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ABSTRACT

This thesis presents a control design approach, which uses human data in the de-

velopment of bipedal robotic control techniques for multiple locomotion behaviors.

Insight into the fundamental behaviors of human locomotion is obtained through

the examination of experimental human data for level walking, stair ascending, stair

descending and running. Specifically, it is shown that certain outputs of the human,

independent of locomotion terrain, can be characterized by a single function, termed

the extended canonical human function. Through feedback linearization, human-

inspired locomotion controllers are leveraged to drive the outputs of the simulated

robot, via the extended canonical human function, to the outputs from human lo-

comotion. An optimization problem, subject to the constraints of partial hybrid

zero dynamics, is presented which yields parameters of these controllers that provide

the best fit to human data while simultaneously ensuring stability of the controlled

bipedal robot. The resulting behaviors are stable locomotion on flat ground, up-

stairs, downstairs and running — these four locomotion modes are termed “motion

primitives”. A second optimization is presented, which yields controllers that evolve

the robot from one motion primitive to another — these modes of locomotion are

termed “motion transitions”. A directed graph consisting these motion primitives

and motion transitions has been constructed for the stable motion planning of bipedal

locomotion. A final simulation is given, which shows the controlled evolution of a

robotic biped as it transitions through each mode of locomotion over a pyramidal

staircase.
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1. INTRODUCTION ∗

Obtaining truly human-like bipedal robotic walking has been one of the most

prominent goals of the humanoid robotics community. The need for functional

robots, and the understanding thereof, is apparent in many fields today. In light

of recent events, such as the tragic crisis at the Fukushima nuclear plant in Japan,

robots are needed which can traverse dangerous terrain and work in virulent envi-

ronments [1, 24]. Robots capable of human-like walking, climbing, running and all

the basic modes of human locomotion, are necessary for truly successful cooperation

with mankind. Moreover, achieving human-like bipedal robotic locomotion can in-

versely help humans understand the human body in more depth. This understanding

can be leveraged to build prosthetic devices [5, 22, 27] for lower extremity amputees,

which will help them walk with a gait as natural as a healthy human. Therefore, the

important and far-reaching ramifications of obtaining human-like bipedal walking

have attracted many researchers from a variety of fields of study.

During three decades of study, researchers have accomplished a remarkable num-

ber of achievements on bipedal walking and climbing. Honda’s ASIMO [15] has

been the most popular humanoid robot around the world, yet its fundamental con-

trol scheme is to keep the center of pressure within the support polygon all the

time (which is known as ZMP method). Attracted by the energy efficiency and the

human-like aesthetics of passive walking [25], which was first realized by Tad McGeer,

a number of robots, such as [9], [10], Flame of TU Delft, have been constructed us-

ing this basic principle. Jessy Grizzle’s planar robot MABEL [33] holds the title of

∗Portions of this thesis have been reprinted with permission from “Human-inspired motion
primitives and transitions for bipedal robotic locomotion in diverse terrains” by H. Zhao, M. J.
Powell and A. D. Ames, 2012. Optimal Control Applications and Methods.
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quickest bipedal robot in the world — and can also walk on uneven terrains. Most

of the current research in bipedal robotics is focused on 2D locomotion, i.e., planar

robots.

Taking a different approach, we leverage the knowledge of human body to develop

locomotion control schemes. The quintessential model of bipedal locomotion — the

human body — is the most prevalent source of information on bipedal walking.

The physical human system, which utilizes 57 muscles in locomotion [28], is far too

complex to replicate with current hardware and computational capabilities. However,

one can construct a low-level representation of the human locomotion system. That

is, from a control theorist perspective, one can view the human body as a “black box”,

while certain outputs of which can be represented by simple, time-based functions.

Utilizing these outputs functions via the feedback linearization control method, the

robot will display the same qualitative behavior as the human, despite the physical

differences between the two systems. This approach is similar to the work of others

in the control and biomechanical fields. By merging human data and hybrid zero

dynamics, Westervelt [34] has achieved stable walking for a 5-link robot model in

simulation with Bezier series fit to the human data. Work based on the same fitting

method can also be found in [32]. Predictive dynamics with B-spline fit to human

data has been applied to simulate normal human walking and human walking with

external load [37]. Polynomial function is also one of the popular choices used to

characterize outputs of human [7, 8]. However, unlike all these functions, the method

proposed in this work offers a simpler formula which can represent all the motion

primitives and motion transitions with high correlations while simultaneously render

more robustness outside the operation region.

In this thesis, a human-inspired controller is considered which utilizes the sim-

ple low dimensional function — extended canonical human function (ECHF) — to
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represent human locomotion. The study begins with the examination of human lo-

comotion data that are made public by the motion capture lab in UC Berkeley. The

human experimental data contains the xyz-position for flat ground walking, walk-

ing upstairs, walking downstairs and running; these data form the foundation of our

control approach. Specifically, the ECHF is shown to represent the sets of data, from

four modes of locomotion (walking on flat ground, going upstairs, going downstairs

and running) of interest and four transition modes, with high correlation in each

case. More importantly, it is found that the ECHF tends to have a more stable

behavior even outside the operation region while other methods are easy to blow

up if considered outside the operation window. This is very important especially

for a physical robot that is vulnerable to the various environment uncertainty and

disturbance. The locomotion of flat-ground, up-slope and rough terrain have been

successfully achieved on a physical robot AMBER with the proposed ECHF [19]. We

argue that it’s the special form of the function on which the controller is based that

plays a key role to the easy implementation (corresponding to the fewer parameters)

and the robustness of the walking (corresponding to the better behavior outside the

region of definition).

A formal construction scheme for hybrid systems — the meta-hybrid system —

is presented, in which a distinction is made between primary and auxiliary modes of

locomotion, which are termed motion primitives and motion transitions, respectively.

Motion primitives are fundamental modes of locomotion; the five motion primitives of

this study are: standing still on flat ground, walking on flat ground, walking upstairs,

walking downstairs and running. Due to the differences of modeling, we separate the

five motion primitives into two groups: the first group only contains a standing still

mode and is termed as “stationary motion primitive”; the second group includes the

remaining four locomotion behaviors and is termed the “mobile motion primitives”.

3



To switch between different motion primitives in a stable manner, auxiliary modes,

termed “motion transitions”, are introduced.

To summarize, this thesis presents two main contributions; the first is an exten-

sion of [2], in which the author presents a method of automatically obtaining robotic

walking controllers, via an optimization, from a set of human walking data. In this

thesis, it is shown that an augmentation of the optimization can be successfully ap-

plied to multiple modes of locomotion. An extending result of [3] is given in which

it is shown that the solution to the optimization problem, which minimizes the cost

of the least square fits of the control outputs to corresponding human data, ensures

partial hybrid zero dynamics; and thus, yields stable walking controllers for walking

on flat ground, upstairs, downstairs and running. The second contribution is that

by utilizing the same optimization problem, subject to different constraints, we can

achieve controllers which evolve the robot from one locomotion mode to another.

The combination of these two results is a collection of controllers, automatically ob-

tained from optimizations about human data, which form a continuous, multi-model

system.

4



2. HUMAN LOCOMOTION DATA

The most prevalent source of information on bipedal robotic walking found in

nature is the human body. This chapter provides an overview of the analysis and

insight obtained through examination of human locomotion. The human locomotion

data considered in this work is obtained from a data set that is made public by the

motion capture lab in UC Berkeley. In particular, this data set includes four types

of locomotion: walking on flat ground, ascending a stairway, descending a stairway

and running. Single step data is isolated from the experiment data via a procedure

termed the domain breakdown for each type of motion of each subject. The extended

canonical function is proposed and shown to universally represent specific kinematic

outputs of the human body for all four mobile motion primitives and four motions

transitions considered in this thesis.

2.1 Human Locomotion Data

The available on-line data set contains total of four experiments (including level

walking, stair ascending, stair descending and running), which were performed at

different times. According to the data explanation, all experiments are carried out by

the motion capture lab in the UC Berkeley with the IRB Protocol #2011−04−3088.

