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ABSTRACT

Recently developed satellite systems require a group of satellites acting in concert

with one another to meet mission objectives. Specifying a constellation by defining

all the orbit elements for each satellite is complex, inconvenient, and computation-

ally impossible for constellations with many satellites. There are many degrees of

freedom in the parameters for constellations such as number of orbital planes, num-

ber of satellites in the orbital plane, orbital inclination and altitude. Therefore, an

efficient way to design to a constellation is to adopt some orbital elements with com-

mon value and some other derived by algorithms and various algorithms have been

proposed. Among them, the Lattice Flower Constellations theory is more suitable to

optimization of constellation design because it is a minimum parameterization theory

and because this design methodology contains most of the existing methodologies as

subsets.

The main contributions of this dissertation are 1) the development of an algorithm

which provides uniform points on a sphere for fast evaluation of coverage fitness

functions, 2) the presentation of a set of three non-classical constellation missions

using Lattice Flower Constellations, and 3) the investigation of a new class of orbits,

called “J2-propelled,” and associated constellations which are particularly suitable

in the three-dimensional lattice theory of flower constellations.

For global coverage missions, fitness functions for constellation design are com-

puted using globally distributed points. Most of the grid data sets are provided with

a fixed step in latitude and longitude. Therefore, conventionally computed points

are distributed with a fixed step in latitude and longitude. Since these are certainly

not uniform distributions of points on the Earth, mainly due to the increase of point
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density at high latitude regions, converting these data into an “equivalent” distri-

bution of points (with different weights) is needed. This will allow the data sets to

be dramatically decreased to small amount data sets with appropriate values and,

consequently, computational burden is then reduced using “equivalent” uniformly

distributed points.

For elliptical constellations, the Lattice Flower Constellations require nine de-

sign parameters of which six are integers. For circular constellations, there are five

required design parameters of which three are integers. A general optimization tech-

nique implies finding the optimal values of these parameters. This dissertation in-

troduces a general process to perform constellation optimization for any specific

optimality definition, that is, for any specific space mission. To demonstrate the

feasibility and the effectiveness of the proposed approach this optimization tool is

applied to three distinct types of space missions: a) global radio occultation, b)

interferometric imaging, and c) constrained communication missions. The results

obtained validate the proposed methodology.

A linear theory to design orbits and constellations where the Earth oblateness per-

turbation, the J2 perturbation, generates dynamics that are periodic in an inertial or

in a rotating frame is presented. In J2-propelled orbits, the linear (secular) J2 effect

is used instead of being fought to allow the satellites accessing specific 3-dimensional

volumes around the Earth. The main motivation is to design space missions (satel-

lites and constellations) able to measure physical quantities (e.g., magnetic or electric

fields) in large space volumes by limiting the control costs to compensate the other

gravitational and non-gravitational orbital perturbations only.
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NOMENCLATURE

a Semi-major axis [km]

e Eccentricity

i Inclination [rad]

Ω Right ascension of the ascending node [rad]

ω Argument of perigee [rad]

M Mean anomaly [rad]

h altitude [km]

ρmin minimum distance between two satellites [km]

p Semi-latus rectum [km]

Ω̇ Nodal regression rate [rad/s]

ω̇ Perigee rotation rate [rad/s]

µ The Earth’s gravitational constant [km3/s2]

n Perturbed mean motion [rad/s]

n0 Unperturbed mean motion [rad/s]

No the number of orbital planes

Nω the number of orbits per orbital planes

Nso the number of satellites per orbit

Nc the configuration number

Tp the orbit nodal period

Td the Greenwich nodal period

Np the number of revolutions required to complete one period of repetition

Nd the number of sidereal days the Earth completes during one period of repetition
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J2 second zonal harmonic coefficient

R⊕ the Earth radius [km]

ω⊕ the Earth’s rotation rate [rad/s]
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1. INTRODUCTION

1.1 Background

Recently developed satellite systems require groups of artificial satellites working

in concert for a common purpose. Because satellites must perform in a coordinated

manner to accomplish the mission objectives, these multiple satellites are called satel-

lite constellations. A major trend in the evolution of satellite systems is an increase

in the number of smaller and cheaper satellites. This has led to a rapid increase in

the number of Earth-orbiting constellations for communications, navigation, and ob-

servations. [1]. Iridium, Globalstar, and ORBCOMM [2, 3] have been developed as

Low Earth orbit communications constellations. Global Positioning System (GPS)

and Galileo are examples of constellations for navigation [4].

Specifying a constellation by defining all of the orbit elements for each satellite is

complex, inconvenient, and overwhelming in its range of options [5]. There are many

of degrees of freedom in the parameters for constellations; number of orbital planes,

number of satellites in the orbital plane, orbital inclination and altitude. An efficient

way to design is utilizing specific constellation algorithms with common parameters,

and various patterns have been proposed by many researchers. Among them, two

types of patterns are currently popular and practiced today. The Streets-of-Coverage

constellations algorithm [6, 7] typically involves placing satellites in polar orbits that

have been spaced such that the path covered by a satellite touches or overlaps the

path from the satellite in the next plane over [6]. This algorithm has advantages in

its simplicity of evaluating coverage but provides unnecessary overlapping coverage

in the polar region. The Walker algorithm provides symmetric constellations [8, 9]

and is more efficient for a global coverage mission. In general, classical constellation
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patterns have focused on satellite constellation design for coverage of the Earth in

the inertial frame. However, Flower constellations provide repeating ground tracks

using periodic dynamics in a Planet-Centered-Planet-Fixed rotating frame [10]. The

recently developed Lattice Flower Constellations (LFC) theory [11, 12] is more suit-

able to optimization of constellation design because it is a minimum parameterization

theory.

Each orbit depends on six parameters, and that high dimensionality complicates

optimal constellation design. Therefore, the first step of optimal constellation design

is selecting constellation algorithm appropriate to mission. The next step is to obtain

a reasonably reduced problem dimensionality without cutting out potentially useful

solutions. For elliptical constellations, the LFC require seven parameters of which

three integers while for circular constellations the parameters become five of which

three are integers because eccentricity and argument of perigee are not necessary.

Optimizing the LFC implies finding these parameters to fulfill mission requirements.

This research shows how to derive these parameters in order to minimize fitness func-

tion. Reasonable initial radius ranges can be obtained by limiting the atmospheric

drag and by avoiding the inner Van Allen belt. Since the main aim of this research is

to present a general procedure to optimize a constellation geometry along with mis-

sion based criterion, various examples for specific missions such as radio occultation,

interferometric imaging, and constrained communication missions will be examined.

1.2 Lattice Flower Constellations Design

Important characteristics of the Lattice theory of Flower Constellation are: 1)

it is a minimum-parameter design tool (no equivalency problem), and 2) the theory

is independent from compatibility condition (free to use any orbit). From a math-

ematical point of view, the satellite’s phasing is described by a regular lattice on
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a three-dimensional torus (each axis is an angle, modulo 2π) in a four-dimensional

space.

1.2.1 2-D Lattice Flower Constellations Design

The 2-D Lattice Flower Constellations design methodology has been introduced in

Ref. [13]. In general 2-D LFC are characterized by four continuous parameters (semi-

major axis, eccentricity, inclination and argument of perigee) and three independent

integer parameters establishing the constellation satellite distribution in the (M,Ω)-

space. These integer parameters are the number of orbital planes, No, the number

of satellites per orbit, Nso, and the configuration number, Nc (phasing parameter).

Using these integer parameters, the satellites’ right ascension of the ascending node

(Ωij) and the initial mean anomaly (Mij) are solutions of the following equation

No 0

Nc Nso


Ωij

Mij

 = 2π

i− 1

j − 1

 (1.1)

where i = 1, · · · , No, j = 1, · · · , Nso, and Nc ∈ [1, No]. The “i-j” element is the j-th

satellite on the i-th orbital plane. If repeating ground tracks are required, then the

compatibility equation

Np Tp = Np
2π

n+ ω̇
= Nd Td = Nd

2π

ω⊕ − Ω̇
, (1.2)

where Tp is the orbit nodal period and Td is the Greenwich nodal period, provides

the value of the orbit radius for each coprime integers, Np and Nd. Equation (1.2)

takes into account the main gravitational perturbation due to the Earth oblateness,

known as the J2 effect. The secular and persistent J2 effect modifies the mean motion
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according to

n = n0

[
1 +

3

4
J2

(
R⊕
p

)2

(2− 3 sin2 i)
√

1− e2

]
, (1.3)

where R⊕ = 6, 378.14 km is the Earth radius, p = a(1− e2) is the orbital semi-latus

rectum, J2 = 1.8262668355 × 10−3 is the second zonal harmonic coefficient (non-

dimensional) of the Earth gravitational field, n0 =

√
µ

a3
is the unperturbed mean

motion, and µ = 3.986 · 105km3/s2 is the Earth’s gravitational constant, and the

perturbed mean motion linearly changes the right ascension of the ascending node

[14, 15]

Ω̇ = −3

2
J2

(
R⊕
p

)2

n cos i, (1.4)

as well as the argument of perigee,

ω̇ =
3

4
J2

(
R⊕
p

)2

n (5 cos2 i− 1). (1.5)

All satellites have the same semi-major axis, eccentricity and inclination.

1.2.2 3-D Lattice Flower Constellations Design

2-D Lattice Theory has been extended to 3-D Lattice Theory of Flower Constel-

lations (FC) [16, 12] by including the J2 perturbation. Since the 2-D Lattice theory

does not include the J2 perturbation, from a practical point of view it can be used

for circular orbits or orbits at critical inclinations (i = 63.4◦ or i = 116.6◦) only,

as the J2 effect will slowly destroy the initial optimal configuration. Constellation

station-keeping costs will quickly become expensive. While the variation of Ω can

be compensated by a proper selection of the orbital period (this variation is iden-

tical for all orbits, and consequently it will not destroy the symmetric distribution)

the ω variation changes the latitudinal locations of perigee/apogee with catastrophic

departure from the initial optimal configuration. Trying to keep the perigee in its
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location has proven to be very expensive.

By placing on the same orbital plane orbits with identical shapes that are uni-

formly distributed in ω, a uniform rotation of these orbits on the same orbital plane

is obtained, and this plane is rotating about the Earth spin axis. Satellite phasing

is described by the solution of


No 0 0

Nc3 Nω 0

Nc1 Nc2 Nso




Ωikj

ωikj

Mikj

 = 2π


i− 1

k − 1

j − 1

 mod (2π) (1.6)

where No is the number of orbital planes, Nω the number of orbits per orbital plane,

Nso the number of satellites per orbit, i ∈ [1, No], j ∈ [1, Nso], k ∈ [1, Nω], and

Nc1 ∈ [1, No], Nc2 ∈ [1, Nω], and Nc3 ∈ [1, No] are three integers (called configuration

numbers) identifying the satellite phasing. In Eq. (1.6), the indices have the following

meaning: the “i, k, j” satellite indicates that it belongs to the j-th mean anomaly

location of the k-th orbit belonging to the i-th orbital plane. Again, the importance

of this theory consists of extending the constellation design to the use elliptical orbits

at any inclination under the linear J2 effect.

1.3 Research Objectives and Contributions

The objectives of this research are to develop a general approach using LFC theory

to estimate the best design parameters for any specific optimality definition, that

is, for any specific space mission application. In particular, an algorithm, providing

uniform points on a sphere for faster and better fitness function evaluation, has

been developed to optimize GPS-type of constellations. In addition, an entirely new

class of orbits, called “J2-propelled orbits,” has been developed and investigated

particularly suitable to access large space volumes around the Earth with no use of
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fuel.

This research provides improved algorithms based on a quasi-equal area spherical

subdivision to obtain uniform distribution of points on a sphere. The proposed

algorithm is fast and efficient as compared to previous approach. Consequently, it is

suitable for various applications requiring high value of N and can be applied to two

geographical data distributions that are modeled by quasi-uniform distribution of

weighted points. The capability of uniformly distributing points on a sphere results

in important application possibilities such as survey sampling, dynamic modeling and

information storage, allowing the development of optimal algorithms. Therefore, this

algorithm can be applied to several other scientific problems and it will help various

groups to reduce surveying costs.

The proposed methods to optimize a LFC to satisfy specific mission requirements

allow for promoting the acceptance of the newly developed LFC by the space com-

munity. Therefore one of the main goals of this work is that of presenting design

techniques and procedures that can be applied to satisfy practical mission require-

ments. The proposed procedures and numerical solutions in the overall dissertation

will be highly valuable in mission analysis and expected to be broadly useful for

constellations designer.

The J2-propelled orbits repeatedly cover specific volumes around the gravitational

body and are particularly suitable to be adopted in the three-dimensional (3-D) LFC

theory, which has been developed to include the J2 linear perturbation. Using, rather

than fighting, the J2 perturbation directly implies long-term orbit stability, with low

orbital maintenance costs that can be conveniently dedicated to compensate the

non-J2 orbital perturbations. Therefore, this new class of orbits allows research

people to achieve single or multi-satellite space missions aiming to investigate the

3-Dimensional coverage of space volumes in inertial and/or Earth-rotating reference
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frames. Hence, these orbits are suitable to monitor physical quantities.

1.4 Dissertation Organization

This section gives a brief description of each chapter of the dissertation beginning

with Chapter 2.

Chapter 2 addresses the problem of uniformly distributing points on a sphere.

A mathematical formulation and a scheme to generate the points problem are pre-

sented. In addition, two kinds of methods for observation check are proposed with

geographical data applications.

In Chapter 3, the procedure for optimization is studied and applied to a variety

of applications in design of satellite constellations. Before optimization process,

geometric characteristics of various missions are investigated to select a suitable

fitness function. The resulting constellations are explored from a mission performance

perspective to make optimality selection.

Chapter 4 introduces the concept of “J2-propelled” orbits. Analytical derivations

are developed to find the conditions for the J2-propelled orbits. Circular and elliptical

orbits are specifically analyzed separately with numerical examples.

Finally, Chapter 5 summarizes all of the findings and conclusions discussed in

Chapters 2 through 4.
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2. DATABASE PRE-PROCESSING FOR FAST OPTIMIZATION DESIGN

2.1 Introduction

The problem of distributing N points uniformly over the surface of a sphere

has been investigated for many decades [17, 18]. This problem is one of the most

challenging mathematical problems of the century, known as the 7th Smale’s problem

[19]. However, because of its implications in many areas of mathematics and its

immediate practical applications, it has not only inspired mathematical researchers

but also attracted the attention of applied mathematicians in various fields [20]. The

capability of uniformly distributing points on a sphere has important theoretical

consequences in mathematics and important applications such as survey sampling,

dynamic modeling and information storage, and display in engineering, allowing the

development of optimal algorithms [21].

Various algorithms have been developed for a small number of points [17, 18, 22].

However, most of them use optimization techniques that are not efficient for a large

number of points. Other more modern algorithms, such as Chan’s Quadrilateralized

Spherical Cube Map (QSCM) projection (1975 Navy report, now out-of-print), ex-

tensively analyzed in Ref. [23] and applied by Naval and NASA programs, and the

algorithm by Snyder (Ref. 24), which is based on Platonic solids, are efficient and

available. These methods all generate a total number of points (N) proportional

to the number of faces of a Platonic solid; for instance, six points are generated

proportional to the number of faces of Hexahedron for the QSCM. Reference 25 sug-

gested an icosahedron-based method by subsequent quadrisection for evenly spaced

binning data. Reference 26 presented a method of constructing equal area triangles

by repeatedly applying quadrisection to icosahedron and iterative equalization.
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In this of view, subdivision approach is considered to develop algorithm to dis-

tribute a large number of points on the sphere. This paper is organized as follows.

The first section of this paper examines subdivision approach. Then the original

equal area subdivision algorithm and quasi-equal area subdivision algorithms are

provided. Finally, applications to geographical data are presented.

