, a model is generated for benign apps and these models

are stored in the cloud. On the phone, PREC dynamically identifies calls from native

code and performs anomaly detection based on the models stored in the cloud. If

a root privilege escalating malware is detected, then PREC can slow it down or

possibly kill the malware thus containing the infection.

3.3.3.4.1 Permission Leakage

1. Content leaks

2. Capability leaks

3. Component hijacking

Lu et al. [91] identify component hijacking vulnerabilities via static analysis.

The authors categorize permission leakage, intent spoofing and unauthorized data

access as component hijacking vulnerabilities. The authors define six behaviors as

56

vulnerable behaviors and use them to identify vulnerable apps. Each app is analyzed

to see if they exhibit any of the six behaviors. If they exhibit any one of them, then

the app suffers from component hijacking vulnerability.

Grace et al. [92] addressed the problem of permission leakage. They define

two types of leakage - explicit leak, implicit leak. An explicit leak occurs when an

execution paths exists from the public interface to the desired capability (permission

of interest) and if the public interface is not guarded by permissions and the execution

path does not check permissions of unauthorized app. Similarly an implicit leak is

said to have occurred when two apps sharing the same uid exist where one app’s

permissions are inherited by another app due to lack of permission checks for publicly

available interfaces. The authors propose a static analysis method to identify such

leaks. Analysis proceeded in two steps - possible path identification by constructing

a control flow graph to identify all possible paths and impossible path pruning by

eliminating paths that do not follow from previous system state. They conduct their

experiments on stock apps - it may be recollected that stock apps generally have more

categories of permissions at their disposal than third party apps. The leaks identified

in stock apps can be exploited to reset the phone to its factory state. The authors

discuss the placement of permission checks at the OS level or at the application level

each with its benefits and drawbacks.

Bugiel et al. [93] addressed the problem of privilege escalation due to confused

deputy attack and colluding apps. They propose a solution employing a system

centric, policy driven run-time monitoring mechanism at the framework layer and a

Mandatory Access Control mechanism at the kernel layer. These two layers interact

with each other to enforce policies. The authors reused their previous work, XMan-

Droid, as the framework component and added a new kernel level module. Other

components include a reference monitor and decision engine. The authors tag all

57

intents using the uid and represent IPC as a graph. If a path traverses from one

application with weak permissions to another application, it is tagged by the system

as a privilege escalation attack and is thus thwarted by the reference monitor.

Felt et al. [94] address the problem of privilege escalation in an language in-

dependent, run-time independent and easy to use way. They introduce the idea of

IPC inspection at OS level. For each IPC request, the upstream caller information

is tagged along with the request. In the OS whenever an IPC request is made, the

permissions of the requesting app is reduced to the intersection of the requesting app

permissions and that of all of its callers. Thus confused deputy attacks and colluding

app attacks can be prevented by this approach.

Marforio et al. [11] discuss the gravity of colluding applications. Android’s se-

curity policy of granting permissions at install time applies only to the app being

installed. It does not extend to two or more apps colluding with one another. In

this work, the authors identify all the overt and covert channels that are available for

malicious content authors to use. They also measure the bandwidth of each channel.

The identified overt channels are SharedPref [95], Internal storage, external storage,

logcat [96], socket communication and broadcasting intents. The covert channels

include modifying phone’s settings, thread enumerations, socket discovery, free disk

space manipulations and processor frequency modification. The authors note that

some of these channels are really hard to identify. For example, two colluding apps

communicating via subtle changes in processor frequency are hard to identify and

address. Some of the reported channels can be addressed by adding new permis-

sions, limiting the availability of public data to apps. The authors suggest that these

channels must be addressed at any one or combination of the following areas: during

system design, at the application level, at the OS level and at the hardware level.

Nadkarni et al. [97] addressed the Data Intermediary Problem, an issue where two

58

colluding apps may accidentally leak/disclose information in their work-flow. Their

work focuses only on accidental disclosure of data - not on intentional disclosure

of data. The authors achieve this by allowing a developer to restrict the actions

other apps can do in its work-flow. They provide two types of restrictions - export

restrictions and required restrictions. Export restrictions dictate which other apps

can send data off the host (phone). Required restrictions restrict the use of certain

apps in the work-flow. The authors suggest that developers/users can decide which

apps to restrict access to. Once a policy is built, the system makes sure that only

those apps are allowed to interact with the developer’s app. As the policy contains

information on who can send data off the device, it addresses accidental disclosure

of data. The only caveat being that developers/users should hash out all possible

work-flows. Additionally, situations where a desired app is not available should be

handled. Moreover, trusting an app once forever is not advisable since an app trusted

now can become untrusted at a later point of time (due to a vulnerability discovered

in the wild).

Zhang et. al. [98] proposed a mechanism to automatically patch the app’s vul-

nerabilities without the intervention of the app’s developer. They argue that security

issues may not be a high concern for all developers alike. They may prioritize releas-

ing new features in an attempt to stay/out-run their competition and may focus on

security issues once they have established a size-able user base.

Patching an app should be done without adversely affecting performance and

functionality of the app. There maybe minimal impact on performance but most

importantly the vulnerabilities should be effectively disabled. The authors proposed

AppSealer, a tool to automatically fix component hijacking vulnerabilities in apps. To

patch a vulnerable app, AppSealer requires as input an identified vulnerability (iden-

tified via CHEX [91]). AppSealer uses tainting to identify data leaks and program

59

slicing to identify program slices where the vulnerability exists. Once a vulnerable

program slice is identified, propagation of taint is tracked and patch statements are

added to prevent access to private data. In order to reduce the overhead due to

patch statements, the authors propose a series of optimization steps. Once the patch

statements are optimized, the vulnerability is patched and the app is repackaged.

Repackaging the app essentially removes the original digital signature of the app.

This may be overcome by caching a copy of the signing key in the app marketplaces

and/or returning the app to the developer for digitally signing it.

Yang et al. [99] take a different approach to the same problem. They note that

not all data transmission leaks are malicious. They define a data transmission leak

to be malicious only if the user did not intend the data to be transmitted. In their

work, AppIntent, they propose mechanisms as to how to capture user intentions

and how to identify data transmission leaks. By using static analysis, the authors

identify all places where transmission of data happens. By leveraging a event space

constrained symbolic execution, they extract all critical events and essential events.

During this dynamic analysis, they automatically trigger event input, data output,

highlight activated views of the user interface and thus identify the sensitive data

being read and transmitted. These leaks can help an malware analyst to understand

more about the offending app.

3.3.4 DAC Design Limitation - New Security Architectures

Complementary to these solutions, several researchers proposed new security ar-

chitectures in these critical layers. Some of them are

1. SEAndroid

2. FlaskDroid

60

3. ASM

3.3.4.1 SEAndroid

Android kernel currently employs Discretionary Access Control model for ensur-

ing security. Smalley et al. [100] suggested the use of Mandatory Access Control

(MAC) in Android OS. MAC provides system wide guarantees for security policies

which cannot be overridden by users intentionally or accidentally. It provides stronger

isolation and sand-boxing of apps, confines damage by background daemons, flawed

and malicious apps (even with root permissions) and supports centralized policy

configuration. Configuring policies from a centralized location/entity, brings flex-

ibility to the policies being enforced. In their prototype SEAndroid, the authors

implemented MAC protocol in Android. At the kernel level, ashmem and binder

were modified. Additionally, the file system had to be enhanced for supporting ex-

tended file attributes. At the framework level, Zygote was modified to support MAC.

Some of the patches developed by the authors are currently being integrated into the

Android kernel and user-space levels. Bugiel et al. [101] extended SEAndroid to

support access control on multiple layers, enhanced context awareness and multiple

stakeholder policies. They used SELinux’s type enforcement to support apps, intents,

content providers and multiple stakeholders. They use SEAndroid for kernel level

MAC support. They implement framework level modules to enforce all policies. Poli-

cies allow definition actions on individual actions inside a coarse permission. Thus,

fine-grained control in addition to the flexible MAC (from SEAndroid) is achieved.