For each subject, data which contain the least noise were used in the computation

of kinematic outputs. Here, the “noisy” data are mainly because of the from time to

time disfunction of the sensors. An average is computed of all the subjects’ data for

a given output; this average is termed the “mean human data” corresponding to the

kinematic output. It is the analysis of this mean human data that forms the basis

of our locomotion controller design.
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2.2 Automated Domain Breakdown

The process by which the start and end of a single step are determined, is termed

the domain breakdown procedure. Generally, the domain breakdown is obtained

through a position threshold which specifies when the heel or toe is on the ground.

Differently, a new method by utilizing the acceleration data—rather than position—

of the heel and toe to determine the single step interval is proposed in this thesis.

This method is motivated by noting that the time when the contact points (heel or

toe) hit or lift the ground is the moment that maximum acceleration occurs. Data

of the heel position and acceleration of a test subject during the stair ascending are

shown in Fig. 2.1. The peak accelerations are indicated with dashed vertical lines.

The corresponding positions of the heel show the moment of heel strike and lift.

This method is similar to the analysis of ground reaction forces using force plate,

which is common in the bio-mechanics community [11, 23]. The domain breakdown

plays a critical role in the human-inspired locomotion controller design process; that

is, the complete-step time intervals obtained through the domain breakdown specify

the intervals of data over which our function fitting method is valid, i.e., the nominal

operation region of our controller.

2.3 Extended Canonical Human Function

In [30], it is shown that certain kinematic outputs of human walking in level

ground can be represented by a single, universal function termed the “canonical

human function (CHF)”—which has the similar form of the solution to a linear

spring-damper system under constant force. The same function is also able to fit

the outputs of human running for both stance phase and flight phase exceptionally

well [39]. Examination of the data for walking up and down stairs, however, reveals

a need for the augmentation of this function. It is found that walking up and down

6
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Figure 2.1: Domain breakdown for walking up stairs [38].

stairs, and the transitions between these behaviors and flat ground walking, can

be represented—with a high degree of accuracy—by the response of a linear spring-

mass-damper system subject to a sinusoidal excitation, which has the form as follows:

y = e−ζωnt (c0 cos(ωdt) + c1 sin(ωdt)) + g0/ω
2
n︸ ︷︷ ︸

“human′′=linear spring−mass−damper system

+ c2(ωn, ω, ζ, b) cos(ωt) + c3(ωn, ω, ζ, b) sin(ωt)︸ ︷︷ ︸
“enviroment′′=sinusoidal excitation

, (2.1)

where c0 and c1 are the initial conditions decided by the initial position y(0) and

the initial velocity ẏ(0); ξ is the damping ratio and ωn is the natural frequency;

ωd =
√

1− ξ2ωn is the damped frequency; the constant term g0 is the gravity term;

b and ω are the amplitude and frequency of the sinusoidal excitation, respectively;

7



c2 and c3 are functions of ωn, ω, ξ and b given by:

c2 = (2bξω)/(ω4 + 2(−1 + 2ξ2)ω2ω2
n + ω4

n), (2.2)

c3 = (b(−ω2 + ω2
n))/(ω4 + 2(−1 + 2ξ2)ω2ω2

n + ω4
n). (2.3)

Manipulation of (2.1) yields the following simplified form, which we term the

extended canonical human function (ECHF):

yH(t) = e−α1t(α2 cos(α3t) + α4 sin(α3t)) + α5 cos(α6t) + κ(α) sin(α6t) + α7, (2.4)

where κ(α) = (2α1α5α6)/(α
2
1 + α2

3 − α2
6). Comparing this form with the solution of

linear spring-mass-damper systems, we have α1 = ξωn, α2 = c1, α3 = ωd, α4 = c1,

α5 = c2, α6 = ω and α7 = g0/ω
2
n. Note the form of equation (2.1), the homogenous

solution terms and the gravity related constant correspond to the basic solution of

the “linear spring-mass-damper” system of human locomotion while the sinusoidal

excitation terms are due to the external excitation imparted on the system by the

environment—which is, in this case, the elevation of the walking surface. Moreover,

for the cases of level walking and running, the sinusoidal excitation terms can be

removed, which is the case discussed in [2]. The reason to execute this manipulation

(2.4) is that the ECHF has a simpler form that yields efficiency for the optimization

problem which will be discussed later.

With the ECHF in hand, it is important to note how the ideas considered in

this work, and the control approach taken, draw motivation from human walking.

The realization of physical human walking is achieved via a highly sophisticated and

complex system — the coordination of the muscular and nervous systems required

even for the simple task of taking one step is still not fully understood. Therefore,
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rather than trying to understand the complete dynamics of human walking, we take

a control theorist perspective: we view the human walking system as a “black box”.

In this light, the problem becomes to find the “outputs” of this black box that char-

acterize the behavior of the system. By tracking these outputs in a robot, through

virtual output constraints, the result is a robot which displays the same qualitative

behaviors as the human despite the differences in dynamics. Similar approaches have

been taken in the robotics community; some of these approaches to note are: poly-

nomial functions used in [20], B-spline functions in [36] and Bezier series applied in

[32, 34]. However, unlike all these functions, the ECHF provides a simpler form (re-

quires fewer parameters) that appears to characterize all the basic human locomotion

primitives (walking, stair ascending, stair descending and running [39]). Moreover,
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another advantage to our approach over other similar methods (for example, a 4th

order polynomial function used in [8]) is the better behavior of the ECHF outside the

nominal operation region. As shown in Fig. 2.2, both the ECHF (with correlation as

0.9934) and the 4th order polynomial function (with the correlation as 0.9875) can

fit the human data very well. However, the 4th order polynomial function blows up

outside the operation window immediately and becomes infeasible while the ECHF

still remains a reasonable value, which we claim is very important to give the robot

more robustness while handling the external disturbance. As robot will always miss

the designed right time frame in real world due to the environment disturbance and

model uncertainty, the behavior outside the nominal region plays a key role to the

stability and robustness of the robot. Evidence of the robustness of using the ECHF

on a physical robot can be seen on ABMER [19]. In the proceeding subsection, we

discuss the specific outputs chosen to characterize human walking and show that the

ECHF represents these certain outputs of human data with high correlations.

2.4 Human Outputs

While analyzing the human data, we seek human outputs which satisfy the spe-

cific criteria, i.e., they (1) are functions of the joint angles, (2) have simple time-based

representation, and (3) are mutually exclusive (the decoupling matrix associated with

these outputs is non-singular). A total of four kinematic outputs are required for

the fully actuated 4-DOF robot model in consideration. Analysis of the human data

yields the following four outputs (seen in Fig. 3.1c) which seem to fully describe the

4-DOF analog of the human locomotion system:

1. the linearized forward position of the hip,

δphip = −θsfLc + (−θsf − θsk)Lt,

10



where Lc and Lt are the lengths of the calf and thigh, respectively; and θsf is

stance ankle angle measured from the vertical line to the calf, which can be

seen in Fig. 3.1a,

2. the hip angle, θhip, which is the angle measured from stance thigh to non-stance

thigh;

3. the stance knee angle θsk;

4. the non-stance knee angle, θnsk.

To calculate the mean human outputs, the following three steps are performed.

First, we compute the kinematic outputs, from human data, of all six subjects con-

sidered in this thesis. Second, we determine which subject has the shortest single

step interval, via using the domain breakdown procedure from Sect. 2.2. Then we

denote this step interval the “reference step interval”. For all other subjects, we

scale all four kinematic outputs to the reference step interval. Finally, we average

the outputs of all six subjects to obtain the mean human outputs, which can be seen

in Fig. 2.3 and Fig. 2.4. Explicitly, fg, us, ds correspond to the data of walking on

flat ground, upstairs and downstairs, respectively. And f → u represents the data

of transition from walking on flat ground to walking on upstairs; similar definition

holds for other similar terms.

Examination of human locomotion data reveals that the time-derivative of lin-

earized hip position is approximately constant, as seen in Fig. 2.3a and Fig. 2.4a.

Thus, we fit the linearized hip position with straight line as δpdhip = vhipt, where vhip

is the forward hip velocity. Utilizing the ECHF, the remaining three desired outputs

11
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Figure 2.3: Fitted ECHF and corresponding mean human data of motion primitives
[38].

of robot can be stated as:

θdhip(t, αhip) = yH(t, αhip),

θdsk(t, αsk) = yH(t, αsk),

θdnsk(t, αnsk) = yH(t, αnsk),

(2.5)

where, e.g., αsk = (αsk,1, αsk,2, αsk,3, αsk,4, αsk,5, αsk,6, αsk,7) in equation (2.4). The

parameters of all the outputs can be combined into a single parameter vector: α =

(vhip, αhip, αsk, αnsk) ∈ R22. By fitting these functions, via least square fits which
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Figure 2.4: Fitted ECHF and corresponding mean human data of motion transitions
[38].

yield high correlation coefficients, to corresponding human data, we claim that the

canonical human function accurately describes human walking data.

