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ABSTRACT 

 

While a high-cholesterol diet has previously been shown to induce hepatic lipid 

accumulation in mice, the role of the intracellular cholesterol binding/transport proteins 

sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) in this phenotype is 

unknown. Therefore, the impact of SCP-2/SCP-x gene ablation (double knockout, DKO) 

on hepatic and serum lipids as well as hepatic expression of proteins in cholesterol 

homeostasis was examined in mice fed control- and high-cholesterol diets.   

Cryopreserved liver, serum, and bile samples from DKO and wild-type, 

C57BL/6NCr mice which previously underwent a 29 day diet trial on a control- and 

high-cholesterol diet were utilized along with phenotypic and food consumption data 

gathered during the study. Liver, serum and biliary lipids were quantified using standard 

commercially available diagnostic kits. Hepatic mRNA levels of select genes and 

expression levels of select hepatic proteins involved in lipid metabolism were quantified 

via qRT-PCR and standard western blotting techniques. 

The high-cholesterol diet alone had no impact on food consumption or body 

weight gain in WT mice, but elicited hepatic accumulation of free and esterified 

cholesterol. High-cholesterol diet decreased hepatic expression of the SREBP2 target 

gene product HMGCR in females, but not other target gene proteins (SR-B1, LDL-R, 

cHMGCS) in either sex.  Concomitantly, high-cholesterol also elicited hepatic glyceride 

accumulation, especially triglyceride, which was associated with increased hepatic 

SREBP1 protein and SREBP1 lipogenic target gene expression (Acc1, Fas).   
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While the DKO did not alter food consumption, a significant decrease in BW 

gain was appreciated in both high-cholesterol diet and control-fed mice. The DKO also 

induced hepatic lipid accumulation in control-fed mice, especially of cholesteryl esters 

and glycerides, which was associated with: i) loss of SCP-2; ii) concomitant 

upregulation of L-FABP; and/or iii) increased protein levels of SREBP1 and SREBP2. 

Finally, DKO exacerbated the high-cholesterol diet-induced hepatic cholesterol and 

glyceride accumulation, but without further altering levels of SREBP2 target genes. 

Hepatic lipid secretion was impaired due to loss of SCP-2 and reducing Apo B, L-FABP 

and MTP protein expression. These findings suggested a potential role for SCP-2 in 

regulating hepatic accumulation of SREBP1 and SREBP2 proteins consistent with the 

ability of SCP-2 to facilitate intracellular cholesterol trafficking to endoplasmic 

reticulum from which SREBPs are derived.   
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NOMENCLATURE 

 

ABCA1 ATP-binding cassette transporter A1 

ABCG5 ATP-binding cassette transporter G5  

Abcg5 ATP-binding cassette transporter G5 (mRNA) 

ABCG8 ATP-binding cassette transporter G8 

Abcg8 ATP-binding cassette transporter G8 (mRNA) 

ACAT-2 acyl-CoA cholesterol acyltransferase-2 

ACBP acyl-CoA binding protein 

Acc1 acetyl CoA carboxylase-1 (mRNA) 

Acc2 acetyl CoA carboxylase-2 (mRNA) 

Apo A1 apolipoprotein A1 

Apo B apolipoprotein B 

ALT alanine aminotransferase 

AST aspartate aminotransferase 

β-HB beta-hydroxybutyrate 

BA bile acids 

BSEP bile salt export pump 

BW body weight 

C cholesterol 

CE cholesteryl ester 

Ceh/Hsl cholesteryl ester hydrolase, also called hormone sensitive lipase 
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CPT1A carnitine palmitoyl transferase-1A 

COX4 cytochrome c oxidase subunit 4 

CYP7A1 cholesterol 7α-hydroxylase 

CYP27A1 sterol 7α-hydroxylase 

CO control diet 

DKO SCP-2/SCP-x double null mouse 

ER endoplasmic reticulum 

Fas fatty acid synthetase (mRNA) 

FATP-2 fatty acid transport protein-2 

FATP-4 fatty acid transport protein-4 

FTM fatty tissue mass 

FXR farnesoid x receptor 

GPAT glycerol-3-phosphate acyltransferase 

CH high cholesterol diet 

cHMGCS cytosolic hydroxymethylglutaryl CoA synthase 

Hmgcs hydroxymethylglutaryl CoA synthase (mRNA) 

HMGCR hydroxymethylglutaryl CoA reductase 

Hmgcr hydroxymethylglutaryl CoA reductase (mRNA) 

HDL high density lipoprotein  

HDL-C high density lipoprotein derived cholesterol 

LCFA long chain fatty acid 

LCFA CoA long chain fatty acyl-CoA 
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LDL low density lipoprotein 

LDL-R low density lipoprotein receptor 

LTM lean tissue mass 

LXR liver x receptor 

L-FABP liver fatty acid binding protein 

miRNA microRNA 

MTP microsomal triglyceride transfer protein 

Mttp microsomal triglyceride transfer protein coding gene (mRNA) 

nonHDL-C non-high density lipoprotein derived cholesterol  

Ntcp Na+-taurocholate cotransporting polypeptide (mRNA) 

NEFA non-esterified fatty acid 

Oatp1 organic anion transporting polypeptide 1 (mRNA) 

Oatp2 organic anion transporting polypeptide 2 (mRNA) 

PL phospholipid  

PNS post-nuclear supernatant 

PPARα peroxisome proliferator-activated receptor alpha 

PCTP phosphatidylcholine transfer protein 

qRT-PCR quantitative real-time reverse transcriptase polymerase chain 

reaction 

 

SCP-2 sterol carrier protein 2 

SCP-x sterol carrier protein x, peroxisomal thiolase 2 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SHP small heterodimer partner 
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SR-B1 scavenger receptor class B member 1 

Srebp1  sterol response element binding protein-1 (mRNA) 

 

SREBP1 sterol response element binding protein-1, (mature 68kDa protein) 

 

Pre-SREBP1 sterol response element binding protein-1, (precursor 125kDa 

 form) 

 

Srebp2 sterol response element binding protein-2 (mRNA) 

 

SREBP2 sterol response element binding protein-2, (mature 68kDa protein) 

 

Pre-SREBP2 sterol response element binding protein-1, (precursor 125kDa 

 form) 

 

TBST buffer 10mM Tris-HCl, pH 8, 100mM NaCl, and 0.05% Tween-20 

 

TP total protein 

 

TG triglyceride 

 

WT wild-type C57BL/6NCr mouse 
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INTRODUCTION AND LITERATURE REVIEW 

 

A major gap in our understanding of intracellular cholesterol transport is the role 

of hepatic factors that target cholesterol to cholesterol-sensor molecules in the 

endoplasmic reticulum (ER), which regulate release of SREBPs, nuclear regulatory 

proteins controlling transcription of a host of genes for receptors and enzymes in 

cholesterol and fatty acid metabolism (36; 88; 90; 106; 116). Likewise, little is known 

about hepatic intracellular factors that mediate rapid intracellular transport of high-

density lipoprotein (HDL) cholesterol to other intracellular organelles for oxidation to 

bile acids (peroxisomes) and biliary elimination of cholesterol across the bile canaliculus 

(20; 78; 91).  

Studies in vitro and with cultured cells show that the 13 kDa sterol carrier 

protein-2 (SCP-2) is a cholesterol binding protein (17; 43; 61; 76; 93; 95; 109; 124) that 

markedly enhances cholesterol transfer from isolated plasma membranes as well as from 

lysosomes or lysosomal membranes to plasma membranes, ER, and mitochondria (3; 23; 

24; 26; 27; 30; 31; 41; 65; 92; 111; 123). SCP-2 overexpression increases cholesterol 

uptake, cholesterol transfer from plasma membranes to ER for esterification, and 

cholesteryl ester accumulation in L-cell fibroblasts (11; 74; 108). SCP-2 is an 

intracellular binding partner with caveolin-1 and SR-B1, and preferentially enhances 

cholesterol trafficking from cholesterol-rich plasma membrane microdomains in which 

these receptors are abundantly distributed (3; 8; 98; 110; 111; 127). These findings 

suggest a role for SCP-2 in rapid cholesterol intracellular trafficking of LDL-derived 
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cholesterol to ER for esterification or regulating SREBP release. It is important to note 

that SCP-2 and SCP-x proteins also contribute to rapid clearance of HDL-cholesterol by 

facilitating biliary bile acid synthesis (110; 112). By binding and transferring cholesterol 

to ER, SCP-2 stimulates hepatic cholesterol 7α-hydroxylase, the rate-limiting enzyme in 

hepatic bile acid synthesis (51; 105). Through an alternate transcription site, the SCP-

2/SCP-x gene also encodes a larger protein, sterol carrier protein-x (SCP-x) (29; 103). 

SCP-x is the only known enzyme catalyzing the peroxisomal oxidation of cholesterol’s 

branched side chain to form bile acids (29; 103). Canalicular secretion of bile acid drives 

biliary cholesterol secretion (84; 89; 115).  

