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ABSTRACT 

 

 

One of the most important parameters in the analysis of containment safety of the 

light water reactors during a loss of coolant accident (LOCA) is the prediction of the 

hydrogen concentration. To ensure proper design of the containment to mitigate the 

fire/explosive risk created by the flammable hydrogen gas, this concentration build up 

must be analyzed. Lumped parameter (LP) codes are the main tools used in containment 

thermal-hydraulic analysis. However, they are limited when it comes to scenarios which 

require higher fidelity analysis of local phenomena. While the use of computational fluid 

dynamics (CFD) allows for higher fidelity analyses, CFD requires a comprehensive 

validation study due to turbulence and condensation modeling.  

During a LOCA accident, the leaked hydrogen from the primary circuit can form 

a stable stratified layer at the top of the containment building. The formation and erosion 

of a stratified layer is a challenging numerical problem due to the interaction mechanism 

of the jet flow with the stratified layer. The OECD-NEA conducted an experiment at the 

Paul Scherrer Institute (PSI) as a part of the third International Benchmark Study (IBE-

3) to investigate the erosion of the stratified layer by a vertical air-helium jet from the 

bottom of the large vessel. During the experiment, CFD grade experimental data was 

generated that could be used for comparative studies. 

In the present study, the experiment is simulated by using the STAR-CCM+ CFD 

code with various turbulence models including Reynolds-Averaged Navier-Stokes 

(RANS) models and Large Eddy Simulation (LES). The Realizable k-ε and k-ω SST 
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showed good agreement with the experimental when predicting the erosion of the 

stratified layer and global mixing of the gas components. The LES model also showed 

good agreement for velocity and faster erosion with experimental data, while the cost of 

the LES simulation was much higher than RANS simulations. The current validation 

study contributes to the sensitivity analysis of the turbulence models for erosion 

behavior in the stratified layer. In addition to that, the results of this study will provide a 

foundation to discuss the feasibility of the CFD code usage in containment level thermal 

hydraulic analysis. 
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CHAPTER I  

INTRODUCTION  

  

The demand of electricity is increasing exponentially due to the growth of the 

global population and the development of industry. According to the World Bank, 17% 

of the world population did not have access to electricity by the end of 2011. This is in 

spite of the fact that electrical power is reaching more household an increasing growth 

rate. The key challenge is choosing a sustainable source to generate electricity. The 

sustainability factor is unrealistic for the fossil fuel based power generation due to its 

reserve limitations and environmental impacts. Global warming is one of the significant 

problems of using fossil fuels due to the release of greenhouse gases. On the other hand, 

this renewable sources cannot meet the electricity demand. The global warming 

concerns with an increasing demand of electricity creates stronger need for the energy 

policies to create more clean and reliable sources. Nuclear energy is an option that has 

lower greenhouse emission than renewable sources and can also meet the electricity 

demand. However, the public perception for nuclear energy has become a problem after 

accidents which resulted in radioactive material leakage into the environment. As a 

result, the safety features of the nuclear power reactors have been improved based on the 

lessons and findings from the accidents. The Fukushima accident in Japan demonstrates 

that further safety improvements are needed.   

The Fukushima accident was caused by an earthquake following tsunami waves. 

The reactors were in full operation before the earthquake and they were shutdown 
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automatically by safety systems during the earthquake. Moreover, the auxiliary 

generator systems were supplying power to the cooling systems to reject the radioactive 

decay heat from the reactor cores. Unfortunately, the tsunami destroyed the auxiliary 

generator systems. The resulting loss of cooling capability initiated the chain accident 

cases including partial core meltdown and hydrogen explosions. The current study aims 

to contribute to the safety analysis for hydrogen distribution in the reactor containment 

building during accidents. Specifically, the study focuses on the computational analysis 

of hydrogen distribution in large vessel by using PANDA experimental data to validate 

the CFD tool. 

The importance of hydrogen distribution is due to its explosive characteristic at 

certain concentration level. Specifically, during severe accident conditions in light water 

cooled nuclear reactor, explosive hydrogen gas may be formed due to an oxidation 

reaction of high temperature zirconium cladding and steam.  

If hydrogen gas is released into the containment building, it is then possible that a 

build up in concentration of the gas may lead to formation of explosive hydrogen and air 

mixture, which could potentially lead to a hydrogen explosion. Such a scenario may 

cause serious collateral result in loss of reactor safety systems. At normal operating 

conditions, the containment building is at atmospheric pressure, while the reactor 

pressure is between 70 and 150 times higher depending on the reactor under 

consideration. As a result of this significant pressure differential, any breach in the 

separating interface will result in a very rapid, high-energy flow of primary coolant into 
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the containment building. Consequently, significant amount of steam and hydrogen can 

spread into the containment in very short time period. 

The importance of hydrogen leakage was discovered after the Three Mile Island 

accident in 1979, which is a loss of coolant accident (LOCA). During the LOCA 

accident, the pressure of the primary coolant circuit decreased suddenly, which resulted 

in loss of cooling capability. Although, power reactors are designed to stop the fission 

chain reaction. The nuclear fuel continues to generate significant amount of heat due to 

radioactive decay. As a result of the decay heat, the temperature of the fuel and its 

cladding increased. Higher temperature and lower pressure caused boiling, which 

produced high temperature steam. The interaction of high temperature steam with fuel 

cladding material produced hydrogen gas. The resulting hydrogen leaked from the 

pressure vessel into the containment. According to the IAEA report (Henrie and Postma, 

1982), it was estimated that 45% of zirconium cladding had undergone the oxidation 

reaction (Zr + 2H2O → ZrO2 +2H2)  and generated 460 kg of hydrogen gas. This amount 

of hydrogen gas occupied the 7.9 vol. % of the containment building, and consequently 

combusted. During the accident maximum pressure was measured about 3 bar without 

any major damage of the containment structure. The Three Mile Island accident showed 

that safety systems were designed well to protect the reactor and environment against 

radiation leakage. The lessons from the accident helped to improve the safety 

characteristics of the light water reactors.  

The recent accident in Fukushima-2011 proved that hydrogen mitigation is key 

factor for nuclear reactor safety. In this scenario, the hydrogen explosion caused 
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deterioration of the containment building integrity, which is one of the crucial barriers to 

prevent radioactive material leakage to the environment. It also shows that hydrogen 

discharge systems have to be analyzed in more details for the sake of safety. To mitigate 

hydrogen concentration in the containment building, passive catalytic recombiners are 

placed at the predicted locations of the containment building. Recombiners use a catalyst 

material that helps to convert hydrogen to water by reacting with oxygen.  Although 

recombiners mitigation systems can prevent critical concentration level for ignition. The 

locations of the recombiners and the post-accident conditions must be analyzed with 

higher fidelity. Due to the fact that there may be temporary regions, which includes 

flammable gas clouds at certain post-accident conditions. Since hydrogen recombiners 

are passive devices, the gas flow inside the devices is relatively slow. The hydrogen 

concentration in the containment should be investigated extensively due to the 

combustion risk of the hydrogen in the containment building. The validated high fidelity 

data will allow better prediction of the hydrogen gas distribution, and then the predicted 

data can be used to place the recombiners more precisely to mitigate the risk of 

combustion during post-accident conditions. 

 Over the past three decades, significant knowledge has been gained with 

intensive research both on a national and international level. Several experimental 

facilities around the world have been built to investigate the hydrogen distribution such 

as PANDA, MISTRA, TOSQAN, THAI, PHEBUS, HDR, BMC, HYJET, etc.(Liang et 

al., 2014). The result of these experiments were used as a reference for numerical code 

developments and validation purposes. Generally, two numerical thermal hydraulic 
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methods are used for the analysis of hydrogen distribution in the containment vessel; the 

Lumped Parameter (LP) and the Computational Fluid Dynamics (CFD) code. LP codes 

are extensively validated, while CFD codes still need more validation. 

Lumped parameter codes are widely used in the nuclear industry for design and 

safety purposes. They are firmly validated for design level calculations. The most 

significant advantage of LP codes is the simple approach for the discretization of large 

scale geometries. The simplicity of modeling results in significantly less computation 

time with correspondingly less accurate results. The main disadvantages of them are the 

lack of ability to predict local gas mixing, the requirement of the predefined models for 

stratified flow and the lack of turbulent diffusion modeling (Liang et al., 2014).  

While the LP codes need predefined models for complex flows, the CFD codes 

solve the Navier-Stokes equations with higher resolution than lumped parameter codes. 

As a result of higher resolution, detailed mixing of the hydrogen - air mixture can be 

modeled by using multi-component approach. However the use of the CFD codes 

requires more control volumes to simulate complex flow behavior and it needs high 

computational power due to the long transient time requirement for the containment 

safety analysis.  In addition to that, the turbulence models are empirical models. As a 

result, the CFD codes need further validation before they can be used with confidence 

for nuclear safety analysis. 

Special CFD codes were developed for the containment analyses. The GOTHIC 

is one of the special purpose containment analysis code. It was developed by Electrical 

Power Research Institute (EPRI). It can be used for lumped-parameter calculations and 
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with higher resolution multi-dimensional analysis (Andreani et al., 2010). However the 

meshing approach of GOTHIC results in relatively coarser mesh than general purpose 

CFD tools. The coarse grid may not be sufficient to analyze higher details of the flow for 

a containment wide analysis. According to Andreani’s study, usage of the coarse mesh 

with GOTHIC is able to predict mixing of the gases in the containment building with 

good agreement except some regions of the domain. However, it is reported that the 

finer mesh can give better results to predict flow characteristic of the jet and its 

interaction with stratified layer. Therefore, the usage of the general purpose CFD tools 

for the containment analysis are becoming more popular due to grid generation 

flexibility. 

 In another study, the realistic containment analysis has been conducted by using 

FLUENT and CFX for the VVER-440/213 reactor (Heitsch et al., 2010) and the study 

pointed out the requirements of the further validation. While the usage of the CFD for 

containment safety analysis are becoming more popular, the requirements for validation 

are increased as well. 

The most challenging computational phenomena for the containment analysis is 

the formation of the stable stratified layer as a result of the hydrogen gas leakage from 

the primary circuit (Zr + 2H2O → ZrO2 +2H2). The density of hydrogen gas is lower 

than air. As a result of that, buoyancy force causes the motion of hydrogen gas toward 

the upper side of the containment building, which results in stable stratified layer as 

shown in Figure 1. During a LOCA accident, accumulated gas in the reactor containment 

building can form a stable stratified layer as shown in Figure 2.  
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The stratified layer due to different density of the gases may challenge 

computational models to treat sharp density gradient and fluctuations of the velocity. For 

instance, the negative buoyancy effect causes deceleration on the jet flow. As a result, 

the erosion process (mixing of the less dense layer) occurs slowly due to negative 

buoyancy. Furthermore, mixing of the gas occurs with turbulence diffusion and 

molecular diffusion. Turbulent diffusion is calculated by turbulent models and most of 

the standard turbulent models are based on the specific assumptions that are violated 

with interaction of the jet and stratified layer. The details of this assumptions will be 

discussed in Chapter V. 

 

 

 

Figure 1: Buoyancy and Gravity Forces on the Stratified Layer 
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Figure 2: Stable Stratified Layer in Containment Building 

 

 

 

In the literature, several analyses of hydrogen mixing have been conducted by 

using CFD codes studies including validation of the codes by using experimental data. 

However, mostly generic turbulent models were used for most of them with limited 

number of computational volume elements. The CFD benchmark study (Andreani et al., 

2008) used the data of the PANDA experiment that has low momentum horizontal steam 
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injection. The simulations turbulence models were the variations of the 𝑘 − 𝜔 and 𝑘 − 𝜖 

models and number of the mesh cells ranged from 45,000 to 1.1 million. The study 

showed that grid sensitivity study improved the accuracy of the results significantly. 

