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ABSTRACT

Recent years have witnessed the linear and nonlinear parabolized stability equations

(PSE) become a quintessential component toward understanding boundary-layer laminar-

to-turbulent transition. Because of the abundant benefits an accurate and trustworthy

computational analysis can provide, wind tunnel experiments are commonly supplemented

with such studies. Prompted by the rising need to develop a fast, modern, intuitive, and

user-friendly PSE code, this work describes the development, validation, and verification of

EPIC.

EPIC is a new Nonlinear Parabolized Stability Equation (NPSE) solver developed

in-house in our Computational Stability and Transition (CST) lab that will aid in the

study, understanding, and prediction of laminar-to-turbulent boundary layer transition

problems. This entirely new code is an improvement upon and is intended to replace

CST’s prior NPSE solver, called JoKHeR. PSE results computed for the NASA Langley

93-10 flared cone, Purdue compression cone, and SWIFTER airfoil are compared and

show successful agreement with published computational and experimental results. It is

expected that further application of a physics-based approach such as EPIC will lead to

more accurate prediction, smaller and more manageable uncertainties in design, and an

improved fundamental understanding of the laminar-turbulent transition process that will

lead to efficient control strategies.
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NOMENCLATURE

VARIABLES

α Disturbance Streamwise Complex Wavenumber

β Disturbance Spanwise Complex Wavenumber

βAZ Azimuthal Beta

η Uniform Normal Grid; η ∈ [0, 1]

γ Ratio of Specific Heats

κ Thermal Conductivity

λ Second Coefficient of Viscosity or Bulk Viscosity

µ Dynamic Coefficient Viscosity

Ω Pressure Gradient Coefficient

ω Disturbance Frequency

∂ξ Step Size

Φ Eigenvector for LST; [û; v̂; ŵ; T̂ ; ρ̂; α̂u; α̂v; α̂w; α̂T ]

φ Flow variables [u, v, w, T, ρ]

Ψ Normalization Parameter Function

ρ Density

θki Disturbance Growth Direction

θk Phase Angle

ξ Uniform Streamwise Grid; ξ ∈ [Xs0, Xsend]

a Computational Normal Grid Coefficient

b Computational Normal Grid Coefficient

C1 Sutherland’s Law Constant

C2 Sutherland’s Law Constant

Cp Specific Heat for Constant Pressure

Cv Specific Heat for Constant Volume
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h1, h2, h3 Streamwise Marching, Wall Normal, and Spanwise Curvilinear Metric

Coefficient, respectively

i =
√
−1

L Boundary-Layer Reference Length

M Mach Number

Nx Number of Streamwise Points

Ny Number of Normal Points

P Pressure

Pr Prandtl Number

Rc Radius of Curvature

Rg Specific Gas Constant

Re Reynolds Number

Sκ Sutherland’s κ Reference Constant

Sµ Sutherland’s µ Reference Constant

T Temperature

t Time

u, v, w Streamwise Marching, Wall Normal, and Spanwise Velocity, respectively

x, y, z Streamwise Marching, Wall Normal, and Spanwise Coordinate Direction,

respectively

Xs Streamwise Surface Distance

ycrit Used to Determine Computational Normal Grid Clustering

yc Clustered Computational Normal Grid; yc ∈ [0, ymax]

Z Compressibility Factor

SUBSCRIPTS

(n, k) Mode Number, where n and k are integer coefficients of the fundamental

ω0 and β0 respectively

0 Initial or Fundamental Value

e Edge or Reference Value
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i Imaginary Value

j The jth point of an array

r Real Value

SUPERSCRIPTS

′ Unsteady Disturbance Quantity

† Complex Conjugate

* Dimensional Value

- Steady Basic-State Term

˜ Slow-Mode
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I. INTRODUCTION

I.1 Historical Background

Edward Norton Lorenz, a chaos theory pioneer, once summarized his findings as ‘‘Chaos:

When the present determines the future, but the approximate present does not approximately

determine the future’’ [7]. Thus, it is fitting that while laminar flow is characterized by a

smooth and uninterrupted stream, turbulent flow is its chaotic antithesis. As history has

taught us, there could not be a more apt description of turbulence and its related processes

than Lorenz’s own definition.

Though keen observers had previously documented the differences between laminar and

turbulent flow, Osborne Reynolds was one of the first to publish about the phenomenon

known as laminar-to-turbulent transition. In perhaps his most famous experiment, Reynolds

studied water with streaks of color flowing through small glass tubes [38]. He observed that

the colored bands remained in the given streak pattern under laminar flow conditions, but

the streaks would diffuse and blend together under turbulent conditions. Reynolds noted

during his tests that the resulting flow was not determined by just one property. By varying

his initial flow conditions, Reynolds used a dimensionless quantity that combined all relevant

flow properties, which he penned as Reynolds Number, to help predict flow characteristics.

Reynolds noted the baseline criterion for when to expect laminar-to-turbulent transition to

occur was anywhere between Re = 2000− 13000 depending on how much care was given to

the initial conditions.

While studying the same pipe flow as Reynolds (later coined as Poiseuille flow), William

McFadden Orr [32, 33] and Arnold Sommerfeld [42] both independently developed what

would eventually be known as the Orr-Sommerfeld equation. This equation attempted to

prove that a critical Reynolds number could be solved for, suggesting that any portion of a

flow could theoretically be determined as laminar or turbulent based on its characteristics.

The Orr-Sommerfeld equation assumes that a small disturbance, possibly originating from
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an irregularity in the flow or wall roughness, acts upon a laminar flow and can be modeled

as a perturbation. If this perturbation is shown to grow, the flow is determined to be

unstable and turbulence is assumed to occur. Despite intricate calculations, the problem

would remain unsolved for a number of years.

In 1905, Ludwig Prandtl revolutionized the fluid mechanics field with his concept of

the boundary layer. A boundary layer is the small fluid layer nearest to the surface that

experiences substantial viscosity effects and is responsible for the majority of drag. Prandtl

theorized that one could study the flow of a fluid by separating it into two layers. Viscosity

was crucial for the flow within the boundary layer, but the outside layer could be treated

as inviscid, vastly simplifying the Navier-Stokes equations associated with both flows. This

revelation, however, did little more at the time than provide plausibility answers to many of

the prevalent questions and paradoxes. The first mathematical application of the boundary

layer was in 1908 when Prandtl’s first student, Paul Richard Heinrich Blasius, used it to

justify solving the Navier-Stokes equations with an order-of-magnitude analysis [5]. The

resulting Blasius boundary layer describes the steady, two-dimensional boundary layer of a

semi-infinite flat plate parallel to a constant unidirectional flow.

After over a decade of studies in boundary-layer drag and turbulent flow characteristics,

Prandtl and his doctoral student, Oskar Tietjans, presented their controversial findings at

the Jena physics conference in 1921. Tietjans’ doctoral work had been the calculation of

boundary layer motion with Rayleigh oscillations, but his findings contradicted previous

presumptions. Thus far, all theories failed to yield a possible transition between laminar

and turbulent flow, despite higher Reynolds numbers and experiments that proved the

opposite. Prandtl and Tietjans’ calculations suggested that even the slightest disturbance

at the lowest Reynolds number resulted in transition. Tietjans postulated that his theory

failed because it was based on unrealistic velocity profiles composed of straight lines with

arbitrary kinks. Shortly after this, Werner Heisenberg investigated the stability of the

Poiseuille flow, a parabolic velocity profile between two parallel plates commonly observed in

a pipe. Heisenberg’s doctoral thesis [10] provided a limit of stability, but his approximation

2



methods were impossible to justify at the time. Despite this, Prandtl was again motivated

to solve the transition problem and he assigned a new dissertation topic to his next student,

Walter Tollmien.

In 1929, Walter Tollmien completed his doctoral dissertation and produced the first

successful stability phase diagram. By applying the Orr-Sommerfeld equation to the Blasius

boundary layer profile, Tollmien could determine if a system was stable or unstable by the

wavelength of the assumed disturbance and the Reynolds number of the flow. Hermann

Schlichting expanded on Tollmien’s results by explicitly solving for the neutral stability

location. He also extended Tollmien’s stability phase diagram to account for the pressure

gradient of the profile, revealing that the unstable region would grow dramatically for an

increasing positive pressure gradient. Finally, Schlichting determined that the onset of

turbulence did not occur immediately upon entrance into the unstable region, but that it

was dependent on the disturbance wave amplitude. The longer a disturbance wave remained

in an unstable state, the more amplified it became, eventually reaching a high enough

level to instigate turbulence. Based upon transition locations documented in experiments

and his new stability phase diagrams, Schlichting calculated that the natural logarithm of

amplitude ratio necessary for turbulence was about nine. This relation is commonly referred

to as the N-factor or eN method, after van Ingen (1956) performed extensive calculations

with it.

The theoretical results of Tollmien and Schlichting could not be proven until 1943

(published in 1947 after the war) when Schubauer and Skramstad confirmed their findings

with experimental results [41]. Until this time, experiments had been conducted in wind

tunnels with high free stream turbulence. By running their experiment in a new, low

disturbance wind tunnel, Schubauer and Skramstad saw oscillatory waves as they grew

downstream and broke down into turbulent flow. Their experimental agreement validated

the linear stability theory efforts of the past 40 years and confirmed that the long-sought

critical Reynolds number only determined where the transition would begin, as opposed

to the transition location. The two-dimensional (2-D) waves theorized by Tollmien and

3



Schlichting and witnessed by Schubauer and Skramstad are now referred to as Tollmien-

Schlichting waves, or TS waves.

The first attempt at a linear stability theory for compressible flow was made in 1938

by D. Küchemann, a student of none other than Walter Tollmien. Lester Lees and C.C.

Lin followed this with a much more in depth application of linear stability theory on a

compressible flow in 1946 (published 1947) [24]. Most of their report was focused on the

inviscid theory, but an asymptotic viscous theory was included as well. Lees & Lin used

a system of sixth-order ordinary differential equations and assumed locally parallel flow

in order to derive two-dimensional disturbances in a perfect gas. These methods involved

massive hand calculations, and thus disturbance amplitudes were not initially included.

Through their results, Lees & Lin expanded upon Rayleigh’s inflection theory by confirming

that a generalized inflection point (D (ρDU) = 0, where D is ∂
∂y , ρ is the density, and U

is the mean velocity) is a necessary and sufficient condition for neutral stability in a case

where the phase speed is less than the freestream velocity. It was also falsely concluded

that higher Mach numbers had a stabilizing effect on flows with an adiabatic-wall, based on

the fact that the minimum critical Reynolds number decreased; the opposite was actually

proved after the disturbance amplitudes were calculated.

The Dunn-Lin theory [8] attempted to develop a better viscous compressible stability

theory by removing the largest restrictions from Lees & Lin’s theory: the idea that phase

speed must be small and that disturbances could only be 2-D. However, the full 3-D stability

equations resulted in a system of eighth-order ordinary differential equations that could

not be reduced or solved at the time. To circumvent this, the Dunn-Lin theory drops the

dissipation terms in the energy equation, thus permitting an order reduction by way of the

Squire transformation. As pointed out by Dunn & Lin, this limits the validity of the their

theory to studies below Mach 2.0. Their studies concluded that at speeds between Mach 1.0

and Mach 2.0, oblique 3-D disturbances begin to play a large role in the general instability

of a boundary layer, most notably because they cannot be fully stabilized through wall

cooling like the 2-D disturbances. Soon after, Reshotko [37] and Lees & Reshotko [25] were
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able to add the dissipation terms back in to the theory, but they still relied on an asymptotic

theory to obtain a final solution. These results produced strange multiple neutral curves

at high Mach numbers and showed large discrepancies when compared with experimental

results from Laufer and Vrebalovich [23].

The utilization of high speed computers in the 1960s finally allowed for direct solutions

to linear stability theories. Mack’s in depth documentation of this is perhaps the most

significant contribution to the stability problem in decades [29]. Mack thoroughly studied

supersonic boundary-layer flows over flat plates at speeds up to Mach 10 and noted that

supersonic boundary layer disturbances have unique features not seen in their subsonic

counterparts. His initial direct solution results compared well to experimental values and

confirmed that the asymptotic solution methods attempted by Dunn-Lin and Lees-Reshotko

failed to produce accurate neutral stability curves above speeds of Mach 1.6.

Mack summarized his compressible linear stability findings as a couple of key points:

1) For all supersonic mean flows, the first mode is most unstable as an oblique wave, or

3-D disturbance. 2) A region of supersonic mean flow relative to the disturbance phase

speed results in an infinite number of additional unstable modes, referred to as acoustic

modes, not observed in subsonic mean flows. The first of these acoustic modes, known as

the ‘‘second mode’’ or ‘‘Mack mode,’’ is the most unstable. All of these additional modes

are most unstable as a 2-D wave disturbance. Converse to first mode disturbances, the

additional modes are destabilized by wall cooling.

Mack followed up his findings with an update to his 3-D material in 1984 [30]. In

addition, this report summarizes and pays homage to previous contributions to the linear

stability problem dating all the way back to Rayleigh in the 1800s. Many today still

consider this to be the de facto guide to linear stability theory.

For a period following Mack’s studies, linear stability theory remained relatively un-

changed. It would seem that many no longer viewed it as a problem to be solved, but as a

tool to be utilized, and so focus was instead directed towards better implementation. As

computers grew more powerful, new and more robust solution methods were developed.
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While Mack’s approach utilized an initial value method (IVM), a shooting method by way

of Runge-Kutta integration, Malik employed a boundary value method (BVM) in 1990 [31].

The BVM reduces the ordinary differential equations into a linear algebraic system and

yields a solution without any prior knowledge of the problem or the expected solution.

Although the linear stability theory compared well to experimental values for a flat plate,

more accurate formulations were needed for more complex geometries; researchers agreed

that the next step was to account for upstream history of disturbances and eliminate both

the linearization and the parallel flow approximation. Two distinct methods successfully

achieved this goal: the parabolized stability equations and direct numerical simulation of

the Navier-Stokes equations.

‘‘Direct numerical simulation’’ refers to solving for ‘‘the numerical solution of the

full, nonlinear, time-dependent Navier-Stokes equations without any empirical closure

assumptions for prescribed initial and boundary conditions’’ [18]. This implies that all

relevant time and space scales must be resolved. Coincidentally, while DNS is capable

of providing the most accurate solutions and remains accurate through transition into

turbulent flow, the associated time scales between different regimes vary by orders of

magnitude. To further complicate the problem, this in turn necessitates the use of an

astronomical number of grid points. DNS analyses are severely inhibited by available

algorithms and computational resources. In 2001, Joslin estimated that while DNS of an

atmospheric boundary layer is theoretically possible, it would require on the order of 1018

grid points, 1019 Mwords of memory, 1023 operations per second, and about 10 million

years of continuous computing time (at 330 Mflops) [17].

Despite its limitations, a growing abundance of DNS studies are published every year.

Aided by continual technological advancement, a multitude of research consistently provides

explosive growth in the applicability, use, and development of DNS methods. Because PSE

methods are the main focus of this paper, we list here only a limited scope of the considerable

amount of work and publications contributing to DNS development for interested readers

to explore. Kleiser and Zang’s 1991 annual review [18] remains a great introduction, Fasel
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et al. [9] introduces 3-D temporal DNS formulations, Reed [36] extends DNS to the spatial

regime, Joslin [17] focuses on the application to laminar flow control, and Zhong [26] and

Subbareddy and Candler [43] detail DNS methods appropriate for hypersonic studies. Each

of these papers contains further troves of related DNS work.

The parabolized stability equations (PSE) are a complementary method to the DNS

that help to facilitate the study of transitional flow by taking advantage of physically

accurate assumptions and simplifying equations when able. Developed primarily by Herbert

and Bertolotti [3, 4, 11], PSE exists in both a linear (LPSE) and nonlinear (NPSE) variant.

It has been proven to accurately predict wave evolution along a predefined path within

the shear layer of a configuration for a wide variety of operating conditions. Satisfying

the appropriate assumptions to justify marching, PSE methods run in a fraction of the

time and at a fraction of the computational cost required for DNS methods. Although the

PSE assumptions break down in the later stages of transition and are subject to imposed

limitations and assumptions throughout the scheme, excellent validation with DNS and

experiments have been achieved from laminar flow through the early stages of transition.

For this reason, PSE methods are constantly evolving to become more applicable and

capable. The full PSE derivations and related numerical method implementations will be

explored during the course of this paper; limitations and assumptions are elaborated upon

as they arise.

While much progress has been made over the past century, the stability problem rightly

remains one of great interest. The many advances and solution methods have certainly

illuminated a great deal, but much remains to be understood. Validation and verification

still require that initial conditions be treated with extreme care, as small differences can lead

to vastly different results. Laminar flow control appears promising in simpler geometries,

but our limited understanding of how different transition mechanisms act in accord with

each other have also led to inconsistent transition-control attempts on more complicated

geometries. However, the progress made has led to regular use of transition analysis in

industry, thus spawning extra motivation for increasingly accurate and practical methods.
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I.2 Motivation and Objective

Accurate laminar-to-turbulent transition modeling and prediction is an important

problem for nearly every flight regime. Usually through a stability analysis, ongoing research

in this area is focused on the physical understanding of transition so as to better capture

the appropriate mechanisms in prediction. With better understanding and prediction also

come more efficient means of control, whether the desire is to delay or advance a transition

location. It has been shown that being able to delay transition and extend the laminar

flow regime over commercial aircraft wing surfaces can reduce fuel expenses by 20 or 30

percent. Alternatively, promoting early turbulent flow would extend the flight envelopes

for advanced performance aircraft or extremely low speed flight vehicles by delaying or

preventing the onset of stall. Accurate transition prediction is especially enabling for

hypersonic and reentry vehicles for which the overwhelming heat associated with turbulent

flows at high speeds is a considerable design constraint. The ability to extend laminar flow

or accurately predict transition location would potentially allow the use of lighter materials

and structures, and positively affect range, accuracy predictions, and aerostability controls

for high-speed, exoatmospheric-, and space-flight regimes. Furthermore, because turbulent

breakdown has been shown to vary greatly with different operating conditions, precise

modeling of the transition process and location provides accurate upstream conditions that

are of great benefit to the turbulence community.

The present work was begun under the auspices of the Air Force Office of Scientific

Research (AFOSR) and the National Aeronautics and Space Administration (NASA) as

part of the National Center for Hypersonic Laminar-Turbulent Transition Research, and

continues even after the Center has ended. The main objective of the research, consistent

with Center goals, is to extend and enhance the theoretical framework to include relevant

hypersonic physics and identify dominant instability modes for both two-dimensional

(2-D) and three-dimensional (3-D) flowfields. In the process, comprehensive validation

with fundamental stability experiments, also a goal of the Center, is being completed.

Although especially vital for hypersonic research, transition modeling and prediction research
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performed is also very relevant to other low speed applications.

EPIC (Euonymous Parabolized Instability Code) is a new Nonlinear Parabolized Stability

Equation (NPSE) solver developed in-house in our Computational Stability and Transition

(CST) lab that will aid in the study, understanding, and prediction of laminar-to-turbulent

boundary layer transition problems. For hypersonic applications, two particular PSE

research codes in use today are NASA’s LASTRAC (NPSE/LPSE; [6]) and GoHypersonic’s

STABL (LPSE only; [16]). While both are capable of performing various stability analyses

and each has its own appealing and unique features, the objective here is to build a research

code that can be promptly used and modified in our own lab. It should be apparent how

advantageous it is to possess a well documented, flexible, fully accessible, and fully modifiable

code in a rapidly evolving research environment. This entirely new code is an improvement

upon and is intended to replace CSTs prior NPSE solver, called JoKHeR. Previously,

JoKHeR had been used to successfully validate and improve wind tunnel experiments [14, 19],

and help advance stability studies by pioneering new solution techniques for upstream

conditions and the modeling of downstream disturbance evolution [21, 20]. EPIC has been

designed from the ground up to be modular, more user friendly and intuitive, more accurate

and robust, and more easily upgraded as new physical understanding is gained.

I.3 Outline of Thesis

Chapter II presents the full derivation for PSE and the governing basic-state equations.

Chapter III will describe the numerical methods taken to implement the aforementioned

equations. Chapters IV-VI will focus on verification and validation results of EPIC for the

93-10 Langley flared cone, Purdue compression cone, and SWIFTER wing glove, respectively.

Finally, chapter VII will supply a summary of key results. Because of the length and nature

of the equations solved, many of the detailed expansions will be found in the appendix.
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II. GOVERNING EQUATIONS

Transition from laminar to turbulent flow in flight is known to occur because of the

unbounded growth of disturbances within the boundary layer. This process is studied

by perturbing a steady basic-state with an initial disturbance. The stability of the flow

is then determined based on whether these disturbances grow or decay. Despite being

initially infinitesimal in magnitude and too small to accurately measure, a disturbance in

an unstable environment can grow large enough to lead to breakdown to turbulent flow.

The governing equations for the basic-state and for the perturbed flow are the Navier-

Stokes equations. The basic-state is by itself a solution to these equations, so the perturbed

terms remaining constitute the disturbance equations. It is then determined if these

perturbations grow or decay downstream. The flow is stable if all of the perturbations are

shown to decay, and unstable if at least one element grows. Presented in this chapter are

the derivations for the basic state and disturbance governing equations.

II.1 Coordinate System

Considering that the PSE equations march along a path, a Cartesian coordinate system

aligned with this marching path is appropriate. The x coordinate will always represent the

streamwise direction, the y coordinate is the normal to the surface, and the z coordinate is

in the mutually orthogonal spanwise direction. For the rest of this document, we interpret

‘‘streamwise direction,’’ and by extension the x−axis, to mean ‘‘in the marching direction.’’

This is to account for paths that curve or bend downstream. The u, v, and w velocities are

the directional velocities oriented in the x−, y−, and z− directions respectively.

Past studies have proven that boundary-layer stability is very sensitive to a multitude

of factors, one of which is the surface geometry. Many real world surfaces are not flat

and different surface curvatures will influence pressure gradients, boundary-layer height,

and other flow aspects. Curvature effects can be especially crucial in hypersonic regimes

because the frequency of the most amplified second mode disturbance is highly tuned to
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the boundary-layer height.

Thus we must account for these curvature effects by transforming our system into

a curvilinear Cartesian system and introducing the necessary metric coefficients. The

metric coefficients, h1, h2, and h3, will represent the curvature in the x− (streamwise), y−

(normal), and z− (spanwise) directions respectively. These terms are defined as

h1,3 =
∂ξ + y·∂ξ

Rc

2Rc · sin
(
∂ξ
2Rc

) . (II.1)

Rc is the radius of curvature measured in the streamwise marching direction for h1 and the

spanwise direction for h3. A negative Rc denotes concave curvatures; positive is convex.

Finally, y is the normal distance away from the surface and ∂ξ is the constant streamwise

step size. The derivation for these metric terms comes from the definition of a curvilinear

coordinate system. If each curve is considered in its own planar direction, the metric

coefficient represents the distance traveled along the curved path (arc length) over the

equivalent straight line distance. In the absence of any curvature, these lengths are equal

and the ratio reduces to 1. An exaggerated visual example can be seen in figure II.1. This

formulation breaks down in the limit of a straight line because Rc → ∞ and the metric

coefficient must be assigned the correct value of 1.

Note that h2 does not have a curvature; this will be the wall normal grid. In the interest

of demonstrating a complete derivation for a general 3D curvilinear system h2 will remain

in the final equations, but for our purposes h2 = 1.

II.2 Basic-State Equations

Foregoing the curvilinear terms for a moment, the dimensional governing equations for

a thermally perfect gas in Cartesian coordinates are listed below.
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Figure II.1: Exaggerated visualization of curvilinear transformation. Let points A and B
represent two sequential points along the surface. The curved surface, black line, possesses
a radius of curvature R, which we assume remains constant over this entire step. Traveling
from point A to B, the black line AB

_
represents the physical path and the red line AB

represents the computational path. The curvature terms account for this.

ρ∗

(
∂ ~u∗

∂t∗
+ ~u∗ • ∇ ~u∗

)
= ∇

[
−P ∗ + µ∗

(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)
+ δijλ

∗∇
∂u∗k
∂x∗k

]
, i = 1, 2, 3

(II.2)

ρ∗C∗p
DT ∗

Dt
=
DP ∗

Dt
+ (∇ • κ∗∇)T ∗ +

µ∗

2

(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)2

+ λ∗
(
∇ • ~u∗

)2
(II.3)

∂ρ∗

∂t∗
+∇ •

(
ρ∗ ~u∗

)
= 0 (II.4)

P ∗ = ρ∗R∗gT
∗ (II.5)

The Navier-Stokes equations, represented as equation (II.2), apply the principles of
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X-, Y-, and Z- momentum conservation of a compressible fluid. Equations (II.3)-(II.5)

define energy conservation, mass continuity, and the equation of state for a thermally

perfect gas, respectively. These equations are then expanded and converted to a general

3D curvilinear coordinate systems as stated in the above section. For brevity, the results

will be shown after we nondimensionalize. By using these equations, we have made the

following assumptions:

1. The fluid is a Newtonian fluid.

2. There is no body force.

3. There are no chemical reactions.

4. Heat transfer and thermal conductivity follows Fourier’s Law.

5. The pressure and temperature are in ranges that allow us to accurately model the gas

as a thermally perfect ideal gas.