 In vivo support for roles of the SCP-2/SCP-x gene in hepatic cholesterol 

metabolism and biliary cholesterol secretion comes from studies in both humans and 

mice. A human SCP-2/SCP-x genetic variation inhibits cholesterol metabolism (19). It 

must be noted, however, that the human studies were performed with only a single 

patient (19). In mice, SCP-2 overexpression (2; 5; 125), SCP-2 antisense treatment (83), 

and SCP-2/SCP-x gene ablation (25; 50; 104) significantly impact hepatic cholesterol 

metabolism and biliary excretion. However despite the fact that hepatic SCP-x 

expression is several fold lower in female mice and humans (6; 9), almost all rodent 

studies have been conducted with male mice (2; 5; 25; 50; 83; 104; 125).  Studies 

regarding the impact of SCP-2 on response to high cholesterol diet are even more 

limited.  Only a single study has examined the effect of SCP-2 overexpression on high-

cholesterol fed mice and that only in males (5). The impact of SCP-2/SCP-x gene 

ablation (DKO) in the context of a high-cholesterol diet is unknown in either sex. Thus 
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the current study examined the impact of DKO on hepatic cholesterol and biliary 

phenotype of male and female mice fed a high-cholesterol versus control diet.  
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MATERIALS AND METHODS 

 

Materials 

 Rabbit polyclonal antibodies were purchased from the following sources: anti-

peroxisome proliferator-activated receptor-alpha (PPARα; PA1-822A) from 

ThermoFisher Scientific (Rockford, IL); anti-ATP-binding cassette transporter (ABCA1; 

NB400-105) and anti-scavenger receptor class B type 1 (SR-B1; NB400-104) from 

Novus Biologicals (Littleton, CO); anti-HMG-CoA synthase (cHMGCS; sc-33829), 

anti-small heterodimer protein (SHP; sc-30169), anti-sterol regulatory element-binding 

protein 1 (SREBP1; recognizing both 68kDa and 125kDa, sc-367), and anti-sterol 

regulatory binding protein-2 (SREBP2; recognizing both mature 68kDa and endoplasmic 

reticulum precursor 125kDa pre-SREBP2, sc-8151) from Santa Cruz Biotechnology 

(Santa Cruz, CA). Anti-sterol carrier protein 2 (recognizing 58 kDa SCP-x, 15 kDa pro-

SCP-2, and 13.2 kDa SCP-2, as previously described) (10); and anti-acyl cholesterol 

acyltransferase 2 (ACAT2; ab66259), anti-apolipoprotein B (Apo B; ab31992), and anti-

cytochrome c oxidase subunit 4 (COX4; ab16056)  from Abcam (Cambridge, MA). Goat 

polyclonal antibodies were obtained from Santa Cruz Biotechnology (Santa Cruz, CA): 

anti-HMG-CoA reductase (HMGCR; sc-27578), anti-cholesterol-7-alpha-hydroxylase 

(CYP7A1; sc-14426), anti-sterol-27-hydroxylase (CYP27A1; sc-14835), anti-fatty acid 

transport protein 2 (FATP-2; sc-161311), anti-fatty acid transport protein 4 (FATP-4; sc-

5834), anti-acyl-CoA-binding protein (ACBP; sc-23474), anti-apolipoprotein AI (Apo 

A1; sc-23606), anti-carnitine palmitoyltransferase I (CPT1; sc-31128); anti-
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phosphatidylcholine transfer protein (PCTP; sc-23672); anti-microsomal triglyceride 

transfer protein (MTP; sc-33116); anti-liver-type fatty acid binding protein (L-FABP; sc-

16064); anti-liver X receptor (LXR; sc-1201); anti-farnesoid X receptor (FXR; sc-1205) 

and anti-low density lipoprotein receptor (LDL-R; sc-11826). All reagents and solvents 

used for each test method were highest grade available.  

 

Animal Study Background  

All animal tissues, serum, and bile samples, along with food consumption and 

phenotype data, utilized and analyzed for the purpose of this thesis work was procured 

from a previously performed dietary animal study completed by other lab staff.  

The experimental protocol for the use of the research animals was approved by 

the Institutional Animal Care and Use Committee at Texas A&M University. Male and 

female inbred C57BL/6NCr mice were acquired from the National Cancer Institute 

(Frederick Cancer Research and Development Center, Frederick, MD). SCP-2/SCP-x 

null (DKO) mice on the same C57BL/6NCr background were generated and backcrossed 

to C57BL/6NCr to the N6 generation as described (8). Mice were fed a standard rodent 

chow mix [5% calories from fat; D8604 Teklad Rodent Diet, Teklad Diets (Madison, 

WI)] and were maintained in barrier cages on ventilated racks under a 12:12 light-dark 

cycle in a temperature controlled facility (25⁰C) with access to food and water ad libitum 

until study initiation. All animals were sentinel monitored quarterly and confirmed free 

of all known rodent pathogens.  
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Dietary Cholesterol Study Background  

 Seven-week-old male and female wild-type (WT) and SCP-2/SCP-x null (DKO) 

mice on the C57BL/6NCr background were transferred to a control modified AIN-76A 

phytoestrogen-free, phytol-free control diet (5% calories from fat; D11243, Research 

Diets, New Brunswick, NJ) one week prior to beginning the 29 day dietary study. The 

phytoestrogen-free, phytol-free diet was chosen to minimize any potential complicating 

effect in sex comparisons due to phytoestrogens, which exert estrogenic effects in mice 

(113; 114) and from phytol metabolites (e.g. phytanic acid), potent ligand inducers of 

PPARα (18; 33; 122). After one week, a total of 56 male and female mice were 

randomized into 8 groups, with half remaining on the control (CO) modified AIN-76A 

diet while the other half were placed on a high cholesterol (CH) diet (D01091702, 

Research Diets, New Brunswick, NJ) composed of the modified AIN-76A control diet 

supplemented with 1.25% cholesterol and isocaloric to the control diet. Seven mice were 

assigned to each group: male WT on CO, male DKO on CO, male WT on CH, male 

DKO on CH, female WT on CO, female DKO on CO, female WT on CH, and female 

DKO on CH.  

 Animals were provided with ad libitum food and water throughout the study and 

maintained singly housed so that individual food intake and body weight could be 

monitored every other day.  Body weights and food intake were measured at 

approximately the same time of day at each recording. To measure food intake, the 

bedding was strained for any remaining pellets within the cage as well as any food in the 

receptacle and the total food remaining was weighed. To more clearly visualize any 
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small feed particles in the cage and improve food consumption accuracy, diets were 

color-coded (yellow, CO; blue, CH).  Food consumption and body weight data generated 

from this study was analyzed for statistical significance between the previously defined 

eight groups.  

 

In vivo Whole Body Composition  

 Previously performed by other lab staff, mouse total body lean tissue mass 

(LTM) and fat tissue mass (FTM) was determined in vivo by dual-energy X-ray 

absorptiometry (DEXA) using a Lunar PIXImus densitometer (Lunar Corp., Madison, 

WI) as previously described (9). The DEXA instrument was calibrated using a phantom 

mouse with known bone mineral density and fat tissue mass as described (9; 77). DEXA 

was performed on individual mice at the beginning of the dietary study after mice were 

fasted overnight (approximately 12 hours) and anesthetized [100 m/kg ketamine and 10 

mg/kg xylazine, administered intraperitoneal (IP) as described (9)].  At the end of the 

study (day 30), DEXA was similarly performed except the mice were euthanized prior to 

DEXA.  DEXA allowed resolution of bone mass and tissue mass for further resolution 

into LTM and FTM as described (9; 77).   

Previously performed DEXA data was analyzed for statistically significant 

alterations in LTM and FTM between the previously defined groups. 

 

 

 

 

 

 



 

8 

 

Serum, Liver, and Bile Collection  

 

The serum, liver and bile previously procured by other lab staff in the following 

described methods, were utilized for the work covered within this thesis.  

On day 29 of the study, mice were fasted overnight (~12 hours) to decrease the 

influence of recent digestion on serum and liver lipid levels. On day 30, after anesthesia, 

blood was collected via cardiac puncture, followed by humane euthanasia by cervical 

dislocation. Blood was stored overnight at 4°C, centrifuged at maximum speed for 20 

minutes and serum collected and stored at -80°C. Gall bladders containing bile and livers 

were separately harvested, and livers weighed and sectioned. Part of the liver was 

transferred to a RNA stabilization buffer, RNAlater (Ambion, Austin, TX) and stored at 

-20ºC.   All remaining tissue samples collected were flash frozen on dry ice and stored at 

-80⁰C for future analysis.  

 

Liver Histopathology and Serum Markers of Liver Toxicity  

Liver slices near the porta hepatis were fixed for 24 h in 10% neutral buffered 

formalin, placed in individual cassettes, stored in 70% alcohol, and processed and 

embedded in paraffin as described (9; 56). Sections cut 4-6 microns in thickness were 

hematoxylin and eosin stained for histological evaluation (9; 56). Histologic preparation 

of the above described liver sections and histopathological interpretation was performed 

previously by other lab staff.  

Levels of serum aspartate aminotransferase (AST), alanine aminotransferase 

(ALT) and beta-Hydroxybutyrate (β-HB) were quantified utilizing Stanbio diagnostic 
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kits (Boerne, TX).   These levels were compared to normal reference ranges to evaluate 

whether liver toxicity was indicated and then further analyzed for statistical significance 

between defined groups.  

 

Lipid Analysis of Serum, Bile and Liver  

Approximately 0.1g (wet weight) portions of liver from each mouse were 

homogenized in 0.5mL phosphate buffered saline (pH 7.4) using a motor-driven pestle 

(Tekmar Co, Cincinnati, OH) operated at 2000 rpm for 5 minutes. Protein concentrations 

of liver homogenate samples were determined by Bradford protein micro-assay from 

Bio-Rad Laboratories (Cat # 500-0001, Hercules, CA) as per manufacturer protocol. 

Costar 96-well assay plates (Corning, Corning, NY) and a Bio Tek Synergy 2 micro-

plate reader (Bio Tek Instruments, Winooski, VT) were utilized for the liver lipid, serum 

and bile assays.  Liver homogenate and serum lipids were quantified utilizing Wako 

diagnostic kits (Richmond, VA) to determine: total cholesterol (TC), free cholesterol 

(FC), triglyceride (TG), phospholipid (PL) and HDL cholesterol (HDL-C). Liver and 

serum cholesterol ester (CE) concentrations were calculated by subtracting liver and 

serum FC from TC. Serum nonHDL-C concentration was calculated by subtracting 

serum HDL-C from TC. Serum apolipoprotein A1 (Apo A1), serum apolipoprotein B 

(Apo B) and serum, liver and bile total bile acids (BA) were quantified using the 

Diazyme diagnostic kit (Ponwy, CA). Biliary cholesterol levels were quantified utilizing 

Wako diagnostic kit (Richmond, VA).  All commercially available diagnostic kits were 
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utilized according to the manufacturer’s instructions, modified for use with 96-well 

plates and micro-plate reader as described above.  