Visser et al. conducted a CFD validation study (Visser et al., 2012) by using THAI 

(HM2) experimental data. They tried to answer the spatial and temporal discretization 

sensitivity for the breaking of a stable helium layer by a low momentum air injection as 

well as the effect of the buoyancy term in the turbulent transport equations. Their results 

showed overall good agreement with experimental data when the buoyancy term is 

included in the turbulent transport equations. The study also showed that wall function 

usage for near wall region does not affect the results due to the fact that mixing of the 

gases occurs in the core region of the fluid domain.   

The erosion characteristic of the stratified layer can be related with dimensionless 

Froude number, which is the function of the velocity U  and the diameter L of the jet in 

the impingement region and the characteristic pulsation of the stratification N defined as 

(Jirka, 2004): 

 

𝑁 = √2𝑔
(𝜌𝑎𝑖𝑟 − 𝜌𝑠)

(𝜌𝑎𝑖𝑟 + 𝜌𝑠)𝐻𝑠
 

𝐹𝑟 =
𝑈

𝑁𝐿
 

 

Froude number is the ratio of inertial to buoyancy forces. If it is less than unity, 

the stratified layer is dominated by buoyancy, then erosion process occurs slowly and 
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without penetration of the injected jet flow. If it is much greater than unity, the flow is 

dominated by the inertial forces and the injected jet penetrated to the stratified layer.  

Previous studies used a limited number of control volumes mostly with generic 

two equations turbulent models. In addition to that, turbulent model sensitivity analyses 

were not part of their study. The current study aims to address the detailed comparison 

of the turbulent models including Large Eddy Simulation (LES) by using STAR-CCM+ 

9.04. A higher number of control volumes was used to analyze the effect of the grid 

resolution. The experimental data from OECD-PSI International Benchmark Exercises 3 

(IBE-3)(Andreani et al., 2014) was used to compare the numerical results.  
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CHAPTER II 

SPECIFICATIONS OF EXPERIMENT 

 

II. 1 Geometry 

OECD/NEA conducted the third International Benchmark Exercise (IBE-3) as an 

international effort to validate simulations of the hydrogen distribution in a containment 

building. IBE-3 is based on a comparison of CFD simulations with experimental results. 

The main purpose of the experiment is investigating the erosion of a stratified layer by 

an off-axis buoyant jet, which is the possible post-accident scenario as explained in 

Chapter I. However the helium gas was used instead of hydrogen for the safety reason.    

The experiment was conducted at the PANDA facility at Paul Scherrer Institut 

(PSI) in Switzerland. The experimental specifications distributed to the participants via 

special FTP access (OECD-NEA, 2013) and it is not published online. PANDA facility 

has four vessels as shown in Figure 3. One of the four was used as a part of this 

experiment. 
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Figure 3: Panda Facility at PSI in Switzerland (OECD-NEA, 2013) 

 

 

 

Certain modifications were applied to the vessel by blocking inter-vessel 

connections and the vessel had been isolated from other ones. The height of vessel is 8 m 

and 4 m outer diameter and it is made from stainless steel (DIN 1.4571). In addition to 

the main vessel, a 980 mm diameter manhole is located at the top of the vessel with 464 

mm internal height. A vertical injection line is located 3000 mm above the lowest point 

in the vessel to produce low momentum air/helium jet. In order to keep constant pressure 

in the vessel, the air/helium mixture is vented to the atmosphere via a funnel (red 

component in Figure 4). The funnel is located 160 mm above lowest point. The detailed 

geometry can be seen in Figure 4. 
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Figure 4: Vessel (left), details of vessel configuration (right) (OECD-NEA, 2013) 

 

 

II. 2 Experimental Setup 

The main purpose of the experiment was the analysis of erosion of the stratified 

layer by a vertical buoyant jet in a vessel as part of the validation study.  

At the beginning of the experiment, helium was injected into the vessel to form a 

stable stratified layer. This process helped to create a helium-rich layer at the upper 

region of the vessel. The rest of the vessel is dominated by air. The stable layer means 

that distribution of the gases is in balance due to the balance of natural forces, which are 

the gravity and buoyancy forces. The stable layer formation is related with the 

dimensionless Richardson (Ri) number that expresses the ratio of the buoyancy term to 

the flow gradient term. If the Richardson number is less than unity, buoyancy can be 
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neglected in the flow. If it is greater than unity, buoyancy is dominant in the flow with 

insufficient kinetic energy to mix or homogenize flow. When it is equal to the unity, the 

flow can be categorized as buoyancy-driven. The vertical layer formation and 

relationship with the Richardson number was explained in the former study of (Studer et 

al., 2012). When the Richardson number is greater than unity, the distribution of the gas 

mixture can be divided into three different category. If the inertia of the injecting gas 

mixture is small when the plume reaches the top of the vessel, a linear density gradient 

can be obtained from top to the bottom. If the inertia of the injecting gas is higher, the 

reversed flow at the top of the vessel forms a homogenized layer at the top with a linear 

density gradient below. The stratified layer in the current study has a homogenized layer 

at the top with a linear density gradient. Axial molar fractions of gas mixture were 

measured before the start of the experiment as an initial condition and it can be seen in 

Figure 5. 

 



 

15 

 

 

Figure 5: Molar Fraction of Gases vs. Axial elevation  

 

 

 

 The erosion of the stable stratified layer occurred by injection of the low 

momentum gas mixture into the vessel by using a circular pipe which has a 75.3 mm. 

inside diameter. The mass flow rate of helium-air mixture was measured as 21.94 g/s 

during the experiment and it was kept constant. On the other hand, injected gas mixture 

included negligible amount of the vapor due to fact that air was not dried before 

injection. The mole fraction of injection gas mixture was measured 36 mm above the 

exit of injection pipe for precise inlet condition. Helium, air and vapor mole fractions 

were measured as 0.134, 0.862 and 0.004, respectively. While the molar concentration is 

constant, the temperature of gas mixture was increased from 20 °C to 29.3 °C during 

transient. 
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II. 3 Measurements  

Time dependent measurements were taken at certain points to create CFD grade 

experimental data.  Measurements include mole concentration, temperature, vertical 

component of velocity, and their locations. 

Two types of mass spectroscopy (MS) instruments were used to measure mole 

fractions of gases at different points in the vessel. The first type MS has a smaller 

sampling period time which is 30 seconds. The first type MS’s were located at the exit of 

the injection pipe and at the outlet of the ventilation pipe.  

The second type of MS instrument has 226 seconds as its sampling period time 

and this type of MS devices were placed at different points to record data during the 

transient period as shown in Figure 6.  The estimated uncertainty of concentration 

measurement and location of the devices were reported as 1% and ±5.0 mm respectively.  
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Figure 6: Location of Mass Spectroscopy Instruments 

 

 

 

The thermocouples were placed in the PANDA vessel at strategic points mostly 

in the jet plume. Two of them were reported as given in Figure 7. TC’s have a 0.5 Hz 

frequency response. The estimated uncertainty of temperature measurements and 

location of the TC’s were reported as ± 0.7 K and ±5.0 mm respectively.  
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Figure 7: Thermocouple Locations 

 

 

 

Velocities and velocity fluctuations were measured by using PIV from three 

different windows. The locations of the windows are shown in Figure 8. The 

measurements were taken all above and around the axis of the injection pipe and they 

were averaged over a time period of 204.6 s.  
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Figure 8: Position of the PIV field of views (OECD-NEA, 2013) 

 

 

 

According to the test specification, the main interest of the benchmark study was to 

evaluate the capability of the codes to simulate the erosion process and mixing of the 

gases as well as velocity of the stratified layer under jet flow. 

The erosion process is defined by drop of the helium molar concentration below 

a specified value which is the 20%. Ten different locations along the injection line were 

chosen to evaluate the erosion process as shown in Figure 9. This data can be used to 

evaluate the capability of the codes to simulate the interaction of the injection jet with 

stratified layer as well as the turbulent models capability to simulate the flow. 
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Figure 9: Concentration measurements for evaluating the stratification erosion 

 

 

The velocity and turbulent kinetic energy data are averaged over a time period of 204.6 

s. The solution time will refer to the time in the middle of this averaging period. Solution 

time for HVY-3, HVY-5, VVY-1 and TKE-2 are 1213, 1795, 111, 1213 seconds 

respectively. The monitor points are shown in Figure 10. 
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Figure 10: Positions of velocity and turbulent kinetic energy measurements 
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CHAPTER III 

SIMULATED GEOMETRY AND MESH 

 

III. 1 Geometry 

The PANDA experimental system was built as a multi-compartment system for 

large-scale thermal-hydraulics experiments such as passive containment phenomena, 

natural circulation and condensation. It is located at the Paul Scherrer Institute (PSI), 

Switzerland. The design specifications of the PANDA allow for a containment wide 

analysis and code validation. In addition, it offers flexibility to modify the system by 

imposing different boundary conditions. Specifically, one compartment of the PANDA 

had been isolated from the others for IBE-3 study. The isolated test vessel has an inlet 

pipe which is used to inject the gas mixture as an inlet boundary condition. A funnel is 

placed at the bottom of the vessel to discharge the gas mixture and keep the pressure 

constant. 
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Figure 11: CAD drawing from PSI (OECD-NEA, 2013) 

 

 

 

The geometry specifications of the PANDA vessel and its CAD drawing were 

supplied to all IBE-3 participants. The CAD model was build by using the Autodesk 

Inventor and distributed to each participant in ASCII format and STP file extension as 

shown in Figure 11. This CAD file can be read by the STAR-CCM+ meshing tool. 

However, the imported CAD file had several holes, which result in very low quality 

surface and volume mesh. The quality of the mesh is one the most important factors to 

prevent grid error or convergence problem. In order to remedy these problems, the CAD 
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file was imported to SOLIDWORKS and then holes were closed and unnecessary details 

were removed as shown in Figure 12. 

 

 

 

Figure 12: Modified CAD file 

 

 

 

III. 2 Mesh 

 Mesh generation for complex geometry is still challenging. The quality or 

validity of the mesh directly affects the accuracy of the numerical results. There are two 

main factors to evaluate a created mesh. The validity and quality of the volume mesh 

should be diagnosed before starting the calculation.  

 Validity of the mesh can be ensured by checking unclosed cells, zero area face, 

and zero or negative volume cells. At the beginning of a simulation it is easy for the user 

to identify any problems related with validity, due to an indication from software. 
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However the quality of the mesh does not have same symptoms as validity. Low quality 

of the mesh can be initialized and it may not indicate any problem while the results are 

typically less accurate. As a result of that it should be diagnosed carefully by the user. 

Quality criteria of the mesh vary according to the CFD solver and type of the mesh.  

In STAR-CCM+, the quality of the mesh is categorized based on the global and 

local factors. Global factors are the mesh density, mesh distribution and near wall layers. 

Mesh density indicates whether the resolution of the grid can capture flow features, 

while mesh distribution indicates any necessary refinement that the refinement for the 

required region such as high gradient areas. As a last factor, the near wall layer 

resolution depends on the flow type and effect of the wall on the flow feature. For 

instance, the near wall layer discretization has significant effect on the results for heat 

transfer, and pressure drop calculations. For current study, the near wall modeling has 

significant impact on the injection pipe modeling but not for the bulk region due to 

location of the mixing. The variation of discretization near the wall demonstrates 

different outlet velocity at the outlet of the jet. Different jet velocities result in a high 

variation in the helium-air mixing during transient. The jet outlet velocity is diagnosed 

for each simulation by using experimental PIV data. Overall, the global quality factors 

can be assessed by mesh independence study.  

