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ABSTRACT 

 

       As the advance in high-throughput sequencing enables the generation of large 

volumes of genomic information, it provides researchers the opportunity to study non-

model organisms even in the absence of a fully sequenced genome. The hugely 

advantageous progress calls for powerful sequencing assembly algorithms as these 

technologies also raise challenging assembly problems: (1) Some RNA products are 

highly expressed but others may have much lower expression level. (2) Data cannot 

easily be represented as linear structure, due to post-transcriptional modification like 

alternative splicing. (3) Conserved sequences in domains in gene families can result in 

assembly errors, (4) Sequencing errors due to technique limitations. Useful assembly 

algorithms are required to overcome the difficulties above.  In these studies, there is 

often a need to identify similar transcripts in non-model organisms to transcripts found 

in related organisms. The traditional approach to address this problem is to perform de 

novo transcriptome assemblies to obtain predicted transcripts for these organisms and 

then employ similarity comparison algorithms to identify them. I observe it is possible to 

obtain a more complete set of similar transcripts from transcriptome assembly by 

making use of evolutionary information. I apply new algorithms to study non-model 

organisms which play an important role in applied biology.  

       Moreover, improvement of sequencing technologies and application of current 

algorithms also help to study interkingdom signals between blow flies and bacteria 

community. With current computational tools, I annotate genomes of Proteus mirabilis 
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and Providencia stuartii, which play an important role in bacteria-insect interaction. The 

study shows significant features of these strains isolated, which provides useful 

information to develop and test hypothesis in related interactions in insects and bacteria.  
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Central dogma of biology 

       In the central dogma of biology, there are three general processes which occur in 

biological systems: DNA replication, transcription and translation. During DNA 

replication, a complementary strand is synthesized with single-stranded DNA as 

template and the process is catalyzed by multiple DNA polymerases. DNA segments 

within gene regions can be transcribed into RNA with catalysis by RNA polymerase. 

RNA products include non-coding RNA (ncRNA) and coding RNA. Many ncRNAs like 

ribosomal RNA (rRNA), transfer RNA (tRNA), microRNA (miRNA), small nucleolar 

RNA (snoRNA) and small nuclear RNA (snRNA) are known to have housekeeping 

functions (1). For example, miRNAs are single strand ncRNA with length of around 22 

nucleotides. They are found to work in concert to inhibit expression of target mRNA. 

Long non-coding RNAs (lncRNA) are expressed from genomic regions including 

intergenic regions, the opposite strands of mRNAs and introns of genes. They have been 

identified to play an important role in epigenetic regulation, transcriptional regulation, 

post-transcriptional regulation (2). On Drosophila male X chromosome,  ncRNA roX 

forms complexes with male-specific lethal (MSL) proteins to mediate dosage 

compensation, a process of transcriptional upregulation on the chromosome X so that 

males express equal or similar numbers of gene products as females (3). In eukaryotic 

organisms, the immediate product after transcription is primary transcripts, which are not 
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functional, therefore posttranscriptional processing is required to produce mRNA (4).  

Nucleic acid sequence in mRNA is translated into amino acid sequence during protein 

synthesis. Proteins provide important functions in biological processes, such as catalysis 

by enzymes, oxygen transport by hemoglobin and oxygen storage by myoglobin (5). 

       The chapter will review current knowledge about sequencing technologies, mRNA 

processing in eukaryotes especially alternative splicing and de novo assembly strategies 

for non-model organisms and importance of some non-model organisms.  

       The expression and splicing of genes can impact many aspects of biology.  One 

important aspect of biology that is critical to understand from numerous applied 

perspectives is the interaction between bacteria and eukaryotes.  For instance, genomes 

of bacteria isolated from blow flies show genetic differences from clinical strains, which 

may contribute to physiological distinctions. Blow flies are eukaryotic non-model 

organisms. There is a study that alternative splicing of PGRP family mediates interaction 

between flies and bacteria (6). To understand interkingdom signaling between flies and 

bacteria, studies on genomes from microbial community isolated from flies as well as 

transcriptomes of flies may give useful hints. The advance of sequencing technologies 

paves a way for this cross-species study. 

 

Sequencing methods 

       To get sequence information, people used to reverse transcribe mRNA into cDNA, 

shear cDNA into small fragments and clone them to get large numbers of random cDNA 

fragments for Sanger sequencing. The conventional sequencing method, Sanger 
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sequencing, is named after its inventor, Frederick Sanger. It is also called chain-

terminator method, because it utilizes ddNTPs (dideoxynucleotide triphosphates) as 

sequence terminators. The conventional Sanger sequencing strategies separate DNA 

samples into four portions for four independent sequence amplification experiments. In 

each reaction, only one type of the four ddNTPs (ddATP, ddTTP, ddCTP, ddGTP) is 

added to terminate the polymerization. DdNTPs lack 3-OH compared to dNTPs, and 

thus cannot form a phosphodiester bond between two adjacent nucleotides. Therefore 

they terminate DNA strand extension at different positions according to the specific 

ddNTPs added. The products are DNA fragments with diverse lengths. After 

electrophoresis, DNA fragments are separated based on their sizes. Each band 

corresponds to a nucleotide in the overall sequence (7). In this way, sequence data can be 

retrieved from a gel with the read length of up to approximately 1,000 nucleotides. 

Sanger sequencing gets information by termination of sequence extension, runs slow, 

and is relatively expensive compared to next-generation techniques. However, this is 

also the gold standard for sequence identification, as it has been used successfully for 

decades and has well characterized error rates. 

       The next generation methods of sequencing produce many more sequences per 

dollar; however, they include more errors per sequence read, and their sources of errors 

are not well understood compared to Sanger sequencing. The main high throughput 

sequencing methods considered here are 454 pyrosequencing and Illumina/Solexa, 

SolLiD sequencing and ion torrent technologies.  
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1)  454 pyrosequencing 

       The 454 pyrosequencing technique depends on detection of pyrophosphate release. 

It was invented by 454 Life Science, a biotechnology company in Connecticut 

(www.454.com). It relies on emulsification PCR (polymerase chain reactions) to 

guarantee immobilization of DNA fragments during amplification. First, DNA libraries 

are prepared by shearing long sequences into shorter ones, adding adaptors to both ends 

and dissociating dsDNA into ssDNA. Then adaptors immobilize DNA fragments on the 

surface of beads. Each bead carries a unique ssDNA fragment. The fragments will be 

amplified in a water-and-oil mixture, which is a microreactor. When emulsified PCR 

finishes, amplified fragments are loaded onto a sequencing instrument. Four types of 

dNTPs (dATP, dCTP, dGTP, dTTP) are added sequentially to attach to 3' end of the 

primer if it is complementary to the template, producing pyrophosphate. Pyrophosphate 

can react with adenosine 5' phosphosulfate to generate ATP, which is then used to 

convert luciferin to oxyluciferin to emit light. The signals are captured and analyzed to 

get the sequence. Extra dNTPs are digested by apyrase before next cycle begins. The 

read length is around 200-400 nts. Per sequence base, 454 pyrosequencing is cheap and 

fast, compared to Sanger sequencing, but is not sensitive to homopolymers, for which it 

gives ambiguous base calls because there is no linear relationship between detection 

signals and the number of identical nucleotides. Also signals of long sequence with 

identical nucleotides may be above the detection range (8). Such problem can be 

overcome by Illumina/Solexa. 
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2) Illumina/Solexa 

       Illumina/Solexa sequencing is another high throughput sequencing technique. It 

utilizes four fluorescently-labeled nucleotides to sequence fragments from the surface of 

a flow well after bridge amplification in parallel. First, long sequences are sheared to get 

shorter fragments and adapters are added to both ends. The adapters enable fragments to 

attach to specific positions on the surface of the flow well, where there are two PCR 

primers attached and one of them has a cleavable site. The fragments hybridize to one 

primer and serve as template to synthesize complementary strand after polymerase and 

unlabeled nucleotides are added. After synthesis of new strand, original fragments are 

denatured and removed. New strands bend to hybridize another PCR primer forming 

‘bridges’. The primer hybridized extends to form a complementary strand. After cycles 

of denaturation and extension, ssDNA are still attached to the surface. The strands 

extended from the primer with the cleavage site are removed. DNA fragments left are 

loaded on a sequencing device. Four labeled nucleotides are added simultaneously to 

attach to the template. Each type of nucleotide emits a specific fluorescence if it is 

attached to the template. A fluorescence signal particular to the addition of each 

nucleotide is captured to get the sequence data. Illumina/Solexa sequencing costs less 

per base considering the machinery and chemicals used, and also run at a faster rate 

compared to traditional method and 454 pyrosequencing because all four types of 

nucleotides are added simultaneously to synthesize the complementary strand in 

sequencing; it also overcomes the homopolymer problem by relying on base-by-base 

sequencing. However the read length is much shorter, around 75-300nts, because it is 
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harder for longer fragments to “bridge” efficiently on the surface of flow cell, thus the 

resolution decreases dramatically for longer fragments (9). However, short reads make it 

more difficult for sequence assembly as they are unable to resolve problems in assembly 

related to long repeat sequences.  

 

3) SoLiD sequencing 

       SoLiD is a technique developed by Life Science in 2008. SoLiD depends on 2-base 

encoding in ligation-based sequencing. After DNA libraries are prepared, fragments are 

attached to the surface of bead for emulsification PCR like 454 pyrosequencing. When 

amplification is completed, the adapter attached to the free end attaches to the surface of 

a flow well via 3' modification to the strand. The surface of the flow well is now coated 

with beads each attached with a single DNA species. The nucleotide detection is not 

based on polymerase-driven amplification. Instead, eight-base probes are added. In the 

probe, named from 3' end, the 1st and 2nd bases are specific which possibly involved in 

hybridization, the 3th-5th are universal bases which can replace any of the four normal 

bases (A/T/G/C) without destabilizing duplex interaction, and the last 3 bases are 

degenerate bases which can replace at least two but not all of the four normal bases. 

There are 16 possible dual base combinations, so 16 types of probes are added to detect 

the sequence. Four colors are used to differentiate dinucleotides in 4th and 5th positions 

of the probe, each corresponding 4 possible dinucleotide combinations. After a universal 

primer with specific length is attached to the template, if the first dinucleotide in the 

probe is complement to the template, it ligates to 5' end of the primer to hybridize the 
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template with ligase, emitting specific fluorescence and the image is captured (Step 1 in 

Figure 1-1). Unextended strands are protected by phosphatase. Cleavage agent cleaves 

the 6-8th bases of the probe (Step 2 in Figure 1-1). If dinucleotide from another probe is 

complement to the template immediately to the 5' end of previous probe, it ligates to 

5'end of previous probe (Step 3 in Figure 1-1)  and cleavage of 6-8th bases is repeated. 

The cycle repeats until sequence extension is completed and fluorescence signals are 

retrieved (Step 4 in Figure 1-1). Then newly synthesized strand is melted and removed, a 

primer one base shorter than the previous primer is used to repeat the extension to get 

another set of fluorescence signals. The cycle repeats with primer one base off the 

previous primer (Step 5-6 in Figure 1-1). After 5 repeats with different-length primers, 

the sequence information can be retrieved by analyzing the result. It is sensitive, because 

a single base difference gives rise to 2 separate signal differences, while other 

technologies only cause one. The read length is ~50-75nts (10). Short reads also make 

barrier for assembly.   

 

4) Ion torrent semiconductor-based sequencing 

       Ion torrent sequencing technology was developed by Ion Torrent Systems Inc. The 

preparation of DNA libraries is similar to 454 pyrosequencing to generate beads attached 

with short single strands as templates for polymerization. Beads are loaded onto 

microwells with transistor-based sensors. Four types of unlabeled dNTPs are added 

separately, if polymerase incorporation occurs, that is, the added deoxynucleotides can 

be attached to 3'OH end of the growing strand, one of the products hydrogen ions (H
+
) 
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will be released and the pH change will be detected by the sensor as voltage change and 

translated into readable signals. Unused deoxynucleotides are washed away before the 

next test to ensure only one type of bases is incorporated in each trial. Considering only 

one type of deoxynucleotides is added each time, the sequencing time is not short and 

this technology may be limited by homopolymer detection. When there is a long 

fragment of identical bases, the signal may be above the detection range. It can produce 

reads as long as ~400nts (11).     

 

 

 

 

Figure 1- 1 Principle for SoLiD sequencing 
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Single-molecule sequencing technologies 

       For the second generation of sequencing, many techniques give short reads after 

amplification, although technologies like 454 pyrosequencing can detect longer strands, 

but are not sensitive to homopolymers. Short reads build overwhelming challenges in 

sequence assembly. The emerging single-molecule DNA sequencing approaches provide 

new hope in genome research as it provides the potential to produce sequences of very 

long lengths, though at the moment error rates are very high. They are methods to 

determine sequences at single base resolution. The new approaches include True Single-

Moledule Sequencing (tSMS) developed by Helicos BioSciences, Single Molecule Real 

Time (SMRT) sequencing by Pacific BioSciences, nanopore sequencing demonstrated 

by Deamer’s group in 1996 and others. The first two approaches have been 

commercialized. 

       The tSMS technology is a sequencing-by-synthesis approach. DNA double strands 

are dissociated, sheared, attached to 3' poly(A) tails, labeled and blocked by terminal 

transferase. The templates are immobilized with their poly(A) tails covalently bound to 

poly(T) fragments on a surface. The surface is incubated with solution with one labeled 

dNTPs. If the dNTPs can be incorporated to 3'end of the growing strand, terminators 

will be removed and a fluorescence signal will be release.  Sequencing information can 

be deduced from the released signals. Unincorporated nucleotides will be washed away 

before next test. It does not require PCR amplification, avoiding amplification error and 

reducing experiment cost. However, the average length of reads is ~30-35 bases, limited 
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by reversible terminators. It is still challenging to detect strings of consecutive identical 

base (12).  

       The SMRT sequencing technology was developed by Pacific Biosciences based on 

observation of individual fluorophores during DNA synthesis. Different from most 

sequencing-by-synthesis approaches, fluorescence labels are on the terminal phosphate 

rather than the bases, with different colored fluorophores on different nucleotides. When 

a nucleotide is incorporated into the growing strand, fluorescence intensity from the 

zero-mode waveguides (ZMW) located in SMRT chips is elevated. After the formation 

of phosphodiester bond, the labeled phosphate group is cleaved from the nucleotide by 

DNA polymerase. The labeled phosphate group quickly diffuses out of ZMW and ends 

the fluorescence pulse. It can sequence reads with length of ~3000bp on average with 

raw error rates of 10-20% limited by photo destruction of DNA polymerase. The 

accuracy can be improved by repeated sequencing (12). 

       Nanopore-based sequencing determines base type while ssDNA molecules pass 

through nanopores with different electrical signals. The sequencing concept was first 

demonstrated by Deamer et al in 1996. Nanopores are prepared from α-hemo lysine 

covalently attached with cyclodextrin. Electrical current runs through the pore. After an 

exonuclease cleaves ssDNA, single bases fall into the nanopores and block the current. 

Different signals correspond to different nucleotides, thus the signal can be amplified to 

get the sequence. It can process longer strands even with homopolymers. It does not 

need DNA labeling, thus it is cheaper compared to fluorescence-label based sequencing. 

Considering DNA molecules are destroyed as they are read, it is less likely to re-read the 
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same strand, an improved strategy was proposed to identify individual nucleotides when 

DNA strands pass intact through nanopores. The possible read length can be ~50,000 

bases, without DNA amplification, but the technology is challenged by the cost of the 

instrument and electrical noise during detection (12). 

       The progress of sequencing technologies helps to understand post-transcriptional 

processing such as alternative splicing in eukaryotic organisms. Advanced sequencing 

technologies provide huge RNA-seq data with splicing information inside at lower cost 

per base compared to traditional technologies. 

 

Posttranscriptional processing in eukaryotes 

       Primary transcripts in eukaryotes are still not functional after transcription. They 

have to undergo removal of non-coding regions by splicing and addition of the 5' cap 

(m
7
G or 7-methyl-guanylate cap) and 3' poly(A) tail, which includes around 100-250 

adenosines. The mature mRNA is shown in Figure 1-2. It is composed of 5' cap, 5' 

untranslated region (UTR), coding sequence, 3' UTR and poly(A) tail from 5' end to 3' 

end. During processing, nonexpressed intervening sequences called introns are removed, 

expressed sequences called exons are retained, 5' cap and 3' poly(A) tail are added to 5' 

end of the first exon and 3' end of the last exon, respectively. Both the cap and poly(A) 

tail are used to protect mRNA from nucleolytic degradation. The cap consists of a 7-

methyguanosine (m
7
G) residue which is joined to the nucleotide at 5' end of the 

transcript. The poly(A) tail, with the length of around 250nt, is appended to 3' end of the 



 

12 

 

RNA transcript. 5' UTR plays a role in translational control. In 3' UTR, cis-acting 

elements regulate mRNA stability (13). Both 5' UTR and 3' UTR sequences are not 

coding sequence and thus not involved in translation. Therefore, both sequences can still 

be found in transcriptome but not in proteome.  

 

 

 

 

Figure 1- 2 Mature mRNA 

 

 

 

Alternative splicing 

       In eukaryotes, alternative splicing is a common event. It has been found that around 

43% genes in fission yeast Schizosaccharomyces pombe contain introns (14). In 

Drosophila melanogaster, about 46% of the genes showing different expression patterns 

during development probably due to alternative usage of promoters or alternative 

splicing (15). In Homo sapiens, about 40-60% of the genes have alternative splicing 

events (16).  