 

Hepatic mRNA Levels of Genes in Lipid Metabolism 

Total RNA was isolated from liver and purified using the RNeasy mini kit 

(Qiagen, Valencia, CA) using the manufacturer’s standard protocol. Nucleic acid 

concentration and quality were determined by a NanoDrop 1000 Spectrophotometer 

(Thermo Scientific, Waltham, MA). Samples were stored at -80°C. qRT-PCR expression 

patterns were analyzed with an ABI PRISM 7000 sequence detection system (Applied 

Biosystems®, Foster City, CA) using TaqMan® RNA-to-CT™ 1-Step PCR Master Mix 

Reagent kit, gene-specific TaqMan PCR probes and primers, and the following thermal 

cycler protocol: 48°C for 30 min, 95°C for 10min, 95°C for 0.15 min and 60°C for 1.0 

min, repeated a total of 60 cycles. TaqMan® gene expression assays for specific probes 

and primers were obtained from Life TechnologiesTM (Carlsbad, CA) to determine 

hepatic mRNA levels of: organic anion transporting polypeptide 1 (Oatp1/Slco1a1; 

Mm01267414_m1), organic anion transporting polypeptide 2 (Oatp2/Slco1c1; 

Mm00460672_m1), ATP-binding cassette sub-family G member 5 (Abcg5; 

Mm01226965), ATP-binding cassette sub-family G member 8 (Abcg8; 

Mm00445977_m1), Cholesteryl ester hydrolase/hormone sensitive lipase (Ceh/Hsl; 

Mm00495359_m1), Na+-taurocholate co-transporting polypeptide (Ntcp/Slc10a1; 

Mm01302718), Bile salt export pump (Bsep/Abcb11; Mm00445168_m1), acetyl CoA 

carboxylase-1 (Acc1; Mm01304285_m1); acetyl CoA carboxylase-2 (Acc2; 
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Mm01204657_m1); fatty acid synthase (Fas; Mm00662319_m1), sterol regulatory 

element binding protein-1 (Srebp1;  Mm00550338_m1), and sterol regulatory element 

binding protein-2 (Srebp2;  Mm01306289_m1). Two replicates of each sample reaction 

(20µL total volume each) were performed on 96 well optical reaction plates (Applied 

Biosystems®, Foster City, CA).  ABI Prism 7000 SDS software (Applied Biosystems®, 

Foster City, CA) established the threshold cycle from each well. qRT-PCR data were 

normalized to the housekeeping gene 18S RNA for mRNA expression of Oatp1, Oapt2, 

Abcg5, Abcg8, Ceh/Hsl, Ntcp, Bsep, Acc1, Acc2, Fas, Srebp1, and Srebp2 made relative 

to the control mouse group (male WT mice on control diet) for final calculations.  

 

Hepatic Levels of Proteins in Lipid Metabolism  

Western blot analysis was performed to determine expression levels of select 

proteins in liver. Liver samples were homogenized and centrifuged at 4°C at 1,000xg for 

5 min to isolate the post nuclear supernatant (PNS). Protein concentrations of the 

individual PNS samples were established using a Bradford protein assay (Bio-Rad, 

Hercules, CA). Western blot analyses were performed to determine relative protein 

levels of: acyl CoA binding protein (ACBP), acyl CoA cholesteryl acyl transferase-2 

(ACAT2), ATP-binding cassette sub-family A member 1 (ABCA1), apolipoprotein A1 

(Apo A1), apolipoprotein B (Apo B), Cytochrome c oxidase subunit 4 (COX-4),  

carnitine palmitoyl acyltransferase A1 (CPT1), cytochrome P7A1 (CYP7A1), 

cytochrome P27A1 (CYP27A1), cytosolic hydroxymethylglutaryl CoA synthase  

(cHMGCS), fatty acid transport protein 2 (FATP-2), fatty acid transport protein 4 
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(FATP-4), hydroxymethylglutaryl CoA reductase (HMGCR),  liver fatty acid  binding 

protein (L-FABP), low density lipoprotein receptor (LDLR), peroxisome proliferator 

activated receptor α (PPARα), phosphatidylcholine transfer protein (PCTP),  scavenger 

receptor B1 (SR-B1), small heterodimer partner (SHP), sterol carrier protein-2 (SCP-2), 

sterol carrier protein-x (SCP-x), sterol regulatory element binding protein (SREBP1, 68 

kDa and 125 kDa forms), sterol regulatory element binding protein (SREBP2, 68 kDa 

and 125 kDa forms,  farnesoid x receptor (FXR), liver x receptor (LXR) and microsomal 

triglyceride transport protein (MTP).  

PNS (10-30µg protein) proteins were resolved by Sodium dodecyl sulfate – 

polyacrylamide gel electrophoresis (SDS-PAGE) using a dual slab gel system (DSG-

200, C.B.S. Scientific Inc., San Diego, CA) at 150 volts until visible separation of the 

molecular weight marker as described (8). The separated proteins were then transferred 

to a nitrocellulose membrane (Bio-Rad, Cat#162 0112) by electroblotting using the 

electroblotting system EBU-102 (C.B.S. Scientific Inc., San Diego, CA) in a western 

transfer buffer (200mM glycine, 12.5mM Tris base in 20% methanol v/v) at 500 

mAmps, on ice, for 2-3 hours depending on the size of the protein as previously 

described by our lab (8).  Blots were then blocked in 3% gelatin in TBST (10mM Tris-

HCl, pH8, 100mM NaCl, and 0.05%Tween-20) from 30 minutes to overnight at room 

temperature and then incubated for a period of 30 minutes to overnight at room 

temperature with the appropriate primary antibodies in 1% gelatin in TBST. Following 

washing three times for 5 minutes with TBST, blots were incubated for a period of 30 to 

120 minutes at room temperature within the appropriate secondary antibodies. A final 
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wash 3 x 5 min. with TBST was completed, followed by a single 5 minute wash in AP 

buffer (100mM Tris-HCl, pH 9.0, 100mM NaCl, and 10mM MgCl2) and then exposure 

to 5-bromo-4-chloro-3-indolyl phosphate nitro blue tetrazolium (Sigma Aldrich, Cat# 

B6404) until sufficient color development. Development was stopped by washing the 

blots in double distilled water.  Images of the blots were captured using an Epson 

Perfection V700 Photo scanner (Long Beach, CA). Proteins were quantified by 

densitometric analysis using ImageJ software (NIH, Bethesda, MD) as described earlier 

(8).   

 

Statistical Analysis  

All result values were stated as the mean +/- standard error of measure (SEM). 

Statistical analysis was performed using one-way analysis of variance (ANOVA), 

followed with the Newman-Keuls multiple comparisons test using either GraphPad 

software (La Jolla, CA) or Sigma Plot software (Systat, San Jose, CA).  Statistical 

significance was assigned to values with p<0.05.    
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RESULTS 

 

Food Intake, Whole Body Phenotype, and Liver Histology 

 Neither SCP-2/SCP-x gene ablation (DKO), high-cholesterol diet, nor both 

together significantly altered total food consumption of male mice (Table 1).  

Nevertheless, SCP-2/SCP-x gene ablation alone significantly decreased body weight 

gain in female but not control fed WT males (Table 1). High-cholesterol diet alone did 

not significantly alter body weight gain in either WT males or females (Table 1). 

Further, feeding a high-cholesterol diet did not prevent the DKO induced reduction in 

body weight gain or body weight gain/food consumption seen in the DKO females on 

the control diet (Table 1). DEXA analysis determined that the decreased weight gain 

observed in the DKO females was largely associated with a decreasing proportion of 

lean tissue mass (LTM), while the cholesterol diet alone did not significantly alter 

proportions of FTM or LTM in either WT males or females (Table 1).    

 Gross and histopathological analysis of liver did not detect any significant 

alterations due to DKO, high-cholesterol diet, or both combined. Neither cholesterol 

diet, DKO, nor both significantly altered liver weight, liver weight/body weight, or liver 

total protein (Table 2). Upon histopathologic analysis, hepatocyte fatty vacuolation was 

observed within the female and male DKO and WT mice fed high-cholesterol diet and 

female DKO mice on control diet. Greater lipid droplet accumulation was observed in 

the females compared to males. No significant hepatocyte necrosis or inflammation was 



 

15 

 

noted in any of the groups. The reviewing pathologist determined that the liver 

histological parameters showed no significant lesions in all groups.  

 Consistent with the lack of significant gross or histopathological liver lesions, 

serum AST and ALT values in all groups were less than 35 and 60 units/l, respectively, 

well within the normal range of mouse values for AST and ALT (Blood chemistry and 

hematology in 8 inbred strains of mice. MPD: Eumorphia1. Mouse Phenome Database 

web site, The Jackson Laboratory, Bar Harbor, Maine USA. http://phenome.jax.org 

[Cited 29 Oct, 2014]).  Thus, liver toxicity did not account for the altered whole body 

phenotype or serum and hepatic changes observed in response to the DKO and high-

cholesterol diet. 

 

 

 

 MALE FEMALE 

WT DKO WT DKO 

CO CH CO CH CO CH CO CH 

Total Food 

consumption 

(g) 

86±3 91±2 91±4 90±4 86±2 88±2 86±1 87±1 

Body Weight 

gain (g) 

2.5±0.5 2.7±0.4 2.4±0.6 1.6±0.4 1.9±0.3 2.3±0.2 0.6±0.2* 1.0±0.4* 

Body Weight 

gain per 

Food 

Consumption 

(mg/g) 

30±5 30±3 26±5 18±4 22±3 26±3 7±2* 11±4* 

LTM change 

(g) 

1.4±0.4 1.3±0.5 0.4±1.2 0.1±0.8 0.2±0.3 0.7±0.4 -0.7±0.4 -0.9±0.3* 

FTM change 

(g) 

0.1±0.2 0.5±0.5 1.6±0.5 1.4±0.4 -0.2±0.2 0.1±0.2 0.2±0.2 0.3±0.3 

 
Table 1:  Effect of SCP-2/SCP-x gene ablation on total food consumption and body weight 

gain of mice fed a high cholesterol diet.  CO, control; CH, cholesterol; LTM, lean tissue mass; 

FTM, fat tissue mass. Values represent the mean + SEM, n=5-7. *Genotype Effect (P<0.05 for 

DKO vs. WT within the same diet); # Diet Effect [P<0.05 for Control (CO) vs. High cholesterol 

(CH) diet within the same genotype]. 
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MALE FEMALE 

WT DKO WT DKO 

CO CH CO CH CO CH CO CH 

Liver Weight 

(g) 

0.9±0.1 1.1±0.1 1.1±0.

1 

1.0± 0.1 0.8±0.1 0.9±0.1 0.9±0.1 1.0±0.1 

Liver Weight 

per Body 

Weight 

(mg/g) 

38±2 43±1 40±1 40±1 40±1 50±2 40±2 50±2 

Protein 

(mg/g) 

135±10 126±12 122±7 130±11 126±10 141±10 121±10 107±7 

Serum ALT 

(Units/L) 

54±4 45±4 41±5 40±5 57±5 48±7 44±5 59±6 

Serum AST 

(Units/L) 

30±2 33±4 19±2 22±3 24±1 20±2 20±2 23±2 

Table 2: Effect of SCP-2/SCP-x gene ablation, high cholesterol diet and both together on 

liver parameters. CO, control; CH, cholesterol; ALT, alanine aminotransferase; AST, aspartate 

aminotransferase. Values represent the mean + SEM, n=6-7. No significant differences were 

noted between groups.  