 Local quality factors can be easily checked by using the mesh report of the 

STAR-CCM+. The most important factors are: skewness angle, face validity, cell quality 

and volume change. The skewness angle is defined as the angle between the face normal 

and the vector between two cell centroids as shown in Figure 13-A . The skewness angle 
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is suggested to be kept below 850 by CFD experts to prevent numerical convergence 

issues. Face validity is the measure of the concavity of the surface mesh as shown in 

Figure 13-B. Cell quality is directly related with the quality of the surface mesh due to 

the fact that the volume mesh is constructed on the surface mesh. The quality diagnostic 

also can be performed by visualization of the volume mesh in particular areas. The 

highly skewed cells are assumed as bad cells as shown in Figure 13-C. The last criteria is 

the volumetric change that is the ratio of the volume of a cell to that of its largest 

neighbor cell as shown in Figure 13-D. In practice, the minimum value is recommended 

to be approximately 1e-05. For the current study, the volume changes are kept about 

minimum 1e-2 for all three meshes to prevent any instability in the solver.  

  

 

 

Figure 13: Cell quality metrics (STAR-CCM+, 2014) 
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The mesh statistics can be seen in Table I. The created coarse mesh is shown in Figure 

14 and the fine mesh is shown in Figure 15. 

 

 

Table I: Mesh details 

 

 Coarse Fine 

Number of cells 4.960.166 19.052.011 

Mesh type Polyhedral Polyhedral 

Cell size 40 mm  30 mm 

Mesh refinement Injection Pipe 7.5 mm 

Mixing Region 24 mm 

Injection Pipe 5.5 

mm 

Mixing Region 12 

mm 

y+  mostly ~ 0.1  

max 30  

mostly ~ 0.1  

max 14 

Max skewness 

angle 

74 76 

 

  

 



 

28 

 

 

Figure 14: Coarse grid 

 

 

 

Figure 15: Fine Grid 
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CHAPTER IV 

CFD MODELING 

 

IV. 1 Computational Fluid Dynamics (CFD) 

Computational Fluid Dynamics (CFD) is a computer based engineering tool to 

simulate fluid flows which are based on numerical methods and algorithms to solve and 

analyze problem. CFD is able to simulate a wide spectrum of current engineering 

problems. Moreover, applicability and feasibility of CFD is increasing by the expansion 

of computational power. Improvement on the computational power allows to simulate 

the fluid domain with more accurate representation by using more cell elements that 

discretize the fluid domain. In other words, one can create a higher resolution mesh that 

usually provides a higher level of accuracy. However, turbulent flow is still a 

challenging problem for most of the engineering and scientific problems due to its 

complex nature. Although, Direct Numerical Solution can simulate turbulent flow 

without any modeling requirement, it is still feasible only for fundamental scientific 

research applications due to excessive computational power requirement. The turbulence 

modeling are applied to CFD codes to compromise between computational power and 

accuracy. The turbulence modeling for CFD applications need comprehensive validation 

and verification studies. Specifically, validation and verification studies are crucial for 

the applicability of the CFD tools for nuclear reactor safety analysis. 
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IV. 2 The Mathematics of CFD 

Since CFD is based upon mathematical relations, the algorithms require the 

solution of the mass, momentum, and energy equations. These equations were derived in 

the nineteenth century and are known as the Navier-Stokes equations. The Navier-Stokes 

equations have no known general analytical solution. However they can be discretized to 

be solved numerically that leads to CFD applications. 

The energy equation can be neglected depending on the flow problem such as 

constant isothermal flows. However, in the current analysis Energy equation has to be 

solved due to the temperature variation at the inlet boundary condition and in the flow 

domain. Therefore it is necessary to solve energy equation to calculate temperature and 

density of the gas by using the Ideal Gas Law.  

In addition to the energy equation, the species transport equation has to be solved 

to compute the diffusion of the gas mixture components, which are helium and air for 

this study. The mole fraction of the air-helium gas mixtures varies in the flow domain 

initially due to a stable stratified layer. Buoyancy must be accounted for in the current 

study due to the variable density.  

 

IV.2.1 Conservation of Mass, Momentum and Energy 

Equation 4.1 is the integral form of the continuity equation. The terms on the 

left-hand side are the transient term and convective term, while the right-hand side term 

is the mass source term. In present study source term is zero. 
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∂

∂t
∫ ρ

V

𝑑V +  ∮ ρ(𝐯) ⋅ 𝑑𝐚

A

= ∫ Su

V

𝑑V          
 

(4.1) 

 

Equation 4.2 represents the integral form of the momentum equation. The terms 

on the left-hand side of Equation 4.2 are the transient term and convective flux. On the 

right-hand side are the pressure gradient term, viscous flux and buoyancy body force 

term, respectively.  

 

∂

∂t
∫ ρ𝐯

V

𝑑V +  ∮ ρ𝐯 ⊗ (𝐯) ⋅ 𝑑𝐚 =

A

 

− ∮ 𝑝𝐈 ⋅ 𝑑𝐚

A

 ∮ 𝐓 ⋅ 𝑑𝐚

A

+ ∫(fg)

V

𝑑V                       

 

 

(4.2) 

 

where buoyancy source term fg  equals to (ρ − ρ𝑟𝑒𝑓)𝑔.  The reference density is kept 

constant in the software. However due to variation of the density by the time, it is 

defined by a user specified function that computes the volume averaged density during 

transient. 

The energy equation in integral form is given by Equation 4.3, where 𝑯 is the 

total enthalpy, 𝐪′′ is the heat flux vector, 𝐓 is the viscous stress tensor, 𝐯 is the velocity 

vector, 𝐟 is the body force vector representing the combined body forces and s𝑢 is energy 

source term defined by user if desired.  
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∂

∂t
∫ ρ𝑬

V

𝑑V + ∮[ρ𝑯(𝐯)] ⋅ 𝑑𝐚 =

A

 

− ∮ 𝐪′′  ⋅ 𝑑𝐚

A

 ∮ 𝐓 ⋅ 𝐯 𝑑𝐚

A

+ ∫ 𝐟 ⋅ 𝐯

V

𝑑V + ∫ s𝑢

V

𝑑V                                 

 

 

(4.3) 

 

Total energy, 𝑬, is related to the total enthalpy 𝑯 by Equation 4.4 

 

𝑬 = 𝑯 −
𝑝

ρ
   

 

(4.4) 

 

Total enthalpy is defined as the summation of the enthalpy and kinetic energy of the 

fluid mass as given in Equation 4.5. If the fluid has zero velocity, it reduces to enthalpy. 

The relationship of the enthalpy with the temperature and specific heat is given by 

Equation 4.6. 

 

𝑯 = ℎ +
|𝐯|2

2
 

(4.5) 

ℎ = 𝐶𝑝𝑇 (4.6) 

 

IV.2.2 Equation of State 

In order to solve the continuity, momentum and energy equations, supplementary 

information is required. Therefore an equation of state model is used for calculation. The 

Equation of State model is used to compute the density with respect to flow parameters. 
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Available Equation of State models in STAR-CCM+ are Ideal Gas, Real Gas, 

Polynomial Density Gas, IAPWS-IF97, and Constant Density Model In the PANDA 

experiment, the gas  mixture has temperature and pressure gradient due to variation of 

mole fraction distribution inside the vessel. Ideal gas law is chosen to calculate density 

as a function of temperature and pressure as given in Equation 4.7.  

 

ρ =
𝑝 𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑝 𝑟𝑒𝑓

𝑅 𝑢
𝑀 𝑇

  
 

(4.7) 

 

where 𝑅 𝑢 is the universal gas constant, 𝑀 is the molecular weight, and 𝑇 is temperature 

of gas. 

In the experiment, buoyancy forces have a significant effect due to the mole 

distribution of air-helium which results in density difference. Gravity modeling is 

enabled in CFD calculation to account buoyancy effect. When gravity is activated the 

static pressure is related to working pressure, 𝑝, by equation 4.8. 

 

𝑝 𝑠𝑡𝑎𝑡𝑖𝑐 =  𝑝 + ρ𝑟𝑒𝑓𝑔(𝑥 − 𝑥0) (4.8) 

 

where 𝑥0 is position vector, termed the operating altitude, ρ𝑟𝑒𝑓 is reference density and 

𝑔 is the gravitational vector.  

The reference density is an important parameter for this analysis due to the additional 

uncertainty in the Equation of State due to static pressure and in the momentum equation 
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due to buoyancy source term. On the other hand, the density difference between air and 

helium is relatively low. However due to variation of the density by the time, it is 

defined by a user specified function that computes the volume averaged density during 

transient. 

 

IV.2.3 Species Transport Equation  

The transport equation for the mass fraction 𝑌𝑖 of species 𝑖𝑡ℎ is solved as in 

Equation 4.9.  

 

∂

∂t
∫ ρ 𝑌𝑖

V

𝑑V +  ∮ ρ 𝑌𝑖(𝐯) ⋅ 𝑑𝐚

A

= ∮ [ρ𝐷𝑖,𝑚∇ 𝑌𝑖 + 
μ𝑡

σ𝑡
∇ 𝑌𝑖] ⋅ 𝑑𝐚

A

+ ∫ S𝑌𝑖

V

𝑑V 
 

(4.9) 

 

where 𝐷𝑚 is molecular diffusivity. The Turbulent Schmidt number σ𝑡 is used as default 

value of 0.9 as in the buoyancy term except for sensitivity analysis of the Turbulent 

Schmidt Number. 

 The molecular diffusion coefficient was defined by using the Chapman-Enskog 

Equation 4,10. It defines the diffusion coefficient as a function of the molecular masses 

of air-helium mixture and as a function of temperature and pressure. 

 

D1,2 =
1.858x10−3𝑇3/2

𝑝𝜎2
12Ω

√
1

𝑀1
+

1

𝑀2
  

 

(4.10) 
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where 𝑀1, 𝑀2 are the molecular masses of the gas components, p is the pressure, T is the 

temperature, 𝜎2 is the average collision parameter and Ω is the temperature dependent 

collision integral. The diffusion coefficient for helium and air mixture is 7x10−5 𝑚2

𝑠
 at 

T=298 K and p= 1 atm. 

 

IV.3 Methodology of CFD 

The general methodology of CFD is identical for all types of simulations. It has 

preprocessing, solving and post-processing steps. 

In the preprocessing step, the geometry of the fluid system is created to define 

the physical bounds of fluid domain. While creating the geometry, some simplifications 

could be applied such as removing unnecessary details, which helps to compromise 

between accuracy and computation time. This step presumes a level of expertise by the 

user to predict the proper details/objectives. Once the geometry is completed, the next 

step is division of the bounded fluid domain into discrete cells (mesh or grid). The mesh 

may be uniform or non-uniform depending on the complexity of the geometry. Mesh 

generation is one of most important step of the simulation, as it directly affects the 

accuracy of the results and convergence performance. There are different mesh quality 

criteria to ensure that it is created properly. These criteria depend on the mesh type(s). 

General quality criteria for volume mesh are cell skewness angle, boundary skewness 

angle, face validity, volume change and negative volume cells due to concave cells. 

These criteria were discussed in detail in Chapter 3.  

The boundary conditions are defined at the same step as the meshing process.  
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For a completely defined problem, proper boundary conditions must be identified on 

solution domain boundaries. Boundary conditions in CFD Have the same logic as the 

mathematical boundary value problem. The differential equation should be well posed. 

In other words, a given input to the problem should result in unique solution. Once 

boundary conditions are fully defined, the last step before the calculation is choosing 

fluid materials and appropriate models such as turbulence models, equation of state, 

gravity, multi or single phase, multi or single component, and etc.  