To determine the parameters for the ECHF, the following optimization is solved:

α∗ = argmin
α∈R22

CostHD(α). (2.6)

This optimization problem produces the least square fits (the detailed form of the cost

function can be referred to [2]) of the ECHF to the corresponding human data. The

parameters obtained through this process are given in Table 7.1, together with the
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correlation of each function to the corresponding set of data. Additionally, the func-

tions for each kinematic constraint and each locomotion behavior (three one-phase

motion primitives and four motion transitions) are plotted with the corresponding

human data in Fig. 2.3 and Fig. 2.4. Note that all the correlations are higher than

0.99, which implies that the ECHF can be fitted to the outputs of all three types of

motion primitive and four types of motion transition universally with a high degree

of accuracy.

Different for level walking and the stair climbing, the motion primitive of running

includes two phases: stance phase (with one foot on the ground) and flight phase

(with both feet in the air). Therefore, two CHFs are used for the fitting of running

data for each phase, the results of which are shown in Fig. 2.5. Note that, as

mentioned before, the CHF is a special form of ECHF with the extended term set

to 0. The fitting correlations of running data are shown in Table. 7.2, from which

we can see all the correlations are greater than 0.99.
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Figure 2.5: Fitted CHF and corresponding mean human data of running [39].
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3. ROBOT MODEL

With the goal to achieve human-like robotic walking, a robotic model with mass

and length parameters corresponding to human subject data is considered. To reduce

computational complexity, while preserving the form of the human lower-body, the

model is constructed as a serial chain of rigid links. Each link l has a length Ll and

a mass ml, which is a point, mass located a distance rl from the base of the link.

The resulting model configuration is shown in Fig. 3.1a, while the mass and length

distribution are shown in Fig. 3.1b. The specific values of these parameters for each

single subject are obtained by applying Winter’s [35] mass and length distribution to

the human test subject. The mass and length of all subjects considered in this thesis

are averaged to obtain the parameters of mean human data model. The modeling

process considers the common assumptions in the bipedal robot literature, which

imply the existence of both continuous and discrete dynamic behavior that observed

in phases of single support and double support. Based on the model specifications,

the following sections give the derivation of the dynamics of the system.

3.1 Continuous Dynamics

Given the configuration space Q : q = {θsf ; θsk; θhip; θnsk}, using the method

of Lagrangian with the consideration of holonomic constraints, we can obtain the

dynamics of the continuous phase as:

D(q)q̈ +H(q, q̇) + AT (q)λ = B(q)u, (3.1)

where, D(q) and B(q) are the generalized inertia and torque distribution maps,

respectively, and H(q, q̇) = C(q, q̇)q̇+G(q) contains terms resulting from the Coriolis
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(a) Robot configuration (b) Robot mass-length (c) Robot outputs

Figure 3.1: The modeled robot’s configuration, mass and length distribution, and
virtual constraints [38].

effect, centrifugal forces and gravity. Note that, here B(q)u provides full actuation

as modeled, which will be discussed later in Sect. 4. A(q) ∈ Rk×n corresponds to a

set of k holonomic constraints; λ are Lagrange Multipliers which are used to enforce

holonomic constraints. The formula of λ can be given with the method from Chapter

6 in [26] as:

λ = (A(q)D(q)−1A(q)T )−1(Ȧ(q)q̇ + A(q)D−1(B(q)u−H(q, q̇))). (3.2)

Substituting this equation back into equation (3.1) leads to the affine control system

for the continuous dynamics, FG:

ẋ = f(q, q̇) + g(q)u, (3.3)
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where f(q, q̇) and g(q) are defined as:

f(q, q̇) =


q̇

D−1(q)(AT (q)Θ(q)A(q)D−1(q)− I )

(H(q, q̇)− AT (q)Θ(q)Ȧ(q)q̇)

 , (3.4)

g(q) =

 0

D−1(q)(I − AT (q)Θ(q)A(q))B(q)

 , (3.5)

where, for simplicity Θ(q) = A(q)D−1(q)AT (q).

Particularly, two types of continuous walking behavior with different dynamic

models are considered. The first type is stationary behavior that contains standing

still on flat ground, in which case both feet are pinned to the ground. The second

type is a set of four mobile behaviors, in which case maximum one leg is pinned to

the ground while the other leg swings freely. In particular, we define the two types

of motion primitives as follows:

Stationary Motion Primitive. For stationary behavior, Lagrange Multipliers are

needed to ensure that the swing foot remains in contact with the ground. Thus,

fs(q, q̇) and gs(q) are defined with the form given by (3.5).

Mobile Motion Primitive. For the mobile behavior, the swing foot is not con-

strained, i.e., A(q) = 0. Thus, the affine control system of mobile locomotion can be

reduced to the following form:

fm(q, q̇) =

 q̇

D−1(q)H(q, q̇)

 , gm(q) =

 0

D−1(q)B(q)

 . (3.6)
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3.2 Discrete Dynamics

With the modeling assumption that the discrete dynamics phase occurs instanta-

neously, the dynamic response is modeled as an impact on the system. Specifically,

the method of [17] is used to model the plastic rigid-body impacts as impulse re-

sponses. The detailed derivation can be found in Chapter 3 in [33], thus, is omitted

here for space consideration.

With the assumption of symmetric walking, we use a stance/non-stance notation

for the legs. To affect this statement that the legs be “switched” at impact, and

thereby reduce the complexity of the model, the reset map can be implemented as

following:

∆(q, q̇) =

 ∆qq

∆θ̇(q)θ̇

 , (3.7)

where ∆q is the relabeling [2, 13]which switches the stance and non-stance leg at

impact; and ∆θ̇ determines the change of velocity due to the impact. Further details

can be found in [2].
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4. CONTROLLER DESIGN

The purpose of this chapter is to specify a controller, u, for the given control sys-

tem (3.5). Motivated by the desire to obtain human-like bipedal robotic locomotion,

we seek to construct a controller which drives outputs of the robot to corresponding

outputs of the human. Formally, we seek a uα which guarantees that ya(q)→ ydα(t)

as t → ∞, where ya are the outputs of the robot (computed via kinematics) and

ydα are the outputs of the human as represented by the ECHF. As the dynamics of

the robot model are highly nonlinear, the natural choice of control method for this

system is Feedback Linearization [29].

4.1 Parameterization of Time

Autonomous control has several advantages for the control of bipedal robots (see

[4]). With this consideration, we introduce a state-based parameterization of time in

our system; this is a common practice in [33, 34]. As shown in Section 2.4, analysis of

human data reveals that the linearized forward position of the hip δphip evolves in an

approximately-linear manner with respect to time, that is δphip(t, vhip) ≈ vhipt. Tak-

ing advantage of this observation, the following parameterization of time is formed:

τ(q) =
δpRhip(q)− δpRhip(q+)

vhip
, (4.1)

where δpRhip(q
+) is the linearized forward position of the hip at the beginning of the

current step.