A High Cholesterol Diet Affected Hepatic Lipid Accumulation More in WT Females 

The high-cholesterol diet alone increased hepatic accumulation of neutral lipids 

most markedly in WT females, without altering phospholipid levels (Fig 1B, C), while 

also increasing both neutral and phospholipid in WT males (Fig 1B, C). Within the 

neutral lipids, the cholesterol diet alone increased total cholesterol (free and esterified) 

and triglycerides in both the male and female WT groups (Fig 1D-G).  These findings 

were consistent with earlier studies wherein other mouse strains were fed high-

cholesterol diets (52; 58; 59).  
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Hepatic Lipid Accumulation in DKO Mice 

The DKO alone modestly increased liver total lipid (Fig 1A), total neutral lipid 

(Fig 1B), and phospholipid (Fig 1C) in control-fed males, and even more so in control-

fed females. The increases in hepatic neutral lipid were due to increased total cholesterol 

(Fig 1E), primarily cholesteryl ester, in both males and females (Fig 1F).   The DKO 

significantly increased hepatic triglyceride only in control-fed female but not male mice 

(Fig 1G).  

The DKO exacerbated the high-cholesterol diet-induced hepatic lipid 

accumulation, especially in females. Females had the highest hepatic levels of total lipid 

(Fig 1A), total neutral lipid (Fig 1B), total cholesterol (Fig 1D), free cholesterol (Fig 

1E), cholesteryl ester (Fig 1F), and the glycerides: phospholipid (Fig 1C) and 

triglyceride (Fig 1G).  The increases observed in hepatic glyceride levels were not 

caused by the  concomitant upregulation of proteins involved in fatty acid uptake 

(FATP-2 or FATP-4, Fig 2C-D), downregulation of oxidation (CPT1A, Fig 2F), nor was 

there observed altered serum β-hydroxybutyrate (Fig 2B) and non-esterified fatty acid 

(Fig 2A) levels, as none of the mice expressed these changes (not shown). 

In summary, the DKO induced hepatic lipid accumulation, especially in high-

cholesterol fed females, and was not associated with decreased fatty acid oxidation. 

Instead, the DKO generally exacerbated the cholesterol diet-induced hepatic 

accumulation of cholesteryl ester and triglyceride, the major neutral lipid species 

comprising lipid droplets and the core of secreted VLDL. The majority of the increase in 

total cholesterol could be attributed to increased cholesteryl ester. While the overall 
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pattern of the liver lipid phenotype in DKO mice, especially in response to a high-

cholesterol diet, was significantly altered in non-sex dependent manner, accumulation of 

all forms of cholesterol and triglyceride was highest in DKO females. 

Figure 1: Effects of SCP-2/SCP-x gene ablation and cholesterol rich diet on hepatic lipid 

concentrations in mice. The total lipid (A), neutral lipid (B), phospholipid (C), total cholesterol 

(D), free cholesterol (E), cholesteryl ester (F), and triacylglycerol (G) levels from SCP-2/SCP-x 
-

/-
 (DKO) vs. SCP-2/SCP-x 

+/+
 (WT) mice were quantified as described in MATERIALS AND 

METHODS. CO, control diet; CH, high-cholesterol diet; solid bars, WT; open bars, DKO mice.  

Values are means ± SE (n = 6-7). * P < 0.05 for DKO vs. WT. # P < 0.05 Cholesterol rich diet 

(CH) vs. Control diet (CO).    
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Figure 2: Effects of SCP-2/SCP-x gene ablation and cholesterol rich diet on fatty acid 

metabolism. Serum levels of NEFA (A) and β-HB (B) were quantified from DKO and WT mice 

as described in MATERIALS AND METHODS. Western blots of liver homogenates isolated 

from WT and DKO mice were analyzed as described in MATERIALS AND METHODS to 

determine relative protein levels of  FATP-2 (C), FATP-4 (D), ACBP (E), and CPT1A (F) were 

analyzed. Cox-4 was used as a loading control to normalize protein expression. CO, control diet; 

CH, high-cholesterol diet; solid bars, WT; open bars, DKO mice.  Values are means ± SE (n = 5-

7).  * P < 0.05 for DKO vs. WT. # P < 0.05 CH vs. CO.    
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Serum Lipids 

In contrast to the significant lipid accumulation in liver, changes in serum lipids 

were more modest. Serum total lipid, neutral lipid, and phospholipid were not altered in 

either male or female DKO mice regardless of diet (Table 3).  However, a significant 

decrease in serum polar/neutral lipid ratio, paralleling a decrease in this ratio in liver 

lipids, was detected in response to the high-cholesterol diet in WT males, but not 

females (Table 3).  The DKO prevented this decrease in serum polar/neutral lipid ratio in 

cholesterol fed males (Table 3). Likewise, the decreased ratio of polar/neutral lipids in 

livers of cholesterol fed both DKO and WT females was not reflected in serum 

alterations (Table 3). 

Fractionation of serum neutral lipids showed that the DKO had significantly 

increased serum triglycerides in males but not females, on the control diet (Fig. 3D). In 

contrast, the high-cholesterol diet alone significantly reduced serum total and free 

cholesterol (Fig 3A, B), but not cholesteryl ester or triglyceride (Fig 3C, D) in male WT 

mice. DKO modified the tendency of cholesterol diet to increase triglyceride in males 

(Fig 3D). In contrast, neither DKO, high-cholesterol diet, nor both significantly altered 

the serum pattern of neutral lipid species in females (Fig 3A-D). 

Determination of serum cholesterol distribution in the high density lipoprotein 

(HDL) fraction of serum lipids showed that DKO alone decreased HDL-cholesterol, but 

not Apo A1 or Apo A1/HDL-cholesterol ratio in control-fed males, but not females (Fig 
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4A,C,E). The cholesterol diet alone also decreased HDL-cholesterol but increased the 

Apo A1/HDL-cholesterol ratio (Fig 4A, C, E). DKO obviated the increase in Apo 

A1/HDL-cholesterol ratio in male, high cholesterol fed mice.  In contrast, these HDL 

related parameters were not altered by DKO, high-cholesterol diet, or both in females.  

While DKO alone did not affect the concentration of nonHDL-C, Apo B levels 

were significantly increased in control fed males and females (Fig 4B, D). A high 

cholesterol diet had little, if any, effect on serum nonHDL-C concentration in WT or 

DKO male or female mice; however, high cholesterol resulted in increased serum Apo B 

in both WT male and female mice (Fig 4B, D). There was no significant effect on the 

ration of Apo B to nonHDL-C in any of the mice examined (Fig 4F). In summary, 

neither a high cholesterol diet nor loss of SCP-2/SCP-x had a significant effect on serum 

ApoA1/HDL-C or Apo B/nonHDL-C levels in male or female mice. 
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MALE FEMALE 

WT DKO WT DKO 

CO CH CO CH CO CH CO CH 

Total Protein 

(mg/mL) 

126±3 114±6 111±3 113±4 119±8 108±9 119±11 108±6 

Total Lipid 

(mg/dL) 262±7 222±8
#
 260±10 215±5

#
 153±5 144±4 158±9 152±6 

Neutral Lipid 

(mg/dL) 160±7 143±6 157±9 124±4
#
 89±3 94±4 98±6 91±6 

Phospholipid 

(mg/dL) 99±3 77±4
#
 98±6 87±3 62±3 48±3

#
 59±3 58±3* 

Serum Polar/ 

Neutral Lipid 

(mg/mg) 

0.65±0.04 0.56±0.03 0.65±0.04 0.74±0.03* 0.73±0.04 0.53±0.04
#
 0.63±0.02 0.69±0.06 

Liver Polar/ 

Neutral Lipid 

(nmol/nmol) 

1.5±0.1 1.1± 0.1
#
 1.1±0.1* 0.9±0.1 1.3±0.2 0.5±0.1

#
 1.3±0.1 0.6±0.1

#
 

Table 3: Effect of SCP-2/SCP-x gene ablation, high cholesterol diet and both together on serum lipids. The units are as 

follows: total protein, mg protein/mL serum; total lipid, neutral lipid, and phospholipid, mg lipid/dL serum; serum 

polar/neutral lipid, mg lipid/mg lipid; liver polar/neutral lipid, nmol lipid/nmol lipid.  CO, control; CH, cholesterol. Values 

represent the mean + SEM, n=6-7. *Genotype Effect (P<0.05 for DKO vs. WT within the same diet); # Diet Effect (P<0.05 for 

Control vs. Cholesterol diet within the same genotype). 
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Figure 3: Effects of SCP-2/SCP-x gene ablation and cholesterol rich diet on serum 

cholesterol and triacylglycerol composition. Serum levels of total cholesterol (A), free 

cholesterol (B), cholesteryl ester (C), and triacylglycerol (D) from DKO and WT mice were 

quantified as described in MATERIALS AND METHODS. CO, control diet; CH, high-

cholesterol diet; solid bars, WT; open bars, DKO mice. Values are means ± SE (n = 6-7).  

* P < 0.05 for DKO vs. WT. # P < 0.05 CH vs. CO.
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Figure 4: Effects of SCP-2/SCP-x gene ablation and cholesterol rich diet on serum 

lipoprotein profiles. Serum levels of HDL cholesterol (A), nonHDL cholesterol (B), Apo A1 

(C) and Apo B (D) were quantified from DKO and WT mice as described in MATERIALS AND 

METHODS. Ratios of Apo A1/HDL-C (E) and Apo B/nonHDL-C (F) were calculated in order 

to elucidate particle size, reflecting atherogenicity of the particles present. CO, control diet; CH, 

high-cholesterol diet; solid bars, WT; open bars, DKO mice.   Values are means ± SE (n = 6-7). 

* P < 0.05 for DKO vs. WT. # P < 0.05 CH vs. CO.
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Liver Proteins Involved in Basolateral Uptake and Storage of Cholesterol from Serum 

Lipoproteins 

As indicated, the DKO significantly increased hepatic cholesterol accumulation, 

especially in cholesterol-fed females (Fig 1). Thus it was important to determine if these 

changes were associated with concomitant alterations in other basolateral proteins 

involved in serum lipoprotein-mediated cholesterol uptake/efflux from or to serum.  