The calculation step is the part in which equations are solving iteratively. In this 

step the most important task is monitoring convergence behavior of the problem. 

Residuals of continuity, momentum, energy equations and other implemented equations 

denote the convergence characteristic. However, the decrease of the residuals does not 

always mean real convergence. One can add engineering points in to the domain to 

observe certain flow parameters in critical locations to ensure convergence. 

When convergence is an issue, modifications and quality improvements on the 

mesh can help convergence. In addition to that, the convergence behavior is affected by 

some other parameters such as under relaxation factors for segregated solver, courant 

number for coupled solver and time step for transient analysis. For instance, in transient 

analysis reducing of the time steps generally helps to ensure convergence, especially 

when strong transient is taking place at the initial time steps. The under-relaxation factor 

sustains numerical stability by decreasing part of value from previous iteration to 

dampen solution. Only drawback of lowering this factor is increasing number of iteration 

for convergence. The courant number for coupled solver is used in a similar manner as 
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the under relaxation factor. 

One other important factor for the accuracy of the results is the order of the 

discretization of the convection term. In CFD, the scalar values are stored at the center of 

the cells. However, the face values are required for the convection terms of the transport 

equations. The face values are calculated by interpolation of the cell center values. The 

interpolation is accomplished through an upwind scheme. Since, the first-order analysis 

resulted in unrealistic solutions due to false numerical diffusion, at least second-order 

discretization is desired for CFD applications. The details of the CFD model are given in 

Table II.  
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Table II: CFD modeling details 

 

Solver Segregated Pressure-based algorithm 

Pressure correction scheme SIMPLE 

Spatial discretization 2nd order upwind  

(bounded central differencing scheme for LES) 

Temporal discretization 2nd order implicit 

Time step size 0.001-0.5 (depend on time and turbulent models) 

Equation of state Ideal Gas 

Multi-Component Gas 2nd order convective 

Convergence Criteria Max 10-5 

Number of iterations per time step 10-20 

 

 

IV.4 Boundary Conditions of PANDA Experiment 

In the experiment, two boundary conditions are used. The inlet boundary 

condition that is used to inject air-helium gas mixture, and the outlet boundary condition 

that is used to discharge the gas from vessel to keep pressure is constant during full 

transient. In CFD modeling the inlet was modeled as mass flow inlet, outlet as pressure 

outlet and all other solid surfaces are modeled as walls. The location of the boundary 

conditions can be seen in Figure 16. 
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Figure 16: CAD drawing is in the left and Boundary conditions are on the right 

 

 

IV.4.1 Inlet Boundary 

At the inlet, mass flow inlet boundary condition is used. Because the mass flow 

is controlled in the experiment and the density is changing by due to temperature 

difference in the time. The velocity at the boundary cells is calculated by using Equation 

4.11.  

 

v =
𝑚

 ρ. a
 

(4.11) 

 

where v is velocity, 𝑚 is mass flow rate, ρ is density and a is unit surface area. 
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The total mass flow rate was measured and reported as constant 21.94 g/s. The mass 

flow rate of air was 21.52 g/s and helium was 0.42 g/s. The injected air also included 

humidity. The water vapor mass flow rate was not measured. However, mass 

spectroscopy measurement at the outlet of the injection pipe was performed and it led to 

the deduction that a very small amount of vapor content was injected to the vessel. The 

mole fractions of air, helium and water vapor were 0.862, 0.134 and 0.004, respectively. 

In addition to the inlet mass flow rate data, experimental PIV measurements at the outlet 

of the injection pipe was used to set appropriate boundary condition at the inlet.  Details 

of inlet boundary conditions are given in Table III. 

 

 

Table III: Inlet Boundary Conditions 

 

Air Mass Flow Rate 21.52 g/s 

Helium Mass Flow Rate 0.42 g/s 

Air Mole Fraction 0.862 

Helium Mole Fraction 0.134 

Water Vapor Mole Fraction 0.004 

Injection Gas Temperature 20℃ to 29.3℃ 

Pressure 0.994 bar 

Inlet Pipe Diameter (inner) 75.3 mm 

Turbulence Intensity 7.4% 

Turbulent Length Scale 75.3 mm 
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The temperature of gas mixture changes by the time as shown in Figure 17. It is 

imported to the STARCCM+ by using the field function option. Since, the density and 

velocity of the jet flow are related with the temperature, the variation of the temperature 

was considered in the boundary condition for higher fidelity.  

 

 

 

Figure 17: Temperature of the gas mixture 

 

 

IV.4.2 Outlet Boundary 

The effect of the outlet boundary condition on the overall flow behavior is 

negligible due to the location of the outlet boundary condition. It is confirmed during 

preliminary simulations by checking erosion process. In the experiment, the outlet 

boundary condition was used to keep constant pressure in the vessel.  

In CFD, the pressure outlet boundary condition extrapolates the boundary face 

velocity from the neighbor interior node. Essentially, the temperature and the mole 
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fractions of the gas components are computed as a result of the simulation. However the 

software needs these input for reversed flow condition. In case of the reverse flow, these 

values are used. Otherwise the values at the outlet are not affecting the flow. 

 

IV.4.3 Wall Boundary 

At the wall of vessel, injection pipe and discharge pipe, the wall boundary 

condition was applied. In other words, the no-slip boundary condition was specified. The 

velocity of the fluid at the wall boundary was specified as zero.  

 

IV.5 Initial Conditions 

Gas mixture of air-helium was produced before starting the experiment. The 

temperature and mole fraction of the gases were measured at the beginning of the 

experiment. Then they applied to the CFD model to match with experimental conditions. 

The velocity of the gas mixture was set to zero and turbulent kinetic energy was set to 

very close to zero as initial condition. The mole fraction measurement from experiment 

is given in Figure 18.  
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Figure 18: Initial mole fraction distribution 

 

 

The imported mole fraction distribution is validated by visualization of the scalar 

mole fraction distribution and by using line-monitors. The scalar of the mole fractions 

can be seen in Figure 19. 

 

 

 

Figure 19: Scalar of the mole fraction distribution 
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The gas mixture temperature varies along the axial direction of the vessel as well. 

Measurement of temperature is given on the right side of Figure 20 and visualization of 

the scalar from CFD software can be seen on the left. The density of the gas mixture at 

the beginning of the simulation was computed based on the experimental inputs. High 

gradient of the density can be seen in Figure 21. 

 

 

 

Figure 20: Initial temperature of the gas 
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Figure 21 : Density of gas mixture 
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CHAPTER V 

TURBULENCE MODELING 

 

V.1 Turbulence 

In general, the fluid flow has two major characteristic regimes that are laminar 

and turbulent. The characteristic of the flow regime can be identified by the 

dimensionless Reynolds number that is defined as the ratio of the inertial forces to the 

viscous forces. For laminar flow the general behavior of the flow is smooth and it has 

smooth streamlines. In laminar region, viscous forces dominate the inertial forces. Once 

inertial forces dominates over the viscous forces, the flow has more chaotic 

characteristic and streamlines. This regime is known as turbulence. In the turbulent flow, 

diffusion and mixing of the flow is much higher than laminar flow. Obviously this 

property enhances the mixing and heat transfer. Turbulent is a desirable regime for the 

most of the engineering applications. On the other hand, the chaotic behavior causes 

difficulty for identifying and predicting the flow characteristics. Due to its complex 

nature, turbulent is still a challenging problem for both computational and experimental 

studies. 

Turbulent flow contains eddies of different length scales. Most of the kinetic 

energy is produced by large-scales. Decay of the energy cascades from larger to the 

smaller scales is caused by an inertial and viscous effects. This process creates smaller 

structures until eddies become small enough that molecular diffusion dominates the 
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flow. Energy of the smaller eddies are released via viscous dissipation in the 

Kolmogorov length scale. 

Turbulent length scales can be categorized as below; 

 Integral length scales. 

 Kolmogorov length scales. 

 Taylor microscales.  

Integral length scales is largest scales in the energy spectrum. Eddies in this scale 

contain most of the energy in the flow and it also has highest fluctuation of velocity and 

lowest frequency. Length scales of eddies are limited by the dimension of the flow 

geometry. This criteria helps to define the length scale as turbulent boundary condition 

for RANS models. Due to fact that eddies cannot be greater than the flow dimension. 

Kolmogorov length scales is the smallest scales in the spectrum. This scale has 

higher frequency characteristic and it is locally isotropic. In addition to these properties, 

the viscos forces are dominant and turbulent kinetic energy is dissipated as heat energy. 

The locally isotropic behavior of this scale is an advantage to model this scale instead of 

resolve.  Kolmogorov microscales are defined (Landahl and Mollo-Christensen, 1992) 

as: 

Kolmogorov Length Scale: 

𝜂 = (
𝜈3

𝜖
)

1/4

 
 

(5.1) 
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Kolmogorov Time Scale: 

𝜏𝜂 = (
𝜈

𝜖
)

1/2

 
 

(5.2) 

 

Kolmogorov Velocity Scale: 

𝑢𝜂 = (𝜈𝜖)1/4  

(5.3) 

where 𝜖 is the average rate of dissipation of turbulence kinetic energy per unit mass, and 

𝜈 is the kinematic viscosity.  

The Taylor microscales are the intermediate length scale that fluid viscosity has 

significant impact on the eddy structures. The inertial forces dominates the flow for 

larger scales than Taylor microscales, while the viscous forces are dominant for smaller 

scales. (Landahl and Mollo-Christensen, 1992). 

 

V.2 Turbulence and CFD 

CFD applications have commonly been used for turbulent flow in last three 

decades. Although there are numerous available turbulent models including hybrid 

variations, the general purpose turbulence model has not been developed yet. Each 

model has its own specific advantages or disadvantages according to the flow structures.  

Although, the turbulent flow can be resolved directly by solving the Navier-

Stokes equations, which is called Direct Numerical Simulation, it is not feasible for 

current engineering problems due to its extensive computational cost. As a compromise 

between accuracy and computational cost, turbulent models have been developed.   
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 There are three main methods to solve turbulent flow. Direct Numerical 

Simulation (DNS), Large Eddy Simulation (LES) and Reynolds-Averaged Navier-

Stokes (RANS). In addition to these major classes, there is also a mixed approach such 

as using Detached Eddy Simulation (DES). It is a hybrid method of RANS and LES 

models and One-Equation turbulent models. 

 DNS has still a very limited applications area and it is mainly used for research 

purposes. The DNS method is solving the Navier-Stokes equations directly with very 

fine grid and time-steps to capture smallest scales of the turbulent flow. As a result of 

this requirement, the cell size must be at least same size as the smallest length scale of 

turbulence.  

 RANS turbulent models are the methods of the modeling of turbulence instead of 

solving it directly. In the RANS model, the Navier-Stokes equations for the 

instantaneous pressure and velocity are decomposed into a mean value. The terms of 

resulting equation are identical to original equations except the Reynolds Stress Tensor 

(RST), which appears in the momentum transport equation. For this term, there are two 

major approaches to model: turbulent viscosity models and Reynolds-stress models. 

They are explained in details in following part of this chapter. 

  RANS models have the advantage of the lower computational cost, while they 

have a disadvantage due to the isotropic Boussinesq approach to model the RST. Two 

equation turbulence models are developed on this assumption.   In addition to that, the 

grid sensitivity of the RANS models are less significant than other models. Since the 
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grid size and turbulent scales are not related with each other due to fact that all scales are 

modeled and solved with the transport equations instead of resolving them directly. 