2.2 Subdivision Approach

2.2.1 Splitting a Spherical Triangle in Two Equal Area Spherical Triangles

Consider the generic spherical triangle that is formed on the surface of the unit

sphere by three great circular arcs intersecting pairwise in three vertices as shown in

Fig. 2.1.

Figure 2.1: Splitting a spherical triangle in two equal area

The area of a spherical triangle [v̂A, v̂B, v̂C ] is obtained by

S = A+B + C − π (2.1)

where angles A, B, and C are the dihedral angles of the spherical triangle [in radians]

[27]. Incidentally, Eq. (2.1) implies that the sum of the dihedral angles of a spherical
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triangle must be greater than or equal to π, with equality holding only to the case

of a degenerated spherical triangle with zero area.

Let a be the largest side angle, v̂C · v̂B = cos a. The problem to solve here is to

find the point on the side a such that the two spherical triangles identified by the

unit-vectors, [v̂A, v̂C , v̂D] and [v̂A, v̂B, v̂D], have identical areas. Since the unit-vector

v̂D is co-planar to v̂C and v̂D, it can be linearly expressed by the unit-vectors v̂C

and v̂D as follows.

v̂D =
1

sin a
[v̂C sin z + v̂B sin(a− z)] (2.2)

The area of the spherical triangle [v̂A, v̂C , v̂D] is

S1 = x+ y +B − π =
S

2
=
A+B + C − π

2
(2.3)

then

x+ y =
A+ C + π −B

2
= D and y = D − x (2.4)

Applying the law of cosines to the spherical triangle [v̂A, v̂B, v̂D] gives

cos y = sinx sinB cos c = cosx cosB (2.5)

Then, using angle difference identity and Eq. (2.4), we obtain

cosD cosx+ sinD sinx = sinx sinB cos c− cosx cosB (2.6)

and

tanx =
cosD + cosB

sinB cos c− sinD
. (2.7)

Finally, using the law of sines with the spherical triangle [v̂A, v̂B, v̂D], sin z sin y =
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sin c sinx, the following solution

sin z =
sinx sin c

sin(D − x)
(2.8)

is obtained. With the knowledge of z (the correct solution satisfies z < π/2), then

it is possible to compute the splitting point, v̂D, using Eq. (2.2).

[21] have introduced the following conjecture to generate uniformly distributed

points on a 2-dimensional sphere. This conjecture is based on recursive equal area

subdivision of triangles.

Conjecture: by s recursive splits of an original spherical triangle we obtain a set

of 2s non-degenerating spherical triangles with identical areas. As s →∞ centers of

the final small spherical triangle identify a distribution of points satisfying Eq. (2.11)

and Eq. (2.12) for the original spherical triangle.

If this conjecture is correct, then the creation of N asymptotically uniformly

distributed points on a sphere depends on how the sphere is split in a spherical

triangle.

The idea of splitting spherical polygons to distribute points on a sphere finds the

most natural approach (not the most general) by taking advantage from the perfect

spherical symmetry provided by Platonic solids. Therefore, subdivision process is

started by selecting one of the Platonic solids.

2.2.2 Platonic Solids

Platonic solids are convex regular polyhedra as shown in Fig. 2.2. A polyhedron

is said to be regular if its faces and vertex figures are regular polygons. Their faces

are identical regular polygons with the same number of faces meeting at each vertex.

Five solids exist that satisfy those criteria. Each solid is named according to its

number of faces. Interchanging vertices for faces makes the dual of a Platonic solid.
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The tetrahedron is the self dual. The hexahedron and octahedron are duals as are

the icosahedron and and the dodecahedron.

(a) Tetrahedron (b) Hexahedron (c) Octahedron

(d) Dodecahedron (e) Icosahedron

Figure 2.2: Platonic solids

The parameters defining the five Platonic solids are summarized in Table 2.1. In

this table, v indicates the total number of vertices, e the total number of edges, f the

total number of faces, p the number of edges in each face (3 for equilateral triangles,

4 for the squares and 5 for regular pentagons), q the number of edges meeting at

each vertex [28], s the type of initial division (3 for trisection 4 for quadrisection

and 5 for pentasection), and i the number of initial faces (i = p f). Since splitting a

face into the number of edges with a center of face and vertices generates identical

smaller triangles, initial division depends on shape of the face. Note that dual solids

have same number of initial faces.
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Table 2.1: Platonic solids parameters

Platonic solids v e f p q s i

Tetrahedron 4 6 4 3 3 3 12

Hexahedron 8 12 6 4 3 4 24

Octahedron 6 12 8 3 4 3 24

Dodecahedron 20 30 12 5 3 5 60

Icosahedron 12 30 20 3 5 3 60

Platonic solids with most initial faces are the icosahedron and dodecahedron as

shown in Table 2.1. For this reason, to create a quasi-uniform distribution of points

on a sphere we start by splitting the n = 60 triangles by equal area. At every split

new triangles will be created. In this case the quasi-uniform distribution of points is

made with the set of all the centers of triangular faces.

The sides of a Platonic solid can be projected into a sphere where they form arcs.

This “Platonic sphere” is the central projection of the sides of the Platonic solid

onto the surface of a unit-radius sphere. The projection is on the Platonic solids’s

circum-sphere, which acts like a curved projection screen [29]. All edges in Platonic

solids have been transformed into geodesic arcs in corresponding platonic spheres.

In platonic spheres all arcs have same length as well as all edges in Platonic solids.

The vertices are nodes in the case of spheres while the vertices are corner in the case

of solids.
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2.2.3 Icosahedron

The vertices of an icosahedron can be defined using the Golden ratio

ϕ =
1 +
√

5

2
(2.9)

The 12 vertices can then be obtained as all even permutations of coordinates as

follows (
0,± 1√

1 + ϕ2
,± ϕ√

1 + ϕ2

)
(2.10)

An icosahedron has 20 faces, 12 vertices, and 30 edges, as shown in Fig. 2.3a.

An icosahedral sphere also has same number of faces, vertices, and edges. However,

faces are regular spherical triangles and edges are arc-edges as shown in Fig. 2.3b.

(a) Icosahedron (b) Icosahedral sphere

Figure 2.3: Icosahedron

2.2.4 Subdivision Surfaces

For equal area subdivisions the algorithm must satisfy the following requirements:
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(1) every subdivision generates triangles for recursive subdivision, and

(2) the greatest spherical dihedral angle cannot be greater than 90◦. This does not

allow triangles to degenerate.

(a) Bisection (b) Trisection (c) Quadrisection

Figure 2.4: Subdivision surfaces

It is possible to use various types of equal area subdivision which preserve area

between faces in a planar triangle. However, a few subdivision methods can be ap-

plied to a spherical triangle. Figure 2.4a shows the bisection subdivision of spherical

triangles. In particular, both planar and spherical faces are shown. In order to keep

the sub-triangles as close as possible to the equilateral one, the longest side is selected

to split. This avoids the generation of elongated triangles.

Three equal area subdivision (trisection) of spherical triangles can also be per-

formed. For a generic spherical triangle, there is a unique point (direction) where

the trisection can be done. The computation of this point/direction requires some

effort. Figure 2.4b shows both planar and spherical faces of a trisection subdivision.

It is clear that as the subdivisions increase the triangles generated become elongated.

This is in contradiction with requirement (2).
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Four equal area subdivision (quadrisection) can be obtained by adding a new

vertex at the midpoint of each edge of an equilateral triangle and dividing each edge

in two. The quadrisection subdivision creates four new triangles in flat faces with

equivalent areas (if the original triangle is equilateral). However, projecting these

new triangles on the sphere does not provide equivalent spherical areas. Figure 2.4c

shows the result of projection on the first level of subdivision. In this figure the

dark triangle is quadrisected in four triangles. The internal spherical triangle has a

larger area than other adjacent three triangles. This difference then increases with

subsequent quadrisections. In addition there is no freedom in choosing the midpoints

along the edges for equivalent areas. For the above reasons quadrisection is excluded

in potential subdivision candidates.

Ultimately, only one method can be used to recursively subdivide a spherical

triangle satisfying requirements (1) and (2): subdivision of spherical triangles in

two equal-area spherical triangles by splitting the longest side.
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2.3 Original Equal Area Subdivision Algorithm

(a) First bisection (b) Second bisection

(c) Third bisection (d) Fourth bisection

Figure 2.5: Original equal area subdivision algorithm

Starting with a Platonic solid (e.g., icosahedron) and subsequently performing

a set of equal area triangle divisions (as previously described), a final set of small
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triangles all with the same areas are obtained. The original algorithm [21] considers

the directions to centers of these triangles as the set of quasi-uniform directions in

space. The number of directions that can be obtained is dependent on the Platonic

solid initially considered. For instance, starting from an icosahedron, a total number

of n = 20 · 2s directions can be obtained, where s is the number of subsequent

divisions.

This original equal area subdivision algorithm creates quasi-uniform distributed

points in space. This procedure is shown in Fig. 2.5. The number of times the

equal area subdivision is performed (s) is subsequently referred to as the ‘level’. The

level 0 corresponds to the initial spherical icosahedron, the level 1 refers to spherical

triangles after the first subdivision, and so on. Improvement of this algorithm is

described in the next section.

2.4 Quasi-Equal Area Subdivision Algorithm

Quasi-equal area subdivision algorithm scheme comprises of two steps :

1. dividing spherical triangles into equal area spherical triangles subsequently

(perform a single equal area trisection, then perform s equal area subdivisions,

as previously described), and

2. reshaping the final obtuse triangles after the final even number of divisions.

Note that reshaping (step 2) is applied one time only after all subsequent divisions,

because reshaping does not preserve the area of triangles.

2.4.1 Step 1: Spherical Triangles Subdivision in Equal-Area Spherical Triangles

This subsequent subdivision consists of one trisection and several bisections. A

icosahedron is first subdivided by the equal area trisection. There are now three tri-

angles for each original triangle as shown in Fig. 2.6a. Note that this trisection makes
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adjacent triangles share common vertices after subdivision. Then, the trisection is

followed by s sequential equal area bisections which are identical to subdivisions of

the original equal area subdivision algorithm.

(a) Initial trisection (b) First bisection

(c) Second bisection (d) Third bisection

Figure 2.6: Step 1: Dividing spherical triangles into equal-area spherical triangles

subsequently
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The number of vertices and faces of generated triangles in each level is given in

Table 2.2.

Table 2.2: Number of vertices and faces of generated triangles in each level

Level # of vertices # of faces

0 12 20

1 32 60

2 62 120

3 122 240

4 242 480

5 482 960

6 962 1,920

7 1,922 3,840

8 3,842 7,680

9 7,682 15,360

10 15,362 30,720

11 30,722 61,440

12 61,442 122,880

13 122,882 245,760

14 245762 491520

15 491522 983040
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2.4.2 Step 2: Final Reshaping of Obtuse Triangles to Acute Triangles

As shown in Fig. 2.7a and 2.7c, obtuse triangles (dark regions) appear after even

bisections. The number of obtuse triangles is half the number of total triangles. Since

a pair of obtuse triangles exist, they can be reshaped to two acute triangles.

(a) Obtuse triangles after 2 bisections

(level 3)

(b) Reshaping after after 2 bisections

(level 3)

(c) Obtuse triangles after 4 bisections

(level 5)

(d) Reshaping after after 4 bisections

(level 5)

Figure 2.7: Step 2: Reshaping obtuse triangles to acute triangles
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Figure 2.8: Triangles sides length histograms (s = 9) with and without reshaping

Figure 2.8 illustrates histograms of the sides’ lengths of the final smallest trian-

gles obtained by splitting the icosahedron by s = 9 subdivisions. This figure clearly

shows that 1) the final resulting triangle sides are bounded, meaning that no degen-

erated triangle is obtained by recursive application of the splitting algorithm and 2)

a smaller bound is obtained by final reshaping (because obtuse triangles disappear

after reshaping).
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Figure 2.9: Histogram of the ratio of spherical triangle area to mean spherical triangle

area and vertex angles in a level 5

Since the final reshaping step changes the area of each reshaped triangle, evalua-

tion for the area preservation is performed with the method by [26]. As shown in the

left histogram of Fig. 2.9, all areas of the spherical triangles are within ±5% of the

average area. The right histogram clearly shows that the spherical triangle vertex

angles are bounded in a small range. Assuming that area with in ±2.5% of the mean

area is preserved area, there are 75% of preserved area of spherical triangles in level

5 as illustrated in Fig. 2.10. At higher levels more spherical triangles can be area

preserved.
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Figure 2.10: Percent of preserved area spherical triangles (within 2.5% of the average

area) in each level

Compared to the triangles by method of Ref. 25, this algorithm has the advantage

of having triangles of the quasi-equal area. In addition, it doesn’t require equalization

process in method of Ref. 26.

2.4.3 Construction of Quasi-Uniform Points

[21] suggested taking centers of the triangles as the quasi-uniform points since

some of generated triangles are obtuse triangles while [25] and [26] considered ver-

tices of the triangular mesh. Since quasi-equal area subdivision algorithm with even

number of bisections provides all acute triangles, vertices of triangles can be consid-
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ered to construct quasi-uniform points. Extensive numerical tests have shown that

the selection of vertices is a better choice.

Visual results of the original algorithm [21], Fig. 2.11a, and the proposed im-

provements, Figs. 2.11b and 2.11c, are provided.

(a) (b) (c)

Figure 2.11: Visual results of various algorithms (level 5). (a) Original equal area

subdivision algorithm with centers of the triangles. (b) Quasi-equal area subdivision

algorithm with centers of the triangles. (c) Quasi-equal area subdivision algorithm

with vertices.

2.4.4 Smale’s Validation

The problem of uniform distribution of points on the sphere emerged from com-

plexity theory in a paper by Smale and Shub [30]. Smale himself provided a math-

ematical tool to quantify the uniform distribution of points on a sphere. For any

given distribution of points (unit-vectors), x̂1, · · · , x̂N ∈ S, it is possible to evaluate
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the function V

V =
∑

1≤i<j≤N

log
1

‖x̂i − x̂j‖
(2.11)

Let Vmin be the minimum possible value of V . The problem asks for an algorithm

that, for an assigned value of N , finds a sequence of points x̂1, · · · , x̂N on the unit

sphere such that

0 < V − Vmin ≤ c logN (2.12)

where c is a positive constant that depends only on the algorithm provided. Rakhmanov,

Saff, and Zhou [31] provide numerical evidence that their generalized spiral points

algorithm supports Eq. (2.12) for N ≤ 12, 000, with c = 114.

Smale provided [19] the following approximated (truncated) formula to evaluate

Vmin

Ṽmin = −1

4
log

(
4

e

)
N2 − 1

4
N log(N) +O(N) (2.13)

Equation (2.11) through Eq. (2.13) will be used to compare and quantify the uni-

formity of points distributions as generated by different algorithms.

The approach to measure uniformity of a set directions generated by an algorithm

is to evaluate the difference between the value of V for the points obtained, as

provided by Eq. (2.11), and the optimal value of Ṽmin, as evaluated by Eq. (2.13).

This approach is suggested by Smale [19]. The comparison results are shown in Fig.

2.12. Note that the algorithm using vertices with even number of bisections provides

best performance since even number of bisections make generated triangles almost

equilateral triangles as illustrated in Fig. 2.7.
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Figure 2.12: Comparison of VN

2.5 Applications to Geographical Data

Various kinds of geographical grid data sets are used in many fields such as,

scientific, economic, politic, etc. For example, Gross National Product (GNP) and

a worldwide population distribution map are used to estimate market demand for

satellite [32]. In the case of a global mission, the fitness function for a constellations

design is computed in globally distributed points [33] and [12]. Most of grid data sets

are provided with a fixed step in latitude and longitude. Therefore, conventionally

computed points [25] are distributed with a fixed step in latitude and longitude as

shown in Fig. 2.13a. Since this is certainly not a uniform distribution of points on

the Earth, mainly due to the increase of point density at high latitude regions as
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illustrated in Fig. 2.13b, the need to convert these data into an “equivalent” distri-

bution of points (with different weights) is needed. This will dramatically decrease

to small amount data sets with appropriate values. Consequently, computational

burden is then reduced using “equivalent” uniformly distributed points.