       Alternative splicing is not only found frequently in eukaryotic organisms, but also 

plays a biologically important role. The gene Dscam (Down syndrome cell adhesion 

molecule) in D. melanogaster can encode more than 38,000 diverse transcript products 

due to alternative splicing. Temporal and spatial regulation of alternative splicing of 

Dscam plays an important role in neuronal wiring specificity (17). The expression of 
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Doublesex (Dsx) transcription factor in D. melanogaster is sex-specific, controlled by a 

cascade of splicing factors which are alternatively spliced themselves (18). Exon 

skipping of gene BRCA1 caused by nonsense or missense mutations results in breast 

cancer in humans (19). The expression level of a circadian clock gene called LATE 

ELONGATED HYPOCOTYL (LHY) in Arabidopsis thaliana can be decreased by 

temperature-associated alternative splicing (20). 

       This differential use of exons is achieved through a well characterized splicing 

mechanism. Pre-mRNA is composed of introns and exons. Before splicing, introns have 

to be recognized via three fundamental signals: 5' donor site, 3' acceptor site and a poly-

pyrimidine tract before 3' acceptor site (21). There are multiple types of alternative 

splicing events: exon skipping, in which an exon can be excluded from a transcript, 

intron retention, in which an intron can be included after splicing, alternative 

donor/acceptor, in which donor/acceptor site can be contained in the spliced product. 

Thus one gene can encode multiple proteins (22).  

       Splicing events are catalyzed by a splicesome: a complex of U1, U2, U5 and U4/U6 

snRNPs (small nuclear ribonucleoproteins), pre-mRNA and various pre-mRNA binding 

proteins. After assembly of splicesome, splicing occurs in two stages. In the first stage, 

2'-OH of an adenosine located close to 3' splice site, nucleophilically attacks the 

phosphate at the 5' splice site to form 2'5'-phosphodiester bond with 5' end phosphate 

group, becoming a branch nucleotide. The adenosine is generally located around 20-50 

residues upstream of 3' splice site. The second stage includes addition of 3' OH of the 

previous exon to the 5' end of the next exon forming a phoshodiester bond, as well as 
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cleavage of RNA at 3' splice site. After exons are joined to each other, the transcript is 

formed and introns are released in a lariat structure (23).  

       Alternative splicing mechanism plays an important role in physiological changes to 

environmental factors, studies on expression of spliced variants under specific conditions 

and their expressional levels are of great interest to scientists. To understand the splicing 

information, transcriptomes from eukaryotic organisms need to be sequenced and 

assembled. 

 

Transcriptome assembly strategies 

       There are currently two transcriptome assembly strategies. Mapping-first method, 

such as Cufflinks (24) and Scriptures (25), perform splice-aware alignment of short 

reads to the reference genome and then assemble transcription products from spliced 

alignments. It can reconstruct transcripts independent of known splice sites and identify 

novel mRNA products. But this strategy relies on reference genome and is complicated 

by sequencing and alignment errors. The alternative strategy, assembly-first approach, 

also called de novo approach, involves software like assemblers Velvet and ABySS, and 

their post-processing modules Oases and Trans-ABySS respectively. Assemblers 

assembles RNA reads de novo, and then post-processing modules construct predicted 

transcripts based on assembly data, which can be further aligned to the genome if 

available by users. It does not require a reference genome, but is less sensitive to 

construct transcripts which are less abundant and complicated by short reads.  
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       Both strategies above build directed graphs and go through paths in graphs to find 

diverse transcripts. Graph representation is more suitable than linear structure. First, 

some positions in pre-mRNA have more than one possibility of splicing, which 

introduces branches. Second, graph representation contains all possible transcripts and 

the relation between different transcripts in a concise way. The graph most frequently 

used is the de Brujin Graph, which is developed by Dr. Pevzner's group. It is different 

from an overlap graph, in which reads correspond to vertices and edges connecting two 

vertices correspond overlap (26). In the de Brujin graph, reads from sequencing are 

decomposed into multiple k-mers, with k as a parameter called hash length set by users 

representing the number of nucleotides in a fragment. Each node in the graph represents 

a k-mer, which overlaps with adjacent ones. The overlapping length is k-1 nucleotides. 

Nodes are connected by directed arcs which show the overlap and order (27). Users can 

also set another parameter called coverage cutoff c representing the minimum times that 

a k-mer appears in the reads. Nodes in linear structure can be merged into single nodes, 

but there still exist branches where there can be more than one possibility of splicing. 

Fig 1-3 shows a simple case when k=3, reads are rearranged as 3-mers, with 3 nts each. 

Adjacent 3-mers are overlapped by 2 nts. One 3-mer, GTC, appears 3 times among the 

reads, thus its coverage is 3. After the construction of a de Brujin graph, linear sequences 

are merged into one node to get alternative paths. In this case, adjacent nodes, GTC, 

TCA and CAG are merged together to become a new node GTCAG. In the rearranged 

graph shown below in Fig 1-3, single nodes are shown as rectangles of A, C and 

GTCAG. 
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Figure 1- 3 de Bruijn graph construction and alternative paths 

 

 

 

       After de novo assembly by Velvet or ABySS, Oases or Trans-ABySS 

correspondingly is used to construct predicted transcripts based on coverage from the 

graph Velvet or ABySS built. However, the prediction process trims out short sequences, 

which may be part of mRNA products. One way to recover those short sequences is to 

do construction with BLAST searches. Short sequences may not find a hit in BLAST 

search, but after connecting to adjacent sequences in the graph, resulting longer 

sequences may find a better hit in BLAST search than those before connection, and are 

presumably portion of mRNA products. Thus the more reasonable way is to connect 

adjacent nodes in the graph based on BLAST result. The process can be conducted by 

heuristic extension.  
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Heuristic extension 

       Performing an exhaustive search to enumerate all possible transcripts from the 

transcriptome graph is not feasible, but a heuristic algorithm can be used to find a 

satisfactory solution in reasonable amount of time. One example is shown in Fig 1-4. 

There are two ways for extension from node 1, extension towards node 2 or node 5. 

Suppose the path 1→5 after extension towards node 5 shows an improved BLAST score 

over the path 1→2 after extension towards node 2. To find an optimal path starting from 

node 1by heuristic extension, extension will not continue in direction towards node 2 

and bypass node 3 and node 4. However, exhaustive extension would enumerate all 

paths starting from node 1, including paths that transverse node 3 or node 4, and it would 

still identify path 1→5 is the optimal solution. In comparison, heuristic extension can 

identify path 1→5 as the optimal search solution relatively quickly.  

 

 

 

 

Figure 1- 4 Heuristic extension in the graph 
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       The strategy of de novo assembly with heuristic extension can be applied to non-

model organism studies. Non-model organisms are organisms which are poorly 

annotated, because they were not selected for extensive study previously. However, they 

play an important role in applied biology. Here are the examples of Melilotus, Proteus 

mirabilis and Providencia stuartii studies that help to answer ecological and 

evolutionary questions in biology. 

 

Melilotus 

       Studies on Melilotus help to identify transcriptomic features in plants which allow 

them to tolerate harsh growth conditions. The Melilotus genus originating from Eurasia, 

is a forage legume that fixes nitrogen in root nodules with a symbiotic relationship with 

rhizobia. It is evolutionarily closely related to Medicago truncatula, a legume model 

organism (28). Melilotus can grow in hash environments like high salinity and tolerate 

waterlogging, while Medicago is salt tolerant but susceptible to waterlogging. Studying 

tolerance of forage legumes plays an important role in risk assessment before 

recommendation of plants to increase fodder crop production under severe salinity and 

waterlogging conditions (29).  

       Among Melilotus genus, the species Melilotus albus has been identified as 

productive under saline conditions (28). An earlier study showed that Melilotus siculus 

has high resistance to salinity and waterlogging (30).  
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Proteus mirabilis and Providencia stuartii 

       Studies on Proteus mirabilis and Providencia stuartii can advance understanding of 

bacterial infection in patients and interkingdom signaling between bacteria and flies. 

       Proteus mirabilis, a Gram-negative rod-shaped pathogen, is a gut commensal 

bacterium associated with human urinary tract infections (UTI) (31,32). The bacteria 

produce urease, an enzyme with high molecular weight to catalyze hydroxylation of urea 

into carbon dioxide and ammonia. Increase of ammonium concentration elevates 

environmental pH to precipitate normally soluble polyvalent ions like ammonium, 

phosphate, magnesium and calcium ions, which results in formation of urinary stones 

(33). Other virulence factors involve flagella which give rise to swarming motility for 

bacteria to ascend the ureters to the renal tubules, fimbriae which enable bacteria to 

adhere to kidney epithelium and uroepitheial cells, proteases which avoid host defense as 

well as hemolysin which causes cytotoxicity(34).  

       Quorum sensing (QS) is utilized by P. mirabilis to sense concentration of secreted 

small chemical signal molecules (quormons) which reflect cell density and coordinate 

gene expression (35,36). QS is a process of cell-to-cell communication. Quormons are 

synthesized within cells and secreted out of the cells. When population density of 

bacteria community exceeds a specific threshold, there are sufficient quormons to be 

sensed to initiate concerted actions among bacteria. Different quormons are used by 

Gram-positive and Gram-negative bacteria to measure density of population (36). A 

recent study found that some bacteria signaling mechanisms are shared by Drosophila 

melanogaster (37).  
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       Swarming mobility enables P. mirabilis to move and spread across surfaces by 

increasing flagella number and secreting surfactants to reduce surface tension, giving 

rise to difficulty of isolation from mixed cultures (38,39). When in contact with a solid 

surface, P. mirabilis differentiate into elongated and hyperflagellated swarmer cells from 

short vegetative swimmer cells (40). Recently, swarming signals associated with P. 

mirabilis have been linked to fly behavior, making the species a model for interkingdom 

signaling between P. mirabilis and Lucilia sericata (35). 

       P. mirabilis has been found in the blow fly L. sericata (35,41), a common blow fly 

used in maggot therapy (42,43), and sterilization of maggot therapy with P. mirabilis has 

been suggested (41,44). Bacteria survive in the guts of flies when added to the flies’ 

diets and may stimulate oviposition for flies by secreting volatile compounds (45). It has 

been found that maggot secretions contain antimicrobial substances, some of which are 

metabolic products of P. mirabilis (46). 

       Providencia stuartii has also been found in larvae of blow flies (45) and is 

phylogenetically closely related to P. mirabilis (47), but does not show swarming nature 

(48). Providencia is also distinguished from Proteus by producing acid from various 

sugars and incapability of either hydrolyzing gelatin or producing hydrogen sulfide and 

lipase (47). 

       Coinfection of mice with P. mirabilis and P. stuartii enhances urolithiasis and 

bacteremia with synergistic induction of urease activity (49).  There two species coexist 

in the catheter biofilm microbial communities (50). Coinfection leads to similar bacterial 
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load of multispecies infection but urease mutation in P. mirabilis results in decreased 

synergistic induction (49).  

       Non-model organisms are not well annotated, but studies on non-model organisms 

show ecological and evolutionary importance and benefit from research on closely 

related model organisms which are well annotated. Traditional sequencing technologies 

generate one read per sample, however, next generation sequencing technologies are 

able to generate millions of reads per sample at lower costs per base. The advance of 

next generation sequencing technologies enables the genomic and transcriptomic studies 

on non-model organisms. Advanced bioinformatics algorithms and analysis need to be 

performed to study the non-model organisms with increased-size read data. 
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CHAPTER II  

 IDENTIFYING SIMILAR TRANSCRIPTS IN A RELATED ORGANISM FROM DE 

BRUIJN GRAPHS OF RNA-SEQ DATA, WITH APPLICATIONS TO THE STUDY 

OF SALT AND WATERLOGGING TOLERANCE IN MELILOTUS 

 

       As the advance in high-throughput sequencing enables the generation of large 

volumes of genomic information, it provides researchers the opportunity to study non-

model organisms even in the absence of a fully sequenced genome. These studies often 

start from sequencing the entire transcriptome, while additional software is applied to 

process the data. An important mechanism to study is alternative splicing, which is 

crucial to a variety of biological functions. The goal of these studies is to recover as 

many isoforms as possible in order to understand the underlying biological processes. 

       In the presence of a reference database, there are two strategies for analyzing 

transcriptome data. Mapping-first algorithms perform splice-aware alignment of the 

reads to the reference genome to reconstruct the transcripts (24,25). While these 

algorithms can construct transcripts independent of known splice sites and identify novel 

mRNA products, they only allow very few differences during the alignment. 

Alternatively, when a reference genome is not available but a reference transcriptome is 

available, transcript quantification algorithms can be applied to analyze differential 

expression of genes (51,52). 

       In the absence of a reference database, an alternative strategy is to employ de novo 

sequence assembly algorithms (27,53-59). A popular strategy of transcriptome assembly 
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algorithms is to assemble the reads by obtaining a de Bruijn graph that represents the 

transcriptome (58-61). 

       Although the de Bruijn graph contains all branching possibilities, an additional step 

is needed to obtain predicted transcripts from the graph. To obtain information about 

possible function of these predicted transcripts, a similarity search algorithm such as 

BLAST (62) is then applied to identify similar transcripts in a related organism. Since 

the predicted transcripts are constructed based on coverage information, one 

shortcoming of this approach is that sequences with low coverage are often ignored 

leading to missed transcripts. The later BLAST step to a related organism then starts 

from this relatively incomplete set of predicted transcripts. 

       Instead of performing similarity search from the predicted transcripts, I observe that 

it is possible to obtain a more complete set of similar transcripts if I start the search from 

the de Bruijn graph directly (see Figure 2-1). This strategy bypasses the transcript 

prediction step and makes use of support from evolutionary information. Since the graph 

retains more information from the transcriptome data, transcripts that have low coverage 

can still be recovered if they have high similarity with the ones from the related 

organism. In metagenomics, Wu et al. (63) employed a similar idea to extract paths 

directly from the de Bruijn graph that correspond to homologous genes from closely 

related species. Recently, Bao et al. (64) utilized genomic information from the same 

organism or a related organism (instead of transcripts from a related organism) to 

improve de novo transcriptome assemblies by first identifying exons from alignments. 

While the strategy of applying BLAST from each node in a de Bruijn graph to a related 
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organism can already give a lot of hits, it is possible that some significant hits are missed 

since the sequence within a node may be too short. There is a need to identify paths in 

the de Bruijn graph that are similar to transcripts from the related organism. Since the 

number of possible paths that can be constructed from the de Bruijn graph can be very 

large, it is not feasible to enumerate all of them.  

 

 

 

 

Figure 2- 1 Difference between traditional strategy to obtain similar transcripts and 

my new strategy that bypasses the transcript prediction step 

 

 

 

       I develop a heuristic extension algorithm that starts with enumerating short paths in 

the de Bruijn graph, and iteratively extends these paths in the most promising directions 
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rather than in all possible directions. This procedure generalizes the BLAST algorithm to 

allow a non-linear query structure instead of a query sequence. Note that my strategy is 

different from the one in (63) that uses optimal alignment to extend paths due to the 

smaller scale of metagenomic data. I compare the performance of my algorithm that 

starts the search from the de Bruijn graph against existing algorithms that employ the 

strategy of first obtaining predicted transcripts then applying BLAST to obtain similar 

transcripts. I validate my algorithm by extracting reads from publicly available RNA-

Seq libraries. I construct new RNA-Seq libraries for the non-model organisms Melilotus 

albus and Melilotus siculus, and apply my algorithm to study salt and waterlogging 

tolerance in these two species. 

 

Methods 

       Given a set of reads and a parameter k, a popular strategy of transcriptome assembly 

algorithms is to assemble these reads into a de Bruijn graph that represents the 

transcriptome. By taking each k-mer that appears within the reads as a vertex, and 

connecting two k-mers by a directed edge if the (k−1)-suffix of the first k-mer is the 

same as the (k−1)-prefix of the second k-mer, the de Bruijn graph implicitly assembles 

the reads by linking together the same k-mer that comes from different reads (65,66). 

This strategy is very popular among short read assembly algorithms (27,54,55,57,58). 

       To minimize the effect of sequencing errors, these algorithms remove short tips and 

further simplify the de Bruijn graph by collapsing similar paths. Each linear path that 
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contains a sequence of vertices with no branches is collapsed into a single node, and a k-

mer coverage cutoff c is imposed to remove low coverage nodes (27,57,58). 

       While the resulting de Bruijn graph contains all branching possibilities, it can 

contain complicated cycles. I cannot consider each connected component as a splicing 

graph that specifies the alternative splicing paths of a single gene (67). I develop an 

algorithm to extract paths in the de Bruijn graph that correspond to similar transcripts in 

a related organism. Each extracted path can be considered as a predicted transcript in the 

original organism. 

 

Initial choice of contigs to extend 

       For each transcript in a related organism, my goal is to recover the best path in the 

de Bruijn graph that corresponds to the transcript. My approach is based on the seed-

extension strategy that starts from short paths, and iteratively extends these paths in 

promising directions. I start the search from nodes in a de Bruijn graph that correspond 

to contigs from short read assembly algorithms (27,57,58). 

       Given a de Bruijn graph G=(V,E), a database of known transcripts in a related 

organism T and an e-value cutoff ef , I first apply BLAST from each node in the de 

Bruijn graph to the transcript database to obtain all hits with e-value below ei, where 

ei>ef (see Figure 2-2, step 1). The extra e-value cutoff ei is chosen to allow the initial 

seed nodes to be of lower quality. Some of these nodes can be extended later into longer 

paths that are of higher quality. 
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Figure 2- 2 Algorithm extContig that starts the search for similar transcripts from 

the de Bruijn graph instead of from predicted transcripts. Steps 1–4 choose an 

initial set of contigs to extend. Steps 5–17 implement the heuristic extension. Steps 

18–19 report the results 

 

 

 

       For each transcript in the database, I extract top n nodes in the de Bruijn graph that 

give the best BLAST hits to it, where n is a given parameter (see Figure 2-2, steps 2–5). 