II.2.1 Thermodynamic Properties

By making the thermally perfect ideal gas assumption, listed above as assumption (5),

we are forcing our compressibility factor Z = P ∗

ρ∗R∗gT
∗ = 1. This holds very well if the

absolute pressure is near 0 atm abs or if the temperature is above the critical temperature,

133 K for air. It should be observed that at extreme temperatures this assumption will

break down. Vibrational excitation begins to take place around a pressure and temperature

combination of 1 atm abs and 800 K. Furthermore, oxygen begins to dissociate around 2500

K, forcing the inclusion of chemical nonequilibrium reactions. We can successfully achieve

hypersonic speeds that avoid necessitating these reactions as long as care is taken when

determining the freestream conditions, but there certainly exists an upper bound where

our governing equations will no longer apply. The following mathematical methods used

to study stability can be applied, with care, to a different set of governing equations that

would account for phenomena such as thermal and chemical nonequilibrium, however we

will save those derivations for future research.
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For our present situation, a thermally perfect ideal gas model allows us to establish

transport quantities as constants or functions of temperature (T ) only. Specific heat for

constant pressure (Cp), specific heat for constant volume (Cv), and ratio of specific heats

(γ) will be held constant, based on an initialized reference point. Thermal conductivity (κ)

and dynamic coefficient of viscosity (µ) will be defined using Sutherland’s Law,

µ = µ0

(
T

T0

)3/2 T0 + Sµ
T + Sµ

(II.6)

κ = κ0

(
T

T0

)3/2 T0 + Sκ
T + Sκ

(II.7)

which can also be represented as

µ =
C1T

3/2

T + Sµ
(II.8)

κ =
C2T

3/2

T + Sκ
(II.9)

where

C1 =
µ0

T
3/2
0

(T0 + Sµ) = 1.458e−6
kg

m · s ·K1/2
, Sµ = 110.40K

C2 =
κ0

T
3/2
0

(T0 + Sκ) = 2.49e−3
kg ·m
s3 ·K3/2

, Sκ = 194.00K

are the values used for perfect air. This formulation allows for the easy inclusion of any

ideal gas with Sutherland constants. Finally, thermodynamic equilibrium allows the use of

Stokes’ Hypothesis to set

λ = −2

3
µ. (II.10)
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II.3 Nondimensionalization

All variables in equations (II.2)-(II.5) are nondimensionalized by their relative edge

quantities, denoted by a subscript e. The edge refers to a location where perturbations

have died out and only basic-state quantities remain. It is typically defined as the edge of

the boundary layer, but can also be defined by freestream values, sometimes denoted as a

‘‘reference’’ quantity. Pressure is nondimensionalized by dynamic pressure, ρ∗eU
∗2
e , both

viscosity coefficients by µ∗e, and time by L∗

U∗e
. All dimensionless quantities are shown below.

u = u∗

U∗e
v = v∗

U∗e
w = w̃∗

U∗e
x = x∗

L∗
y = y∗

L∗
z = z∗

L∗

T = T ∗

T ∗e
ρ = ρ∗

ρ∗e
µ = µ∗

µ∗e
κ = κ∗

κ∗e
Cp =

C∗p
Cp∗e

= 1 Cv =
C∗v
Cv∗e

= 1

t = t∗L∗

U∗e
P = P ∗

ρ∗eU
∗2
e

Rg =
R∗g
R∗ge

= 1 λ = λ∗

µ∗e
L∗ ≡

√
µ∗ex
∗

ρ∗eU
∗
e

We choose to define our length quantity, L∗, as the boundary-layer reference length. We

also define the following dimensionless quantities.

Re ≡ ρ∗eU
∗
eL
∗

µ∗e
Pr ≡

C∗pµ
∗
e

κ∗e
γ ≡

C∗p
C∗v

M2 ≡ U∗2e
γR∗gT

∗
e

The equations below are the result of equations (II.2)-(II.5) in nondimensional 3-D

curvilinear coordinates.
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X-Momentum

ρ

[
∂u

∂t
+

u

h1

∂u

∂x
+

v

h2

∂u

∂y
+
w

h3

∂u

∂z

−v
(

v

h1h2

∂h2
∂x
− u

h1h2

∂h1
∂y

)
+ w

(
u

h3h1

∂h1
∂z
− w

h1h3

∂h3
∂x

)]
= − 1

h1

∂P

∂x
+

1

Re

1

h1

∂

∂x

[
λ

h1h2h3

(
∂h2h3u

∂x
+
∂h1h3v

∂y
+
∂h1h2w

∂z

)]
+

1

Re

1

h1h2h3

∂

∂x

[
2µh2h3

(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h3h1

∂h1
∂z

)]
+

1

Re

1

h1h2h3

∂

∂y

[
µh1h3

(
h2
h1

∂

∂x

(
v

h2

)
+
h1
h2

∂

∂y

(
u

h1

))]
+

1

Re

1

h1h2h3

∂

∂z

[
µh1h2

(
h1
h3

∂

∂z

(
u

h1

)
+
h3
h1

∂

∂x

(
w

h3

))]
+

µ

Re

1

h1h2

∂h1
∂y

(
h2
h1

∂

∂x

(
v

h2

)
+
h1
h2

∂

∂y

(
u

h1

))
+

µ

Re

1

h3h1

∂h1
∂z

(
h1
h3

∂

∂z

(
u

h1

)
+
h3
h1

∂

∂x

(
w

h3

))
− 2µ

Re

1

h1h2

∂h2
∂x

(
1

h2

∂v

∂y
+

w

h3h2

∂h2
∂z

+
u

h1h2

∂h2
∂x

)
− 2µ

Re

1

h1h3

∂h3
∂x

(
1

h3

∂w

∂z
+

u

h1h3

∂h3
∂x

+
v

h3h2

∂h3
∂y

)
(II.11)
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Y-Momentum

ρ

[
∂v

∂t
+

u

h1

∂v

∂x
+

v

h2

∂v

∂y
+
w

h3

∂v

∂z

−w
(

w

h3h2

∂h3
∂y
− v

h3h2

∂h2
∂z

)
+ u

(
v

h1h2

∂h2
∂x
− u

h1h2

∂h1
∂y

)]
= − 1

h2

∂P

∂y
+

1

Re

1

h2

∂

∂y

[
λ

h1h2h3

(
∂h2h3u

∂x
+
∂h1h3v

∂y
+
∂h1h2w

∂z

)]
+

1

Re

1

h1h2h3

∂

∂y

[
2µh1h3

(
1

h2

∂v

∂y
+

w

h3h2

∂h2
∂z

+
u

h1h2

∂h2
∂x

)]
+

1

Re

1

h1h2h3

∂

∂z

[
µh1h2

(
h3
h2

∂

∂y

(
w

h3

)
+
h2
h3

∂

∂z

(
v

h2

))]
+

1

Re

1

h1h2h3

∂

∂x

[
µh2h3

(
h2
h1

∂

∂x

(
v

h2

)
+
h1
h2

∂

∂y

(
u

h1

))]
+

µ

Re

1

h3h2

∂h2
∂z

(
h3
h2

∂

∂y

(
w

h3

)
+
h2
h3

∂

∂z

(
v

h2

))
+

µ

Re

1

h1h2

∂h2
∂x

(
h2
h1

∂

∂x

(
v

h2

)
+
h1
h2

∂

∂y

(
u

h1

))
− 2µ

Re

1

h3h2

∂h3
∂y

(
1

h3

∂w

∂z
+

u

h1h3

∂h3
∂x

+
v

h3h2

∂h3
∂y

)
− 2µ

Re

1

h1h2

∂h1
∂y

(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h3h1

∂h1
∂z

)
(II.12)
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Z-Momentum

ρ

[
∂w

∂t
+

u

h1

∂w

∂x
+

v

h2

∂w

∂y
+
w

h3

∂w

∂z

−v
(

v

h3h2

∂h2
∂z
− w

h3h2

∂h3
∂y

)
+ u

(
w

h1h3

∂h3
∂x
− u

h3h1

∂h1
∂z

)]
= − 1

h3

∂P

∂z
+

1

Re

1

h3

∂

∂z

[
λ

h1h2h3

(
∂h2h3u

∂x
+
∂h1h3v

∂y
+
∂h1h2w

∂z

)]
+

1

Re

1

h1h2h3

∂

∂z

[
2µh1h2

(
1

h3

∂w

∂z
+

v

h3h2

∂h3
∂y

+
u

h1h3

∂h3
∂x

)]
+

1

Re

1

h1h2h3

∂

∂y

[
µh1h3

(
h2
h3

∂

∂z

(
v

h2

)
+
h3
h2

∂

∂y

(
w

h3

))]
+

1

Re

1

h1h2h3

∂

∂x

[
µh2h3

(
h3
h1

∂

∂x

(
w

h3

)
+
h1
h3

∂

∂z

(
u

h1

))]
+

µ

Re

1

h3h2

∂h3
∂y

(
h2
h3

∂

∂z

(
v

h2

)
+
h3
h2

∂

∂y

(
w

h3

))
+

µ

Re

1

h1h3

∂h3
∂x

(
h3
h1

∂

∂x

(
w

h3

)
+
h1
h3

∂

∂z

(
u

h1

))
− 2µ

Re

1

h3h2

∂h2
∂z

(
1

h2

∂v

∂y
+

u

h1h2

∂h2
∂x

+
w

h3h2

∂h2
∂z

)
− 2µ

Re

1

h3h1

∂h1
∂z

(
1

h1

∂u

∂x
+

w

h3h1

∂h1
∂z

+
v

h1h2

∂h1
∂y

)
(II.13)
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Energy

ρ

(
∂T

∂t
+

u

h1

∂T

∂x
+

v

h2

∂T

∂y
+
w

h3

∂T

∂z

)
= (γ − 1)M2

(
∂P

∂t
+

u

h1

∂P

∂x
+

v

h2

∂P

∂y
+
w

h3

∂P

∂z

)
+

1

PrRe

1

h1h2h3

[
∂

∂x

(
κh2h3
h1

∂T

∂x

)
+

∂

∂y

(
κh1h3
h2

∂T

∂y

)
+

∂

∂z

(
κh1h2
h3

∂T

∂z

)]
+

(γ − 1)M2

Re

{
[

(2µ+ λ)

(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h3h1

∂h1
∂z

)2

+ µ

(
h3
h2

∂

∂y

(
w

h3

)
+
h2
h3

∂

∂z

(
v

h2

))2
]

+

[
(2µ+ λ)

(
1

h2

∂v

∂y
+

w

h3h2

∂h2
∂z

+
u

h1h2

∂h2
∂x

)2

+ µ

(
h3
h1

∂

∂x

(
w

h3

)
+
h1
h3

∂

∂z

(
u

h1

))2
]

+

[
(2µ+ λ)

(
1

h3

∂w

∂z
+

u

h1h3

∂h3
∂x

+
v

h3h2

∂h3
∂y

)2

+ µ

(
h2
h1

∂

∂x

(
v

h2

)
+
h1
h2

∂

∂y

(
u

h1

))2
]

+2λ

(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h3h1

∂h1
∂z

)(
1

h2

∂v

∂y
+

w

h3h2

∂h2
∂z

+
u

h1h2

∂h2
∂x

)
+2λ

(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h3h1

∂h1
∂z

)(
1

h3

∂w

∂z
+

u

h1h3

∂h3
∂x

+
v

h3h2

∂h3
∂y

)
+2λ

(
1

h2

∂v

∂y
+

w

h3h2

∂h2
∂z

+
u

h1h2

∂h2
∂x

)(
1

h3

∂w

∂z
+

u

h1h3

∂h3
∂x

+
v

h3h2

∂h3
∂y

)}
(II.14)

Continuity

∂ρ

∂t
+

1

h1h2h3

(
∂(h2h3ρu)

∂x
+
∂(h1h3ρv)

∂y
+
∂(h1h2ρw)

∂z

)
= 0 (II.15)

Equation of State

γM2P = ρT (II.16)
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II.4 Disturbance Equations

In order to formulate the disturbance equations, a first order perturbation is superposed

upon each flow variable. We let φ with no superscript represent the total instantaneous

value of our flow variables (u, v, w, T , ρ, P , µ, λ, and κ), while φ and φ′ will represent the

steady basic-state and unsteady disturbance quantities respectively.

φ = φ (x, y) + φ′ (x, y, z, t) , φ′ � φ (II.17)

Note that the thermodynamic quantities are only a function of T and must be related to

x, y, and z. The perturbations of these quantities will be modeled by Taylor Expansion

derivatives, resulting in the following relations:

µ′ =
∂µ

∂T
T ′, λ′ =

∂λ

∂T
T ′, κ′ =

∂κ

∂T
T ′,

∂λ

∂T
=
λ

µ

∂µ

∂T
. (II.18)

Adding the steady and unsteady parts results in the total instantaneous value. By substi-

tuting equations (II.17) and (II.18) into (II.11)-(II.16), the full governing equations for the

instantaneous value results. The basic state by itself is still a solution to these governing

equations. This allows for the subtraction of equations (II.11)-(II.16) from the instantaneous

result, culminating in the isolation of the disturbance equations.

Pressure can be eliminated from the problem by using the perturbed form of equation

(II.16) to give a final disturbance equation in the form

B0
∂φ′

∂t
+ B1

∂φ′

∂x
+ B2

∂φ′

∂y
+ B3

∂φ′

∂z
+ C1

∂2φ′

∂x2
+ C2

∂2φ′

∂y2
+ C3

∂2φ′

∂z2

+D1
∂2φ′

∂x∂y
+D2

∂2φ′

∂x∂z
+D3

∂2φ′

∂y∂z
+ F0φ

′ = NL (II.19)

where φ′ = [u′, v′, w′, T ′, ρ′]T and B0,B1, . . . ,F0 are 5 × 5 matrices containing only basic-

state terms. The entire left hand side of the equation is linear; NL represents a 5 × 1
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column of nonlinear terms. The next objective is to solve for the disturbance quantities, φ′.

These quantities must be real in order to solve the governing equations given earlier.

II.4.1 Boundary Conditions

In order to formulate a numerical solution, a set of boundary conditions must be applied.

ywall = 0,


u′ = v′ = w′ = T ′ = 0 Constant Wall Temperature

u′ = v′ = w′ = ∂T ′

∂y = 0 Adiabatic Wall

y →∞,


u′ = v′ = w′ = T ′ = ρ′ = 0 Subsonic

∂u′

∂y = ∂v′

∂y = ∂w′

∂y = ∂T ′

∂y = ∂ρ′

∂y = 0 Supersonic

(II.20)

Equation (II.20) portrays the boundary conditions applied to the disturbance quantities

throughout the various solution methods. These conditions are representative of what

we expect from a disturbance in the boundary-layer. At the wall, the no-slip condition

demands the total instantaneous values u = v = w = 0, thus requiring u′ = v′ = w′ = 0.

The basic-state values must already independently fulfill the no-slip condition, accounting

for u = v = w = 0. If given a non-adiabatic wall condition, this also applies to T (ywall).

We ensure ymax is sufficiently far away from the wall (but still within the shock if one

is present) so that the other half of the boundary conditions can be safely applied. This

simply declares ymax as the location where the perturbations have died out. The subsonic

and supersonic conditions can be interchanged, but this setup provides the conditions that

we have found to give us the most clear and consistent results.

II.5 Disturbance Quantity Formulation

Thus far no assumptions about what form the disturbance quantities take have been

imposed. The following sections will address three different approximations we can make in

order to solve for these quantities. Chapter III will formulate numerical methods to solve
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each of the three methods.

II.5.1 Linear Stability Theory

Linear stability theory (LST) will be used to generate initial conditions for the more

accurate parabolized stability equations below. LST is based upon three main assumptions:

1. The basic state is ‘‘locally parallel.’’

2. Disturbances are small enough to eliminate nonlinear interactions.

3. Unsteady disturbances take the form

φ′ (x, y, z, t) ≡ φ̂ (y) ei(αx+βz−ωt) + c.c. (II.21)

Assumption (1) states that there can be no flow in the basic-state wall normal direction,

v ≡ 0, and that the other basic-state quantities are only functions of y, such that u = u (y),

w = w (y), T = T (y), and ρ = ρ (y). Assumption (3), a wave equation, results from

applying Fourier transformations in x and z and a Laplace transformation in t. The wave

amplitude (φ̂) is complex, which necessitates the addition of the complex conjugate (c.c.)

because the disturbance (φ′) must remain real. The unsteady disturbance amplitude is a

function of only y, similar to the steady basic state, and the phase is a function of x, z, t.

LST can be solved as a temporal or spatial problem. Due to its role in the following

solution methods, only the spatial stability problem will be addressed here. We force ω to be

real and allow α and β to be complex, thus allowing our wave disturbance amplitude to grow

or decay exponentially in space. αr and βr represent the nondimensional streamwise and

spanwise wave number respectively (λx = 2π
αr

and λz = 2π
βr

) while ω is the nondimensional

frequency (ω = 2f∗πL∗

U∗e
, f∗ is frequency in Hz). Applying the above assumptions and (II.21)

to equation (II.19) results in

A∂
2φ̂

∂y2
+ B∂φ̂

∂y
+ Cφ̂ = 0 (II.22)
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where A, B, and C are 5× 5 linear matrices based on the parameters
(
α, β, ω, φ

)
for each

y point at a specific x location. These matrices can be seen in full in appendix B. The

remaining relations needed to solve the problem are

θk = arctan

(
βr
αr

)
and θki = arctan

(
βi
αi

)
,

which define the phase angle and the disturbance growth direction respectively. Given a

specified ω, βr, and βi at our streamwise location, a solution can be found for αr and αi.

Typically, βi will be defined as 0 to define the disturbance growth in the marching direction.

Then the sign of αi will determine the stability of the given frequency at the specified x

location.

αi < 0, amplified disturbances; unstable

αi = 0, no change in space; neutral

αi > 0, damped disturbances; stable

II.5.2 Linear Parabolized Stability Equations

The parabolized stability equations have become a popular method for stability analysis

because of their improvements over LST. The linear parabolized stability equations (LPSE)

eliminate the ‘‘locally parallel’’ assumption that LST requires. In doing this, LPSE also

delivers a marching solution that reflects upstream influences. In order to derive the LPSE

disturbance form, we take advantage of the fact that basic-state quantities change rapidly

in the surface normal direction as compared to the surface streamwise direction. This

allows us to use a WKB approximation to decompose our disturbance into a rapidly varying

‘‘wave function’’ and a slowly varying ‘‘shape function.’’
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φ′ (x, y, z, t) ≡ φ̂ (x̃, y)︸ ︷︷ ︸
Shape Function

e
i
(∫ x̃

x̃0
α(x)∂x+βz−ωt

)
︸ ︷︷ ︸

Wave Function

+c.c. (II.23)

We relate our slow and fast scales through x̃ = x
Re . Our streamwise derivatives now take

the form

∂φ′

∂x
=

(
1

Re

∂φ̂

∂x̃
+ iαφ̂

)
e
i
(∫ x̃

x̃0
α(x)∂x+βz−ωt

)
+ c.c. (II.24)

∂2φ′

∂x2
=

[
1

Re2
∂2φ̂

∂x̃2
+
i2α

Re

∂φ̂

∂x̃
+
iφ̂

Re

∂α

∂x̃
− α2φ̂

]
e
i
(∫ x̃

x̃0
α(x)∂x+βz−ωt

)
+ c.c. (II.25)

We notice that there is an elliptic term in equation (II.25), but that it is O
(

1
Re2

)
. By

an order of magnitude analysis, we choose to neglect the term ∂2φ̂
∂x2

, resulting in a parabolic

equation instead. As numerous papers have previously shown [4, 3, 11], this is a good

approximation because most of the ellipticity is captured in the combination of the iαφ̂ and

∂φ̂
∂x terms. Note that the basic state is assumed to be in the ‘‘fast scale’’ so when performing

the calculations we do not actually perform the ∂
∂x = 1

Re
∂
∂x̃ substitution.

Finally, substituting equation (II.23) into equation (II.19) and dropping the ∂2

∂x2
terms

results in

A∂
2φ̂

∂y2
+ B ∂2φ̂

∂x∂y
+ C ∂φ̂

∂y
+D∂φ̂

∂x
+ E φ̂ = 0. (II.26)

Once again, A, B, C, D, and E are all 5× 5 linear matrices and our problem statement is

now parabolic. These matrices have been fully detailed in appendix C. Finding a solution

will require an initial condition (LST result) along with the boundary conditions (II.20), as

well as a marching scheme and normalization parameter. This and more will be discussed

in our problem formulation in the following chapter.

24



II.5.3 Nonlinear Parabolized Stability Equations

The nonlinear parabolized stability equations (NPSE) are derived in a similar manner

as LPSE, but employ a finite-amplitude disturbance instead of the infinitesimally small

amplitudes assumed in the previous two methods. By eliminating this approximation,

nonlinear disturbances come into play and must be accounted for. As in LPSE, the total

disturbance is still assumed periodic in the temporal and spanwise directions, so again a

Fourier transformation is utilized.

φ′ (x, y, z, t) ≡
∞∑

n=−∞

∞∑
k=−∞

A0(n,k) φ̂(n,k) (x̃, y)︸ ︷︷ ︸
Shape Function

e
i
∫ x̃
x̃0
α(n,k)(x)∂xei(kβ0z−nω0t)︸ ︷︷ ︸

Wave Function

(II.27)

However, for NPSE, the transformation is applied to each mode, represented by (n, k).

A0(n,k) is the initial amplitude being applied to each particular mode. Operations are applied

the same to NPSE as they were to LPSE, including the parabolization technique. Inserting

(II.27) into (II.19) and performing a harmonic balance leads to a system of equations

∞∑
n=−∞

∞∑
k=−∞


[
A∂

2φ̂

∂y2
+ B ∂2φ̂

∂x∂y
+ C ∂φ̂

∂y
+D∂φ̂

∂x
+ E φ̂

]
(n,k)

A0(n,k)e
i
∫ x̃
x̃0
α(n,k)(x)∂xei(kβ0z−nω0t)

}
= NL(n,k) (II.28)

where each (n, k) mode corresponds to an individual system of equations. The left hand

operators in brackets are the same as in the LPSE equation (II.26) except that each mode

has its own particular α(n,k) and φ̂(n,k). Additionally, ω and β must be replaced with nω0

and kβ0 respectively.

The NL right-hand side contains the 5 × 1 array of nonlinear terms. Our harmonic

balance ensures that the NL terms will be of the form
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NL(n,k) =
∑
n1

∑
n2

∑
k1

∑
k2

{
A0(n1,k1)A0(n2,k2)NL

(quad)
(n,k)

e
i
∫ x
x0
α(n1,k1)

(x)∂x
e
i
∫ x
x0
α(n2,k2)

(x)∂x
ei((k1+k2)β0z+(n1+n2)ω0t)

}
+
∑
n1

∑
n2

∑
n3

∑
k1

∑
k2

∑
k3

{
A0(n1,k1)A0(n2,k2)A0(n3,k3)NL

(cubic)
(n,k)

e
i
∫ x
x0
α(n1,k1)

(x)∂x
e
i
∫ x
x0
α(n2,k2)

(x)∂x
e
i
∫ x
x0
α(n3,k3)

(x)∂x
ei((k1+k2+k3)β0z+(n1+n2+n3)ω0t)

}
(II.29)

where n1, n2,. . . , k3 are all summed from−∞ to∞, n1+n2 (+n3) = n, and k1+k2 (+k3) = k,

thus giving a matching phase speed with the linear terms on the left hand side. The unique

system of equations for each (n, k) mode are now coupled by the nonlinear terms. The full

nonlinear matrix is expanded in appendix D.

Because the disturbances must still be real, the solution requires the use of complex

conjugates (φ̂†). These are accounted for through symmetry properties.

α†(n,k) = −α(−n,−k) β†0(n,k) = β0(−n,−k)

A†0(n,k) = A0(−n,−k) û†(n,k) = û(−n,−k)

v̂†(n,k) = v̂(−n,−k) ŵ†(n,k) = ŵ(−n,−k)

T̂ †(n,k) = T̂(−n,−k) ρ̂†(n,k) = ρ̂(−n,−k)

(II.30)

If the basic state exhibits a z-direction symmetry, we can additionally set the following

properties. The z-symmetry does not apply for modes with n = 0, as these are already
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covered by (II.30).

α(n,k) = α(n,−k) β0(n,k) = β0(n,−k)

A0(n,k) = A0(n,−k) û(n,k) = û(n,−k)

v̂(n,k) = v̂(n,−k) ŵ(n,k) = −ŵ(n,−k)

T̂(n,k) = T̂(n,−k) ρ̂(n,k) = ρ̂(n,−k)

(II.31)

Note that because the complex conjugate is required to formulate a real disturbance, the

initial amplitude a particular mode experiences will be double (A0(n,k)+A†0(n,k)). For clarity,

when applying an initial amplitude of A0 to a mode, we actually apply A0/2 to the mode

and its complex conjugate, (n, k) and (−n,−k).

Finally, the unique mode (0, 0), the mean flow distortion, will be addressed in chapter

III.
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III. NUMERICAL FORMULATION

This chapter focuses on formulating a numerical solution for the equations derived

in the previous chapter. The solution for the linear stability problem (II.22) will follow

Malik’s BVM method [31]. Solutions for both the linear and nonlinear parabolized stability

equations (II.26 and II.28) will be aided by Herbert and Bertolotti’s methods [4, 11].

III.1 Computational Grid

We begin by reducing the system of second-order differential equations into a system of

algebraic equations by way of finite-difference methods. In order to perform an accurate

finite differentiation, the first step is to discretize our data; we create a grid with uniform x

(ξ) and y (η) to perform our stability calculations on.