4.2 Controller Specification

With the parameterization of time in place, the control law can be defined explic-

itly with the ECHF discussed in Sect. 2. Particularly, we define the (relative degree
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2) actual outputs of the robot to be the output functions considered in Sect. 2 and

the desired outputs to be the outputs of the human as represented by the ECHF but

with parameterized time τ(q):

ya2(θ) =


θhip

θsk

θnsk

 , yd2,α(θ) =


θdhip(τ(q), αhip)

θdsk(τ(q), αsk)

θdnsk(τ(q), αnsk)

 . (4.2)

Similarly, with the goal of controlling the velocity of the robot, we define the relative

degree 1 outputs to be the velocity of the hip and the desired velocity of the hip:

ya1(θ, θ̇) = dδphip(θ)θ̇, yd1,α = vhip. (4.3)

The goal is for the outputs of the robot to agree with the outputs of the human,

therefore, motivating the final form of the human-inspired outputs to be used in

feedback linearization:

yα(q, q̇) =

 y1,α(q, q̇)

y2,α(q)

 =

 ya1(θ, θ̇)− vhip

ya2(q)− yd2,α(q)

 . (4.4)

Therefore, the feedback linearization controller, uα(q, q̇), can now be stated as:

uα(q, q̇) =−A−1α (q, q̇)


 0

LfLfy2,α(q, q̇)


+

 Lfy1,α(q, q̇)

2εLfy2,α(q, q̇)

+

 εy1,α(q, q̇)

ε2y2,α(q)


 , (4.5)
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with control gain ε and decoupling matrix Aα(q, q̇) given by

Aα(q, q̇) =

 Lgy1,α(q, q̇)

LgLfy2,α(q, q̇)

 .
Due to one of the criteria that the outputs should be mutually exclusive [2], the

decoupling matrix is guaranteed to be non-singular. It follows that for a control gain

ε > 0, the control law uα renders the outputs exponentially stable [29]. That is,

the outputs of the robot converge to the ECHF exponentially. Note that, since the

parameters α are so important and change for each motion primitive, we explicitly

define the controller uα and desired output functions ydα corresponding to α. The goal

of Chapter 6 will be to determine the parameters, α, of this control law to achieve

different walking behaviors based upon the human data.
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5. HYBRID AND META-HYBRID SYSTEMS

In this chapter, it is shown that primary modes of bipedal locomotion—such

as walking, standing, traversing stairways and running—can each be represented

by a unique hybrid control system. However, control of functional bipedal robots

requires dominion over multiple primary modes of locomotion. Therefore, to develop

a functional locomotion control scheme, one must introduce auxiliary hybrid systems,

which evolve the state of the robot during transitions between primary modes. To

this end, we propose the concept of a meta-hybrid system, which consists of both

primary and auxiliary hybrid systems formally merged together in a way that allows

for the motion planning through both motion primitives and motion transitions.

5.1 Hybrid System for the Biped

Given the Lagrangian and impact dynamics of the robot model in Section 3, a

natural choice of mathematical representation for this model is a hybrid system [2],

which exhibits both continuous and discrete dynamics. Formally, we begin by writing

the hybrid control system for the robot as:

H C R
h = (DRh , §Rh ,∆R, fR, gR, UR), (5.1)

which depends on a unilateral constraint function, h, representing the terrain of

the hybrid system. The superscript R denotes that the notations following are for

the robot in this thesis particularly. Specifically, h is the height of non-stance foot

above the walking surface, e.g. a staircase or level ground; h characterizes the allow-

able configuration, i.e., the domain. With both feet on flat ground, the stationary
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behavior domain is defined as:

DRhs =

{
(q, q̇) ∈ TQ : hs(q) = 0 and

∂hs(q)

∂q
q̇ = 0

}
. (5.2)

Similarly, the domain of mobile behaviors can be stated as:

DRhm = {(q, q̇) ∈ TQ : hm(q) ≥ 0} . (5.3)

The guard is the boundary of the domain with the additional assumption that the

unilateral constraint is decreasing, as stated as following:

§Rh =

{
(q, q̇) ∈ TQ : h(q) = 0 and

∂h(q)

∂q
q̇ < 0

}
. (5.4)

The remaining elements are specified by the dynamics of the robot; that is, they

are intrinsic to the model and consistent for all hybrid system representations of the

robot, yet they are independent of the terrain. These elements are given by:

• ∆R is the reset map, corresponding to the impact equations as defined in (3.7),

• UR = R4, as we assume full control authority.

Applying the human-inspired feedback control law u(θ, θ̇) as defined in (4.5), we have

the hybrid system as:

H R
(h,α) = (DRh , §Rh ,∆R, fRα ), (5.5)

with fRα (θ, θ̇) = fR(θ, θ̇) + gR(θ)uα(θ, θ̇).

Note that, as stated in Sect. 3.1, we have different (fR, gR) with respect to the

domains, i.e., the types of motion primitive. Therefore, with different domains and
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(fR, gR), we define the different types of hybrid control system as H R,i
(h,α) with i = s

or m corresponding to the stationary motion primitive and mobile motion primitives,

respectively.

For each type of hybrid system, we have made the dependence of fRα on the

parameters α ∈ R22 of the human walking functions explicitly (note that fRα also

depends on the control gain ε, but since the same gain will be used in all cases for

the robot, it is not explicitly stated). The end result of the modeling process is

that two different types of hybrid system are defined based on the types of motion

primitive. Specifically, for each type of motion, a hybrid system H R,i
(h,α) that depends

on the type of behavior (through i = s or m), the terrain it is walking in (through

h) and the parameters of the human inspired control α, has been defined.

Note that, considering the running motion primitive consists two phases (stance

and flight), the general form of domain as discussed above contains two sub-domains,

i.e., stance sub-domain and flight sub-domain. In particular, because of the transition

between stance sub-domain to the flight sub-domain is a identity map. We still

adopt the same hybrid system the definition for running. This thesis will focus on

the general structure of motion primitives and motion transitions. Therefore, the

detailed construction of running is omitted here, and can be referred to [39].

5.2 Meta-Hybrid Systems

A meta-hybrid system is a hybrid system of hybrid systems, which contains mul-

tiple locomotion behaviors and transitions between these behaviors.

Definition 1. A meta-hybrid system is a tuple,

MH = (Γ,M ,T ),
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where

• Γ = (V,E) is a directed graph, with V a set of vertices, or nodes, and E ⊂ Q×Q

a set of edges; for e = (q, q′) ∈ E, denote the source of e by sor(e) = q and the

target of e by tar(e) = q′.

• {Mv}v∈V is a collection of motion primitives, each represented by a hybrid

system:

Mv = (Dv, §v,∆v, fv),

• {Te}e∈E is a collection of motion transitions, represented by hybrid systems of

the form:

Te = (Dtar(e), §tar(e),∆tar(e), fe),

That is, Te has the same domain, guard and reset map as Mtar(e), but has a

different vector field fe.

Hybrid Period Orbits and the Poincaré Map. In order to establish the stability

of k-periodic orbits, we will use the standard technique of studying the corresponding

Poincaré map. In particular, taking G to be the Poincaré section, one obtains the

Poincaré map, P : G→ G, which is a partial map defined by:

P (z) = c(τ(z)),

where c(t) is the solution to ẋ = f(x) with c(0) = R(z) and τ(z) is the time-to-impact

function. In particular, if z∗ is a k-fixed point of P (under suitable assumptions on

z∗, G, and the transversally of O and G) a k-periodic orbit O with z∗ ∈ O is locally

exponentially stable if and only if P k is locally exponentially stable (as a discrete-

time dynamical system, zi+1 = P (zi))(the detailed definition can also be seen in
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[3]). Although it is not possible to explicitly compute the Poincaré map, one can

compute a numerical approximation of this map through simulation and thereby

test its stability numerically. This gives a concrete method for practically testing the

stability of periodic orbits.

In this thesis, we consider a Poincaré map for hybrid systems (e.g., a meta-hybrid

system) that are no longer “simple” — meaning that they exhibit multi-domain,

i.e., more than one type of impact will happen. The stability of a hybrid system

which undergoes sequences of different domains has been discussed in detail in [14].

Particularly, a periodic orbit can be constructed transversally; therefore, a non-

trivial Poincaré map can be computed explicitly to numerically prove the stability

of multi-domain hybrid system. Here, the robot will evolve through three motion

primitives and two motion transitions, which will incur five impacts for one periodic

orbit. Numerical approximations of the eigenvalues of the Poincaré map for the meta

hybrid system are obtained by simulating the system, from one motion primitive,

through a motion transition, to the next motion primitive. The meta-hybrid system

is deemed stable if for every motion primitive - motion transition - motion primitive

cycle, the eigenvalues have magnitude less than unity.

27



6. MOTION PRIMITIVES & TRANSITIONS

In this chapter, we will explicitly construct a meta-hybrid system for a bipedal

robot, with the motion primitives and transitions between these behaviors. Following

this construction, the execution of this meta-hybrid system will be introduced. The

resulting behavior displayed by the robot, while performing these transitions and

motion primitives, will be shown via results from simulation. Formally, the goal of

this chapter is to construct a meta-hybrid system for the bipedal robot:

MH R = (ΓR,MR,T R),

With the four motion primitives: standing still on flat ground ss, walking on flat

ground fg, walking up stairs us, and walking down stairs ds, we have the directed

graph ΓR = (V R, ER) with

V R = {ss, fg, us, ds, rn},

ER = {(ss, fg), (fg, ss), (fg, us), (us, fg), (fg, ds), (ds, fg), (fg, rn), (rn, fg)}.