The resulting collection of nodes over all transcripts in the database becomes the set of 
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all nodes that my heuristic extension algorithm extContig will start from, which are the 

ones that are most likely to have correspondences with transcripts in the database. Note 

that more stringent values of k and the k-mer coverage cutoff c can provide longer nodes 

to start with but can also lead to missed nodes. 

 

Heuristic extension 

       For each node u in the collection, I extend its sequence by one node along all 

outgoing edges from u, and apply BLAST from each of these extended sequences to the 

transcript database. If at least one of these extended sequences gives a better e-value, I 

extract the top extended path that gives the best e-value. I repeat the extension procedure 

starting from this new path until either there are no more outgoing edges to extend from 

or the e-value no longer improves (see Figure 2-2, steps 7–14). 

       Note that during each extension, only one best direction is chosen. Extending in 

more than one direction is very time-consuming since the number of possibilities can be 

exponential even in the absence of cycles. Although it is possible that the real best path 

may be missed, it is still possible to resolve different isoforms since the heuristic 

extension procedure starts independently from multiple nodes, some of which may be 

specific to particular isoforms. The procedure can be applied even in the presence of 

cycles in the de Bruijn graph since the e-value cannot improve indefinitely. 

       I perform a similar procedure on the node u' that is the twin node of u, which 

represents the reverse complementary sequence of k-mers on the opposite strand, and try 

to extend it in the opposite direction. In addition to adding these two extended paths 
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from u and u' to the set of candidate paths, I also merge the twin path that is 

complementary to the extended path from u' with the extended path from u to obtain a 

longer path. I add the merged path to the set of candidate paths and identify its best 

BLAST hit in the transcript database (see Figure 2-2, steps 15–17). 

 

Extraction of similar transcripts 

       At the end of the procedure, for each transcript in the database, I report the top path 

that gives the best e-value to it among all the candidate paths if such a path exists, where 

the set of candidate paths includes all paths that BLAST has been applied (see Figure 2-2, 

steps 18–19). Only the nodes of a path that are in the best BLAST alignment are reported. 

It is possible that some of these paths may be the same or very similar for different 

transcripts in the database. 

 

Melilotus RNA-Seq 

        MRNA was extracted from Melilotus albus and Melilotus siculus using a Qiagen 

Oligotex mRNA mini kit. Fragmentation of mRNA was done using an Ambion 

fragmentation buffer. Construction of the cDNA library was based on the Illumina 

protocol. First strand cDNA synthesis was done using Random Hexamer Primers 

(Invitrogen) and second strand synthesized using a DNA Polymerase 1 (Promega). End 

repair was carried out to create uniform blunt ends (Epicentre End-IT repair kit). Unique 

4 bp adaptors (Illumina) were added so that the libraries could be pooled for sequencing. 

An ‘A’ base was added using a Klenow enzyme (3' to 5' exo minus, NEB) and adaptor 
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ligation was performed using Epicentre Fast-Link DNA ligation kit. The cDNA template 

was run on a 2% agarose gel at 120 V for 60 minutes and fragments of approximately 

200–500 bp were removed and purified (Zymo gel purification kit). The purified cDNA 

template was PCR enriched using the Illumina primers and a Phusion polymerase. The 

library was quantified using an Invitrogen Qubit fluorometer. Libraries were sequenced 

on an Illumina Genome Analyzer II under normal conditions and conditions associated 

with salt tolerance or waterlogging tolerance or both as single-end 100 bp reads, which 

were trimmed to 71 bp. 

 

Results 

       To assess the performance of my algorithm, I extracted reads from publicly 

available RNA-Seq libraries (see Table 2-1). I validate my algorithm on model 

organisms by applying BLAST to a database of annotated transcripts in each model 

organism itself and in two other related model organisms with varying evolutionary 

distances, including Schizosaccharomyces pombe against another yeast species 

Saccharomyces cerevisiae and another fungus Neurospora crassa, Drosophila 

melanogaster against another Drosophila species Drosophila pseudoobscura and 

mosquito Anopheles gambiae, Homo sapiens against squirrel monkey Saimiri boliviensis 

and mouse Mus musculus, and Arabidopsis thaliana against another Arabidopsis species 

Arabidopsis lyrata and rice Oryza sativa. 
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Table 2- 1 Data sets used in the evaluation of my heuristic extension algorithm, with 

organism indicating the starting organism, related organisms indicating the related 

model organisms that BLAST is applied to, lib indicating the total number of 

libraries, size indicating the total number of bases in all the reads after quality 

trimming, and reference indicating the publication that describes the libraries. 

 

 

 

       I compare the performance of the algorithms on publicly available RNA-Seq 

libraries from four non-model organisms. The blow fly Lucilia sericata is important in 

medicine, forensic science and agriculture due to its filth feeding habits, its use in 

maggot therapy, its colonization of human and animal remains, and its ability to cause 

myiasis in vertebrates (71). The naked mole rat Heterocephalus glaber is important in 

medicine and in biomedical research due to its resistance to cancer and delayed aging, 

and its ability to live in adverse conditions (72). The rodent Ctenomys sociabilis is 

organism related organism lib Size (G, giga 

base pairs) 

reference 

Schizosaccharomyces. pombe Saccharomyces cerevisiae 32 17  (59) 

 Neurospora crassa  9.6   

Drosophila melanogaster Drosophila pseudoobscura 13 16  (68) 

 Anopheles gambiae  16   

Homo sapiens Saimiri boliviensis 4 16  (69) 

 Mus musculus    

Arabidopsis thaliana Arabidopsis lyrata 5 16  (70) 

 Oryza sativa    

Lucilia. sericata D. melanogaster 9 4.6  (71) 

Heterocephalus. glaber Homo sapiens 13 61  (72) 

Ctenomys. sociabilis Homo sapiens 10 66  (73) 

Cicer arietinum Arabidopsis thaliana 3 8.6  (74) 

Melilotus. albus Arabidopsis thaliana 12 5.5  new data 

Melilotus. siculus Arabidopsis thaliana 12 5.4  new data 
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important in the study of social behavior of mammals and the relationship to gene 

expression (73). The chickpea Cicer arietinum is one of the most consumed legume 

crops that grows in arid areas with low productivity (74). Similarity search is performed 

from L. sericata to the model organism D. melanogaster, from H. glaber and C. 

sociabilis to the model organism H. sapiens, and from C. arietinum to the model 

organismA. thaliana. The searches that are applied against the same model organism 

have varying evolutionary distances. I have constructed new RNA-Seq assemblies for 

the non-model organisms Melilotus albus and Melilotus siculus, which are important in 

the study of salt and waterlogging tolerance of forage plants (28). Genomic information 

on the species will enable the dissection of coumarin production that can be utilized in 

pharmaceutical development (75). Similarity search is performed fromM. albus andM. 

siculus to the model organism A. thaliana. I trimmed each read by removing all positions 

including and to the right of the first position that has a quality score of less than 15. For 

smaller data sets (including D. melanogaster, L. sericata, C. arietinum, M. albus and M. 

siculus), I compare the performance of my heuristic extension algorithm 

       extVelvet starting from the de Bruijn graph given by Velvet (27) against the 

performance of Oases (61) that is a postprocessing module of Velvet. Since Oases 

requires that Velvet is run without coverage cutoff and then applies the coverage cutoff 

itself, I use the de Bruijn graph within Oases that is modified from Velvet’s original de 

Bruijn graph. For the other larger data sets, I compare the performance of my heuristic 

extension algorithm extABySS starting from the de Bruijn graph given by ABySS (57) 

against the performance of Trans-ABySS (60) that is a postprocessing module of ABySS. 
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I applied each algorithm with k as 25 or 31, for smaller data sets c as 3, 5 or 10 and for 

larger data sets c as 10, 20 or 50. BLAST is applied to predicted transcripts in Oases and 

Trans-ABySS, to paths in the de Bruijn graph in extVelvet and extABySS, and to 

contigs in Velvet/Oases and ABySS. To compare each model organism against itself, 

nucleotide BLAST search is applied to a database of gene transcripts with initial e-value 

cutoff ei=10
−15

 and final e-value cutoff ef =10
−100

. For the other cases, translated BLAST 

search is applied to a database of protein transcripts in a related organism with initial e-

value cutoff ei=10
−6

 and final e- value cutoff ef =10
−20

. For each transcript in the 

database, top 8 nodes (and their twin nodes) are chosen to form the initial nodes for 

extension. Additional criteria are imposed to extend past very short nodes. 

 

Transcript recovery 

       I assess the performance of each algorithm in recovering transcripts by investigating 

the number of similar transcripts obtained, database coverage, alignment length of 

shared transcripts, and the number of recovered transcripts that are close to full length. 

While the absolute performance depends on the amount of RNA-Seq data, the 

complexity of transcriptomes, the evolutionary distance between organisms and the 

assembly algorithm that is being used, Figure 2-3 shows that Oases and Trans-ABySS 

generally recover more similar transcripts than their base algorithms Velvet and ABySS, 

while extVelvet and extABySS generally recover even more.  
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Figure 2- 3 Comparisons of the change in the number of similar transcripts 

recovered by Oases and Trans-ABySS (shown as white bar) to the change in the 

number of similar transcripts recovered by extVelvet and extABySS (shown as grey 

bar) respectively over the numbe r of similar transcripts recovered by Velvet and 

ABySS (shown under the x-axis) respectively for different values of k and k-mer 

coverage cutoffs c. Within each graph, the corresponding values of k=25/c=3,   

k=25/c=5,  k=25/c=10,  k=31/c=3, k=31/c=5, k=31/c=10  from left to right for smaller 

data sets, including D. melanogaster, L. sericata, C. arietinum, M. albus and M. 

siculus, and k=25/c=10,  k=25/c=20,  k=25/c=50,  k=31/c=10, k=31/c=20, k=31/c=50 

from left to right for larger data sets, including S. pombe, H. sapiens, A. thaliana, H. 

glaber and C. sociabilis. For comparing each model organism against itself (graphs 

with a single-species label), nucleotide BLAST search is applied with e-value cutoff 

ef =10
−100

. For the other cases, translated BLAST search is applied with e-value 

cutoff ef =10
−20

. 
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Figure 2- 3 Continued. 
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Figure 2- 3 Continued. 

 

 

 

Transcript recovery 

       I assess the performance of each algorithm in recovering transcripts by investigating 

the number of similar transcripts obtained, database coverage, alignment length of 

shared transcripts, and the number of recovered transcripts that are close to full length. 

While the absolute performance depends on the amount of RNA-Seq data, the 

complexity of transcriptomes, the evolutionary distance between organisms and the 

assembly algorithm that is being used, Figure 2-3 shows that Oases and Trans-ABySS 

generally recover more similar transcripts than their base algorithms Velvet and ABySS, 

while extVelvet and extABySS generally recover even more.  
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Figure 2- 4 Comparisons of the change in database coverage of Oases and Trans-

ABySS to the change in database coverage of extVelvet and extABySS respectively 

over the database coverage of Velvet and ABySS respectively for different values of 

k and k-mer coverage cutoff c. Notations are the same as in Figure 3. Database 

coverage is defined by the percentage of positions in the transcript database that 

are included in the best BLAST alignment of each similar transcript. 
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Figure 2- 4 Continued. 

 

 

 

       While Trans-ABySS recover fewer similar transcripts than ABySS in the case of H. 

glaber to H. sapiens, (see Figure 2-3), Figure 2-4 shows that this loss can be offset by 
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the increase in length of the predicted transcripts over the length of the contigs. While 

this leads to an overall improvement in database coverage by Oases and Trans-ABySS, 

extVelvet and extABySS generally improve even more. The improvement in database 

coverage of Trans-ABySS is small when compared to ABySS, which leads to a much 

larger improvement of extABySS over Trans-ABySS. These improvements are not 

absolute since different algorithms can recover different sets of similar transcripts. The 

base algorithm ABySS already has high performance for S. pombe against itself, while 

the large data set sizes of H. glaber and C. sociabilis lead to high database coverage for 

all algorithms (see Table 2-1).  

 

 

 

 
 

Figure 2- 5 Comparisons of the distributions of the best BLAST alignment length of 

each similar transcript that is recovered by both Oases and extVelvet (or by both 

Trans-ABySS and extABySS), with the total number of shared transcripts shown 

under the x-axis for each value of k and k-mer coverage cutoff c. Y axis shows the 

distribution of alignment length. Outliers are not shown within each box plot. 

Other notations are the same as in Figure 3. Alignment length is in nucleotides for 

comparing each model organism against itself and in amino acids for the other 

cases. 
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Figure 2- 5 Continued. 
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Figure 2- 5 Continued. 

 

 

 

       Figure 2-5 shows that among the similar transcripts that are recovered by both Oases 

and extVelvet (or by both Trans- ABySS and extABySS), extVelvet and extABySS can 

recover longer transcripts in some cases, with large improvements for A. thaliana. Most 

of the recovered transcripts are shared between Oases and extVelvet (or between Trans-

ABySS and extABySS) (compare to Figure 2-3).  

       Figure 2-6 shows that extVelvet and extABySS can recover more similar transcripts 

that are close to full length than Oases and Trans-ABySS. Both Oases and extVelvet (or 

Trans-ABySS and extABySS) can recover more full length transcripts than Velvet (or 

ABySS).  
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Figure 2- 6 Comparisons of the change in the number of similar transcripts that are 

80% full length transcripts (100% full length transcripts for S. pombe) and 

recovered by Oases and Trans-ABySS to the change in the ones recovered by 

extVelvet and extABySS respectively over the ones recovered by Velvet and ABySS 

respectively on model organisms for different values of k and k-mer coverage cutoff 

c. Notations are the same as in Figure 2-3. These transcripts are the ones in which 

80% (100% for S. pombe) of the coding region is included in the best BLAST 

alignment. 
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Figure 2- 7 Comparisons of the change in the number of exons that are found in 

only one annotated transcript of the same gene with multiple isoforms and 

recovered by Oases and Trans-ABySS to the change in the ones recovered by 

extVelvet and extABySS respectively ov er the ones recovered by Velvet and ABySS 

respectively for different values of k and k-mer coverage cutoff c. Notations are the 

same as in Figure 2-3. Exons within isoforms that do not have the same starting 

position or the same ending position are considered to be distinct. An exon is 

recovered if it has some overlap with the best BLAST alignment. Exons within 

mRNAs are considered for comparing each model organism against itself, while 

exons within coding regions of the related model organism are considered for the 

other cases. Results for S. pombe are not included since there is little alternative 

splicing, while a few other results are not included due to poor annotations of 

alternative splicing in the related model organisms. 
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Figure 2- 7 Continued. 

 

 

 

 Alternative splicing 

       I assess the ability of each algorithm in distinguishing between isoforms by 

considering exons that are found in only one annotated transcript of the same gene with 

multiple isoforms, which are the ones that can resolve them. Figure 2-7 shows that 

extVelvet and extABySS are able to recover a larger number of such exons in most cases, 

with large improvements of extABySS over Trans-ABySS. Figure 2-8 shows examples 

in which extVelvet and extABySS can better resolve isoforms with respect to a related 

organism, including the ZDHHC16 gene, which is a zinc finger protein that may be 
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involved in apoptosis regulation (76); the dSarm gene, in which the loss of its function in 

D. melanogaster protects against injury-induced axon death (77); the STAT3 gene, which 

is an acute-phase response factor in H. sapiens in which the isoforms have unique 

functions (78); and the AT4G34660 gene, which is a SH3 domain-containing protein in 

A. thaliana that is involved in clathrin-mediated vesicle 

trafficking (79). 

 

False positive estimates 

       I assess the reliability of each algorithm by identifying similar transcripts that are 

recovered by each algorithm, but are not recovered by a simple protein BLAST search 

from each model organism to another related model organism with the same e-value 

cutoff. The number of such transcripts serves as the upper limit on the number of false 

positives (some of these correspondences may actually be correct but not annotated). 

Figure 2-9 shows that the number of false positives is very small for all algorithms, with 

extVelvet (or extABySS) having slightly higher values than Velvet and Oases (or 

ABySS and Trans-ABySS). 
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Figure 2- 9 Comparisons of the change in the number of false positive similar 

transcripts recovered by Oases and Trans-ABySS to the change in the ones 

recovered by extVelvet and extABySS respectively over the ones recovered by 

Velvet and ABySS respectively for different values of k and k-mer coverage cutoff c. 

Notations are the same as in Figure 2-3. A false positive similar transcript is 

recovered by each algorithm, but is not recovered by a simple protein BLAST 

search from each model organism to another related model organism with e-value 

cutoff 10
−20

. 
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Figure 2- 9 Continued. 
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Figure 2- 10 Comparisons of the cumulative distribution of the expression estimates 

of similar transcripts that are 80% full length transcripts (100% full length 

transcripts for S. pombe) and recovered by Velvet, Oases and extVelvet (or by 

ABySS, Trans-ABySS and extABySS) divided into 20 quantiles in model organisms. 