Uniform x is a straightforward discretization using surface distance (Xs) of the starting

and ending point along with the desired number of streamwise marching points (Nx).

∂ξ =
Xsend −Xs0

Nx
(III.1)

This gives a constant step size, which is cumulatively added to Xs0 to build uniform ξ.

Because the stability calculations require a high resolution in the boundary layer, the

uniform normal (η) grid will be treated differently. If η were formed in the same manner

as ξ, achieving the accuracy required in the boundary layer would require an extremely

large number of points. In order to save computation time and minimize the number of

normal points (Ny), a uniform normal grid (η) is created and algebraically mapped to a

wall clustered computational normal grid (yc) defined by

yc =
aη

b− η
, (III.2)

where
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η ∈ [0, 1] , yc ∈ [0, ymax]

a =
ymaxycrit

ymax − 2ycrit
, b = 1 +

a

ymax
.

This relation puts half of our normal points (Ny) between yc = 0 and yc = ycrit, where

ycrit is preselected accordingly. ymax is defined as far enough away from the wall to apply

the y → ∞ boundary conditions from equation (II.20). Finite differences in the normal

direction can now be calculated with a constant ∆η spacing and then related to the new

computational grid through

∂

∂yc
=

∂

∂η

∂η

∂yc

∂2

∂yc2
=

∂2

∂η2

(
∂η

∂yc

)2

+
∂

∂η

∂2η

∂yc2
(III.3)

where ∂η
∂yc and ∂2η

∂yc2
can be calculated directly from equation (III.2).

Note that for ease of use, transformation (III.3) may be applied by declaring our

previously unused h2 term as

h2 = 1/
∂η

∂yc
,

∂h2
∂y

= −h32
∂2η

∂yc2
. (III.4)

All other h2 derivatives should remain 0, and then ∆η is used as the spacing for y-derivative

finite differences. This can be seen from the following relationship:
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Grid Transformation Curvilinear Derivative

∂φ

∂yc
=

∂φ

∂η

∂η

∂yc

1

h2

∂φ

∂η

∂2φ

∂yc2
=

∂2φ

∂η2

(
∂η

∂yc

)2

+
∂φ

∂η

∂2η

∂yc2
1

h22

∂2φ

∂η2
− 1

h32

∂h2
∂yc

∂φ

∂η

All of the following calculations are performed on the computational grid (ξ, yc). For

simplicity only, the rest of the equations will refer to the (x, y) grid (e.g. the term ∂u
∂x

actually refers to ∂u
∂ξ and ∆ξ should be used in finite derivatives, NOT ∆x).

III.2 Finite-Difference Method

By mapping to a uniform computational grid, we permit the use of standard finite-

difference methods. Wall normal derivatives will be solved with a fourth order central finite

difference scheme,

∂φ̂j
∂y

=
−φ̂j+2 + 8φ̂j+1 − 8φ̂j−1 + φ̂j−2

12∆y

∂2φ̂j
∂y2

=
−φ̂j+2 + 16φ̂j+1 − 30φ̂j + 16φ̂j−1 − φ̂j−2

12∆y2
, (III.5)

where applicable. Boundaries will utilize second order left- or right-sided scheme and one

point off from boundaries will utilize a central second order scheme.

Because the LPSE and NPSE equations are parabolized and no longer elliptical, we

must used a different scheme for the streamwise derivatives. By utilizing a second order

left-sided finite difference scheme,
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∂φ̂j
∂x

=
3φ̂j − 4φ̂j−1 + φ̂j−2

2∆x
, (III.6)

our equations will be influenced by upstream values, but immune to the downstream effects.

Again, accuracy must be decreased to a first order scheme when one point off of a boundary.

III.3 Local Eigenvalue Solution

In order to solve the LST equation (II.22), an eigenvalue problem approach will be used.

By applying a fourth order central finite difference scheme (III.5), the problem simplifies to

a system of algebraic equations with five unknowns (φ̂j =
[
ûj , v̂j , ŵj , T̂j , ρ̂j

]T
) at each y

location. Boundary conditions (II.20) are then applied to y1 and ymax. In addition we are

left with an unknown global complex α that is independent of the y location.

This system’s solution can be obtained by treating the complex α as an eigenvalue

and the associating vector of φ̂s as the corresponding eigenvector. To account for the

nonlinearity of α that occurs in the viscous terms, the following transformation is applied.

Φ̂j =



ûj

v̂j

ŵj

T̂j

ρ̂j

αûj

αv̂j

αŵj

αT̂j



(III.7)

The eigenvalue problem now takes the form

AΦ̂ = αBΦ̂. (III.8)
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A and B now constitute 9Ny × 9Ny matrices; correspondingly Φ̂ is a 9Ny × 1 eigenvector.

Matrix A is built by assuming α = 0, conversely matrix B will contain only the α and α2

coefficients. Some basic identity formulas relating Φ̂ values (Φ̂j (1) = αΦ̂j (6)) round out

the final equations needed in order to solve the entire system.

EPIC utilizes a QZ algorithm to solve equation (III.8), resulting in the full eigenvalue

spectrum of 9Ny results. Many of these will be spurious results. At this point, filters must

be applied in order to pick the most unstable (most negative αi), physical eigensolution.

The linear stability theory provides a localized stability solution that carries the as-

sumptions addressed in chapter II. As mentioned earlier, one unstable location is not

indicative of laminar-to-turbulent transition. LST can be performed along a path and the

collected growth rates can be integrated to ascertain if and how much a disturbance grows

downstream, however EPIC is designed to use the LST solution as an initial value for the

more accurate PSE methods.

III.4 Linear Marching Procedure

The LPSE solution method employs a marching scheme to solve the boundary value

problem (BVP) at each x location, one step at a time. Instead of creating an eigenvalue

problem at each step, the previous steps’ solutions formulate an initial guess that justifies

solving the BVP in an iterative fashion, reducing its computational expense. LST cannot

adopt this method unless an approximate solution is already known.

A fourth order central finite difference scheme (III.5) is again applied in the normal

direction. Due to the parabolic nature of the problem, a left-sided finite difference scheme

(III.6) is implemented for the streamwise derivatives instead of a central scheme. This

permits us to forgo involving downstream values to solve our current step while simulta-

neously accounting for upstream influences. Upon applying the finite difference schemes,

the resulting algebraic system is arranged to form a pentadiagonal-block matrix on the left

hand side.
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

C1 D′1 E′1 A′1

B′2 C2 D′2

A3 B3 C3 D3 E3

. . .

. . .

ANy−2 BNy−2 CNy−2 DNy−2 ENy−2

B′Ny−1 CNy−1 D′Ny−1

E′Ny A′Ny B′Ny CNy





φ̂1

φ̂2

φ̂3
...

...

φ̂Ny−2

φ̂Ny−1

φ̂Ny



=



RHS1

RHS2

RHS3
...

...

RHSNy−2

RHSNy−1

RHSNy


(III.9)

The Aj , Bj , Cj , Dj , and Ej terms represent 5× 5 matrices at that location. Each φ̂j and

RHSj are 5× 1 vectors. Matrices near the boundary using the different finite differencing

stencils (as mentioned previously) are denoted by ′. Furthermore, the equations denoted

by blocks j = 1 and j = Ny will reflect the imposed boundary conditions (II.20).

The coefficient matrices are based on φx, αx, β, and ω, where x denotes our current step

location. Additionally, the right hand side (RHS) vectors include φ̂x−1 and φ̂x−2. From a

marching standpoint, the equation (III.9) can also be expressed as

Axφ̂x = Bxφ̂x−1 + Cxφ̂x−2, (III.10)

where Ax is the 5Ny × 5Ny pentadiagonal-block matrix and the rest of the components

are 5Ny × 1 vectors.

As briefly mentioned earlier, the LST solution makes an appropriate initial condition

to formulate the RHS in equation (III.9). If provided an αx, then the vector φ̂x can be

best solved with a simple LU decomposition scheme. The result is then used to formulate

an error, which is iteratively driven toward zero. In our tests, a simple Newton-Raphson

method proved to be more than sufficient; it yielded accurate convergence with minimal

time and computational costs. α is independent of the normal direction, thus we expect
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that α will change slowly in the streamwise direction and we formulate our initial guess by

assuming no change from the previous step.

∂αx
∂x

=
αx − αx−1

∆x
= 0 (III.11)

III.4.1 Normalization Condition

Our iterative solver still requires a solution condition in order to converge. To ensure that

the shape function is slowly varying in the streamwise direction, a normalization condition

is imposed upon it that will become the solution condition. A standard normalization

condition has the form ∫ ∞
0

∂

∂x
Ψ∂y = 0 (III.12)

where Ψ is the parameter to be normalized. Because our shape function is a complex value

(φ̂r + iφ̂i), both its magnitude (‖φ̂‖) and its phase (arctan
(
φ̂i
φ̂r

)
) must be normalized.

In simplifying both of the normalization parameters,

∫ ∞
0

∂

∂x

(
‖φ̂‖

)
∂y

reduces to−−−−−−→ 2

∫ ∞
0

(
φ̂r
∂φ̂r
∂x

+ φ̂i
∂φ̂i
∂x

)
∂y (III.13)

∫ ∞
0

∂

∂x

(
arctan

(
φ̂i

φ̂r

))
∂y

reduces to−−−−−−→
∫ ∞
0

(
φ̂r

∂φ̂i
∂x − φ̂i

∂φ̂r
∂x

φ̂2r + φ̂2i

)
∂y (III.14)

the driving values to be normalized can be reduced to φ̂r
∂φ̂r
∂x + φ̂i

∂φ̂i
∂x and φ̂r

∂φ̂i
∂x − φ̂i

∂φ̂r
∂x .

This conveniently allows us to formulate one solution condition,

∫ ∞
0

φ̂†
∂φ̂

∂x
∂y = errr + ierri (III.15)

resulting in a complex error value. The real error will constrain the magnitude while

the imaginary error constrains the phase. This error is subsequently used in the Newton-

Raphson iterations to adjust the complex α accordingly. The resulting φ̂s from solving (III.9)

with new αs will eventually reduce both normalization parameters to within a predefined
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tolerance. Once this tolerance is reached, the α and φ̂s for that streamwise location are

saved, a step is taken in the marching direction, and the process is repeated downstream.

Remember however that φ̂ represents five distinct variables (û, v̂, ŵ, T̂ , ρ̂), whereas

α can only be refined by one single quantity. Instead of trying to select the most crucial

term, we opt to combine all five terms. This will ensure that all aspects of the flow are

evolving downstream as they should. Furthermore, a Pythagorean normalization parameter

is applied to our solution condition so that modes comprised of very small magnitudes do

not bypass the tolerance. Our final normalization parameter takes the form

∫ ∞
0

(
û†
∂û

∂x
+ v̂†

∂v̂

∂x
+ ŵ†

∂ŵ

∂x
+ T̂ †

∂T̂

∂x
+ ρ̂†

∂ρ̂

∂x

)
∂y

max
(
φ̂ ∗ φ̂†

) = errr + ierri. (III.16)

III.5 Nonlinear Marching Procedure

The NPSE problem is reminiscent of solving multiple, coupled LPSE problems. Each

mode (n, k) has a unique equation (II.28) that is coupled through the nonlinear terms. In

the interest of finding a numerical solution, analysis is restricted to −N ≤ n ≤ N and

−K ≤ k ≤ K. If we have a wave with frequency F and initial amplitude A, we expect

that the harmonics 2F , 3F , 4F , . . . will possess initial amplitudes of A2, A3, A4, . . . , thus

eliminating the extremes is not a severe restriction. More computational costs can be saved

by exercising the symmetry laws shown previously (equations II.30 and II.31) whenever

possible. All modes will exhibit real physical disturbances, meaning only modes (0 ≤ n ≤ N ,

−K ≤ k ≤ K) must be calculated. Furthermore, only modes (0 ≤ n ≤ N , 0 ≤ k ≤ K) need

be solved if a geometry exhibits z-axis symmetry.

Applying the same finite difference schemes and boundary conditions as exercised in the

LPSE method results in a similar pentadiagonal-block matrix system for each mode (n, k)

with the addition of the relevant nonlinear terms on the right hand side. These nonlinear

terms will contain unknown φ̂x terms, and so we must incorporate a nonlinear convergence

loop into our marching. When guessing an αx (equation III.11), we will also make an initial
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guess for φ̂x, again expecting only slow changes based on our normalization parameter. In

our experience, it was found that setting the second derivative to zero tended to give the

fastest convergence.

∂2φ̂x
∂x2

=
φ̂x − 2φ̂x−1 + φ̂x−2

∆x2
= 0 (III.17)

Applying our αx guess to all equations as before and using our φ̂x guess to compute only

the nonlinear right hand side, we once again have a system of the form Ax = B that can

be solved with an LU decomposition. Before beginning the αx convergence, an implicit

‘‘nonlinear convergence’’ loop is needed to converge the nonlinear RHS;

LHS (αx) φ̂n+1
x = RHS

(
αx, φ̂

n
x

)
. (III.18)

Here, n represents the iterations of the ‘‘nonlinear convergence’’ loop. Once
∣∣∣φ̂n+1
x − φ̂nx

∣∣∣
is less than a predefined tolerance for every mode (n, k), the normalization condition is

then applied to each αx and the entire process is repeated until all values are sufficiently

converged.

III.5.1 Mean Flow Distortion

As mentioned briefly at the end of chapter II, there exists a real mode (0, 0) that

warrants special attention. This mode, referred to as the mean flow distortion (MFD),

is a nonlinear disturbance driven by the interactions between itself and all other modes

in the system. It is further differentiated from all other modes by possessing no complex

conjugate. Combined with the requirement that all disturbances be real, this dictates that

φ̂(0,0) must be purely real and α(0,0) must be purely imaginary (A0(0,0) will always equal 1).

This can be proven with a rather simple, albeit lengthy, expansion of the NPSE modal

disturbance, equation II.28, in conjunction with the symmetry laws II.30 for the MFD mode.

If this expansion is performed, it should be obvious that if an imaginary φ̂(0,0) or real α(0,0)

are ever introduced, they will continue grow and potentially impact the solution.

Because we can mathematically prove that imaginary φ̂(0,0) and real α(0,0) only originate
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through numerical error, we opt to eliminate them. The least invasive method to accomplish

this is to always ensure that NL(0,0) (equation II.29) is purely real before solving for φ̂(0,0).

In practice, our tests verify that the final results are measurably identical while convergence

routines are notably more expeditious.

III.5.2 Step Size Limitation

In the interest of stabilizing the PSE approximation, Li and Malik performed a numerical

study in 1996 [27]. They concluded that the equations are not completely parabolized

because ellipticity is introduced through the pressure gradient term ∂P̂
∂x . This ellipticity

leads to the step size limitation,

∂ξmin =
1

|αr|
(III.19)

such that too small of a step size will cause the solution to diverge. Although data is given

to show that the nature of the PSE approximation responds well to large step sizes, such

that equation III.19 is not typically a limitation, there do exist zero frequency modes, the

MFD (0, 0) and the longitudinal vortex modes (0, k), that typically express very small αr

values.

Upon further investigation, Li and Malik find that dropping the pressure gradient

∂P̂
∂x , while not completely eliminating the ellipticity, does reduce the minimum step size

requirement by ‘‘an order of magnitude’’ [27]. Because most of the pressure gradient is

absorbed by the iαP̂ term, dropping ∂P̂
∂x was shown to have very minor, if any, effect on

the final solution. Further attempts to eliminate all ellipticity could not be consistently

implemented without resulting in a final solution of reduced accuracy.

To ensure a more reliable and robust marching scheme for both PSE schemes, we follow

the recommendations of other authors and add a coefficient, Ω, to the front of our pressure

gradient. The full pressure gradient disturbance now takes the form of equation III.20.
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∂P ′

∂x
=

(
Ω
∂P̂

∂x
+ iαP̂

)
e
i
(∫ x

x0
α(x)∂x+βz−ωt

)
+ c.c.


Ω = 1 if ω 6= 0

Ω = 0 if ω = 0

(III.20)

III.6 Result Analysis Methods

The majority of results in the following chapters will be presented in the form of two

common methods: either an N-factor or an amplitude plot. Computational stability results,

similar to experimental stability results, are dependent on a multitude of factors, thus the

following sections seek to clarify in detail how our results are calculated and presented.

III.6.1 N-factor Analysis

The N-factor or eN method, first used by Hermann Schlichting in 1933 and later

popularized by van Ingen in 1956, is the most popular transition-prediction technique.

As Schubauer and Skramstad confirmed in their experiments [41], transition is not an

instantaneous phenomenon found at the first unstable disturbance, but is instead a process

governed by the relative growth of said disturbance during its unstable regime.

The quantity N is simply a ratio of amplitude growth, such that N = ln
(
A
A0

)
, where

A0 here is the first neutral-stability point. As Reed, Saric, and Arnal explain, ‘‘as long as

laminar flow is maintained and the disturbances remain linear, the eN method contains

all of the necessary physics to accurately predict disturbance behavior’’ [35]. However,

Reed et al. express caution in treating the N-factor as an authoritative value. The initial

disturbance amplitude, the crucial factor in receptivity studies, is not accounted for by

this method. Even in the most applicable cases, N is still a correlation; it is not solely

indicative of transition. To minimize error, comparisons should be restricted to experiments

of identical conditions whenever possible. Nevertheless, N-factors are a critical calculation

when used correctly.
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Original N-factors calculated the growth rate using αi.

N = ln

(
A

A0

)
=

∫ x

x0

−αi∂x (III.21)

Supersonic wind tunnel experiments typically measure growth rate as a measure of the

mass flux fluctuation, (ρu)′ = ρ′u+ ρu′. Therefore, N-factors calculated using mass flux as

the growth rate are

N = ln

(
A

A0

)
, where A = max

[
(uρ̂+ ρû) e

i
∫ x
x0
α∂x

+
(
uρ̂† + ρû†

)
e
−i
∫ x
x0
α†∂x

]
.

(III.22)

Unless noted differently, all our N-factor results presented in this paper use the mass flux

calculation (equation III.22).

III.6.2 Amplitude Analysis

Results not represented as N-factors will be presented as an amplitude analysis. Ampli-

tude analyses do not correlate to a transition location like the N-factor does, but instead give

a raw display of the disturbance modes’ maximum amplitudes. This is useful for visualizing

how disturbances react in nonlinear regimes, respond to different initial amplitudes, and

interact with other modes present.

Our results present the maximum u-velocity disturbance, u′. Recall that in NPSE, when

an initial amplitude A0 is given, we apply A0
2 to both the mode and its complex conjugate.

A singular mode (other than the MFD) expresses a complex disturbance, thus the real

amplitude results presented are the full disturbance (equation III.23).

u′max (x) = max

[
A0

2
(x) û (x) ei

∫ x
x0 α(x)∂x +

A†0
2

(x) û† (x) e−i
∫ x
x0 α

†(x)∂x

]
(III.23)

The u′ disturbances plotted have been nondimensionalized by Ue. Unless stated other-

wise, all initial amplitude A0 values given are in terms of the u-velocity perturbation.
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IV. LANGLEY 93-10 RESULTS

The Langley 93-10 flared cone was a focus of the hypersonic stability community for

a time. In an attempt to better understand and predict laminar-to-turbulent prediction,

effort was focused on studying a geometry that would undergo transition in a quiet wind

tunnel. Schneider notes that transition is not observed on straight cones under these

conditions due to experimental size restrictions [40]. Flared cones (compression cones)

create an adverse pressure gradient that causes disturbances to grow faster, thereby shifting

the laminar-to-turbulent transition point upstream. In addition, Saric points out that a

concave flare can also induce Görtler (centrifugal) instabilities [39]. Although the Langley

93-10 still does not experience transition in a quiet tunnel, it demonstrates a much larger

instability than previous models and still makes for an academic case study.

Computational results from JoKHeR were published [19] in support of experimental and

validation efforts in the NASA Langley Mach 6 Quiet Tunnel (M6QT) located at Texas

A&M University [12, 14]. The computational basic-state used for these results provide

an excellent and convenient verification scenario for EPIC. Validation with additional

experimental results will also be presented.

IV.1 Geometry

We make use of the same basic-state data that Kocian et al. utilized with JoKHeR [19].

Thus this section detailing the geometry and freestream conditions is adopted from the

cited paper.
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Figure IV.1: Langley 93-10 flared cone.

The Langley 93-10 flared cone model under consideration is 0.508 m in length and

consists of a nose tip with a radius of 38 microns. See figure IV.1. The nose was modeled

using the modified-super-ellipse equation in order to eliminate discontinuities in slope and

curvature at the juncture [28]. This method is shown in equation IV.1

(
a− x
a

)m(x)

+
(y
b

)2
= 1 (IV.1)

where m (x) = 2 +
(
x
a

)2
, a is the major axis, and b is the minor axis. For modeling the

Langley 93-10 flared cone, a and b are set to be equal to more closely resemble a circular

nose tip. See figure IV.2. The geometry transitions from a 5◦ half-angle cone to a flare at

0.254 m. The flare has a radius of curvature of 2.364 m and extends to the base of the cone,

which is 0.1168 m in diameter.
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Figure IV.2: Nose tip blended into straight portion of cone with modified super ellipse.

Run conditions for the computations were matched to test conditions in the M6QT. These

consisted of a freestream Mach number M∞ = 5.9, unit Reynolds number Re′ = 9.764×106

per meter, freestream static pressure P∞ = 620 Pa abs, and freestream temperature

T∞ = 54.38 K. The M6QT does not run long enough to establish adiabatic-wall conditions.

Over the course of a run with the 93-10 cone, temperatures vary between 403 K and 386

K for a variety of locations along the cone and throughout the run. So, while the actual

wind tunnel model had a small temperature variation on the body as time passed, the

computational model uses a constant wall temperature 398 K to represent an average value

(figure IV.3). Moreover Hofferth et al. [13, 14] noted the difficulty in obtaining an exactly

0◦ AoA during a typical experiment and its significant effect on second mode frequency.

The 0◦ AoA case is considered here as part of the computational study.

A stability analysis requires high-fidelity, undisturbed basic-state calculations, which

themselves satisfy the Navier-Stokes equations. The steady, laminar basic-state solution
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Figure IV.3: Wall temperature distributions for the Langley 93-10 flared cone, showing the
experimental conditions in the M6QT [14], the adiabatic distribution, and the computational
model of 398K.

is computed using GASP (General Aerodynamic Simulation Program), which solves the

unsteady Navier-Stokes equations using a cell-centered finite-volume scheme. A 3rd-order

Roe with Harten solving scheme, with a Van Albada limiter equal to 0.3333, was used

for the flared-cone geometry due to its reliability in finding stationary discontinuities, low

dissipation compared to other methods, and its entropy fix to counter the Carbuncle effect.

The grids used in these basic state calculations were generated using Pointwise. The

undisturbed basic-state flow is axisymmetric, thus a 2-D grid is sufficient. The 2-D mesh is

composed of two main parts in the wall normal direction: a band capturing the shock and

a high-resolution shock layer. See figure IV.4. The final grid used for this case contained

912 points between the shock and the body and 392 points to resolve the shock. In the

streamwise direction, 599 points were used. A comparison of stability results were used to

confirm convergence for this configuration [34].
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Figure IV.4: Langley 93-10 basic-state grid composed of two main parts in the wall normal
direction: a band capturing the shock and a high-resolution shock layer.

IV.2 JoKHeR Verification

LPSE was performed with EPIC to find the most unstable frequency at the conditions

previously mentioned. In perfect agreement with JoKHeR, the most amplified frequency at

an axial distance of 0.495 m was found to be 234 kHz (shown in figure IV.5). JoKHeR’s

results are shown in figure IV.6 for comparison. The most amplified frequency at the very

back of the cone was found to be 235 kHz with both codes (comparison shown in figures

IV.7 and IV.8). The notable difference between codes thus far is that EPIC finds higher

N-factors for all disturbances, with the peak disturbance having a max N-factor about 1.5

higher than what was found with JoKHeR. EPIC appears to agree extremely well for this

case.
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Figure IV.5: EPIC calculated LPSE N-factors for Langley 93-10 flared cone, featuring a

zoom at axial location x=0.495 m

Figure IV.6: JoKHeR calculated LPSE N-factors for Langley 93-10 flared cone, featuring a

zoom at axial location x=0.495 m [19]
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Figure IV.7: EPIC calculated LPSE N-

Factors for Langley 93-10 flared cone,

zoomed at back of cone.
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Figure IV.8: JoKHeR calculated LPSE

N-Factors for Langley 93-10 flared cone,

zoomed at back of cone.

NPSE analyses were conducted in order to consider the effects of a finite frequency

distribution and the interplay between multiple modal disturbances. The pure mode

disturbances used in LPSE are not truly representative of experimental initial conditions.

The single discrete case considers a single primary second-mode with two additional

harmonics and mean flow distortion. Primary mode frequencies included 220 kHz, 227.5

kHz, 235 kHz, 242.5 kHz, and 250 kHz. Conversely, the multiple discrete case considers

all of the primary second-modes from the discrete case, two additional ‘‘harmonic tiers’’,

and the mean flow distortion. A ‘‘harmonic tier’’ includes harmonics that result purely
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from primary mode interplay, in addition to the direct harmonics of the primary modes.