Note that the transitions between standing still on flat ground to going up or

down stairs and the transitions between going up stairs and going downstairs are not

considered in this work for the sake of simplicity, but the methods outlined in this

thesis could still be applied. The transition between standing still and running is

also not considered in this work for realistic consideration (particular level walking

speed need to be achieved before the running motion can be triggered). The total

graph ΓR can be seen in Fig. 6.1. The remainder of this chapter will be devoted to

constructing the motion primitives and motion transitions.
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Figure 6.1: Graph of a meta-system representation for the five motion primitives in
consideration.

6.1 Motion Primitives

Motion primitives are the core modes of locomotion of this study; this section

discusses the development of controllers for motion primitives and the simulations

resulting from the application of these controllers to the robot model.

6.1.1 Motion Primitive Collection

Using the concepts developed throughout this thesis, we can now construct math-

ematical representations of a bipedal robot conducting each of the four different mo-

tion primitives of interest. In particular, we can model the robot in different domains

as follows:

• Standing Still on Flat Ground:H R,s
(hss,αss)

, where hss(q) = 0,
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• Walking on Flat Ground:H R,m
(hfg ,αfg)

, where hfg(q) = znsf (q),

• Walking Up Stairs: H R,m
(hus,αus)

, where hus(q) = znsf (q)− zstair,

• Walking Down Stairs: H R,m
(hds,αds)

, where hds(q) = znsf (q) + zstair.

• Runnig on Flat Ground:H R,m
(hrn,αrn)

, where hrn(q) = znsf (q),

The superscript s of H R,s
(hss,αss)

corresponds to the stationary motion primitive with

the affine control system defined by (3.5) in which the holonomic constraints are

enforced and the domain defined by (5.2). Similarly, the mobile motion primitives

are denoted with superscript m with the control system defined by (3.6) and the

domain defined by (5.3). To effect these behaviors on the robot, it is necessary to

design controllers for each motion primitive, i.e., determine the control parameters

αv, v ∈ V R, which will result in stable locomotion for the robot in each domain.

6.1.2 Controller Development

Because of the differences between the two groups of motion primitives, we in-

troduce two different methods of obtaining the control parameters αv, v ∈ V R.

6.1.2.1 Stationary Motion Primitive

For the stand still motion primitive, holonomic constraints and Lagrange Mul-

tipliers are introduced to ensure that both feet are pinned to the ground while the

angles and the velocities of the system are driven to zero. A time based tracking

controller, therefore, is constructed for the stationary motion primitive.

6.1.2.2 Mobile Motion Primitives

The goal of this subsection is to discuss the main contribution of this thesis; that

is, starting from human data directly, through an optimization algorithm, which

is subject to specific constraints, we obtain control parameters αv, v ∈ V R for all
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four mobile motion primitives. These control parameters guarantee stable walking

while simultaneously achieving a high degree correlation fit to the human data. This

methodology has been discussed in [2] for the case of flat ground walking. Here

we extend the methodology to all the four mobile motion primitives. We also show

that, with reasonable modifications to this methodology, we can achieve remarkable

results for motion transitions—a topic which will be discussed in later sections.

6.1.3 Partial Hybrid Zero Dynamics

As discussed in Chapter 4, the goal of the control law uα (4.5) is to drive the

human-inspired output yα(θ, θ̇) → 0 exponentially at a rate of ε. Therefore, for the

continuous dynamics, the controller renders the full zero dynamics surface:

FZα = {(θ, θ̇) ∈ TQR : yα(θ, θ̇) = 0, LfRy2,α(θ) = 0}. (6.1)

While this surface is invariant for continuous dynamics, however, this is not the case

for discrete dynamics. In particular, the discrete impacts in the system cause the

state to be “thrown” off of the zero dynamics surface. Therefore, a hybrid system

has full hybrid zero dynamics (FHZD) if the zero dynamics are invariant through

impact: ∆R(SR ∩ FZα) ⊂ FZα [2].

While the realization of FHZD renders a lot of favorable properties for the system,

it is quite difficult in the case of bipedal robotic walking since it would force the hybrid

system to evolve on a 1-dimensional manifold. Therefore, we seek to enforce zero

dynamics only for the relative degree 2 outputs. We refer to this as the partial zero

dynamics surface, given by:

PZα = {(θ, θ̇) ∈ TQR : y2,α(θ) = 0, LfRy2,α(θ) = 0}. (6.2)
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Particularly, we can define the partial hybrid zero dynamics (PHZD) as: ∆R(SR ∩

FZα) ⊂ PZα. The consideration of this modification is that PHZD allows some

“freedom” in the movement of the system to account for differences between the

robot model and human. Moreover, since the only output that is not included in

the partial zero dynamics surface is the output that forces the forward hip velocity

to be constant, enforcing PHZD simply means that we allow the velocity of the hip

to compensate for the shocks in the system due to impact. After constraining the

system on the PHZD surface invariantly through impact, we will achieve a system

evolving with a 2-dimensional zero dynamics manifold which is determined by the

parameters α only. Note that the PHZD surface is consistent for all four mobile

motion primitives; thus the conclusion obtained in [3] for walking on flat ground also

applies for the remaining two motion primitives.

6.1.4 Human-Inspired Optimization

With the PHZD constraints in mind, the goal to develop the controller becomes

to find parameters α∗v that solve the following constrained optimization problem:

α∗v = argmin
αv∈R22

CostHD(αv) (6.3)

s.t ∆R(SRhv ∩ FZαv) ⊂ PZαv (PHZD)

with CostHD being the same as that in (2.6) and v ∈ {fg, us, ds, rn}. This is simply

the optimization problem in (2.6) that is used to determine the parameters of the

ECHF to give the best fit of the human walking functions to the human output data

of three motion primitives, but subject to constraints that ensure PHZD. Note that

SRhv are different for different motion primitives. This method can be applied to all

three mobile motion primitives; the only difference is the height above the walking
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surface hv, i.e., the guard.

In order to solve the (6.3) explicitly, we restate the PHZD constraints with ap-

plying the inverse kinematics methodology discussed in [2] in such a way that it

can be practically solved. Specifically, because of the formula of the outputs we

choose (all outputs are linear) and the way we parameterize the time, a point

(ϑ(α), ϑ̇(α)) ∈ FZαv ∩ SRhv on the intersection of the full zero dynamics surface

and the switching surface can be explicitly computed in terms of the parameters αv

(detail derivation can be seen in [2]). Therefore, with the notation of partial zero

dynamics surface and the point (ϑ(α), ϑ̇(α)), we formally redefine the optimization

problem with the PHZD constraints as the following human-inspired optimization

problem theorem:

Theorem 1. The parameters α∗v solving the constrained optimization problem:

α∗v = argmin
αv∈R21

CostHD(αv) (6.4)

s.t y2,α(ϑ(α)) = 0 (C1)

dy2,α(∆θϑ(α))∆θ̇(ϑ(α))ϑ̇(α) = 0 (C2)

dhR(ϑ(α))ϑ̇(α) < 0 (C3)

yield hybrid zero dynamics: ∆R(SRhv ∩ FZα∗v) ⊂ PZα∗v . Furthermore, if

τ(ϑ(α∗)) =
δphip(ϑ(α∗))− δphip(∆qϑ(α∗))

vhip,v
> 0,

then there exists a constant ε > 0 such that for all ε > ε the hybrid system H R,m
(hv ,α∗v)

has an exponentially stable periodic orbit. Moreover, the fixed point of this periodic
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orbit, (θ∗ε,v, θ̇
∗
ε,v), satisfies the property that:

lim
ε→∞

(θ∗ε,v, θ̇
∗
ε,v) = (ϑ(α∗), ϑ̇(α∗)). (6.5)

This Theorem follows from a combination of the Theorem 1 in [2] and Theorem

2 in [3], but extended to the case of different motion primitives. The proof of this

theorem is also similar to the proof in those two papers; since this proof would require

the introduction of numerous constructions that are not necessary to the rest of the

results given in this thesis, we will not state it in explicit detail. The only difference is

that for different motion primitives, we have different guards hv(q) — which renders

the proof, for the most part, unchanged. The proof of the first part of Theorem

1 is the same as in [2] since PHZD is invariant corresponding to the height guard.