Y-axis shows fraction of transcripts in different quantiles (5% increment) and x-

axis shows expression quantiles. The least stringent values of k and c are used in 

each case, which is k=25/c=3 for D. melanogaster and k=25/c=10 for the other 

organisms. 
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Gene expression 

       I assess the ability of each algorithm to recover transcripts at different expression 

levels. For each model organism, I apply eXpress (52) to the reads in each data set with 

respect to the reference transcript database, and obtain expression estimates of similar 

transcripts that are close to full length and recovered by each algorithm. Figure 2-10 

shows that extABySS is able to recover a higher proportion of full length transcripts 

with low coverage than ABySS and Trans-ABySS.  

 

Melilotus albus and Melilotus siculus  

       In order to study salt and waterlogging tolerance of the two Melilotus species, I 

apply my algorithm starting from each species to the model organism A. thaliana and the 

non-model organism Medicago truncatula, which is not as well annotated but closer in 

evolutionary distance. I assess the differences between the two species by applying GO 

Term Finder (80) to the two sets of gene names in recovered similar transcripts from M. 

albus and M. siculus to A. thaliana and M. truncatula to identify significantly 

overrepresented GO terms with Bonferroni corrected p-value below 0.01 within the 

biological process ontology. 
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Figure 2- 11 Venn diagrams of the number of genes in recovered similar transcripts 

from M. albus and M. siculus to A. thaliana and M. truncatula in the k=25/c=3 

assembly. 

 

 

 

       Figures 2-11 and 2-12 show that while a large number of genes in recovered similar 

transcripts and significantly overrepresented GO terms are shared by the two species, a 

small number of results that are unique to each species can be found. 

 

 

 

 

Figure 2- 12 Venn diagrams of the number of significantly overrepresented GO 

terms from M. albus and M. siculus to A. thaliana and M. truncatula in the k=25/c=3 

assembly. 
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       To assess differential gene expression under different conditions, I apply edgeR (81) 

in the Bioconductor package (82) on the expression estimates given by eXpress (52) to 

obtain a set of differentially expressed genes under one condition against another 

condition with q-value below 0.01, and apply GO Term Finder (80) to identify 

significantly overrepresented GO terms. Tables 2-2 and 2-3 show that differentially 

expressed genes can be identified under all conditions, with some of them associated 

with significantly overrepresented GO terms (q<0.01). These results provide further 

basis to study the genes that are responsible for differences in salt and waterlogging 

tolerance of the two species. 

 

 

 

Table 2- 2 Differentially expressed genes recovered from M. albus and M. siculus to 

A. thaliana and M. truncatula from libraries associated with one condition versus 

another condition in the k=25/c=3 assembly, with organism indicating the starting 

organism and its related organism, SvsC indicating salt tolerance versus control, 

WvsC indicating waterlogging tolerance versus control, SWvsC indicating salt and 

waterlogging tolerance versus control, SWvsS indicating salt and waterlogging 

tolerance versus salt tolerance, and SWvsW indicating salt and waterlogging 

tolerance versus waterlogging tolerance. 

 

 

 

Organism SvsC WvsC SWvsC SWvsS SWvsW 

M. alb to A.tha 8 141 81 47 12 

M. sic to A.tha 39 7 10 45 8 

M. alb to M.tru 11 220 114 86 17 

M. sic to M.tru 74 24 31 84 12 
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Table 2- 3 Significantly overrepresented GO terms recovered from M. albus and M. 

siculus to A. thaliana and M. truncatula from libraries associated with one condition 

versus another condition in the k=25/c=3 assembly. Notations are the same as in 

Table 2-2. 

 

 

 

Conclusions 

       Since the main memory requirement of my algorithm is for storing the de Bruijn 

graph and performing BLAST searches, my heuristic extension algorithms extVelvet and 

extABySS are much less memory intensive and more easily parallelizable than the base 

algorithms Velvet and ABySS (37). Iterative BLAST searches can be performed 

independently in parallel by assigning disjoint subsets of nodes to different processors 

for extension. 

       The running time of my algorithm has large dependence on the number of nodes that 

are chosen for extension (see Table 2-4). This in turn depends on the size of RNA-Seq 

data and the complexity of transcriptomes, which are reflected by the number of nodes in 

the de Bruijn graph and the number of transcripts in the database, and it also depends on 

the evolutionary distance between the starting organism and the related model organism. 

When applying to a different related organism, my running time in terms of processor-

hours is at most a few to 10 times more than the base algorithm in almost all cases, and it 

can be much less in some cases. 

Organism SvsC WvsC SWvsC SWvsS SWvsW 

M. alb to A.tha 0 23 42 7 0 

M. sic to A.tha 9 0 0 2 0 

M. alb to M.tru 2 0 1 0 0 

M. sic to M.tru 0 0 0 0 0 
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Table 2- 4 Running time in processor-hours, with the values to the left and to the 

right of “+” indicating the running time of Velvet and Oases respectively (or 

ABySS and Trans-ABySS respectively), organism indicating the related model 

organism, time indicating the running time of extVelvet (or extABySS), chosen 

indicating the number of nodes that are chosen for extension, de Bruijn indicating 

the number of nodes in the de Bruijn graph, and database indicating the number of 

transcripts in the database. 

 

 

 

       The situation is different in model organisms when similarity searches are 

performed to the organism itself. Since the BLAST hits are of much higher quality, path 

extensions can be very time consuming. In such cases, mapping-first algorithms such as 

Cufflinks (2) or Scripture (1) could be used instead, which often have better performance 

least stringent k_c organism time chosen de Bruijn  database 

S. pom (84+0.2) S. pom 45 40786 536894 5011 

 S.cer 12 15252 536894 5907 

 N.cra 12 16366 536894 10082 

D. mel (6.7+4.4) D. mel 238 139248 466572 22102 

 D. pse 67 63982 466572 16071 

 A.gam 32 41578 466572 12659 

H. sap (45+0.2) H.sap 595 221942 1133348 32787 

 S.bol 490 88342 1133348 25621 

 M.mus 167 89070 1133348 29617 

A. tha (112+0.2) A.tha 2495 397638 3111862 41671 

 A.lyr 944 218760 3111862 32549 

 O.sat 616 143778 3111862 26777 

L. ser (1.2+0.2) D. mel 67 46760 392630 22102 

T. yun (2.0+0.4) D. mel 28 47638 330514 22102 

H. gla (368+0.2) H.sap 1920 203466 5457924 32799 

C. soc (440+0.2) H.sap 1344 175692 5030586 32799 

C. ari (4.2+46) A.tha 200 103652 1209068 41671 

M. alb (5.8+2.9) A.tha 79 82596 536210 41671 
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since my need to impose a k-mer coverage cutoff to simplify the de Bruijn graph for 

heuristic extension often leads to missed transcripts. 

       My heuristic extension strategy cannot be applied to all transcriptome assembly 

algorithms. On algorithms such as Trinity (12) that first clusters the data and constructs a 

de Bruijn graph individually for each cluster, each of these individual graphs has simple 

structures. Performing heuristic extension on top of these graphs will not lead to 

significant improvements. 

       While my strategy cannot replace transcript predictions in de novo assemblies when 

the goal is to identify novel transcripts that have no similarity to other organisms, I have 

shown that my strategy can recover more and longer transcripts and can better resolve 

isoforms when similar transcripts are available from a related organism. By making use 

of evolutionary information, the sequence similarity support from the BLAST 

alignments ensures that the correspondences between the similar transcripts in the 

original organism and in the related organism are real. 
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CHAPTER III 

 HEURISTIC PAIRWISE ALIGNMENT OF DE BRUIJN GRAPHS TO FACILITATE 

SIMULTANEOUS TRANSCRIPT DISCOVERY IN RELATED ORGANISMS FROM 

RNA-SEQ DATA 

   There is often a need to investigate the transcriptomes of two related organisms at 

the same time in order to study their similarities and differences. In these cases, RNA-

Seq libraries are obtained from both organisms under different experimental conditions 

and the goal is to compare their transcriptome assemblies. The traditional approach to 

address this problem is to perform transcriptome assemblies to obtain predicted 

transcripts for the two organisms separately (see Figure 3-1). Similarity comparison 

algorithms such as BLAST (83) are then employed to extract corresponding transcripts 

that are shared in the two organisms. Since predicted transcripts are constructed 

independently for each organism based on coverage information only, this strategy is 

often unreliable. To address this problem, I develop an algorithm to allow direct 

comparisons between paths in the two intermediate de Bruijn graph structures by an 

iterative extension strategy (see Figure 3-1). Since sequence similarity information is 

often more reliable, this strategy allows the direct extraction of shared transcripts based 

on evolutionary support. 
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Figure 3- 1 Difference between traditional strategy and my strategy. 

 

 

 

Methods 

De Bruijn graph 

       Given a set of reads and a parameter k, a de Bruijn graph is constructed by taking 

each k-mer that appears within the reads as a vertex. Two k-mers are connected by a 

directed edge if the (k−1)-suffix of the first k-mer is the same as the (k−1)-prefix of the 

second k-mer (66,84). The de Bruijn graph implicitly assembles the reads by linking 

together the overlapping parts, and it is employed as the main intermediate structure by 

most short read assembly algorithms (27,54,55,57,58). To obtain a more compact 

structure, each linear sequence of vertices that have no branches is collapsed into a 

single node that corresponds to contigs. 
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Iterative extension 

       Given de Bruijn graphs G1 and G2 that correspond to transcriptome assemblies of 

two related organisms, I first apply BLAST to obtain similarity scores between each pair 

of nodes u from G1 and v from G2. I then start the iterative extension process as follows. 

For each node u from G1, I extract its most similar node v from G2 with e-value below a 

cutoff. If such a node v exists, I retain u as a single-node path. I extend u by one node 

along all its outgoing edges into multiple paths, and apply BLAST from each of these 

extended paths from u against v. If at least one of these extended paths gives a better e-

value against v, I retain all the paths that have better e-values and continue to extend the 

top path that gives the best e-value. I repeat the procedure starting from this new path 

until the e-value no longer improves. Note that only one best direction is chosen since 

extending in more than one direction is very time-consuming. By starting from each 

node u in G1 independently, the probability of missing the real best path is reduced a lot. 

After the above procedure, I have retained u and all the extended paths from u that have 

improved e-values, with the top path that gives the best e-value being fully extended. I 

then retain v as a single-node path and perform a similar extension process starting from 

v by extending it by one node along all its outgoing edges into multiple paths. I apply 

BLAST from each of these extended paths from v against all the retained paths from u. If 

at least one of these extended paths gives a better e-value, I retain all the paths that have 

better e-values and continue to extend the top path that gives the best e-value. Similar to 

above, I repeat the procedure starting from this new path until the e-value no longer 
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improves to obtain a fully extended path and a set of retained paths from v that have 

improved e-values (see Figure 3-2). 

 

 

 

 

Figure 3- 2 Illustration of the iterative extension procedure. The paths that are fully 

extended from u in G1 and from v in G2 are marked in bold, while the other 

retained paths with improved e-value are not marked. 

 

 

 

       I then repeat the entire extension procedure in turn in G1 and G2 by replacing u by 

the fully extended path from u and comparing against all the retained paths from v, and 

replacing v by the fully extended path from v and comparing against all the retained 

paths from u. The entire process is repeated until no more improvements can be made, 

and the algorithm is applied again by switching the role of G1 and G2 and repeating all 

the steps. To obtain longer paths, I consider the retained paths from each node u and the 

retained paths from its twin node u', in which u' represents the reverse complementary 

sequence of u on the opposite strand. I merge the twin paths that are complementary to 

the retained paths from u' with the retained paths from u, and keep those paths with 

improved e-values. 
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Extraction of predicted transcripts 

       I consider all the retained paths in G1 as predicted transcripts in the first organism 

and all the retained paths in G2 as predicted transcripts in the second organism. Since the 

collection of all these retained paths can be very big, I only keep a path if it contains a 

node in the de Bruijn graph that is not covered by another path with a better e-value 

according to the top BLAST alignment. In this condition, a node is covered by a path if 

it contains the node itself or its twin node. To avoid a large number of incorrectly 

predicted isoforms, I remove paths with worse e-values so that each node in the de 

Bruijn graph along with its twin node appears at most 10 times within the final set of 

paths. 

 

Extraction of predicted shared transcripts 

       To obtain predicted shared transcripts that have correspondences between the two 

organisms, I apply BLAST from each predicted transcript in one organism against the 

set of all predicted transcripts in the other organism as database. I retain a predicted 

transcript as a predicted shared transcript if it appears both as a query with BLAST hits 

from one direction and as a subject BLAST hit in the other direction. 

 

Results and discussion 

Validation 

       I implement my algorithm Mutual as a postprocessing module of Velvet (27), which 

is a popular sequence assembly algorithm that returns a set of contigs along with the de 
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Bruijn graph. I compare my  performance to Oases (61), which uses output from Velvet 

to construct predicted transcripts. I validate my  algorithm by applying it to 

simultaneously recover transcripts in mouse against rat and in mouse against human 

from publicly available RNA-Seq libraries at the sequence read archive (85), including 

two libraries from mouse in (24) (SRX017794), one library from rat in (86) 

(SRX076903), and four libraries from human in (87) (SRX011545). I perform quality 

trimming by removing all positions including and to the right of the first position that 

has a quality score of less than 15, resulting in a size of 1.3 G for the mouse libraries, 2.5 

G for the rat libraries and 1.1 G for the human libraries. I apply each algorithm over 

k=25 and k=31, and over k-mer coverage cutoff c=3, 5 and 10. In my  algorithm Mutual, 

iterative extension is applied twice with an e-value cutoff of 0.1 using the bl2seq 

(BLAST 2 Sequences) variant of BLAST, once with translated BLAST and once with 

nucleotide BLAST. Velvet and Oases are applied independently in each organism. Since 

Oases applies the coverage cutoff itself to obtain a de Bruijn graph by modifying 

Velvet’s original de Bruijn graph without coverage cutoff, Mutual is applied on the two 

de Bruijn graphs given by Oases to obtain predicted transcripts. To obtain predicted 

shared transcripts for both Oases and Mutual, I apply both translated BLAST and 

nucleotide BLAST with an e-value cutoff of 10
−7

 or 10
−20

 from each predicted transcript 

in one organism with the set of all predicted transcripts in the other organism as database. 

The predicted transcripts that appear both as a query with BLAST hits from one 

direction and as a subject BLAST hit in the other direction are retained as predicted 

shared transcripts. To evaluate the accuracy of the predicted shared transcripts, I apply 
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nucleotide BLAST to compare them against known mouse, rat or human transcriptome 

databases using the same e-value cutoff as the one used to obtain the transcripts, which 

is 10
−7

 or 10
−20

. To assess the extent of translocated transcripts, I apply GMAP (88) to 

map the predicted shared transcripts to known mouse, rat or human genomes. 

 

 

 

Table 3- 1 Comparisons of the number of predicted transcripts in the test on mouse 

against rat from Oases and from Mutual over different values of k and k-mer 

coverage cutoff c. Note that these numbers are not directly comparable between 

Oases and Mutual since the predicted transcripts from Mutual are obtained by 

extending similar paths that appear in the two organisms with an e-value cutoff of 

0.1 from bl2seq, while the predicted transcripts from Oases are obtained 

independently in each organism without such constraints 

 

 

 

 Predicted transcripts 

       Tables 3-1 and 3-2 show that Mutual constructed fewer predicted transcripts than 

Oases. Note that the predicted transcripts from Mutual are obtained by extending similar 

paths that appear in the two organisms through iterative BLAST, while the predicted 

transcripts from Oases are obtained independently in each organism. The similarity 

constraints in Mutual ensure that a predicted transcript in one organism has a similar 

  mouse rat 

k c Oases Mutual Oases Mutual 

25 3 51218 40657 100317 56409 

25 5 27873 18511 33396 22538 

25 10 10557 6104 7669 5639 

31 3 48841 29778 82090 38141 

31 5 25947 14073 28047 15981 

31 10 8224 3954 5145 3485 
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counterpart in the other organism, albeit with a loose e-value cutoff. The later reciprocal 

BLAST is needed to enforce more stringent e-value cutoffs. On the other hand, the 

predicted transcripts from Oases have no such constraints, and reciprocal BLAST is used 

to obtain shared transcripts. 

 

Predicted shared transcripts 

       When compared to Tables 3-1 and 3-2, Tables 3-3 and 3-4 show that only a small 

percentage of predicted transcripts were shared in the two organisms, with a smaller 

decrease by Mutual than by Oases. The decrease by Mutual is due to more stringent e-

value cutoffs, while the decrease by Oases is due to imposing similarity constraints 

between the two organisms. While the actual amount of predicted shared transcripts that 

can be recovered depends on the size of libraries, the evolutionary distance between the 

two organisms and the experimental conditions, Tables 3-3 and 3-4 show that Mutual 

recovered more predicted shared transcripts than Oases. Almost all these predicted 

shared transcripts are found in the corresponding known transcriptome database, with 

comparable percentages between Mutual and Oases. The percentages are lower for rat, 

probably due to the fact that the rat genome is less well annotated. The number of 

predicted shared transcripts decreases as the assembly parameters become more stringent, 

but these transcripts are of higher quality. 
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Table 3- 2 Comparisons of the number of predicted transcripts in the test on mouse 

against human. Notations are the same as in Table 3-1. 