If harmonic tier 1 is our primary second-mode frequencies (220 kHz, 227.5 kHz, 235 kHz,

242.5 kHz, and 250 kHz), then harmonic tier 2 will consist of 440 kHz, 447.5 kHz, 455 kHz,

462.5 kHz, 470 kHz, 477.5 kHz, 485 kHz, 492.5 kHz, and 500 kHz. In an effort to validate

with JoKHeR runs from Kocian et al., both single and multiple cases were given initial

amplitudes based on temperature disturbance of A0 = 2e− 7 and A0 = 10e− 7. Results can

be seen in figure IV.9. As a proof a concept, figure IV.10 shows that the NPSE single and

multiple cases will recover the original linear solution with a low enough initial amplitude.

As expected, the energy exchange between the primary and harmonic modes has a

stabilizing effect, and this effect is greater in every multiple mode case than its corresponding

single mode case. This stabilizing effect shows evidence of ‘‘nonlinear saturation’’ being

reached, a situation where the rate of energy transfer from the basic state to the primary

mode is surpassed by the transfer rate of energy away from the primary mode and into the

harmonics.
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Figure IV.9: Comparison of single and broadband NPSE for Langley 93-10 flared cone.

Initial amplitude given in terms of temperature perturbation.
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Figure IV.10: The single and multiple NPSE cases will recover the same solution as the

LPSE case if given a small enough initial amplitude. Initial amplitude given in terms of

temperature perturbation.

IV.3 Validation

Table IV.1 compares EPIC’s results with other published computations and experiments.

It should be noted that most of the other runs being compared to used an adiabatic Twall,

however the adiabatic wall temperature acheived should be very near the constant 398 K

Twall used in our computations. The difference in nose radii and unit Reynold’s number are

more likely to account for different results. When accounting for the condition differences,

we find these results very agreeable and within an acceptable error range. Most importantly,

it is evident that the flare destabilizes the second mack-mode disturbances within the

220-240 kHz range.
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Authors Method

Nose
Radius
(mm)

Twall (K) Mach
Re’
(1/m)

X-
Location
(mm)

Frequency
(kHz)

Horvath et al. [15] Experiment and LST 0.00254 adiabatic 6.00 8.95e6 311 230

Balakumar &
Kegerise [1]

DNS 0.01270 adiabatic 6.00 8.95e6 400 220

Lachowicz
et al. [22]

LST 0.00254 adiabatic 5.91 9.25e6 444 220
Experiment 0.00254 adiabatic 5.91 9.25e6 482 226

Balakumar &
Malik [2]

Computational 0.00305 adiabatic 6.00 8.95e6 508 230

Hofferth & Saric [14] Experiment 0.03800 Fig IV.3 5.91 9.764e6 495 2501

311 239
400 225

Oliviero LPSE 0.03800 398 5.91 9.764e6 444 228
482 232
508 235

1Approximate frequency after adjusting for AoA offset

Table IV.1: Langley 93-10 flared cone validation comparisons
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V. PURDUE COMPRESSION CONE RESULTS

The Purdue compression cone (PCC) [45] was designed to exhibit the highest possible N-

factor while still starting in a wind tunnel. The constant flare creates an adverse streamwise

pressure gradient and maintains a near-constant-thickness boundary layer, making it an

ideal model for studying second-mode instabilities. Surprisingly, although higher N-factors

were calculated, the PCC still did not undergo transition in a quiet tunnel.

V.1 Geometry

The PCC is a circular-base cone 0.49 m in total length and begins with a nose tip radius

of 0.001 m. It maintains a flare with constant radius of curvature of 3.0 m along the entire

length of the body, concluding with a base diameter of 0.11684 m. Run conditions are as

follows: Mach number M∞ = 6, freestream temperature T∞ = 52.8 K, freestream pressure

P∞ = 610.7752 Pa abs, unit Reynolds number Re′ = 10.2834× 106 1/m, and constant wall

temperature Twall = 300 K.

The PCC case is run at 0◦ AoA, permitting the use of a 2-D axisymmetric grid. The

basic-state solution was calculated using GASP. The grid consisted of 901 points between

the shock and the body, 401 in the shock-capture layer, and 731 in the streamwise direction.

This basic state was used in previous computational studies with JoKHeR and is confirmed

to be converged [34]. The model can be viewed in figure V.1.

Figure V.1: Purdue compression cone.
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V.2 LPSE Results and Validation

Our PCC analysis begins with a multitude of EPIC LPSE results. It was first confirmed

that the 2-D second-mode is the most dominant instability present. After performing a fine

sweep of frequencies, the most amplified second-mode disturbance frequency was found to

be 285 kHz at axial location x=0.45m, shown in figure V.2.

Despite not being the most unstable, there do exist 3-D disturbances of significant

value on this geometry. Azimuthal beta βAZ relates the azimuthal wavelength λz to the

radius of the cone by representing the number of azimuthal waves that fit around the body.

Keeping this number constant allows λz to grow downstream as the cone widens, a more

physical reaction than forcing λz constant and having more waves appear downstream. The

3-D oblique second-modes, figure V.3, confirm that the 2-D second-mode is the strongest

instability mechanism at play, as expected. Phase angles for the oblique modes are shown in

figure V.4. The constant concave geometry also produces strong streamwise counter-rotating

streaks, a fully 3-D disturbance, as seen in figure V.5.

Figure V.2: EPIC calculated LPSE N-factors for Purdue Compression Cone, featuring a

zoom at axial location x=0.45 m
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Authors Method X-Location (mm) Frequency (kHz)

Balakumar &
Kegerise [1]

LST 400 279.0

LPSE 400 286.0

Wheaton et
al. [45]

LST 450 279.0

LPSE 450 286.0

Computational

200 287.0
300 285.0
400 285.0

BAM6QT

200 294.9
300 293.0
400 294.9

Oliviero LPSE

200 283.0
300 282.0
400 285.0
450 285.0

Table V.1: Purdue compression cone validation comparisons. BAM6QT stands for ‘‘Boe-
ing/AFOSR Mach-6 Quiet Tunnel’’

These results agree very well with the previously published computational results shown

in table V.1. Note that if comparing plots, our variation of the cone has an axial length

of 0.49 m instead of 0.45 m. Otherwise each of these cases was confirmed to run at near

identical operating conditions.

V.3 Bandwidth NPSE Results

While there is excellent agreement among computational results, Table V.1 also shows

that experimental results were about 10 kHz higher. This is in the same range as the 15

kHz difference between our computational comparison with Hofferth et. al [14] on the

Langley cone. In reaction to this, finite-bandwidth effects were studied on the second-mode

instability of the PCC as well. In order to compare to figures 3-6 of Kuehl et al. [20], 1-,

3-, 5-, 7-, 9-, and 11-mode NPSE cases were calculated via EPIC. All cases were centered

around 287 kHz (the most amplified at axial location x=0.49 m) with a 2 kHz interval

between neighboring modes. Each case was also run with a second ‘‘harmonic tier’’ and each

primary mode was given a very minimal initial amplitude of 2.0×10−8 (non-dimensionalized
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by the temperature perturbation). Figures V.6 and V.7 show the first harmonic of the 1-,

3-, 5- and 7-, 9-, 11-mode cases respectively. Figures V.8 and V.9 show the second harmonic

tier.

Many of the effects observed with JoKHeR are also present when calculated with EPIC,

but with more clarity. EPIC had no issue marching to the back of the cone for all cases

and shows a more consistent and smooth progression between cases. As more modes are

introduced, the peak amplitude begins to lower for the primary modes, but rise slightly

for the harmonics. More modes are also shown to push the onset of nonlinear saturation

further upstream. Once this nonlinear saturation begins, the higher frequency disturbances

continue to grow while the lower ones begin to decay. These trends hint that if nonlinear

saturation began earlier, perhaps in response to a higher initial amplitude, that a second

peak of disturbed frequencies closer to the range observed in experiments would appear in

response. However, because this presentation is focused on the verification and validation

of a new code, we will save newer results for a later presentation.

Despite the differences shown between JoKHeR and EPIC’s NPSE results, we are more

inclined to believe EPIC. Considering how well the LPSE results matched up and that the

newer NPSE results appear more physical, these differences actually inspire confidence in

EPIC’s increased capabilities over JoKHeR.
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Figure V.6: First harmonic of EPIC calculated 1-, 3-, and 5-mode bandwidth NPSE
amplitudes for Purdue compression cone.
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Figure V.7: First harmonic of EPIC calculated 7-, 9-, and 11-mode bandwidth NPSE

amplitudes for Purdue compression cone.
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Figure V.8: Second harmonic of EPIC calculated 1-, 3-, and 5-mode bandwidth NPSE
amplitudes for Purdue compression cone.
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Figure V.9: Second harmonic of EPIC calculated 7-, 9-, and 11-mode bandwidth NPSE

amplitudes for Purdue compression cone.
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VI. SWIFTER RESULTS

As a final verification, the case presented in this chapter is of a significantly different

geometry and flow condition than the previously explored experiments. Furthermore,

SWIFTER exhibits a stationary-crossflow instability [44], a notably dissimilar instability

mechanism than the second-mode that dominates the 2-D boundary layers of the unyawed

hypersonic cones displayed formerly. LPSE results via NASA’s LASTRAC program [6]

provide the basis for this verification.

VI.1 Geometry

The Swept-Wing In-Flight Testing Excrescence Research (SWIFTER) model is an airfoil

glove tested at Texas A&M University [44]. The article is a subsonic, spanwise-invariant,

swept-wing that has undergone extensive in-flight and wind tunnel experiments. SWIFTER

features a 30◦ sweep with a swept chord length of 1.37 m and span of 1.07 m. The test

side is comprised of only convex curvature, resulting in a favorable streamwise pressure

gradient up until the pressure minimum, located at 70% x/c.

VI.2 LASTRAC Verification

Supporting computational stability analyses (both LST and LPSE) were calculated

via NASA’s LASTRAC program, creating the beneficial opportunity to verify EPIC with

a third-party source. The original SWIFTER LASTRAC results, produced by Ph.D.

student and colleague Matthew Tufts, can be seen in his publication [44]. In order to

verify that identical data was being used, Mr. Tufts graciously agreed to run a new set of

results with LASTRAC to compare with EPIC. Figure VI.1 shows LPSE results obtained

with EPIC with LASTRAC’s results overlaid on top for a −6.5◦ AoA case. As done in

LASTRAC, EPIC N-factors for this case are calculated with αi values (III.21). Stationary-

crossflow disturbances consist of a 0.0 Hz frequency and a beta of varying range of spanwise

wavelengths. The most amplified disturbance consisted of a spanwise wavelength of 4.00

mm and all N-factor results compare exceeding well with LASTRAC results.
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VII. SUMMARY

With an increased demand lately for more aggressive flight envelopes that require more

advanced flight technology, it is evident that a more complete understanding of the different

laminar-to-turbulent transition mechanisms will be of great benefit. Despite pervasive use

in today’s aerospace industry, transition prediction tools are still inadequate for the type

of transition modeling we envision. True to its defintion, turbulence, and by extension

turbulent transition, are chaotic in nature and not easily understood or solved. This is

not to say that progress has not been made, as it most definitely has. If we have learned

anything from history, it is that research into this century-old problem will continue to yield

new and beneficial revelations, ultimately transforming our lofty aspirations into reality.

As new wind tunnel and computational experiments are performed, it is equally essential

that our analytical tools are easy to use and reflect the current knowledge base of the

problem. Being a proponent of NPSE analysis, the Euonymous (meaning appropriately

named) Parabolized Instability Code is a crucial tool for our CST lab for a myriad of

reasons:

• EPIC is faster, more robust, and easier to use than its predecessor.

• EPIC’s modular design allows for easy and convenient future modifications to stay

up-to-date.

• Most importantly, as displayed in this presentation, EPIC’s accuracy compares well

to preexisting computational and experimental results.

LPSE results on the Langley 93-10 cone proved to be in line with similar experimental

and computational results. Comparatively, all disturbances exhibited the expected behavior,

culminating with the most amplified disturbance being found within the expected range.

NPSE tests showed evidence of shared energy and nonlinear saturation and successfully

recovered the linear solutions given a small enough initial amplitude.

60



The Purdue Compression Cone results demonstrated EPIC’s capability to handle

different instability mechanisms. Oblique modes and 3-D disturbances behaved as expected

under LPSE analysis while the second-mode instability again matched well-documented

computational and experimental results. Bandwidth NPSE results showed promising

improvement and clarity over JoKHeR’s previous results.

Finally, EPIC results corresponded correctly with LASTRAC on the subsonic

SWIFTER wing glove, further validating EPIC’s capabilities to analyze the crossflow

instability mechanism and subsonic flight regimes.

With these preliminary comparisons successfully completed, EPIC has already begun

to see daily use in the CST lab. Future stability research will continue to utilize EPIC’s

effectiveness and hopefully provide the answers that will bring researchers ever closer to

predicting and understanding the phenomenon of laminar-to-turbulent transition.
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APPENDIX A

BASIC-STATE EQUATIONS

This section will demonstrate the derivation for the fully expanded and perturbed

basic-state equations that will serve as the starting point for the following derivations. We

will begin from the nondimensional, curvilinear, basic-state equations (equations II.11-II.16).

Each steady, basic-state quantity is perturbed with an unsteady disturbance quantity

(equation II.17). For convenience, this and the thermodynamic perturbation relations are

listed here.

φ = φ (x, y) + φ′ (x, y, z, t) , φ′ � φ (A.1)

µ′ =
∂µ

∂T
T ′, λ′ =

∂λ

∂T
T ′, κ′ =

∂κ

∂T
T ′,

∂λ

∂T
=
λ

µ

∂µ

∂T
. (A.2)

Applying equations A.1 and A.2 to equations II.11-II.16, subtracting out the purely

steady terms, and collecting the nonlinear terms to the right give the following result. These

equations will be the starting part for the LST and PSE formulations in the following

appendices.
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h1

))
+µ′h1h3

(
h2
h1

∂

∂x

(
v

h2

)
+
h1
h2

∂

∂y

(
u

h1

))]
+

1

h1h2h3

∂

∂z

[
µh1h2

(
h1
h3

∂

∂z

(
u′

h1

)
+
h3
h1

∂

∂x

(
w′

h3

))
+µ′h1h2

(
h1
h3

∂

∂z

(
u

h1

)
+
h3
h1

∂

∂x

(
w

h3

))]
+

µ

h1h2

∂h1
∂y

[
h2
h1

∂

∂x

(
v′

h2

)
+
h1
h2

∂

∂y

(
u′

h1

)]
+

µ′

h1h2

∂h1
∂y

[
h2
h1

∂

∂x

(
v

h2

)
+
h1
h2

∂

∂y

(
u

h1

)]
+

µ

h1h3

∂h1
∂z

[
h3
h1

∂

∂x

(
w′

h3

)
+
h1
h3

∂

∂z

(
u′

h1

)]
+

µ′

h1h3

∂h1
∂z

[
h3
h1

∂

∂x

(
w

h3

)
+
h1
h3

∂

∂z

(
u

h1

)]
− 2µ

h1h2

∂h2
∂x

[
1

h2

∂v′

∂y
+

w′

h2h3

∂h2
∂z

+
u′

h1h2

∂h2
∂x

]
− 2µ′

h1h2

∂h2
∂x

[
1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

]
− 2µ

h1h3

∂h3
∂x

[
1

h3

∂w′

∂z
+

u′

h1h3

∂h3
∂x

+
v′

h2h3

∂h3
∂y

]
− 2µ′

h1h3

∂h3
∂x

[
1

h3

∂w

∂z
+

u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

]}
= NLx (A.3)
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Y-Momentum

ρ

[
∂v′

∂t
+
u′

h1

∂v

∂x
+

u

h1

∂v′

∂x
+
v′

h2

∂v

∂y
+

v

h2

∂v′

∂y
+
w′

h3

∂v

∂z
+
w

h3

∂v′

∂z

−w′
(

w

h2h3

∂h3
∂y
− v

h2h3

∂h2
∂z

)
− w

(
w′

h2h3

∂h3
∂y
− v′

h2h3

∂h2
∂z

)
+u′

(
v

h1h2

∂h2
∂x
− u

h1h2

∂h1
∂y

)
+ u

(
v′

h1h2

∂h2
∂x
− u′

h1h2

∂h1
∂y

)]
+ ρ′

[
∂v

∂t
+

u

h1

∂v

∂x
+

v

h2

∂v

∂y
+
w

h3

∂v

∂z

−w
(

w

h2h3

∂h3
∂y
− v

h2h3

∂h2
∂z

)
+ u

(
v

h1h2

∂h2
∂x
− u

h1h2

∂h1
∂y

)]
+

1

h2

∂P ′

∂y
− 1

Re

{
1

h2

∂

∂y

[
λ

h1h2h3

(
∂ (h2h3u

′)

∂x
+
∂ (h1h3v

′)

∂y
+
∂ (h1h2w

′)

∂z

)
+

λ′

h1h2h3

(
∂ (h2h3u)

∂x
+
∂ (h1h3v)

∂y
+
∂ (h1h2w)

∂z

)]
+

1

h1h2h3

∂

∂x

[
µh2h3

(
h2
h1

∂

∂x

(
v′

h2

)
+
h1
h2

∂

∂y

(
u′

h1

))
+µ′h2h3

(
h2
h1

∂

∂x

(
v

h2

)
+
h1
h2

∂

∂y

(
u

h1

))]
+

1

h1h2h3

∂

∂y

[
2µ′h1h3

(
1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

)
+2µh1h3

(
1

h2

∂v′

∂y
+

w′

h2h3

∂h2
∂z

+
u′

h1h2

∂h2
∂x

)]
+

1

h1h2h3

∂

∂z

[
µh1h2

(
h3
h2

∂

∂y

(
w′

h3

)
+
h2
h3

∂

∂z

(
v′

h2

))
+µ′h1h2

(
h3
h2

∂

∂y

(
w

h3

)
+
h2
h3

∂

∂z

(
v

h2

))]
+

µ

h2h3

∂h2
∂z

[
h3
h2

∂

∂y

(
w′

h3

)
+
h2
h3

∂

∂z

(
v′

h2

)]
+

µ′

h2h3

∂h2
∂z

[
h3
h2

∂

∂y

(
w

h3

)
+
h2
h3

∂

∂z

(
v

h2

)]
+

µ

h1h2

∂h2
∂x

[
h2
h1

∂

∂x

(
v′

h2

)
+
h1
h2

∂

∂y

(
u′

h1

)]
+

µ′

h1h2

∂h2
∂x

[
h2
h1

∂

∂x

(
v

h2

)
+
h1
h2

∂

∂y

(
u

h1

)]
− 2µ

h2h3

∂h3
∂y

[
1

h3

∂w′

∂z
+

u′

h1h3

∂h3
∂x

+
v′

h2h3

∂h3
∂y

]
− 2µ′

h2h3

∂h3
∂y

[
1

h3

∂w

∂z
+

u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

]
− 2µ

h1h2

∂h1
∂y

[
1

h1

∂u′

∂x
+

v′

h1h2

∂h1
∂y

+
w′

h1h3

∂h1
∂z

]
− 2µ′

h1h2

∂h1
∂y

[
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h1h3

∂h1
∂z

]}
= NLy (A.4)
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Z-Momentum

ρ

[
∂w′

∂t
+
u′

h1

∂w

∂x
+

u

h1

∂w′

∂x
+
v′

h2

∂w

∂y
+

v

h2

∂w′

∂y
+
w′

h3

∂w

∂z
+
w

h3

∂w′

∂z

−u′
(

u

h1h3

∂h1
∂z
− w

h1h3

∂h3
∂x

)
− u

(
u′

h1h3

∂h1
∂z
− w′

h1h3

∂h3
∂x

)
+v′

(
w

h2h3

∂h3
∂y
− v

h2h3

∂h2
∂z

)
+ v

(
w′

h2h3

∂h3
∂y
− v′

h2h3

∂h2
∂z

)]
+ ρ′

[
∂w

∂t
+

u

h1

∂w

∂x
+

v

h2

∂w

∂y
+
w

h3

∂w

∂z

−u
(

u

h1h3

∂h1
∂z
− w

h1h3

∂h3
∂x

)
+ v

(
w

h2h3

∂h3
∂y
− v

h2h3

∂h2
∂z

)]
+

1

h3

∂P ′

∂z
− 1

Re

{
1

h3

∂

∂z

[
λ

h1h2h3

(
∂ (h2h3u

′)

∂x
+
∂ (h1h3v

′)

∂y
+
∂ (h1h2w

′)

∂z

)
+

λ′

h1h2h3

(
∂ (h2h3u)

∂x
+
∂ (h1h3v)

∂y
+
∂ (h1h2w)

∂z

)]
+

1

h1h2h3

∂

∂x

[
µh2h3

(
h1
h3

∂

∂z

(
u′

h1

)
+
h3
h1

∂

∂x

(
w′

h3

))
+µ′h2h3

(
h1
h3

∂

∂z

(
u

h1

)
+
h3
h1

∂

∂x

(
w

h3

))]
+

1

h1h2h3

∂

∂y

[
µh1h3

(
h3
h2

∂

∂y

(
w′

h3

)
+
h2
h3

∂

∂z

(
v′

h2

))
+µ′h1h3

(
h3
h2

∂

∂y

(
w

h3

)
+
h2
h3

∂

∂z

(
v

h2

))]
+

1

h1h2h3

∂

∂z

[
2µ′h1h2

(
1

h3

∂w

∂z
+

u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

)
+2µh1h2

(
1

h3

∂w′

∂z
+

u′

h1h3

∂h3
∂x

+
v′

h2h3

∂h3
∂y

)]
+

µ

h1h3

∂h3
∂x

[
h1
h3

∂

∂z

(
u′

h1

)
+
h3
h1

∂

∂x

(
w′

h3

)]
+

µ′

h1h3

∂h3
∂x

[
h1
h3

∂

∂z

(
u

h1

)
+
h3
h1

∂

∂x

(
w

h3

)]
+

µ

h2h3

∂h3
∂y

[
h3
h2

∂

∂y

(
w′

h3

)
+
h2
h3

∂

∂z

(
v′

h2

)]
+

µ′

h2h3

∂h3
∂y

[
h3
h2

∂

∂y

(
w

h3

)
+
h2
h3

∂

∂z

(
v

h2

)]
− 2µ

h1h3

∂h1
∂z

[
1

h1

∂u′

∂x
+

v′

h1h2

∂h1
∂y

+
w′

h1h3

∂h1
∂z

]
− 2µ′

h1h3

∂h1
∂z

[
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h1h3

∂h1
∂z

]
− 2µ

h2h3

∂h2
∂z

[
1

h2

∂v′

∂y
+

w′

h2h3

∂h2
∂z

+
u′

h1h2

∂h2
∂x

]
− 2µ′

h2h3

∂h2
∂z

[
1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

]}
= NLz (A.5)
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Energy

ρ

[
∂T ′

∂t
+
u′

h1

∂T

∂x
+

u

h1

∂T ′

∂x
+
v′

h2

∂T

∂y
+

v

h2

∂T ′

∂y
+
w′

h3

∂T

∂z
+
w

h3

∂T ′

∂z

]
+ ρ′

[
∂T

∂t
+

u

h1

∂T

∂x
+

v

h2

∂T

∂y
+
w

h3

∂T

∂z

]
− (γ − 1)M2

[
∂P ′

∂t
+
u′

h1

∂P

∂x
+

u

h1

∂P ′

∂x
+
v′

h2

∂P

∂y
+

v

h2

∂P ′

∂y
+
w′

h3

∂P

∂z
+
w

h3

∂P ′

∂z

]
− 1

PrRe

1

h1h2h3

[
∂

∂x

(
κh2h3
h1

∂T ′

∂x

)
+

∂

∂x

(
κ′h2h3
h1

∂T

∂x

)
+

∂

∂y

(
κh1h3
h2

∂T ′

∂y

)
+
∂

∂y

(
κ′h1h3
h2

∂T

∂y

)
+

∂

∂z

(
κh1h2
h3

∂T ′

∂z

)
+

∂

∂z

(
κ′h1h2
h3

∂T

∂z

)]
− (γ − 1)M2

Re

{(
2µ′ + λ′

)( 1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h1h3

∂h1
∂z

)2

+2
(
2µ+ λ

)( 1

h1

∂u′

∂x
+

v′

h1h2

∂h1
∂y

+
w′

h1h3

∂h1
∂z

)(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h1h3

∂h1
∂z

)
+µ′

[
h3
h2

∂

∂y

(
w

h3

)
+
h2
h3

∂

∂z

(
v

h2

)]2
+2µ

[
h3
h2

∂

∂y

(
w

h3

)
+
h2
h3

∂

∂z

(
v

h2

)][
h3
h2

∂

∂y

(
w′

h3

)
+
h2
h3

∂

∂z

(
v′

h2

)]
+
(
2µ′ + λ′

)( 1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

)2

+2
(
2µ+ λ

)( 1

h2

∂v′

∂y
+

w′

h2h3

∂h2
∂z

+
u′

h1h2

∂h2
∂x

)(
1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

)
+µ′

[
h3
h1

∂

∂x

(
w

h3

)
+
h1
h3

∂

∂z

(
u

h1

)]2
+2µ

[
h3
h1

∂

∂x

(
w

h3

)
+
h1
h3

∂

∂z

(
u

h1

)][
h3
h1

∂

∂x

(
w′

h3

)
+
h1
h3

∂

∂z

(
u′

h1

)]
+
(
2µ′ + λ′

)( 1

h3

∂w

∂z
+

u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

)2

+2
(
2µ+ λ

)( 1

h3

∂w′

∂z
+

u′

h1h3

∂h3
∂x

+
v′

h2h3

∂h3
∂y

)(
1

h3

∂w

∂z
+

u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

)
+µ′

[
h2
h1

∂

∂x

(
v

h2

)
+
h1
h2

∂

∂y

(
u

h1

)]2
+2µ

[
h2
h1

∂

∂x

(
v

h2

)
+
h1
h2

∂

∂y

(
u

h1

)][
h2
h1

∂

∂x

(
v′

h2

)
+
h1
h2

∂

∂y

(
u′

h1

)]
+2λ′

(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h1h3

∂h1
∂z

)(
1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

)
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+2λ

(
1

h1

∂u′

∂x
+

v′

h1h2

∂h1
∂y

+
w′

h1h3

∂h1
∂z

)(
1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

)
+2λ

(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h1h3

∂h1
∂z

)(
1

h2

∂v′

∂y
+

w′

h2h3

∂h2
∂z

+
u′

h1h2

∂h2
∂x

)
+2λ′

(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h1h3

∂h1
∂z

)(
1

h3

∂w

∂z
+

u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

)
+2λ

(
1

h1

∂u′

∂x
+

v′

h1h2

∂h1
∂y

+
w′

h1h3

∂h1
∂z

)(
1

h3

∂w

∂z
+

u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

)
+2λ

(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h1h3

∂h1
∂z

)(
1

h3

∂w′

∂z
+

u′

h1h3

∂h3
∂x

+
v′

h2h3

∂h3
∂y

)
+2λ′

(
1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

)(
1

h3

∂w

∂z
+

u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

)
+2λ

(
1

h2

∂v′

∂y
+

w′

h2h3

∂h2
∂z

+
u′

h1h2

∂h2
∂x

)(
1

h3

∂w

∂z
+

u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

)
+2λ

(
1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

)(
1

h3

∂w′

∂z
+

u′

h1h3

∂h3
∂x

+
v′

h2h3

∂h3
∂y

)}
= NLe

(A.6)

