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ABSTRACT

This dissertation contains three essays on nonparametric and semiparametric

regression methods.

In the first essay, we consider the problem of nonparametric regression with mixed

discrete and continuous covariates using the k-nearest neighbor (k-nn) method. We

derive the asymptotic normality of the proposed estimator and use Monte Carlo

simulations to demonstrate its finite sample performance. We apply the method to

estimate corn yields in Iowa as a function of agricultural district, temperature, and

precipitation.

In the second essay, we consider the problem of testing error serial correlation in

fixed effects panel data models in a nonparametric framework. We show that our

test statistic has a standard normal distribution under the null hypothesis of zero

serial correlation. The test statistic diverges to infinity at the rate of
√
N under

the alternative hypothesis that errors are serially correlated, where N is the cross-

sectional sample size. We propose a bootstrap version of the test which we show to

perform well in finite sample applications.

In the third essay, we consider estimation of varying-coefficient single-index mod-

els with an endogenous regressor. We propose a multi-step instrumental variables

procedure to estimate the coefficient function and the corresponding index param-

eters. We prove the consistency of the estimators, and we present Monte Carlo

simulations demonstrating their finite sample performance. We then apply the pro-

posed method to examine the determinants of aggregate illiquidity in the U.S. stock

market.
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1. INTRODUCTION AND SUMMARY

Nonparametric regression methods have the advantage that they do not impose

strong restrictions on the structure of the relationship between the dependent and ex-

planatory variables, instead allowing this structure to be revealed by the data. Semi-

parametric regression methods offer some of the same flexibility, but often with the

advantages of lower dimensionality and improved interpretability. Since researchers

often have little prior information on the relationships being studied, this flexibility

of nonparametric and semiparametric methods is often of great value. It is therefore

not surprising that these methods have received much recent attention from econome-

tricians and statisticians. This dissertation adds to the literature on nonparametric

and semiparametric regression methods in the following ways.

In the first study, we adapt the k-nearest neighbor (k-nn) method for nonpara-

metric regression to the case of mixed continuous and discrete explanatory variables.

Under the k-nn method, regression estimates are driven by the same number

of observations at every point in the range of the explanatory variables, no matter

how dense or sparse the data around the point. Thus, unlike fixed-bandwidth kernel

methods, the k-nn method does not suffer from the problem of estimates assigning

undue weight to single observations in areas where the data are particularly sparse.

Researchers may therefore prefer the k-nn method when the explanatory variables

are distributed unevenly over their range.

Ouyang, Li, and Li (2006) study the k-nn method for the case in which all

explanatory variables are continuous. We generalize their results to our proposed

method, which admits not only continuous, but also discrete explanatory variables.

Our proposed method smooths both types of explanatory variable – the continuous
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variables by the k-nn method, and the discrete variables as in Aitchison and Aitken

(1976) and Racine and Li (2004). Just like smoothing of continuous covariates,

smoothing of discrete covariates introduces bias in finite samples; however, it may

substantially decrease estimation variance, and thus lead to more accurate estimates.

We consider the selection of smoothing parameters by least-squares cross-validation,

and we derive the probability order of the parameters thus selected. We then derive

the asymptotic normality of our regression estimator that uses these cross-validated

smoothing parameters. We provide Monte Carlo simulations demonstrating the finite

sample performance of our estimators, and we apply our method to investigate how

corn yields in Iowa depend upon agricultural district, temperature, and precipitation.

In the second study, we develop a test for error serial correlation in fixed effects

nonparametric panel data models.

It is important to test for error serial correlation in these (and other) models, for at

least three reasons. First, in the presence of error serial correlation researchers need to

use methods of estimating standard errors that account for this autocorelation. While

in many settings such methods have become the default choice for applied researchers,

in other settings researchers may prefer to avoid them due to their high computational

cost or their inferior performance in the absence of error autocorrelation. Therefore,

researchers may wish to first test whether robust standard errors are indeed necessary

before using them. Second, if errors are serially correlated it may be possible to obtain

more efficient estimators by taking this autocorrelation into account. Third, strong

serial correlation in errors often indicates that some important explanatory variables

are missing from the model.