 

 

 

Table 3- 3 Comparisons of the number of predicted shared transcripts (shared) and 

the number of predicted shared transcripts that have BLAST hits from each 

organism to its known transcriptome database (found) in the test on mouse against 

rat from Oases and from Mutual over different values of k and k-mer coverage 

cutoff c and over different e-value cutoffs 10
−7

 and 10
−20

. The number in 

parentheses is the percentage of predicted shared transcripts that have BLAST hits 

from each organism to its known transcriptome database 

 

 

 

 

  mouse human 

k c Oases Mutual Oases Mutual 

25 3 51218 34514 100317 36268 

25 5 27873 18561 33396 17519 

25 10 10557 7020 7669 5405 

31 3 48841 23510 82090 23263 

31 5 25947 13433 28047 12867 

31 10 8224 4358 5145 3182 

 mouse (10-7) rat (10-7) 

k_c Oases Mutual Oases Mutual 

 shared found shared found shared found shared found 

25_3 27671 26756 (97%) 35230 34011 (97%) 24489 21844 (89%) 39287 34298 (87%) 

25_5 12729 12366 (97%) 14924 14520 (97%) 10092 9245 (92%) 15287 13639 (89%) 

25_10 3955 3823 (97%) 4589 4465 (97%) 2994 2835 (95%) 3955 3705 (94%) 

31_3 22635 22046 (97%) 25035 24396 (97%) 20917 19008 (91%) 27484 24744 (90%) 

31_5 10229 10028 (98%) 11039 10825 (97%) 8398 7815 (93%) 11225 10332 (92%) 

31_10 2597 2545 (98%) 2871 2815 (98%) 2013 1939 (96%) 2489 2382 (96%) 
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Table 3- 3 Continued 

 

 

 

Table 3- 4 Comparisons of the number of predicted shared transcripts and the 

number of predicted shared transcripts that have BLAST hits from each organism 

to its known transcriptome database in the test on mouse against human. Notations 

are the same as in Table 3-3 

 

 

 

 

 

 

 mouse (10-20) rat (10-20) 

k_c Oases Mutual Oases Mutual 

 shared found shared found shared found shared found 

25_3 22936 22290 (97%) 28705 27881 (97%) 19282 17719 (92%) 29923 26898 (90%) 

25_5 10904 10608 (97%) 12648 12336 (98%) 8242 7669 (93%) 12087 10999 (91%) 

25_10 3077 3253 (96%) 3901 3790 (97%) 2510 2388 (95%) 3254 3070 (94%) 

31_3 18052 17627 (98%) 20026 19567 (98%) 15835 14699 (93%) 20943 19264 (92%) 

31_5 8429 8261 (98%) 9157 8964 (98%) 6623 6623 (94%) 8886 8251 (93%) 

31_10 2196 2150 (98%) 2438 2386 (98%) 1681 1681 (97%) 2041 1959 (96%) 

 mouse (10-7) human (10-7) 

k_c Oases Mutual Oases Mutual 

 shared found shared found shared found shared found 

25_3 20763 20406 (98%) 25630 25189 (98%) 22499 22084 (98%) 28364 27911 (98%) 

25_5 11914 11685 (98%) 12956 12784 (99%) 12037 11786 (98%) 12806 12643 (99%) 

25_10 4644 4520 (97%) 5226 5114 (98%) 3844 3762 (98%) 4121 4047 (98%) 

31_3 14631 14440 (99%) 16226 16041 (99%) 16498 16348 (99%) 18482 18482 (99%) 

31_5 8351 8241 (99%) 8920 8825 (99%) 9250 9171 (99%) 9841 9753 (99%) 

31_10 2727 2686 (98%) 2924 2887 (99%) 2326 2308 (99%) 2438 2420 (99%) 
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Table 3- 4 Continued. 

 

 

 

Top BLAST hits to databases 

       By applying BLAST from each set of predicted shared transcripts in each organism 

to its known transcriptome database, Tables 3-5 and 3-6 show that Mutual recovered 

more shared transcripts than Oases, with many more shared transcripts recovered when 

the assembly parameters are less stringent.  

 

Length distribution of transcripts 

       Figures 3-3 and 3-4 show that the lengths of predicted shared transcripts recovered 

by Mutual were comparable to the ones recovered by Oases, which are slightly shorter 

for mouse but have slightly higher medians for rat. These transcripts are generally longer 

when the k-mer coverage cutoff c increases. 

 

 

 

 

 mouse (10-20) human (10-20) 

k_c Oases Mutual Oases Mutual 

 shared found shared found shared found shared found 

25_3 15532 15335 (99%) 18418 18165 (99%) 17104 16799 (99%) 19840 19558 (99%) 

25_5 9534 9356 (98%) 10249 10137 (99%) 9718 9541 (98%) 10120 10000 (99%) 

25_10 3965 3854 (97%) 4452 4358 (98%) 3344 3278 (98%) 3593 3529 (98%) 

31_3 10165 10045 (99%) 11250 11127 (99%) 12052 11960 (99%) 13138 13043 (99%) 

31_5 6262 6183 (99%) 6728 6654 (99%) 7267 7216 (99%) 7615 7557 (99%) 

31_10 2245 2209 (98%) 2419 2385 (99%) 2003 1989 (99%) 2083 2069 (99%) 
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Table 3- 5 Comparisons of the number of top unique BLAST hits to different 

transcripts from each set of predicted shared transcripts in each organism to its 

known transcriptome database in the test on mouse against rat from Oases and 

from Mutual over different values of k and k-mer coverage cutoff c and over 

different e-value cutoffs 10
−7

 and 10
−20

. Only the top hit with e-value below the 

cutoff is considered. The number in parentheses is the change by Mutual over 

Oases. 

 

 

 

Table 3- 6 Comparisons of the number of top unique BLAST hits to different 

transcripts from each set of predicted shared transcripts in each organism to its 

known transcriptome database in the test on mouse against human. Notations are 

the same as in Table 3-5 

 

 

 

 

 

 

 

10-7 mouse rat 10-20 mouse rat 

k_c Oases Mutual Oases Mutual k_c Oases Mutual Oases Mutual 

25_3 7780 8349 (+569) 7382 8061 (+679) 25_3 7035 7547 (+512) 6608 7148 (+540) 

25_5 5310 5563 (+253) 4863 5158 (+295) 25_5 4715 4929 (+214) 4319 4538 (+219) 

25_10 2361 243 (+102) 2011 2094 (+83) 25_10 2008 2094 (+86) 1769 1833 (+64) 

31_3 6645 6854 (+209) 6392 6660 (+268) 31_3 5780 5997 (+217) 5527 5802 (+275) 

31_5 4286 4368 (+82) 3933 4103 (+170) 31_5 3713 3804 (+91) 3454 3557 (+103) 

31_10 1705 1740(+35) 1462 1517 (+55) 31_10 1443 1484 (+41) 1287 1320 (+33) 

10-7 mouse human 10-20 mouse human 

k_c Oases Mutual Oases Mutual k_c Oases Mutual Oases Mutual 

25_3 7090 7474 (+384) 7123 7548 (+425) 25_3 6169 6402 (+233) 6317 6539 (+222) 

25_5 5308 5392 (+84) 5244 5318 (+74) 25_5 4666 4700 (+34) 4679 4696 (+17) 

25_10 2781 2818 (+37) 2591 2612 (+21) 25_10 2452 2476 (+24) 2376 2385 (+9) 

31_3 5490 5647 (+157) 5198 5387 (+189) 31_3 4421 4557 (+136) 4416 4547 (+131) 

31_5 3918 3971 (+53) 3662 3732 (+70) 31_5 3221 3275 (+54) 3180 3222 (+42) 

31_10 1796 1805 (+9) 1573 1594 (+21) 31_10 1531 1540 (+9) 1403 1410 (+7) 
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Table 3- 7 Comparisons of the number of predicted shared transcripts that are 

80% full length transcripts in the test on mouse against rat from Oases and from 

Mutual over different values of k and k-mer coverage cutoff c and over different e-

value cutoffs 10
−7

 and 10
−20

. These transcripts are the ones in which 80% of the 

coding region is included in the best BLAST alignment from each organism to its 

known transcriptome database. The number in parentheses is the change by 

Mutual over Oases. 

 

 

 

Table 3- 8 Comparisons of the number of predicted shared transcripts that are 

80% full length transcripts in the test on mouse against human. Notations are the 

same as in Table 3-7. 

 

 

 

Recovery of full length transcripts 

       The situation is different when considering predicted shared transcripts that are 

close to full length. Tables 3-7 and 3-8 show that Mutual recovered more or a 

10-7 mouse rat 10-20 mouse rat 

k_c Oases Mutual Oases Mutual k_c Oases Mutual Oases Mutual 

25_3 1900 1840 (-60) 2066 1777 (-289) 25_3 1802 1743 (-59) 1870 1611 (-259) 

25_5 1705 1677 (-28) 1739 1581 (-158) 25_5 1595 1561 (-34) 1577 1429 (-148) 

25_10 1119 1097 (-22) 862 848 (-14) 25_10 984 975 (-9) 798 788 (-10) 

31_3 1144 1158 (+14) 1407 1179 (-228) 31_3 1061 1077 (+16) 1226 1042 (-184) 

31_5 1054 1062 (+8) 1240 1095 (-145) 31_5 966 990 (+24) 1092 978 (-114) 

31_10 719 724 (+5) 662 662 (0) 31_10 638 646 (+8) 607 602 (-5) 

10-7 mouse rat 10-20 mouse rat 

k_c Oases Mutual Oases Mutual k_c Oases Mutual Oases Mutual 

25_3 1851 1808 (-43) 1529 1553 (+24) 25_3 1733 1686 (-47) 1450 1477 (+27) 

25_5 1716 1666 (-50) 1534 1536 (+2) 25_5 1605 1552 (-53) 1454 1459 (+5) 

25_10 1250 1241 (-9) 1178 1183 (+5) 25_10 1124 1112 (-12) 1114 1126 (+12) 

31_3 1085 1099 (+14) 739 746 (+7) 31_3 995 1008 (+13) 686 700 (+14) 

31_5 1009 1018 (+9) 734 736 (+2) 31_5 923 932 (+9) 678 683 (+5) 

31_10 720 723 (+3) 627 628 (+1) 31_10 654 656 (+2) 579 585 (+6) 
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comparable number of 80% full length transcripts as Oases when the assembly 

parameters are more stringent, and less 80% full length transcripts than Oases when the 

assembly parameters are less stringent. Although Mutual performs worse for rat that 

recovers less 80% full length transcripts than Oases, its predicted shared transcripts have 

slightly higher median lengths when considering all the transcripts together (see Figure 

3-3), instead of just the ones that are 80% full length transcripts.  

 

Presence of translocated transcripts  

       Reconstructed transcripts covering fragments from different chromosomes or 

different loci far away on the same chromosomes may be considered translocated 

transcripts and identified as assembly errors because they are rare. As reported by 

GMAP, Tables 3-9 and 3-10 show that Mutual recovered a much larger number of 

predicted shared transcripts that are uniquely mapped than Oases, while at the same time 

returning more translocated transcripts that can be considered to be errors due to their 

rare occurrences (89). The ratio of the number of translocated transcripts to the number 

of uniquely mapped transcripts is at most about twice as much for Mutual when 

compared to Oases. This ratio increases when k decreases or when the k-mer coverage 

cutoff c increases. 
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Table 3- 9 Comparisons of the number of predicted shared transcripts that are 

uniquely mapped (unique) or translocated (transloc) as reported by GMAP in the 

test on mouse against rat from Oases and from Mutual over different values of k 

and k-mer coverage cutoff c and over different e-value cutoffs 10
−7

 and 10
−20

. The 

number in parentheses is the ratio of the number of translocated transcripts to the 

number of uniquely mapped transcripts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k_c 

mouse(10-7) rat(10-7) 

Oases Mutual Oases Mutual 

unique transloc unique transloc unique transloc unique transloc 

25_3 24635 599 (0.024) 30713 1475 (0.048) 21335 986 (0.046) 33566 2337 (0.067) 

25_5 10718 436 (0.041) 12071 1011 (0.084) 8509 438 (0.051) 12676 971 (0.077) 

25_10 2913 218 (0.075) 3197 409 (0.128) 2353 122 (0.052) 3042 257 (0.084) 

31_3 20360 242 (0.012) 22229 483 (0.022) 18236 497 (0.027) 23818 795 (0.033) 

31_5 8778 189 (0.022) 9263 388 (0.042) 7132 251 (0.035) 9453 388 (0.041) 

31_10 1914 99 (0.052) 2026 176 (0.087) 1553 65 (0.042) 1888 113 (0.060) 

 

 

k_c 

mouse(10-20) rat(10-20) 

Oases Mutual Oases Mutual 

unique transloc unique Transloc unique transloc unique transloc 

25_3 20209 544 (0.027) 24662 1368 (0.055) 16880 746 (0.044) 25851 1536 (0.059) 

25_5 9070 396 (0.044) 10067 931 (0.092) 7021 332 (0.047) 10097 718 (0.071) 

25_10 2431 188 (0.077) 2631 372 (0.141) 1977 98 (0.050) 2499 214 (0.086) 

31_3 16077 213 (0.013) 17610 415 (0.024) 13866 376 (0.027) 18290 516 (0.028) 

31_5 7136 156 (0.022) 7538 347 (0.046) 5656 177 (0.031) 7572 243 (0.032) 

31_10 1590 85 (0.053) 1701 146 (0.086) 1299 51 (0.039) 1559 83 (0.053) 
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Table 3- 10 Comparisons of the number of predicted shared transcripts that are 

uniquely mapped or translocated as reported by GMAP in the test on mouse 

against human. Notations are the same as in Table 3- 9. 

 

 

 

 

 

 

k_c 

mouse(10-7) human(10-7) 

Oases Mutual Oases Mutual 

unique transloc unique transloc unique transloc unique transloc 

25_3 18157 531 (0.029) 21931 1209 (0.055) 19912 224 (0.011) 25142 592 (0.024) 

25_5 10036 393 (0.039) 10760 763 (0.071) 10353 150 (0.014) 11088 334 (0.030) 

25_10 3582 203 (0.057) 3838 420 (0.109) 3114 78 (0.025) 3281 221 (0.067) 

31_3 12899 196 (0.015) 14105 370 (0.026) 14748 65 (0.004) 16499 126 (0.008) 

31_5 7084 147 (0.021) 7392 302 (0.041) 8101 43 (0.005) 8536 94 (0.011) 

31_10 2029 93 (0.046) 2095 167 (0.080) 1858 30 (0.016) 1919 58 (0.030) 

 

 

k_c 

mouse(10-20) human(10-20) 

Oases Mutual Oases Mutual 

unique transloc unique transloc unique transloc unique transloc 

25_3 13313 499 (0.037) 15285 1073 (0.070) 14928 195 (0.013) 17259 518 (0.030) 

25_5 7877 373 (0.047) 8286 713 (0.086) 8301 130 (0.016) 8638 315 (0.036) 

25_10 2980 188 (0.063) 3152 400 (0.127) 2699 73 (0.027) 2822 211 (0.075) 

31_3 8736 181 (0.021) 9504 330 (0.035) 10690 57 (0.005) 11621 106 (0.009) 

31_5 5183 137 (0.026) 5408 281 (0.052) 6325 35 (0.006) 6580 84 (0.013) 

31_10 1618 91 (0.056) 1671 161 (0.096) 1591 19 (0.012) 1623 55 (0.034) 
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Figure 3- 3 Length distribution of predicted shared transcripts in the test on mouse 

against rat from Oases and from Mutual over different values of k and k-mer 

coverage cutoff c (represented by k_c) and over different e-value cutoffs 10
−7 

and 

10
−20

. The width of each box is proportional to the square root of the size of each 

group, while outliers are ignored  
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Figure 3- 4 Length distribution of predicted shared transcripts in the test on mouse 

against human. Notations are the same as in Figure 3-3. 
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Figure 3- 5 Precision, recall and F-score with respect to the accuracy of shared 

transcript reconstruction in the test on mouse against rat from Oases and from 

Mutual over different values of k and k-mer coverage cutoff c (represented by k_c) 

and over different e-value cutoffs 10
−7

 and 10
−20

. Precision is defined to be the 

fraction of query positions from predicted shared transcripts that are included in 

BLAST alignments from each organism to its known transcriptome database. 

Recall is defined to be the fraction of subject positions from database sequences 

that are included in BLAST alignments from each organism to its known 

transcriptome database. F-score is the harmonic mean of precision and recall. 
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Figure 3- 5 Continued. 
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Figure 3- 6 Precision, recall and F-score with respect to the accuracy of shared 

transcript reconstruction in the test on mouse against human. Notations are the 

same as in Figure 3- 5. 
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Accuracy of transcript reconstruction 

       By investigating the fitness of the alignment between the predicted shared 

transcripts and the known transcriptome database sequences, Figures 3-5 and 3-6 show 

that with respect to the accuracy of shared transcript reconstruction, there are tradeoffs 

between precision and recall by Mutual when compared to Oases. Mutual has slightly 

lower F-scores than Oases in most cases. 

 

Conclusions 

       I have developed an algorithm that makes use of evolutionary information to 

simultaneously recover significantly more shared transcripts from RNA-Seq data in two 

related organisms that may be missed by traditional de novo approaches. While more 

shared transcripts are recovered due to the smaller evolutionary distance between mouse 

and rat, my algorithm can be applied to related organisms that are evolutionarily farther 

away, such as between mouse and human. While known transcriptomes are used as 

databases during validation, one important characteristic of my algorithm is that no 

reference transcriptomes or a closely related model organism is needed. My algorithm 

can be used to recover shared transcripts that are specific to two closely related non-

model organisms, which may not be present in a related model organism that is 

evolutionarily farther away. Depending on the size of the de Bruijn graphs, my algorithm 

can take many processor-hours to run. It takes more than 600 processor-hours to obtain 

all the predicted transcripts in mouse against rat or in mouse against human for the least 

stringent values of k and the k-mer coverage cutoff c. Although my algorithm can take 
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much more computational time than the de novo algorithms Velvet or Oases, the 

iterative BLAST searches can be run independently in parallel on a computing cluster. 