 In the LES turbulence model, the larger eddies are resolved directly, while the 

smaller eddies are modeled. In fact, the smaller turbulent scales are mostly isotropic, and 

this helps to reduce the cost of modeling in the sub-grid scales. The characteristic of the 

larger scales is dependent on the flow geometry while the characteristic of the smaller 

scales is more global due to the isotropic features of the smaller scales. This feature 

helps to compromise between accuracy and computational power due to the natural 

characteristic of the Kolmogorov scale, the computational cost to resolve this scale is 

significantly higher than other scales. LES can be categorized between RANS models 

and DNS models. In the computational grid level, it resolves the flow like DNS solver 

and below the grid size level, it works like RANS solver by using sub-grid scale 

modeling. 

 

V.3 Reynolds Averaging 

In order to model the turbulence instead of solving it directly, Reynolds-

Averaged Navier-Stokes are used. It is suggested by Osborne Reynolds that the variables 

in the Navier-Stokes equations could be decomposed into time averaged and turbulent-

fluctuation terms. 

 

𝑈(𝑥, 𝑡) = 𝑈̅(𝑥) + 𝑢′(𝑥, 𝑡) (5.4) 
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where the average velocity 𝑈̅ is defined as  

 

𝑈̅ =
1

2𝑇
∫ 𝑈 𝑑𝑡

𝑇

−𝑇

 

 

(5.5) 

 

The time average of the fluctuating velocity 𝑢′ is 

 

𝑢′̅ =
1

2𝑇
∫ 𝑢′ 𝑑𝑡

𝑇

−𝑇

=
1

2𝑇
∫(𝑈 − 𝑈̅)𝑑𝑡 = 0

𝑇

−𝑇

 

 

 

(5.6) 

The resulting averaged equations are identical to the original equations except an 

additional term now appears in the momentum transport equation.  The additional term 

is known as the Reynolds stress, and can be defined as tensor: 

 

𝐓𝒕 ≡ −ρv′v′̅̅ ̅̅ ̅ = −ρ [
𝑢′𝑢′̅̅ ̅̅ ̅̅ 𝑢′𝑣′̅̅ ̅̅ ̅̅ 𝑢′𝑤′̅̅ ̅̅ ̅̅

𝑢′𝑣′̅̅ ̅̅ ̅̅ 𝑣′𝑣′̅̅ ̅̅ ̅̅ 𝑣′𝑤′̅̅ ̅̅ ̅̅

𝑢′𝑤′̅̅ ̅̅ ̅̅ 𝑣′𝑤′̅̅ ̅̅ ̅̅ 𝑤′𝑤′̅̅ ̅̅ ̅̅ ̅
] 

 

(5.7) 

 

There are two main approaches to provide closure for Reynolds stress in STAR-CCM+ 

9.04 (STAR-CCM+, 2014). Eddy viscosity models and Reynolds stress transport 

models. Eddy viscosity models are widely used for various flow applications. Spalart-

Allmaras, 𝑘 − 𝜖 and 𝑘 − 𝜔 are available in STAR-CCM+ 9.04 as well as their 

variations. 
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V.4 Eddy Viscosity Models 

Eddy viscosity models are based on the concept of a turbulent viscosity 

hypothesis to model the Reynold stresses, as obtained from Reynolds averaging of the 

Navier-Stokes equations.  Reynold stresses is modeled by a linear constitutive 

relationship with the mean flow field, 

 

𝐓𝒕 = −ρv′v′̅̅ ̅̅ ̅ = 2 𝜇𝑡 𝐒 −  
2

3
(𝜇𝑡𝛁. 𝐯 +  ρ𝑘)𝐈 

 

(5.8) 

 

where 𝜇𝑡 is the turbulent viscosity (or eddy viscosity) 𝑘 is the turbulent kinetic energy, 

and S  is the strain tensor :  

 

𝐒 =
1

2
(𝛁𝐯 +  𝛁𝐯𝑻) 

 

(5.9) 

 

The linear relationship for Reynold stress is known as the Boussinesq hypothesis. 

Turbulent viscosity is calculated by the transport equation(s). These models are 

categorized according to the number of transport equations solved. 

 

V.4.1 One-Equation Turbulence Model 

The Spalart-Allmaras is one of the most common used one-equation turbulence 

models and it solves a single transport equation for the turbulent viscosity term, while 
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earlier one-equation models solved the transport equation for the turbulent kinetic 

energy.  

The Spalart-Allmaras model was developed for aero-space applications. The 

developer of the model presented reasonable results for mild separation (flow past a 

plane wing), mixing layer and radial jet flows. However, Wilcox (Wilcox, 1998) 

concluded that it is not suitable for flows involving complex recirculation, and body 

forces such as buoyancy. Wilcox concluded that two-equation models are more suited to 

flows involving body forces. It was not used as part of the turbulent model sensitivity 

analysis. The current study has strong buoyancy effect as well as recirculation around jet 

layer and at the top of the vessel. 

 

V.4.2 Two-Equations Turbulence Models 

Two equation turbulence models are most widely used for most types of 

engineering problems.  𝑘 − 𝜀 and 𝑘 − 𝜔  are widely used as industry standard models. 

Two-equation models include two transport equations to compute turbulent flow 

behavior.  In general, turbulent kinetic energy, k, is one of the transport variables and 

secondary transport variables vary according to the model. The most common second 

transport variables are the turbulent dissipation, 𝜀, and the specific dissipation rate, 𝜔. 

The second variable is used to determine the scale of the turbulence (spatial or 

temporal). The turbulence models and their variations have specific advantages and 

disadvantages depending on the flow types. 
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V.4.2.1 K-Epsilon  Model 

The K-Epsilon (𝑘 − 𝜖) turbulence model is one of the most widely used and 

modified two-equation turbulence model in which the turbulent kinetic energy is, 𝑘, and 

its dissipation rate is, 𝜀. Significant amount of research has been dedicated to improve 

the model for several decades. As a result of several attempts to improve the model, 

various forms of the 𝑘 − 𝜖 are developed. 

The original 𝑘 − 𝜖 model was developed to use wall functions instead of 

resolving the viscous sublayer. However, later modifications allow to resolve the viscous 

sublayer by using Low-Reynolds and Two-layer models. 

There are two main approaches to resolve viscous sublayer with the 𝑘 − 𝜖 model, the 

low-Reynolds and two-layer approach. Low-Reynolds models are obtained by applying 

damping functions to the coefficients of the turbulence viscosity and dissipation rate as a 

function of the wall distance.  

Two-layer approach is proposed by (Rodi, 1991). According to the approach, 

flow domain is divided into two layers as the layer next to the wall boundary (solid 

boundary) and the layer far from the wall boundary. In the wall boundary, the turbulent 

dissipation rate and turbulent viscosity are computed as a function of distance from the 

wall. While, the dissipation rate far from wall is blended with the dissipation rate that are 

computed by 𝜀 transport equation, the turbulent kinetic energy equation is solved for the 

entire flow domain without using any blending function. The current version of CFD 

tool has three different versions of the two-layer formulation, two for shear-driven-flows 
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and one for buoyancy-driven flows. The main difference between the models are the 

near wall treatment. It is used in the Two-Layer Realizable 𝑘 − 𝜖 analysis. 

 

d

dt
∫ ρ𝑘

V

𝑑V +  ∮ ρ𝑘(𝐯 − 𝐯g) ⋅ 𝑑𝐚

A

= ∫ (𝜇 +
𝜇𝑡

𝜎𝑘
) ∇k . 𝑑𝒂

V

+ ∫[𝑓𝑐𝐺𝑘 + 𝐺𝑏 − ρ((ε − ε0) + Υ𝑀)  + S𝑘]

V

𝑑V          

 

 

(5.10) 

 

d

dt
∫ ρ𝜖

V

𝑑V +  ∮ ρ𝜖(𝐯 − 𝐯g) ⋅ 𝑑𝐚

A

= ∫ (𝜇 +
𝜇𝑡

𝜎𝜖
) ∇ϵ . 𝑑𝒂

V

+ ∫[𝑓𝑐𝐶𝜖1Sϵ +
ϵ

𝑘
(𝐶𝜖1 𝐶𝜖3𝐺𝑏) −

𝜖

𝑘 + √vϵ
𝐶𝜖2ρ(ε − ε0)  

V

+ S𝜖] 𝑑V     

 

 

(5.11) 

 

where: S𝑘 and S𝜖 are the user-specified source terms. 𝜖0 is ambient turbulent value in the 

source terms that counteracts turbulence decay. 𝑓𝑐 is the curvature correction factor. 𝐺𝑘 

is turbulence production term and 𝐺𝑏 is the buoyancy term. Since stratification of the gas 

layer causes buoyancy effect on the jet flow. The buoyancy term is important term for 

the current study.  
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𝐺𝑘 = 𝜇𝑡𝑆2 −
2

3
𝜌𝑘∇. 𝐯 −

2

3
𝜇𝑡(∇. 𝐯)2 

(5.12) 

 

The buoyancy term for ideal gas approximation is given: 

𝐺𝑏 = −
𝜇𝑡

𝜌𝜎𝑡

𝜕𝜌

𝜕𝑇
(∇𝑇. 𝒈) 

(5.13) 

 

where S is the modulus of the mean strain rate tensor:  

S =  |𝐒| = √2𝐒: 𝐒 (5.14) 

 

where S is given below:  

 𝐒 =
1

2
(𝛁𝐯 + ∇𝐯𝑻) 

 

(5.15) 

The turbulent viscosity is given as:  

𝜇𝑡 = 𝜌𝐶𝜇

𝑘2

𝜖
 

(5.16) 

where 𝐶𝜇 is computed as:  

𝐶𝜇 =
1

𝐴0 + 𝐴𝑠𝑈(∗) 𝑘
𝜖 

 

 

(5.17) 

where 𝑈(∗) is given below as a function of the strain rate tensor, S, and the rotation rate 

tensor, W. 
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𝑈(∗) = √𝐒: 𝐒 − 𝐖: 𝐖 (5.18) 

𝐖 =
1

2
(𝛁𝐯 − ∇𝐯𝑻) 

 

(5.19) 

 

Table IV: Model Coefficients of Realizable 𝑘 − 𝜖 Turbulence Model 

 

𝑨𝟎 𝑨𝒔 𝚽 𝑾 

4.0 √6 cosϕ 1

3
acos (√6𝑊) 𝑊 =

𝑆𝑖𝑗𝑆𝑗𝑘𝑆𝑘𝑖

√𝑆𝑖𝑗𝑆𝑖𝑗

3  

𝑪𝝐𝟏 𝑪𝝐𝟐 𝝈𝒌 𝝈𝝐 

Max(0.43,
𝜂

5+𝜂
) 1.9 1.0 1.2 

 

The model coefficients of the Realizable 𝑘 − 𝜖 Turbulence Model are given in Table IV. 

 

V.4.2.2 K-Omega SST Model 

The K-Omega (𝑘 − 𝜔) turbulence model is developed by D.C. Wilcox as an 

alternative to the 𝑘 − 𝜖 model. Two transport equations are solved for the turbulent 

kinetic energy, 𝑘 and for specific dissipation rate, 𝜔, that is the dissipation rate per unit 

turbulence kinetic energy (𝜀/𝑘). One reported advantage of the 𝑘 − 𝜔 model over the 

𝑘 − 𝜖 is higher accuracy when there are adverse pressure gradients applied to the 

boundary layers (Wilcox, 1998). However the model has a significant drawback for 
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internal flows because of the excessive sensitivity of 𝜔 in free stream that results in 

severe sensitivity at the inlet boundary condition specifically for internal flows.  