(a) (b)

Figure 2.13: Conventional scheme to distribute points (10 degree resolution, 684

points)

The following subsections show how to determine which data points are observed.

[25] suggested overlapped pentagonal and hexagonal bins. In this research, triangu-

lar and aperture cones methods have been used since suggested algorithms provide

equivalent areas.
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(a) (b)

Figure 2.14: Triangular and aperture cones for binning of data

2.5.1 Observation Check for Geographical Data

2.5.1.1 Triangular Method

One method to convert this geographical data set into equivalent quasi-uniform

data set is using triangles. Many equal area triangles are provided by equal area

spherical subdivision algorithms. Therefore, checking if geographical data points

are inside or outside a triangle can determine if points are observed or not. Figure

3.12 shows the geometry of observation and non-observation cases. In the case of

observation (left), the sum of the areas of the three sub-triangles is equal to the area

of the original triangle while the non-observation case (right) is experienced if the

total area is greater than the area of the original triangle.
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Figure 2.15: Geometry of observation and non-observation cases

In order to check observation condition, all uniformly distributed points are trans-

formed to topocentric-horizon coordinate system with mid-point of triangle as origin,

and then projected to surface as all points of quadrilateral are transformed. Equation

to check whether the point Pv is observed is given by Ref. [34].

A(PV1V2) + A(PV2V3) + A(PV3V1) = A(V1V2V3) (2.14)

2.5.1.2 Aperture Cones Method

Triangular method can be applied to only algorithms using center of triangles.

Therefore, a different method is required in order to use algorithm with vertices

which provide best performance. This is aperture cones method which is explained

in previous section, and it can be used for all algorithms since distributed points are

required for this method. The following two subsections which show two examples

for geographical data application demonstrate observation check methods together.

2.5.2 Example 1: Building a Uniform Sampled Data with Regional Grid Data

The first example is a case with regional grid data. The Nitrogen Fertilizer

Application data set of the Global Fertilizer and Manure, Version 1 Data Collection
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represents the amount of nitrogen fertilizer nutrients applied to croplands. The data

were compiled by Potter et al. [35] and are distributed by the Columbia University

Center for International Earth Science Information Network (CIESIN). Data are

provided at 0.5 deg resolution in latitude by longitude.

(a) Nitrogen fertilizer application (0.5 de-

grees resolution): 12,252 points

(b) Uniformly distributed points: 3,840 user

points

(c) Observed data for specific points (Trian-

gular method)

(d) Nitrogen fertilizer application (Uni-

formly distributed) : 186 points

Figure 2.16: Regional weight point description (varying values)

In this example quasi-area subdivision algorithm with centers of triangles has

been applied and triangular method has been used for observation check as shown

31



in Fig. 2.16c. Note that each triangle area is same, but it looks larger near the pole.

Compare to Fig.2.16a, final data set is expressed in very small number of points as

shown in Fig.2.16d.

2.5.3 Example 2: Building a Uniform Sampled Data with Global Grid Data

The second example is case with global grid data. Gridded Population of the

World, Version 3 (GPWv3), Future Estimates consists of estimates of human pop-

ulation for the year 2015 by 0.25 degree grid cells. A proportional allocation grid-

ding algorithm, utilizing more than 300,000 national and sub-national administrative

units, is used to assign population values to grid cells. The population density grids

are derived by dividing the population count grids by the land area grid and represent

persons per square kilometer [36].
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(a) Population density (0.25 degrees resolu-

tion): 257,093 points

(b) Uniformly distributed points: 1,922 user

points

(c) Observed data for specific points (Aper-

ture cones method)

(d) Population density (Uniformly dis-

tributed) : 536 points

Figure 2.17: Global weight point description (varying values)

Quasi-area subdivision algorithm with has been used in this example. Therefore

aperture cones method has been used for observation check as illustrated in Fig.

2.17c. Finally 257, 093 geographical points in Fig.2.17a are reduced to 536 points as

illustrated in Fig.2.17d.

2.6 Conclusions

This paper provides quasi-equal area subdivision algorithm based on equal area

spherical subdivision to obtain uniform distribution of points on a sphere. The al-

gorithm adopts the theory of the original equal area subdivision algorithm, which is

to perform subsequent bisections of spherical triangles. By subsequent subdivisions
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the whole sphere which is made of N equal area spherical triangles can be obtained.

As the number of divisions increases, the center of these spherical N triangles well

approximates uniform distribution of N points on a 2-dimensional sphere. The main

feature of the proposed algorithm is to share common vertices between adjacent

triangles. This is accomplished by initial division allows generated triangles to be

deployed symmetrically. Therefore, reshaping can be applied to triangles, and ver-

tices can be used for uniform points. It has been found that the proposed quasi-equal

area subdivision algorithm provides good performance with validation.

After generating uniformly distributed points, two methods for observation check

have been proposed. These observation check methods have been used successfully

in two examples which demonstrate geographical data applications. These examples

also demonstrate that suggested algorithms decrease huge numbers of geographical

data sets to smaller amounts in order to reduce computational burden.
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3. LATTICE FLOWER CONSTELLATION OPTIMIZATION

3.1 Constellation Design Considerations

3.1.1 Genetic Algorithms

Genetic Algorithms, which were invented by John Holland, his colleagues, and

students at the University of Michigan in the mid-1970s, are adaptive heuristic search

algorithms that mimic the natural selection/mutation process[37]. These are actu-

ally search processes and useful method for finding optimum solutions[38]. Although

there is no guarantee that Genetic Algorithms will provide optimum solutions (and

this is true for most optimization methods), Genetic Algorithms are most appropri-

ated in highly nonlinear multi-parameter problems[39]. Since constellation design is

a highly nonlinear problem, Genetic Algorithms have been chosen to discover the

optimum parameters for constellation.

The outline of Genetic Algorithms is as follows:

1. Start: Generate random population of N chromosomes

2. Fitness: Evaluate the fitness function for each chromosome x in the population

3. Selection: Select the parents according to their fitness to generate the new

population

4. Crossover: Combine genes of parents to form the offspring. If no crossover was

performed, offspring is an exact copy of parents

5. Mutation: With a mutation probability mutate new offspring at each locus

6. Accepting: Place new offspring in the new population
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7. Loop: Go to Step 2 and repeat until the maximum iterations or minimum error

criteria is not attained

For the simulation, the population size is chosen to be 150 and the maximum number

of generations as 100. The crossover rate and mutation rate are selected to be 0.6

and 0.2, respectively.

Figure 3.1: Flowchart for a GA implementation
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3.1.2 Uniform Distribution of Points on a Sphere

In the case of a global mission, the fitness function for a constellations design is

computed in globally distributed points [33, 12]. Most of grid data sets are provided

with a fixed step in latitude and longitude. Therefore, conventionally computed

points are distributed with a fixed step in latitude and longitude [25]. Since this

is certainly not a uniform distribution of points on the Earth, mainly due to the

increase of point density at high latitude regions as illustrated in Fig. 3.2a, uniform

distribution of points on a sphere is required. This will dramatically decrease to

small amount data sets and computational burden is then reduced. The creation of

uniform distribution of points is generated by modification of the method presented

in Ref. [40]. The algorithm start by applying cuts with an icosahedron (20 identical

equilateral triangular faces) and performing 1 trisection and then 5 sequential bisec-

tions in identical spherical triangles, 20 · 3 · 24 = 960 triangles with quasi-identical

spherical areas are obtained whose vertices approximate 482 uniformly distributed

points on a sphere. Before performing trisection, the initial icosahedron is rotated

around specific axis, [1, 1, 0]T by 30◦ in order to avoid final distributed points

having latitudinal and longitudinal symmetry.
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(a) Gridded distributed points (10 degree

resolution, 684 points)

(b) Uniformly distributed points (482

points)

Figure 3.2: Distributed points on a sphere

3.1.3 Fitness Function with Weight

As constellation design using Genetic Algorithms, defining a fitness function to

drive the optimization process is the key issue. Therefore, the fitness function should

be defined In the mathematical expression of the fitness function the parameters to

be optimized are calculated in a set of Nt times Nx user grid points distributed on the

Earth surface. This formula allows us to control the fitness function by giving more

weight to interested user grid points. In this research, 3 different types of weight are

used for interested regions. Interested areas and corresponding weight are as follows:

1. global : locationally fixed weight,

2. technographic : locationally fixed value weight in specific area, and

3. demographical : locationally varying weight (global population density), and

4. economic : locationally varying weight (gross domestic product) in land area.
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(a) (b)

Figure 3.3: Global weight point description (fixed values) : 1,922 user points

(a) (b)

Figure 3.4: Technographic weight point description (fixed values): 531 user points

Gridded Population of the World, Version 3 (GPWv3) consists of estimates of

human population for the years 2000 by 2.5 arc-minute grid cells and associated

data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing

more than 300,000 national and sub-national administrative units, is used to assign

population values to grid cells. The population density grids are derived by dividing

the population count grids by the land area grid and represent persons per square

kilometer. [41]
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(a) Population density (2.5 arc-minutes resolution): 29,652,480 user points

(b) Population density (Uniformly distributed) : 1,983 user points

Figure 3.5: Demographic weight point description (varying values)

Gridded country-level GDP of the World, based on the SRES B2 Scenario, con-

sists of estimates of global domestic product for the years 2025 by 0.25 degree grid

cells. Gross Domestic Product (GDP) per unit area in millions of US dollars is

derived from the IPCC Emission Scenario data. [42]
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(a) Gross domestic product density (0.25 degree resolution)

(b) Gross domestic product density (Uniformly distributed) : 1,177 user points

Figure 3.6: Economic weight point description (varying values)

3.1.4 Design Parameters Ranges for Low Earth Orbits

In order to run the optimization process, the design parameters space should be

first defined. Acceptable orbit radius for low earth orbit should be bounded by the

maximum atmosphere altitude and the inner Van Allen radiation belt. Considering
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lower boundary of the inner Van Allen Radiation belt, the maximum altitude is set

to hmax = 1, 500 km [43]. The minimum altitude is set to hmin = 300 km because that

would be impractical due to the larger atmospheric drag[44]. Using these two altitude

constraints the maximum and minimum periods are Tmin = 2π

√
(R⊕ + hmin)3

µ
and

Tmax = 2π

√
(R⊕ + hmax)3

µ
, where R⊕ is the Earth’s radius.

3.1.5 Minimum Distance Constraint for Collision Avoidance

To avoid the design of constellations with satellites colliding the results provided

by Ref. [45] is adopted. In that analytical study, the closest approach between the

two satellites (ρmin) in two circular orbits with the same radius and inclination, is

analytically expressed by the following equation

ρmin = 2

∣∣∣∣∣
√

1 + cos2 i+ sin2 i cos ∆Ω

2
sin

(
∆F

2

)∣∣∣∣∣ (3.1)

where

∆F = ∆M − 2 tan−1

[
− cos i tan

(
∆Ω

2

)]
and where ∆M and ∆Ω are the differences in mean anomaly and right ascension of

ascending node, respectively. Note that ρmin must be scaled by the orbit radius to

find the actual value of the minimum approach distance. Due to the regular pattern

(lattice) of the LFC, it is not necessary to evaluate the minimum distance using all

pairs of satellites. It is sufficient to evaluate the minimum distance between the first

satellite [Ω11,M11, ] with all the other satellites staying on different orbital planes.

This greatly simplifies the effort in the optimization to avoid constellations affected

by satellite conjunctions (sometime common for symmetric distribution). Constraint

that no two satellites are ever closer than half the distance between two consecutive
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satellites in the same orbit has been used. For the specific case of Nso = 1 (just one

satellite per orbit), the constraint adopted is that the minimum distance between

any pair of satellites is greater than ten percent of optimal distance of constellation.

Ns satellites are equally spaced if

S =
4π

Ns

= 2π(1− cos θ) (3.2)

Therefore, the optimal distance of constellation is obtained by

ρopt = 2R sin θ (3.3)

where R is orbit radius and θ is the Earth central angle.
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3.2 2-D Lattice Flower Constellations for Radio Occultation Missions

3.2.1 Introduction

Radio Occultation (RO) is a recently proposed remote sensing technique to mea-

sure, in real time, physical parameters of the atmosphere, such as density and water

vapor. The technique requires at least two satellites, one transmitting an electromag-

netic signal and the other receiving it. The signal arrives to the receiver refracted

as it travels through the atmosphere, and the refraction magnitude is a function

of the density and water vapor. Detailed information on radio occultation can be

found in Ref. [46]. Since the GPS satellites already provide this electromagnetic

(radio) signal, techniques known as GPSRO are proposed for LEO satellites [47, 48].

For GPSRO missions the signal bending (due to the atmosphere refraction) is mea-

sured by detecting Doppler shift. In particular, it is possible to retrieve information

on temperature and pressure using an Abel transform [49] for atmosphere altitudes

below the ionosphere.

The name, radio occultation, comes from the chance for two satellites to see

each other just before they are occulted by the Earth during the relative orbital

motion. In that short time, when they can see each other through the atmosphere,

the electromagnetic signal is sent and the radio occultation measurement can be

performed. In general, for two satellites having different orbital periods, the RO

measurement time happens only once per orbit. In this paper, we propose three

different satellite constellations where a subset of satellite pairs sees each other for

almost all the orbital period. In particular, these constellations, which are using

circular orbits only, are analyzed and compared in term of atmosphere coverage by
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considering no atmospheric refraction. When considering the actual atmospheric

refraction, the radius of the optimal orbit is slightly changed but the atmospheric

coverage remains substantially identical.

When a radio signal from a transmitter passes through the atmosphere its phase is

perturbed in a way related to the atmospheric refractivity along the electromagnetic

signal path. In general, the refraction angle is obtained by phase measurements from

a receiver. Then, atmospheric quantities such as density, temperature, pressure, and

moisture can be derived from it.

Radio Occultation missions can be classified in the following three categories:

1. two (or more) satellites on the same orbit (forming “string-of-pearls”),

2. geostationary satellites with Low Earth Orbit (LEO) satellites, and

3. Global Navigation Satellite System (GNSS) with LEO satellites [50].

The first RO experiment was performed during the occultation of the Mariner

V spacecraft by Venus on 19 October 1967 after theoretical studies [51, 52]. RO

investigation using geostationary satellite with LEO satellite was made by radio link

between two satellites in 1974 [53]. The first was the Applications Technology Satel-

lite (ATS-6) and the second was Geodetic Earth Orbiting Satellite (GEOS-3). Be-

cause these approaches provide limited data, many satellites are required for Earth’s

atmosphere global coverage, leading to unaffordable costs. This situation changed

when Global Positioning System (GPS) signals were proposed of being used for RO.

The RO technique has been applied to GPS signals as observed by LEO satellites in

order to monitor the Earth’s atmosphere with acceptable costs. The first experiment

of GNSS-LEO was the GPS/MET (METeorology) experiment using the Microlab-1

satellite in 1995 [54, 47]. Then, several other RO experiments have been conducted
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using GPS signals, notably CHAMP (CHAllenging Minisatellite Payload), GRACE

(Gravity Recovery And Climate Experiment), and the FORMOSAT-3/COSMIC

(Constellation Observing System for Meteorology, Ionosphere, and Climate) con-

stellation [55, 56]. Also, several RO missions using GNSS-LEO technique have been

designed for the Russian GLONASS and the European Galileo constellations. With

the advent of more efficient technologies, the use of cost-effective small satellites

allows LEO-to-LEO links to provide global coverage with acceptable mission costs.