3.3.4.2 FlaskDroid

Bugiel et al proposed a mandatory access model based on the Flask framework

[102]. The Flask framework allows decoupling policy from policy enforcement archi-

tecture. FlaskDroid is built on top of SEAndroid using a custom policy language

61

and userspace security servers. Using learning/semi-automatic mechanisms, policies

are generated. In addition to these policies, FlaskDroid also allows application de-

velopers to define their own policies. Policies are enforced by the userspace security

server.

3.3.4.3 Android Security Modules

Heuser et al proposed Android Security Modules [103] akin to Linux Security

Modules of Linux to promote OS security extensibility. Their mechanism allowed

reference monitors in the app layer. Reference monitors register for sensitive opera-

tions. When a sensitive operation is executed, the registered callback is invoked and

the reference monitor ensures that the sensitive operation is allowed to go through.

These reference monitors allow for complete mediation, verifiability and tamper-

proofness.

Fig. 3.5 presents an overview of available solutions to security issues in these

layers

62

Figure 3.5: Solutions to Security challenges in the Kernel layer

63

4. SYSTEM DESIGN

4.1 Threat Model And Trust Model

4.1.1 Threat Model

In this section we discuss the threat model and the trust model for USB-Droid.

Our threat model consists of two applications/components of applications - referred

to as entity ‘A’ and entity ‘B’. Entity ‘A’ is a malicious entity which seeks to extract

personal information of the user. Entity ‘B’ is a benign/malicious system/user entity

that has the capability of transmitting data to remote servers. For instance, ‘B’ could

be an app with INTERNET permission or could be the system browser provided by

Android. The phone stores personal data ‘D’ of the user. We assume that a skilled

adversary has deployed both ‘A’ and ‘B’ (in case it is a user entity) onto the phone.

We also assume that ‘A’ has successfully managed to extract the sensitive data ‘D’

from the user. Now, ‘A’ wants to send this data out of the phone via ‘B’ and can

transmit this data to ‘B’ via any of the covert channels of communication (Figure

2.1). We intend to block the communication via the channel and thus prevent the

data from leaving the phone.

4.1.2 Trust Model

For the purposes of our system design, we assume that the frameworks, libraries

and the kernel layer of the Android device are not compromised. We also assume

that the device does not have root privileges. This assumption is fully valid given

that all hardware vendors disable root privileges on devices before shipping them

out. Root privilege can only be enabled after installing the ‘su’ binary on to the

phone. We also assume that the phone has several other apps (real-world scenario)

64

that the user has installed or has several stock apps that come pre-installed with

every phone.

4.2 Motivation

We examined covert channels in the Android framework [12], [11] and noticed that

most of the channels fall under the Binder’s infrastructure. We define the Binder

infrastructure comprises the Binder kernel module (/dev/binder) along with the Ser-

viceManager component. It also comprises the tokens and the protocol that Binder

uses to communicate with processes. We also observed that the covert channels are

(mostly) synchronous in nature. A channel is synchronous if both the sender and re-

ceiver need to be running simultaneously to transfer data. Only a few channels do not

use Binder for communication - however they can also be brought under Binder’s

infrastructure for monitoring purposes. Thus, the Binder layer is an appropriate

place for solving the issue of malicious communication via covert channels.

If USB-Droid detects that a particular pair of apps use a covert channel and the

channel bandwidth usage is greater than 100 bps [29], the apps are suspicious of

colluding with each other. The value of the channel bandwidth depends on several

factors such as Noise and Delay, Coding and Symbol Distribution, Measurements

and Scenarios of Use and system configuration/initialization dependencies. Once we

identify suspicious apps, we can check the transaction against security policies to

confirm our suspicion. Once a suspicious transaction is identified, then we can notify

the user of the ongoing transaction. The user may allow/deny the transaction based

on the context where the app is running.

65

4.3 Overview

4.3.1 Tracking Use Of Covert Channels

As was noted in Section 2.3, a covert channel has limited expression - mostly one

bit at a time. Hence, colluding apps repeatedly use the channel for transmitting data

from sender to receiver. This leads us to note that our mechanism must handle the

repeated use of channel on a per-app basis.

Also, we noted that the minimum bandwidth for a covert channel to be effective

is 100 bps [29]. In case the observed bandwidth is less than 100 bps, the channel

is no longer effective. If the bandwidth is larger than 100 bps, then the channel

becomes an effective channel for communication. Hence, we can weave a threshold

based mechanism to reduce the False-Positives due to our system.

In Section 2.3, we also noted that these channels only support one value at a

time. Writing a new value overrides the old value. In order to properly identify the

pair of colluding apps that use the channel, it is necessary that the receiver reads

the exact same data as the sender. Thus, for each app using the channel, we need

to record the last value that it wrote and also track the current value in the channel

(See Figures 4.1, 4.2).

Table 4.1: Table template to track app-channel usage
AppName Last

Value
Last
Opera-
tion

Current
Value

No. of
times
channel
was
used

Latest use
timestamp

....
com.example.app1 Value 1 Write Value 1 Count 1 Timestamp 1
com.malware.app1 Value 2 Write Value 2 Count 2 Timestamp 2
com.example.app2 Value 2 Read Value 2 Count 3 Timestamp 2
....

66

Table 4.2: Tracking app-channel usage - A concrete example
AppName Last

Value
Last
Opera-
tion

Current
Value

No. of
times
channel
was
used

Latest use
timestamp

com.example.app1 1 Write 1 44 00:00:01
com.malware.app1 0 Write 0 56 00:10:11
com.example.app2 0 Read 0 55 00:10:11

app2
read the
value
writ-
ten by
malware
app1

timestamps
are also
similar

Table 4.2 shows an example where a covert channel is used for malicious commu-

nication. The covert channel being used is the enabling and disabling of vibration

settings. This is a common method where a colluding app enables the vibration

settings to indicate a ’1’ (bit 1) and disables it to indicate a ’0’ (bit 0). At 00:00:01,

com.example.app1 enables vibration settings. We create a new entry if one does not

exist - otherwise, we update the entry with the latest value written. We note if the

operation is a Read/Write and also note the current timestamp.

Later on, app com.malware.app1 writes a zero to the vibration settings. Once

that is complete, a possibly benign app com.example.app2 reads the zero from the

vibraton settings. However since the number of times this channel was used has not

crossed the threshold (55/56), we do not match policies. When the usage crosses 100

bps, then we start to match transactions with the policies in the system.

4.3.2 USB-Droid Modules

A high level working of the USB-Droid is shown in Figure 4.1.

We introduce several new modules and modify existing ones to achieve our pro-

67

Figure 4.1: Proposed Universal Skeptic Binder-Droid

posed model. A summary of these modifications are provided below.

4.3.2.1 Newly Added Components

1. PolicyManager: Interface to the PolicyDB and also matches transactions to

policies

2. PolicyInstaller: Installs new/Updates existing policies into the PolicyDB

3. PolicyDB: the SQLite DB storing all the policies

68

4. PolicyServer: Serves policies to all clients

4.3.2.2 Modified Components

1. ServiceManager: Modified to check for policies matches and consult the user

for action to be performed

A typical end-to-end IPC work-flow in USB-Droid is now as follows: Malicious

component A attempts communication to B to transfer D. The request goes through

the Binder module. Binder sends the request to ServiceManager to retrieve Bs iden-

tity. ServiceManager sends the request to PolicyManager to check for matches. Pol-

icyManager has access to the PolicyDB and checks if the transaction matches any

policies in the DB. The result from the matching process is sent to the ServiceMan-

ager. If a policy matches, we show a pop up to the user asking him to decide what

needs to be done. The user can choose to allow/deny the transaction. Depending on

user input, ServiceManager sends Bs identity or denies the transaction. Depending

on ServiceManagers output, Binder may allow the transaction (Step 9) to complete

or deny it (Step 10). Periodically, the PolicyInstaller can get updates from the server

and install them into the database (Step 12).

4.4 USB-Droid Components - Detailed Description

In this section, we detail the design for each component in our system.

4.4.1 PolicyManager

The PolicyManager module is responsible for managing the policies for USB-

Droidand matching policies to incoming transactions. Internally, the PolicyManager

also stores the bit vector representation for each app installed on the phone. Ad-

ditionally, this module serves as an interface to the database. When a transaction

using the covert channel is initiated, the PolicyManager matches the transaction to

69

any of the policies in the database. If a match is found, it informs the ServiceMan-

ager about the possible match. Once the ServiceManager receives the verdict from

PolicyManager, it will proceed to request the user for a response.