For the proof of the second part, it is similar to the proof of Theorem 2 in [3] but

with a constant shift in the Poincaré map for different motion primitives (different

guards); however, these shifts do not affect the proof of the existence of the fixed

point (ϑ(α∗), ϑ̇(α∗)). Note that, the Theorem 1 doesn’t guarantee the convergence

to the fixed point, but insures the existence of the fixed point if the optimization

problem subject to the PHZD constraints can be solved. It’s these special constraints

which guarantee stable walking that are the highlights of this methodology. As we

know that these constraints are highly nonlinear, it’s difficult (if not impossible) to

locate or to identify the global minimum. However, we argue that with sufficient

small feasibility , we can conclude that a good solution which guarantees stable

walking with PHZD, will be found. Feasibility, one of the outputs of MATLAB built

in function fmincon, denotes the maximum constraint violation.

Now we can restate the main contribution of this thesis—starting from the hu-

man data, through the inverse kinematics and the parameters obtained from op-
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(a) Walking on flat ground

(b) Walking upstairs

(c) Walking downstairs

(d) Running

Figure 6.2: Snapshots from robotic locomotion simulations exhibiting the four motion
primitives [38].

timization problem (6.4), we can determine the fixed points (ϑ(α∗), ϑ̇(α∗)), where

v ∈ {fg, us, ds, rn}, to the stable hybrid periodic orbits of all four mobile motion

primitives. Since the cost function of the optimization problem only depends on

the human walking data, we reinforce the fact that we can automatically generate a

controller, which yields a stable walking gait and the fixed point of its stable hybrid
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(b) Periodic orbit for Mds

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−4

−3

−2

−1

0

1

2

Angle (rad)

A
n
g
u
la

r
V

el
o
ci

ty
(r

a
d
s/

s)

 

 

θH
sf

 

 

θH
hip

 

 

θH
sk

 

 

θH
nsk

(c) Periodic orbit for Mfg
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(d) Periodic orbit for Mrn

Figure 6.3: Phase portraits for the four motion primitives.

periodic orbit, by only using the human walking data—for all four mobile motion

primitives.

Remark. Theorem 1 only applies to the fully actuated motion primitives including

level walking, stair ascending and stair descending. The running motion primitive

consists of an underactuated flight phase, therefore, requiring a different approach.

The theorem of running motion primitive can be referred to [39]. The stability of

the running gait is numerically verified using the Poincaré map.
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(b) Optimized nonstance hip angle
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(c) Optimized stance knee angle
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(d) Optimized nonstance knee angle

Figure 6.4: Optimized extended canonical human functions with parameters obtained
by solving the optimization problem (2.6) and the corresponding mean human data
of three one-phase motion primitives [38].

6.1.5 Simulation Results

Using the results of Theorem 1, which yields both the parameters for the human-

inspired controller α∗v, along with a fixed point to the Poincaré map, we obtain stable

walking for each motion primitive. Note that, the feasibility of each case is less than

1e−10. The resulting locomotion gaits from simulation are given in Fig. 6.2; these

figures show the evolution of the robot during the single support phase of the gait,

each of which qualitatively resembles the corresponding human gait quite well. The

phase portraits for each motion primitive simulation are shown in Fig. 6.3. The

37



0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

Time (s)

P
os

it
io

n
(m

)

 

 

δpH,stance
hip

 

 

δpH,flight
hip

 

 

δpfit,stance
hip

 

 

δpfit,f light
hip

 

 

δpS,stance
hip

 

 

δpS,flight
hip

(a) Optimized hip position

0 0.1 0.2 0.3 0.4

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

A
n
gl

e
(r

ad
)

 

 

θH,stance
hip

 

 

θH,flight
hip

 

 

θfit,stance
hip

 

 

θfit,flight
hip

 

 

θS,stance
hip

 

 

θS,flight
hip

(b) Optimized nonstance hip angle
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(c) Optimized stance knee angle
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(d) Optimized nonstance knee angle

Figure 6.5: Optimized canonical human functions with parameters obtained by solv-
ing the optimization problem (2.6) and the corresponding mean human data of the
two-phase running motion primitive [39].

stability of each phase portrait is numerically verified via numerical approximation

of the eigenvalues of the Poincaré map. All maximum eigenvalues are less than one

as shown in Fig. 6.8, which implies the corresponding motion primitives are stable.

Note that, we also achieved bipedal robotic running (with speed of 2.5m/s) using

the human-inspired optimization with ECHF.

Along with stable walking, the simulation results show that the bipedal model

considered in this thesis has achieved human-like walking for each mobile motion

primitive. Table. 7.3 contains the specific parameters α∗v obtained through opti-
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mization mentioned above for the one-phase motion primitives. The correlations

are all higher than 0.96, which are close to the fitting correlations; and costs from

optimization are low. The parameters α∗rn for the two-phase running motion prim-

itive are shown in Table. 7.4 . Plots of the human walking functions with these

parameters, as compared against the human data, can be seen in Fig. 6.4 for three

one-phase motion primitives and Fig. 6.5 for the two-phase running motion primitive.

From the figure and the table, one can conclude that the bipedal robot considered

in this thesis, with human inspired locomotion controller, has achieved qualitatively

human-like walking. It is also important to note that the velocities after impact for

all the one-phase motion primitives are below 7rad/s, which is realistic in a physical

context.

6.2 Motion Transitions

This section discusses the development and simulation of motion transitions,

which are explicitly built upon the motion primitives obtained in the previous sec-

tion. Note that, because of the lacking of transition data between level walking and

running, this section will focus on the frame work of obtaining transitions between

the one-phase motion primitives. The transitions between level walking and running

will be achieved with a different approach, the derivation of which is omitted in this

work in order to keep the simplicity of the thesis structure.

6.2.1 Motion Transition Collection

We are interested in developing motion primitives based upon the meta-hybrid

system graph ΓR, which gives the allowable transitions between different locomotion

behaviors. Based upon the definition of a meta-hybrid system (Definition 1), the

motion transitions must satisfy very specific conditions with regard to the motion

primitives. Therefore, specific motion transition hybrid systems we are interested in
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must have the form:

• Standing still to walking on flat ground: H R,s
(hfg ,α(ss,fg))

, where hfg(q) = znsf (q),

• Walking on flat ground to stand still: H R,s
(hss,α(fg,ss))

, where hss(q) = 0,

• Walking on flat ground to up stairs: H R,m
(hus,α(fg,us))

, where hus(q) = znsf (q) −

zstair,

• Walking up stairs to flat ground: H R,m
(hfg ,α(us,fg))

, where hfg(q) = znsf (q),

• Walking on flat ground to down stairs: H R,m
(hds,α(fg,ds))

, where hds(q) = znsf (q) +

zstair,

• Walking down stairs to flat ground: H R,m
(hfg ,α(ds,fg))

, where hfg(q) = znsf (q).

Since we have two types of motion primitives, the methodology to determine the

control parameters α∗e, e ∈ E corresponding to different transitions will be different.

Therefore, we separate the 6 motion transitions into two groups: the first group

contains two motion transitions related to the stand still motion primitive, which are

H R,s
(hfg ,α(ss,fg))

and H R,s
(hss,α(fg,ss))

; the remaining four motion transitions belong to the

second group. We name the first group as “stationary related motion transitions” and

the second group as “mobile related motion transitions”. In the following section, we

discuss the optimization problems through which the motion transitions are obtained.

6.2.2 Controller Development

Motion transitions connect two different motion primitives. Therefore, we have

to take both source and target motion primitives into consideration while we are

constructing optimizations for motion transitions.