Hepatic accumulation of cholesterol in DKO mice was not associated with 

concomitant upregulation of liver basolateral membrane proteins involved in lipoprotein-

mediated cholesterol uptake from serum. HDL binds to SR-B1 localized at the 

hepatocyte basolateral membrane for uptake of cholesterol. Overall, loss of SCP-2/SCP-

x, high cholesterol diet, or both together had little effect on expression levels of SR-B1 

(Fig 5A). LDL binds to LDL-R localized at the hepatocyte basolateral membrane for 

endocytic uptake of LDL cholesterol/cholesteryl ester. DKO decreased or tended to 

decrease LDL-R expression in the high-cholesterol fed males and females (Fig 5B). 

Hepatic storage of cholesterol as cholesteryl ester is regulated by the opposing 

activities of two key proteins: the synthetic enzyme acyl CoA cholesteryl acyltransferase 

(ACAT2) and the degradative cholesteryl ester hydrolase/hormone sensitive lipase 

(Ceh/Hsl). DKO alone increased hepatic levels of ACAT2 in control-fed males but not 

females. The high cholesterol diet alone exacerbated the increase seen in WT males. (Fig 

5C). However, DKO prevented this high cholesterol diet-induced increase of ACAT2 in 

males with little alteration in females (Fig 5D). While DKO alone had little effect on 

expression of Ceh/Hsl in either male or female control-fed mice (Fig 5C), the cholesterol 
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diet alone significantly increased expression of Ceh/Hsl in WT females, but not WT 

males (Fig 5C). DKO increased Ceh/Hsl expression in cholesterol-fed males but did not 

affect Ceh/Hsl expression levels in females (Fig 5C). 

 

 

 
 
Figure 5: Analysis of key enzymes and receptors involved in the uptake and conversion of 

cholesterol by quantitative real time PCR (qRT-PCR) and Western blot. Western blots of liver 

homogenates isolated from WT and DKO mice were analyzed as described in MATERIALS AND 

METHODS to determine relative protein levels of SR-B1 (A), LDL-R (B), and ACAT2 (C). COX4 was 

used as a loading control to normalize protein expression. Insets (E-H): Representative Western blots 

showing relative protein expression in each mouse group. qRT-PCR was used to determine relative 

mRNA abundance of CEH (D). 18S rRNA was used to normalize mRNA expression levels. mRNA and 

protein expression levels were quantified as described in MATERIALS AND METHODS.  CO, control 

diet; CH, high-cholesterol diet; solid bars, WT; open bars, DKO mice.  Values are means ± SE (n = 4-7).  

* P < 0.05 for DKO vs. WT. # P < 0.05 CH vs. CO.    
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In summary, the increased hepatic accumulation of cholesterol in either control- 

or cholesterol-fed DKO mice (Fig 1) was not associated with concomitant upregulation 

of SR-B1 and/or LDL-R. Accumulation of cholesteryl ester in control-fed DKO groups 

was associated in part with increased expression of ACAT2 in males, but not with an 

increase in ACAT2 or decrease in Ceh/Hsl in females. The DKO induced exacerbation 

of hepatic cholesteryl ester accumulation in females on a high cholesterol diet was 

associated with decreased Ceh/Hsl and unaltered ACAT2. Alterations in ACAT2 and 

Ceh/Hsl suggest that excess cholesterol may have remained as free cholesterol or was 

released from cholesteryl ester as free cholesterol. 

 Proteins Involved in Cytosolic Transport/Targeting of Cholesterol 

While SCP-2, SCP-x and liver fatty acid binding protein (L-FABP) bind 

cholesterol, each differentially targets cholesterol in the hepatocyte: SCP-2 facilitates 

cholesterol targeting to ER for esterification and peroxisomes for oxidation; SCP-x is an 

exclusively peroxisomal enzyme for cholesterol oxidation to bile acids; L-FABP 

preferentially targets cholesterol for biliary elimination (4; 29; 57). Therefore, the impact 

of high-cholesterol diet, DKO, and both together on hepatic expression of these proteins 

was examined. 

DKO resulted in complete ablation of both SCP-2 and SCP-x protein expression 

(Fig 6 C, D). In control-fed DKO mice, this loss was compensated only in part by 

concomitant upregulation of the other major bile acid binding/transport protein, L-

FABP, whose expression was increased significantly in males and trended to increase 
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slightly in females (Fig 6E). The high cholesterol diet increased expression of L-FABP 

and SCP-x in WT males and increased that of SCP-2 and SCP-x (but not L-FABP) in 

WT females (Fig 6C-E). DKO prevented the high cholesterol diet-induced increase in 

hepatic L-FABP expression in males but did not alter L-FABP level in females (Fig 6E).  

The net effect of these changes in DKO cholesterol-fed mice was to decrease the 

expression of these proteins involved in cytosolic transport of cholesterol for oxidation 

and biliary elimination, thereby resulting in retention of cholesterol in liver. 
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Figure 6: Analysis of key intracellular and membrane cholesterol transporters and 

examination of proteins involved in lipoprotein packaging by quantitative real time PCR 

(qRT-PCR) and Western blot. qRT-PCR was determined as in EXPERIMENTAL 

PROCEDURES to determine relative mRNA abundance of cholesterol efflux transporters Abcg5 

(A) and Abcg8 (B). 18S rRNA was used to normalize mRNA expression levels. Western blots of 

liver homogenates isolated from WT and DKO mice were performed analyzed as in 

MATERIALS AND METHODS to determine relative protein levels of SCP-2 (C), SCP-X (D), 

L-FABP (E), ABCA1 (F), Apo A1 (G), Apo B (H), and MTP (I). COX4 was used as a loading 

control to normalize protein expression. Insets (E-H): Representative Western blots showing 

relative protein expression in each mouse group. CO, control diet; CH, high-cholesterol diet; 

solid bars, WT; open bars, DKO mice.  Values are means ± SE (n = 4-7). * P < 0.05 for DKO vs. 

WT. # P < 0.05 CH vs. CO.     
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Hepatic Proteins Involved in Secretion of Cholesterol and Other Lipids Into Serum 

Assembly of neutral lipid-loaded nascent VLDL for secretion into serum requires 

the concerted action of L-FABP (and/or SCP-2) (13; 32; 47; 48; 69; 79; 108), MTP (90) 

and Apo B (90).  Therefore, the possibility that the DKO-associated hepatic lipid 

accumulation might be associated with concomitant downregulation of these hepatic 

proteins was examined. 

First, Both SCP-2 and L-FABP were increased by the high cholesterol diet in 

WT males, but only SCP-2 and SCP-x were increased in WT females (Fig 6C-E). While 

the DKO alone increased L-FABP in males, this was not observed in females (Fig 6E). 

DKO decreased (males) or did not alter (females) expression of L-FABP in cholesterol-

fed mice (Fig 6E).  Second, neither DKO alone nor high cholesterol diet alone 

significantly altered Apo B expression (Fig 6H). In contrast, hepatic levels of Apo B 

were markedly reduced in high cholesterol fed DKO mice (Fig 6H).  Third, the 

cholesterol diet alone did not significantly alter MTP expression in males or females (Fig 

6I).  However, DKO did significantly decrease MTP expression in both male and female 

high cholesterol-fed mice (Fig 6I).  

Thus, hepatic lipid accumulation (cholesterol ester, phospholipid, and 

triglyceride) in high cholesterol-fed DKO mice was associated not only with absence of 

SCP-2 and SCP-x but also with reduced hepatic levels of L-FABP (males only) as well 

as reduced levels of Apo B and MTP in both males and females.  As shown in the 

following sections, the reduced levels of MTP in high cholesterol fed DKO mice were 
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associated with increased hepatic levels of SREBP1 and SREBP2 proteins, both of 

which are known to negatively influence transcription of Mttp. 

Nuclear Receptors Involved in Hepatic De Novo Synthesis of Fatty Acids 

Both SREBP1 and SREBP2 regulate transcription of enzymes and transporters 

involved in hepatic accumulation of cholesterol and glycerides (88; 90; 106; 116).  Thus, 

hepatic expression and transcription of Srebp1 and Srebp2 as well as their target genes 

(Acc1, Acc2, Fas) in de novo fatty acid synthesis were examined. 

Although the high-cholesterol diet increased transcription of Srebp1 (Fig 7C), 

this did not translate to increased levels of mature nuclear 68 kDa SREBP1 protein (Fig 

7A) or its larger precursor pre-SREBP1 (endoplasmic reticulum bound) (Fig 7B).  In 

contrast, high cholesterol diet significantly increased hepatic levels of SREBP2 protein, 

both the mature 68 kDa SREBP2 and pre-SREBP2 forms (Fig 8B, C).   Consistent with 

high cholesterol induced increase in SREBP2 protein levels, the expression of lipogenic 

target genes Acc1 (Fig 6D), Fas (Fig 7F), and in the case of females also Acc2 (Fig 7E) 

was increased. 

In contrast, the DKO alone induced hepatic glyceride accumulation that was 

associated with increased levels of SREBP1 protein (Fig 7A), but not pre-SREBP1 (Fig 

7B), despite unaltered Srebp1 transcription (Fig 7C).  Even more so, the DKO alone 

induced hepatic glyceride accumulation was associated with increased hepatic levels of 

mature SREBP2 protein (Fig 8B) and, in the case of males also pre-SREBP2 (Fig 8C), 

both of which were associated with significantly increased transcription of Srebp2 (Fig 
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8A).  Consistent with increased SREBP1 and SREBP2 protein, DKO alone increased 

transcription of target genes Acc1 in both males and females (Fig 7D) as well as also Fas 

in females (Fig 7F). 

While the high cholesterol diet did not exacerbate increases in mature SREBP1 

protein in livers of DKO mice (Fig 7A), pre-SREBP1 protein was increased in males but 

not females (Fig 7B).   However, the increased protein level was not associated with 

altered Srebp1 transcription (Fig 7A). Likewise, high cholesterol diet did not further 

exacerbate the DKO induced increase in hepatic protein levels of SREBP2 (Fig 8B) and 

pre-SREBP2 (Fig 8C) or transcription of Srebp2 (Fig 8A). Consistent with these 

findings, high-cholesterol also did not further increase the DKO induced transcription of 

de novo fatty acid synthesis target genes (Fig 7D-F). 