4.4.2 PolicyInstaller

The PolicyInstaller module is responsible for installing policies onto the PolicyDB.

The policies may be new policies sent to the phone during an app’s installation or

may be updates to existing policies. When the PolicyServer sends policy updates to

the client, this module receives the updates and installs them on to the database.

The incoming policies are in XML format and need to be converted to USB-Droid’s

internal representation. This details of the conversion process is detailed in 4.5.1.

4.4.3 PolicyDB

The PolicyDB is a traditional relational database powered by SQLite frame-

work. The database stores USB-Droid policies in their internal representation. The

database is also indexed to provide faster results to queries. The index chosen is the

tuple of sender details and the channel of covert communication.

4.4.4 PolicyServer

The PolicyServer module is a traditional server that serves policies over HTTPS

connection. We believe that with the adoption of this proposal in marketplaces, the

market places will provide such servers. Policies are fed into the server by means of

manual/automated static/dynamic analysis of apps.

4.4.5 Modifications To Service Manager

When an app launches a Binder request to communicate with another app, Binder

sends a request to Service Manager to resolve the identity of the recipient app. The

Service Manager stores a registry of IPC entities and their identities (like a key-value

70

map). This registry is built at boot time with every service notifying the Service

Manager of their presence and identity. When it receives a request from Binder, it

retrieves the recipient’s identity and returns it to the Binder module.

However, we hook this process to support policy enforcement before returning

the recipient’s identity to Binder. We extended Service Manager to contact the

PolicyManager with the sender, receiver and the channel details. The PolicyManager

will match the incoming transaction based on the channel being used and inform the

ServiceManager about a possible match. The ServiceManager will then launch a

user-interface to alert the user about the suspicious transaction. If the user confirms

the transaction, then ServiceManager will let it through; else it will be blocked.

4.5 Challenges To Address

Two major challenges that arise with our design are the following:

• Policy specification and method of enforcement

• Overhead due to policy enforcement

In this section, we look at how we modeled our solution to address these chal-

lenges.

4.5.1 USB-Droid Policy Syntax And Format

4.5.1.1 USB-Droid Policy Syntax

We represent our policy as a 3-tuple consisting of sender information, receiver

information and the channel ID. The senders and receivers in the policies are iden-

tified by the intents and the permissions they use. The channel ID is a unique ID

that has been created statically for each of the supported communication channels.

This method of representation is not common in Android. Android uniquely

identifies entities by their package names. However, in USB-Droid, we represent

71

them by their permissions and intents that they use. Choosing to represent the

sender and receiver by their package names can lead to flaw where the system can

be bypassed by renaming the package name. Our scheme of representation prevent

this way of bypassing USB-Droid. Also, similar software use permissions of similar

kind. For example, social networking apps use the permission to access location, user

details commonly. By representing these apps by the permissions that they use, we

can handle new similar software that are published to the market place with little

or no modification to the policies. This makes specifying policies extremely easy

without the need to have highly specific policies. However care should be taken to

not specify highly general policies as they might lead to False Positives.

4.5.1.2 USB-Droid Policy Format

To ease the adoption of our system, we decided to format our policies using the

XML language. XML is extremely easy to understand and is highly flexible for

security administrators to adapt to. A generic model of the policy is shown in listing

4.1.

1 <?xml ve r s i on=” 1 .0 ” encoding=”utf−8”?>

<p o l i c i e s count=”1”>

3 <pol icy name name=” friendlyName”>

<ent i ty A name=”entityHumanFriendlyName−1”>

5 <invokes Intent>

<intent name> intent name 1 </intent name>

7 </invokes Intent>

<hasPermiss ion>

9 <perm name> permiss ion name 1 </perm name>

</hasPermiss ion>

11 </ent ity A>

<ent i ty B name=”entityHumanFriendlyName−2”>

72

13 <invokes Intent>

<intent name> intent name 2 </intent name>

15 </invokes Intent>

<hasPermiss ion>

17 <perm name> permiss ion name 2 </perm name>

</hasPermiss ion>

19 </ent i ty B>

<channel id=”PREDEFINED CHANNEL ID” />

21 </pol icy name>

</p o l i c i e s >

Listing 4.1: XML representation of a policy

It can be immediately observed that the policy can be defined with extreme ease.

Also, it should be noted that multiple policies can be defined in the same XML

document as long as each policy is unique.

4.5.2 USB-Droid Policy Internal Representation

While specifying policies in XML format eases the specification part it makes

enforcing them harder. It is necessary to make policy matching as fast and efficient

as possible. However, it is also important to make policy specification as easy and

as flexible as possible. To address these seemingly conflicting goals, we decided to

decouple the representation formats for policy specification and policy enforcement.

To make policy enforcement efficient we represent sender and receiver using a bit

vector. We compile a list of standard Android intents and permissions and create an

ordering of these into a bit vector. For each entity represented in the XML policy,

we can now generate a bit vector. While installing the policy to the database, the

PolicyInstaller will generate this bit vector using the following approach. A bit in

the bit vector is set if the corresponding permission/entity is set in the XML policy.

73

The bit is set to zero otherwise. Thus the entities are represented internally as bit

vectors and the channel of communication is represented as an integer data type.

This representation gives us a very fast matching method as we will detail in

Chapter 5.

74

5. SYSTEM IMPLEMENTATION

In this section, we describe the implementation details of USB-Droid.

5.1 Android AOSP Branch

We implemented our system in Android 4.4.4 release 2, codenamed Android

KitKat. This system was the latest at the time we were implementing our sys-

tem. The latest version, Android Lollipop (Android 5.0) was released later on and

we have plans to port our code to Lollipop as well.

5.2 USB-Droid Components’ Implementation

5.2.1 PolicyManager

The policy manager interfaces with the database to match policies to incoming

transactions. The policies are stored in a database in the kernel layer. The policy

manager has been implemented in two layers - one in the kernel layer and the other

in the libraries layer. This was necessary since amongst the covert and overt channels

that have been identified, not all pass through the binder layer. To accommodate

all the channels, we implemented a policy manager in the libraries layer where a few

covert communication channels exist.

It may be recollected that Binder transactions are routed to Service Manager

(service manager.c) for resolving the recipient identity. For channels that use the

Binder protocol, we hook the appropriate functions in service manager.c to invoke

the policy manager. The hook will provide information regarding the sender, receiver

and the channel being used. The policy manager will receive these information and

will query the database for matching policies. The database is indexed with the

channel information, therefore we will only retrieve the appropriate subset of policies

75

to match with the current transactions. For each policy returned from the database,

we compare the sender info and the receiver info to identify matches. The sender

and receiver information are stored in a bit vector and the comparison is effected by

means of bitwise operations - bitwise AND operation. Thus policy matching can be

done in linear time of the number of policies.

For the channels that do not use the Binder module - viz File operations, Network

operations, operations on the /proc/ and /sys/ channels - we adopted a different

approach. For such channels, we implemented an interface to the policy manager in

the libraries layer. When any of these operations reaches the library layer, they are

redirected to the policy manager. The policy manager is fed with the sender, receiver

and the channel information. It is to be noted that, we bypassed the actual binder

driver and reached the policy manager. This is so as to prevent an unnecessary

binder transaction and a redirection to the service manager. Since we directly reach

the policy manager, the manager can fetch the policies from the database and check

for matches. Thus we reduce the load on the Binder module and increase efficiency

by avoiding a costly Binder transaction.

5.2.2 PolicyInstaller

The policy installer is the module directly responsible for installing the policies

into the database and also communicating with the policy server via a secure channel

of communication. The policy installer in our system communicates with the policy

server via the SSL channel (port 443). The policy served by the PolicyServer is in

XML format and needs to be converted to USB-Droid’s internal representation for

efficient operations. Firstly, the policy is validated for proper XML form and then

processed. Each policy has a list of intents and permissions. Using these lists, we

convert the policy to a bit-vector based representation where the sender and receiver

76

entity is represented by a bit vector. The channel is represented by an integer. To

aid in the conversion process, we compiled a list of intents and permissions that

are official supported by the Android device and statically assigned it to a position

in the bit vector. While processing the policy, we set the bit corresponding to the

permission being used by the app to 1 and 0 otherwise. This leads to the limitation

that we cannot support custom permissions. Given that majority of the apps use

default permissions, this is not such a big limitation. Support for custom permissions

can be extended trivially. We implemented a helper module to help with the SSL

communication with the server. The bit vector representation of entities is to make

policy matching really simple as has been explained in previous subsection.