While an additional 60 processor-hours are needed to obtain predicted shared transcripts 

from the predicted transcripts, a similar procedure is also needed for Oases. No special 

memory requirement is needed after the de Bruijn graphs are obtained. 

One drawback of my algorithm is that only a weak recovery of non-coding regions 

of mRNA is possible since these regions may not be conserved. Due to the use of 

similarity information between two related organisms to extend transcripts, my 

algorithm cannot identify extended transcripts that are not shared between the two 

organisms. 
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CHAPTER IV  

 GENOME ANNOTATIONS OF PROTEUS MIRABILIS AND PROVIDENCIA 

STUARTII 

 

       Many bacteria are widespread and exhibit various interactions with insects. For 

example, insects can serve as important vectors. Some of these bacteria exhibit wide host 

ranges, while some have preferred host targets. For example, Bacillus sphaericus is 

selectively pathogenic to mosquitoes while Bacillus papillae only infects Scarabaeid 

beetles (90). Understanding how such bacteria interact with insects and other eukaryotes 

is currently an area of intense interest in biology. 

       The interaction between insects and bacteria can be considered symbiotic. A 

symbiotic relationship is an interaction between different species. It can be divided into 

parasitism, commensalism and mutualism. Parasitism is a relationship when one species 

benefits from association while its partner gets harmed. Commensalism occurs when one 

species get benefit from interactions with no significant effect on its partner. Mutualism 

is the association where species living together mutually benefit each other (91). For 

example, pea aphid Acyrthosiphon pisum is able to diet on plant phloem sap with low 

content of essential amino acids, in presence of their symbiotic bacteria, Buchnera 

aphidicola by providing these nutrients (92). A virulent pathogen Photorhabdus produce 

an antibiotic (E)-1,3-dihydroxy-2-(isopropyl)-5- (2-phenylethenyl)benzene to inhibit 

phenoloxidase in the insect Manduca sexta to suppress host defenses (93).  
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       There are also studies on symbiotic relationships between phages and their bacterial 

hosts. Phages rely on their bacterial hosts to complete their life cycle. Lytic phages 

introduce their genetic material into host cells and utilize host cell machinery for 

replication of viral genetic material and production of viral proteins. Then viral proteins 

self-assemble to package viral genetic material into capsids. When a sufficient number 

of virions are produced, host cells are lysed with lytic bacteriophage enzymes and 

release progeny viruses. The new cycle starts when released phages contact with new 

host cells (94). For example, bacteriophage BRK20 is a lytic phage of Brevibacterium 

flavum, an industrial producer of lysine (95). Unlike lytic phages, lysogenic phages can 

integrate their genetic material into host genome which can be transmitted to host 

progenies without killing host cells. Lysogenic phages can enter lytic cycle under 

stressful conditions (94). Lamboid phage Gifsy-1 is an example of a lysogenic phage 

that integrates its genetic material into its host Salmonella enterica serovar Typhimurium 

(96). Phages not only make use of bacterial hosts for their life cycle, but also have 

impacts on their abundance, competitive ability, changes in physiology, as well as gene 

transfer (94,97).  

       Proteus mirabilis, a Gram-negative bacterium, is an endosymbiont of blow flies. It 

produces antibacterial agents including phenylacetaldehyde (PAL) and phenylacetic acid 

(PAA) (98), which are supposed to benefit insects by controlling external and internal 

microbe community and repressing growth of bacteria which compete with the larvae 

(99). On the other hand, maggot excretions/secretions of insects inhibit biofilm 

formation of would pathogens such as Staphylococcus aureus and Enterobacter cloacae, 



 

81 

 

but protect biofilms of P. mirabilis (100). Biofilms help bacteria resist antimicrobial 

agents (101).  

       P. mirabilis has been isolated from salivary glands of the Lucilia sericata, a blow fly 

used in maggot therapy due to antibacterial, antibiofilm, and wound debridement 

properties. Some of these antibacterial agents are synthesized by P. mirabilis (41). An 

earlier study showed that swarming P. mirabilis produces small molecules to attract L. 

sericata to lay eggs and twenty genes associated with the swarming phenotype have 

been identified in P. mirabilis. Several swarming mutations can be complemented with 

fly attractants like ammonia and putrescine and one mutant has been shown to 

differentially impact fly oviposition and attraction (35).  

       Providencia stuartii has also been found to colonize maggots of L. sericata along 

with P. mirabilis (35). P. stuartii is a Gram-negative pathogen giving rise to human 

infections like meningitis (102) and causing blockages of urinary catheters (48). It does 

not swarm like P. mirabilis (48). A recent study found that P. stuartii shares a common 

cell-to-cell communication system with D. melanogaster.  An inner membrane protein 

AarA in P. stuartii is required for exporting extracellular signals. AarA is homologous to 

rhomboid protein (RHO) in D. melanogaster, a serine protease required for stimulation 

of epidermal growth factor receptor ligands (103) and plays an important role in many 

developmental processes such as organization of the fly eye and proper wing vein 

development (37).  D. melanogaster rho mutant can be complemented with expression 

of AarA from P. stuartii to exhibit normal wing vein development and P. stuartii aarA 
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mutant can be rescued with expression of RHO from D. melanogaster to overcome cell-

to-cell communication defects (37).  

       Interkingdom communication between bacteria and their hosts involves hormones 

and hormone-like compounds, which may help bacteria to recognize the immune system 

on their hosts and activate their virulence genes (104). For example, binding of an 

outermembrane protein OprF in Pseudomonas aeruginosa to their host human 

interferon-γ leading to expression of both type I P. aeruginosa lectin (PA-I) and 

pyocyanin, which enables disruption of epithelial cell function (105). 

       In the present work, I have assembled, annotated and compared the draft genomes of 

P. mirabilis and P. stuartii isolated from larvae of L. sericata to reference genomes of 

clinical strains to identify unique genes which are absent in the reference genomes. I 

annotated gene content which probably contributes to physiological differences between 

P. mirabilis and P. stuartii isolated from flies and genes with evidence of recombination 

or positive selection among Proteus or Providencia tested.  I also identified insertion 

sequences from other strains into these draft genomes to hypothesize the novel 

phenotypes studied strains may show.  

 

Methods 

Genome assembly 

       Sequencing was performed using Ion Torrent after preparation with NEBNext® Fast 

DNA Fragmentation & Library Prep Set to produce approximately 1.38x10
6
 reads of an 

average length of 211bp with 23x coverage of the genome for Providencia stuartii and 
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2.77x10
6
 reads of an average length of 218 bp with 41x coverage for P. mirabilis. A total 

of ninety-seven and seventy-five contigs were assembled by CLC de novo assembly 

workbench for P. stuartii and P. mirabilis respectively. Scaffolds were assembled with 

CONTIGuator (106) from contigs with well annotated reference genomes P. stuartii 

MRSN 2154 for P. stuartii and P. mirabilis HI4320 and BB2000 for P. mirabilis.   

 

Gene annotation method 

       Coding sequences (CDS) were predicted from scaffolds and unassembled contigs 

with PRODIGAL (107). Predicted gene sequences were aligned to genes from related 

reference genomes including Providencia stuartii MRSN 2154 (accession no 

NC_017731), Proteus mirabilis HI4320 (NC_010554 and NC_010555) and Proteus 

mirabilis BB2000 (accession no NC_022000) at e-value cutoff of 1e-20. For those 

unaligned genes, the NCBI non-redundant (nr) database was used to infer their potential 

functions at an e-value cutoff of 1e-5.  

 

Identification of orthologs  

       Orthologous genes were identified as shared among Proteus and Providencia of my 

bacteria strains and strains from NCBI including my P. mirabilis draft genomes, P. 

stuartii draft genome, P. stuartii MRSN 2154, P. mirabilis HI4320, P. mirabilis BB2000, 

Proteus hauseri ZMd44, P. mirabilis ATCC 29906, P. mirabilis WGLW4, P. mirabilis 

WGLW6, Proteus penneri ATCC 35198, Providencia alcalifaciens 205/92, P.  

alcalifaciens DSM 30120, P. alcalifaciens Dmel2, P. alcalifaciens F90-2004, P. 
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alcalifaciens PAL-1, P. alcalifaciens PAL-2, P. alcalifaciens PAL-3, P. alcalifaciens 

R90-1475, P. alcalifaciens RIMD 1656011, Providencia burhodogranariea DSM 19968, 

Providencia rettgeri DSM 1131, P. rettgeri Dmel1, Providencia rustigianii DSM 4541, 

Providencia sneebia DSM 19967, P. stuartii ATCC 25827 plus the outgroup 

Escherichia coli str. K-12 substr. MG1655. Ortholog identification was performed with 

PanOCT (108).  

 

Alignment of orthologs  

       Protein alignment of ortholog clusters identified above was produced with ClustalO 

(109) for phylogentic analysis, recombination analysis and positive selection analysis. 

Codon alignment from protein alignment in positive selection analysis was done with 

PAL2NAL (110). 

 

Phylogenetic analysis 

       Phylogenetic analysis helps to understand evolutionary relationships among 

different species. The alignment of all 1322 orthologous clusters that cross all species 

tested were concatenated and used as input in RAxML (111) with 100 boostraps and 

with Escherichia coli str. K-12 substr. MG1655 set as an outgroup. 

 

SNP and indel identification 

       Single nucleotide polymorphism (SNP) is variation of a single base in DNA (112). 

Indel is insertion and deletion of DNA sequences (113). Small genetic variations in 
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DNA sequences help to reveal evolutionary adaption and develop personal medicines 

(114). SNP and indels were identified between P. stuartii draft scaffold to P. stuartii 

MRSN 2154, P. mirabilis draft scaffold to P. mirabilis HI4320 or P. mirabilis BB2000 

with MUMMer (115). Densities of SNP and indel across assembled scaffolds were 

shown with Circos with window size of 5000nt. 

 

COG annotation 

       COG annotation is a genome-wide tool to predict protein functions and evolution 

(116). Predicted CDSs were aligned to NCBI database of Clusters of Orthologous 

Groups (COG) of proteins(117) collection (118) with BLAST at e-value cutoff of 1e-5 to 

detect enrichment in COG families.  

 

Insertion sequence (IS) analysis 

       Insertion sequences are mobile genetic elements introduced to host genomes, which 

may involve gene exchange and reassortment (119). The genome sequence including 

scaffold and unaligned contigs were aligned to the IS finder database of a collection of 

bacterial insertion sequences (119) with BLASTx at e-value cutoff of 1e-5 to identity 

potential insertion sequence. Each insertion region was assigned to the top hit of 

alignment. Sequences in IS database with significant alignment scores were annotated by 

alignment to microbial protein database from NCBI. 
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GO term assignment and pathway analysis 

       Gene ontology terms (GO terms) assignment is a tool to identify functions of gene 

clusters to reflect important biological aspects (120). GO terms were assigned to 

predicted genes with Blast2GO (121). Gene function distribution was studied with GO 

classification of predicted genes with WEGO (122). Predicted genes were mapped to 

KEGG database from Blast2GO to predict pathway activities of my strains. 

 

Identification of tRNA, rRNA and phage genes 

       tRNA, as the link between mRNA and proteins, delivers amino acids to the 

ribosome for peptide synthesis directly by triplet nucleotides (123). rRNA is an 

important component of ribosome, a complex that catalyzes protein synthesis (124). 

Bacteria and phages interact with each other biologically (94). Identification of tRNA 

and rRNA was performed with tRNA-scan (125) and RNAmmer (126) respectively. 

Phage genes were identified and classified with PHAST (127). 

 

Synteny comparisons 

       Syntentic blocks are segments of sequences that exhibit conservation across species 

or within a chromosome. Collinearity reflects conserved orientation and conserved 

adjacency of genes (128). Synteny comparsions were performed with MUMMer (115) 

and CONTIGuator between P. stuatii draft genome and P. stuartii MRSN 2154, P. 

mirabilis draft genome and P. mirabilis HI4320 or P. mirabilis BB2000. 
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Recombination analysis 

       Recombination is a process of genetic material exchange between DNA strands to 

rearrange genes or parts of genes (129). Only clusters of orthologs with gene orthology 

across all Proteus or all Providencia strains used were retained for recombination 

analysis. Four statistical analyses were performed: GENECONV (inner fragments) 

(130) , Pairwise homoplasy Index (PHI), Maximum Chi square and Neighbor Similar 

Score. The latter three were performed with PhiPack (131) with 1000 permutations. 

Window size was set as 50 in PHI test. The p-values are corrected with program Q-value 

(132), and significant clusters were reported with FDR of 10%. 

    

Positive selection analysis 

       Positive selection is selection of advantageous alleles to increase fitness (133). 

Positive selection analysis was performed with PAML (134) on 2213 and 1965 ortholog 

clusters across all tested Proteus and Providencia species respectively. Site-model 

studies were implemented with codeml to compare model M1a (nearly neutral) to M2a 

(positive selection). The likelihood ratio test statistics was compared with the chi square 

distribution with two degrees of freedom. Computed p-values were corrected with 

program Q-value (132) with FDR of 20%, cases with p2=0 or w2=1 are ignored. Amino 

acid sites were predicted with Bayes Empirical Bayes inference (BEB inference) (135). 
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Results 

Basic genomic information 

 

 

 

Table 4- 1 Basic genomic information 

      

 

 

        

 

 

 

 

       The basic genomic information is shown in Table 4-1. P. stuartii draft is assembled 

with reference of P. stuartii MRSN 2154, the only P. stuartii strain available with 

complete genome sequence. There are 4522 CDS predicted among draft genome, which 

are more than the reference genome with 4125 CDS. In total 38 contigs are unassembled 

in the scaffold assembly with 152 CDS among them. There are 14 rRNA and 74 tRNA 

regions identified in P. stuartii draft genome, with their positions shown on the draft 

genome in Figure 4-1.  

       There are two P. mirabilis draft genomes, because there are two P. mirabilis strains 

available with complete genome sequences, HI4320 and BB2000.  The draft 1 is 

assembled with reference of P. mirabilis HI4320 and contains 3725 CDS, comparable to 

the corresponding reference genome with 3747 CDS. The draft 2 genome assembled 

with reference of BB2000 contains six less CDS than draft 1, the CDS number is more 

than the CDS of BB2000 with 3465 CDS. In total 19 contigs are unassembled in the 

species sequenced 

size (Mb) 

number 

of contige 

N50 

contig 

assembled 

genome 

number 

of CDS 

Average 

GC % 

Providencia stuartii 1.38 97 139,103 draft  4522 40.35 

Proteus mirabilis 2.77 75 174,883 draft 1 3725 38.48 

    draft 2 3719 38.15 
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scaffold assembly with 109 CDS among them in either way of assembly. There are 15 

rRNA and 78 tRNA regions identified in draft 1 genome and 17 rRNA and 78 tRNA 

regions in draft 2 genome, with their positions shown on draft genomes in Figure 4-2 

and Figure 4-3 respectively.  

       All these three draft genomes show clear GC skew as Figure 4-4-4-6 show, which is 

an indication of DNA replication origin and terminus (136). Unique genes in draft 

genomes which are not found in their corresponding clinical reference genomes are also 

shown in these figures (4th ring), possibly associated with symbiosis with L. sericata 

and the microbial community.  

 

Identification of phage genes 

       As shown in Figure 4-1, there are eight phage regions identified in P. stuartii draft 

genome. Among these phage regions, five are intact. They are from Escherichia phage 

HK75 (accession no. NC_016160), Salmonella phage vB_SosS_Oslo (accession no. 

NC_018279), Shigella phage Sf6 (accession no. NC_005344), Pseudomonas phage B3 

(accession no. NC_006548) and Pectobacterium phage ZF40 (accession no. 

NC_019522), ordered by their positions on the scaffold beginning from the first 

nucleotide. Bacteriophage sf6 has been identified to express gene oac to change 

antigenic properties of O-antigen polysaccharide on surface of its host Shigella flexneri 

(137). Pili on Pseudomonas surface is required for page B3 adsorption (138).  
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Figure 4- 1 Map of the Providencia stuartii draft genome. Unassembled contigs are 

shown as gaps with unknown positions. Rings from outermost to the center: (1) 

genes on the forward strand. (2) Genes on the reverse strand. (3) tRNA (black) and 

rRNA (red) genes. (4) Unique genes when compared to the corresponding reference 

genomes (P. mirabilis HI4320 and B2000) (5) intact (black), incomplete (red) and 

questionable (green) phage genes. (6) GC skew with window size of 2000nt with 

above average region in red and below average region in green. (7) Distribution of 

orthologous genes with evidence of recombination (8) insertion sequence regions. 
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Figure 4- 2 Map of the Proteus mirabilis draft 1 genome. Unassembled contigs are 

shown as gaps with unknown positions. Annotation of rings from outermost to the 

center are the same as annotation of 1st-8th rings in Figure 4-1. (9) Genes related to 

swarming.  
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Figure 4- 3 Map of the Proteus mirabilis draft 2 genome. Annotation is the same as 

Figure 4-2. 

 

 

 

       Both P. mirabilis draft genome contain six phage regions, among which two are 

intact shown in black in the 5th ring of Figure 4-2 -4-3. They are from Enterobacteria 

phage mEp460 (accession no. NC_019716) and Salmonella phage Fels-2 (accession no 

NC_010463), ordered by their positions on the scaffold beginning from the fist 

nucleotide. Interestingly, within either P. mirabilis draft genome, a phage region from 

Salmonella phage Fels-2 is located closely to loci of two genes related to swarming, 
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UDP-glucose 6-dehydrogenase (ugd) and O-antigen ligase (rfaL) (35).  Fels-2 prophage 

has been identified to be responsible for lethality phenotype of lexA null mutants of 

Salmonella (139). I hypnotize that the phage may impact P. mirabilis swarming and 

biochemical tests need to be performed to verify it.  