Continuity

∂ρ′

∂t
+

[
1

h1

(
∂ρ

∂x
u′ +

∂ρ′

∂x
u+

∂u

∂x
ρ′ +

∂u′

∂x
ρ

)
+
(
ρu′ + uρ′

)( 1

h1h2

∂h2
∂x

+
1

h1h3

∂h3
∂x

)]
+

[
1

h2

(
∂ρ

∂y
v′ +

∂ρ′

∂y
v +

∂v

∂y
ρ′ +

∂v′

∂y
ρ

)
+
(
ρv′ + vρ′

)( 1

h3h2

∂h3
∂y

+
1

h1h2

∂h1
∂y

)]
+

[
1

h3

(
∂ρ

∂z
w′ +

∂ρ′

∂z
w +

∂w

∂z
ρ′ +

∂w′

∂z
ρ

)
+
(
ρw′ + wρ′

)( 1

h3h2

∂h2
∂z

+
1

h1h3

∂h1
∂z

)]
= NLm

(A.7)

Equation of State

P ′ =
ρ′T + ρT ′

γM2
(A.8)
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APPENDIX B

LST FORMULATION

The full LST equations and formulations will be displayed here. Beginning from

equations A.3-A.8, the following assumptions are imposed:

• φ = φ (y)

• v = 0

• NL = 0

• φ′ = φ̂ (y) ei(αx+βz−ωt)

Pressure is eliminated through use of the equation of state (equation A.8), thus reducing

the set of equations to five. The result is arranged in the format

A∂
2φ̂

∂y2
+ B∂φ̂

∂y
+ Cφ̂ = 0 (B.1)

where φ̂ =
[
û, v̂, ŵ, T̂ , ρ̂

]
. A, B, and C are 5x5 matrices at each point in the normal

direction. These are expanded below. All terms should be basic-state quantities, as the

disturbance quantities and derivatives are accounted for in equation B.1. X-momentum,

Y-momentum, Z-momentum, energy, and mass continuity are represented by rows 1-

5 respectively. Similarly, columns 1-5 are the coefficients of û, v̂, ŵ, T̂ , ρ̂, and their

y-derivatives.
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A-Matrix

A =



− µ
Reh22

0 0 0 0

0 − 1
Reh22

(λ+ 2µ) 0 0 0

0 0 − µ
Reh22

0 0

0 0 0 − κ
PrReh22

0

0 0 0 0 0


B-Matrix

B1,1 =
µ

Reh32

∂h2
∂y
− 1

Reh1h22h3

(
h1h3

∂µ

∂T

∂T

∂y
+ h1µ

∂h3
∂y

+ h3µ
∂h1
∂y

)
B1,2 =

λh3
Re

(
1

h21h2h3

∂h1
∂x

+
1

h1h22h3

∂h2
∂x

+
1

h1h2h23

∂h3
∂x

)
− λ

Reh21h2h3

(
h1
∂h3
∂x

+ h3
∂h1
∂x

+ iαh1h3

)
+

3µ

Reh1h22

∂h2
∂x
− iαµ

Reh2h1

B1,3 =0

B1,4 =− 1

Reh22

∂µ

∂T

(
∂u

∂y
− u

h1

∂h1
∂y

)
B1,5 =0

74



B2,1 =− λ

Reh1h22h3

(
iαh2h3 + h2

∂h3
∂x

+ h3
∂h2
∂x

)
− µ

Reh1h2h3

(
iαh3 +

∂h3
∂x

)
− 3µ

Reh1h22

∂h2
∂x

B2,2 =

[
λ

Reh2

(
1

h21h2h3

∂h1
∂y

+
1

h1h22h3

∂h2
∂y

+
1

h1h2h23

∂h3
∂y

)
− 1

Reh1h22h3

λ

µ

∂µ

∂T

∂T

∂y

]
h1h3

− 2λ

Reh1h22h3

(
h1
∂h3
∂y

+ h3
∂h1
∂y

)
− 2

Reh22

∂µ

∂T

∂T

∂y

− 2µ

Reh1h22h3

(
h1
∂h3
∂y

+ h3
∂h1
∂y
− h1h3

h2

∂h2
∂y

)
B2,3 =− λ

Reh1h22h3

(
iβh1h2 + h1

∂h2
∂z

+ h2
∂h1
∂z

)
− µ

Reh1h2h3

(
iβh1 +

∂h1
∂z

)
− 3µ

Reh22h3

∂h2
∂z

B2,4 =
ρ

h2γM2
− 1

Reh1h22h3

λ

µ

∂µ

∂T

(
uh2

∂h3
∂x

+ uh3
∂h2
∂x

+ wh1
∂h2
∂z

+ wh2
∂h1
∂z

)
− 2

Reh1h22h3

∂µ

∂T

(
wh1

∂h2
∂z

+ uh3
∂h2
∂x

)
B2,5 =

T

h2γM2

B3,1 =0

B3,2 =− λ

Reh1h2h23

(
iβh1h3 + h1

∂h3
∂z

+ h3
∂h1
∂z

)
+
λh1
Re

(
1

h21h2h3

∂h1
∂z

+
1

h1h22h3

∂h2
∂z

+
1

h1h2h23

∂h3
∂z

)
+

3µ

Reh22h3

∂h2
∂z
− iβµ

Reh2h3

B3,3 =− 1

Reh22

∂µ

∂T

∂T

∂y
− µ

Reh1h2h3

(
h1
h2

∂h3
∂y

+
h3
h2

∂h1
∂y
− h1h3

h22

∂h2
∂y

)
B3,4 =− 1

Reh22h3

∂µ

∂T

(
h3
∂w

∂y
− w∂h3

∂y

)
B3,5 =0
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B4,1 =− 2µ (γ − 1)M2

Reh2

(
1

h2

∂u

∂y
− u

h1h2

∂h1
∂y

)
B4,2 =− 2 (γ − 1)M2

Reh2

[
(2µ+ λ)

(
w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

)
+ λ

(
w

h1h3

∂h1
∂z

+
u

h1h3

∂h3
∂x

)]
B4,3 =− 2µ (γ − 1)M2

Reh2

(
1

h2

∂w

∂y
− w

h2h3

∂h3
∂y

)
B4,4 =− 1

PrReh1h22h3

[
κ

(
h1
∂h3
∂y

+ h3
∂h1
∂y
− h1h3

h2

∂h2
∂y

)
+ 2h1h3

∂κ

∂T

∂T

∂y

]
B4,5 =0

B5,1 =0

B5,2 =
ρ

h2

B5,3 =0

B5,4 =0

B5,5 =0

C-Matrix

C1,1 =ρ

(
−iω +

u

h1
iα+

w

h3
iβ +

w

h1h3

∂h1
∂z

)
− λ

Reh21h2h3

(
−α2h2h3 + i2αh2

∂h3
∂x

+ i2αh3
∂h2
∂x

+ 2
∂h2
∂x

∂h3
∂x

+ h2
∂2h3
∂x2

+ h3
∂2h2
∂x2

)
+

λ

Reh1

(
1

h21h2h3

∂h1
∂x

+
1

h1h22h3

∂h2
∂x

+
1

h1h2h23

∂h3
∂x

)(
iαh2h3 + h2

∂h3
∂x

+ h3
∂h2
∂x

)
− i2αµ

Reh1h2h3

(
h3
h1

∂h2
∂x

+
h2
h1

∂h3
∂x
− h2h3

h21

∂h1
∂x

)
+

2α2µ

Reh21

+
1

Reh21h
2
2h3

∂h1
∂y

(
h1h3

∂µ

∂T

∂T

∂y
+ h1µ

∂h3
∂y

+ h3µ
∂h1
∂y

)
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− µ

Reh1h22

(
1

h2

∂h2
∂y

∂h1
∂y

+
1

h1

∂h1
∂y

∂h1
∂y
− ∂2h1

∂y2

)
− µ

Reh1h2h3

(
iβ

h3
− 1

h1h3

∂h1
∂z

)(
h1
∂h2
∂z

+ h2
∂h1
∂z

)
+

µ

Reh3

(
β2

h3
+
iβ

h23

∂h3
∂z

+
iβ

h1h3

∂h1
∂z
− 1

h21h3

∂h1
∂z

∂h1
∂z
− 1

h1h23

∂h3
∂z

∂h1
∂z

+
1

h1h3

∂2h1
∂z2

)
+

µ

Reh21h
2
2

[(
∂h1
∂y

)2

+ 2

(
∂h2
∂x

)2
]

+
µ

Reh1h3

[
2

h1h3

(
∂h3
∂x

)2

− ∂h1
∂z

(
iβ

h3
− 1

h1h3

∂h1
∂z

)]

C1,2 =ρ

(
1

h2

∂u

∂y
+

u

h1h2

∂h1
∂y

)
− λ

Reh21h2h3

(
iαh1

∂h3
∂y

+
∂h1
∂x

∂h3
∂y

+ h1
∂2h3
∂x∂y

+ iαh3
∂h1
∂y

+
∂h3
∂x

∂h1
∂y

+ h3
∂2h1
∂x∂y

)
+

λ

Reh1

(
1

h21h2h3

∂h1
∂x

+
1

h1h22h3

∂h2
∂x

+
1

h1h2h23

∂h3
∂x

)(
h1
∂h3
∂y

+ h3
∂h1
∂y

)
− 2µ

Reh1h2h3

(
iα
h3
h1

∂h1
∂y

+
1

h1

∂h1
∂y

∂h3
∂x
− h3
h21

∂h1
∂y

∂h1
∂x

+
h3
h1

∂2h1
∂y∂x

)
− 1

Reh21h2h3

(
h1h3

∂µ

∂T

∂T

∂y
+ h1µ

∂h3
∂y

+ h3µ
∂h1
∂y

)(
iα− 1

h2

∂h2
∂x

)
+

µ

Reh2

(
iα

h21

∂h1
∂y

+
1

h1h2

∂2h2
∂x∂y

− 1

h21h2

∂h2
∂x

∂h1
∂y
− 1

h1h22

∂h2
∂x

∂h2
∂y

)
− µ

Reh21h2

∂h1
∂y

(
iα− 1

h2

∂h2
∂x

)
+

2µ

Reh1h2h23

∂h3
∂x

∂h3
∂y

C1,3 =
ρ

h1h3

(
u
∂h1
∂z
− 2w

∂h3
∂x

)
− λ

Reh21h2h3

(
−αβh1h2 + iβh1

∂h2
∂x

+ iβh2
∂h1
∂x

+iαh1
∂h2
∂z

+
∂h1
∂x

∂h2
∂z

+ h1
∂2h2
∂x∂z

+ iαh2
∂h1
∂z

+
∂h2
∂x

∂h1
∂z

+ h2
∂2h1
∂x∂z

)
+

λ

Reh1

(
1

h21h2h3

∂h1
∂x

+
1

h1h22h3

∂h2
∂x

+
1

h1h2h23

∂h3
∂x

)(
iβh1h2 + h1

∂h2
∂z

+ h2
∂h1
∂z

)
− 2µ

Reh21h2h3

(
iαh2

∂h1
∂z

+
∂h1
∂z

∂h2
∂x

+ h2
∂2h1
∂x∂z

− h2
h1

∂h1
∂z

∂h1
∂x

)
− µ

Reh1h2h3

(
iα

h1
− 1

h1h3

∂h3
∂x

)(
h1
∂h2
∂z

+ h2
∂h1
∂z

)
+

µ

Reh3

(
αβ

h1
+
iα

h21

∂h1
∂z

+
iβ

h1h3

∂h3
∂x

+
1

h21h3

∂h3
∂x

∂h1
∂z

+
1

h1h23

∂h3
∂x

∂h3
∂z
− 1

h1h3

∂2h3
∂x∂z

)
− µ

Reh21h3

∂h1
∂z

(
iα− 1

h3

∂h3
∂x

)
+

2µ

Reh1h22h3

∂h2
∂x

∂h2
∂z

+
i2µβ

Reh1h23

∂h3
∂x
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C1,4 =
iαρ

h1γM2
− 1

Re

λ

µ

∂µ

∂T

{(
uh2

∂h3
∂x

+ uh3
∂h2
∂x

+ wh1
∂h2
∂z

+ wh2
∂h1
∂z

)
[

iα

h21h2h3
− 1

h1

(
1

h21h2h3

∂h1
∂x

+
1

h1h22h3

∂h2
∂x

+
1

h1h2h23

∂h3
∂x

)]}
− 1

Reh21h2h3

λ

µ

∂µ

∂T

(
2u
∂h2
∂x

∂h3
∂x

+ uh2
∂2h3
∂x2

+ uh3
∂2h2
∂x2

+w
∂h1
∂x

∂h2
∂z

+ wh1
∂2h2
∂x∂z

+ w
∂h2
∂x

∂h1
∂z

+ wh2
∂2h1
∂x∂z

)
− 2w

Reh21h2h3

∂µ

∂T

(
iαh2

∂h1
∂z

+
∂h1
∂z

∂h2
∂x
− h2
h1

∂h1
∂z

∂h1
∂x

+ h2
∂2h1
∂x∂z

)
− 1

Reh1h2h3

∂µ

∂T

(
1

h2

∂u

∂y
− u

h1h2

∂h1
∂y

)(
h1
∂h3
∂y

+ h3
∂h1
∂y

)
− 1

Reh2

∂2µ

∂T 2

∂T

∂y

(
1

h2

∂u

∂y
− u

h1h2

∂h1
∂y

)
− 1

Reh2

∂µ

∂T

(
1

h2

∂2u

∂y2
− 1

h22

∂u

∂y

∂h2
∂y
− 1

h1h2

∂u

∂y

∂h1
∂y

− u

h1h2

∂2h1
∂y2

+
u

h21h2

∂h1
∂y

∂h1
∂y

+
u

h1h22

∂h2
∂y

∂h1
∂y

)
+

1

Reh1h2h3

∂µ

∂T

(
u

h1h3

∂h1
∂z

+
w

h1h3

∂h3
∂x

)(
iβh1h2 + h1

∂h2
∂z

+ h2
∂h1
∂z

)
+

1

Reh3

∂µ

∂T

(
u

h1h3

∂2h1
∂z2

− u

h21h3

∂h1
∂z

∂h1
∂z
− u

h1h23

∂h3
∂z

∂h1
∂z

+
w

h1h3

∂2h3
∂x∂z

− w

h21h3

∂h1
∂z

∂h3
∂x
− w

h1h23

∂h3
∂z

∂h3
∂x

)
− 1

Reh1h22

∂µ

∂T

∂h1
∂y

(
∂u

∂y
− u

h1

∂h1
∂y

)
+

1

Reh21h
2
3

∂µ

∂T

∂h1
∂z

(
w
∂h3
∂x

+ u
∂h1
∂z

)
+

2

Reh1h22

∂µ

∂T

∂h2
∂x

(
w

h3

∂h2
∂z

+
u

h1

∂h2
∂x

)
+

2u

Reh21h
2
3

∂µ

∂T

∂h3
∂x

∂h3
∂x

C1,5 =
w

h1h3

(
u
∂h1
∂z
− w∂h3

∂x

)
+

iαT

h1γM2

C2,1 =− 2ρu

h1h2

∂h1
∂y

+

{[
λ

Reh2

(
1

h21h2h3

∂h1
∂y

+
1

h1h22h3

∂h2
∂y

+
1

h1h2h23

∂h3
∂y

)
− 1

Reh1h22h3

λ

µ

∂µ

∂T

∂T

∂y

](
iαh2h3 + h2

∂h3
∂x

+ h3
∂h2
∂x

)}
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− λ

Reh1h22h3

(
iαh2

∂h3
∂y

+ iαh3
∂h2
∂y

+
∂h2
∂y

∂h3
∂x

+ h2
∂2h3
∂x∂y

+
∂h3
∂y

∂h2
∂x

+ h3
∂2h2
∂x∂y

)
+

µ

Reh21h2h3

(
iαh3

∂h1
∂y

+
∂h3
∂x

∂h1
∂y

+ h3
∂2h1
∂x∂y

− h3
h1

∂h1
∂x

∂h1
∂y

)
− 2

Reh1h22

∂h2
∂x

∂µ

∂T

∂T

∂y
− 2µ

Reh1h22h3

(
∂h3
∂y

∂h2
∂x

+ h3
∂2h2
∂x∂y

− h3
h2

∂h2
∂y

∂h2
∂x

)
+

µ

Reh21h
2
2

∂h1
∂y

∂h2
∂x

+
2µ

Reh1h2h23

∂h3
∂y

∂h3
∂x

+
i2αµ

Reh21h2

∂h1
∂y

C2,2 =ρ

[
−iω +

u

h1
iα+

w

h3
iβ +

∂h2
∂x

(
w

h2h3
+

u

h1h2

)]
+

{[
λ

Reh2

(
1

h21h2h3

∂h1
∂y

+
1

h1h22h3

∂h2
∂y

+
1

h1h2h23

∂h3
∂y

)
− 1

Reh1h22h3

λ

µ

∂µ

∂T

∂T

∂y

]
(
h1
∂h3
∂y

+ h3
∂h1
∂y

)}
− λ

Reh1h22h3

(
2
∂h1
∂y

∂h3
∂y

+ h1
∂2h3
∂y2

+ h3
∂2h1
∂y2

)
− µ

Reh21h2h3

(
iαh2

∂h3
∂x
− α2h2h3 −

iαh2h3
h1

∂h1
∂x
− ∂h3

∂x

∂h2
∂x

−h3
∂2h2
∂x2

+
h3
h1

∂h2
∂x

∂h1
∂x

)
− µ

Reh1h2h23

(
iβh2

∂h1
∂z
− β2h1h2 −

iβh1h2
h3

∂h3
∂z
− ∂h1

∂z

∂h2
∂z

−h1
∂2h2
∂z2

+
h1
h3

∂h3
∂z

∂h2
∂z

)
− µ

Reh2h3

∂h2
∂z

(
iβ

h3
− 1

h2h3

∂h2
∂z

)
− µ

Reh1h2

∂h2
∂x

(
iα

h1
− 1

h1h2

∂h2
∂x

)
+

2µ

Reh22h
2
3

∂h3
∂y

∂h3
∂y

+
2µ

Reh21h
2
2

∂h1
∂y

∂h1
∂y

C2,3 =− 2
ρw

h2h3

∂h3
∂y

+

{[
λ

Reh2

(
1

h21h2h3

∂h1
∂y

+
1

h1h22h3

∂h2
∂y

+
1

h1h2h23

∂h3
∂y

)
− 1

Reh1h22h3

λ

µ

∂µ

∂T

∂T

∂y

](
iβh1h2 + h1

∂h2
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∂h2
∂y
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+
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∂z
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∂y
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C2,4 =
1

h2γM2

∂ρ

∂y
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µ
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1
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1
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∂h3
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µ
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∂T
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∂h3
∂x
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∂z
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(
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(
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+
w
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+
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∂y
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∂z
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∂x

+
u
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∂h3
∂y

∂h2
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+
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∂2h2
∂x∂y
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)
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(
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∂w
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∂h3
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(
∂h1
∂z

∂w
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∂h1
∂z

∂h3
∂y
− wh1
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∂y∂z
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∂h3
∂y
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∂z
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∂h2
∂z
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1
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∂y
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∂T

∂h2
∂x
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1
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∂u

∂y
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)
+

2u

h1h2h23
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∂T

∂h3
∂y

∂h3
∂x
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h21h2h3
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∂h1
∂y

∂h1
∂z

C2,5 =−
(
w2

h2h3

∂h3
∂y

+
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∂h1
∂y

)
+

1

h2γM2

∂T

∂y
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C3,1 =
ρ

h1h3

(
w
∂h3
∂x
− 2u

∂h1
∂z

)
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Reh1h2h23

(
−αβh2h3 + iαh2

∂h3
∂z

+ iαh3
∂h2
∂z

+iβh2
∂h3
∂x

+
∂h2
∂z

∂h3
∂x
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∂2h3
∂x∂z

+ iβh3
∂h2
∂x

+
∂h3
∂z

∂h2
∂x

+ h3
∂2h2
∂x∂z

)
+

λ

Reh3

(
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∂h3
∂x

+ h3
∂h2
∂x
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1

h21h2h3

∂h1
∂z
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1
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∂h2
∂z
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1

h1h2h23

∂h3
∂z

)
− µ

Reh1h2h3

(
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∂h2
∂x
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h1

∂h1
∂z
− 1
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∂h2
∂x

∂h1
∂z
− h2
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∂x∂z

+
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h21

∂h1
∂z

∂h1
∂x

)
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Reh1h2h3

(
iβh2
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∂h3
∂x
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1

h3

∂h2
∂z

∂h3
∂x

+
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∂x∂z
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h23

∂h3
∂x

∂h3
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)
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Reh1h23
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∂x

(
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∂z

)
+
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∂h1
∂z

+
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Reh1h22h3

∂h2
∂x

∂h2
∂z

C3,2 =
ρ
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(
∂w

∂y
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w

h3

∂h3
∂y

)
− λ

Reh1h2h23

(
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∂h3
∂y

+
∂h1
∂z

∂h3
∂y

+ h1
∂2h3
∂y∂z

+iβh3
∂h1
∂y

+
∂h3
∂z

∂h1
∂y

+ h3
∂2h1
∂y∂z

)
+

λ

Reh3

(
h1
∂h3
∂y

+ h3
∂h1
∂y

)(
1

h21h2h3

∂h1
∂z

+
1

h1h22h3

∂h2
∂z

+
1

h1h2h23

∂h3
∂z

)
− 1

Reh1h2h3

∂µ

∂T

∂T

∂y

(
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∂h2
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)
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∂y
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)
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1
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∂h3
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)
− µ

Reh2h23

∂h3
∂y

(
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h2

∂h2
∂z

)
+
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Reh21h2h3

∂h1
∂z

∂h1
∂y

C3,3 =ρ

(
−iω +

iuα

h1
+
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h3
+

u
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∂h3
∂x

)
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Reh1h2h23

(
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∂h2
∂z
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∂h1
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∂z

∂h2
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+ h1
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∂z2
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∂z2

)
+

λ

Reh3

(
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∂z

)(
1
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∂h1
∂z

+
1
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∂z
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h1h2h23
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Reh1h2h3

(
α2h2h3
h1

− iαh3
h1

∂h2
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∂h3
∂x

+
h2
h1

∂2h3
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1
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)
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− 2µ

Reh1h2h3

(
−β

2h1h2
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+
iβh1
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∂h2
∂z

+
iβh2
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− w∂h3

∂x

)
+

iβT
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C4,1 =− (γ − 1)M2
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h21h3

∂h1
∂z
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(
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h2h3
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u
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∂x

)
−2µ
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∂z
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∂z
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∂y
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1
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∂x
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∂x

+
2λ

h1h3

∂h3
∂x

(
w

h2h3

∂h2
∂z

+
u
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∂x
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∂z
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1
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h2h3
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∂z

)
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∂y
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γ

(
−iω +
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∂y

+
1

h1

∂h1
∂y

)]
C5,3 =

ρ

h3

(
iβ +

1

h2

∂h2
∂z

+
1

h1

∂h1
∂z

)
C5,4 =0

C5,5 =− iω +
u

h1

(
iα+

1

h2

∂h2
∂x

+
1

h3

∂h3
∂x

)
+
w

h3

(
iβ +

1

h2

∂h2
∂z

+
1

h1

∂h1
∂z

)
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APPENDIX C

LPSE FORMULATION

The full LPSE equations and formulations will be displayed here. Beginning from

equations A.3-A.8, the wave format C.1 is imposed while following the details in chapter II

to eliminate ellipitcal terms. Nonlinear terms are set to zero.