Optimal constellation design is a difficult problem because of the high dimension-

ality of the problem as each orbit depends of six parameters. However, it is possi-

ble to design different configurations of LEO satellites (LEO constellations) able to

obtain high RO active times and global coverage. The optimal design of such con-

stellations can be done using existing, well-proven, satellite constellation frameworks

(e.g., Streets-of-coverage [6, 7] and Walker’s [8, 9]) as well as the recently proposed

2-D Lattice Flower Constellations (LFC) [11]. The goal is to obtain a reasonable

reduced problem dimensionality without cutting out potential useful solutions. This

research study shows how to derive these parameters in order to maximize the at-

mosphere coverage. Reasonable initial radius ranges can be obtained by limiting the

atmospheric drag and by avoiding the inner Van Allen belt.

This section is organized as follows. The first part briefly describes the radio

occultation mission. Then, we then discuss design considerations and parameters for

2-D LFC and optimize the design of the constellations. Finally, the performance of

three selected constellations for radio occultation mission are presented.
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3.2.2 Radio Occultation Mission

3.2.2.1 Mission Needs

The fitness function defining the optimal RO constellation for global coverage of

the Earth’s atmosphere requires to maximize the occurrences that pairs of satellites

can see each other through the atmosphere (active or observation time). Next section

defines the basic geometry of two satellites during the RO active time.

3.2.2.2 Geometry of Radio Occultation

The simplest optimal RO constellation is made of satellites on the same circular

orbit of radius R. Figure 3.7 shows how the maximum central angle (αmax) between

two satellites for RO mission depends on the minimum atmosphere radius (Rmin)

while minimum central angle (αmin) depends on maximum atmosphere radius (Rmax).

In this study we consider the atmosphere altitude ranging from 20 km to 200 km.

Two satellites on the same circular orbit see each other through atmosphere if

cosαmax ≤
Ri ·Rj

R2
≤ cosαmin (3.4)

where αmax = 2 cos−1

(
Rmin

R

)
, αmin = 2 cos−1

(
Rmax

R

)
, and where Ri and Rj are

the position vectors of the i-th and the j-th satellite, respectively.

3.2.3 Atmosphere Coverage

3.2.3.1 Linear Swath Geometry of Two Satellites at a Specific Time

Linear swath between two satellites at a given instant time is as shown in Fig.

3.8. The satellites are located at orbital positions Si and Sj, while the Earth’s center

is indicated by the point O. The distance between the two satellites is L and the

angles α and α∗ are the central angles ∠SiOSj and ∠S∗i OS∗j , respectively.
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Figure 3.7: Two satellite geometry during radio occultation active time

Figure 3.8: Linear swath geometry for two satellites at a given time
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To analyze the coverage, let us assume the radio signal is a line segment passing

through the atmosphere with no refraction (which is practically very small). The

end points of this segment are indicated by S∗i and S∗j , respectively. Midpoint of the

segment is point M . The length l of the linear swath is simply given by

l = 2Rmax sin

(
α∗

2

)
= 2Rmax

√
1− cos2

(
α∗

2

)
(3.5)

where Rmax is maximum atmosphere height. Considering the two triangles, 4OMS∗j

and 4OMSi, we can write

OM = R cos
(α

2

)
= Rmax cos

(
α∗

2

)
(3.6)

Then, using Eq. (3.6), we obtain

l = 2Rmax

√
1−

[
R

Rmax

cos
(α

2

)]2

= 2

√
R2

max −R2
cosα + 1

2

(3.7)

where R is orbital radius.

3.2.3.2 Planar Swath Geometry of Two Satellites During a Time Interval

Fig. 3.9 shows planar swath geometry for two satellites during a time step (tk+1−

tk). Considering two satellites in time tk and tk+1, we have 4 position vectors of

satellites [Si(tk), Sj(tk), Sj(tk+1), Si(tk+1)].
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Figure 3.9: Planar swath geometry for two satellites during a time step

These position vectors indicate 4 vertices of planar swath that can be obtained

as follows.

S∗i (tk) = Si(tk) +
Sj(tk)− Si(tk)

|Sj(tk)− Si(tk)|
L− l

2

S∗j (tk) = Sj(tk) +
Si(tk)− Sj(tk)

|Si(tk)− Sj(tk)|
L− l

2

S∗j (tk+1) = Sj(tk+1) +
Si(tk+1)− Sj(tk+1)

|Si(tk+1)− Sj(tk+1)|
L′ − l′

2

S∗i (tk+1) = Si(tk+1) +
Sj(tk+1)− Si(tk+1)

|Sj(tk+1)− Si(tk+1)|
L′ − l′

2

(3.8)

These 4 points,
[
S∗i (tk), S∗j (tk), S∗j (tk+1), S∗i (tk+1)

]
, identify a quadrilateral pla-
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nar swath. The time step is small enough to assume that satellites move in straight

line. Since this quadrilateral is skew, these points are transformed to topocentric-

horizontal coordinate system with projection to surface.

3.2.3.3 First Coverage Estimation: Sum of Areas of Simple and Complex

Quadrilaterals

There are two quadrilateral cases as shown in Fig. 3.10. The first one is simple

quadrilateral while the other is a complex (self-intersecting) quadrilateral.

Figure 3.10: Simple and complex quadrilaterals

Using position vectors which are given by Eq. (3.8) we can get vectors such as

U1, U2, V1 and V2. Then, vectors h1 and h2 can be obtained by cross products as
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shown in Fig. 3.10. The condition associated with a simple quadrilateral is

h1 · h2 > 0 (3.9)

Because all quadrilaterals consist of two triangles regardless of shape, area of

simple or complex quadrilaterals can always be obtained by summing the areas of

two triangles. Area for simple case is obtained by

Asimple =
|h1|

2
+
|h2|

2
(3.10)

In complex case, there are some additional processes because we find intersecting

point (Pi) and then define related vectors as follows.

U ′2 =Pi − S∗i (tk)

V ′2 =S∗j (tk)− Pi

h′1 =U1 ×U ′2

h′2 =V1 × V ′2

(3.11)

Similarly, area for complex case is given by

Acomplex =
|h′1|

2
+
|h′2|

2
(3.12)

The total coverage is obtained by summing all planar swaths by all satellites pairs

combinations. For instance, by summing all planar swaths by all satellite combina-

tions during one quart of the period gives a quarter period coverage. However, net

coverage cannot be obtained this way because of the existing overlapping areas. In

order to estimate the net coverage, methods to count overlapping area are required.
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3.2.3.4 Second Coverage Estimation: Using Uniform Distributed Points on a

Sphere

The creation of uniform distribution of points on a sphere can be used to estimate

net coverage by checking the number of overlapping times. Among all the existing

methods to generate uniformly distributed points on a sphere the method presented

in Ref. [21] is adopted here. Starting with an icosahedron (20 identical equilateral

triangular faces) and performing 8 sequential divisions in identical spherical trian-

gles, 20 · 28 = 5, 120 triangles with same spherical areas are obtained whose centers

approximate 5,120 uniformly distributed points on a sphere, as shown in Fig. 3.11.

Figure 3.11: Icosahedron split by 8 divisions

Because every planar swath is quadrilateral, it can be divided into two triangles.
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Therefore, checking if points are inside or outside triangle can determine if points are

observed or not. Figure 3.12 shows the geometry of observation and non-observation

cases. In case of observation (left), the sum of the areas of the three sub-triangles

is equal to the area of the original triangle while the non-observation case (right) is

experienced if the total area is greater than the area of the original triangle.

Figure 3.12: Geometry of observation and non-observation cases

In order to check observation condition, all uniformly distributed points are trans-

formed to topocentric-horizon coordinate system with mid-point of triangle as origin,

and then projected to surface as all points of quadrilateral are transformed. Equation

to check whether the point Pv is observed is given by

A(PvS
∗
i (tk)S∗j (tk)) + A(PvS

∗
j (tk)S∗i (tk+1))+

+A(PvS
∗
i (tk+1)S∗i (tk)) = A(S∗i (tk)S∗j (tk)S∗i (tk+1))

(3.13)
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3.2.4 LFC Optimization

3.2.4.1 Fitness Function

The fitness function utilized to drive the optimization process is designed to

maximize the percentage of active time with respect to a reference time. Fitness

function has been implemented to count the times that pairs of satellites see each

other through the atmosphere. This is simply determined by the geometric conditions

expressed by Eq. (3.4). For computation of the percentage of active time, geometric

conditions for all the i-j satellite combinations should be considered. Thus, the

optimality is defined by the minimization of the following function

L =

(
K∆t

T

)−1

(3.14)

where K is the number of times satisfying geometric conditions, ∆t is the time step,

and T is the orbital period.

3.2.4.2 Ranges of Design Parameters

The ranges of design parameters are given in Table 3.10.

Table 3.1: Ranges of design parameters for optimization with Ns=12

Parameters Ranges

[No, Nso] [1,12] [2,6] [3,4] [4,3] [6,2] [12,1]

Nc [1, No], integer

T [1.51 hr, 1.93 hr]

i [0, 180 deg]
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3.2.4.3 Re-Oriented Constellations

Any constellation can be re-oriented just by using rigid rotation matrix with free

selection of axis and angle of rotation in order to provide desired performance in

specific region. In Fig. 3.13, n̂k, êk and ĥk are node, eccentricity, and angular

momentum vectors of k-th orbit in the constellation, respectively.

Figure 3.13: Rigid rotation matrix with free selection of axis and angle of rotation

Node vector and eccentricity vector of each orbit in the constellation can be

expressed in terms of orbit elements as follows.

ĥk = f1(ik,Ωk)

êk = f2(ik,Ωk, ωk)

(3.15)

where ik, Ωk, ωk are the inclination, the right ascension of the ascending node and
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the argument of perigee of k-th orbit, respectively. Then, considering rotating-plane

lattice flower constellations with circular orbits and same orbit inclination, we obtain

ĥk = f1(i,Ωk)

êk = f2(i,Ωk)

(3.16)

Rigid rotation matrix is given by

R(â, φ) = I3×3 cosφ+ (1− cosφ)ââT + [â×] sinφ (3.17)

where â and φ are axis and angle of rotation, respectively [57].

Using the rigid rotation matrix, angular momentum and eccentricity vectors can

be obtained as follows

ĥ′k = R(â, φ)ĥk = g1(i′k,Ω
′
k)

ê′k = R(â, φ)êk = g2(i′k,Ω
′
k)

(3.18)

3.2.5 Results: Optimal Radio Occultation Constellations

3.2.5.1 String-Of-Pearls Polar Constellatio

The first constellation analyzed for radio occultation mission is a single-orbit, con-

ventional, string-of-pearls constellation whose design parameters are given in Table

3.11. There is no single unique optimal solution because inclination (i) is indepen-

dent of the active time when there is one orbital plane in constellation. In order to

provide global coverage the orbit inclination is set to 90◦ (polar orbit).
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Table 3.2: LFC parameters of string-of-pearls polar constellation

Parameters Optimal values

[No, Nso] [1,12]

Nc No

T 1.51 (hr)

i 90 (deg)

Fig. 3.14 illustrates the satellite trajectories of the string-of-pearls polar constel-

lation as seen from the Earth-Centered Inertial (ECI) frame. All satellites of this

constellation have same orbital plane and all two consecutive satellites see each other,

as shown in the figure. This polar orbit constellation provides global coverage due

to the rotation of the Earth. However, long time is required to complete the global

coverage and the coverage density is strongly latitudinal dependent with maximum

observation at poles.

58



Figure 3.14: String-of-pearls polar constellation

3.2.5.2 Plane Lattice Flower Constellations

Although all satellites of a constellation don’t have same orbital plane, it is pos-

sible to design constellations whose satellites lie on the same plane using different

orbital planes. Compared with conventional string-of-pearls polar constellation, these

constellations have advantage of relatively short time to cover global area although

they can not provide global coverage. The disadvantage is that the deployment of

this constellation may require more than a single launch. These constellations are

called plane lattice flower constellations. The LFC parameters of designed plane lat-

tice flower constellations are provided in Table 3.3. First one is called rotating-plane

lattice flower constellation because axis of plane is coning about a fixed axis. The

other is called fixed-plane lattice flower constellation because the plane where the
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satellites do not change its orientation.

Table 3.3: LFC parameters of plane lattice flower constellations

Parameters
Rotating-plane Fixed-plane

LFC LFC

[No, Nso] [6,2] [12,1]

Nc 1 0

T 1.51 (hr) 1.51 (hr)

i 21.78 (deg) 76.94 (deg)

Figure 3.15: Rotating-plane lattice flower constellation
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Figure 3.16: Fixed-plane lattice flower constellation

Figs. 3.29a - 3.29b show the satellite trajectories of plane lattice flower constel-

lations as seen from the ECI frame.

When all satellites of a constellation lie in the same plane, then the rank of a

matrix made of the position vectors must be 2. This position matrix is given by Eq.

(3.19).

M = [r̂1 r̂2 · · · r̂n] (3.19)

where n is the total number of satellites. Since the rank of a matrix is equal to

the number of non-zero singular values, the singular values of a quadratic form of

the matrix have been computed. Minimum singular values of the position matrix

for various inclinations, [No, Nso, Nc] = [6, 2, 1] and T = 1 : 51(hr) are shown in Fig.

3.17 for the rotating-plane LFC. Note that, using designed conditions, rotating-plane
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LFC can be used for low inclinations. In case of fixed-plane LFC, minimum singular

values for various inclinations are always zero as we expected.

Figure 3.17 shows that the rotating-plane LFC is really planar for low inclinations.

Of course, for fixed-plane LFC, the rank of the position matrix is always 2, as we

expected.

Figure 3.17: Minimum singular values for various inclinations, [No, Nso] = [6, 2], Nc =

1 and T = 1.51(hr) in rotating-plane lattice flower constellation

3.2.6 Two Coverage Performance Evaluations

3.2.6.1 First Coverage Estimation Result: Sum of Areas of Simple and Complex

Quadrilaterals

In this simulation, we set a time step to
T

100
. Single planar swath by two satellite

of rotating-plane lattice flower constellation with single time step is displayed in Fig.
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3.18. Quarter period coverage can be estimated by summing all planar swaths by all

satellite combinations during a quarter period. However, the estimated coverage is

not net coverage because there are overlapping areas as shown in Fig. 3.19.

Figure 3.18: Single planar swath by two satellites with single time step

3.2.6.2 Second Coverage Estimation Result: Using Uniform Distributed Points on

a Sphere

In order to verify method using uniform distribution of point on a sphere, total

coverage are estimated using various number of uniform distributed points on a

sphere. Single period coverage percent and errors obtained with different number of

points on string-of-pearls polar constellation are in Table 3.4. Because single planar

swath of string-of-pearls polar constellation is narrower than other constellations, two

coverage estimation methods have most significant difference in this constellation.

Therefore, two coverage estimation methods are applied to string-of-pearls polar
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Figure 3.19: A quarter period coverage of rotating-plane lattice flower constellation

constellation. Errors are calculated by comparing with result which is obtained by

sum of quadrilaterals (8.64%).

Table 3.4: Comparison of total coverage obtained with different number of points

Number of points Total coverage (%) Error (%)

2,560 15.24 76.4

5,120 11.56 33.8

10,240 9.65 11.7

20,480 8.96 3.7

81,920 8.86 2.6

163,840 8.67 0.3

1,310,720 8.65 0.1
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From these results, we can conclude that method using uniform distribution of

point on a sphere needs appropriate number of points to give accurate results. Simu-

lation with 1, 310, 712 points was performed in order to estimate net coverage. Single

period simulation results of all designed constellations are shown in Figs. 3.20 - 3.22.