 

Phylogenetic analysis 

       I determined the phylogenetic relationship from a concatenated alignment of 1322 

orthologs shared by Proteus and Providencia strains with information available for 

analysis. Escherichia coli str. K-12 substr. MG1655 was set as an outgroup. As Figure 4-

4 shows, the studied P. stuartii strain is closely related to P. stuartii ATCC 25827 and 

MRSN 2154, with only the latter strain having complete genome. The studied P. 

mirabilis strain is closely related to P. mirabilis BB2000 with either way of scaffold 

assembly. P. mirabilis BB2000 is a spontaneous rifampin-resistant mutant of PRM1 

(140) with no plasmid (141). Compared to P. mirabilis HI4320, P. mirabilis BB2000 

contains unique CDS related to toxin elements, self recognition and phages but no iron 

acquisition proteins or transfer (tra) genes (141).  

 

Synteny comparison 

       Synteny relationship was examined between P. stuartii draft genome and P. stuartii 

MRSN 2154 reference genome, P. mirabilis draft 1 genome and P. mirabilis HI4320 

reference genome, as well as P. mirabilis draft 2 genome and P. mirabilis BB2000 

reference genome, as Figure 4-5 shows. There is some conserved synteny between P. 
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stuartii MRSN2154 and the draft genome. For Proteus mirabilis, draft 2 genome shows 

higher synteny to BB2000 than draft 1 to HI4320. The result also validates that the 

studied P. mirabilis draft genome is more evolutionarily closely related to BB2000 as 

shown in Figure 4-4. 

       MUMmer-based comparative genomic alignment analysis is shown in Figure 4-6. P. 

stuartii draft genome is somewhat collinear to MRSN2154. For P. mirabilis comparison, 

draft 2 genome shows more colinearity to BB2000 than draft 1 to HI4320.  

 

SNP and indel analysis 

       SNPs and indels can serve as genetic markers to characterize variants and identify 

potential evolutionary mutations (142). As Figure 4-7 shows, there are a large number of 

SNPs and indels between P. stuartii draft and MRSN2154. There are relatively fewer 

SNPs and indels between P. mirabilis draft genomes and corresponding reference 

genomes. It seems the studied draft genomes are more closely related to P. mirabilis 

reference genomes than P. stuartii draft genome to its relevant reference genome, which 

is also reflected in synteny comparison in Figure 4-5 and 4-6. The indels between draft 

genomes and corresponding reference genomes suggests genome reorganization which 

may be associated with insect-bacteria association. 
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Figure 4- 5 Synteny comparison between P. stuartii draft to P. stuartii MRSN2154, 

as well as P. mirabilis draft to P. mirabilis HI4320 or P. mirabilis B2000. Contigs of 

draft genomes shown with solid red are overlapped with other contigs with two 

ends, those in light red are overlapped with one end, while those in blue do not 

show overlap with other contigs. 
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Figure 4- 6 Alignment between (A) P. stuartii MSRN2154 and P. stuartii draft (B) P. 

mirabilis HI4320 and P. mirabilis draft 1 (C) P. mirabilis B2000 and P. mirabilis 

draft 2. Red dots show alignment in the same orientation in a genomic pair while 

blue dots show alignment with opposite orientation. 
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Figure 4- 7 Map of (A) P. stuartii draft (B) P. mirabilis draft 1 (C) P. mirabilis draft 

2 genomes. Rings from outermost to the center: (1) contigs in scaffold assembly. (2) 

SNP. (3) Indel. 
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Figure 4- 7 Continued. 
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Figure 4- 7 Continued. 
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COG analysis 

       Figure 4-8 shows COG distribution of studied P. mirabilis and P. stuartii. The top 

five functional classes with most COGs are: [S] Function unknown, [R] General function 

prediction only, [E] Amino acid transport and metabolism, [C] Energy production and 

conversion, [J] Translation, ribosomal structure and biogenesis. Genes in the latter three 

function classes play an essential role in basic cellular functions. Interestingly, in the 

class [B] Chromatin structure and dynamics, P. stuartii draft genome has a COG, 

deacetylases including yeast histone deacetylase and acetoin utilization protein, which is 

not found in either P. mirabilis draft genome. Histone deacetylase is identified to 

reconstitute positive charge of lysine by catalyzing removal of the acetyl group from its 

side chain to stabilize interaction between histone and DNA (143). In class 

[Z] Cytoskeleton, P. mirabilis draft genome has a COG, myosin heavy chain, which is 

absent in P. stuartii draft genome. A protein with high molecular-weight in E. coli has 

been identified to share structural homology to a yeast heavy-chain myosin and 

supposed to play a role in movement of cell division and nucleoid segregation (144). In 

class [N] Cell motility, P. mirabilis draft genome has COG Tfp pilus assembly protein 

PilF, which is not found in P. stuartii draft genome. Pseudomonas aeruginosa mutant 

with knock-out homolog PilF does not exhibit swarming mobility (145). P. mirabilis 

exhibits swarming mobility but not for P. stuartii (48), this COG absence in P. stuartii 

draft may  shed light to that phenotypic difference.  
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GO term assignment 

       GO term assignment result is as Figure 4-9 shows. There are some GO terms unique 

to P. mirabilis draft 2 genome or both P. mirabilis draft genomes, including virion, 

antioxidant, electron carrier, transcription regulator and reproductive process. 

Considering some of these GO terms play an essential role in organisms and the 

relatively farther evolutionary distance between P. stuartii draft and the corresponding 

reference genome MRSN2154 used in scaffold assembly compared to P. mirabilis 

assembly, absence of these GO terms in P. stuartii draft may be caused by misassembly 

with reference genome. In GO term virion, there is a gene chitin-binding protein in P. 

mirabilis draft 2 genome. Chitin-binding protein is required for virus infection to host 

(146). 

 

Recombination and positive selection 

       I examined 2213 Proteus orthologs and 1965 Providencia orthologs. They are used 

to identify recombination and positive selection among all Proteus and Providencia 

species tested respectively. Among those orthologs, there are 411 Proteus orthologs and 

373 Providencia orthologs that show evidence of recombination with FDR <20%. The 

genes from my strains in those ortholog clusters are distributed evenly in the physical 

genomes, as Figure 4-1-Figure 4-3 show (the 7th ring).  
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       To study positive selection among orthologs, I test Proteus and Providencia 

orthologs which do not show significant evidence of recombination, because 

recombination may violate the assumption of these models (147). It left 1802 Proteus 

orthologs and 1384 Providencia orthologs for positive selection test. I used Codeml in 

PAML to compare likehood of a neutral model M1a to a positive selection model M2a. I 

found 6 Proteus genes but no Providencia genes with significant evidence of positive 

selection with FDR<20%, as Table 4-2 shows.  

       Among Proteus genes with significant evidence of positive selection, 50S ribosomal 

protein L9 exhibits most significant p-value and q-value in the test. Ribosomal proteins 

are highly conserved, however, there are examples of ribosomal protein with evidence of 

positive selection. For example, LSU ribosomal protein L9p exhibits evidence for 

positive selection in site model tests of four Providencia species isolated from 

Drosophila melanogaster (148) .  

       The other gene exhibiting evidence for positive selection is a virulence factor 

intimin/invasin. The gene intimin encodes an outer membrane protein as adhesion for 

bacteria attachment to host cells and its homolog invasin, plays a role in mediating 

invasion. There is evidence for positive selection in intimin domains in E. coli (149), 

suggesting amino acid substitution to generate novel protein variants to prevent 

recognition by the host immune system.  

       The protein called Z-ring-associated protein shows significant evidence of positive 

selection. Z-ring-associated protein ZapA in Bacillus subtilis stimulates the assembly 
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and stabilization of Z-ring during cell division (150), but it is not essential for division. 

Positive selection on Z-ring-associated protein may help to modulate growth rate of cells.  

       The gene hofC encoding assembly protein in type IV pilin biogenesis (151) exhibits 

evidence of positive selection (p=3.408e-4, q=0.103). It is an outer membrane protein 

and also found to be positively selected in a Gram-negative bacterium, Helicobacter 

pylori (152).  

       Glutaredoxin-like protein also exhibits weak evidence for positive selection. The 

glutaredoxin-like protein NrdH in E. coli behaves like thioredoxin as hydrogen donor 

with the capability of reducing insulin disulfides (153). Positive selection on 

glutaredoxin-like proteins in Proteus may play a role in modulation of redox rate.  

 

IS analysis 

       As Figure 4-10 shows, IS analysis result reflects among the annotated sources of 

these insertion sequences in IS database, six fragments show high similarity to sequences 

from Escherichia coli in P. stuartii draft genome and four fragments to sequences from 

Pseudomonas putida in either P. mirabilis draft genome. E. coli and P. putida are part of 

diet for flies (154,155) and coexist in the microbe community with P. mirabilis and P. 

staurtii. It is not surprising that insertion sequences from E. coli and P. putida are found 

in the draft genomes.  
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Table 4- 2 Details of genes with positive selection evidence. 

a. Twice of the difference of likelihood values between neutral and positive selection models 

b. Parameter estimates are from M2a model. Three sites class including under purifying selection, neutral and under positive 

selection are indicated with their proportions p0, p1 and p2, and the nonsynonymous-synonymous substitution rate ration ω0, ω1 

and ω2, respectively. Parameters in paranthese are not free. 

c. Positions of positive selection sites in alignment used in Codeml are identified using BEB inference with posterior probabilities 

>95%. Amino acids are referred to the first reference sequence in alignment. 

 

 

 

       Details of insertion sequences are mentioned in Table 4-3-Table 4-5. Most of these 

mobile elements are transposase, integrase and resolvase, which help insertion of foreign 

sequences into bacteria genomes. There are some inserted sequences with interest and 

labeled with gray in the tables. They are genes coding chloramphenicol exporter from 

Corynebacterium striatum and genes coding MerR family transcriptional regulator as 

well lipoprotein signal peptidase from Pseudomonas putida. For example, it seems these 

three assembled draft genomes contain genes coding chloramphenicol exporter which 

has been identified in Corynebacterium striatum and genes coding MerR family 

annotation p-value q-value 2△ℓ
a
 parameter estimatesb Positive selective sitesc 

50S ribosomal 

protein L9 

1.303e-08 2.348e-05 36.312 P0=0.820, p1=0, (p2=0.180) 

ω0=0, (ω1=1), ω2=999.000 

44I, 45E, 48E, 49A, 

50R, 51R, 52A 

Intimin/invasion 1.870e=04 0.101 17.169 P0=0.970, p1=0.021, (p2=0.009) 

ω0=0.013, (ω1=1), ω2=326.885 

45A 

Z-ring-associated 

protein 

2.251e-04 0.101 16.798 P0=0.848, p1=0, (p2=0.152) 

ω0=0.013, (ω1=1), ω2=326.885 

73R, 74D, 75Y, 77Y, 

78N, 79M, 80E, 81E, 

82K 

protein transport 

protein 

3.408e-04 0.103 15.968 P0=0.791, p1=0.203, (p2=0.006) 

ω0=0.042, (ω1=1), ω2=44.614 

22M 

glutaredoxin-related 

protein 

6.514e-04 0.168 14.673 P0=0.965, p1=0.005, (p2=0.030) 

ω0=0.072, (ω1=1), ω2=999.000 

69A 
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transcriptional regulator as well lipoprotein signal peptidase identified in Pseudomonas 

putida. 

 

Conclusions 

       I assembled and annotated draft genomes of P. mirabilis and P. stuartii of fly-

isolated strains with reference of corresponding clinical strains. It shows studied P. 

mirabilis is more closely related to P. mirabilis BB2000 than P. mirabilis HI4320. I 

identified a phage Salmonella phage Fels-2 in either P. mirabilis draft genome which is 

located close to loci of two genes related to swarming, ugd and rfaL, and hypothesize the 

presence of this phage may play a role in bacteria swarming to attract flies. I found a 

COG Tfp pilus assembly protein PilF present in P. mirabilis draft but not in P. stuartii 

draft, which may partially account for swarming phenotype of P. mirabilis. 

       The present work utilized current bioinformatics analysis approaches to identify 

genomic features of P. stuartii and P. mirabilis strains isolated from larva of L. sericata 

and provided some hypotheses on functional differences between these strains and 

reference strains. Biochemical tests are needed to validate these hypotheses in the future. 
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Table 4- 3 Details of insertion sequence for P. sauratii draft genome. 
significant 

alignment 

IS 

family 

group origin e-value annotation query begin end 

ISEc12 IS21  Escherichia 

coli 

0 transposase scaffold 3021803 3020562 

ISPsy30 Tn3  Pseudomonas 

syringae 

0 transposase Tn3 

family protein 

scaffold 3220752 3217753 

ISYal1 IS3 IS407 Yersinia 

aldovae 

1.00E-178 transposase scaffold 3831430 3830576 

IS3000 Tn3 - Escherichia 

coli 

1.00E-174 transposase Tn3 

family protein 

scaffold 561159 559582 

ISVch4 IS3 IS3 Vibrio 

cholerae 

1.00E-174 transposase OrfAB 

subunit B 

scaffold 3212622 3213539 

IS1635 IS6 - Yersinia 

intermedia 

1.00E-117 putative transposase c72 1569 835 

ISEc12 IS21  Escherichia 

coli 

1.00E-114 transposase scaffold 3020434 3019688 

IS1635 IS6 - Yersinia 

intermedia 

1.00E-109 putative transposase scaffold 3199946 3199263 

ISEc32 IS110  Escherichia 

coli 

1.00E-100 IS110 family 

transposase 

c61 104 1057 

ISRhba4 IS481  Rhodobacteral

es bacterium 

1.00E-97 integrase scaffold 3207015 3206194 

ISEc32 IS110  Escherichia 

coli 

3.00E-97 IS110 family 

transposase 

scaffold 542753 543706 

ISBam1 IS3 IS150 Burkholderia 

ambifaria 

8.00E-87 integrase catalytic 

subunit 

scaffold 366278 367168 

ISYps7 IS1  Yersinia 

pseudotubercu

losis 

2.00E-80 IS1 family 

transposase orfB 

scaffold 3197694 3197254 

ISVsa17 ISNCY ISPlu

15 

Aliivibrio 

salmonicida 

2.00E-79 transposase scaffold 577896 576973 
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Table 4-3 Continued 
significant 

alignment 

IS 

family 

group origin e-value annotation query begin end 

ISSba15 IS3 IS3 Shewanella 

baltica 

4.00E-66 integrase catalytic 

subunit 

scaffold 3221815 3222396 

ISSde6 IS3 IS3 Shewanella 

denitrificans 

2.00E-64 integrase catalytic 

subunit 

scaffold 3214567 3215049 

ISVsa19 Tn3  Aliivibrio 

salmonicida 

6.00E-54 transposase scaffold 575032 572699 

IS6100 IS6 - Mycobacteriu

m fortuitum 

1.00E-50 IS6100 transposase scaffold 3011637 3011278 

ISVa3 IS91  Vibrio 

anguillarum 

3.00E-46 transposase scaffold 3202150 3201668 

ISSysp7 ISKra4 ISAz

ba1 

Synechococcu

s sp. 

2.00E-45 resolvase scaffold 563481 564032 

ISVsa9 IS91  Aliivibrio 

salmonicida 

1.00E-44 transposase scaffold 3205592 3206083 

ISVsa17 ISNCY ISPlu

15 

Aliivibrio 

salmonicida 

2.00E-43 transposase c80 2 646 

ISPlu15 ISNCY ISPlu

15 

Photorhabdus 

luminescens 

2.00E-42 ISNCY family 

transposase 

c97 375 1 

IS3000 Tn3 - Escherichia 

coli 

7.00E-40 transposase, TnpA 

family 

c94 340 11 

ISEhe5 IS1 - Pantoea 

agglomerans 

5.00E-34 insertion element 

protein 

scaffold 3013498 3013767 

ISMdi3 IS3 IS407 Methylobacter

ium 

dichlorometha

nicum 

5.00E-33 integrase catalytic 

subunit 

scaffold 3993426 3994172 

ISYps3 Tn3  Yersinia 

pseudotubercu

losis 

2.00E-29 hypothetical protein 

plu3296 

c58 247 801 
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Table 4-3 Continued 
significant 

alignment 

IS 

family 

group origin e-value annotation query begin end 

ISCep1 ISKra4 ISAz

ba1 

Crinalium 

epipsammum 

6.00E-29 integrase family 

protein 

scaffold 3082868 3083416 

IS5564 IS481  Corynebacteri

um striatum 

9.00E-29 chloramphenicol 

exporter 

scaffold 4589174 4590094 

ISPa38 Tn3  Pseudomonas 

aeruginosa 

1.00E-26 resolvase scaffold 1247898 1248422 

ISPpu12 ISL3  Pseudomonas 

putida 

1.00E-26 lipoprotein signal 

peptidase 

scaffold 1563130 1562696 

ISYen2A IS21  Yersinia 

enterocolitica 

6.00E-25 ISPsy4, transposition 

helper protein 

scaffold 2869723 2869962 

ISGlo3 IS481  Geobacter 

lovleyi 

3.00E-24 Integrase catalytic 

region 

scaffold 1074088 1074936 

IS1635 IS6 - Yersinia 

intermedia 

4.00E-24 putative transposase c80 1619 1828 

ISShes11 Tn3  Shewanella 

sp. 