φ′ (x, y, z, t) ≡ φ̂ (x, y) e
i
(∫ x

x0
α(x)∂x+βz−ωt

)
(C.1)

Pressure is eliminated through use of the equation of state (equation A.8), thus reducing

the set of equations to five. The result is arranged into the format

A∂
2φ̂

∂y2
+ B ∂2φ̂

∂x∂y
+ C ∂φ̂

∂y
+D∂φ̂

∂x
+ E φ̂ = 0 (C.2)

where φ̂ =
[
û, v̂, ŵ, T̂ , ρ̂

]
.

Matrices A through E are 5x5 matrices at each unique normal and streamwise location.

These are expanded below. All terms should be basic-state quantities, as the disturbance

quantities and derivatives are accounted for in equation C.2. X-momentum, Y-momentum, Z-

momentum, energy, and mass continuity are represented by rows 1-5 respectively. Similarly,

columns 1-5 are the coefficients of û, v̂, ŵ, T̂ , ρ̂, and their x- and y-derivatives.
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A-Matrix

A =



− µ
Reh22

0 0 0 0

0 − 1
Reh22

(λ+ 2µ) 0 0 0

0 0 − µ
Reh22

0 0

0 0 0 − κ
PrReh22

0

0 0 0 0 0


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B-Matrix

B =



0 − 1
Reh1h2

(λ+ µ) 0 0 0

− 1
Reh1h2

(λ+ µ) 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



C-Matrix

C1,1 =− 1

Reh22

∂µ

∂T

∂T

∂y
− µ

Reh22h3

(
∂h3
∂y
− h3
h2

∂h2
∂y

+
h3
h1

∂h1
∂y

)
+
ρv

h2

C1,2 =
λh3
Re

(
1

h21h2h3

∂h1
∂x

+
1

h1h22h3

∂h2
∂x

+
1

h1h2h23

∂h3
∂x

)
− 1

Reh1h2

λ

µ

∂µ

∂T

∂T

∂x

− λ

Reh21h2h3

(
h1
∂h3
∂x

+ h3
∂h1
∂x

+ iαh1h3

)
+

3µ

Reh1h22

∂h2
∂x
− iαµ

Reh1h2

C1,3 =0

C1,4 =− 1

Reh1h2

∂µ

∂T

(
∂v

∂x
− v

h2

∂h2
∂x

+
h1
h2

∂u

∂y
− u

h2

∂h1
∂y

)
C1,5 =0
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C2,1 =− λ

Reh1h22h3

(
iαh2h3 + h2

∂h3
∂x

+ h3
∂h2
∂x

)
− 1

Reh1h2

∂µ

∂T

∂T

∂x

− µ

Reh1h2h3

(
∂h3
∂x

+ h3iα

)
− 3µ

Reh1h22

∂h2
∂x

C2,2 =
ρv

h2
− h1h3

Re

[
1

h1h22h3

λ

µ

∂µ

∂T

∂T

∂y
− λ

h2

(
1

h21h2h3

∂h1
∂y

+
1

h1h22h3

∂h2
∂y

+
1

h1h2h23

∂h3
∂y

)]
− 2λ

Reh1h22h3

(
h3
∂h1
∂y

+ h1
∂h3
∂y

)
− 2

Reh22

∂µ

∂T

∂T

∂y

− 2µ

Reh1h22h3

(
h3
∂h1
∂y

+ h1
∂h3
∂y
− h1h3

h2

∂h2
∂y

)
C2,3 =− λ

Reh1h22h3

(
iβh1h2 + h1

∂h2
∂z

+ h2
∂h1
∂z

)
− µ

Reh1h2h3

(
∂h1
∂z

+ h1iβ

)
− 3µ

Reh22h3

∂h2
∂z

C2,4 =
ρ

h2γM2
− 1

Reh1h22h3

λ

µ

∂µ

∂T

(
h2h3

∂u

∂x
+ uh2

∂h3
∂x

+ uh3
∂h2
∂x

+ h1h3
∂v

∂y
+ vh3

∂h1
∂y

+vh1
∂h3
∂y

+ wh1
∂h2
∂z

+ wh2
∂h1
∂z

)
− 2

Reh1h22h3

∂µ

∂T

(
h1h3

∂v

∂y
+ wh1

∂h2
∂z

+ uh3
∂h2
∂x

)
C2,5 =

T

h2γM2

C3,1 =0

C3,2 =
λh1
Re

(
1

h21h2h3

∂h1
∂z

+
1

h1h22h3

∂h2
∂z

+
1

h1h2h23

∂h3
∂z

)
− λ

Reh1h2h23

(
iβh1h3 + h1

∂h3
∂z

+ h3
∂h1
∂z

)
+

3µ

Reh22h3

∂h2
∂z
− iβµ

Reh2h3

C3,3 =
ρv

h2
− 1

Reh22

∂µ

∂T

∂T

∂y
− µ

Reh1h22

(
∂h1
∂y
− h1
h2

∂h2
∂y

+
h1
h3

∂h3
∂y

)
C3,4 =− 1

Reh22h3

∂µ

∂T

(
h3
∂w

∂y
− w∂h3

∂y
− v∂h2

∂y

)
C3,5 =0
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C4,1 =− 2 (γ − 1)M2µ

Reh2

(
1

h1

∂v

∂x
− v

h1h2

∂h2
∂x

+
1

h2

∂u

∂y
− u

h1h2

∂h1
∂y

)
C4,2 =− −2 (γ − 1)M2

Reh2

[
(2µ+ λ)

(
1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

)
+
λ

h3

(
u

h1

∂h3
∂x

+
v

h2

∂h3
∂y

)
+

λ

h1

(
∂u

∂x
+

v

h2

∂h1
∂y

+
w

h3

∂h1
∂z

)]
C4,3 =− 2 (γ − 1)M2µ

Reh2

(
1

h2

∂w

∂y
− w

h2h3

∂h3
∂y
− v

h2h3

∂h2
∂z

)
C4,4 =

ρv

h2
− (γ − 1)

γ

vρ

h2
− 1

PrReh1h22h3

(
2
∂κ

∂T

∂T

∂y
h1h3 + κh1

∂h3
∂y

+ κh3
∂h1
∂y
− κh1h3

h2

∂h2
∂y

)
C4,5 =− (γ − 1)

γ

vT

h2

C5,1 =0

C5,2 =
ρ

h2

C5,3 =0

C5,4 =0

C5,5 =
v

h2
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D-Matrix

D1,1 =
ρu

h1
− 2λ

Reh21h2h3

(
iαh2h3 + h2

∂h3
∂x

+ h3
∂h2
∂x

)
+
λh2h3
Reh1

(
1

h21h2h3

∂h1
∂x

+
1

h1h22h3

∂h2
∂x

+
1

h1h2h23

∂h3
∂x

)
− 2µ

Reh21h2h3

(
h2
∂h3
∂x

+ h3
∂h2
∂x
− h2h3

h1

∂h1
∂x

+ i2αh2h3

)
D1,2 =− λ

Reh21h2h3

(
h1
∂h3
∂y

+ h3
∂h1
∂y

)
− 3µ

Reh21h2

∂h1
∂y
− 1

Reh1h2

∂µ

∂T

∂T

∂y
− µ

Reh1h2h3

∂h3
∂y

D1,3 =− λ

Reh21h2h3

(
iβh1h2 + h1

∂h2
∂z

+ h2
∂h1
∂z

)
− 3µ

Reh21h3

∂h1
∂z

− iβµ

Reh1h3
− µ

Reh1h2h3

∂h2
∂z

D1,4 =Ω
ρ

h1γM2
− 1

Reh21h2h3

λ

µ

∂µ

∂T

(
uh2

∂h3
∂x

+ uh3
∂h2
∂x

+ vh1
∂h3
∂y

+ vh3
∂h1
∂y

+ h1h3
∂v

∂y

+wh1
∂h2
∂z

+ wh2
∂h1
∂z

)
− 2

Reh1h2h3

∂µ

∂T

(
vh3
h1

∂h1
∂y

+
wh2
h1

∂h1
∂z

)
D1,5 =Ω

T

h1γM2

D2,1 =− h2h3
Re

[
1

h1h22h3

λ

µ

∂µ

∂T

∂T

∂y
− λ

h2

(
1

h21h2h3

∂h1
∂y

+
1

h1h22h3

∂h2
∂y

+
1

h1h2h23

∂h3
∂y

)]
− λ

Reh1h22h3

(
h3
∂h2
∂y

+ h2
∂h3
∂y

)
+

3µ

Reh21h2

∂h1
∂y

D2,2 =
ρu

h1
− µ

Reh21h2h3

(
i2αh2h3 + h2

∂h3
∂x

+ h3
∂h2
∂x
− h2h3

h1

∂h1
∂x

)
D2,3 =0

D2,4 =− 1

Reh21h2h3

∂µ

∂T

(
−vh3

∂h2
∂x

+
h3
h1

∂u

∂y
− uh3

∂h1
∂y

)
D2,5 =0
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D3,1 =
λh2
Re

(
1

h21h2h3

∂h1
∂z

+
1

h1h22h3

∂h2
∂z

+
1

h1h2h23

∂h3
∂z

)
− λ

Reh1h2h23

(
iβh2h3 + h2

∂h3
∂z

+ h3
∂h2
∂z

)
+

3µ

Reh21h3

∂h1
∂z
− iβµ

Reh1h3

D3,2 =0

D3,3 =
ρu

h1
− µ

Reh21h2h3

(
i2αh2h3 −

h2h3
h1

∂h1
∂x

+ h3
∂h2
∂x

+ h2
∂h3
∂x

)
D3,4 =− 1

Reh21h2h3

∂µ

∂T

(
−uh2

∂h1
∂z
− wh2

∂h3
∂x

)
D3,5 =0

D4,1 =− 2 (γ − 1)M2

Reh1

[
(2µ+ λ)

(
v

h1h2

∂h1
∂y

+
w

h1h3

∂h1
∂z

)
+

λ

h2

(
∂v

∂y
+
w

h3

∂h2
∂z

+
u

h1

∂h2
∂x

)
+
λ

h3

(
u

h1

∂h3
∂x

+
v

h2

∂h3
∂y

)]
D4,2 =− 2µ (γ − 1)M2

Reh1

(
− v

h1h2

∂h2
∂x

+
1

h2

∂u

∂y
− u

h1h2

∂h1
∂y

)
D4,3 =− 2µ (γ − 1)M2

Reh1

(
− w

h1h3

∂h3
∂x
− u

h1h3

∂h1
∂z

)
D4,4 =

uρ

h1
− Ω

(γ − 1)uρ

γh1
− 1

PrReh21h2h3

(
κh2

∂h3
∂x

+ κh3
∂h2
∂x
− κh2h3

h1

∂h1
∂x

+ i2ακh2h3

)
D4,5 =− Ω

(γ − 1)uT

γh1

D5,1 =
ρ

h1

D5,2 =0

D5,3 =0

D5,4 =0

D5,5 =
u

h1
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E-Matrix

E1,1 =ρ

(
−iω +

1

h1

∂u

∂x
+
iuα

h1
+
iwβ

h3
+

v

h1h2

∂h1
∂y

+
w

h1h3

∂h1
∂z

)
− λ

Reh21h2h3

(
i2αh2

∂h3
∂x

+ i2αh3
∂h2
∂x
− α2h2h3 + ih2h3

∂α

∂x

+2
∂h2
∂x

∂h3
∂x

+ h2
∂2h3
∂x2

+ h3
∂2h2
∂x2

)
− 1

Re

{[
1

h21h2h3

λ

µ

∂µ

∂T

∂T

∂x
− λ

h1

(
1

h21h2h3

∂h1
∂x

+
1

h1h22h3

∂h2
∂x

+
1

h1h2h23

∂h3
∂x

)]
(
iαh2h3 + h2

∂h3
∂x

+ h3
∂h2
∂x

)}
− i2α

Reh21

∂µ

∂T

∂T

∂x

− 2µ

Reh1h2h3

[
iα

(
h3
h1

∂h2
∂x

+
h2
h1

∂h3
∂x
− h2h3

h21

∂h1
∂x

)
+ i

h2h3
h1

∂α

∂x
− α2h2h3

h1

]
+

1

Reh1h22

∂µ

∂T

∂h1
∂y

∂T

∂y
+

µ

Reh1h2h3

(
h3
h2

∂2h1
∂y2

+
1

h2

∂h3
∂y

∂h1
∂y
− h3
h22

∂h2
∂y

∂h1
∂y

)
− µ

Reh1h2h3

(
iβ
h1
h3

∂h2
∂z
− iβ h1h2

h23

∂h3
∂z
− β2h1h2

h3

− 1

h3

∂h2
∂z

∂h1
∂z
− h2
h3

∂2h1
∂z2

+
h2
h23

∂h3
∂z

∂h1
∂z

)
+

µ

Reh21h
2
2

((
∂h1
∂y

)2

+ 2

(
∂h2
∂x

)2
)

− µ

Reh1h23

∂h1
∂z

(
iβ − 1

h1

∂h1
∂z

)
+

2µ

Reh21h
2
3

(
∂h3
∂x

)2

E1,2 =ρ

[
1

h2

∂u

∂y
− 1

h1h2

(
2v
∂h2
∂x
− u∂h1

∂y

)]
− λ

Reh21h2h3

(
iαh1

∂h3
∂y

+
∂h1
∂x

∂h3
∂y

+ h1
∂2h3
∂x∂y

+ iαh3
∂h1
∂y

+
∂h3
∂x

∂h1
∂y

+ h3
∂2h1
∂x∂y

)
− 1

Re

{[
1

h21h2h3

λ

µ

∂µ

∂T

∂T

∂x
− λ

h1

(
1

h21h2h3

∂h1
∂x

+
1

h1h22h3

∂h2
∂x

+
1

h1h2h23

∂h3
∂x

)]
(
h1
∂h3
∂y

+ h3
∂h1
∂y

)}
− 2

Reh21h2

∂µ

∂T

∂T

∂x

∂h1
∂y

− 2µ

Reh1h2h3

(
iα
h3
h1

∂h1
∂y

+
1

h1

∂h3
∂x

∂h1
∂y

+
h3
h1

∂2h1
∂x∂y

− h3
h21

∂h1
∂x

∂h1
∂y

)
− 1

Reh1h2

∂µ

∂T

∂T

∂y

(
iα− 1

h2

∂h2
∂x

)
− µ

Reh1h2h3

(
iα
∂h3
∂y
− 1

h2

∂h3
∂y

∂h2
∂x
− h3
h2

∂2h2
∂x∂y

+
h3
h22

∂h2
∂y

∂h2
∂x

)
− µ

Reh21h2

∂h1
∂y

(
iα− 1

h2

∂h2
∂x

)
+

2µ

Reh1h2h23

∂h3
∂x

∂h3
∂y
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E1,3 =ρ

(
u

h1h3

∂h1
∂z
− 2w

h1h3

∂h3
∂x

)
− λ

Reh21h2h3

(
iβh1

∂h2
∂x

+ iβh2
∂h1
∂x
− αβh1h2 + iαh1

∂h2
∂z

+
∂h1
∂x

∂h2
∂z

+ h1
∂2h2
∂x∂z

+ iαh2
∂h1
∂z

+
∂h2
∂x

∂h1
∂z

+ h2
∂2h1
∂x∂z

)
− 1

Re

{[
1

h21h2h3

λ

µ

∂µ

∂T

∂T

∂x

− λ

h1

(
1

h21h2h3

∂h1
∂x

+
1

h1h22h3

∂h2
∂x

+
1

h1h2h23

∂h3
∂x

)](
iβh1h2 + h1

∂h2
∂z

+ h2
∂h1
∂z

)}
− 2

Reh21h3

∂µ

∂T

∂T

∂x

∂h1
∂z
− 2µ

Reh21h2h3

(
∂h2
∂x

∂h1
∂z

+ h2
∂2h1
∂x∂z

− h2
h1

∂h1
∂x

∂h1
∂z

+ iαh2
∂h1
∂z

)
− µ

Reh1h2h3

(
iα
∂h2
∂z
− h2αβ −

iβh2
h3

∂h3
∂x
− 1

h3

∂h2
∂z

∂h3
∂x
− h2
h3

∂2h3
∂x∂z

+
h2
h23

∂h3
∂x

∂h3
∂z

)
− µ

Reh21h3

∂h1
∂z

(
iα− 1

h3

∂h3
∂x

)
+

2µ

Reh1h22h3

∂h2
∂x

∂h2
∂z

+
i2µβ

Reh1h23

∂h3
∂x

E1,4 =
1

h1γM2

(
iαρ+ Ω

∂ρ

∂x

)
− 1

Re

{[
1

h21h2h3

λ

µ

(
∂2µ

∂T 2

∂T

∂x
+ iα

∂µ

∂T

)
− 1

h1

λ
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∂h3
∂z

)(
h1
∂h3
∂y

+ h3
∂h1
∂y

)
− 1

Reh2h3

∂µ

∂T

∂T

∂y

(
iβ − 1

h2

∂h2
∂z

)
− µ

Reh1h2h3

(
iβ
∂h1
∂y
− 1

h2

∂h1
∂y

∂h2
∂z
− h1
h2

∂2h2
∂y∂z

+
h1
h22

∂h2
∂y

∂h2
∂z

)
− 2µ

Reh1h2h23

(
iβh1

∂h3
∂y

+
∂h1
∂z

∂h3
∂y

+ h1
∂2h3
∂y∂z

− h1
h3

∂h3
∂z

∂h3
∂y

)
− µ

Reh2h23

∂h3
∂y

(
iβ − 1

h2

∂h2
∂z

)
+

2µ

Reh21h2h3

∂h1
∂y

∂h1
∂z

E3,3 =ρ

(
−iω +

iuα

h1
+
iwβ

h3
+

v

h2h3

∂h3
∂y

+
u

h1h3

∂h3
∂x

)
− λ

Reh1h2h23

(
i2βh1

∂h2
∂z

+ i2βh2
∂h1
∂z
− β2h1h2 + 2

∂h1
∂z

∂h2
∂z

+ h1
∂2h2
∂z2

+ h2
∂2h1
∂z2

)
+

λ

Reh3

(
1

h21h2h3

∂h1
∂z

+
1

h1h22h3

∂h2
∂z

+
1

h1h2h23

∂h3
∂z

)(
iβh1h2 + h1

∂h2
∂z

+ h2
∂h1
∂z

)
− 1

Reh21h3

∂µ

∂T

∂T

∂x

(
ih3α−

∂h3
∂x

)
− µ

Reh21h2h3

(
i
∂α

∂x
h2h3 − α2h2h3 + iαh3

∂h2
∂x

− iαh2h3
h1

∂h1
∂x
− ∂h2

∂x

∂h3
∂x
− h2

∂2h3
∂x2

+
h2
h1

∂h1
∂x

∂h3
∂x

)
+

1

Reh22h3

∂µ

∂T

∂h3
∂y

∂T

∂y
+

µ

Reh1h22h3

(
∂h1
∂y

∂h3
∂y

+ h1
∂2h3
∂y2

− h1
h2

∂h2
∂y

∂h3
∂y

)
− 2µ

Reh1h2h23

(
iβh1

∂h2
∂z

+ iβh2
∂h1
∂z
− β2h1h2 −

iβh1h2
h3

∂h3
∂z

)
− iαµ

Reh21h3

∂h3
∂x

+
µ

Reh21h
2
3

(
∂h3
∂x

)2

+
µ

Reh22h
2
3

(
∂h3
∂y

)2

+
2µ

Reh21h
2
3

(
∂h1
∂z

)2

+
2µ

Reh22h
2
3

(
∂h2
∂z

)2

E3,4 =
iβρ

h3γM2
−
[

1

Reh3

λ

µ

∂µ

∂T

(
iβ

h1h2h3
− 1

h21h2h3

∂h1
∂z
− 1

h1h22h3

∂h2
∂z
− 1

h1h2h23

∂h3
∂z

)
(
h2h3

∂u

∂x
+ uh2

∂h3
∂x

+ uh3
∂h2
∂x

+ h1h3
∂v

∂y
+ vh1

∂h3
∂y

+ vh3
∂h1
∂y
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+wh1
∂h2
∂z

+ wh2
∂h1
∂z

)]
− 1

Reh1h2h23

λ

µ

∂µ

∂T

(
h2
∂h3
∂z

∂u

∂x
+ h3

∂h2
∂z

∂u

∂x
+ u

∂h2
∂z

∂h3
∂x

+uh2
∂2h3
∂x∂z

+ u
∂h3
∂z

∂h2
∂x

+ uh3
∂2h2
∂x∂z

+ h1
∂h3
∂z

∂v

∂y
+ h3

∂h1
∂z

∂v

∂y
+ v

∂h1
∂z

∂h3
∂y

+vh1
∂2h3
∂y∂z

+ v
∂h3
∂z

∂h1
∂y

+ vh3
∂2h1
∂y∂z

+ 2w
∂h1
∂z

∂h2
∂z

+ wh1
∂2h2
∂z2

+ wh2
∂2h1
∂z2

)
− 1

Reh1h2h3

(
∂2µ

∂T 2

∂T

∂x
+ iα

∂µ

∂T

)(
h2h3
h1

∂w

∂x
− uh2

h1

∂h1
∂z
− wh2

h1

∂h3
∂x

)
− 1

Reh1h2h3

∂µ

∂T

(
h3
h1

∂h2
∂x

∂w

∂x
− h2h3

h21

∂h1
∂x

∂w

∂x
− h2
h1

∂h1
∂z

∂u

∂x
− u

h1

∂h2
∂x

∂h1
∂z

−uh2
h1

∂2h1
∂x∂z

+
uh2
h21

∂h1
∂x

∂h1
∂z
− wh2

h1

∂2h3
∂x2

− w

h1

∂h2
∂x

∂h3
∂x

+
wh2
h21

∂h1
∂x

∂h3
∂x

)
− 1

Reh1h22h3

∂2µ

∂T 2

∂T

∂y

(
h1h3

∂w

∂y
− wh1

∂h3
∂y
− vh1

∂h2
∂z

)
− 1

Reh1h2h3

∂µ

∂T

(
h1h3
h2

∂2w

∂y2
+
h3
h2

∂h1
∂y

∂w

∂y
− h1h3

h22

∂h2
∂y

∂w

∂y
− w

h2

∂h1
∂y

∂h3
∂y

−wh1
h2

∂2h3
∂y2

+
wh1
h22

∂h2
∂y

∂h3
∂y
− h1
h2

∂h2
∂z

∂v

∂y
− v

h2

∂h1
∂y

∂h2
∂z
− vh1

h2

∂2h2
∂y∂z

+
vh1
h22

∂h2
∂y

∂h2
∂z

)
− i2β

Reh1h2h23

∂µ

∂T

(
uh2

∂h3
∂x

+ vh1
∂h3
∂y

)
− 2

Reh1h2h3

∂µ

∂T

(
uh2
h3

∂2h3
∂x∂z

+
u

h3

∂h2
∂z

∂h3
∂x

−uh2
h23

∂h3
∂z

∂h3
∂x

+
vh1
h3

∂2h3
∂y∂z

+
v

h3

∂h1
∂z

∂h3
∂y
− vh1

h23

∂h3
∂z

∂h3
∂y

)
− 1

Reh21h3

∂µ

∂T

∂h3
∂x

(
∂w

∂x
− u

h3

∂h1
∂z
− w

h3

∂h3
∂x

)
− 1

Reh22h3

∂µ

∂T

∂h3
∂y

(
∂w

∂y
− w

h3

∂h3
∂y
− v

h3

∂h2
∂z

)
+

2

Reh21h3

∂µ

∂T

∂h1
∂z

(
∂u

∂x
+

v

h2

∂h1
∂y

+
w

h3

∂h1
∂z

)
+

2

Reh22h3

∂µ

∂T

∂h2
∂z

(
∂v

∂y
+
w

h3

∂h2
∂z

+
u

h1

∂h2
∂x

)
+

1

Reh21

∂2µ

∂T 2

∂T

∂x

∂w

∂x

E3,5 =
u

h1

∂w

∂x
+

v

h2

∂w

∂y
− u

(
u

h1h3

∂h1
∂z
− w

h1h3

∂h3
∂x

)
+ v

(
w

h2h3

∂h3
∂y
− v

h2h3

∂h2
∂z

)
+

iβT

h3γM2
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E4,1 =
ρ

h1

∂T

∂x
− (γ − 1)

γh1

(
T
∂ρ

∂x
+ ρ

∂T

∂x

)
− (γ − 1)M2

Re

{
i2α

h1
(2µ+ λ)

(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h1h3

∂h1
∂z

)
+

2

h1h2

∂h2
∂x

(2µ+ λ)

(
1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

)
+2µ

(
iβ

h3
− 1

h1h3

∂h1
∂z

)(
1

h1

∂w

∂x
− w

h1h3

∂h3
∂x
− u

h1h3

∂h1
∂z

)
+

2

h1h3

∂h3
∂x

[
(2µ+ λ)

(
u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

)
+λ

(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h1h3

∂h1
∂z

+
1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

)]
+
i2λα

h1

(
1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

+
u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

)
+

2λ

h1h2

∂h2
∂x

(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h1h3

∂h1
∂z

+
u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

)
− 2µ

h1h2

∂h1
∂y

(
1

h1

∂v

∂x
− v

h1h2

∂h2
∂x

+
1

h2

∂u

∂y
− u

h1h2

∂h1
∂y

)}
E4,2 =

ρ

h2

∂T

∂y
− (γ − 1)

h2γ

(
T
∂ρ

∂y
+ ρ

∂T

∂y

)
− (γ − 1)M2

Re

{
2

h1h2

∂h1
∂y

[
(2µ+ λ)