The disadvantage of the 𝑘 − 𝜔 model was examined by (Menter, 1994). The 𝜀 transport 

equation of standard 𝑘 − 𝜖 model is converted to 𝜔 transport equation. The transformed 

equation includes an extra term that is non-conservative cross-diffusion. This 

transformation may give similar results to the 𝑘 − 𝜖 model. However, the SST-model 

has a blending function that includes the cross diffusion term far from wall. As a result 

of this blending, the 𝑘 − 𝜔 SST model switches to 𝑘 − 𝜖 model at the core region of the 

flow and to 𝑘 − 𝜔 model at the near wall region.  

 

d

dt
∫ ρ𝑘

V

𝑑V +  ∮ ρ𝑘(𝐯 − 𝐯g) ⋅ 𝑑𝐚

A

= ∫(𝜇 + 𝜎𝑘𝜇𝑡)∇k . 𝑑𝒂

V

+ ∫[𝐺𝑘 − γ′ρβ∗𝑓β∗((ω𝑘 − 𝜔0𝑘0))  + S𝑘]

V

𝑑V          

 

 

(5.20) 

  

d

dt
∫ ρ𝜔

V

𝑑V +  ∮ ρ𝜔(𝐯 − 𝐯g) ⋅ 𝑑𝐚

A

= ∫(𝜇 + 𝜎𝜔𝜇𝑡)∇ω . 𝑑𝒂

V

+ ∫(𝐺𝜔 − ρβ𝑓β(ω2 − 𝜔 0
2) + 𝐷𝜔 + S𝜔)

V

𝑑V 

 

 

(5.21) 
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where S𝑘 and  S𝜔 are the user-specified source terms. As it can be seen in transport 

equations for k − ω  SST model, the buoyancy term is not implemented in STAR-

CCM+ 9.04. The buoyancy term is implemented into the turbulence kinetic energy 

equation by using user-specified source term option as given below. 

 

𝐺𝑏 = −
𝜇𝑡

𝜌𝜎𝑡

𝜕𝜌

𝜕𝑧
𝒈 

 

(5.22) 

 

where turbulence production of ω is evaluated as: 

 

𝐺𝜔 = 𝜌𝛾 [(𝑆2 −
2

3
(∇. 𝐯)2) −

2

3
ω∇.  𝐯] 

 

(5.23) 

 

where 𝛾 is a blended coefficient of the model and S is the modulus of the mean strain 

rate tensor. The model coefficients of the SST model are given in Table V. 

 

 

Table V: Model Coefficients of 𝒌 − 𝝎 SST Turbulence Model 

 

𝜿 𝜷∗ 𝜷𝟏 𝝈𝒌𝟏 

0.41 0.09 0.075 0.85 

𝝈𝝎𝟏 𝜷𝟐 𝝈𝒌𝟐 𝝈𝝎𝟐 

0.5 0.0828 1.0 0.856 
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V.5 Reynolds-Stress Model 

The Boussinesq eddy viscosity approach to model the Reynolds Stress tensor is 

extensively used for turbulence modeling. For instance, it is used for two equation 

models as explained in part 5.2. The approach is able to give accurate results, when the 

turbulence structure of the meant flow is isotropic due to the Boussinesq hypothesis. The 

erosion of the stratified layer by a buoyancy layer has a non-isotropic characteristic. It is 

violating the eddy viscosity approach for isotropic Reynolds Stress Tensor (RST). On 

the other hand, the Reynolds Stress model (Launder et al., 1975) is solving all 

components of the RST. This model accounts for the anisotropy due to sudden changes 

in the strain rate and secondary flows in ducts. However, non-isotropic stress tensors are 

considered only in the momentum equations. The turbulent mass flux term in the species 

equation is treated still as isotropic. The RSM model requires to solve seven equations in 

three dimensions that require higher computational time and memory than two-equation 

models. Six of the nine components of the RST must be solved due to symmetry. In 

addition to the six component of the RST, the turbulence dissipation term is treated as 

isotropic just as in the Standard 𝑘 − 𝜖. The specific Reynolds stress tensor 𝐑 = 𝐯′
𝒊𝐯𝒋′̅̅ ̅̅ ̅̅ ̅ is 

computed by the transport equation as given:  
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d

dt
∫ ρ𝐑

V

𝑑V +  ∮ ρ𝐑(𝐯 − 𝐯g) ⋅ 𝑑𝐚

A

= ∫ 𝐃 . 𝑑𝒂

V

+ ∫ [P + G −
2

3
𝛒𝐈 (ϵ + γ𝑀) + Φ    𝐒𝐑]

V

𝑑V          

 

(5.23) 

 

where the terms are the diffusion, turbulent production, buoyancy production, turbulent 

dissipation, dilatation dissipation, pressure strain and user-specified source. 

 

Reynolds Stress Diffusion: 𝐃 = (μ +  
μt

𝜎𝑘
) ∇𝐑 

 

Turbulent production: 𝐏 = −ρ(𝐑 . ∇ 𝐯𝑻 + ∇. 𝐑𝑻) 

 

Buoyancy Production (for varying density case): 𝐆 =
𝜇𝑡

𝜌𝜎𝑡
(𝐠 ⊗ ∇ρ + ∇ ρ ⊗ 𝐠) 

 

Dilatation Dissipation Rate: γ𝑀 = 𝐶𝑀 𝑘 𝜖/𝑐2   c is the speed of sound, 𝐶𝑀 = 2 

 

The pressure strain term modeling is the greatest problem for the RSM. There are 

three different approach in the CFD tools. Linear Pressure Strain, Linear Pressure Strain 

Two Layer, and Quadratic Pressure Strain. The Linear Pressure Strain Two Layer 

formulation was used for fair comparison as a part of the turbulence model sensitivity 

study due to blending wall layer approach. The model coefficients for Linear Pressure-

Strain Two Layer are given in Table VI. 
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Table VI: Model Coefficients of RSM  

 

𝑪𝟏 𝑪𝟐 𝑪𝟏𝒘 𝑪𝟐𝒘 

1+2.58 a 𝑎2
1/4(1-

exp[(-0.0067𝑅𝑒𝑡)2] 

0.75√𝑎 
−

2

3
𝐶1 + 1.67 𝑚𝑎𝑥(

4𝐶2 − 1

6𝐶2
, 0) 

𝑅𝑒𝑡 𝒂 𝒂𝟐 𝒂𝟑 

𝑘2

𝜖v
  1 −

9

8
(𝑎2 − 𝑎3) 

A:A (A is 

anisotropy tensor) 

𝐴𝑖𝑘𝐴𝑘𝑗𝐴𝑗𝑖  

 

 

V.6 Large Eddy Simulation 

Large Eddy Simulation (LES) is a technique for direct simulation of the large 

eddies. It is based on Kolmogorov’s theory. According to the theory, large eddies are 

dependent on the dimension of the flow domain while the smaller scales of the 

turbulence are less dependent on the dimension of the flow domain. As a result, the 

smaller scale can be modeled while larger scales are solved directly. This assumption 

allows to compromise between accuracy and computational cost. The resolved enegy 

spectrum of the eddies is shown in Figure 22. 
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Figure 22: Energy spectrum of Eddies 

 

 

Mathematically, the LES model uses a filter for the Navier-Stokes equations that 

separates scales smaller than grid size and larger than grid size. The larger scales are 

solved directly while the smaller scales are modeled with subgrid-scale (SGS) models. 

The general filtering operation is introduced by Leonard  

 

𝑼̅(𝑥, 𝑡) = ∫ 𝐺(𝑟, 𝑥) 𝑼(𝑥 − 𝑟, 𝑡)𝑑𝒓 
(5.23) 

 

where 𝐺 is a kernel filter function that satisfy the normalization condition. If it is 

integrated over the entire flow domain, the result of integration is equal to unity .The 

velocity field has the decomposition and the variables represents the grid-scale and 

subgrid-scale part as:  
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𝑼(𝑥, 𝑡) = 𝑼̅(𝑥, 𝑡) + 𝒖′(𝑥, 𝑡) (5.24) 

 

Substitution of the decomposed velocity (and pressure) into the continuity and Navier-

Stokes equations and applying a filter give the equations of motion for the resolved field. 

 

 

Continuity Equation: 
𝜕 𝑈𝑖 ̅̅̅̅

𝜕𝑥𝑖
= 0 

 

(5.25) 

 

Momentum Equations: 
𝜕𝑈̅𝑗

𝜕𝑡
+

𝜕 𝑈𝑖𝑈𝑗 ̅̅ ̅̅ ̅̅

𝜕𝑥𝑖
= ν

𝜕2 𝑈̅𝑗

𝜕𝑥𝑖𝜕𝑥𝑖
−

1

𝜌

𝜕𝑝̅

𝜕𝑥𝑖
+

1

𝜌

𝜕𝜏𝑖𝑗

𝜕𝑥𝑖
   

 

(5.26) 

 

𝜏𝑖𝑗 is modeled with Wall-Adapting Local-Eddy Viscosity (WALE) Subgrid Scale model 

(Nicoud and Ducros, 1999). The model has advantage of lower sensitivity to the model 

coefficient while the Smagorinsky SGS model is more sensitive. This advantage is 

reported in the user manual (STAR-CCM+, 2014). WALE is selected based on this fact 

to prevent bias for turbulence model sensitivity analysis.  
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CHAPTER VI 

RESULTS 

 

The post-process analysis has been done by processing of more than 80.000 CSV 

formatted files by writing a MATLAB code. As a long time transient analysis, the 

excessive storage is required. However storage of all simulation file with 1 second 

interval requires 7200 simulation files for all simulations requiring about 400 Terabytes 

hard-drive space, which is enormous for even research level studies. In addition to that, 

writing of the simulation file to the hard-drive causes significant delay. As a solution, the 

monitor points are created to extract only chosen parameter at the defined points as CSV 

formatted output files. The selected monitor points for present study can be seen in  

Chapter II of this thesis. 

 

VI.1 𝐤 − 𝛚  SST Results 

In this part of Chapter VI, the results of the simulation by using the 𝑘 − 𝜔 SST 

turbulent model will be discussed including a grid sensitivity analysis. 

 

VI.1.1 Mole Fraction Results 

First step is the comparison of the helium concentrations from both numerical 

and experimental studies at different locations and at different time steps. Since, the 

current study focus on the erosion of the stratified layer, the concentration of the gas 

mixture along the jet axis must be investigated during transient. Figures 23-32 show the 
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time dependent mole fraction of the helium in the stratified layer to evaluate the 𝑘 − 𝜔 

SST turbulent model and the effect of the grid resolution to evaluate the stratification.  

 

 

 

Figure 23: Mole fraction of helium vs. time (s) for mesh sensitivity at point TR-1 
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Figure 24: Mole fraction of helium vs. time (s) for mesh sensitivity at point TR-2 

 

 

Figure 25: Mole fraction of helium vs. time (s) for mesh sensitivity at point TR-3 
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Figure 26: Mole fraction of helium vs. time (s) for mesh sensitivity at point TR-4 

 

 

Figure 27: Mole fraction of helium vs. time (s) for mesh sensitivity at point TR-5 
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Figure 28: Mole fraction of helium vs. time (s) for mesh sensitivity at point TR-6 

 

 

Figure 29: Mole fraction of helium vs. time (s) for mesh sensitivity at point TR-7 
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Figure 30: Mole fraction of helium vs. time (s) for mesh sensitivity at point TR-8 

 

 

Figure 31: Mole fraction of helium vs. time (s) for mesh sensitivity at point TR-9 
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Figure 32: Mole fraction of helium vs. time (s) for mesh sensitivity at point TR-10 

 

 

The grid sensitivity study show that the grid resolution has more significant 

affect for the region that has stronger density gradient. The erosion at the lower part of 

the stratified layer are closer for both coarse and fine grid as shown at points TR-1 , TR-

2  and TR-3. However, the mole fraction of the helium for the different grid resolution 

shows higher variation at the upper region of the stratified layer due to the higher density 

gradient. For instance TR-7, TR- 8 and TR-9 points proved that. The higher density 

gradient at the upper region causes higher fluctuation on the velocity due to body force 

term, which has a multiplication of the density difference between cell value and the 

reference density value. The mesh refinement in the mixing region was applied 
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uniformly. The sensitivity results indicated that the axial variation of the refinement 

level helps to obtain higher accuracy results with less computational cost. The base size 

of the cells has to decrease with the increasing density gradient. 