Results by uniform distribution of point on a sphere are shown in Earth-Centered

Earth-Fixed (ECEF) frame and have good agreement with 2-D view results of first

coverage estimation method.

3.2.6.3 Comparison of Coverage Performances

As mentioned above, net coverage can be obtained by method with uniform

distribution of points in sphere. Comparison of coverage performances by designed

constellations are provided in Table 3.5. Plane lattice flower constellations provides

global coverage with relatively short time while string-of-pearls polar constellation

require long time to cover global area. As shown in Fig. 3.21 and Fig. 3.22, rotating-

plane lattice flower constellation provide good performance in a low latitude region

while fixed-plane lattice flower constellation is suitable in a high latitude region.

Table 3.5: Comparison of coverage performances (net coverage, %)

Time
String-of- Rotating-plane Fixed-plane

pearls polar LFC LFC

1 period 8.63 36.20 77.27

0.5 day 68.95 36.90 87.87

1 day 90.32 36.92 88.09
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Figure 3.20: Single period coverage of string-of-pearls polar constellation

Figure 3.21: Single period coverage of rotating-plane lattice flower constellation

Figure 3.22: Single period coverage of fixed-plane lattice flower constellation
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3.2.6.4 Re-Oriented Rotating-Plane Lattice Flower Constellations

Using the relationship Eq. (3.18), we obtain orbit elements of the re-oriented

constellation. Note that, re-oriented constellation has different inclination while

original plane lattice flower constellation has identical inclination.

(a) (b)

Figure 3.23: Re-oriented rotating-plane lattice flower constellation (a) The satellite
trajectories (b) Single period coverage in 2-D view

(a) (b)

Figure 3.24: Re-oriented fixed-plane lattice flower constellation (a) The satellite
trajectories (b) Single period coverage in 2-D view

Figs. 3.23 and 3.24 show the satellite trajectories and single period coverage of

the re-oriented plane lattice flower constellations. Note that the re-oriented plane
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lattice flower constellations provide service in specific regions. The re-oriented fixed-

plane flower constellation provides good performance in mid latitudes areas including

highly populated regions such as the United States, Europe and Northeast Asia.

3.2.7 Conclusions

In this work, we analyzed and designed constellations for radio occultation mis-

sion of the Earth atmosphere. The Genetic Algorithms technique with 2-D Lattice

Flower Constellation theory has been used to find the best constellation for the mis-

sion. Three different satellite constellations are found by maximizing active time

with minimum distance constraint. Optimal solutions have not only conventional

string-of-pearls polar constellation but also novel plane lattice flower constellation

which have good coverage characteristics. In order to evaluate coverage performance,

geometries of linear and planar swaths have been investigated and total coverage has

been estimated. To count overlapping areas, uniform distribution of points on a

sphere is introduced and net coverage of three different satellite constellations have

been estimated by checking observation conditions of all uniformly distributed points

on the sphere. It has been found that the proposed plane lattice flower constellations

provide good performance for time to cover global area although they can’t provide

coverage for entire Earth. The rotating-plane lattice flower constellation and the

fixed-plane lattice flower constellation have good coverage characteristics in low and

high latitude region, respectively. In addition, the re-oriented plane lattice flower

constellations provide good coverage performance in specific regions.
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3.3 Optimization of Lattice Flower Constellations for Intensity Correlation

Interferometric Missions

3.3.1 Introduction

Several space missions have used optical interferometry for astronomy to charac-

terize distant galaxies, search for extra-solar planets, and identify black holes[58, 59].

Since the Earth’s atmosphere absorbs certain wavelengths, it limits the brightness

of the observed objects. Therefore, observations from space are ideal to perform op-

tical interferometry for astronomy[60]. However, very large instrument dimensions

are required to obtain high resolution images using a monolithic telescope because

the accessible resolution is directly proportional to the diameter of the telescope dish

and inversely proportional to the distance between the telescope and the object to

be observed[61]. It would be impractical to build a single giant telescope as the cost

increases faster than the second power of the mirror diameter[62].

Technological advances in high angular resolution astronomy have been obtained

using arrays of more modest-sized telescopes to produce a resolution equal to that

provided by a large monolithic telescope[63, 64]. Since this resolution can be per-

formed by multi-satellites interferometric imaging systems, the possibility of using

these systems has gained great interest during the past several decades. Interferomet-

ric imaging can be implemented by evaluating differences in signal phases taken from

different positions. Unfortunately, traditional methods for interferometric imaging

have severe constraints in both position and attitude accuracies. Therefore, tremen-

dous effort has been dedicated to controlling satellites effectively[65, 66, 67].

With these limitations on traditional systems, Intensity Correlation Interferom-

etry (ICI) has seen renewed interest since the 1950s when it was conceived[68, 69].

Alternative approaches using ICI allow interferometric imaging to be performed by
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measuring only signal intensities. This approach does not have severe constraints

on position and attitude accuracies, but it requires a phase retrieval process and

an on-board atomic clock. These constraints do not constitute difficult problems

since they can be solved. This innovative concept of multi-satellite intensity correla-

tion interferometry imaging implies a constellation design for high resolution images.

This is accomplished by evaluating the signal intensities from several sources. To

reconstruct the source image with high accuracy, the design of such systems requires

spacecraft in orbits whose relative motion covers, as much as possible, the image

frequency content, which is identified by the resolution disc on the frequency plane.

From previous studies, we can find optimized sparse aperture arrays such as the

Golay Configurations[70] or free-flying telescopes on string-of-pearl configurations[71].

In the Golay Configurations, the satellites are rigidly connected in order to main-

tain the desired configuration. In this paper we intend the opposite: we want the

inter-satellite distances to be continuously changing and to obtain the coverage of

the resolution disc. The String of Pearls is an optimized spacecraft formation that is

composed of a string of free-flying telescopes, all orbiting in the same orbit, and all

pointing toward the object to be observed at different values of mean anomaly. The

optimality here is to select the mean anomalies to avoid repeating baselines config-

urations. In particular, the distances between the satellites have to be a multiple

value of the scaled diameter of the (frequency) paintbrush that paints the resolution

disk. When the satellites orbit around the Earth, the paintbrush is able to sufficiently

cover the resolution disk. With this configuration, the imaging time is equal to a half

orbital period. This research study shows how to derive these parameters in order

to maximize the resolution disc coverage. Reasonable initial ranges of constellation

parameters can be determined by the Earth’s atmospheric altitude and internal Van

Allen belts altitude.
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Flower constellation theory was first studied for use in optical interferometry in

Refs. [72] and [73], where the Flower Formation Flying[10] was introduced for multi-

spacecraft interferometric systems and optimized using Genetic Algorithm (GA) and

Particle Swarm Optimization (PSO). The main limitation of this research was the

selection of Keplerian orbits only. In this study, the newly proposed 3-D Lattice

Flower Constellations (3D-LFC) theory[12], which includes the J2 gravitational per-

turbation, is adopted to design constellations to fulfill mission requirements.

This section is organized as follows. The first part briefly describes the Optical

Interferometry. We then provide general design considerations, define the LFC pa-

rameter constraints, and proceed with the constellation design optimization. Then,

the performances of some selected constellations for ICI optical interferometry mis-

sions are presented.

3.3.2 Intensity Correlation Interferometry

Interferometry measures fringes that arise because of the wave nature of light, and

it contains information on the structure and position of the object to be observed.

When light passes through an aperture, it is diffracted and forms an interference

pattern of light on a viewing screen. Optical interferometry collects two or more light

rays arriving from different observation points and then coherently combines them

to form an interference pattern[72]. Evaluating the visibility (contrast of the fringe

pattern) and phase of these fringes gives the mutual intensity required to reconstruct

the image. The light beams are collected, transmitted to a combiner, and then

Fourier transformed by using the Modulation Transfer Function (MTF)[74] because

there is a relationship between the inference pattern and Fourier transformation.

While traditional optical interferometry requires a magnitude and a phase of the

interference pattern, an ICI system can only detect the magnitude of the interference
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pattern. The phase of interference pattern should be recovered through various

computational methods which have been previously developed.

One of the most important factors of optical interferometry is the image’s reso-

lution level to achieve. The angular resolution is defined as a quantitative measure

of the ability to produce the minimum angle between two point sources such that

the system is able to distinguish two sources, not one. For a circular aperture of

diameter DT , an empirical limit for the resolution angle θr is given by the Rayleigh’s

criterion[75]

θr = 1.22
λ

DT

(3.20)

where λ is the wavelength of light. The angular resolution is related to the resolution

ε through the distance H between the telescope mirror and the observed object

θr = tan−1
( ε
H

)
' ε

H
. (3.21)

Therefore, for a given wavelength, the size of objects that can just be discerned is

determined by the aperture diameter DT

DT = 1.22
λH

ε
. (3.22)

From Eq. (3.22), it is evident that the larger the mirror, the better resolution

obtained, but there is an effective limit to telescope size. Consequently, a multi-

spacecraft interferometric imaging system is a very good solution for this problem.

If the telescopes are spread out over a large area, it is possible to observe very small

objects at close distances or large objects at far distances.
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Figure 3.25: Physical plane

As shown in Fig. 3.25, there is a star located at distance H from x − y ob-

servation plane. The physics is the same regarding Young’s double slit interference

experiment[76] where the star is the light source, the satellites are the slits, and

the separation of the slits is the baseline. Let ∆r be the projection of the baseline

between satellites A and B onto a (x, y) plane perpendicular to the line of sight

direction, and ∆x and ∆y the components of ∆r on the observation plane[77]. A

two dimensional plane of spatial frequencies called the Fourier wave-number plane

or the (u, v) plane is defined where each unit is the number of wavelengths between

the apertures. The (u, v) plane has components

(u, v) =

(
∆x

λ
,

∆y

λ

)
(3.23)
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The MTF M(u) is

M(u) =

∫
AT (u + v)AT (v) dv (3.24)

where AT is the aperture function. From Eq. (3.24), it is evident that the MTF is

the correlation of the aperture function. For a monolithic circular aperture telescope

with diameter DT , the AT is

AT (x) =

 1 if |x| ≤ DT/2

0 otherwise
(3.25)

If the (u, v) plane is not totally covered, the imaging system is blind to corresponding

frequencies and information associated to the unexplored frequency subset ranges.

Although complete coverage is not required to reconstruct the image, larger coverage

provides a better performance.

Images of celestial objects are reconstructed through different measurements

taken in successive time instants. While moving relative to each other, the space-

crafts’ configuration changes with time and this creates different projections of the

baseline onto a plane perpendicular to the line of sight to the object to observe.

A simultaneous measurement of the coherence for all the baselines is assumed. If

each satellite has one telescope and Ns is the total number of satellites, there are

Ns(Ns − 1)/2 baselines[78]. The light beams are collected by each telescope, split in

(Ns− 1) ways, transmitted to a combiner and then Fourier transformed in the (u, v)

plane. For every point in this plane there is a symmetrical one with respect to the

origin. The challenge is to obtain a wide variety of baseline lengths and orientations

for covering the (u, v) plane in an optimal way.

The maximum angular radius of the resolution disk is related to the maximum
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inter-satellites distance D, and it is defined as

Rmax =
D

λ
=

1.22H

ε
(3.26)

where Eqs. (3.23) and (3.22) have been used. Every point covers the (u, v) plane

with a ball of diameter

ρ = 2
Rmax

N
(3.27)

where N is the number of pixels on a side that we desire for the final image.

Let the number of satellites, Ns, be equal to 4 as indicated in Fig. 3.26a showing

the physical plane orthogonal to the observing direction. This will result in N(N −

1) = 12 coverage balls [79], which is twice the total number of different inter-satellite

baselines.

(a) Initial and updated locations of satellites (b) (u, v) plane

Figure 3.26: Satellite trajectory and spatial frequency plane
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Equation (3.23) gives initial and updated coverage balls whose diameter is ρ as

shown in Fig. 3.27a. The outer circle is the resolution disc to be covered.

(a) Pixels plane for initial location (b) Pixels plane for updated location

Figure 3.27: Pixels plane

The interferometric measurements are made between a pair of telescopes. There-

fore, more measurements are collected simultaneously with more satellites. We de-

sired only the set of measurements (u, v) :
√
u2 + v2 ≤ Rmax, provided by Eq. (3.26).

For an optimal coverage we are interested in having the resolution disk completely

painted by the balls with the smaller number of spacecrafts.

Every point covered in the (u, v) plane represents a specific frequency and a

specific direction, and this point can then be related to a pixel as shown in Fig. 3.27.

The filled fraction of the u-v plane within the resolution disk indicates the quality of

the resulting image.
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3.3.2.1 Fitness Function

As constellation design for ICI missions using GA, defining a fitness function

to drive the optimization process is the key issue. Since resolution disc coverage

is closely related to ICI missions performance, two types of fitness functions using

resolution disc coverage are utilized. They are compared in the results section, where

it is shown how its election conditions the final obtained solution. The proposed

fitness functions are:

• Type I: The first fitness function is designed to maximize the covered area of

resolution disc. It has been implemented to count the number of covered pixels.

Thus, the optimality is defined by the minimization of the following function

L = −
N∑
i=1

N∑
j=1

NZ(Pi,j) (3.28)

where N is the number of pixels, Pi,j is entry of pixel matrix and defined by

number that each pixel covered, and

NZ(x) =

 1 if x > 0

0 otherwise
(3.29)

Therefore, this fitness function is number of nonzero matrix elements and not

considered overlapping time.

• Type II: The second fitness function considered corresponds with the total

number of overlapped coverage. It is evaluated as follows:

L = −
N∑
i=1

N∑
j=1

√
Pi,j (3.30)
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Since number of overlapped coverage is considered, designed constellation based

on this fitness function is expected to have better performance in aspect of the

signal to noise ratio.

3.3.2.2 Ranges of Design Parameters

The ranges of design parameters for optimization with Ns = 4 are given in Table

3.10.

Table 3.6: Ranges of design parameters for optimization with Ns=4

Parameters Ranges

[No, Nso, Nω] [1,1,4] [1,2,2] [1,4,1] [2,1,2],[2,2,1],[4,1,1]

Nc1 [1, No], integer

Nc2 [1, Nω], integer

Nc3 [1, No], integer

hmin (km) 300

hmax (km) 1,500

i (deg) [0, 180]

Optimization for various number of satellites cases with various No constraints

have been performed. The ranges of other design parameters are the same as the

values in Table 3.10.

3.3.3 Results

A study applying the 3-D LFC theory to the space interferometric imaging system

has been performed. In this simulation, time step is set to
T

100
and each satellite has
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one telescope. Considered specific objects to be observed is a star with a resolution

ε = 100 km. Distance from object plane to the observation region is 30 pc and the

wavelength of visible light λ = 500 nm. This section is organized as follows: (i)

designed constellation for Type I fitness function is shown as well as resolution disc

coverage for various pixels sizes and number of satellites, and (ii) results using Type

II fitness function have been provided comparing with result using Type I fitness

function.

3.3.3.1 Designed constellation using Type I fitness function

Imagine a star with 10 × 10 pixels and 4 satellites. The optimal parameters

of designed constellation are provided in Table 3.7. This constellation has good

coverage performance. However, this is not a single unique solution, because the

number of pixels is very small. Since all satellites of a constellation don’t have an

identical orbital plane, this constellation may require more than a single launch.

Constellations that have a small number of orbital planes provide worse coverage

performance.
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Table 3.7: Optimal parameters of 3-D LFC using 4 satellites

Parameters optimal values

[No, Nω, Nso] [4,1,1]

Nc1 3

Nc2 0

Nc3 1

a (km) 7,911

e 0.05

i (deg) 114.7

T (hr) 1.945

Coverage (%) 100

Figure 3.28 illustrates the satellite trajectories of designed lattice flower constel-

lations as seen from the Earth-Centered Inertial (ECI) frame.