(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h1h3

∂h1
∂z

)
+λ

(
1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

+
u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

)]
+2µ

[(
1

h2

∂w

∂y
− w

h2h3

∂h3
∂y
− v

h2h3

∂h2
∂z

)(
iβ

h3
− 1

h2h3

∂h2
∂z

)
+

(
1

h1

∂v

∂x
− v

h1h2

∂h2
∂x

+
1

h2

∂u

∂y
− u

h1h2

∂h1
∂y

)(
iα

h1
− 1

h1h2

∂h2
∂x

)]
+

2

h2h3

∂h3
∂y

[
(2µ+ λ)

(
u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

)
+λ

(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h1h3

∂h1
∂z

+
1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

)]}
E4,3 =− (γ − 1)M2

Re

{
2

h1h3

∂h1
∂z

[
(2µ+ λ)

(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h1h3

∂h1
∂z

)
+λ

(
1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

+
u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

)]
− 2µ

h2h3

∂h3
∂y

(
1

h2

∂w

∂y
− w

h2h3

∂h3
∂y
− v

h2h3

∂h2
∂z

)
+

2

h2h3

∂h2
∂z

[
(2µ+ λ)

(
1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

)
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+λ

(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h1h3

∂h1
∂z

+
u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

)]
+2µ

(
1

h1

∂w

∂x
− w

h1h3

∂h3
∂x
− u

h1h3

∂h1
∂z

)(
iα

h1
− 1

h1h3

∂h3
∂x

)
+
i2λβ

h3

(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h1h3

∂h1
∂z

+
1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

)
+
i2β

h3
(2µ+ λ)

(
u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

)}
E4,4 =

iρ

γ

(
−ω +

uα

h1
+
wβ

h3

)
− (γ − 1)

γ

(
Ω
u

h1

∂ρ

∂x
+

v

h2

∂ρ

∂y

)
− 1

PrReh1h2h3

{
iα

h1

(
h2h3

∂κ

∂T

∂T

∂x
+ κh2

∂h3
∂x

+ κh3
∂h2
∂x
− κh2h3

h1

∂h1
∂x

)
+i
∂α

∂x

κh2h3
h1

− α2κh2h3
h1

+
iβ

h3

(
κh1

∂h2
∂z

+ κh2
∂h1
∂z
− κh1h2

h3

∂h3
∂z

)
− β2κh1h2

h3

+

(
∂2κ

∂T 2

∂T

∂x
+ iα

∂κ

∂T

)
h2h3
h1

∂T
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+
∂2κ

∂T 2

h1h3
h2

(
∂T

∂y

)2

+
∂κ

∂T

(
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h1

∂h3
∂x

∂T

∂x
+
h3
h1

∂h2
∂x

∂T
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− h2h3

h21

∂h1
∂x

∂T

∂x
+
h1h3
h2

∂2T

∂y2

+
h1
h2

∂h3
∂y
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∂y
+
h3
h2

∂h1
∂y
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− h1h3
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∂h2
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∂y
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− (γ − 1)M2

Re
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∂T
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2 +

λ

µ
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1
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+

v
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∂h1
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+
w

h1h3
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+
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1

h2

∂v

∂y
+

w

h2h3

∂h2
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+
u

h1h2

∂h2
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u

h1h3

∂h3
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+
v

h2h3

∂h3
∂y
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]

+

(
1

h2

∂w

∂y
− w

h2h3

∂h3
∂y
− v

h2h3

∂h2
∂z

)2

+

(
1

h1

∂w

∂x
− w

h1h3

∂h3
∂x
− u

h1h3

∂h1
∂z
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+

(
1

h1

∂v

∂x
− v

h1h2

∂h2
∂x

+
1

h2

∂u

∂y
− u

h1h2

∂h1
∂y
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λ

µ
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1

h1

∂u
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+
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∂h1
∂y

+
w

h1h3

∂h1
∂z
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1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

)
+

(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h1h3

∂h1
∂z

)(
u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

)
+

(
1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

)(
u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y
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+

1

PrReh21
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∂T

∂x

∂T

∂x
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(γ − 1)M2

Re

∂µ

∂T

[(
2 +

λ

µ

)(
1

h1

∂u

∂x

)2

+

(
1

h1

∂v

∂x

)2

+

(
1

h1

∂w

∂x
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]
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E4,5 =
u

h1

∂T

∂x
+

v

h2

∂T

∂y
− (γ − 1)

γ

[
iT

(
−ω +

αu

h1
+
βw

h3

)
+ Ω

u

h1

∂T

∂x
+

v
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∂T
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E5,1 =
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h1

∂ρ

∂x
+
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∂h2
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+
1

h3

∂h3
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E5,2 =

1
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∂ρ

∂y
+

ρ

h2

(
1

h3

∂h3
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+
1

h1

∂h1
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)
E5,3 =

ρ
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h2

∂h2
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+
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E5,4 =0
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+
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(
iα+

1

h2

∂h2
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+
1

h3

∂h3
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APPENDIX D

NPSE FORMULATION

φ′ (x, y, z, t) ≡
N∑

n=−N

K∑
k=−K

A0(n,k)φ̂(n,k) (x, y) e
i
∫ x
x0
α(n,k)(x)∂xei(kβ0z−nω0t) (D.1)

Equation D.1 is the wave format for NPSE disturbances. By following the same steps

associated with the LPSE problem formulation (appendix C), the result can be arranged

into

∞∑
n=−∞

∞∑
k=−∞


[
A∂

2φ̂

∂y2
+ B ∂2φ̂

∂x∂y
+ C ∂φ̂

∂y
+D∂φ̂

∂x
+ E φ̂

]
(n,k)

A0(n,k)e
i
∫ x
x0
α(n,k)(x)∂xei(kβ0z−nω0t)

}
= NL(n,k) (D.2)

where φ̂ =
[
û, v̂, ŵ, T̂ , ρ̂

]
. Note that the nonlinear terms have not been eliminated this time

around. Matrices A through E are the same 5x5 matrices from the LPSE formulation once

ω and β are given the coefficients n and k respectively.

The expanded nonlinear terms take the form

NL(n,k) =
∑
n1

∑
n2

∑
k1

∑
k2

[
A0(n1,k1)A0(n2,k2)NL

(quad)
(n,k)

e
i
∫ x
x0
α(n1,k1)

(x)∂x
e
i
∫ x
x0
α(n2,k2)

(x)∂x
ei((k1+k2)β0z+(n1+n2)ω0t)

]
+
∑
n1

∑
n2

∑
n3

∑
k1

∑
k2

∑
k3

[
A0(n1,k1)A0(n2,k2)A0(n3,k3)NL

(cubic)
(n,k)

e
i
∫ x
x0
α(n1,k1)

(x)∂x
e
i
∫ x
x0
α(n2,k2)

(x)∂x
e
i
∫ x
x0
α(n3,k3)

(x)∂x
ei((k1+k2+k3)β0z+(n1+n2+n3)ω0t)

]
(D.3)

102



where n1, n2,. . . , k3 are each summed from −N or −K to N or K, n1 + n2 (+n3) = n, and

k1 + k2 (+k3) = k. NL(quad) and NL(cubic) are both 5x1 vectors. These will align with the

rows of the LPSE matrices such that NL1 ≡ NLx, NL2 ≡ NLy,. . . , NL5 ≡ NLm from

equations A.3-A.8. The full expansion of the nonlinear terms is given below. Note that

subscripts on φ̂ and α denote which mode (n, k) that term belongs to (e.g. û2 ≡ û(n2,k2)).

X-Momentum Quadratic Nonlinear

NLquadx = ρ̂1

[
i (n2ω0) û2 −

û2
h1

∂u

∂x
− u

h1

(
∂û2
∂x

+ iα2û2

)
− v̂2
h2

∂u

∂y
− v

h2

∂û2
∂y

− w
h3
i (k2β0) û2 +

2v̂2v

h1h2

∂h2
∂x
− v̂2u

h1h2

∂h1
∂y
− vû2
h1h2

∂h1
∂y
− ŵ2u

h1h3

∂h1
∂z

+
2ŵ2w

h1h3

∂h3
∂x
− û2w

h1h3

∂h1
∂z

]
+ ρ

[
− û1
h1

(
∂û2
∂x

+ iα2û2

)
− v̂1
h2

∂û2
∂y
− ŵ1

h3
i (k2β0) û2

+
v̂1v̂2
h1h2

∂h2
∂x
− v̂1û2
h1h2

∂h1
∂y
− ŵ1û2
h1h3

∂h1
∂z

+
ŵ1ŵ2

h1h3

∂h3
∂x

]
− 1

h1γM2

[
T̂1

(
Ω
∂ρ̂2
∂x

+ iα2ρ̂2

)
+ ρ̂2

(
Ω
∂T̂1
∂x

+ iα1T̂1

)]

+
λ

Reh21h2h3µ

{[
T̂1

(
∂2µ

∂T 2

∂T

∂x
− ∂µ

∂T

(
1

h1

∂h1
∂x

+
1

h2

∂h2
∂x

+
1

h3

∂h3
∂x

))
+
∂µ

∂T

(
∂T̂1
∂x

+ iα1T̂1

)](
h2h3

(
∂û2
∂x

+ iα2û2

)
+ û2h3

∂h2
∂x

+ û2h2
∂h3
∂x

+ h1h3
∂v̂2
∂y

+v̂2h3
∂h1
∂y

+ v̂2h1
∂h3
∂y

+ h1h2i (k2β0) ŵ2 + ŵ2h2
∂h1
∂z

+ ŵ2h1
∂h2
∂z

)
+
∂µ

∂T
T̂1

[
h2h3

(
i2α2

∂û2
∂x

+ iû2
∂α2

∂x
− α2

2û2

)
+ 2h2

∂h3
∂x

(
∂û2
∂x

+ iα2û2

)
+2h3

∂h2
∂x

(
∂û2
∂x

+ iα2û2

)
+ 2û2

∂h2
∂x

∂h3
∂x

+ û2h2
∂2h3
∂x2

+ û2h3
∂2h2
∂x2

+h1h3

(
∂2v̂2
∂x∂y

+ iα2
∂v̂2
∂y

)
+ h1

∂h3
∂x

∂v̂2
∂y

+ h3
∂h1
∂x

∂v̂2
∂y

+ v̂2
∂h1
∂x

∂h3
∂y

+h1
∂h3
∂y

(
∂v̂2
∂x

+ iα2v̂2

)
+ v̂2h1

∂2h3
∂x∂y

+ v̂2
∂h3
∂x

∂h1
∂y

+ h3
∂h1
∂y

(
∂v̂2
∂x

+ iα2v̂2

)
+v̂2h3

∂2h1
∂x∂y

+ h1h2

(
i (k2β0)

∂ŵ2

∂x
− α2 (k2β0) ŵ2

)
+ i (k2β0)h1ŵ2

∂h2
∂x

+i (k2β0)h2ŵ2
∂h1
∂x

+ ŵ2
∂h1
∂x

∂h2
∂z

+ h1
∂h2
∂z

(
∂ŵ2

∂x
+ iα2ŵ2

)
+ŵ2h1

∂2h2
∂x∂z

+ ŵ2
∂h2
∂x

∂h1
∂z

+ h2
∂h1
∂z

(
∂ŵ2

∂x
+ iα2ŵ2

)
+ ŵ2h2

∂2h1
∂x∂z

]}
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+
2

Reh1h2h3

{[(
∂µ

∂T

(
∂T̂1
∂x

+ iα1T̂1

)
+
∂2µ

∂T 2

∂T

∂x
T̂1

)(
h2h3
h1

(
∂û2
∂x

+ iα2û2

)
+
v̂2h3
h1

∂h1
∂y

+
ŵ2h2
h1

∂h1
∂z

)]
+
∂µ

∂T
T̂1

[
h2h3
h1

(
i2α2

∂û2
∂x

+ iû2
∂α2

∂x
− α2

2û2

)
+

(
h3
h1

∂h2
∂x

+
h2
h1

∂h3
∂x
− h2h3

h21

∂h1
∂x

)(
∂û2
∂x

+ iα2û2

)
+
v̂2h3
h1

∂2h1
∂x∂y

+
v̂2
h1

∂h3
∂x

∂h1
∂y
− v̂2h3

h21

∂h1
∂x

∂h1
∂y

+
h3
h1

∂h1
∂y

(
∂v̂2
∂x

+ iα2v̂2

)
+
ŵ2h2
h1

∂2h1
∂x∂z

+
ŵ2

h1

∂h2
∂x

∂h1
∂z
− ŵ2h2

h21

∂h1
∂x

∂h1
∂z

+
h2
h1

∂h1
∂z

(
∂ŵ2

∂x
+ iα2ŵ2

)]}
+

1

Reh1h2h3

{[(
∂2µ

∂T 2

∂T

∂y
T̂1 +

∂µ

∂T

∂T̂1
∂y

)(
h3

(
∂v̂2
∂x

+ iα2v̂2

)
− v̂2h3

h2

∂h2
∂x

+
h1h3
h2

∂û2
∂y

− û2h3
h2

∂h1
∂y

)]
+
∂µ

∂T
T̂1

[
∂h3
∂y

(
∂v̂2
∂x

+ iα2v̂2

)
+ h3

(
∂2v̂2
∂x∂y

+ iα2
∂v̂2
∂y

)
− h3
h2

∂v̂2
∂y

∂h2
∂x

− v̂2
h2

∂h3
∂y

∂h2
∂x

+
v̂2h3
h22

∂h2
∂y

∂h2
∂x
− v̂2h3

h2

∂2h2
∂x∂y

+
h1h3
h2

∂2û2
∂y2

+
h1
h2

∂h3
∂y

∂û2
∂y
− h1h3

h22

∂h2
∂y

∂û2
∂y
− û2
h2

∂h3
∂y

∂h1
∂y
− û2h3

h2

∂2h1
∂y2

+
û2h3
h22

∂h2
∂y

∂h1
∂y

]}
+

1

Reh1h2h3

{[
i (k1β0)

∂µ

∂T
T̂1

(
h1h2
h3

i (k2β0) û2 −
û2h2
h3

∂h1
∂z

+ h2

(
∂ŵ2

∂x
+ iα2ŵ2

)
− ŵ2h2

h3

∂h3
∂x

)]
+
∂µ

∂T
T̂1

[
i (k2β0)

û2h1
h3

∂h2
∂z
− (k2β0)

2 û2h1h2
h3

− i (k2β0)
û2h1h2
h23

∂h3
∂z

− û2h2
h3

∂2h1
∂z2

− û2
h3

∂h2
∂z

∂h1
∂z

+
û2h2
h23

∂h3
∂z

∂h1
∂z

+
∂h2
∂z

(
∂ŵ2

∂x
+ iα2ŵ2

)
+h2

(
i (k2β0)

∂ŵ2

∂x
− α2 (k2β0) ŵ2

)
− i (k2β0) ŵ2h2

h3

∂h3
∂x

− ŵ2h2
h3

∂2h3
∂x∂z

− ŵ2

h3

∂h2
∂z

∂h3
∂x

+
ŵ2h2
h23

∂h3
∂z

∂h3
∂x

]}
+

T̂1
Reh1h2

∂h1
∂y

∂µ

∂T

(
1

h1

(
iα2v̂2 +

∂v̂2
∂x

)
− v̂2
h1h2

∂h2
∂x

+
1

h2

∂û2
∂y
− û2
h1h2

∂h1
∂y

)
+

T̂1
Reh1h3

∂h1
∂z

∂µ

∂T

(
1

h1

(
iα2ŵ2 +

∂ŵ2

∂x

)
− ŵ2

h1h3

∂h3
∂x

+
i (k2β0) û2

h3
− û2
h1h3

∂h1
∂z

)
− 2T̂1
Reh1h2

∂µ

∂T

∂h2
∂x

(
1

h2

∂v̂2
∂y

+
ŵ2

h2h3

∂h2
∂z

+
û2
h1h2

∂h2
∂x

)
− 2T̂1
Reh1h3

∂µ

∂T

∂h3
∂x

(
i (k2β0) ŵ2

h3
+

û2
h1h3

∂h3
∂x

+
v̂2
h2h3

∂h3
∂y

)
−
(

2 +
λ

µ

)(
1

Reh21

∂û2
∂x

)(
T̂1
∂2µ

∂T 2

∂T

∂x
+
∂µ

∂T

∂T̂1
∂x

)
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Y-Momentum Quadratic Nonlinear

NLquady = −ρ
[
û1
h1

(
∂v̂2
∂x

+ iα2v̂2

)
+
v̂1
h2

∂v̂2
∂y

+
i (k2β0) ŵ1v̂2

h3

−ŵ1

(
ŵ2

h2h3

∂h3
∂y
− v̂2
h2h3

∂h2
∂z

)
+ û1

(
v̂2
h1h2

∂h2
∂x
− û2
h1h2

∂h1
∂y

)]
− ρ̂1

[
−i (n2ω0) v̂2 +

u

h1

(
∂v̂2
∂x

+ iα2v̂2

)
+
û2
h1

∂v

∂x
+

v

h2

∂v̂2
∂y

+
v̂2
h2

∂v

∂y

+
i (k2β0)wv̂2

h3
− ŵ2

(
w

h2h3

∂h3
∂y
− v

h2h3

∂h2
∂z

)
− w

(
ŵ2

h2h3

∂h3
∂y
− v̂2
h2h3

∂h2
∂z

)
+û2

(
v

h1h2

∂h2
∂x
− u

h1h2

∂h1
∂y

)
+ u

(
v̂2
h1h2

∂h2
∂x
− û2
h1h2

∂h1
∂y

)]
− 1

h2γM2

(
ρ̂1
∂T̂2
∂y

+ T̂2
∂ρ̂1
∂y

)

+
λ

Reh1h22h3µ

{[
T̂1

(
∂2µ

∂T 2

∂T

∂y
− ∂µ

∂T

(
1

h1

∂h1
∂y

+
1

h2

∂h2
∂y

+
1

h3

∂h3
∂y

))
+
∂µ

∂T

∂T̂1
∂y

]
(
h2h3

(
∂û2
∂x

+ iα2û2

)
+ û2h3

∂h2
∂x

+ û2h2
∂h3
∂x

+ h1h3
∂v̂2
∂y

+ v̂2h3
∂h1
∂y

+ v̂2h1
∂h3
∂y

+h1h2i (k2β0) ŵ2 + ŵ2h2
∂h1
∂z

+ ŵ2h1
∂h2
∂z

)
+
∂µ

∂T
T̂1

[
h2h3

(
∂2û2
∂x∂y

+ iα2
∂û2
∂y

)
+

(
h2
∂h3
∂y

+ h3
∂h2
∂y

)(
∂û2
∂x

+ iα2û2

)
+ h2

∂û2
∂y

∂h3
∂x

+ û2
∂h2
∂y

∂h3
∂x

+ û2h2
∂2h3
∂x∂y

+h3
∂û2
∂y

∂h2
∂x

+ û2
∂h3
∂y

∂h2
∂x

+ û2h3
∂2h2
∂x∂y

+ h1h3
∂2v̂2
∂y2

+ 2h1
∂h3
∂y

∂v̂2
∂y

+ 2h3
∂h1
∂y

∂v̂2
∂y

+2v̂2
∂h1
∂y

∂h3
∂y

+ v̂2h1
∂2h3
∂y2

+ v̂2h3
∂2h1
∂y2

+ i (k2β0)h1h2
∂ŵ2

∂y
+ i (k2β0)h2ŵ2

∂h1
∂y

+i (k2β0)h1ŵ2
∂h2
∂y

+ h1
∂ŵ2

∂y

∂h2
∂z

+ ŵ2
∂h1
∂y

∂h2
∂z

+ ŵ2h1
∂2h2
∂y∂z

+h2
∂ŵ2

∂y

∂h1
∂z

+ ŵ2
∂h2
∂y

∂h1
∂z

+ ŵ2h2
∂2h1
∂y∂z

]}
+

1

Reh1h2h3

{[(
∂µ

∂T

(
∂T̂1
∂x

+ iα1T̂1

)
+
∂2µ

∂T 2

∂T

∂x
T̂1

)(
h2h3
h1

(
∂v̂2
∂x

+ iα2v̂2

)
− v̂2h3

h1

∂h2
∂x

+h3
∂û2
∂y
− û2h3

h1

∂h1
∂y

)]
+
∂µ

∂T
T̂1

[
h2h3
h1

(
i2α2

∂v̂2
∂x

+ iv̂2
∂α2

∂x
− α2

2v̂2

)
+

(
h2
h1

∂h3
∂x
− h2h3

h21

∂h1
∂x

)(
∂v̂2
∂x

+ iα2v̂2

)
− v̂2
h1

∂h3
∂x

∂h2
∂x
− v̂2h3

h1

∂2h2
∂x2

+
v̂2h3
h21

∂h1
∂x

∂h2
∂x
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+
∂h3
∂x

∂û2
∂y

+ h3

(
∂2û2
∂x∂y

+ iα2
∂û2
∂y

)
− h3
h1

∂h1
∂y

(
∂û2
∂x

+ iα2û2

)
− û2h3

h1

∂2h1
∂x∂y

− û2
h1

∂h3
∂x

∂h1
∂y

+
û2h3
h21

∂h1
∂x

∂h1
∂y

]}
+

2

Reh1h2h3

{[(
∂2µ

∂T 2

∂T

∂y
T̂1 +

∂µ

∂T

∂T̂1
∂y

)(
h1h3
h2

∂v̂2
∂y

+
ŵ2h1
h2

∂h2
∂z

+
û2h3
h2

∂h2
∂x

)]

+
∂µ

∂T
T̂1

[
h1h3
h2

∂2v̂2
∂y2

+
h1
h2

∂h3
∂y

∂v̂2
∂y

+
h3
h2

∂h1
∂y

∂v̂2
∂y
− h1h3

h22

∂h2
∂y

∂v̂2
∂y

+
h1
h2

∂ŵ2

∂y

∂h2
∂z

+
ŵ2

h2

∂h1
∂y

∂h2
∂z

+
ŵ2h1
h2

∂2h2
∂y∂z

− ŵ2h1
h22

∂h2
∂y

∂h2
∂z

+
h3
h2

∂û2
∂y

∂h2
∂x

+
û2
h2

∂h3
∂y

∂h2
∂x

+
û2h3
h2

∂2h2
∂x∂y

− û2h3
h22

∂h2
∂y

∂h2
∂x

]}
+

1

Reh1h2h3

{[
i (k1β0)

∂µ

∂T
T̂1

(
h1
∂ŵ2

∂y
− ŵ2h1

h3

∂h3
∂y

+
h1h2
h3

i (k2β0) v̂2 −
v̂2h1
h3

∂h2
∂z

)]
+
∂µ

∂T
T̂1

[
∂h1
∂z

∂ŵ2

∂y
+ i (k2β0)h1

∂ŵ2

∂y
− i (k2β0)

ŵ2h1
h3

∂h3
∂y
− ŵ2h1

h3

∂2h3
∂y∂z

− ŵ2

h3

∂h1
∂z

∂h3
∂y

+
ŵ2h1
h23

∂h3
∂z

∂h3
∂y
− (k2β0)

2 v̂2h1h2
h3

+ i (k2β0)
v̂2h2
h3

∂h1
∂z
− i (k2β0)

v̂2h1h2
h23

∂h3
∂z

− v̂2h1
h3

∂2h2
∂z2

− v̂2
h3

∂h1
∂z

∂h2
∂z

+
v̂2h1
h23

∂h3
∂z

∂h2
∂z

]}
+

T̂1
Reh2h3

∂µ

∂T

∂h2
∂z

(
1

h2

∂ŵ2

∂y
− ŵ2

h2h3

∂h3
∂y

+
i (k2β0) v̂2

h3
− v̂2
h2h3

∂h2
∂z

)
+

T̂1
Reh1h2

∂µ

∂T

∂h2
∂x

(
1

h1

(
∂v̂2
∂x

+ iα2v̂2

)
− v̂2
h1h2

∂h2
∂x

+
1

h2

∂û2
∂y
− û2
h1h2

∂h1
∂y

)
− 2T̂1
Reh2h3

∂µ

∂T

∂h3
∂y

(
i (k2β0) ŵ2

h3
+

û2
h1h3

∂h3
∂x

+
v̂2
h2h3

∂h3
∂y

)
− 2T̂1
Reh1h2

∂µ

∂T

∂h1
∂y

(
1

h1

(
∂û2
∂x

+ iα2û2

)
+

v̂2
h1h2

∂h1
∂y

+
ŵ2

h1h3

∂h1
∂z

)
−
(

1

Reh21

∂v̂2
∂x

)(
T̂1
∂2µ

∂T 2

∂T

∂x
+
∂µ

∂T

∂T̂1
∂x

)
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Z-Momentum Quadratic Nonlinear

NLquadz = −ρ
[
û1
h1

(
∂ŵ2

∂x
+ iα2ŵ2

)
+
v̂1
h2

∂ŵ2

∂y
+
i (k2β0) ŵ1ŵ2

h3

−v̂1
(

v̂2
h2h3

∂h2
∂z
− ŵ2

h2h3

∂h3
∂y

)
+ û1

(
ŵ2

h1h3

∂h3
∂x
− û2
h1h3

∂h1
∂z

)]
− ρ̂1

[
−i (n2ω0) ŵ2 +

û2
h1

∂w

∂x
+

u

h1

(
∂ŵ2

∂x
+ iα2ŵ2

)
+
v̂2
h2

∂w

∂y
+

v

h2

∂ŵ2

∂y
+
w

h3
i (k2β0) ŵ2

−2
uû2
h1h3

∂h1
∂z
− 2

vv̂2
h2h3

∂h2
∂z

+
1

h2h3

∂h3
∂y

(ŵ2v + v̂2w) +
1

h1h3

∂h3
∂x

(û2w + ŵ2u)