In addition to the stratified layer, the mole concentration were measured at 

different locations in the PANDA vessel to evaluate the global mixing of the gas 

components as show in Figures 33-38. Specifically, Figure 36, Figure 37 and Figure 38 

presents the mixing results far from the jet injection axis near to the vessel wall. The 

mixing at those points are driven by the reversed flow after jet hit the stratified layer. 

Therefore, the difference between coarse and fine mesh results are not significant in the 

first 4000 seconds of the simulation, after this point the results are slightly different due 

to faster diffusion of the coarse mesh at the higher gradient region. This can be observed 

at the outlet of the vessel as given in Figure 38. Overall, the results for global mixing and 

erosion of the stratified layer concluded that the fine grid can be used for the rest of the 

study. The mixing and the erosion of the gas components are well predicted except at the 

point MS-9 as shown in Figure 35. The possible reason is the wall treatment at the 

region above MS-9. In this region wall has stronger effect on the flow than rest of the 

domain. The finer resolution of the near-wall region at the top of the vessel might solve 

this slower diffusion. 
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Figure 33: Mole fraction of helium vs. time (s) for mesh sensitivity at point MS-1 

 

 

Figure 34: Mole fraction of helium vs. time (s) for mesh sensitivity at point MS-2 
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Figure 35: Mole fraction of helium vs. time (s) for mesh sensitivity at point MS-9 

 

 

Figure 36: Mole fraction of helium vs. time (s) for mesh sensitivity at point MS-12 
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Figure 37: Mole fraction of helium vs. time (s) for mesh sensitivity at point MS-15 

 

 

Figure 38: Mole fraction of helium vs. time (s) for mesh sensitivity at point MS-19 
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VI.1.2 Velocity and Turbulent Kinetic Energy Results 

The velocity and turbulent kinetic energy data are averaged over a time period of 

204.6 s by using PIV data. The CFD simulation results are averaged over an equal time 

period. The solution time will refer to the time in the middle of this averaging period. 

Solution time for HVY-3, HVY-5, VVY-1 and TKE-2 are 1213, 1795, 111, 1213 

seconds respectively as shown in Figures 39-42.   

 

 

 

Figure 39: Averaged axial velocity profile for mesh sensitivity at 1213 s. 
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Figure 40: Averaged axial velocity profile for mesh sensitivity at 1795 s. 

 

 

Figure 41: Averaged axial velocity profile for mesh sensitivity at 111 s. 
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Figure 42: Averaged turbulent kinetic energy on a horizontal line (TKE-2) at 1213 s. 

 

 

The results show that at the bottom part of the stratified layer is good agreement 

with the experimental data. But the velocity at the upper part of the layer is 

underestimated. While the diffusion of the gas components are well predicted, the 

velocities are underestimated. This can be explained by the diffusion mechanism. The 

diffusion of the gas components is compensated by the turbulent diffusion at the upper 

region of the stratified layer, while the lower part of the layer has a better balance 

between turbulent diffusion and laminar diffusion. This can be confirmed by the vertical 

profile of the axial velocity as shown in Figure 41. 
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The specification of the experiment reported that the all external surfaces have 

been insulated perfectly and the heat loss was examined by an independent experiment. 

The steam (145 0C) was injected to the vessel and the cool-down was measured for two 

days. The report indicated that heat loss for actual experiment is too small. However, the 

temperature results proved that the heat losses cannot be neglected as shown in Figure 

43 and Figure 44. At the beginning of the experiment, the temperature was predicted 

with good agreement, after a thousand seconds, the temperature was over predicted due 

to neglected heat transfer from the vessel surface.  

  

 

Figure 43: Temperature (0C) vs. time (s) for mesh sensitivity at point TC-3 

VI.1.3 Temperature Results  
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Figure 44: Temperature (0C) vs. time (s) for mesh sensitivity at point TC-5 

 

 

VI.2 Realizable 𝐤 − 𝛜 Results 

The results of the simulation results by using Realizable 𝑘 − 𝜖 turbulence model 

will be discussed in this part by comparing the numerical and experimental results. In 

this part only fine grid is used. It is expected that the Realizable 𝑘 − 𝜖 turbulence model 

with two-layer approach predicts similar mixing results with 𝑘 − 𝜔 SST turbulence 

model. The reason is that the SST model is using the  𝑘 − 𝜖 model in the center of the 

flow domain, while it is using standard 𝑘 − 𝜔 near wall region.  
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VI.2.1 Mole Fraction Results 

The following Figures 45-54 show that the mole fraction of the helium in the 

stratified layer to evaluate the Realizable 𝑘 − 𝜖 turbulence model including comparison 

with 𝑘 − 𝜔 SST fine grid results. The both models result in identical result at the lower 

portion of the stratified layer, while 𝑘 − 𝜔 SST performed better at the higher density 

gradient region of the stratified layer.  

 

 

 

Figure 45: Mole fraction of helium vs. time (s) for Realizable 𝒌 − 𝝐 model at TR-1 
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Figure 46: Mole fraction of helium vs. time (s) for Realizable 𝒌 − 𝝐 model at TR-2 

 

 

Figure 47: Mole fraction of helium vs. time (s) for Realizable 𝒌 − 𝝐 model at TR-3 



 

83 

 

 

Figure 48: Mole fraction of helium vs. time (s) for Realizable 𝒌 − 𝝐 model at TR-4 

 

 

Figure 49: Mole fraction of helium vs. time (s) for Realizable 𝒌 − 𝝐 model at TR-5 
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Figure 50: Mole fraction of helium vs. time (s) for Realizable 𝒌 − 𝝐 model at TR-6 

 

 

Figure 51: Mole fraction of helium vs. time (s) for Realizable 𝒌 − 𝝐 model at TR-7 
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Figure 52: Mole fraction of helium vs. time (s) for Realizable 𝒌 − 𝝐 model at TR-8 

 

 

Figure 53: Mole fraction of helium vs. time (s) for Realizable 𝒌 − 𝝐 model at TR-9 
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Figure 54: Mole fraction of helium vs. time (s) for Realizable 𝒌 − 𝝐 model at TR-10 

 

 

Overall the erosion process is predicted with higher accuracy by 𝑘 − 𝜔 SST 

model. However, at the top manhole region of the vessel in narrower than the rest of the 

flow domain. Consequently, the wall effect at this region is stronger and two layer h 

Realizable 𝑘 − 𝜖 model with buoyancy model in the near wall layer is predicting better 

only at this point than SST model as shown in Figure 55. The rest of the point predicted 

similar results as shown in Figures 55-58. 
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Figure 55: Mole fraction of helium vs. time (s) for Realizable 𝒌 − 𝝐 model at MS-9 

 

 

Figure 56: Mole fraction of helium vs. time (s) for Realizable 𝒌 − 𝝐 model at MS-12 
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Figure 57: Mole fraction of helium vs. time (s) for Realizable 𝒌 − 𝝐 model at MS-15 

 

 

Figure 58: Mole fraction of helium vs. time (s) for Realizable 𝒌 − 𝝐 model at MS-19 
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VI.2.2 Velocity and Turbulent Kinetic Energy Results 

The velocity and turbulent kinetic energy data are averaged over a time period of 

204.6 s. The solution time will refer to the time in the middle of this averaging period. 

Solution time for HVY-3, HVY-5, VVY-1 and TKE-2 are 1213, 1795, 111, 1213 

seconds respectively. As shown in Figures 59-61, the time averaged axial velocities are 

slightly under-predicted for both models. The averaged axial velocity on the horizontal 

line (HVY-3) is in better agreement with the experimental data than HVY-5. The 

location of the HVY-5 is higher than HVY-3 and 582 seconds late. While the velocities 

are under predicted, the mixing of the as components are predicted with good agreement. 

This case show that the components of the multi-species equation should be investigated 

due to less convection diffusion and more turbulent diffusion. In TKE-2 turbulent kinetic 

energy distribution shows high variation between two models as shown in Figure 62. It 

is underestimated by Realizable 𝑘 − 𝜖 and. The better prediction of turbulent kinetic 

energy for the SST k-ω resulted in also better prediction of the erosion of the stratified 

layer. 
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Figure 59: Averaged axial velocity profile for Realizable 𝒌 − 𝝐 model at 1213 s. 

 

 

Figure 60: Averaged axial velocity profile for Realizable 𝒌 − 𝝐 model at 1795 s. 
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Figure 61: Averaged axial velocity profile for Realizable 𝒌 − 𝝐 model at 111 s. 

 

 

Figure 62: Turbulent kinetic energy profile for Realizable 𝒌 − 𝝐 model at 1213 s. 
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VI.2.3 Temperature Results  

 The temperatures are over predicted due to neglecting heat transfer from the 

vessel wall and temperature at two different locations for both models are consistent 

with each other as shown in Figure 63 and Figure 64. 

 

 

 

Figure 63: Temperature (0C) vs. time (s) for Realizable 𝒌 − 𝝐 model at point TC-3 
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Figure 64: Temperature (0C) vs. time (s) for Realizable 𝒌 − 𝝐 model at point TC-5 

 

 

VI.3 Reynolds Stress Model Results 

 In this section all results of the RANS models including eddy viscosity and 

Reynolds Stress model with fine grid are presented and discussed. 

 

VI.3.1 Mole Fraction Results 

The Reynolds Stress Model (RSM) is developed to account anisotropy for the 

Reynolds stress tensor (RST). In general two equation models do not account for 

anisotropy due to isotropic eddy viscosity assumption in the model. However, the RSM 

has a numerical stability problem due to the stiffness of the RST equations. In the RSM 

simulation, the interactions of the incoming jet and the stratified layer caused stability 
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problems due to density gradient, specifically, at the time of the incoming jet reached at 

the upper level of the stratified layer. It can be seen in Figures 65-74 (after 4000 

seconds). After 4000 seconds, the sharp density gradient in axial direction, and zero 

density gradient in radial direction causes more stability problem due to the stronger 

anisotropy of the RST components.  

 

 

 

Figure 65: Mole fraction of helium vs. time (s) for RSM at TR-1 
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Figure 66: Mole fraction of helium vs. time (s) for RSM at TR-2 

 

 
Figure 67: Mole fraction of helium vs. time (s) for RSM at TR-3 



 

96 

 

 
Figure 68: Mole fraction of helium vs. time (s) for RSM at TR-4 

 

 
Figure 69: Mole fraction of helium vs. time (s) for RSM at TR-5 
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Figure 70: Mole fraction of helium vs. time (s) for RSM at TR-6 

 

 

Figure 71: Mole fraction of helium vs. time (s) for RSM at TR-7 
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Figure 72: Mole fraction of helium vs. time (s) for RSM at TR-8 

 

 

Figure 73: Mole fraction of helium vs. time (s) for RSM at TR-9 
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Figure 74: Mole fraction of helium vs. time (s) for RSM at TR-10 

 

 

After 4000 seconds the simulation for RSM crashed and restarted several times. 