In summary, altered levels of SREBP1 and SREBP2 nuclear regulatory proteins 

as well as their target genes for de novo fatty acid synthesis contributed at least in part to 

hepatic lipid accumulation in DKO, high cholesterol-fed and DKO/high cholesterol-fed 

mice. 
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Figure 7: Effect of SCP-2/SCP-X gene ablation and cholesterol rich diet on key regulators 

of fatty acid biosynthesis. Western blots of liver homogenates isolated from WT and DKO mice 

were analyzed to determine relative protein levels of the 68kDa SREBP1 (A) and 125kDa pre-

SREBP1 (B). COX4 was used as a loading control to normalize protein expression. qRT-PCR 

was used to determine relative mRNA abundance of Srebp1 (C), Acc1 (D), Acc2 (E), and FAS 

(F). 18S rRNA was used to normalize mRNA expression levels. mRNA and protein expression 

levels were quantified as described in was determined as in MATERIALS AND METHODS. 

Insets (E-H): Representative Western blots showing relative protein expression in each mouse 

group. CO, control diet; CH, high-cholesterol diet; solid bars, WT; open bars, DKO mice.  

Values are means ± SE (n = 4-7). * P < 0.05 for DKO vs. WT. # P < 0.05 CH vs. CO.  
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Figure 8: Effect of SCP-2/SCP-X gene ablation and cholesterol rich diet on key regulators 

of cholesterol biosynthesis. qRT-PCR was used to determine relative mRNA abundance of 

Srebp2 (A). 18S rRNA was used to normalize mRNA expression levels. Western blots of liver 

homogenates isolated from WT and DKO mice were analyzed to determine relative protein 

levels of SREBP2 (68kDa, B) and pre-SREBP2 (125kDa, C), cHMGCS (D) and HMGCR (E). 

COX4 was used as a loading control to normalize protein expression. mRNA and protein 

expression levels were quantified as described in MATERIALS AND METHODS.  Insets (E-

H): Representative Western blots showing relative protein expression in each mouse group. CO, 

control diet; CH, high-cholesterol diet; solid bars, WT; open bars, DKO mice.  Values are means 

± SE (n = 4-7). * P < 0.05 for DKO vs. WT. # P < 0.05 CH vs. CO.     



35 

Nuclear Receptors Involved in Hepatic Lipoprotein Secretion and De Novo Synthesis of 

Cholesterol 

SREBP2, but much less so SREBP1, specifically regulates transcription of 

enzymes and transporters involved in hepatic accumulation of cholesterol (88; 90; 106; 

116).  Therefore, the possibility that DKO induced hepatic cholesterol accumulation in 

cholesterol-fed mice was associated with altered SREBP2 transcription or protein 

expression was examined. 

High cholesterol diet alone induced cholesterol accumulation that was associated 

with increased levels of SREBP2 protein in both males and females (Fig 8B) as well as 

pre-SREBP2 protein in males (Fig 8C), while Srebp2 transcription was unaltered (Fig 

8A).  Consistent with cholesterol-induced increase in SREBP1 protein, expression of 

several SREBP2 target gene products such as proteins, cHMGCS (Fig 8D) and 

HMGCR, (Fig 8E) were increased in males but not females. In contrast, levels of other 

SREBP2 target genes such as LDL-R (Fig 5B) and SR-B1 (Fig 5A) were unaltered by 

high-cholesterol diet in both sexes. 

DKO alone increased hepatic levels of SREBP2 protein in both males and 

females (Fig 8B) as well as also pre-SREBP2 protein in males (Fig 8C). The increased 

SREBP2 protein correlated with significantly increased transcription of Srebp2 (Fig 8A). 

However, protein levels of SREBP2 target genes such as cHMGCS (Fig 8D), HMGCR 

(Fig 8E), LDL-R (Fig 5B), or SR-B1 (Fig 5A) were not increased.   DKO did not further 

increase high-cholesterol diet induced levels of SREBP2 proteins or mRNAs (Fig 8A-

C).  Likewise, DKO did not increase protein levels of SREBP2 target genes such as 
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cHMGCS (Fig 8D), HMGCR (Fig 8E), LDL-R (Fig 5B), or SR-B1 (Fig 5A) in high-

cholesterol fed mice. 

In summary, altered expression of key nuclear regulatory proteins in transcription 

of Srebp2 as well as its translation/accumulation as SREBP2 protein in part contributed 

to hepatic lipid accumulation in the DKO high cholesterol-fed and the DKO control-fed 

mice.   

Canalicular Membrane Proteins Involved in Biliary Excretion of Cholesterol 

L-FABP, more so than SCP-2, is involved in hepatic uptake and cytosolic 

transfer of HDL-derived cholesterol to bile canaliculus for secretion into bile (57). 

Biliary levels of cholesterol were unaltered except in control- (decreased) and 

cholesterol-fed (increased) DKO males (Fig 9D). Therefore, the impact of DKO and 

high cholesterol-diet on expression of key canalicular membrane transporters (Abcg5, 

Abcg8) in biliary cholesterol excretion was determined. 

The high-cholesterol diet alone increased transcription of Abcg5 in males, but not 

females (Fig 6A), but increased transcription of Abcg8 in both males and females (Fig 

6B). DKO alone also increased transcription of Abcg5 in males, but not females (Fig 

6A), while transcription of Abcg8 in either sex was unaltered (Fig 6B). DKO did not 

further exacerbate the high-cholesterol diet induced transcription of Abcg5 in males, but 

increased that in females (Fig 6A), and did not increase transcription of Abcg8 in either 

males or females (Fig 6B). 
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While ABCG5 and ABCG8 proteins operate as heterodimer pairs to mediate 

excretion of cholesterol into bile, DKO did not induce concomitant upregulation of both 

Abcg5 and Abcg8. Nevertheless the increased biliary cholesterol in DKO high 

cholesterol-fed males, correlated with a significant increase in biliary bile acid (Fig 9C), 

the driving force of cholesterol secretion into bile (84; 89; 115).  

Figure 9: Bile acid levels and hepatic expression of key proteins in bile acid reuptake and biliary 

excretion. Liver (A), Serum (B), Biliary (C) bile acids and biliary cholesterol (D) levels were quantified 

was determined as in MATERIALS AND METHODS. qRT-PCR was performed as in MATERIALS 

AND METHODS to determine relative mRNA abundance of OATP1 (E), OATP2 (F), NTCP (G), and 

BSEP (H). 18S rRNA was used to normalize mRNA expression levels. Western blots of liver 

homogenates isolated from WT and DKO mice were obtained and analyzed as in MATERIALS AND 

METHODS to determine relative protein level of PCTP (I). COX4 was used as a loading control to 

normalize protein expression. Insets (E-H): Representative Western blots showing relative protein 

expression in each mouse group. CO, control diet; CH, high-cholesterol diet; solid bars, WT; open bars, 

DKO mice.  Values are means ± SE (n = 4-7). * P < 0.05 for DKO vs. WT. # P < 0.05 CH vs. CO. 
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Hepatic, Serum and Biliary Bile Acid Level 

The DKO impact on bile acid levels was sex- and high cholesterol diet 

dependent.  This KO induced a twofold accumulation of bile acids in liver and trended 

towards an increase in serum bile acids but not biliary bile acids in control-fed males but 

not females (Fig 9A-C). The high cholesterol diet alone significantly increased bile acid 

accumulation in liver, but not serum or bile, of males without significantly altering those 

in females (Fig 9A-C). DKO induced bile acid accumulation in serum and biliary bile 

while retaining levels of bile acid constant in livers of high cholesterol fed males (Fig 

9A-C). In contrast, DKO induced bile acid accumulation in liver and serum while 

maintaining that in bile constant in high cholesterol-fed females (Fig 9A-C). 

Thus the DKO elicited bile acid retention in liver and serum in both males and 

female and increased biliary bile acid accumulation only in high cholesterol-fed males, 

wherein biliary cholesterol levels also increased. These data were consistent with 

canalicular secretion of bile acid driving biliary cholesterol secretion (84; 89; 115). 

Expression of Proteins Involved in Hepatic Bile Acid Transport 

Hepatic expressions of basolateral membrane (Oatp1, Oatp2, Ntcp) and 

canalicular membrane (Bsep) bile acid transporters were examined.  Expression of 

Oatp1 (Fig 9E) and Oatp2 (Fig 9F) was unaltered in male DKO mice. While expression 

of Ntcp (Fig 9G) was increased in control-fed DKO mice and in the WT males on a high 

cholesterol diet, these increases were not sufficient to reduce the elevated bile acid levels 

in serum (Fig 9B). Similarly, DKO alone did not alter liver transcription levels of Oatp1, 
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Oatp2, or Ntcp in control-fed females (Fig 9E-G).  The high cholesterol diet alone 

increased only Ntcp in WT females (Fig 9G) and only Oatp2 in DKO females (Fig 9F).  

In general, DKO, high cholesterol diet, or both did not reduce expression of these 

transporters, thereby reducing reuptake of bile acid from serum, in order to explain the 

increased serum bile acids observed in either sex.  

In contrast, the increased serum, but not hepatic, bile acid levels in control-fed 

male and female DKO mice were attributable in part to altered expression of cytosolic 

bile acid transport proteins. The DKO resulted in complete absence of both SCP-2 and 

SCP-x (Fig 6C, D), key proteins in cytosolic bile acid transport as well as bile acid 

synthesis. In control-fed DKO mice, this loss was compensated in part by concomitant 

upregulation of the other major bile acid binding/transport protein, L-FABP, whose 

expression was increased significantly in males and trended to increase slightly in 

females (Fig 6E).  The high cholesterol diet alone increased expression of L-FABP and 

SCP-x in WT males and increased that of SCP-2 and SCP-x (but not L-FABP) in WT 

females (Fig 6C-E). The DKO prevented the cholesterol diet-induced increase in hepatic 

L-FABP expression in males but did not alter L-FABP level in females (Fig 6E). Taken 

together, the net effect was to decrease the expression of cytosolic proteins involved in 

hepatocyte uptake/cytosolic transport of bile acids—thereby overall favoring retention of 

bile acids in serum. 



40 

The unaltered biliary bile acid levels in control-fed WT groups (Fig 9C) were 

consistent with unaltered expression of canalicular bile acid transporter Bsep (Fig 9H). 