Spatial frequency plane and pixels plane coverage for this constellation are shown

in Fig. 3.29. It is clear that whole resolution disc is covered.

Several simulations for various number of satellites have been done with 100×100

pixels in order to investigate influence of large number of pixels on resolution disc

coverage. The optimal parameters of each case are obtained in Table 3.8. In case of

Ns = 4, coverage of optimal constellation is much lower than one of the 10× 10 case

as expected. Regarding the percentage of coverage greater than 95% is considered

very good[72], we can conclude that 25 satellites are required in case of 100 × 100

pixels.
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Figure 3.28: The satellite trajectories of designed lattice flower constellation

(a) u-v plane (b) Pixels plane

Figure 3.29: Example of imaging Stars with 3-D lattice flower constellation using 4
satellites
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Table 3.8: Optimal parameters of 3-D LFC using various number of satellites and

100× 100 pixels

Parameters Ns = 4 Ns = 6 Ns = 10 Ns = 20 Ns = 25

[No, Nω, Nso] [4,1,1] [6,1,1] [10,1,1] [20,1,1] [25,1,1]

Nc1 3 1 7 11 23

Nc2 0 0 0 0 0

Nc3 2 4 4 8 3

a (km) 7,936 7,704 7,589 7,536 7,525

e 0.05 0.08 0.10 0.11 0.11

i (deg) 10.1 171.22 11.61 168.37 10.83

T (hr) 1.954 1.869 1.828 1.809 1.805

Coverage (%) 2 9 19 84 95

Figure 3.30: Coverage vs. number of satellites for various number of pixels
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It is clear that the number of pixels affect the number of satellites required in

Table 3.8. Simulations for various number of satellites and various number of pixels

have been done as shown in Fig. 3.30.

3.3.3.2 Designed constellation using Type II fitness function

Optimization with two types of fitness functions has been performed for 20× 20

pixels. 10 satellites have been used in simulation since at least 10 satellites are

required for 20 × 20 pixels as shown in Fig. 3.30. The parameters of designed

constellation are given in Table 3.9. Although Type II constellation had worse net

coverage performance, it had better overlapped coverage as shown in Fig. 3.31.

Since these characteristics can provide better a signal to noise ratio, this type of

constellation can be selected for specific mission. In addition, Type II constellation

is more economic because it has relatively fewer orbital planes.

Table 3.9: Optimal parameters of 3-D LFC using 10 satellites

Parameters Type I Type II

[No, Nω, Nso] [10,1,1] [5,1,2]

Nc1 1 1

Nc2 0 1

Nc3 0 1

a (km) 7,727 7,656

e 0.06 0.09

i (deg) 64.2 9.5

T (hr) 1.877 1.852

Coverage 96 91
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(a) Type I (b) Type II

Figure 3.31: Star imaging with 3-D lattice flower constellation using 10 satellites

3.3.4 Conclusions

This work proposes a method for preliminary design of optimal constellations for

intensity correlation interferometry missions. Genetic Algorithms have been used

to optimize constellations generated by the 3-D Lattice Flower Constellation theory.

Two different types of fitness functions, Type I and Type II, are used for optimization

and both of them provide good and comparable solutions. Constellations obtained

using the Type I fitness function are characterized by good net coverage performance,

while those generated using the Type II fitness function provide better overlapped

coverage. Several simulations are performed in order to investigate the influence of

the number of pixels on resolution disc coverage. It has been found that more than

25 satellites are required to cover 100 × 100 pixels for good image observation of a

far star, while only 4 satellites are required to completely cover 10×10 pixels. These

results are useful for constellation designers to select the most economical, or the

most efficient fitness function.
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3.4 Design of Constellations for Earth Observation with Inter-Satellite Links

3.4.1 Introduction

The constellations of multiple satellites equipped with SAR (Synthetic Aperture

Radar) devices and high resolution optical instruments for Earth observation are

required to have a design that provides fast revisit times and short response times

[80]. Earth observation missions usually use repeating ground track orbits that allow

for specific observations to be scheduled every certain amount of time or with the

same observing conditions [81]. One of the most reliable and efficient methods for

generating a repeat ground track is the Flower Constellations (FC) theory [10]. FC

was studied for use in the Earth observation in Ref. [82] where 4 satellites were

used at an altitude of 740 km for a revisit time of 6 days. However, the repeating

ground track feature is not necessary in case of the constellation which consists of a

large group of satellites. The FC theory has been recently expanded with the Lat-

tice Flower Constellations (LFC) theory which encompasses all possible symmetric

solutions [13]. Also, since the LFC theory decouples the compatibility condition and

the shape parameters, it is useful to design a large constellation of satellites for the

Earth observation mission.

Most Earth observation systems have space and ground segments connected by

a complex network of communications to manage the operations of the constellation

[80]. Many current constellations use inter-satellite links (ISL) for transmission of

information between mutually visible satellites, because ISL networks enhance the

autonomy of the constellations without the expense of a global ground-station net-

work and reduce atmospheric transmission loss. ISL are direct communication paths

along which a signal is transmitted from one satellite to another without ground

station links [83]. ISL can be classified in the following two categories:
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1. Intra-Orbit ISL are connections between satellites in the same orbital plane.

Each satellite in the orbital plane connects a satellite orbiting ahead or be-

hind itself. Because of invariant relative motion between the satellites in the

same orbital plane, the antenna pointing angles for these ISL are constant and

antenna steering is not required.

2. Inter-Orbit ISL connect satellites in adjacent orbital planes. Since the rela-

tive position of two satellites in adjacent orbital planes is changed over time,

antenna steering is necessary [84]. Moreover, the distances between satellites

in adjacent orbits vary within a large range and the Earth may eclipse their

mutual line of sight. When the distance or viewing angle between two satellites

changes too fast for the steerable antennas to follow, ISL can be temporarily

switched off at certain intervals [85].

Radio frequency (RF) and optical link are the two types of links that can be

considered for ISL. Optical link is several orders shorter than RF link. Therefore, it

has some advantages such as high data capacity, small antenna size, and narrowness

of the beam. The narrowness of the beam is several orders of magnitude less than

that of RF. It provides the additional advantage of eliminating susceptibility to space-

based or ground-based jammers. However, it is also a disadvantage since advanced

pointing devices are necessary due to narrow beamwidth [86, 87]. The choice between

RF and optical links depends on the mass, power consumed, and required capacity

of the system.

This section is organized as follows. The first part examines observation mission

and ISL communication in the constellation. We then discuss design considerations

and parameters for 2D-LFC and optimize the design of the constellation. Finally,

the performance of designed constellations for observation with ISL is presented.
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3.4.2 Earth Observation Mission with ISL

3.4.2.1 Quality of Observation Mission

There are various ways to measure the quality of coverage to evaluate the obser-

vation performance as follows [5]:

1. The percent coverage for any point on the grid is simply the number of times

that point was covered by one or more satellites divided by the total number

of simulation time steps.

2. The mean coverage gap is the average length of breaks in coverage for a given

point on the simulation grid.

3. The Mean Response Time (MRT) is the average time from when we receive a

random request to observe a point until we can observe it [5].

Among these, the percent coverage is easily used since it shows directly how much of

time a given point or region is covered. However, it does not consider gap statistics.

Similarly, the mean coverage gap cannot evaluate performance correctly because it

does not take coverage aspect into account. Therefore, MRT is required to evaluate

the observation performance because it considers both the percent coverage and gap

statistics.

3.4.2.2 Geometry of ISL

The establishment of ISL is mainly affected by the azimuth angle, elevation angle

and transmission distance between satellites. The smaller the ranges of azimuth

angle, elevation angle and transmission distance of ISL, the better the performance

of ISL. Obviously, the ISL in the same orbital plane are more stable than those

between adjacent orbital planes. An example of geometry for ISL is given in Fig.
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3.32. Sat i and Sat j are defined as two satellites in the orbit I, and Sat k denotes

the satellite in the orbit II. R denotes the orbit radius of satellites.

Figure 3.32: Geometry for ISL in the constellation

(a) View in x̂i-ŷi plane (b) View in ŷ-ẑ plane

Figure 3.33: Geometry for intra-orbit and Inter-orbit ISL
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3.4.2.3 Intra-Orbit ISL Angle

The geometry for intra-orbit ISL is illustrated in Fig. 3.33a. Considering isosceles

triangle 4OSiSj, the intra-orbit ISL angle α is related to the angle between adjacent

two satellites, Si and Sj, in the orbit I as follows.

2α = π − (β′ + β) (3.31)

Since the angle between adjacent two satellites, β + β′, is

β′ + β =
2π

Nso

(3.32)

then α becomes

α =
π

2
− π

Nso

(3.33)

Figure 3.34: α and β + β′ vs No for Ns = 44 constellation
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Figure 3.34 shows α and β + β′ as function of No. As No increases, α decreases

whereas β + β′ increases.

3.4.2.4 Inter-Orbit ISL Angle

The inter-orbit ISL angle θ is defined as the angle between two orbital planes as

illustrated in Fig. 3.33b.

Figure 3.35: Orbital elements

In Fig. 3.35, n̂ and ĥ are node and angular momentum vectors of the orbit in the

constellation, respectively. Considering constellations with circular orbits and same

orbit inclination, we obtain angular momentum vectors of i-th orbit and k-th orbit

in the constellation as follows.

ĥi =


sin i sin Ωi

− sin i cos Ωi

cos i

 and ĥk =


sin i sin Ωk

− sin i cos Ωk

cos i

 (3.34)
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where i and Ω are the inclination and the right ascension of the ascending node of

the orbit, respectively.

The cosine of the angle, θ, between two vectors is found by scalar product. Since

ĥi · ĥk = cos θ

then

cos θ = cos2 i+ sin2 i(sin Ωi sin Ωk + cos Ωi cos Ωk)

= cos2 i+ sin2 i cos ∆Ω

(3.35)

θ is given by

θ = cos−1

(
cos2 i+ sin2 i cos

2π

No

)
(3.36)

Figure 3.36 shows θ provided by Eq. (3.36) in terms of i and No.

Figure 3.36: θ vs inclination for Ns = 44 constellation
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3.4.2.5 Communication Time for Inter-Orbit ISL

Figure 3.37 shows the geometry of communication time for inter-orbit ISL where

λ1, λ2 and λ3 are angular lengths of the sides of the triangle (in radians) and γ is

inter-orbit azimuth.

Figure 3.37: Communication time for inter-orbit ISL

Applying spherical trigonometry to two spherical triangles4Sk(t−∆t1)Sk(t)Si(t−

∆t1) and 4Sk(t)Sk(t+ ∆t3)Si(t+ ∆t3) gives us

sin(θ − γ)

sinλ2

=
sin γ

sinλ1

and
sin(π − θ − γ)

sin(λ1 + λ2 + λ3)
=

sin γ

sinλ3

(3.37)

Considering β′ + λ1 + λ2 =
2π

Nso

and Eq. (3.37), λ1 and λ3 can be identified as

λ1 = f(θ, γ,Nso, β
′) and λ3 = f(θ, γ,Nso, β

′) (3.38)
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Communication time can be obtained by

λ = n∆t (3.39)

where n =
√
µ/a3 is the mean motion, and µ = 3.986 · 105km3/s2 is the Earth’s

gravitational constant [15].

Since θ is depend on i and No, communication time can be written as

∆t = f(i, γ,Nso, β
′) (3.40)

Figure 3.38 shows the communication time for inter-orbit ISL.

(a) Case I: β = 2β′ (b) Case II: 2β = β′

Figure 3.38: Communication time for inter-orbit ISL

Figure 3.38b indicates that γ ≥ 9◦ is required to provide communication time

for more than 1 minute. In case of low RF link, γ greater than 9◦ is achieved by
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beamwidth. A rule of thumb for estimating the beamwidth is given by [88]

3 dB beamwidth = 70(λ/D)(degrees) (3.41)

where λ is the wavelength and D is the antenna diameter. The beamwidth is usu-

ally measured between 3 dB points because gain falls off rapidly beyond them [89].

When RF beam forms a cone-type beam, the size and shape of a cone-type beam is

depending on height of the satellite and the performance of the antenna. However,

optical link requires antenna steering because of the narrowness of beam.

3.4.2.6 Analysis of Global Connectivity

In the constellation, the relative position of two adjacent satellites in the same

orbit is steady. However, the relative position of two satellites in adjacent orbits

varies. If the constellation can be connected by the ISL as a whole, the constellation

provides global connectivity. Han, Gui and Li introduced the graph theory to the

analysis of the global connectivity of ISL [90]. The adjacency matrix of graph theory

is given by [91, 92]

A =



a11 a12 · · · a1Ns

a21 a22 · · · a2Ns

...
...

...

aNs1 aNs2 · · · aNsNs


(3.42)

where Ns is the number of satellites in the constellation, and aij is connectivity

between i-th transmitting satellite and j-th receiving satellite. All elements of the

adjacency matrix are either 0 or 1. In case of bi-directional communication the

adjacency matrix is symmetric. The adjacency matrix can be used to determine

connectivity of ISL as follows.
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1. Evaluation of the matrix R = A+ A2 + · · ·+ ANs−1

2. The necessary and sufficient condition for the connectivity (any satellite is

connected to any other) is that all elements of the matrix R are not zero. In

particular the value of Rij tells you how many different way the i and j satellites

can be linked.

Since intra-orbital ISL maintain permanent connectivity between satellites on the

same orbital plane, modified adjacency matrix considering only inter-orbital ISL can

be used as follows.

M =



m11 m12 · · · m1No

m21 m22 · · · m2No

...
...

...

mNo1 mNo2 · · · mNoNo


(3.43)

where No is the number of orbital planes in the constellation, and mij is connectivity

between transmitting satellites in i-th orbital plane and receiving satellites in j-th

orbital plane. Using modified adjacency matrix instead of original adjacency matrix

reduces computational burden and enhances optimization performance. Evaluation

of the matrix R′ = M +M2 + · · ·+MNo−1 can easily determine the connectivity.

Investigating the geometry of constellation, topological periodicity of constella-

tion is given by
Tp
Nso

. Consequently, evaluation for connectivity is required during

only
Tp
Nso

.

3.4.3 Optimization

3.4.3.1 Fitness Function

As constellation design for the Earth observation using Genetic Algorithms, defin-

ing a fitness function to drive the optimization process is the key issue. The first
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fitness function is designed to minimize MRT. It has been implemented to root mean

square of MRT of uniformly distributed points on the Earth. Thus, the optimality

is defined by the minimization of the following function

L =

√√√√ 1

N

N∑
i=1

x2
i (3.44)

where x is the MRT for each point on the Earth. In the mathematical expression of

the fitness function the parameters to be optimized are calculated in a set of N grid

points distributed on the Earth surface.

Since lower elevation angle decreases quality of signal, the minimum grazing angle

for observation is set to 8.2◦. This minimum grazing angle is typical for this type of

missions [93].

3.4.3.2 Ranges of Design Parameters

The ranges of design parameters are given in Table 3.10.

Table 3.10: Ranges of design parameters for optimization with Ns=44

Parameters Ranges

[No, Nso] [1,44] [2,22] [4,11] [11,4] [22,2] [44,1]

Nc [1, No], integer

h (km) [300,1500]

Tp (hr) [1.51,1.93]

i (deg) [0, 180]
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3.4.4 Results

In this subsection a study applying the 2-D LFC theory has been done. In this

simulation, the constellation was propagated with 5◦ steps in mean anomaly. The

simulation results show that topological periodicity and dynamics of ISL is available

and feasible.

3.4.4.1 Designed LFC

At an altitude of 1477.97 km above the Earth, 44 satellites are arranged in four

orbital planes which are 57.88 ◦ inclined with reference to the equatorial plane.