Even extra cost of the solving extra five transport equations for RSM to consider 

anisotropy, the general erosion prediction is not better than isotropic eddy viscosity 

based RANS models as shown in Figures 75-80. 
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Figure 75: Mole fraction of helium vs. time (s) for RSM at MS-1 

 

 

Figure 76: Mole fraction of helium vs. time (s) for RSM at MS-2 
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Figure 77: Mole fraction of helium vs. time (s) for RSM at MS-9 

 

 
Figure 78: Mole fraction of helium vs. time (s) for RSM at MS-12 
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Figure 79: Mole fraction of helium vs. time (s) for RSM at MS-15 

 

 
Figure 80: Mole fraction of helium vs. time (s) for RSM at MS-19 
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Overall, the RANS simulations showed good agreement with the experimental 

data for the erosion of the stratified layer and global mixing of the air-helium mixture, 

specifically, the modified k-ω SST showed good performance to predict the erosion 

process. The Realizable k-ϵ predicted better than k-ω SST only at the point MS-9. Above 

this point, the mixing is affected by the wall and the possible reason is the 

implementation of the all y+ wall model. The uncertainty of the mole fraction 

measurement is 0.5%. 

 

VI.3.2 Velocity and Turbulent Kinetic Energy Results 

The velocity and turbulent kinetic energy data are averaged over a time period of 

204.6 s. The solution time will refer to the time in the middle of this averaging period. 

Solution time for HVY-3, HVY-5, VVY-1 and TKE-2 are 1213, 1795, 111, 1213 

seconds respectively. As shown in Figures 81-83, the time averaged axial velocities are 

slightly under-predicted for all RANS models except the RSM. The velocities are 

generally overestimated for the RSM model. On the other hand, the shape of the velocity 

profile for the RSM model is not matched with the experimental data while the shape of 

the other models matched with experimental data. The averaged axial velocity on the 

horizontal line (HVY-3) is in better agreement with the experimental data than HVY-5. 

The location of the HVY-5 is higher than HVY-3 and 582 seconds late. The potential 

reason of the underestimation of the averaged velocity may be related with 

underestimation of the approaching velocity of the incoming jet and overestimation of 

the turbulent viscosity. Because at this time the mixing process of the gas components 
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are predicted with good agreement. This phenomena show that the components of the 

multi-species equation should be investigated due to less convection diffusion and more 

turbulent diffusion. In TKE-2 turbulent kinetic energy distribution shows high variation 

for different models as shown in Figure 84. It is overestimated by RSM and 

underestimated by the Realizable k-ϵ. The better prediction of turbulent kinetic energy 

for the SST k-ω resulted in also better prediction of the erosion of the stratified layer. 

 

 

 

Figure 81: Averaged axial velocity profile for RSM at 1213 s. 
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Figure 82: Averaged axial velocity profile for RSM at 1795 s. 

 

 

Figure 83: Averaged axial velocity profile for RSM at 111 s. 
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Figure 84: Averaged turbulent kinetic energy profile for RSM at 1213 s. 

 

 

VI.3.3 Temperature Results  

Even though the test specifications indicated that heat loss for actual experiment 

is too small, the temperatures for all turbulent models are overestimated as shown in 

Figure 85 and Figure 86. At the beginning of the experiment, the temperature was 

predicted with good agreement, after a thousand seconds, the temperature was over 

predicted due to neglected heat transfer from the vessel surface. Additionally, the 

temperature at point TC-5, which is located off-jet axis, shows excessive heating for 

RSM model. 

 



 

107 

 

 

Figure 85: Temperature (0C) vs. time (s) for RSM at point TC-3 

 

 

Figure 86: Temperature (0C) vs. time (s) for RSM at point TC-5 
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VI.4 Large Eddy Simulation Results 

In Figure 87-92 the comparison of the LES and k-ω SST simulation are shown 

for the mole fraction of helium at the stratified layer along the jet axis and time-averaged 

axial velocity on a horizontal (HVY-3) and vertical line(VVY-1) in Figure 93 and Figure 

94, respectively. The Large Eddy simulation is normally expected to yield results that 

agree more closely with experimental data due to its higher fidelity. It is resolving larger 

scales while modeling smaller scales.  

 

 

 

Figure 87: Mole fraction of helium vs. time (s) for LES at point TR-1 
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Figure 88: Mole fraction of helium vs. time (s) for LES at point TR-2 

 

 

Figure 89: Mole fraction of helium vs. time (s) for LES at point TR-3 
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Figure 90: Mole fraction of helium vs. time (s) for LES at point TR-4 

 

 

Figure 91: Mole fraction of helium vs. time (s) for LES at point MS-12 
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Figure 92: Mole fraction of helium vs. time (s) for LES at point MS-15 

 

 

However, in the present study, the LES simulation resulted in faster erosion of 

the stratified layer. The reason of the faster erosion is because of the higher expansion 

velocity of the jet. The velocity of the jet in the centerline is higher than both 

experimental and numerical data from RANS simulations. Even a fully-developed 

boundary condition is applied at the inlet boundary, it is still overestimated. This 

problem could be overcome without modeling injection pipe but due to time restriction it 

is not simulated for present study. As a result of that, the rate of the erosion of the 

stratified layer is weakly depend on the average of the axial velocity at the exit of the 
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injection pipe. But it is strongly depend on the jet centerline velocity at the exit. This is 

also confirmed with k-ω SST simulations during this study. 

 

 

 

Figure 93: Averaged axial velocity profile for LES at 1213 s. 
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Figure 94: Averaged axial velocity profile for LES at 111 s. 

 

 

 As a result of the higher jet centerline velocity, higher averaged velocities are 

obtained and higher convection results in faster erosion and the mixing of the air-helium 

gas mixtures. 

 

VI.5 Turbulent Schmidt Number Sensitivity Results 

 The turbulent Schmidt number is the dimensionless number that defines the ratio 

between the rates of turbulent transport of momentum and the turbulent transport of 

mass. It appears in the buoyancy term in the turbulent kinetic energy and in the species 

transport equation. When the flow is in the turbulent region, the mass transport is driven 

by the convective, molecular and turbulent diffusion. In the present study, the mass 
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transport is dominated by the turbulent diffusion. Turbulent diffusion term in the species 

equation has the turbulent Schmidt number (ScT) in its denominator. This number is 

used as 0.9 as default for STAR-CCM+ 9.04 for all analysis in this thesis. However, the 

other well-known CFD codes are used the different variations of it such as 0.7. In this 

part of thesis, the turbulent Schmidt number sensitivity analysis is conducted. Due to the 

computational cost, only coarse mesh is used with k − ω  SST turbulence model. 

 The results show that the variation of the turbulent Schmidt number has strong 

effect at the beginning of the interaction of the jet with the layer. As show in Figure 95, 

Figure 96, Figure 97 and Figure 98, when the jet penetrates the layer about 1000 

seconds, the turbulent kinetic energy is at highest level due to the scattering of the 

incoming jet. As a result of the higher turbulent kinetic energy, the turbulent diffusion is 

stronger at this time period. However, in the long term mixing, the effect is less 

significant. When the experimental data is considered with 1% uncertainty in the 

measurement of the mole concentration, one can conclude the use of 0.9 for turbulent 

Schmidt number results in higher accuracy. 
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Figure 95: Mole fraction of helium vs. time at point TR-1 for ScT 0.7 and ScT 0.9 

 

 

Figure 96: Mole fraction of helium vs. time at point TR-2 for ScT 0.7 and ScT 0.9 
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Figure 97: Mole fraction of helium vs. time at point TR-3 for ScT 0.7 and ScT 0.9 

 

 

Figure 98: Mole fraction of helium vs. time at point TR-5 for ScT 0.7 and ScT 0.9 
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VI.6 Qualitative Analysis of Turbulent Models 

As shown in Figure 99 and Figure 100, the mixing and erosion characteristic for 

all RANS models are similar to each other, while the LES results is not. The reason of 

this difference is based on the jet expansion velocity. Over prediction of the jet 

expansion velocity caused the faster erosion and of the stratified layer. One can also note 

that the higher jet centerline velocity decrease the reversed flow due to buoyancy force 

from the stratified layer. It is well known that LES is strongly sensitive to the inlet 

boundary condition. The overestimation of the expansion velocity should be investigated 

in more detail. One of the potential reason is the numerical diffusion due to flow from 

small pipe into the much greater flow domain.  

 

 

 
Figure 99: Qualitative comparison of the turbulent models at t=30 s. 

 

 

 

One other interesting finding of the qualitative comparison is the narrow jet width for 

RSM as shown in Figure 99. This case is observed in averaged axial velocities along the 
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horizontal line. Even the erosion rate predictions are similar to the other RANS models, 

the RSM model prediction for the shape of the injecting jet. 

 

  

 

Figure 100: Qualitative comparison of the turbulent models at t=300 s. 

 

 

 

Figure 100 also shows that the two-equation models showed similar erosion and mixing 

prediction with RSM even with their isotropic eddy-viscosity assumption. At the same 

time, the computational cost of the two equations models is less than RSM. However, 

the RSM models may perform better than two-equation model for stronger anisotropic 

flow. It needs further investigation. 
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CHAPTER VII 

CONCLUSION 

 

The LES simulation was conducted by using the fine grid, which was used also 

for the RANS simulations. The preliminary LES results indicated that the modeling of 

the injection pipe must be carried out carefully due to jet velocity at the exit of the 

injection pipe. The exit velocity was computed by LES simulation about 7.5% higher 

than 𝑘 − 𝜔 SST simulation with the identical grid. The RANS simulations indicated the 

same problem for different turbulent models with smaller variations than LES model.  

𝑘−𝜔 SST with the buoyancy term showed good agreement with experimental 

data for the erosion of the layer and global mixing, which are the main purpose of the 

validation. The grid refinement is very crucial in the interaction region of the jet and 

stratified layer. Realizable 𝑘−𝜖 showed similar results with the 𝑘−𝜔 SST for the erosion 

of the layer and global mixing. In general, the SST performed better due to advantage of 

the blending of the two different models. 

 The results of the RANS simulation showed that the centerline velocity of the jet 

at the exit of the pipe significantly affected the rate of erosion of the stratified layer. A 

5% increase of the jet centerline velocity resulted in the erosion of the middle region of 

the stratified layer to be about 1000 seconds earlier. The PANDA test specification also 

contains the PIV data at the exit of the injection pipe. The boundary conditions were 

modified to match with the experimental PIV data. The difference of the jet expansion 

velocity may be caused by the different implementation of the near-wall treatments.  
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A sensitivity study was conducted to investigate the effect of the near wall 

modeling on the velocity. The velocity results at the outlet of the pipe were compared 

against the experimental data. The velocities at the outlet of the pipe were higher than 

experimental measurements for both turbulent models. Since the outlet velocity has great 

effect on the evolving of the erosion process, the injecting pipe modeling for the safety 

analyses must be carefully conducted. 

𝑘 − 𝜔 SST model is used to investigate the effect of the variation of the turbulent 

Schmidt number. The results show that the variation of the turbulent Schmidt number 

has strong effect at the beginning of the interaction of the jet with the stratified layer and 

negligible effect in the long term mixing. 

While, the RSM considered the anisotropic Reynolds Stresses, the isotropic 

eddy-viscosity based models showed better agreement with the experimental data and 

with less computational cost. Despite the very high computational cost of the LES, it 

resulted in earlier erosion of the stratified layer. The reason of earlier erosion is the over-

estimation of the jet centerline velocity. Overall, 𝑘 − 𝜔 SST showed good agreement 

with the experimental data except for temperature due to adiabatic assumption. The 𝑘 −

𝜔 SST model can be used for full-containment safety analysis with a reasonable 

computational cost. 
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