5.2.3 PolicyDB

The PolicyDB is a SQLite database provisioned inside the kernel layer. The

SQLite amalgamation library is cross-compiled with the libc library of Android (also

existing in the Android Open Source Project sources). To ease database operations,

we wrote a wrapper to interact with the SQLite library. A private instance of the

wrapper is instantiated inside the policy manager/installers to ensure that only those

modules have access to the database. Thus, by virtue of object boundaries, this

database is protected from modification. Also, as we assumed that the device does

not have root privileges (real-world scenario), the database cannot be modified by

any malicious/benign process accidentally/intentionally. Thus the system’s integrity

is maintained.

5.2.4 PolicyServer

The PolicyServer is a central off-line module that serves policies to all USB-

Droid clients. In the Android ecosystem, these PolicyServer modules may exist in

each of the market places or there could be a centralized policy server for several

77

of existing market places. Policies defined by security administrators are served to

the clients via SSL channel (port 443). Ideally, to reduce the overhead of polling,

the server will support PUSH notification system so that clients can receive updates

directly rather than frequently poll for updates.

5.3 USB-Droid Use-Cases

5.3.1 Policy Installation

Policy installation is a process where the security administrator defined XML

policies are translated into USB-Droid’s internal representation. The installation

process is trigged by the installation of an app. We modified the PackageMan-

ager module - the module that is responsible for installing apps/system updates to

the device - to trigger the download of policies. During installation of an app, we

request the server to see if there are any updates. This request is done in an app-

agnostic manner. If there are any updates on the server, they are downloaded by the

PolicyInstaller module and converted to USB-Droid’s internal representation. By

using pre-compiled lists of standard Android intents and permissions, the policies

are mapped to bit vectors. Thus the entities are represented internally as bit vectors

and the channel of communication is represented as an integer data type.

5.3.2 Policy Update

In addition to the above installation process, the PolicyInstaller is capable of

receiving updates via a PUSH mechanism and can also poll for updates. When a

new policy has been defined on the server, the PolicyServer will notify the PolicyIn-

staller about the availability of a new policy. Alternatively, the PolicyInstaller is

also capable of frequently downloading policies from the server and installing them

on the phone. Once the policies are downloaded, they are converted to the internal

representation and stored in the database.

78

5.3.3 Handling Transactions

Malicious app communication can be effected by overt or covert channels. Also,

we have previously pointed out, some of these channels do not fall under the Binder

infrastructure. For those channels, that go through the Binder infrastructure, we

handle them by modifying the service manager.c to check for matches and inform the

Binder driver of the match verdict. Service Manager will track the usage of apps and

channels as detailed in section 4.3.1. The service manager.c module communicates

with the framework level module to show an UI to the user. The user must respond

to this by choosing to allow/deny the transaction. If the transaction does not go

through the Binder, it will be picked up by the libraries layer USB-Droid module.

That module will contact the policy manager and check for policies and the rest of

the steps mimic the kernel level check. The user is notified for confirmation and then

the transaction is allowed to go through or stop.

Due to the above explained mechanism and design, it is for the first time that we

are able to handle both native and Java based apps using the same security solution.

This is non-trivial due to differences in the work-flow of Java based and native apps.

Since we operate at the lowest layer - the Binder layer - we can effect policies on

apps that use of the mechanisms. Thus, native code based malicious software can

be handled with the same ease as that of Java based malicious software. This is the

biggest advantage of our solution - and thus the unique proposition to USB-Droid.

79

6. SYSTEM EVALUATION

For our system to be effective at preventing malicious app collusion, the over-

head due to our system should be low and the policies must be effectively flagging

malware that collude over covert channels. We’ve implemented the core modules

of USB-Droidon Android KitKat 4.4.4 revision 2. The PolicyManager and Poli-

cyInstaller modules have been implemented in C/Java and are integrated into the

ServiceManager modules. The PolicyDB is realized by means of SQLite database

built alongside with the USB-Droid modules. The PolicyInstaller can contact a re-

mote server and request for policy updates to the system. Once new policies are

downloaded, they’re stored in the PolicyDB. For each Binder transaction, the Ser-

viceManager will perform policy matching by retrieving policies form the DB. It is

utmost critical that the overhead due to USB-Droid remains as low as possible. We

ran our tests on a Nexus 5 phone and a test pool of emulators. We measured the

overhead incurred by USB-Droid and also to measure the effectiveness of enforcing

policies at the Binder layer.

6.1 Overhead Due To Policy Enforcement

Since USB-Droid modifies core component of Android’s IPC mechanism we eval-

uated the overhead added due to our system. We evaluated our system against

several Binder transaction sets. Each set consists of a varying number of Binder

transactions chosen randomly from a pool of all possible Binder transactions. The

number of transactions varied from 100 to 1000000. We ran these sets multiple times

to get an average value of overhead incurred on a per transaction basis. Based on our

evaluation, we observed an overhead of 0.01145 milliseconds per transaction. It can

be observed that our system has very little overhead and hence provided empirical

80

basis for our claim that it is a light-weight solution.

One interesting observation we made during the evaluation was that until 10000

iterations, the Dalvik Virtual Machine does not optimize the code. However, beyond

that DVM optimizes the code and converts it to native code. It is common knowledge

that native code runs significantly faster than Java code - thus our system gets faster

as the number of transactions increases.

6.2 Boot Time Impact

During our evaluation, we noticed that the system boot time is a Binder intensive

operations. During boot time, several hundred Binder transactions are initiated by

the system and it is important that USB-Droid does not delay the boot process

significantly.

Since the system has not completely booted, it would not be possible for a UI to

be displayed asking for user confirmation. Thus, during the boot process, we do not

interfere with the Binder process. Our system will still perform policy matching and

allow the transaction to proceed irrespective of the outcome of policy. This would

not allow any malware to creep in because of two reasons. One, no user entity is

allowed to run before the system is completely booted up. When the system has

completed the boot, it sends a broadcast message to all apps that they can schedule

their operations. To run malicious code before this intent is sent, the kernel has to

be modified to run malicious code or the phone has to be rooted to hook in malicious

code. Since we assumed that the phone is not rooted and that the kernel is trusted,

overriding our mechanism does not lead to malware bypassing our system.

We evaluated the system boot times of the Nexus 5 phone with and without

USB-Droid. We obtained the default Nexus 5 KitKat factory images from Google’s

website and compiled a list of apps that we pre-installed on it. Since this is the factory

81

image, there were the stock apps (Gallery, Email etc...) and Google’s app package

(comprising of GMail, YouTube, Google Play Components etc...). We repeatedly

powered down the device to a complete halt and booted the phone from this cold

start state. This was repeated for ten times. After this process, we installed our

custom ROM onto the device and installed all the Google apps that were in the

factory image. This was done so as to create a uniform install base to reliably

measure boot times. After this process, we followed the same procedure of boot time

measurement mentioned previously.

The Nexus 5 phone with Android 4.4.4-r2 OS boots in an average time of 17.6

seconds whereas the same phone with USB-Droid boots in an average time of 18.9

leading to an average delay of 1.317 seconds per boot. This translates to a 7.49%

delay in boot times.

6.3 Benchmarks

Using the Antutu performance evaluation tool, we established benchmarks for the

phone with and without USB-Droid. Antutu is a commonly used benchmarking tool

which conducts a wide range of operations that measure the phone’s performance.

Common operations include integer operations, floating point operations on CPU,

RAM speed, IO and GPU performance in rendering 2D and 3D graphics. We ran

Antutu on the default factory image for ten times and observed the average values.

After that, we installed the custom ROM with USB-Droid and observed the average

values across ten trials. Based on our evaluation, we calculated the average values

and present them in table 6.1.

Based on our evaluation, we observe that the benchmarks with our system has

decreased by about 6.6%. The benchmarks also show that our system produces a

fully usable system that has a slight performance overhead of less than 7%.