While the high cholesterol diet alone decreased Bsep expression in WT males and 

increased that in females, these changes were insufficient to alter bile acid levels in bile 

(Fig 9C).  DKO prevented the cholesterol-induced increase in Bsep in males, but 

exacerbated the increased Bsep in females (Fig 9H). Alterations observed in Bsep did not 

consistently correlate with increased biliary bile acids (Fig 9C).  

Interestingly, DKO significantly decreased hepatic expression of PCTP in DKO 

males and trended to decrease that in DKO females fed either the control or high 

cholesterol diet (Fig 9I). PCTP is the major cytosolic transport protein of 

phosphatidylcholine, also needed for formation of bile. While this change did not lead to 

decreased bile acid levels, it may have contributed in part to hepatic retention of 

phospholipids (Fig 1C) and/or bile acids (Fig 9A). 

Taken together, these data showed that the bile acid and biliary lipid phenotype 

of DKO mice was in large part associated with the loss of SCP-2 and SCP-x, but less so 

with altered regulation of other membrane and cytosolic proteins involved in bile acid 

transport and bile formation. 

Expression of Enzymes Involved in Hepatic Bile Acid and Cholesterol Synthesis 

Mice and humans exhibit marked sex- dependent differential expression of the 

rate limiting enzymes in the primary and secondary pathways for bile acid synthesis. 

Expression of CYP7A1 (rate limiting enzyme in the primary bile acid synthesis 
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pathway) and CYP27A1 (rate limiting enzyme in the alternate pathway of bile acid 

synthesis) were several fold higher in female mice than male mice under all conditions 

examined (Fig 10A, B).   

  Neither DKO alone, high cholesterol diet alone, nor did both together impact 

expression of CYP7A1 in either sex (Fig 10A). In contrast, DKO alone, but not high 

cholesterol diet alone or both together, increased expression of the alternate pathway 

enzyme CYP27A1 in males, while decreasing that in females (Fig 10B).  

 Taken together, these data indicated that higher total bile acid level (liver, serum, 

bile) of control-, but not high cholesterol-fed, females were associated with higher 

hepatic expression of key bile acid synthetic enzymes CYP7A1 and CYP27A1. 

However, higher total bile acid level (liver, serum, bile) in cholesterol-fed DKO males 

and females did not appear to be due to further increased expression of either CYP7A1 

or CYP27A1.     
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Figure 10: Effect of SCP-2/SCP-x gene ablation and cholesterol rich diet on proteins and 

transcription factors involved in cholesterol synthesis and oxidation to bile acids. Western 

blots of homogenates isolated from the livers of DKO and WT mice were analyzed to determine 

relative protein levels of CYP7A1 (A), CYP27A1 (B), PPARα (c), SHP (D), FxR (E), and LxR 

(F).  COX4 was used as a loading control to normalize protein expression. Expression levels 

were quantified as described in MATERIALS AND METHODS. Insets: Representative Western 

blots showing relative protein expression in each mouse group. CO, control diet; CH, high-

cholesterol diet; solid bars, WT; open bars, DKO mice.  Values are means ± SE (n = 5-7). * P < 

0.05 for DKO vs. WT. # P < 0.05 CH vs. CO.     
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Nuclear Receptors Involved in Hepatic Bile Acid Synthesis  

Neither sex, DKO alone, nor DKO/high cholesterol diet together significantly 

increased expression of PPARα (Fig 10C), a nuclear receptor reported to inhibit and in 

other cases stimulate expression of bile acid synthetic enzymes CYP7A1 and CYP27A1 

(53; 54; 89).  However, the cholesterol diet alone increased PPARα expression in WT 

males and tended to increase in females (Fig 10C).  

  The nuclear receptor inhibitor SHP was significantly increased in all DKO 

groups (Fig 10D), while expression of LXR, a key nuclear receptor which induces 

transcription of CYP7A1 (89), was decreased in all DKO groups except control-fed 

males (Fig 10F). However, the expression of CYP7A1 was not decreased in control-fed 

DKO males (Fig 10A).  The increased SHP in DKO males was associated with increased 

FXR (Fig 10E), a known SHP inducer (89). However, the decreased FXR levels in DKO 

females (Fig 10E) accounted in part for the smaller increase in SHP (Fig 10D).   

 In summary, altered expression of nuclear receptors regulating hepatic bile acid 

synthesis did not appear to account for sex, DKO, and diet differences in expression of 

key enzymes in bile acid synthesis (CYP7A1, CYP27A1). These findings were 

consistent with expression of these enzymes being regulated more by availability of 

ligand activators in the nucleus than expression levels of nuclear receptors in cholesterol 

and bile acid synthesis. 
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SUMMARY AND DISCUSSION 

  

 Since mammals have a limited ability to eliminate excess cholesterol, primarily 

via bile, cholesterol homeostasis is closely regulated by a delicate balance between 

hepatic cholesterol uptake from serum lipoproteins via plasma membrane receptors, de 

novo synthesis in the ER, feedback regulation of de novo synthesis via nuclear receptors, 

and by elimination via the bile canaliculus. Unclear, however, is how the very poorly 

soluble cholesterol (critical micellar concentration near 30 nM) is rapidly transported 

and targets within the hepatocyte in these processes. For example, the half-time for 

hepatic clearance of HDL cholesterol into bile is only 1-3 min (35; 86; 87; 126).  In 

vitro studies with purified membranes demonstrated that spontaneous and vesicular 

cholesterol movement are too slow since half times are days-weeks and greater than 15 

minutes, respectively (3; 8; 27; 28; 30; 31; 64; 96; 97; 99).  Increasing findings in vitro 

and with cultured cells indicate potential roles of the intracellular binding proteins SCP-

2, SCP-x, and L-FABP that bind, transfer, and/or target cholesterol within hepatocytes 

for esterification, oxidation to bile acids, and/or biliary excretion (16; 126). To study the 

physiological significance of these findings, murine SCP-2 has been increased by 

overexpression (2; 5; 125) and decreased by SCP-2 antisense treatment (83) or ablation 

(25; 50; 104), while L-FABP has only been ablated (60; 62). While the effect of L-FABP 

gene ablation on hepatic phenotype of both male and female mice has been examined in 

response to a high cholesterol diet (58; 59),  almost nothing is known about the impact of 

SCP-2/SCP-x expression in the context of high dietary cholesterol for either sex. While 
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understandably physiologically complex, the findings presented herein provided the 

following new insights. 

 

DKO Effect on Whole Body Phenotype 

 The DKO affected whole body phenotypes in both a sex- and high cholesterol 

diet-independent fashion.  While DKO did not alter food consumption in either sex, 

body weight (BW) gain and BW gain/food consumption were decreased in females but 

not males regardless of diet.  Other whole body phenotype parameters were not altered. 

Conversely, SCP-2 overexpression exacerbated BW gain in females without altering that 

in males (5).  In contrast, high cholesterol dietary stress alone did not significantly alter 

whole body phenotype of either males or females.  Thus, SCP-2 presence versus absence 

significantly impacted whole body phenotype of females more than that of males.  

 

DKO Elicited Hepatic Accumulation of Cholesterol 

 The DKO resulted in loss of both SCP-2 and SCP-x and elicited hepatic 

accumulation of total cholesterol, primarily as cholesteryl ester, in livers of control and 

high cholesterol-fed mice regardless of sex. This effect was attributed to loss of SCP-2 

and in male control-fed DKO mice as well as to the upregulation of L-FABP as shown 

herein (Fig 6E) and earlier (110). Ablating only SCP-x alone did not increase hepatic 

cholesterol and cholesteryl ester or alter expression of SCP-2 and L-FABP in male and 

female mice (6). Interestingly, SCP-2 overexpression increased hepatic accumulation of 

cholesteryl ester in males and females concomitant with upregulation of L-FABP in 
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females but not males (5). Likewise, hepatic adenoviral SCP-2 overexpression trended to 

increase hepatic cholesteryl ester accumulation in males, but L-FABP was not measured 

(2; 125). These findings would indicate that not only loss of SCP-2 but also concomitant 

upregulation of L-FABP was a significant contributor to the hepatic cholesterol 

accumulation in control-fed mice. Consistent with the latter possibility, L-FABP 

upregulation in cultured primary hepatocytes from DKO mice significantly increased 

hepatocyte uptake of HDL cholesterol (112). Although SCP-2 is more potent than L-

FABP in stimulating cholesterol transfer and microsomal ACAT-mediated cholesterol 

esterification in vitro (15; 23; 24; 45; 68; 74; 79), hepatic L-FABP levels are normally 

greater than tenfold higher than those of SCP-2 (94; 110).  

 Finally, in control-fed males, but not females, the DKO-induced hepatic 

cholesteryl ester accumulation was also attributed in part to increased expression of 

ACAT2, the key ER protein responsible for esterifying cholesterol. Since the DKO did 

not significantly impact expression of Ceh/Hsl, the enzyme hydrolyzing cholesteryl ester 

to free cholesterol, the increased cholesteryl ester was not due to decreased Ceh/Hsl. 

Taken together, these findings were consistent with DKO-induced hepatic cholesterol 

and cholesteryl ester accumulation being associated in part with loss of SCP-2 

concomitant with upregulation of L-FABP and/or ACAT2 at least in males.  

 The DKO-induced hepatic cholesterol accumulation was not due to concomitant 

induction of Srebp2 transcription or increased translation into pre-SREBP2 protein and 

release of mature SREBP2 protein.  SREBP2 is a nuclear receptor protein that is released 

from ER in response to low cholesterol levels therein followed by transfer into nuclei to 
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induce expression of target genes (36; 106; 116).  Since SCP-2, and less so L-FABP, are 

very active in mediating cholesterol transfer from lysosomes and plasma membranes to 

ER (3; 8; 23; 24; 27; 28; 92), these data suggest a potential role for SCP-2 and less so L-

FABP in mediating transfer of cholesterol to the ER cholesterol-sensing protein SCAP. 

In this scenario, loss of SCP-2 would reduce delivery of cholesterol to ER, reduce 

cholesterol available to SCAP in ER, and thereby induce processing of pre-SREBP2 to 

cleave/release mature SREBP2 protein for transfer to nuclei and activation of SREBP2 

target genes in cholesterol uptake and de novo synthesis.  Surprisingly, therefore, the 

expression of most SREBP2 target genes examined was unaltered or decreased in DKO 

females (LDL-R, SR-B1, cHMGCS, MTP, HMGCR) while changes in DKO males were 

modest. While the basis for the muted response of target genes to increased SREBP2 

protein in DKO mice is not completely clear, altered expression of inhibitory miRNA or 

antagonistic nuclear regulatory proteins as well as increased degradation or 

posttranslational modifications may contribute.  Future studies will address these issues 

which are beyond the scope of this thesis work. 