Eleven operational satellites are equally distributed by 32.72◦ in each orbital plane

as illustrated in Fig. 3.39.

Figure 3.39: Designed constellation
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Designed constellation can be entirely expressed with LFC parameters given in

Table 3.11. The minimum distance of designed constellation is 632.18 km. Satellites

do not approach one another within 632.18 km.

Table 3.11: LFC parameters of designed constellation

Parameters Optimal values

[No, Nso] [4,11]

Nc 0

h (km) 1477.97

Tp (hr) 1.92

i (deg) 57.88

Figure 3.40 illustrates the ISL topology of designed LFC at initial time. Solid lines

denote the Intra-Orbit ISL and dashed lines denote Inter-Orbit ISL. With respect to

observation, footprints of all satellites are visualized. Note that highly latitude and

part of equatorial regions have not been covered.
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Figure 3.40: Designed constellation ISL topology at t = 0 (8.2◦ grazing angle)

3.4.4.2 Observational Performance

Figure 3.41 demonstrates simulation result of designed constellation in 1 day.

Histogram shows the distribution of MRT in Fig. 3.41a. As shown in Fig. 3.41b,

designed constellation provide very good observation performance in the most of

regions except polar and equatorial areas.
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(a) (b)

Figure 3.41: Mean response time in 482 points

Figure 3.42 shows the distribution of MRT using 7, 682 points. Note that there

are some unobserved points denoted unfilled circles in polar regions.

(a) (b)

Figure 3.42: Mean response time in 7, 682 points
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3.4.4.3 Connectivity Analysis

This constellation guarantee continuous global connectivity. Time history of con-

nectivity between orbits are repeated every
Tp
Nso

as shown in Figure 3.43.

Figure 3.43: Time history of connectivity

The coordinates of the ground stations were (61.13◦N, 149.54◦W) and (61.13◦N,

104.50◦W). The simulation showed that within the orbital period the satellite is

above at least one of the on-ground stations.
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(a) Flow of information at time A (b) Flow of information at time B

Figure 3.44: Flow of information

3.4.5 Conclusions

In this work, we analyzed and designed constellations for the Earth observation

mission with ISL. Before optimization process, the geometric characteristics of ISL

have been investigated to check the feasibility of the system and find suitable val-

ues for inter-orbit azimuth, γ. The Genetic Algorithms technique with 2-D Lattice

Flower Constellation theory has been used to find the best constellation for the mis-

sion. Optimal satellite constellation has been found by minimizing mean response

time with global continuous connectivity and minimum distance constraint. We pro-

pose the fast and efficient algorithm using the modified adjacency matrix based on

the graphic theory, which can simplify the evaluation of connectivity through investi-

gating only Inter-Orbit ISL. In order to perform the optimization process efficiently,

mean response time based on quasi-uniform distribution points has been evaluated.

It has been found that the proposed constellation provides good observational per-
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formance with global continuous connectivity.

103



4. J2-PROPELLED ORBITS AND CONSTELLATIONS∗

4.1 Introduction

During the past decades, substantial efforts have been dedicated to minimize

the fuel consumption for station-keeping maneuvers due to the orbital perturbations

[94, 95, 96]. For Medium Earth Orbits (MEOs) and Low Earth Orbits (LEOs) the

most important effect is caused by oblateness of the Earth [5]. The gravitational

term describing the Earth’s oblateness, known as the J2 term, is the second zonal

harmonic coefficient of the Earth’s gravitational field series expansion [97, 98, 99].

Since the terms contributed by higher-order zonal, sectorial, and tesseral harmonics

are thousand times smaller than J2, except for special circumstances such as geosyn-

chronous orbit [100], for LEOs and MEOs, it is sufficient to consider the J2 effect for

many space missions [101].

Molniya and Tundra orbits are located at critical 63.4◦ (prograde) or 116.6◦ (ret-

rograde) inclinations to obtain no rotation of the perigee in the orbital plane. On

the contrary, sun-synchronous orbits use the J2 effect to obtain a nodal regression

rate that matches the Earth’s mean motion, so that the orbital plane is rigid with

respect to the direction of the sun’s light [102].

Compatible orbits (also called resonant orbits or repeating ground track orbits)

have been extensively studied [103, 104, 105, 106, 81]. Compatible orbits are usually

proposed to periodically repeat a three-dimensional trajectory in an Earth-Centered

Earth-Fixed (ECEF) reference frame. At first approximation, a compatible orbit is

built by synchronizing the orbital period with the Earth’s rotational period. This

∗Part of this chapter is reprinted with permission from “J2-Propelled Orbits and Constellations”
by Daniele Mortari, Mart́ın Eugenio Avendaño Gonzales, and Sanghyun Lee, 2014. Journal of
Guidance, Control, and Dynamics, Vol.37, No.5 (2014), pp. 1701–1706. Copyright c© 2014 by
Daniele Mortari, Mart́ın Eugenio Avendaño Gonzales, and Sanghyun Lee.
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kind of orbit is useful for Earth-referenced missions such as Earth observation, as it

allows specific Earth locations to be periodically observed.

In this research, a shifting perspective is considered: the focus is not at the

synchronization of the satellite with the Earth’s rotation but at the synchronization

of the orbit motion (due to the J2 perturbation) in inertial space as well as in ECEF

reference frame. In other words, the dynamic of the orbit and not the dynamic of

the satellite is considered here. This study analyzes a new class of orbits called

“J2-Propelled”, for which dynamics are periodic in the inertial frame and/or in the

Earth rotating frame [107]. Motivation of developing these kinds of orbits originates

from the need to design orbits for which the natural dynamics (J2 is here used as

“propellant”) provides access to a wide three-dimensional space (between perigee

and apogee radii) to measure physical quantities. The onboard fuel of the satellite

is then limited to compensate the non J2 perturbations, that are usually smaller for

MEOs and LEOs.

This chapter is organized as follows: In Section 4.2, the linear J2 perturbation

model is briefly outlined, whereas in Section 4.3 compatibility condition is formu-

lated in terms of perturbation to define compatible orbits. Section 4.4 presents the

J2-propelled orbits for the two cases of circular and elliptical orbits, and then the

additional compatibility with the Earth’s rotation is considered in Section 4.5 which

present the Earth-compatible J2-propelled orbits. Finally, conclusions and some ex-

amples are provided in Section 4.6.

4.2 Linear J2 Perturbation

The J2 gravitational perturbation on the orbital elements can be averaged over

one orbital period. These averages highlight whether or not the orbital elements

experience persistent (secular) changes. In particular, the average effects on the
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semi-major axis (a), eccentricity (e), and orbit inclination (i) orbital elements are

[108]
da

dt
≈ 0,

de

dt
≈ 0, and

di

dt
≈ 0, while the right ascension of the ascending node

(Ω) and the argument of perigee (ω) are linearly changing according to

dω

dt
=

3

4
J2

(
R⊕
p

)2

n
(
5 cos2 i− 1

)
, and

dΩ

dt
= −3

2
J2

(
R⊕
p

)2

n cos i

(4.1)

where R⊕ = 6, 378.137 km (World Geodetic System 1984, WGS-84) is the Earth’s

radius, p = a(1− e2) is the orbital semi-parameter, J2 ≈ 1.08263 · 10−3 is the second

zonal harmonic coefficient (non-dimensional) of the Earth gravitational field, n =√
µ

a3
is the mean motion, and µ = 3.98600441·105km3/s2 is the Earth’s gravitational

constant [14, 15].

(a) Nodal regression rate (b) Perigee rotation rate

Figure 4.1: Nodal regression (left) and perigee rotation (right) rates for a = 10, 000
km and and some values of eccentricity.

Equation (4.1) shows that nodal regression rate, Ω̇, and perigee rotation rate,
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ω̇, depend only on the semi-major axis, eccentricity, and inclination. To provide

quantitative insight of Eq. (4.2), the Ω̇ and ω̇ values are provided in Figs. 4.1a

and 4.1b for an orbit with a = 10, 000 km and for various values of eccentricity. The

absolute values of Ω̇ and ω̇ increase as the eccentricity increases under the fixed semi-

major axis (same orbital period). In particular, node lines move clockwise for orbital

inclinations lower than 90◦, and counter-clockwise for inclinations greater than 90◦.

Ω̇ is maximum for equatorial orbits (where the node line is not defined!) and no

nodal regression occurs for polar orbits, as shown in Fig. 4.1a.

The nodal regression can be compensated by a proper selection of the semi-

major axis while the perigee rotation rate cannot be compensated the same way. As

shown in Fig. 4.1a the perigee rotation is eliminated at the two critical inclinations,

i = 63.4◦ and i = 116.6◦. Note that the perigee moves counterclockwise if i < 63.4◦

or i > 116.6◦, and clockwise for 63.4◦ < i < 116.6◦.

(a) Nodal regression rate (b) Perigee rotation rate

Figure 4.2: Nodal regression (left) and perigee rotation (right) rates for 350 km
perigee altitude and some values of eccentricity.
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Figures 4.2a and 4.2b illustrate Ω̇ and ω̇ versus inclination for an orbit of which

perigee altitude is maintained fixed at 350 km and for various values of eccentricity.

Nodal regression is zero for polar orbits and greatest for orbits of which inclination

is 0◦ or 180◦ . Note that the absolute values of Ω̇ and ω̇ decrease as the eccentricity

increases.

Even if higher-order analytical theories for J2-perturbed motion have been de-

veloped [109, 110], the theory presented in this study is kept linear to provide a

simple way for initial design of orbits and/or constellations as, for accurate design,

all perturbations must be considered (third body, solar pressure, drag, etc).

4.3 Compatible Orbits

Based on Eqs. (4.1) Carter [111] defined the condition for a satellite to “repeat”

the ground track. This condition involves synchronizing the orbit nodal period (time

between two subsequent equator crossings in ascending node, Tn) with the nodal

period of Greenwich (time for Greenwich longitude to cross the orbit ascending node

line, Tg)

Nn Tn = Nn
2π

n+ ω̇
= Ng Tg = Ng

2π

ω⊕ − Ω̇
(4.2)

where Nn ∈ Z and Ng ∈ Z are two positive coprime integers and ω⊕ ≈ 7.292 ·

10−5rad/s is the Earth’s rotation rate. Equation (4.2) is not correct for elliptical

orbits. While the nodal period of Greenwich,
2π

ω⊕ − Ω̇
, is consistently defined (the

angles ω⊕∆t and Ω̇∆t are both longitudinal variations) the orbit nodal period,
2π

n+ ω̇
,

is correct just for circular orbits because the angle n∆t is a variation of mean anomaly

while the angle ω̇∆t is a variation of true anomaly. Adding n with ω̇ makes sense for

circular orbits, only. However, Eq. (4.2) provides sufficiently approximated solutions

for small eccentric orbits where the difference between variations of true and mean

anomalies are small.
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Orbits for which nodal period satisfy Eq. (4.2) are called compatible or resonant∗

with respect the Earth.

4.4 Compatible J2-Propelled Orbits

According to Eq. (4.1) the linear J2 effect rotates the orbit around the angular

momentum direction and simultaneously, around the Earth’s spin axis. The two

angular velocities defined in Eq. (4.1) can be synchronized through a compatibility

equation

Nω Tω = Nω
2π

ω̇
= NΩ TΩ = NΩ

2π

Ω̇
, (4.3)

where Nω ∈ Z and NΩ ∈ Z are two co-prime integers (Nω⊥NΩ). The values of Nω

and NΩ can be negative integers as ω̇ and Ω̇ can also be negative. Orbits satisfying

Eq. (4.3) are called “J2-propelled orbits.” The dynamics of these orbits are periodic

in the inertial reference frame.

To derive potential reasonable values for Nω and NΩ, consider the ratio between

Ω̇ and ω̇. Since the J2-propelled orbits satisfy NΩ ω̇ = Nω Ω̇, then for a specific

orbit inclination the Ω̇/ω̇ ratio provides us the possibility of quick estimating the

admissible values for NΩ and Nω, especially when an approximate repetition time is

provided. This ratio, which is independent from eccentricity, is

Ω̇

ω̇
=

2 cos i

1− 5 cos2 i
(4.4)

and its plot and the plot of the inverse are provided in Fig. 4.3. Note that to satisfy

Eq. (4.3), polar (cos i = 0) and critically inclined (5 cos2 i = 1) orbits must be

avoided as they make Ω̇ = 0 and ω̇ = 0, respectively.

∗The “repeating ground track” concept has it’s own limitations as any two completely different
equatorial orbits have the same ground track. More appropriate would be the concept of “repeating
space track” indicating the repetition of a three-dimensional trajectory.
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(a) Ω̇/ω̇ ratio vs inclination (b) ω̇/Ω̇ ratio vs inclination

Figure 4.3: Ω̇/ω̇ and ω̇/Ω̇ ratios

Substituting Eq. (4.4) in Eq. (4.3) the relationship, NΩ (5 cos2 i−1)+2Nω cos i =

0, which is quadratic in term of cos i, is obtained. The two solutions are

cos i =
−Nω ±

√
N2

ω + 5N2
Ω

5NΩ

. (4.5)

Not all combinations of NΩ and Nω satisfy Eq. (4.5) as cos i ∈ [−1,+1] also must

be satisfied. To satisfy the inclination bounds a simple analysis yields to the two

following cases:

• If Nω ≥ −2NΩ or Nω ≥ +2NΩ, then

cos i =
−Nω +

√
N2

ω + 5N2
Ω

5NΩ

is an admissible solution.
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• If Nω ≤ −2NΩ or Nω ≤ +2NΩ, then

cos i =
−Nω −

√
N2

ω + 5N2
Ω

5NΩ

is an admissible solution.

This implies that, depending on the [NΩ, Nω] values, three distinct cases are

obtained:

1) Only the positive root is admissible.

2) Only the negative root is admissible.

3) Both roots are admissible.

Equation (4.5) can be written as

± cos i =
−x+

√
x2 + 5

5
(4.6)

where x =
Nω

|NΩ|
is a rational number. Therefore symmetric solutions exist for direct

and retrograde inclinations as shown in Fig. 4.4.

An interesting case is a J2-propelled orbit satisfying Nω = NΩ = 1. From the

compatibility condition this orbit can be considered “equivalent” to the GEO orbit

for which the resonant (compatible) integers are Np = N⊕ = 1. Retrograde and

prograde orbits satisfying Nω = NΩ = 1 can even be designed with the additional

synchronization with the Earth’s rotation, as shown in the next section.
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Figure 4.4: Orbit inclination for Nω/|NΩ|

4.5 Earth-Compatible J2-Propelled Orbits

Equation (4.3) can be further constrained to be Earth-compatible, that is, with

the additional synchronization with Earth’s rotation. In this case two compatibility

equations need to be satisfied

Nω Tω = NΩ TΩ = N⊕ T⊕ (4.7)

where T⊕ is the Earth sidereal period, N⊕ ∈ Z, and the integers must satisfy the co-

prime properties, Nω⊥N⊕, Nω⊥NΩ, and NΩ⊥N⊕. These conditions avoid obtaining
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same solution by using a different set of integers, Nω, NΩ, and N⊕. An orbit satisfy-

ing Eq. (4.7) is called “Earth-Compatible J2-propelled.” In the next two subsections

the two specific cases of circular and elliptical Earth-Compatible J2-propelled orbits

are presented, respectively.

4.5.1 Circular Orbits

For circular orbits (e = 0), Eq. (4.7) simply becomes

NΩ TΩ = N⊕ T⊕ (4.8)

as the perigee is not defined and, consequently, the rotation of apse line has no

meaning. For circular orbits the semi-parameter, semi-major axis, and radius are all

equal, a = p = R. Therefore, substituting the second of Eq. (4.1) into Eq. (4.8), the

relationship

NΩ = −
3 J2N⊕R

2
⊕
√
µ

2ω⊕R7/2
cos i (4.9)

is obtained. Figure 4.5 shows the solutions provided by Eq. (4.9) in terms of inclina-

tion vs orbit altitude by setting NΩ ∈ [−1,−2, 1, 2] and for N⊕ = 90 and N⊕ = 150.