82

Category Operation
Without

USB-Droid
With

USB-Droid
UX Multitask 4575.4 4426.4
UX RunTime 2209.6 1864.4
CPU CPU integer operations 3233.2 3096.6
CPU CPU floating point oper-

ations
2927 2593.6

CPU Single Thread integer 2564.8 2391.8
CPU Single Thread floating

point
2203 2137.2

RAM RAM operations 1267.4 888.6
RAM RAM speed 1588.2 1284.4
GPU 2d Graphs 1631.4 1630.8
GPU 3d Graphs 11623.2 11237.2
IO Storage IO 1699.2 1583.8
IO Database IO 645 636

Grand Total 36167.4 33770.8

Table 6.1: Antutu Benchmarks with and without USB-Droid

6.4 Evaluation With Real World Apps And Malware

We evaluated USB-Droid and it’s effectiveness via two types of testing - negative

testing and positive testing. In negative testing, we ran our system on popular and

trusted apps. This test was aimed at identifying how our system would behave with

general day applications. This would also help us understand the False Positives

picked up by the system. In positive testing, we implemented colluding malware

from [25], [26], [27] and [28]. In addition we also implemented colluding malware

using the ideas from the above papers on other channels.

6.4.1 Negative Testing

We evaluated USB-Droid using 100 different apps. Around 70 apps came prein-

stalled in the factory image of Nexus 5 device and the rest of them (30) were installed

from Google Play Store. These apps were chosen from the top 3 in ten different cat-

83

egories. For our evaluation, we built a test bed of system apps, third party apps and

malware. All apps were sanity tested in the course of the normal day operations.

During our testing, we observed that there were no false positives on the system.

This is because benign apps generally use overt channels for communication. Covert

channels are generally used by stealthy malware. Hence, not having false positives

is expected in this scenario.

6.4.2 Positive Testing

We evaluted USB-Droid against colluding malware built based on reports from

[25], [26], [27] and [28]. We built colluding malware based on their report of how

they executed their attacks. However, not all colluding channels were covered by

the afore-referrenced work. Hence, we implemented similar malware logic on the

uncovered channels so as to ensure a complete evaluation of our system across all

covert channels. The entire list of malware that we developed are as below.

1. An application to steal user contacts by writing them into the system logs

2. An application to steal user identity and location by using the /proc, /sys

channel

3. An application to steal user location via the single/multiple changes to system

settings

4. An application to send custom sensitive information via changes to vibration

settings. Custom information was stored in an app’s private storage. Since the

malware was packaged with the app, we could access that information.

5. An application to send multiple bytes of custom sensitive information via enu-

merating threads. This is an entire malware application.

84

6. Two malware applications that communicate via discovery of UNIX sockets.

7. Two malware applications that communicate via changes in disk free space.

8. Two malware applications that communicate via periodic broadcast intents for

gradual discharge of battery.

9. Two malware applications that communicate via the last placed call.

We now discuss a few policies that we developed during our evaluation in tables

6.2, 6.3 to flag these malware.

6.4.2.1 Policy To Detect Leakage Of User Identity And Contacts Info

In this example, an app which has access to the user’s contact information colludes

with a weather app which has permission to access the Internet. The two apps collude

via the logs channel. The sender app writes sensitive contact information to the logs

and the weather app can read that info from the logs. To prevent this communication,

we defined the following policy.

Entity Permissions
android.permission.READ CONTACTS
android.permission.GET ACCOUNTS

Receiver
android.permission.INTERNET
android.permission.ACCESS NETWORK STATE
android.permission.ACCESS WIFI STATE
android.permission.READ LOGS

Channel LOGS

Table 6.2: Policy to identify communication via LOGS channel - Contact Stealer
malware communicates with Weather application to steal user contacts [11]. Similar
policies exist for other covert channels

85

6.4.2.2 Policy To Detect Leakage Of User location, Health Related Info

In this section, we discuss how we detect the theft of user location via an app

that does not use any permissions. The attack vector is as follows: The attacker app

‘A’ uses the /proc and /sys channels to gather information about app’s operations.

An example would be accessing the Internet usage history. This information is world

readable on Android phones. Once the history is accessed, the app uses predefined

fingerprints to identify which app is being used and what functionality of the app is

being exercised. Once the apps are identified, the authors use other external tools

(such as Twitter APIs) to ascertain the user identity.

We defined the following policy to detect this threat. It can be seen that the

sender does not have any permissions but we’re still able to detect the colluding

transactions. This is because we monitor the covert channels and track their usage.

When an app colludes maliciously, our system will identify the misuse and flag it. In

this case, the covert channels are used extensively and our system correctly identifies

them. In addition, we see that the receiver app has sensitive permissions that allow

it to send data to an offline server. Since our policy captures that, we’re able to

identify such misuse with ease.

Sender No permissions

Receiver
android.permission.INTERNET
android.permission.ACCESS NETWORK STATE
android.permission.ACCESS WIFI STATE

Channel PROC SYS

Table 6.3: Policy to identify zero permission app stealing user location, identity and
personal medical info

86

In our evaluation, we conducted two separate trials that show the effectiveness of

our system. In the first trial, we override our system to allow all Binder transactions

irrespective of the policy matching results. We used the phone under this setting for

about a day - sending messages via the default app, sending texts via messaging apps,

watching videos on YouTube, sending emails via the GMail, Yahoo Mail apps, check-

ing on weather via Yahoo Weather app and listening to music via music streaming

apps. Due to our light-weight solution, the evaluator would not notice any difference

with the addition of USB-Droid. In another trial, we override our system to deny

all transactions irrespective of the policy matching results. This rendered the phone

useless as the phone would get stuck during the boot process. Since there are a lot

of Binder transactions during the boot time, any failure to complete them raises an

exception and thereby hangs the boot process. Thus, it can be seen that operating

on the Binder layer is indeed very effective for providing security mechanisms.

6.5 Benefits Observed

Based on our evaluation, we observe that USB-Droid is a very light-weight yet

effective solution. Since we’re using XML language to define our policies, our policy

language is really easy-to-learn. The overhead due to policy matching is reduced

because of our internal bit vector based representation and linear time scan for policy

matching.

87

7. DISCUSSION AND FUTURE WORK

The following chapter discusses the limitations of our work and also suggests

future work that can be done to improve the system.

7.1 Discussion

In Chapter 4, we detailed the mechanism of creating a bit vector out of the

incoming XML policy. In that we mentioned that we compile a list of standard

permissions and intents supported by the system. As of the prototype, we do not

support custom permissions. It is possible for Hardware Vendors and App developers

to add custom permissions. When a new permission is added by a hardware vendor

then it will still be present in the list we compile. However if a custom permission is

added by an app, then we at the present do not different the individual permissions.

We only record the presence of custom permission in a bit. However this can be

easily modified to differentiate between custom permissions by assigning each one a

separate bit and regulate the allocation on the server side. However, the prototype

does not have this functionality. It should be noted that this is not a limitation of

the design but of the implementation.

Secondly, it is important to define policies appropriately. Defining a very coarse

policy will lead to benign transaction being flagged as malicious and thus increase

the number of False Positives. On the other hand, defining a very fine policy may

lead to malicious transaction being neglected as benign transactions and thus may

increase the number of false negatives. Since the policies are defined by the security

administrator, it is assumed that the administrator understands the consequences of

loosely defined policies.

88

7.2 Future Work

As detailed in the previous section, policies are manually defined. This gives the

security administrator sufficient flexibility in defining what policy needs to be en-

forced. However as the number of apps keep increasing, manual efforts may not scale

well. We have plans to implement a machine learning algorithm to define policies

automatically. The system will record all transactions based on static or dynamic

analysis of app code. Once the transactions are recorded, a supervised/unsupervised

algorithm can classify transactions as malicious/benign. Based on the classification,

policies can be extracted by the use of association rules. The extracted policies can

be installed on the phone (after manual verification/testing if need be). We are

presently conducting a feasibility study to achieve this.

89

8. CONCLUSION

Ever since the first release of Android, it has grown its user base rapidly. This

rapid increase has led to the development of an industry body and the emergence

of an entire ecosystem to form a comprehensive mobile platform. With the rapid

increase of user-base, both malware content authors and security researchers have

become vividly interested in this ecosystem. Reports from several anti-virus vendors

seem to conclude that Android and other mobile ecosystems are facing the threat of

malware and that year-over-year the number of discovered malware strains seems to

be increasing.