 

DKO Significantly Potentiated the Induced Hepatic Cholesterol Accumulation Observed 

in Mice fed a High Cholesterol Diet 

 The DKO significantly potentiated the high cholesterol diet-induced hepatic 

accumulation of free and esterified cholesterol. In DKO males only, this effect was 

associated not only with loss of SCP-2 and SCP-x, but also with concomitant down 

regulation of L-FABP, the key protein involved in hepatic biliary efflux of HDL 



 

48 

 

cholesterol (57). While it was expected that SCP-2 overexpression in male mice would 

elicit the opposite effect, SCP-2 overexpression also potentiated cholesterol diet-induced 

cholesterol and cholesteryl ester accumulation concomitant with increased SCP-2 and/or 

concomitant downregulation of L-FABP in male mice (5). Reasons for the discrepancy 

may relate to the differences in mouse strains used in the overexpression versus gene 

ablation studies.  It is important to note that although the DKO also increased Srebp2 

mRNA and SREBP2 protein in cholesterol-fed mice, this increase did not exceed that 

elicited by DKO alone in control-fed mice.  Likewise, this increase in SREBP2 protein 

did not further induce expression SREBP2 target gene products (LDL-R, SR-B1, 

cHMGCS, HMGCR) beyond that elicited by DKO alone in control-fed mice. An 

exception was the fact that the DKO did reduce the hepatic protein level of MTP in 

cholesterol-fed but not control-fed mice since MTP is a known target gene whose 

transcription is inhibited by SREBP2.  Finally, DKO exacerbation of cholesterol diet-

induced hepatic cholesterol accumulation was associated in part with decreased Ceh/Hsl 

in females concomitant with unaltered ACAT2 level. Thus DKO exacerbation of the 

cholesterol diet-induced accumulation of hepatic cholesterol was associated primarily 

with loss of SCP-2, downregulation of L-FABP, and reduced level of MTP and 

downregulation of Ceh/Hsl.   

  

DKO Increased Hepatic Accumulation of Glycerides 

The DKO alone increased hepatic, but not serum, accumulation of glycerides: 

phospholipid and triacylglycerides. Livers of control-fed DKO mice exhibited higher 
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levels of phospholipid and triglyceride levels in both sexes. Serum lipids were largely 

refractory to these changes with the exception of increased triglycerides in males. The 

increased hepatic accumulation of glycerides (phospholipids, triglycerides) was 

associated with concomitant upregulation of L-FABP at least in males.  Like SCP-2 (21; 

46; 49; 71; 101; 108), L-FABP also binds long chain fatty acids (LCFA) (42; 55; 85; 

119), stimulates LCFA uptake (66; 67; 70; 72; 73; 82; 121), and enhances LCFA 

cytosolic transport (70; 118). Further, L-FABP facilitates LCFA/LCFA-CoA targeting 

toward both the ER for esterification by GPAT (13; 47-49; 100) as well as toward 

oxidative organelles (mitochondria, peroxisomes) for degradation, as shown in vitro, in 

cultured cells and hepatocytes, and in vivo (7; 12; 39; 60). The balance between these 

opposing pathways is apparently determined by LCFA load (4). Further, while the DKO-

induced hepatic glyceride accumulation was not associated with any change in nuclear 

receptor Srebp1 mRNA level, western blotting showed that translation and release as 

mature SREBP1 protein was increased, as was the expression of SREBP1 lipogenic 

target genes (Acc1, Fas, and/or Acc2).  In liver, the primary SREBP1 isoform is 

SREBP1c, and overexpression of SREBP1c induces transcription of multiple lipogenic 

genes (Acc1, Acc2, Fas) but not cholesterogenic (Hmgcs, Hmgcr) genes (106; 116). 

While the Acc1 and Fas gene products are involved in de novo fatty acid synthesis, the 

Acc2 gene product produces malonyl CoA at the mitochondrial membrane where the 

malonyl CoA then inhibits CPT1, the rate limiting step in fatty acid oxidation—thus 

increasing fatty acid availability for esterification.  
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 Consistent with hepatic glyceride accumulation in DKO mice being associated 

with increased SREBP1 protein level, polymorphisms in SREBP1 have been associated 

with nonalcoholic fatty liver disease in humans (36; 75). In addition, DKO-induced 

upregulation of SREBP2 likely also contributed to increased hepatic glyceride 

accumulation, since overexpression of SREBP2 similarly induces transcription of 

lipogenic (Acc1, Acc2, Fas) genes (106; 116). Finally, concomitant reduced expression 

of phosphatidylcholine transport protein (PCTP) may have also contributed toward 

hepatic phospholipid retention, as this protein is considered to mediate intracellular 

phospholipid transfer. It is important to note that the DKO did not significantly 

upregulate other key proteins in LCFA uptake (FATP2, FATP4), transport (ACBP), 

oxidation (ACBP, CPT1), or alter serum levels of β-hydroxybutyrate—an in vivo 

measure of LCFA β-oxidation.  

  

DKO Exacerbated the Induced Hepatic Glyceride Accumulation Observed in Mice Fed a 

High Cholesterol Diet 

The DKO exacerbated cholesterol diet-induced hepatic accumulation of 

glycerides (phospholipid and triacylglyceride). This exacerbation, occurring primarily in 

females but not males, was associated with decreased expression of: i) Ceh/Hsl which 

would favor cholesteryl ester accumulation; ii) MTP (due to increased SREBP1 and 

SREBP2, both of which inhibit MTP transcription) which loads ApoB with triglyceride 

and cholesteryl ester, and iii) ApoB which would decreased the level of ApoB available 

for loading with glycerides and cholesteryl ester. Together these factors would elicit 
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glyceride and cholesteryl accumulation as a result of decreased hepatic secretion of 

nascent VLDL and LDL.  

 

DKO Mouse Construct and Study Design Differences in Comparison to a Previous Study 

  The phenotype of control-fed DKO mice in this study differed significantly from 

that reported in an earlier study with independently-created male DKO mice (104). In 

the latter study, body weights were unaltered despite increased food intake, hepatic 

accumulation of cholesterol (especially cholesteryl ester) as well as glycerides 

(phospholipid and/or triglyceride) was not observed, and hepatic levels of phospholipid 

were unaltered, while triglycerides decreased (104).  The earlier study differed in several 

key aspects since the DKO mice used therein were: i) generated using a different 

ablation construct strategy (104); ii) backcrossed to a different background substrain 

(C57BL/6J rather than C57BL/6N).  The C57BL/6J mice differ significantly from 

C57BL/6N mice in a number of genes and are normally much more susceptible to high 

fat diet-induced obesity (rev. in (4); iii) The C57BL/6J mice were fed a control diet 

containing 0.2 mg phytanic acid/g food as well as 0.08 mg phytol/g food (104).  

 In contrast, the diet in the present study was prepared phytoestrogen-free and 

phytanic acid/phytol free, as confirmed by gas chromatography/mass spectroscopic 

analysis which indicated no detectable phytanic acid. Phytol was present only at 

0.0028+0.0004 mg/g food. Phytanic acid is a ligand for both L-FABP and PPARα (22; 

38; 63) and is one of the most potent naturally-occurring inducers of PPARα (1; 33; 

122). L-FABP is known to transport bound fatty acids into nuclei wherein it directly 
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interacts with (37; 40; 107; 117; 120) and facilitate ligand activation of PPARα (37; 40; 

44; 80; 81; 120). Ligand induction of PPARα elicits transcription of L-FABP as well as 

multiple enzymes involved in LCFA oxidation (44; 80; 81; 102; 120).    

 Thus, the seventy-one fold higher dietary level of phytanic acid in the control 

chow of the previous study in C576BL/6J mice would be expected to significantly 

induce PPARα transcription of L-FABP as confirmed by fivefold concomitant 

upregulation of L-FABP (25; 104); nearly three to fivefold greater than the present 

study. The much higher induction of L-FABP in turn would reinforce or potentiate 

phytanic acid uptake and transport into the nucleus to induce PPARα transcription of 

LCFA oxidative enzymes and reduce hepatic levels of fatty acids acylated to 

phospholipid and triglyceride (104). Since phytanic acid and pristanic acid are very 

potent PPARα agonists that induce transcription of fatty acid oxidative enzymes and L-

FABP, increased fatty acid oxidation would compensate for any increase in food 

consumption and thereby maintain body weight (7; 9; 18; 34). Thus the significant 

dietary content of branched-chain lipids (phytanic acid, phytol) in the earlier study 

would account for the differences in the presently observed phenotype. 
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CONCLUSION 

  

 In conclusion, the SCP-2/SCP-x double gene ablation (DKO) elicited hepatic 

lipid accumulation, especially of cholesteryl esters and glycerides (phospholipid and/or 

triglyceride). This lipid accumulation was associated primarily with: i) loss of SCP-2; ii) 

concomitant upregulation of L-FABP; and/or iii) increased protein levels of the nuclear 

receptors SREBP1 and SREBP2. Upregulation of L-FABP in control-fed male DKO 

mice is important to both fatty acid and cholesterol metabolism, since L-FABP binds and 

enhances the uptake, transport, and esterification of both fatty acid and cholesterol. 

Further, the DKO increased hepatic protein levels of both SREBP1 and SREBP2 in 

control-fed males and females as well as in cholesterol-fed female DKO mice.  These 

proteins regulate transcription of lipogenic (SREBP1, SREBP2) and cholesterogenic 

(SREBP2) genes. Finally, DKO exacerbated the cholesterol diet-induced hepatic 

accumulation of cholesteryl esters and glycerides. However, this exacerbation was 

associated with multiple factors, including loss of SCP-2 and decreased expression of 

Ceh/Hsl, MTP, and Apo B.  Taken together, these findings were consistent with the 

hypothesized role for SCP-2 in targeting cholesterol transport to the ER to stimulate 

ACAT2-mediated cholesteryl ester formation (14; 15; 29; 45; 74; 79). In addition, the 

data suggested a potential novel role for SCP-2 in cholesterol transfer to ER to regulate 

release of SREBP1 and 2, key nuclear receptors in lipogenesis and cholesterogenesis.    
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