]
− i (k1β0 + k2β0) ρ̂1T̂2

h3γM2
+

λT̂1
Reh1h2h23µ

∂µ

∂T

{[
i (k1β0)−

(
1

h1

∂h1
∂z

+
1

h2

∂h2
∂z

+
1

h3

∂h3
∂z

)]
(
h2h3

(
∂û2
∂x

+ iα2û2

)
+ û2h3

∂h2
∂x

+ û2h2
∂h3
∂x

+ h1h3
∂v̂2
∂y

+ v̂2h3
∂h1
∂y

+ v̂2h1
∂h3
∂y

+i (k2β0)h1h2ŵ2 + ŵ2h2
∂h1
∂z

+ ŵ2h1
∂h2
∂z

)
+

[
h2h3

(
i (k2β0)

∂û2
∂x
− α2 (k2β0) û2

)
+

(
h2
∂h3
∂z

+ h3
∂h2
∂z

)(
∂û2
∂x

+ iα2û2

)
+ i (k2β0)h2û2

∂h3
∂x

+ û2
∂h2
∂z

∂h3
∂x

+ û2h2
∂2h3
∂x∂z

+i (k2β0)h3û2
∂h2
∂x

+ û2
∂h3
∂z

∂h2
∂x

+ û2h3
∂2h2
∂x∂z

+ i (k2β0)h1h3
∂v̂2
∂y

+ h1
∂h3
∂z

∂v̂2
∂y

+h3
∂h1
∂z

∂v̂2
∂y

+ v̂2
∂h1
∂z

∂h3
∂y

+ i (k2β0) v̂2h1
∂h3
∂y

+ v̂2h1
∂2h3
∂y∂z

+ v̂2
∂h3
∂z

∂h1
∂y

+i (k2β0) v̂2h3
∂h1
∂y

+ v̂2h3
∂2h1
∂y∂z

− (k2β0)
2 h1h2ŵ2 + i2 (k2β0)h1ŵ2

∂h2
∂z

+i2 (k2β0)h2ŵ2
∂h1
∂z

+ 2ŵ2
∂h1
∂z

∂h2
∂z

+ ŵ2h1
∂2h2
∂z2

+ ŵ2h2
∂2h1
∂z2

]}
+

1

Reh1h2h3

{[(
∂µ

∂T

(
∂T̂1
∂x

+ iα1T̂1

)
+
∂2µ

∂T 2

∂T

∂x
T̂1

)(
h2h3
h1

(
∂ŵ2

∂x
+ iα2ŵ2

)
− ŵ2h2

h1

∂h3
∂x

+ i (k2β0)h2û2 −
û2h2
h1

∂h1
∂z

)]
+
∂µ

∂T
T̂1

[
h2h3
h1

(
i2α2

∂ŵ2

∂x
+ iŵ2

∂α2

∂x
− α2

2ŵ2

)
+

(
h3
h1

∂h2
∂x
− h2h3

h21

∂h1
∂x

)(
∂ŵ2

∂x
+ iα2ŵ2

)
− ŵ2

h1

∂h2
∂x

∂h3
∂x
− ŵ2h2

h1

∂2h3
∂x2

+
ŵ2h2
h21

∂h1
∂x

∂h3
∂x

+ i (k2β0)
∂h2
∂x

û2

+h2

(
i (k2β0)

∂û2
∂x
− α2 (k2β0) û2

)
− h2
h1

∂h1
∂z

(
∂û2
∂x

+ iα2û2

)
− û2h2

h1

∂2h1
∂x∂z

− û2
h1

∂h2
∂x

∂h1
∂z

+
û2h2
h21

∂h1
∂x

∂h1
∂z

]}
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+
1

Reh1h2h3

{[(
∂2µ

∂T 2

∂T

∂y
T̂1 +

∂µ

∂T

∂T̂1
∂y

)(
i (k2β0)h1v̂2 −

v̂2h1
h2

∂h2
∂z

+
h1h3
h2

∂ŵ2

∂y

− ŵ2h1
h2

∂h3
∂y

)]
+
∂µ

∂T
T̂1

[
i (k2β0) v̂2

∂h1
∂y

+ i (k2β0)h1
∂v̂2
∂y
− h1
h2

∂v̂2
∂y

∂h2
∂z

− v̂2
h2

∂h1
∂y

∂h2
∂z
− v̂2h1

h2

∂2h2
∂y∂z

+
v̂2h1
h22

∂h2
∂y

∂h2
∂z

+
h1h3
h2

∂2ŵ2

∂y2
+
h3
h2

∂h1
∂y

∂ŵ2

∂y

−h1h3
h22

∂h2
∂y

∂ŵ2

∂y
− ŵ2

h2

∂h1
∂y

∂h3
∂y
− ŵ2h1

h2

∂2h3
∂y2

+
ŵ2h1
h22

∂h2
∂y

∂h3
∂y

]}
+

2

Reh1h2h3

{[
i (k1β0)

∂µ

∂T
T̂1

(
i (k2β0) ŵ2h1h2

h3
+
v̂2h1
h3

∂h3
∂y

+
û2h2
h3

∂h3
∂x

)]
+
∂µ

∂T
T̂1

[
i (k2β0) ŵ2h2

h3

∂h1
∂z

+
i (k2β0) ŵ2h1

h3

∂h2
∂z
− i (k2β0) ŵ2h1h2

h23

∂h3
∂z
− (k2β0)

2 ŵ2h1h2
h3

+
i (k2β0) v̂2h1

h3

∂h3
∂y

+
v̂2h1
h3

∂2h3
∂y∂z

+
v̂2
h3

∂h1
∂z

∂h3
∂y
− v̂2h1

h23

∂h3
∂z

∂h3
∂y

+
i (k2β0) û2h2

h3

∂h3
∂x

+
û2h2
h3

∂2h3
∂x∂z

+
û2
h3

∂h2
∂z

∂h3
∂x
− û2h2

h23

∂h3
∂z

∂h3
∂x

]}
+

T̂1
Reh2h3

∂µ

∂T

∂h3
∂y

(
i (k2β0) v̂2

h3
− v̂2
h2h3

∂h2
∂z

+
1

h2

∂ŵ2

∂y
− ŵ2

h2h3

∂h3
∂y

)
+

T̂1
Reh1h3

∂µ

∂T

∂h3
∂x

(
1

h1

(
∂ŵ2

∂x
+ iα2ŵ2

)
− ŵ2

h1h3

∂h3
∂x

+
i (k2β0) û2

h3
− û2
h1h3

∂h1
∂z

)
− 2T̂1
Reh2h3

∂µ

∂T

∂h2
∂z

(
1

h2

∂v̂2
∂y

+
û2
h1h2

∂h2
∂x

+
ŵ2

h2h3

∂h2
∂z

)
− 2T̂1
Reh1h3

∂µ

∂T

∂h1
∂z

(
1

h1

(
∂û2
∂x

+ iα2û2

)
+

v̂2
h1h2

∂h1
∂y

+
ŵ2

h1h3

∂h1
∂z

)
−
(

1

Reh21

∂ŵ1

∂x

)(
T̂1
∂2µ

∂T 2

∂T

∂x
+
∂µ

∂T

∂T̂1
∂x

)
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Energy Quadratic Nonlinear

NLquade = −ρ

[
û1
h1

(
∂T̂2
∂x

+ iα2T̂2

)
+
v̂1
h2

∂T̂2
∂y

+
i (k2β0) ŵ1T̂2

h3

]

− ρ̂1

[
−i (n2ω0) T̂2 +

û2
h1

∂T

∂x
+

u

h1

(
∂T̂2
∂x

+ iα2T̂2

)
+
v̂2
h2

∂T

∂y
+

v

h2

∂T̂2
∂y

+
i (k2β0)wT̂2

h3

]

+
(γ − 1)

γ

{
−i (n1ω0 + n2ω0) ρ̂1T̂2 +

u

h1

[
ρ̂2

(
Ω
∂T̂1
∂x

+ iα1T̂1

)
+ T̂1

(
Ω
∂ρ̂2
∂x

+ iα2ρ̂2

)]

+
û1
h1

[
ρ

(
Ω
∂T̂2
∂x

+ iα2T̂2

)
+ T

(
Ω
∂ρ̂2
∂x

+ iα2ρ̂2

)
+ Ω

∂ρ

∂x
T̂2 + Ω

∂T

∂x
ρ̂2

]

+
v

h2

(
ρ̂1
∂T̂2
∂y

+ T̂2
∂ρ̂1
∂y

)
+
v̂1
h2

(
ρ
∂T̂2
∂y

+ T
∂ρ̂2
∂y

+ ρ̂2
∂T

∂y
+ T̂2

∂ρ

∂y

)

+
i (k1β0 + k2β0)wρ̂1T̂2

h3
+
i (k2β0) ŵ1

h3

(
ρT̂2 + ρ̂1T

)}

+
1

PrReh1h2h3

{[
∂2κ

∂T 2

∂T

∂x
T̂1 +

∂κ

∂T

(
∂T̂1
∂x

+ iα1T̂1

)][
h2h3
h1

(
∂T̂2
∂x

+ iα2T̂2

)]

+
h2h3
h1

∂κ

∂T
T̂1

(
i2α2

∂T̂2
∂x

+ iT̂2
∂α2

∂x
− α2

2T̂2

)
+

[
∂κ

∂T
T̂1

(
∂T̂2
∂x

+ iα2T̂2

)](
h3
h1

∂h2
∂x

+
h2
h1

∂h3
∂x
− h2h3

h21

∂h1
∂x

)
+

(
∂2κ

∂T 2

∂T

∂y
T̂1 +

∂κ

∂T

∂T̂1
∂y

)(
h1h3
h2

∂T̂2
∂y

)
+
h1h3
h2

∂κ

∂T
T̂1
∂2T̂2
∂y2

+

(
∂κ

∂T
T̂1
∂T̂2
∂y

)(
h3
h2

∂h1
∂y

+
h1
h2

∂h3
∂y
− h1h3

h22

∂h2
∂y

)
− ∂κ

∂T
(k1β0) (k2β0) T̂1T̂2

h1h2
h3

− ∂κ
∂T

(k2β0)
2 T̂1T̂2

h1h2
h3

+

(
i (k2β0)

∂κ

∂T
T̂1T̂2

)(
h2
h3

∂h1
∂z

+
h1
h3

∂h2
∂z
− h1h2

h23

∂h3
∂z

)}
+

(γ − 1)M2

Re

{
[(

2µ+ λ
)( 1

h1

(
∂û1
∂x

+ iα1û1

)
+

v̂1
h1h2

∂h1
∂y

+
ŵ1

h3h1

∂h1
∂z

)
(

1

h1

(
∂û2
∂x

+ iα2û2

)
+

v̂2
h1h2

∂h1
∂y

+
ŵ2

h3h1

∂h1
∂z

)]
+2

[
∂µ

∂T
T̂1

(
2 +

λ

µ

)(
1

h1

(
∂û2
∂x

+ iα2û2

)
+

v̂2
h1h2

∂h1
∂y

+
ŵ2

h3h1

∂h1
∂z

)
(

1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h3h1

∂h1
∂z

)]
+

[
µ

(
1

h2

∂ŵ1

∂y
− ŵ1

h2h3

∂h3
∂y

+
i (k1β0) v̂1

h3
− v̂1
h2h3

∂h2
∂z

)
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(
1

h2

∂ŵ2

∂y
− ŵ2

h2h3

∂h3
∂y

+
i (k2β0) v̂2

h3
− v̂2
h2h3

∂h2
∂z

)]
+2

[
∂µ

∂T
T̂1

(
1

h2

∂ŵ2

∂y
− ŵ2

h2h3

∂h3
∂y

+
i (k2β0) v̂2

h3
− v̂2
h2h3

∂h2
∂z

)
(

1

h2

∂w

∂y
− w

h2h3

∂h3
∂y
− v

h2h3

∂h2
∂z

)]
+

[(
2µ+ λ

)( 1

h2

∂v̂1
∂y

+
ŵ1

h2h3

∂h2
∂z

+
û1
h1h2

∂h2
∂x

)(
1

h2

∂v̂2
∂y

+
ŵ2

h2h3

∂h2
∂z

+
û2
h1h2

∂h2
∂x

)]
+2

[
∂µ

∂T
T̂1

(
2 +

λ

µ

)(
1

h2

∂v̂2
∂y

+
ŵ2

h2h3

∂h2
∂z

+
û2
h1h2

∂h2
∂x

)(
1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

)]
+

[
µ

(
1

h1

(
∂ŵ1

∂x
+ iα1ŵ1

)
− ŵ1

h1h3

∂h3
∂x

+
i (k1β0) û1

h3
− û1
h1h3

∂h1
∂z

)
(

1

h1

(
∂ŵ2

∂x
+ iα2ŵ2

)
− ŵ2

h1h3

∂h3
∂x

+
i (k2β0) û2

h3
− û2
h1h3

∂h1
∂z

)]
+2

[
∂µ

∂T
T̂1

(
1

h1

(
∂ŵ2

∂x
+ iα2ŵ2

)
− ŵ2

h1h3

∂h3
∂x

+
i (k2β0) û2

h3
− û2
h1h3

∂h1
∂z

)
(

1

h1

∂w

∂x
− w

h1h3

∂h3
∂x
− u

h1h3

∂h1
∂z

)]
+

[(
2µ+ λ

)( i (k1β0) ŵ1

h3
+

û1
h1h3

∂h3
∂x

+
v̂1
h2h3

∂h3
∂y

)
(
i (k2β0) ŵ2

h3
+

û2
h1h3

∂h3
∂x

+
v̂2
h2h3

∂h3
∂y

)]
+2

[
∂µ

∂T
T̂1

(
2 +

λ

µ

)(
i (k2β0) ŵ2

h3
+

û2
h1h3

∂h3
∂x

+
v̂2
h2h3

∂h3
∂y

)(
u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

)]
+

[
µ

(
1

h1

(
∂v̂1
∂x

+ iα1v̂1

)
− v̂1
h1h2

∂h2
∂x

+
1

h2

∂û1
∂y
− û1
h1h2

∂h1
∂y

)
(

1

h1

(
∂v̂2
∂x

+ iα2v̂2

)
− v̂2
h1h2

∂h2
∂x

+
1

h2

∂û2
∂y
− û2
h1h2

∂h1
∂y

)]
+2

[
∂µ

∂T
T̂1

(
1

h1

(
∂v̂2
∂x

+ iα2v̂2

)
− v̂2
h1h2

∂h2
∂x

+
1

h2

∂û2
∂y
− û2
h1h2

∂h1
∂y

)
(

1

h1

∂v

∂x
− v

h1h2

∂h2
∂x

+
1

h2

∂u

∂y
− u

h1h2

∂h1
∂y

)]
+

[
2λ

(
1

h1

(
∂û1
∂x

+ iα1û1

)
+

v̂1
h1h2

∂h1
∂y

+
ŵ1

h3h1

∂h1
∂z

)(
1

h2

∂v̂2
∂y

+
ŵ2

h2h3

∂h2
∂z

+
û2
h1h2

∂h2
∂x

)]
+2

λ

µ

∂µ

∂T
T̂1

[(
1

h1

(
∂û2
∂x

+ iα2û2

)
+

v̂2
h1h2

∂h1
∂y

+
ŵ2

h3h1

∂h1
∂z

)
(

1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

)
+

(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h3h1

∂h1
∂z

)(
1

h2

∂v̂2
∂y

+
ŵ2

h2h3

∂h2
∂z

+
û2
h1h2

∂h2
∂x

)]
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+

[
2λ

(
1

h1

(
∂û1
∂x

+ iα1û1

)
+

v̂1
h1h2

∂h1
∂y

+
ŵ1

h3h1

∂h1
∂z

)
(
i (k2β0) ŵ2

h3
+

û2
h1h3

∂h3
∂x

+
v̂2
h2h3

∂h3
∂y

)]
+2

λ

µ

∂µ

∂T
T̂1

[(
1

h1

(
∂û2
∂x

+ iα2û2

)
+

v̂2
h1h2

∂h1
∂y

+
ŵ2

h3h1

∂h1
∂z

)(
u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

)
+

(
1

h1

∂u

∂x
+

v

h1h2

∂h1
∂y

+
w

h3h1

∂h1
∂z

)(
i (k2β0) ŵ2

h3
+

û2
h1h3

∂h3
∂x

+
v̂2
h2h3

∂h3
∂y

)]
+

[
2λ

(
1

h2

∂v̂1
∂y

+
ŵ1

h2h3

∂h2
∂z

+
û1
h1h2

∂h2
∂x

)(
i (k2β0) ŵ2

h3
+

û2
h1h3

∂h3
∂x

+
v̂2
h2h3

∂h3
∂y

)]
+2

λ

µ

∂µ

∂T
T̂1

[(
1

h2

∂v̂2
∂y

+
ŵ2

h2h3

∂h2
∂z

+
û2
h1h2

∂h2
∂x

)(
u

h1h3

∂h3
∂x

+
v

h2h3

∂h3
∂y

)
+

(
1

h2

∂v

∂y
+

w

h2h3

∂h2
∂z

+
u

h1h2

∂h2
∂x

)(
i (k2β0) ŵ2

h3
+

û2
h1h3

∂h3
∂x

+
v̂2
h2h3

∂h3
∂y

)]}
−

(
1

PrReh21

∂T̂2
∂x

)(
T̂1
∂2κ

∂T 2

∂T

∂x
+
∂κ

∂T

∂T̂1
∂x

)

− (γ − 1)M2

Re

{(
2µ+ λ

)( 1

h1

∂û1
∂x

)(
1

h1

∂û2
∂x

)
+µ

(
1

h1

∂v̂1
∂x

)(
1

h1

∂v̂2
∂x

)
+ µ

(
1

h1

∂ŵ1

∂x

)(
1

h1

∂ŵ2

∂x

)
+2

∂µ

∂T
T̂1

[(
2 +

λ

µ

)(
1

h21

∂u

∂x

∂û2
∂x

)
+

(
1

h21

∂v

∂x

∂v̂2
∂x

)
+

(
1

h21

∂w

∂x

∂ŵ2

∂x

)]}

Continuity Quadratic Nonlinear

NLquadm = − 1

h1h2

(
∂h2
∂x

ρ̂1û2 +
∂h1
∂y

ρ̂1v̂2

)
− 1

h1h3

(
∂h3
∂x

ρ̂1û2 +
∂h1
∂z

ρ̂1ŵ2

)
− 1

h2h3

(
∂h3
∂y

ρ̂1v̂2 +
∂h2
∂z

ρ̂1ŵ2

)
− 1

h1

[(
∂ρ̂1
∂x

+ iα1ρ̂1

)
û2 + ρ̂1

(
∂û2
∂x

+ iα2û2

)]
− 1

h2

[
∂ρ̂1
∂y

v̂2 + ρ̂1
∂v̂2
∂y

]
− 1

h3

[
iρ̂1ŵ2 (k1β0 + k2β0)

]
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X-Momentum Cubic Nonlinear

NLcubicx = −ρ̂1
[
û2
h1

(
∂û3
∂x

+ iα3û3

)
+
v̂2
h2

∂û3
∂y

+
i (k3β0) ŵ2û3

h3

−v̂2
(

v̂3
h1h2

∂h2
∂x
− û3
h1h2

∂h1
∂y

)
+ ŵ2

(
û3
h1h3

∂h1
∂z
− ŵ3

h1h3

∂h3
∂x

)]

Y-Momentum Cubic Nonlinear

NLcubicy = −ρ̂1
[
û2
h1

(
∂v̂3
∂x

+ iα3v̂3

)
+
v̂2
h2

∂v̂3
∂y

+
i (k3β0) ŵ2v̂3

h3

−ŵ2

(
ŵ3

h2h3

∂h3
∂y
− v̂3
h2h3

∂h2
∂z

)
+ û2

(
v̂3
h1h2

∂h2
∂x
− û3
h1h2

∂h1
∂y

)]

Z-Momentum Cubic Nonlinear

NLcubicz = −ρ̂1
[
û2
h1

(
∂ŵ3

∂x
+ iα3ŵ3

)
+
v̂2
h2

∂ŵ3

∂y
+
i (k3β0) ŵ2ŵ3

h3

+v̂2

(
ŵ3

h2h3

∂h3
∂y
− v̂3
h2h3

∂h2
∂z

)
− û2

(
û3
h1h3

∂h1
∂z
− ŵ3

h1h3

∂h3
∂x

)]

Energy Cubic Nonlinear

NLcubice = −ρ̂1

[
û2
h1

(
∂T̂3
∂x

+ iα3T̂3

)
+
v̂2
h2

∂T̂3
∂y

+
i (k3β0) ŵ2T̂3

h3

]

+
(γ − 1)

γ

[
û1ρ̂2
h1

(
Ω
∂T̂3
∂x

+ iα3T̂3

)
+
û1T̂3
h1

(
Ω
∂ρ̂2
∂x

+ iα2ρ̂2

)
+
v̂1
h2

(
ρ̂2
∂T̂3
∂y

+ T̂3
∂ρ̂2
∂y

)

+
i (k2β0 + k3β0) ŵ1ρ̂2T̂3

h3

]
+

(γ − 1)M2

Re

∂µ

∂T
T̂1

{
[(

2 +
λ

µ

)(
1

h1

(
∂û2
∂x

+ iα2û2

)
+

v̂2
h1h2

∂h1
∂y

+
ŵ2

h3h1

∂h1
∂z

)
(

1

h1

(
∂û3
∂x

+ iα3û3

)
+

v̂3
h1h2

∂h1
∂y

+
ŵ3

h3h1

∂h1
∂z

)]
+

[(
1

h2

∂ŵ2

∂y
− ŵ2

h2h3

∂h3
∂y

+
i (k2β0) v̂2

h3
− v̂2
h2h3

∂h2
∂z

)
(

1

h2

∂ŵ3

∂y
− ŵ3

h2h3

∂h3
∂y

+
i (k3β0) v̂3

h3
− v̂3
h2h3

∂h2
∂z

)]
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+

[(
2 +

λ

µ

)(
1

h2

∂v̂2
∂y

+
ŵ2

h2h3

∂h2
∂z

+
û2
h1h2

∂h2
∂x

)(
1

h2

∂v̂3
∂y

+
ŵ3

h2h3

∂h2
∂z

+
û3
h1h2

∂h2
∂x

)]
+

[(
1

h1

(
∂ŵ2

∂x
+ iα2ŵ2

)
− ŵ2

h1h3

∂h3
∂x

+
i (k2β0) û2

h3
− û2
h1h3

∂h1
∂z

)
(

1

h1

(
∂ŵ3

∂x
+ iα3ŵ3

)
− ŵ3

h1h3

∂h3
∂x

+
i (k3β0) û3

h3
− û3
h1h3

∂h1
∂z

)]
+

[(
2 +

λ

µ

)(
i (k2β0) ŵ2

h3
+

û2
h1h3

∂h3
∂x

+
v̂2
h2h3

∂h3
∂y

)
(
i (k3β0) ŵ3

h3
+

û3
h1h3

∂h3
∂x

+
v̂3
h2h3

∂h3
∂y

)]
+

[(
1

h1

(
∂v̂2
∂x

+ iα2v̂2

)
− v̂2
h1h2

∂h2
∂x

+
1

h2

∂û2
∂y
− û2
h1h2

∂h1
∂y

)
(

1

h1

(
∂v̂3
∂x

+ iα3v̂3

)
− v̂3
h1h2

∂h2
∂x

+
1

h2

∂û3
∂y
− û3
h1h2

∂h1
∂y

)]
+

[
2λ

µ

(
1

h1

(
∂û2
∂x

+ iα2û2

)
+

v̂2
h1h2

∂h1
∂y

+
ŵ2

h3h1

∂h1
∂z

)(
1

h2

∂v̂3
∂y

+
ŵ3

h2h3

∂h2
∂z

+
û3
h1h2

∂h2
∂x

)]
+

[
2λ

µ

(
1

h1

(
∂û2
∂x

+ iα2û2

)
+

v̂2
h1h2

∂h1
∂y

+
ŵ2

h3h1

∂h1
∂z

)
(
i (k3β0) ŵ3

h3
+

û3
h1h3

∂h3
∂x

+
v̂3
h2h3

∂h3
∂y

)]
+

[
2λ

µ

(
1

h2

∂v̂2
∂y

+
ŵ2

h2h3

∂h2
∂z

+
û2
h1h2

∂h2
∂x

)(
i (k3β0) ŵ3

h3
+

û3
h1h3

∂h3
∂x

+
v̂3
h2h3

∂h3
∂y

)]}
− (γ − 1)M2

Re

∂µ

∂T
T̂1

[(
2 +

λ

µ

)(
1

h1

∂û2
∂x

)(
1

h1

∂û3
∂x

)
+

(
1

h1

∂v̂2
∂x

)(
1

h1

∂v̂3
∂x

)
+

(
1

h1

∂ŵ2

∂x

)(
1

h1

∂ŵ3

∂x

)]

Continuity Cubic Nonlinear

NLcubicm = 0
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