In this regard, we first conduct a systematic survey of the Android ecosystem.

We cover the entire breadth of the Android ecosystem in our survey when compared

to other surveys that are highly focused on apps or malware. In our survey, we

define the Android ecosystem components and identify the role they play in ensuring

a secure ecosystem. We identify the challenges faced by each of the entities in the

ecosystem and explain them in great detail. Subsequently, we systematize work

published to address these issues. During our analysis, we observed several areas of

Android ecosystem that have not been solved. Based on our analysis, we identified

futures venues of research.

One such area which we identified for future work is the issue of colluding apps.

Colluding apps involve two or more applications establishing covert channels of com-

munication to extract sensitive data from the phone. Some of these colluding chan-

nels exist due to design inconsistencies while re-purposing the Linux kernel for An-

droid OS. The problem of colluding apps is non-trivial since these channels operate

in different levels of the Android architecture. We address the issue of colluding

90

app by proposing a novel policy-based framework to monitor the colluding channels.

We design USB-Droid, a light-weight framework for policy enforcement that oper-

ates on Binder transactions. By adding several new modules and enhancing existing

modules, we realize the proposed system on Android 4.4.4 release 2. Our evaluation

with Nexus 5 KitKat OS shows the ease of use of the system and the overhead of

the system. With an average delay of less than 0.01 seconds, a boot-time impact of

less than 8% and overall performance impact of less than 7%, our solution is indeed

light-weight. Based on our evaluation with 125 apps, we notice that our system

has the problem of false positives. However, since manual review is mandated by

the system and since the user has the required context information, the problem of

false positives is mitigated according to the privacy concerns of the user. We are

conducting a feasibility study to automate the decision after flagging a suspicious

transaction through covert channels.

91

REFERENCES

[1] Ben Elgin. Google Buys Android for Its Mobile Arsenal [Online], August

2005. Available: http://www.businessweek.com/stories/2005-08-16/google-

buys-android-for-its-mobile-arsenal

[2] Gareth Beavis. A complete history of Android [Online], September 2008. Avail-

able: http://www.techradar.com/us/news/phone-and-communications/mobile-

phones/a-complete-history-of-android-470327

[3] Open Handset Alliance [Online] November 2007. Available:

http://www.openhandsetalliance.com/press 110507.html

[4] Dan Graziano. Daily Android activations grow to 1.5 million, Google

Play surpasses 50 billion downloads [Online] July 2013. Available:

http://bgr.com/2013/07/20/android-activations-app-downloads/

[5] Technology Research — Gartner Inc. [Online] April 2015. Available:

http://www.gartner.com/

[6] Gartner Says Annual Smartphone Sales Surpassed Sales of Feature

Phones for the First Time in 2013 [Online] February 2014. Available:

http://www.gartner.com/newsroom/id/2665715

[7] Number of available Android applications [Online] April 2015. Available:

http://www.appbrain.com/stats/number-of-android-apps

[8] McAfee labs. McAfee threats report: Second quarter

2013. Technical Report, McAfee Labs, 2013 Available:

http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2013.pdf

92

[9] McAfee Labs Report Previews 2015 Developments in Ex-

ploits and Evasion [Online] December 2014. Available:

http://www.mcafee.com/us/about/news/2014/q4/20141209-01.aspx

[10] Yajin Zhou and Xuxian Jiang. 2012. “Dissecting Android Malware: Characteri-

zation and Evolution.” In Proceedings of the 2012 IEEE Symposium on Security

and Privacy (SP 2012). IEEE Computer Society, Washington, DC, USA, 95-109.

[11] Claudio Marforio, Hubert Ritzdorf, Aurlien Francillon, and Srdjan Capkun.

2012. “Analysis of the communication between colluding applications on mod-

ern smartphones.” In Proceedings of the 28th Annual Computer Security Appli-

cations Conference (ACSAC ’12). ACM, New York, NY, USA, 51-60.

[12] Chandra, S., Lin, Z., Kundu, A., & Khan, L. (2014). Towards a Systematic

Study of the Covert Channel Attacks in Smartphones. Technical Report, Uni-

versity of Texas at Dallas.

[13] Android Apps on Google Play [Online] April 2015. Available:

https://play.google.com/store/apps?hl=en

[14] Amazon Appstore for Android [Online] April 2015. Available:

http://www.amazon.com/mobile-apps/b?node=2350149011

[15] F-Droid [Online] April 2015. Available: https://f-droid.org/

[16] Baidu App Store [Online] April 2015. Available: http://as.baidu.com/

[17] Anzhi [Online] April 2015. Available: http://www.anzhi.com/

[18] Tencent’s App Store [Online] April 2015. Available: http://android.myapp.com/

[19] Launch Checklist [Online] April 2015. Available:

http://developer.android.com/distribute/googleplay/publish/preparing.html

93

[20] Android Open Source Project [Online] April 2015. Available:

https://source.android.com/

[21] Introducing ART [Online] April 2015. Available:

http://source.android.com/devices/tech/dalvik/art.html

[22] Dalvik Technical Information [Online] April 2015. Available:

http://source.android.com/devices/tech/dalvik/index.html

[23] Android NDK [Online] April 2015: Available: http://developer.android.com/

tools/sdk/ndk/index.html

[24] Jerome H. Saltzer. 1974. Protection and the control of informa-

tion sharing in multics. Commun. ACM 17, 7 (July 1974), 388-402.

DOI=10.1145/361011.361067 http://doi.acm.org/10.1145/361011.361067

[25] Chen, Q. A., Qian, Z., & Mao, Z. M. (2014, August). Peeking into your app

without actually seeing it: Ui state inference and novel android attacks. In Proc.

23rd USENIX Security Symposium (SEC14), USENIX Association.

[26] Lin, C. C., Li, H., Zhou, X., & Wang, X. (2014, February). Screenmilker: How

to milk your android screen for secrets. In Proceedings of 21th USENIX Network

Distributed System Security Symposium, 2014.

[27] Xiaoyong Zhou, Soteris Demetriou, Dongjing He, Muhammad Naveed, Xiaorui

Pan, XiaoFeng Wang, Carl A Gunter, Klara Nahrstedt. “Identity, location, dis-

ease and more: inferring your secrets from android public resources” In Proceed-

ings of the 2013 ACM SIGSAC Conference on Computer & Communications

Security (CCS 2013)

[28] Schlegel, Roman, Kehuan Zhang, Xiao-yong Zhou, Mehool Intwala, Apu Kapa-

dia, and XiaoFeng Wang. “Soundcomber: A Stealthy and Context-Aware Sound

94

Trojan for Smartphones.” In Proceedings of the 21st Annual Network and Dis-

tributed System Security Symposium (NDSS’11) pp. 17-33. 2011.

[29] NCSC, NSA, “Covert Channel Analysis of Trusted Systems.” NSA/NCSC Rain-

bow Series publications, 1993.

[30] Android and Security [Online] February 2012. Available:

http://googlemobile.blogspot.com/2012/02/android-and-security.html

[31] Dashboards — Android [Online] April 2015. Available:

https://developer.android.com/about/dashboards/index.html

[32] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning, X.

Sean Wang, and Binyu Zang. 2013. ”Vetting undesirable behaviors in android

apps with permission use analysis,” In Proceedings of the 2013 ACM SIGSAC

Conference on Computer & Communications Security (CCS ’13). ACM, New

York, NY, USA, 611-622.

[33] David Sounthiraraj and Justin Sahs and Zhiqiang Lin and Latifur Khan and

Garrett Greenwood, “SMV-Hunter: Large Scale, Automated Detection of

SSL/TLS Man-in-the-Middle Vulnerabilities in Android Apps,” In Proceed-

ings of the 21st Annual Network and Distributed System Security Symposium

(NDSS’14). San Diego, CA, USA.

[34] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgrtner, Bernd

Freisleben, and Matthew Smith. 2012, “Why eve and mallory love Android: an

analysis of Android SSL (in)security,” In Proceedings of the 2012 ACM Confer-

ence on Computer and Communications Security (CCS ’12). ACM, New York,

NY, USA, 50-61.