2.00E-22 Transposon Tn21 

resolvase 

scaffold 3220927 3221484 

ISMno23 IS91  Methylobacter

ium nodulans 

5.00E-19 integrase family 

protein 

scaffold 797390 796830 

ISRso14 IS3 IS407 Ralstonia 

solanacearum 

3.00E-17 transposase 

ISRSO14 

scaffold 3831672 3831436 

ISSod6 IS5 IS427 Shewanella 

oneidensis 

4.00E-15 ISSod6, transposase scaffold 4399671 4399480 

ISVa3 IS91  Vibrio 

anguillarum 

3.00E-14 transposase c48 247 492 

ISKpn21 ISNCY IS120

2 

Klebsiella 

pneumoniae 

8.00E-13 putative transposase scaffold 2487730 2487434 

ISSba14 Tn3  Shewanella 

baltica 

1.00E-12 resolvase domain-

containing protein 

c59 4235 4495 
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Table 4-3 Continued 
significant 

alignment 

IS 

family 

group origin e-value annotation query begin end 

ISPpu12 ISL3  Pseudomonas 

putida 

2.00E-12 MerR family 

transcriptional 

regulator 

scaffold 1055390 1054989 

ISLdr1 ISKra4 ISKra

4 

Legionella 

drancourtii 

4.00E-11 reverse transcriptase 

(RNA-dependent 

DNA polymerase) 

c47 1397 1816 

ISAzs36 IS481  Azospirillum 

sp. 

2.00E-10 transposase scaffold 3735114 3734158 

ISCARN5

3 

ISNCY IS120

2 

Metagenomic 

data from 

CARNOULE

S 

3.00E-10 Sea24 scaffold 2488005 2487838 

ISYps3 Tn3  Yersinia 

pseudotubercu

losis 

3.00E-10 hypothetical protein 

plu3296 

c80 1357 758 

ISSba3 IS3 IS3 Shewanella 

baltica 

5.00E-10 transposase 

IS3/IS911 family 

protein 

scaffold 3018941 3019216 

IS231K IS4 IS231 Bacillus 

cereus 

2.00E-08 ribosomal-protein-

alanineacetyltransfer

ase 

scaffold 3696845 3696573 

ISStma11 ISL3  Stenotrophom

onas 

maltophilia 

2.00E-08 transposase scaffold 2930434 2930069 

ISKpn28 IS481  Klebsiella 

pneumoniae 

1.00E-07 hypothetical protein 

KPN_pKPN3p05990 

scaffold 3223595 3223281 

ISNpu13 Tn3  Nostoc 

punctiforme 

2.00E-06 site-specific 

recombinase XerD-

like protein 

scaffold 2709485 2710078 
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Table 4-4. continued 

Table 4-3 Continued 

 

 

 

Table 4- 4 Details of insertion sequence for P. mirabilis draft genome 1 

significant 

alignment 

IS 

family 

group origin e-value annotation query begin end 

ISMdi3 IS3 IS407 Methylobacter

ium 

dichlorometha

nicum 

1.00E-05 transposase of 

ISMdi3, IS3family 

(ORF 1) 

scaffold 3993097 3993363 

significant 

alignment 

IS 

family 

group origin e-value annotation query begin end 

IS609 IS200/I

S605 

 Escherichia 

coli 

0 putative transposase scaffold 639358 640551 

ISSde6 IS3 IS3 Shewanella 

denitrificans 

7.00E-67 integrase catalytic 

subunit 

scaffold 291770 292222 

IS609 IS200/I

S605 

 Escherichia 

coli 

4.00E-64 putative transposase scaffold 3747161 3746736 

ISDge10 IS200/I

S605 

 Deinococcus 

geothermalis 

5.00E-59 transposase, 

IS891/IS1136/IS134

1 

scaffold 3747181 3748326 

ISPlu15 ISNCY ISPlu1

5 

Photorhabdus 

luminescens 

3.00E-57 ISNCY family 

transposase 

scaffold 2850047 2849298 

IS606 IS200/I

S605 

 Helicobacter 

pylori 

1.00E-44 IS200 insertion 

sequence 

fromSARA17 

scaffold 3512519 3512929 

ISSm4 ISL3  Serratia 

marcescens 

1.00E-43 hypothetical protein 

CAP2UW1_4293 

scaffold 741125 740310 

ISPpu12 ISL3  Pseudomonas 

putida 

4.00E-28 lipoprotein signal 

peptidase 

scaffold 3918609 3919046 

ISCep1 ISKra4 ISAzba

1 

Crinalium 

epipsammum 

4.00E-28 integrase family 

protein 

scaffold 219697 219137 
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Table 4-4 Continued 
significant 

alignment 

IS 

family 

group origin e-value annotation query begin end 

ISSs1 IS200/I

S605 

IS1341 Synechococcu

s sp. 

5.00E-27 transposase scaffold 3639013 3639966 

ISSoc3 IS200/I

S605 

 Synechococcu

s sp. 

7.00E-27 ISSoc3, orfA 

transposase 

scaffold 102862 102479 

ISKpn25 ISL3  Klebsiella 

pneumoniae 

6.00E-26 putative type 

Irestriction-

modification system 

DNA methylase 

scaffold 1999932 1998736 

ISTel2 IS200/I

S605 

 Thermosynec

hococcus 

elongatus 

2.00E-25 transposase scaffold 1417342 1417743 

ISSm4 ISL3  Serratia 

marcescens 

9.00E-24 hypothetical protein 

KPN_pKPN4 

p07084 

scaffold 1996374 1994497 

ISBlo15 IS200/I

S605 

IS1341 Bifidobacteri

um longum 

1.00E-22 transposase, IS605 

OrfB family 

scaffold 805399 805989 

ISRhba4 IS481  Rhodobactera

les bacterium 

1.00E-21 integrase scaffold 938810 939022 

IS891 IS200/I

S605 

IS1341 Anabaena sp 2.00E-21 transposase scaffold 2606823 2606098 

ISSod25 IS91  Shewanella 

oneidensis 

4.00E-21 ISSod25 integrase 

Int_ISSod25 

scaffold 2057434 2056598 

ISCgl1 IS481  Corynebacter

ium 

glutamicum 

2.00E-19 chloramphenicol 

exporter 

scaffold 1266629 1265523 

ISClte2 IS200/I

S605 

 Clostridium 

tetani 

2.00E-17 transposase-related 

protein 

scaffold 120767 120369 

ISDge19 IS200/I

S605 

IS1341 Deinococcus 

geothermalis 

2.00E-15 transposase, IS605 

OrfB 

scaffold 805371 804511 
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Table 4-4 Continued 

 

 

significant 

alignment 

IS 

family 

group origin e-value annotation query begin end 

ISPpu12 ISL3  Pseudomonas 

putida 

3.00E-14 MerR family 

transcriptional 

regulator 

scaffold 2874511 2874107 

ISPlu2 IS200/I

S605 

IS200 Photorhabdus 

luminescens 

9.00E-13 IS200 family 

transposase 

scaffold 3178639 3179052 

ISNph21 IS200/I

S605 

IS1341 Natronomona

s pharaonis 

6.00E-12 IS1341-type 

transposase 

scaffold 28181 28849 

ISNpu13 Tn3  Nostoc 

punctiforme 

4.00E-10 site-specific 

recombinase XerD-

like protein 

scaffold 1177440 1176892 

ISPpu12 ISL3  Pseudomonas 

putida 

6.00E-10 MerR family 

transcriptional 

regulator 

c45 1812 1426 

ISSpu9 IS4 IS50 Shewanella 

putrefaciens 

7.00E-10 transposase Tn5 

dimerisation subunit 

scaffold 3405095 3405355 

ISSis2 IS200/I

S605 

 Sulfolobus 

islandicus 

4.00E-08 transposase scaffold 55464 56123 

ISCaa10 IS200/I

S605 

IS200 Candidatus 

Amoebophilus 

asiaticus 

7.00E-08 hypothetical protein 

Aasi_1732 

scaffold 639302 638934 

ISHhu2 IS200/I

S605 

 Halobacteriu

m hubeiense 

2.00E-07 transposase, IS605 

OrfB family 

scaffold 1416427 1415792 

ISPpu12 ISL3  Pseudomonas 

putida 

3.00E-07 MerR family 

transcriptional 

regulator 

c51 283 95 

IS231K IS4 IS231 Bacillus 

cereus 

4.00E-07 HAD superfamily 

hydrolase 

scaffold 3163243 3163959 
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Table 4- 5 Details of insertion sequence for P. mirabilis draft genome 2. 
significant 

alignment 

IS 

family 

group origin e-value annotation query begin end 

IS609 IS200/I

S605 

 Escherichia coli 0 putative 

transposase 

scaffold 930701 931894 

ISSde6 IS3 IS3 Shewanella 

denitrificans 

7.00E-67 integrase 

catalytic 

subunit 

scaffold 579118 579570 

IS609 IS200/I

S605 

 Escherichia coli 4.00E-64 putative 

transposase 

scaffold 59776 59351 

ISDge10 IS200/I

S605 

 Deinococcus 

geothermalis 

5.00E-59 transposase, 

IS891/IS1136/I

S1341 

scaffold 59796 60941 

ISPlu15 ISNCY ISPlu1

5 

Photorhabdus 

luminescens 

3.00E-57 ISNCY family 

transposase 

scaffold 3140468 3139719 

IS606 IS200/I

S605 

 Helicobacter 

pylori 

1.00E-44 IS200 insertion 

sequence 

fromSARA17 

scaffold 3803561 3803971 

ISSm4 ISL3  Serratia 

marcescens 

1.00E-43 hypothetical 

protein 

CAP2UW1_42

93 

scaffold 1030472 1029657 

ISMex20 IS200/I

S605 

IS200 Methylobacteriu

m extorquens 

1.00E-29 transposase scaffold 390128 389772 

ISPpu12 ISL3  Pseudomonas 

putida 

4.00E-28 lipoprotein 

signal peptidase 

scaffold 231224 231661 

ISCep1 ISKra4 ISAzb

a1 

Crinalium 

epipsammum 

4.00E-28 integrase 

family protein 

scaffold 507044 506484 

ISSs1 IS200/I

S605 

IS134

1 

Synechococcus 

sp. 

5.00E-27 transposase scaffold 3930055 3931008 
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Table 4-5 Continued 
significant 

alignment 

IS 

family 

group origin e-value annotation query begin end 

ISKpn25 ISL3  Klebsiella 

pneumoniae 

6.00E-26 putative type I 

restriction-

modification 

system DNA 

methylase 

scaffold 2289290 2288094 

ISTel2 IS200/I

S605 

 Thermosynechoco

ccus elongatus 

2.00E-25 transposase scaffold 1706694 1707095 

ISSm4 ISL3  Serratia 

marcescens 

9.00E-24 hypothetical 

protein 

KPN_pKPN4p

07084 

scaffold 2285732 2283855 

ISBlo15 IS200/I

S605 

IS134

1 

Bifidobacterium 

longum 

1.00E-22 transposase, 

IS605 OrfB 

family 

scaffold 1094747 1095337 

ISRhba4 IS481  Rhodobacterales 

bacterium 

1.00E-21 integrase scaffold 1228158 1228370 

IS891 IS200/I

S605 

IS134

1 

Anabaena sp 2.00E-21 transposase scaffold 2895996 2895271 

ISSod25 IS91  Shewanella 

oneidensis 

4.00E-21 ISSod25 

integrase 

Int_ISSod25 

scaffold 2346792 2345956 

ISCgl1 IS481  Corynebacterium 

glutamicum 

2.00E-19 chloramphenico

l exporter 

scaffold 1555978 1554872 

ISClte2 IS200/I

S605 

 Clostridium tetani 2.00E-17 transposase-

related protein 

scaffold 408112 407714 

IS1535 IS607  Mycobacterium 

tuberculosis 

2.00E-15 putative 

TRANSPOSAS

E 

scaffold 1706665 1705748 
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Table 4-5 Continued 
significant 

alignment 

IS 

family 

group origin e-value annotation query begin end 

ISDge19 IS200/I

S605 

IS134

1 

Deinococcus 

geothermalis 

2.00E-15 transposase, 

IS605 OrfB 

scaffold 1094718 1093858 

ISPpu12 ISL3  Pseudomonas 

putida 

3.00E-14 MerR family 

transcriptional 

regulator 

scaffold 3164933 3164529 

ISHbo5 IS200/I

S605 

IS605 Halogeometricum 

borinquense 

2.00E-12 transposase scaffold 930660 930274 

ISNph21 IS200/I

S605 

IS134

1 

Natronomonas 

pharaonis 

6.00E-12 IS1341-type 

transposase 

scaffold 315524 316192 

ISNpu13 Tn3  Nostoc 

punctiforme 

4.00E-10 site-specific 

recombinase 

XerD-like 

protein 

scaffold 1466789 1466241 

ISOih2 IS200/I

S605 

IS200 Oceanobacillus 

iheyensis 

6.00E-10 transposase for 

IS657 

scaffold 286600 286232 

ISPpu12 ISL3  Pseudomonas 

putida 

6.00E-10 MerR family 

transcriptional 

regulator 

c45 1812 1426 

ISSpu9 IS4 IS50 Shewanella 

putrefaciens 

7.00E-10 transposase 

Tn5 

dimerisation 

subunit 

scaffold 3693058 3693318 

ISPpu12 ISL3  Pseudomonas 

putida 

3.00E-07 MerR family 

transcriptional 

regulator 

c51 283 95 

IS231K IS4 IS231 Bacillus cereus 4.00E-07 HAD 

superfamily 

hydrolase 

scaffold 3453667 3454383 
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Table 4-5 Continued 

 

significant 

alignment 

IS 

family 

group origin e-value annotation query begin end 

ISHma7 IS200/I

S605 

 Haloarcula 

marismortui 

8.00E-07 transposase scaffold 342808 343476 
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CHAPTER V  

CONCLUSION 

 

       As the advance in high-throughput sequencing enables the generation of large 

volumes of genomic and transcriptomic information, it provides researchers the 

opportunity to study non-model organisms even in the absence of a fully sequenced 

genome. This progress calls for powerful sequencing assembly algorithms because there 

are some challenging assembly problems related to the production of genomic and 

transcriptomic data from organisms whose genomes are not already known: (1) Some 

RNA products are highly expressed but others may have much lower expression level. (2) 

Data cannot easily be represented as a linear structure, due to post-transcription 

modification like alternative splicing. (3) Conserved sequences in domains in gene 

families make it difficult to understand whether a de novo sequence can be attributed to a 

single gene or several genes in a family, (4) sequencing errors due to technique 

limitations can interfere with the ability to develop effective de novo assemblies. 

       These assembly problems can be partially overcome by powerful assembly 

algorithms for non-model organisms. For those transcripts which are lowly expressed 

and may be ignored by traditional post-processing algorithms, they can be recovered by 

my algorithms extcontig and mutual. For transcripts generated from the same genes with 

alternative splicing events, branched structures are required to show relationship 

between these splicing products. Conserved sequences in domains in gene families may 

cause cyclic structures which brings trouble in post-processing and may be ignored in 
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transcript prediction. Partial sequencing errors can be corrected by increasing coverage 

cutoff of k-mers in de Bruijn graphs.  

       Advanced development in transcriptome sequencing calls for powerful sequencing 

assembly algorithms. I have developed algorithms that make use of evolutionary 

information to recover more similar transcripts from RNA-seq data especially those with 

low expression levels compared to traditional algorithms like Oases and Trans-ABySS. 

When my algorithms are applied to model organisms, it may be more time-consuming 

compared to current mapping-first algorithms which are based on fast alignment. The 

performance of my algorithms may not outcompete to the mapping-first algorithms 

because they make use of reference information, which is not required in my algorithms. 

The performance of my algorithms is affected by evolutionary distance between related 

organisms and complexity of their transcriptomes. For example, for the RNA-seq dataset 

of mouse transcriptome, my algorithms identify more and longer similar transcripts with 

transcript information of rat than that of human. Its performance is better on dataset of 

plants than yeast which shows less splicing events. My algorithms can be implemented 

in parallel by assigning disjoint subsets of nodes to different processors for extension, 

requiring less memory compared to current algorithms. This capability is advantageous 

for implementation by smaller research groups that lack access to higher-level 

computing systems.  With their application to non-model organisms, computing systems 

with small memory are sufficient to identify similar transcripts, which may be longer 

and with higher resolution compared to current memory-intensive algorithms. 
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       Although my algorithms requires less memory to identify similar transcripts from de 

Bruijn graphs compared to current post-processing algorithms, construction of de Bruijn 

graphs with large-scale sequence dataset still takes large memory. Future research can be 

performed on improvement of memory requirement of de Bruijn graph generation. 

       Current algorithms also help to annotate non-model organisms. For example, 

Prokaryotic dynamic programming gene-finding algorithm (Prodigal) can be applied to 

predict gene regions accurately. It shows high-quality gene prediction with low false 

positive rates. Therefore I apply different existing algorithms to annotate genomes of P. 

mirabilis and P. stuartii. The genome annotation work helps to understand interkingdom 

signaling between bacteria community and insects. My study on those genomes shows 

the differences between my strains isolated from larvae of blow flies and reference 

strains isolated from patients before, which may give hints to research of fly influence on 

bacteria community. 

       Non-model organisms are not well studied but the advance of high throughput 

sequencing technologies enables the genomic and transcriptomic studies by providing 

large volumes of sequence data. Application of existing and new algorithms paves the 

way to identifying genotypes that correspond to phenotypic features which play an 

important role in applied biology and broad view of scientists.  
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