Stationary Related Motion Transitions. To determine the parameters α∗e,

e ∈ E, of the stationary related motion transitions we use the fixed points cor-
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(c) Optimized stance knee angle
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(d) Optimized nonstance knee angle

Figure 6.6: Optimized extended canonical human functions with parameters obtained
by solving the optimization problem (2.6) and the corresponding mean human data
of four motion transitions [38].

responding to motion primitives of standing still on flat ground and flat ground

walking. In particular, (ϑ(α∗), ϑ̇(α∗)) ∈ SRhv , v ∈ V R (here, v ∈ {ss, fg}), are the

fixed point of each motion primitive, which are computed via the Theorem 1 in closed

form. The second main contribution of this thesis can now be stated: since we can

explicitly compute the fixed points of periodic orbits of all three mobile motion prim-

itives with Theorem 1, we propose that utilizing the fixed points obtained above in

an optimization problem can also render the parameters of controllers for motion

transitions. At a high level, the goal of the motion transition optimization is to gen-
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erate desired output functions, which effect smooth connections, or “transitions”,

between the corresponding source and the target motion primitives. Formally, these

objectives can be stated in an optimization problem:

α∗e = argmin
α∈R22

(‖(ϑe(αe), ϑ̇e(αe))− (ϑtar(e)(α
∗
tar(e)), ϑ̇tar(e)(α

∗
tar(e)))‖) (6.6)

s.t yd2,αe
(0)− yd2,α∗

sor(e)
(0) = 0

ẏd2,αe
(0)− ẏd2,α∗

sor(e)
(0) = 0

where yd2,αe
(t) are the desired relative degree two outputs of the robot with parameters

αe; α
∗
tar(e) and α∗sor(e) are the optimized parameters of the target and source motion

primitives, MR
tar(e) and MR

sor(e), respectively. They are obtained explicitly by solving

the optimization problem (6.4) and (ϑtar(e)(α
∗
tar(e)), ϑ̇tar(e)(α

∗
tar(e))) is the fixed point

of target motion primitive. Note that, here tar(e), sor(e) ∈ {ss, fg}. (ϑe(αe), ϑ̇e(αe))

is the pre-impact point of the end of the transition, which is the point at the inter-

section of the full zero dynamics surface of the transition and the guard of the target

motion primitive (thus, this point can be computed via the methodology of inverse

kinematics). Through the cost function, we enforce the end point of the transition

to be as close to the fixed point of the target motion primitive as possible, while

constraining the transition to start with fixed point of the source motion primitive.

Some augmentation constraints, such as angle limits, have been added to insure the

transition behavior is as human-like as possible. Solving this optimization renders

the parameters α∗e for the two stationary motion transitions.

Mobile Related Motion Transitions. To generate the parameters α∗e, e ∈ E, of

the mobile related motion transitions, we turn to a different approach. As we have

the human data for these four motion transitions, we use the same cost function as in
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(2.6) with the constraints corresponding to the target and source motion primitives.

The problem can be stated as:

α∗e = argmin
α∈R22

CostHD(αe) (6.7)

s.t yd2,αe
(0)− yd2,α∗

sor(e)
(0) = 0

ẏd2,αe
(0)− ẏd2,α∗

sor(e)
(0) = 0

yd2,αe
(ταe,α∗tar(e),α

∗
sor(e)

)− yd2,α∗
tar(e)

(ταe,α∗tar(e),α
∗
sor(e)

) = 0

ẏd2,αe
(ταe,α∗tar(e),α

∗
sor(e)

)− ẏd2,α∗
tar(e)

(ταe,α∗tar(e),α
∗
sor(e)

) = 0

ταe,α∗tar(e),α
∗
sor(e)

=
δpRhip(ϑtar(e)(α

∗
tar(e)))− δpRhip(∆qϑsor(e)(α

∗
sor(e)))

vhip,e

where the elements are the same as those in (6.6) except that tar(e), sor(e) ∈

{fg, us, ds}; CostHD(αe) is the cost given in (2.6) and e ∈ ER. Note that ταe,α∗tar(e),α
∗
sor(e)

is an approximation of the transition time interval, which is computed with the as-

sumption that the hip velocity of the transition behavior is constant. Examination

of human data for the hip position, given in Fig. 2.4a, reveals that this assumption is

reasonable. δpRhip(ϑtar(e)(α
∗
tar(e))) and δpRhip(∆qϑsor(e)(α

∗
sor(e))) are the pre-impact hip

position of target motion primitive and the post-impact hip position of source motion

primitive, respectively. And vhip,e is the actual hip velocity of the specified motion

transition. The optimization here constrains both start and end points of transitions

to be the fixed points of source and target modes, respectively. From a geometric

view, we can interpret this process as constructing a topology transformation going

smoothly from one convex invariant set to another convex invariant set. By solving

this optimization problem, we obtain parameters α∗e for all four motion transitions.

In this framework, the motion transitions play an important role in the motion

planning of the robot, i.e., switching between different motion primitives. Rather
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than switching directly between different motion primitives (ZMP is used in [21],

central pattern generator is used [16]), we utilize the motion transition as a “buffer”

to connect the fixed point of each motion primitive to insure the stability of system

while switching. One main advantage of the introduction of motion transitions is

that the system can deal with big variation of the terrain with the guarantee of

good stability. Another advantage is that the motion transition generates smooth

human-like switching process without using high gain and won’t generate torque

spikes.

This approach is different from funneling work [6], in which the controllable state

space is covered with the regions of attraction from a lot of locally stabilizing con-

trollers to insure robustness of the transitions. Therefore, the motion planning can

be considered as switching between different funnels which, for example, can be com-

puted numerically using the method in [31]. Compared to all the pioneering funneling

works [6, 12, 18], we focus more on constructing a directed graph consisting nodes

(motion primitives) and edges (motion transitions) instead of building funnels. Then

the motion can be planned in the directed graph through switching among the de-

signed nodes via the corresponding edges. Since the motion transitions are optimized

in such a way that the fixed point of motion primitives which are asymptotically sta-

ble, can be connected directly and smoothly, the stability of the motion planning

can be guaranteed naturally. Particularly, the numerical method of Poincaré map is

used to prove the stability of the transition behaviors, which will be discussed later.

Note that, as in the case of the optimization for PHZD, we only constrain the

relative degree two outputs. Thus, some “freedom” is given to the robot to com-

pensate for the differences between the robot and the physical human body. Solving

these two optimization problems yields parameters α∗e, e ∈ ER; therefore, yields the

motion transition hybrid system: Te = H R,i
(htar(e),α

∗
e)

with e ∈ ER and i ∈ {s,m}.
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(a) Periodic orbit for H M {fg,ss}
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(b) Periodic orbit for H M {fg,us}
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(c) Periodic orbit for H M {fg,ds}

Figure 6.7: Phase portraits for the combination of motion primitives and motion
transitions [38].

6.2.3 Simulations Results

For the mobile related motion transitions, the simulation results show that the

robot considered in this thesis achieves human-like motion transitions. Table 7.3

contains the specific α∗e obtained through the optimization for each mobile related

motion transition. The correlations of transitions related to going up stairs are all

higher than 0.98, and the costs are on par with the costs of the motion primitives.
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Figure 6.8: Eigenvalues of motion primitives [38].

For the transitions corresponding to going downstairs, the correlations are still high

(higher than 0.93) except for one output. This could be related to the fact that the

experimental human data of going downstairs contains a relatively high amount of

noise. Plots of the human walking functions with these parameters, as compared

against human data, can be seen in Fig. 6.6.

Three simulations were performed in which the one-phase motion primitives and

motion transitions were combined. To construct a Poincaré map, and thus establish

a notion of the stability of a meta-system, the biped must start and end in the

same mode; therefore, we chose to simulate three locomotion cycles: walking on flat

ground to stand still to walking on flat ground (FG-SS-FG), walking on flat ground

to walking up stairs to walking on flat ground (FG-US-FG) and walking on flat

ground to walking down stairs to walking on flat ground (FG-DS-FG). Numerical

approximation yields eigenvalues for all three simulations; the maximum eigenvalue

of each is below unity which implies that all three meta-systems are stable. The

phase portraits of these three meta-systems can be seen in Fig.6.7, from which it

can be seen that all velocities after impact for all three meta-systems are below 10

rad/s, which is reasonably feasible in practice. Finally, we simulated all four one-
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Figure 6.9: Snapshots from the simulated composition of multiple locomotion modes
[38].

Figure 6.10: Snapshots from the simulated transitions between running and level
walking.

phase motion primitives together with the six motion transitions; snapshots from the

simulation can be seen in Fig. 6.9.