95

[35] Sascha Fahl, Marian Harbach, Henning Perl, Markus Koetter, and Matthew

Smith. 2013, “Rethinking SSL development in an appified world,” In Proceedings

of the 2013 ACM SIGSAC Conference on Computer & Communications Security

(CCS ’13). ACM, New York, NY, USA, 49-60.

[36] M. Marlinspike. New tricks for defeating SSL in practice. In BlackHat DC,

February 2009.

[37] Shekhar, Shashi, Michael Dietz, and Dan S. Wallach. “AdSplit: separating

smartphone advertising from applications.” In Proceedings of the 21st USENIX

Conference on Security Symposium, pp. 28-28. USENIX Association, 2012.

[38] Franziska Roesner and Tadayoshi Kohno. 2013. “Securing embedded user inter-

faces: Android and beyond.” In Proceedings of the 22nd USENIX Conference

on Security (SEC’13). USENIX Association, Berkeley, CA, USA, 97-112.

[39] Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo Chen,

Jaeyeon Jung, Suman Nath, Rui Wang, and David Wetherall. 2014. “Brahmas-

tra: driving apps to test the security of third-party components.” In Proceedings

of the 23rd USENIX Conference on Security Symposium (SEC’14). USENIX As-

sociation, Berkeley, CA, USA, 1021-1036.

[40] Octeau, Damien, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bod-

den, Jacques Klein, and Yves Le Traon. “Effective inter-component communica-

tion mapping in android with epicc: An essential step towards holistic security

analysis.” In Proceedings of the 22nd USENIX Security Symposium. 2013.

[41] Wu, C., Zhou, Y., Patel, K., Liang, Z., & Jiang, X. (2014, February). AirBag:

Boosting Smartphone Resistance to Malware Infection. In Proceedings of the

21st Annual Network and Distributed System Security Symposium (NDSS’14).

96

[42] Sun, M., & Tan, G. (2014, July). NativeGuard: protecting android applications

from third-party native libraries. In Proceedings of the 2014 ACM Conference

on Security and Privacy in Wireless & Mobile Networks (pp. 165-176). ACM.

[43] Portokalidis, Georgios, Philip Homburg, Kostas Anagnostakis, and Herbert Bos.

“Paranoid Android: versatile protection for smartphones.” In Proceedings of the

26th Annual Computer Security Applications Conference, pp. 347-356. ACM,

2010.

[44] Reina, A., Fattori, A., & Cavallaro, L. (2013). A system call-centric analysis and

stimulation technique to automatically reconstruct android malware behaviors.

EuroSec 2014, April.

[45] Yang, C., Xu, Z., & Gu, G. (2014). Droidminer: Automated mining and charac-

terization of fine-grained malicious behaviors in android applications. ESORICS

2014.

[46] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S. Wallach.

2011. “Quire: lightweight provenance for smart phone operating systems.” In

Proceedings of the 20th USENIX Conference on Security (SEC’11).

[47] Backes, M., Bugiel, S., & Gerling, S. (2014). Scippa: system-centric IPC prove-

nance on Android. Proceedings of the 30th Annual Computer Security Applica-

tions Conference 2014.

[48] Enck, W., Gilbert, P., Chun, B. G., Cox, L. P., Jung, J., McDaniel, P., &

Sheth, A. N. (2014). TaintDroid: an information flow tracking system for real-

time privacy monitoring on smartphones. Communications of the ACM, 57(3),

99-106.

97

[49] Anthony Desnos and Patrik Lantz. DroidBox: An Android Applica-

tion Sandbox for Dynamic Analysis. [Online] August 2011. Available:

http://project.honeynet.org/gsoc2011/slot5

[50] Anubis - Malware Analysis for Unknown Binaries [Online] April 2015. Available:

https://anubis.iseclab.org/

[51] Arzt, Steven, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel.

(2014, June). Flowdroid: Precise context, flow, field, object-sensitive and

lifecycle-aware taint analysis for android apps. In Proceedings of the 35th ACM

SIGPLAN Conference on Programming Language Design and Implementation

(p. 29). ACM.

[52] William Enck, Machigar Ongtang, and Patrick McDaniel. 2009. “On lightweight

mobile phone application certification.” In Proceedings of the 16th ACM Con-

ference on Computer and Communications Security (CCS ’09).

[53] Chen, Kevin Zhijie, Noah Johnson, Vijay DSilva, Shuaifu Dai, Kyle MacNa-

mara, Tom Magrino, Edward Wu, Martin Rinard, and Dawn Song. “Contextual

Policy Enforcement in Android Applications with Permission Event Graphs.” In

Proceedings of the Network and Distributed System Security Symposium, 2013.

[54] Rui Wang, Luyi Xing, XiaoFeng Wang, and Shuo Chen. 2013. “Unauthorized

origin crossing on mobile platforms: threats and mitigation.” In Proceedings of

the 2013 ACM SIGSAC Conference on Computer & Communications Security

(CCS ’13). ACM, New York, NY, USA, 635-646.

[55] Zhang, M., Duan, Y., Yin, H.,& Zhao, Z. (2014, November). Semantics-Aware

Android Malware Classification Using Weighted Contextual API Dependency

98

Graphs. In Proceedings of the 2014 ACM SIGSAC Conference on Computer

and Communications Security (pp. 1105-1116). ACM.

[56] Machigar Ongtang, Stephen McLaughlin, William Enck, and Patrick McDaniel.

2009. “Semantically Rich Application-Centric Security in Android.” In Proceed-

ings of the 2009 Annual Computer Security Applications Conference (ACSAC

’09).

[57] Rubin Xu, Hassen Sadi, and Ross Anderson. 2012. “Aurasium: practical pol-

icy enforcement for Android applications.” In Proceedings of the 21st USENIX

Conference on Security Symposium (Security’12). USENIX Association, Berke-

ley, CA, USA, 27-27.

[58] Ongtang, Machigar, Kevin Butler, and Patrick McDaniel. “Porscha: Policy ori-

ented secure content handling in Android.” In Proceedings of the 26th Annual

Computer Security Applications Conference, pp. 221-230. ACM, 2010.

[59] Zhou, W., Zhou, Y., Jiang, X., & Ning, P. (2012, February). Detecting repack-

aged smartphone applications in third-party android marketplaces. In Proceed-

ings of the Second ACM Conference on Data and Application Security and Pri-

vacy (pp. 317-326). ACM.

[60] Crussell, Jonathan, Clint Gibler, and Hao Chen. “Attack of the clones: Detect-

ing cloned applications on android markets.” In Computer Security ESORICS

2012, pp. 37-54. Springer Berlin Heidelberg, 2012.

[61] Jonathan Crussell, Clint Gibler, Hao Chen: “AnDarwin: Scalable Detection of

Semantically Similar Android Applications.” ESORICS 2013 : 182-199

[62] Armando, A., Merlo, A., Migliardi, M., & Verderame, L. (2012). Would you

mind forking this process? A denial of service attack on Android (and some

99

countermeasures). In Information Security and Privacy Research (pp. 13-24).

Springer Berlin Heidelberg.

[63] CVE - CVE-2014-3153 [Online] April 2015. Available: http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2014-3153

[64] Cybercriminals Improve Android Malware Stealth Routines with OBAD

[Online] June 2013. Available: http://blog.trendmicro.com/trendlabs-security-

intelligence/cybercriminals-improve-android-malware-stealth-routines-with-

obad/

[65] Detecting Hidden Administrator Apps on Your Mobile Device [On-

line] June 2013. Available: http://blog.trendmicro.com/trendlabs-security-

intelligence/detecting-hidden-administrator-apps-on-your-device/

[66] CVE - CVE-2011-3874 [Online] April 2015. Available:

http://www.cvedetails.com/cve/CVE-2011-3874/

[67] CVE-CVE-2011-1823 [Online] April 2015. Available:

http://www.cvedetails.com/cve/CVE-2011-1823/

[68] CVE-CVE-2011-1149 [Online] April 2015. Available:

http://www.cvedetails.com/cve/CVE-2011-1149/

[69] Davi, Lucas, Alexandra Dmitrienko, Manuel Egele, Thomas Fischer, Thorsten

Holz, Ralf Hund, Stefan Nrnberger, and Ahmad-Reza Sadeghi. “MoCFI: A

framework to mitigate control-flow attacks on smartphones.” In Symposium on

Network and Distributed System Security (NDSS). 2012.