The altitude was bounded to 2,400 km as the J2 perturbation, provided by Eq. (4.1),

strongly decreases with altitude.
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Figure 4.5: Circular orbits: inclination vs altitude for various values of NΩ

Figure 4.6 shows the solutions provided by Eq. (4.9) in terms of inclination vs

orbit altitude by setting N⊕ to values ranging from 90 to 190 with 20 as step size

and for NΩ = −1 (associated with prograde orbits) and NΩ = +1 (for retrograde

orbits), respectively.
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Figure 4.6: Circular orbits: inclination vs altitude for various values of N⊕

4.5.2 Elliptical Orbits

The elliptical Earth-Compatible J2-propelled orbits must satisfy the double com-

patibility condition provided in Eq. (4.7). The first compatibility equation, NΩ TΩ =

Nω Tω, implies that Eq. (4.3) must be satisfied. In addition, Eq. (4.8) must also be

satisfied. To eliminate multiple solutions, all three compatibility integers must be

coprime, NΩ⊥N⊕, Nω⊥N⊕, and NΩ⊥Nω. For the elliptical case, Eq. (4.8) becomes

NΩ = −
3 J2N⊕R

2
⊕
√
µ

2ω⊕a7/2(1− e2)2
cos i (4.10)
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Figure 4.7: Elliptical orbits: inclination vs semi-major axis for various values of NΩ

and N⊕ = 90

Figure 4.7 shows the solutions provided by Eq. (4.10) in terms of inclination

versus semi-major axis for e = 0.1 and 0.3, respectively. These two figures clearly

show that negative values of NΩ are associated with prograde orbits while positive

values with retrograde orbits. Obviously, by changing sign to N⊕ the negative values

of NΩ will be associated with retrograde orbits while positive values with prograde

orbits.

In Eq. (4.10) “cos i” can be replaced by the expression given in Eq. (4.5). Two

equations are then obtained depending on the sign selected in Eq. (4.5). These two

equations can be identified as

f+(NΩ, Nω, N⊕, a, e) = 0 and f−(NΩ, Nω, N⊕, a, e) = 0, (4.11)
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where f+ indicates the equation obtained by using the positive solution of Eq. (4.5)

in Eq. (4.10) while f− represents the equation obtained using the negative solution.

Figure 4.8: Solutions of Eq. (4.11) f− for various values of Nω and NΩ = 1

Note that when using the positive solution of Eq. (4.5), positive values of NΩ

are associated with prograde orbits while negative values of NΩ are associated with

retrograde orbits, as already shown in Fig. 4.4. These results are incompatible with

the results provided by Fig. 4.7. This means that f− can only provide solutions for

positive values of N⊕. Figure 4.8 provides solutions of f− for various values of Nω

and N⊕ = 90, 150.

Figures 4.9 and 4.11 show examples of “Earth-Compatible J2-propelled” orbits.

For specific values of NΩ, Nω, N⊕, and e, Eq. (4.5) provides the admissible value

of inclination. Then, a is obtained by Eq. (4.10). In these figures, the results are
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plotted in an Earth Centered Inertial (ECI) coordinate frame and the stars and

circles markers indicate apogee and perigee, respectively.

(a) 0 day (b) 25 days

(c) 50 days (d) 75 days

(e) 100 days (f) 130 days

Figure 4.9: NΩ = 1, Nω = 2, N⊕ = 130, e = 0.15, i = 180, a = 9, 309 km
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(a) 0 day (b) 40 days

(c) 80 days (d) 120 days

(e) 160 days (f) 200 days

Figure 4.10: NΩ = 2, Nω = 3, N⊕ = 200, e = 0.15, i = 147, a = 8, 212 km
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(a) 0 day (b) 60 days

(c) 120 days (d) 180 days

(e) 240 days (f) 300 days

Figure 4.11: NΩ = 3, Nω = 4, N⊕ = 300, e = 0.15, i = 142, a = 8, 066 km
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4.5.3 Constellations Using J2-Propelled Orbits

The proposed elliptical J2-propelled orbits are particularly suitable to be adopted

in the 3-D Lattice Theory of Flower Constellations (FC) [16, 12], which extends the

2-D Lattice Theory [11] by including the J2 perturbation. Important characteristics

of the Lattice Theory of Flower Constellation are as follows:

1) It is a minimum-parameter design tool (no equivalency problem)

2) The theory is independent from compatibility condition (free to use any orbit).

From a mathematical point of view the satellites phasing is described by a regular

lattice on a three-dimensional torus (each axis is an angle, modulo 2π) in a four-

Dimensional space.

Since the 2-D Lattice Theory does not include the J2 perturbation, from a prac-

tical point of view it can be used for circular orbits or orbits at critical inclinations

(i = 63.4◦ or i = 116.6◦) only, as the J2 effect will slowly destroy the initial optimal

configuration and the station keeping cost will quickly becomes expensive. While the

variation of Ω can be compensated by a proper selection of the orbital period (this

variation is identical for all orbits, and consequently it won’t destroy the symmet-

ric distribution) the ω variation changes the latitudinal locations of perigee/apogee

with catastrophic departure from the initial optimal configuration. Trying to keep

the perigee in his location is known to be very expensive.

The main idea of the 3-D Lattice Theory is again to use, rather than to fight, the

J2 effect. By placing on the same orbital plane orbits with identical shape that are

uniformly distributed in ω due to the first of Eq. (4.1) a uniform rotation of these

orbits on the same orbital plane is obtained, and this plane is rotating about the

Earth spin axis due to second of Eq. (4.1). In particular, the satellites phasing in
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the 3-D Lattice Theory is described by


No 0 0

Nc3 Noo 0

Nc1 Nc2 Nso




Ωikj

ωikj

Mikj

 = 2π


i− 1

k − 1

j − 1

 mod (2π) (4.12)

where No is the number of orbital planes, Noo the number of orbits per orbital plane,

Nso the number of satellites per orbit, i ∈ [1, No], j ∈ [1, Nso], k ∈ [1, Noo], and

Nc1 ∈ [1, No], Nc2 ∈ [1, Noo], and Nc3 ∈ [1, No] are three integers (called configura-

tion numbers) identifying the satellite phasing. In Eq. (4.12), the indices have the

following meaning: the “i, k, j” satellite indicates that it belongs to the j-th mean

anomaly location of the k-th orbit belonging to the i-th orbital plane. Again, the

importance of this theory consists of extending the constellation design to the use of

elliptical orbits at any inclination under the linear J2 effect. This would be perfect

to accommodate J2-propelled constellations.

4.6 Conclusions

A linear theory to design orbits and constellations where the Earth oblateness

perturbation, the J2 perturbation, generates dynamics that are periodic in inertial or

in rotating (Earth) frame is presented. In these orbits, called “J2-propelled orbits,”

the linear (secular) J2 effect is used instead of being fought to allow the satellites

accessing specific three-dimensional volumes around the Earth. Equations to derive

the orbital parameters are provided to obtain specific dynamics. Main motivations is

to design space missions (satellites and constellations) able to measure (or to monitor)

physical quantities (e.g., magnetic or electric fields) in large space volumes by limiting

the control costs to compensate the other gravitational and non-gravitational orbital

perturbations, only.
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Two “J2-propelled orbits” are proposed. The first one synchronizes the J2 effect

of the rotation of the apse line with the nodal precession of the orbital plane, while

the second adds the further synchronization with the Earth’s rotation. Finally, the

paper shows that the J2-propelled orbits can be straightforwardly extended to J2-

propelled constellations using the 3-D Lattice theory of flower constellation, which

is also briefly summarized, and for which the application belongs to future work.
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5. CONCLUSIONS AND FUTURE WORKS

This chapter summarizes all the findings and conclusions of each chapter and

suggests future works.

5.1 Conclusions

In this dissertation, three tasks are accomplished.

First, these works provide the quasi-equal area subdivision algorithm based on

equal area spherical subdivision to obtain approximated solutions to the problem of

uniform distribution of points on a 2-dimensional sphere, known as Smale’s seventh

problem. The algorithm provides quasi-equal area triangles by splitting the Platonic

solids into subsequent spherical triangles of identical areas. The main feature of

the proposed algorithm is that adjacent triangles share common vertices that can

be merged. It allows for reshaping of the final triangles in order to remove obtuse

triangles. The proposed algorithm is fast and efficient for generating a large number

of points. Consequently, they are suitable for various applications requiring high

value of N . The proposed algorithms are then applied to two geographical data

distributions that are modeled by quasi-uniform distribution of weighted points.

Second, guidelines for designing a constellation of satellites using the Lattice

Flower Constellations design theory have been presented. The problem of finding

the optimal parameters for various missions have been addressed. Since the fitness

function and constraints for optimization mainly depends on the mission objectives,

the mission analysis have been performed from a geometric point. Optimization is

performed using Genetic Algorithms to estimate the constellation, subject to specific

mission constraints. The resulting constellations have been explored from the mission

performance perspective, and demonstrate the effectiveness of the proposed approach
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to estimate the best design parameters for the considered missions.

Third, the linear J2 orbital perturbation model is used to obtain orbits whose

dynamics are periodic in the inertial frame and also in the Earth rotating frame.

These orbits are here called “J2-propelled” and “Earth-compatible J2-propelled,”

respectively. The main advantage of these orbits is that they repeatedly cover specific

volumes around the gravitational body. Therefore, low orbital maintenance costs are

required to compensate the non-J2 orbital perturbations. It is demonstrated that the

J2-propelled orbits can be straightforwardly extended to J2-propelled constellations

using the 3-D Lattice theory of flower constellation.

5.2 Future Work

Further work needs to be performed in the regional application such as regional

navigation satellite system. While global missions such as global navigation have

been explored to a certain extent, regional applications of Lattice Flower Constel-

lations have not yet been fully exploited. The non-uniform constellations maybe

would provide additional benefits for regional missions. Since the Lattice Flower

Constellations theory is particularly efficient for global coverage due to the unifor-

mity of satellite distribution, it is not possible to design asymmetric constellations.

However, Lattice Flower Constellation theory with Necklace theory, a special area of

number theory, can provide asymmetric constellations. It can be applied to design

constellations with redundancy to consider satellite failures.
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APPENDIX A

THE LATTICE FLOWER CONSTELLATIONS VISUALIZATION TOOL

Original 2-D Lattice Flower Constellations Visualization Tool “Ikebana” is impor-

tant LFC demonstrator programmed in Java by Dr Mart́ın E. Avendaño. Ikebana

is designed to be an interactive simulation application. However, it is an extremely

lightweight program to show LFC in a limited 3-D display as illustrated in Fig. A.1.

Figure A.1: Ikebana
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A.1 2-D Lattice Flower Constellations Visualization Tool

The new version of 2-D Lattice Flower Constellation Visualization Tool is devel-

oped based on the programming of Ikebana in order to improve display performance

and flexibility.

Figure A.2: 2-D LFC visualization tool

As shown in Figure A.2, the planet with satellites is displayed in the right part of

screen. Orbits and the relative trajectories are provided with different colors. Most
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of the user interfaces which control various conditions are located in the left part

of screen. In the user interfaces, the program provides explanation if user pushes

button label. They help the user handle program easily. Basic functions such as file

input, output, etc. are implemented by menu bar. User interfaces are as follows.

Figure A.3: The Lone Star constellation in 2-D LFC visualization tool

• File pop-up menu : The File pop-up menu provides save the parameters for

LFC to file or load the data from LFC-file. The file format is new and is com-

patible with extensions of Flower Constellation Visualization and Analysis Tool
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(FCVAT) by Dr. Christian Bruccoleri [See Ref. 112]. Figure A.3 illustrated

The Lone Star Constellation found in original flower constellation theory.

• Simulation pop-up menu : The Simulation pop-up menu provides switching

between Planet Fixed frame and Inertial frame.

• View pop-up menu : The View pop-up menu provides various size of satellite

size and satellite shape.

• Planet pop-up menu : The Planet pop-up menu provides various planet such

as Sun and Mercury to be a focal point.

• Entries of H matrix : The Entries of H are meaningful physical invariants of

the constellation: h11 = No is the number of inertial orbits, Nso is the number

of satellites per orbit, and h21 = Nc is the configuration number, that controls

the phasing of the satellites between orbits. Once entries of H matrix are input,

upper triangular matrix H̃ can be calculated.

• Entries of H̃ matrix : The Entries of H̃ are carrying the following meaning:

h̃22 = Nm is the number of different mean anomalies, h̃11 = Nsm is the number

of inertial orbits containing satellites with a given mean anomaly, and h̃12 = N ′c

is the dual configuration number. Once entries of H̃ matrix are input, lower

triangular matrix H can be calculated.

• Resonant parameters : In order to use compatible orbits the period, Td, of

revolution of the rotating frame and the orbital period, Tp, of the satellites

must satisfy that NdTd = NpTp for some positive, coprime integers Nd and

Np. Once Nd and Np are input, the number of satellites belonging to a single

relative trajectory, Nsr, and the number of distinct relative trajectories, Nrt,

can be computed.
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• Semi-major axis control slider : The Semi-major axis control slider varies the

semi-major axis. Move the thumb by pressing the right mouse button on it

and dragging it along the bar. You can also move the thumb by clicking in the

bar or pressing the left mouse button.

• Eccentricity control slider : The Eccentricity control slider varies the eccentric-

ity.

• Inclination control slider : The inclination control slider varies the inclination.

• Argument of perigee control slider : The Argument of perigee control slider

varies the argument of perigee.

• Re-orientation parameters editor box : The Re-orientation parameters editor

box can be used to input the desired latitude and longitude for re-orientation

• Simulation speed control slider : The Simulation speed control slider varies the

speed of the simulation.

• Orbit checkbox button : The Orbit checkbox button reveals or conceals the

orbits of constellation.

• Relative trajectory checkbox button : The Relative trajectory checkbox button

reveals or conceals the relative trajectory.

• Axes checkbox button : The Axes checkbox button reveals or conceals the axes

of coordinate.

• Planet checkbox button : The Planet checkbox button reveals or conceals the

planet surface.
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• Viewpoint radio button : Viewpoint radio button changes the viewpoint among

default viewpoints.

• Play button : The Play button starts the satellite’s orbit and the planet’s

rotation thread. The button label switches from “play symbol” to “pause

symbol” as appropriate.

• Reset button : The Reset button initializes the program.

A.2 3-D Lattice Flower Constellations Visualization Tool

Since a relative trajectory is not available in 3-D LFC theory, 3-D Lattice Flower

Constellations Visualization Tool does not provide the relative trajectory as shown

in Figure A.4. Because J2 effect causes right ascension ascending node and argu-

ment of perigee to vary secularly, the 3-D LFC Visualization Tool provides angular

momentum and eccentricity vectors. User interfaces are as follows.

• No editor box: The No represent the number of orbital planes.

• Nω editor box : The Nω represent the number of unique orbits (with different

arguments of perigee) on each plane.

• Nso editor box : The Nso represent the number of satellites on each of those

orbits.

• Nc1, Nc2, and Nc3 editor box: Nc1 ∈ [1, No], Nc2 ∈ [1, Nω], and Nc3 ∈ [1, No] are

three integers (called configuration numbers) identifying the satellite phasing.

• Angular momentum vector checkbox button : The Angular momentum vector

checkbox button reveals or conceals the angular momentum vector of the first

orbit in the constellation.
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• Eccentricity vector checkbox button : The Eccentricity vector checkbox button

reveals or conceals the eccentricity vector of the first orbit in the constellation.

Figure A.4: 3-D LFC visualization tool
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