To achieve the transitions between flat ground walking and running, we take the

approach of using transition matrix, which has been first proposed and realized in a

physical bipedal robot in [19]. The snapshots of simulating running to walking and

back to running is shown in Fig. 6.10.
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7. SUMMARY

In this thesis, the kinematic human locomotion data are examined on four modes

of locomotion. It is shown that certain outputs of the human locomotion data can

each be represented by the response of a linear spring-damper system (for flat ground

walking and running) or the response of a linear spring-damper system with a sinu-

soidal excitation (for stair ascent and descent). An optimization problem is proposed

to give virtual outputs for feedback linearization controller, which yield provably sta-

ble and periodic locomotion in simulation. A second optimization is introduced to

generate controllers which yield smooth motion transitions between motion primi-

tives. Simulations are given which display bipedal robots walking in a varying terrain.

Future work will be devoted to realizing the results of this work on a physical bipedal

robot.
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Table 7.1: Fitted parameter values for human functions.

yd1 = a1t, yd2 = yH(t) given in (2.4)
f. a1 a2 a3 a4 a5 a6 a7 Corr.

δpfghip 0.934 0 0 0 0 0 0 0.9991

δpuship 0.639 0 0 0 0 0 0 0.9954

δpdship 0.546 0 0 0 0 0 0 0.9976

θfghip 2.675 0.981 6.063 0.937 0 0 -0.353 0.9991

θuship 2.093 1.192 6.039 0.286 -0.038 12.572 -0.353 1.0000

θdship 0.103 0.158 8.167 -0.238 -0.009 22.08 -0.153 0.9999

θfgsk 3.322 -0.174 13.66 0.040 0 0 0.333 0.9934
θussk 4.402 0.787 3.318 0.543 -0.010 16.09 0.236 1.0000
θdssk 0.548 -10.34 0.535 -11.35 -0.065 17.33 10.70 0.9992

θfgnsk -0.861 -0.344 10.57 0.046 0 0 0.681 0.9996
θusnsk -2.059 0.276 0.074 1.072 -0.409 10.90 0.407 0.9999
θdsnsk 2.667 1.264 3.460 2.197 -0.180 13.90 -0.172 0.9998

δpf→uhip 1.085 0 0 0 0 0 0 0.9993

δpu→fhip 0.799 0 0 0 0 0 0 0.9981

δpf→dhip 0.668 0 0 0 0 0 0 0.9990

δpd→fhip 0.913 0 0 0 0 0 0 0.9996

θf→uhip -3.215 0.331 7.876 -0.045 0.087 16.66 0.276 1.0000

θu→fhip 0.444 0.186 1.747 -1.741 0.160 8.610 0.490 1.0000

θf→dhip -0.227 -0.102 4.192 -0.697 0.064 13.58 0.495 1.0000

θd→fhip -2.480 -0.947 1.930 0.041 0.044 16.87 1.050 0.9999

θf→usk 0.705 -0.191 9.239 0.872 0.140 9.420 0.200 0.9940

θu→fsk 3.820 0.514 4.154 0.185 -0.009 17.24 0.261 1.0000

θf→dsk -1.307 -0.556 2.804 0.069 -0.010 22.05 0.914 0.9997

θd→fsk 1.057 -0.703 5.593 1.094 0.611 6.759 0.278 0.9901

θf→unsk 0.217 -0.473 9.417 -0.021 -0.128 15.81 0.908 0.9999

θu→fnsk 1.691 -0.335 7.973 -0.265 -0.019 8.197 0.677 0.9999

θf→dnsk 0.919 0.112 8.101 0.574 -0.034 16.88 0.567 1.0000

θd→fnsk 1.301 0.372 10.82 -0.024 -0.106 11.14 0.777 0.9999
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Table 7.2: Fitted parameter values for human functions of running.

yd1 = vhipt, yd2 = yH(t) given in (2.4)
* * vhip α1 α2 α3 α4 α5 Corr

Mean δpstancehip 2.327 * * * * * 0.9999

* δpflighthip 2.440 * * * * * 0.9998

* θstancehip * 1.319 0.627 15.29 0.023 -0.110 1.0000

* θflighthip * -6.459 0.285 0.002 0.191 -0.827 0.9998

* θstancesk * 7.502 -0.374 -0.000 0.061 0.916 0.9996

* θflightsk * 11.29 -0.593 5.337 -0.590 1.538 1.0000
* θstancensk * -1.953 -0.049 16.31 0.354 0.939 1.0000

* θflightnsk * 13.35 0.134 21.65 -0.313 0.507 0.9999
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Table 7.3: Optimized parameter values and cost for human functions.

ya1 = a1t, ya2 = yH(t) given in (2.4)
f. a1 a2 a3 a4 a5 a6 a7 Corr. Cost

δpfghip 0.925 0 0 0 0 0 0 0.9991 *

θfghip -1.941 0.320 5.865 -0.109 0 0 0.267 0.9958 *

θfgsk 4.852 -0.223 12.01 0.125 0 0 0.323 0.9787 *

θfgnsk -0.617 -0.330 9.381 0.209 0 0 0.649 0.9948 1.179

δpuship 0.623 0 0 0 0 0 0 0.9985 *

θuship 3.790 1.428 5.942 1.090 0.025 20.87 -0.648 0.9993 *

θussk 6.409 0.772 2.059 3.175 0.007 9.191 0.203 0.9956 *

θusnsk -3.037 0.292 2.842 0.200 -0.267 12.01 0.274 0.9987 0.868

δpdship 0.535 0 0 0 0 0 0 0.9981 *

θdship 3.658 -1.926 0.246 -7.356 0.320 4.766 1.541 0.9656 *

θdssk 0.296 -10.727 0.484 -5.320 -0.102 17.57 10.98 0.9830 *

θdsnsk 6.960 -0.547 11.31 -0.870 0.586 7.978 0.964 0.9956 2.817

δpf→uhip 0.760 0 0 0 0 0 0 0.9993 *

θf→uhip -3.014 0.196 4.825 -0.126 0.284 11.12 0.106 0.9984 *

θf→usk 0.841 -0.148 6.676 1.062 0.082 6.822 0.167 0.9091 *

θf→unsk 1.367 -0.602 10.02 0.069 0.009 15.93 0.911 0.9991 3.113

δpu→fhip 0.774 0 0 0 0 0 0 0.9981 *

θu→fhip 0.854 0.828 4.000 -0.410 0.095 10.01 -0.118 0.9999 *

θu→fsk 2.455 0.498 2.063 -1.113 0.011 24.18 0.474 0.9822 *

θu→fnsk 0.852 -0.163 6.802 1.067 -0.000 6.855 0.462 0.9931 2.000

δpf→dhip 0.730 0 0 0 0 0 0 0.9990 *

θf→dhip -1.568 0.138 4.988 -0.212 0.216 12.27 0.232 0.9494 *

θf→dsk 0.239 6.709 0.235 15.74 0.126 13.72 -6.735 0.9382 *

θf→dnsk 0.587 6.138 0.482 9.738 -0.257 16.32 -5.46 0.4249 10.22

δpd→fhip 0.730 0 0 0 0 0 0 0.9996 *

θd→fhip -0.717 0.731 4.147 1.574 0.977 14.05 -1.772 0.9302 *

θd→fsk -0.060 -9.575 0.273 4.584 0.062 17.48 9.661 0.2506 *

θd→fnsk 0.560 2.269 6.766 2.642 -1.386 6.518 0.949 0.9396 11.66
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Table 7.4: Optimized parameter values and cost for human functions of running.

ya1 = vhipt, ya2 = yH(t) given in (2.4)
* * vhip α1 α2 α3 α4 α5 Corr Cost

Mean δpstance
hip 2.1998 * * * * * 0.9999 *

* δpflighthip 2.1998 * * * * * 0.9999 *

* θstance
hip * 4.952 0.941 14.06 0.475 -0.370 0.9987 *

* θflighthip * 13.04 -0.322 2.175 -2.828 -0.339 0.9960 *

* θstance
sk * 11.66 -0.159 3.153 6.561 0.196 0.9304 *

* θflightsk * -6.647 -0.119 24.98 -0.069 0.660 0.9904 *
* θstance

nsk * -1.319 -0.241 23.55 0.284 1.089 0.9630 *

* θflightnsk * 0.855 0.301 25.46 -0.242 0.364 0.9910 3.02
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