[70] CVE-CVE-2010-1807 [Online] April 2015. Available:

http://www.cvedetails.com/cve/CVE-2010-1807/

100

[71] Soo Hyeon Kim, Daewan Han, and Dong Hoon Lee. 2013, “Predictability of An-

droid OpenSSL’s pseudo random number generator,” In Proceedings of the 2013

ACM SIGSAC Conference on Computer & Communications Security (CCS ’13).

ACM, New York, NY, USA, 659-668.

[72] Building Web Apps in WebView [Online] April 2015. Available:

http://developer.android.com/guide/webapps/webview.html

[73] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin. 2011. “Attacks

on WebView in the Android system.” In Proceedings of the 27th Annual Com-

puter Security Applications Conference (ACSAC ’11). ACM, New York, NY,

USA, 343-352.

[74] Georgiev, Martin, Suman Jana, and Vitaly Shmatikov. “Breaking and Fixing

Origin-Based Access Control in Hybrid Web/Mobile Application Frameworks,”

Network and Distributed System Security Symposium (2014).

[75] Jin, X., Hu, X., Ying, K., Du, W., Yin, H., & Peri, G. N. (2014, November).

Code Injection Attacks on HTML5-based Mobile Apps: Characterization, De-

tection and Mitigation. In Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security (pp. 66-77). ACM.

[76] Yajin Zhou, Xuxian Jiang, “Detecting Passive Content Leaks and Pollution in

Android Applications” Proceedings of the 20th Network and Distributed System

Security Symposium (NDSS 2013) San Diego, CA, February 2013.

[77] Xing, Luyi; Pan, Xiaorui; Wang, Rui; Yuan, Kan; Wang, XiaoFeng, ”Upgrading

Your Android, Elevating My Malware: Privilege Escalation through Mobile OS

Updating,” Security and Privacy (SP), 2014 IEEE Symposium on , pp.393,408,

18-21 May 2014

101

[78] Android Fake ID Vulnerability Lets Malware Impersonate Trusted Applications,

Puts All Android Users Since January 2010 At Risk [Online] July 2014. Avail-

able: https://bluebox.com/technical/android-fake-id-vulnerability/

[79] CVE - CVE-2013-4787 [Online] April 2015. Available:

http://www.cvedetails.com/cve/CVE-2013-4787/

[80] Poeplau, S., Fratantonio, Y., Bianchi, A., Kruegel, C., & Vigna, G. (2014,

February). Execute this! analyzing unsafe and malicious dynamic code loading

in android applications. In NDSS (Vol. 14, pp. 23-26).

[81] Zhaohui Wang and Angelos Stavrou. 2010. “Exploiting smart-phone USB con-

nectivity for fun and profit.” In Proceedings of the 26th Annual Computer Secu-

rity Applications Conference (ACSAC ’10). ACM, New York, NY, USA, 357-366.

[82] Adam J. Aviv, Benjamin Sapp, Matt Blaze, and Jonathan M. Smith. 2012.

“Practicality of accelerometer side channels on smartphones.” In Proceedings

of the 28th Annual Computer Security Applications Conference (ACSAC ’12).

ACM, New York, NY, USA, 41-50.

[83] Peng, Hao, Chris Gates, Bhaskar Sarma, Ninghui Li, Yuan Qi, Rahul Potharaju,

Cristina Nita-Rotaru, and Ian Molloy. “Using probabilistic generative models for

ranking risks of android apps.” In Proceedings of the 2012 ACM Conference on

Computer and Communications Security, pp. 241-252. ACM, 2012.

[84] Pandita Rahul, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. “WHY-

PER: towards automating risk assessment of mobile applications.” In Proceed-

ings of the 22nd USENIX Security Symposium, Washington DC, USA, pp. 14-16.

2013.

102

[85] Qu, Z., Rastogi, V., Zhang, X., Chen, Y., Zhu, T., & Chen, Z. (2014, November).

AutoCog: Measuring the Description-to-permission Fidelity in Android Appli-

cations. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and

Communications Security (pp. 1354-1365). ACM.

[86] Gorla, A., Tavecchia, I., Gross, F., & Zeller, A. (2014, May). Checking app

behavior against app descriptions. In ICSE (pp. 1025-1035).

[87] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. “PScout:

analyzing the Android permission specification.” In Proceedings of the 2012

ACM Conference on Computer and Communications Security (CCS ’12). ACM,

New York, NY, USA, 217-228.

[88] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning,

X. Sean Wang and Binyu Zang. “Vetting Undesirable Behaviors in Android

Apps with Permission Use Analysis.” In Proc. of the 20th ACM Conference on

Computer and Communications Security (CCS’13), Berlin, Germany, November

2013.

[89] Fedler, R., Kulicke, M., & Schtte, J. (2013, November). Native code execu-

tion control for attack mitigation on android. In Proceedings of the Third ACM

Workshop on Security and Privacy in Smartphones & Mobile Devices (pp. 15-

20). ACM.

[90] Ho, T. H., Dean, D., Gu, X., & Enck, W. (2014, March). PREC: practical

root exploit containment for android devices. In Proceedings of the 4th ACM

Conference on Data and Application Security and Privacy (pp. 187-198). ACM.

[91] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. “CHEX:

statically vetting Android apps for component hijacking vulnerabilities.” In Pro-

103

ceedings of the 2012 ACM Conference on Computer and Communications Se-

curity (CCS ’12). ACM, New York, NY, USA, 229-240.

[92] Grace, Michael, Yajin Zhou, Zhi Wang, and Xuxian Jiang. “Systematic detec-

tion of capability leaks in stock Android smartphones.” In Proceedings of the

19th Annual Symposium on Network and Distributed System Security. 2012.

[93] Bugiel, Sven, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza

Sadeghi, and Bhargava Shastry. “Towards taming privilege-escalation attacks

on Android.” In Proceedings of the 19th Annual Symposium on Network and

Distributed System Security. 2012.

[94] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steven Hanna, and

Erika Chin. 2011. “Permission re-delegation: attacks and defenses.” In Proceed-

ings of the 20th USENIX Conference on Security (SEC’11). USENIX Associa-

tion, Berkeley, CA, USA.

[95] Shared Preferences [Online] April 2015. Available:

http://developer.android.com/reference/android/content/SharedPreferences.html

[96] logcat [Online] April 2015. Available: http://developer.android.com/tools/

help/logcat.html

[97] Adwait Nadkarni and William Enck. 2013. “Preventing accidental data disclo-

sure in modern operating systems.” In Proceedings of the 2013 ACM SIGSAC

Conference on Computer & Communications Security (CCS ’13). ACM, New

York, NY, USA, 1029-1042.

[98] Zhang, Mu, and Heng Yin. ”AppSealer: Automatic Generation of Vulnerability-

Specific Patches for Preventing Component Hijacking Attacks in Android Ap-

104

plications.” Proceedings of the 21st Network and Distributed System Security

(NDSS) Symposium. 2014.

[99] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X. Sean

Wang. 2013. “AppIntent: analyzing sensitive data transmission in android for

privacy leakage detection.” In Proceedings of the 2013 ACM SIGSAC Conference

on Computer & Communications Security (CCS ’13). ACM, New York, NY,

USA, 1043-1054.

[100] Smalley, Stephen, and Robert Craig. “Security Enhanced (SE) Android: Bring-

ing Flexible MAC to Android.” In Network & Distributed System Security Sym-

posium (NDSS ’13). 2013.

[101] Bugiel, Sven, Stephan Heuser, and Ahmad-Reza Sadeghi. “Flexible and fine-

grained mandatory access control on Android for diverse security and privacy

policies.” In Proceedings of 22nd USENIX Security Symposium (USENIX Secu-

rity’13). 2013.

[102] Bugiel, S., Heuser, S., & Sadeghi, A. R. (2013, August). Flexible and Fine-

grained Mandatory Access Control on Android for Diverse Security and Privacy

Policies. In USENIX Security (pp. 131-146).

[103] Heuser, S., Nadkarni, A., Enck, W., & Sadeghi, A. R. (2014, March). Asm: A

programmable interface for extending android security. In Proc. 23rd USENIX

Security Symposium (SEC’14).

105