Li and Hsiao (1998) propose a test for zero error serial correlation in a nonpara-

metric model; we generalize this test to the case of a fixed effects nonparametric

panel data model. We propose a test statistic, and we derive its asymptotic normal

2



distribution under the null hypothesis of zero error serial correlation. However, our

simulations show that this asymptotic distribution is a poor approximation in finite

samples; we therefore introduce a bootstrap test procedure, which simulations show

to perform well in finite samples.

In the third study, we consider estimation of varying-coefficient single-index mod-

els with an endogenous explanatory variable.

Varying-coefficient models are increasingly popular, and they have some particu-

larly attractive properties in the case where some explanatory variables are endoge-

nous. In the presence of endogeneity, estimation of fully nonparametric models may

become difficult or even impossible, but estimation of varying-coefficient models of-

ten remains straightforward. Provided that all endogenous variables enter the model

linearly, instrumental variable estimation methods are available; see for example the

method of Cai, Xiong, and Wu (2006).

Our model is similar to that considered by Cai, Xiong, and Wu, but we restrict

the coefficient functions to follow a single-index specification in order to reduce the

dimensionality of the model. Xia and Li (1999) and Fan et al. (2003) consider the

estimation of such varying-coefficient single-index models in the case where all ex-

planatory variables are exogenous; to the best of our knowledge, ours is the first

paper to consider varying-coefficient single-index models with endogenous explana-

tory variables. For expositional simplicity, we restrict our analysis to the case of a

single endogenous explanatory variable.

We propose a multi-step instrumental variable procedure for estimating our model.

We derive the
√
n-consistency of our index parameter estimators, and we show that

our coefficient function estimator converges to its true value at the standard rate for

single-index models. We provide Monte Carlo simulations demonstrating the finite

sample performance of our estimators.
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Finally, we apply our estimation procedure to analyze the determinants of aggre-

gate liquidity in the U.S. stock market. We use a measure of illiquidity based on the

”price impact” of trades – the coefficient in a pooled regression of stock returns on

stock-specific order flow (i.e., on signed trading volume). We argue that the price

impact of interest is that of an uninformed trade; thus, as order flow consists of

informed as well as uninformed trades, we argue that it should be viewed as endoge-

nous. This endogeneity can be addressed by an instrumental variables approach,

with order flow (or rather our proxy of order flow) instrumented by a component of

order flow that consists solely of uninformed trades. Inspired by Coval and Stafford

(2007), we identify as such a component those trades made by mutual funds with

extreme inflows or outflows of funds. Using this instrumental variable and the meth-

ods developed in our paper, we estimate price impact and examine how it varies

according to two interest rate variables.

4



2. ESTIMATION OF NONPARAMETRIC REGRESSION MODELS WITH

MIXED DISCRETE AND CONTINUOUS COVARIATES BY THE K-NN

METHOD, WITH QI LI AND YU YVETTE ZHANG

2.1 Introduction

Nonparametric methods of conditional mean estimation offer flexibility, impos-

ing only relatively weak assumptions on the form of the conditional mean function.

These methods can provide consistent estimators in situations where parametric esti-

mators are biased even asymptotically. Thus, researchers may prefer nonparametric

methods to parametric alternatives when they are reluctant to make assumptions

about the form of the conditional mean function. However, in finite samples non-

parametric methods require smoothing in order to balance bias against variance,

and their performance depends critically on the degree of smoothing that they en-

tail. Therefore, the choice of the parameters controlling this degree of smoothing is

an important subject of study. Data-driven methods for selecting smoothing param-

eters have been proposed; see, for example, Härdle, Hall, and Marron (1988,1992),

and Gao and Tong (2004) and the references therein. Of particular relevance to our

paper, Racine and Li (2004) study data-driven smoothing parameter selection, and

the asymptotic behavior of the corresponding estimator, for the kernel method in-

troduced by Aitchison and Aitken (1976). This method allows for both discrete and

continuous explanatory variable, and it smooths both types of variable. In this paper,

we consider a method that allows for continuous and discrete explanatory variables,

and smooths the discrete variables as in Aitchison and Aitken (1976) and Racine

and Li (2004), but smooths the continuous variables using the k-nearest neighbor

method rather than fixed-bandwidth methods. We study the selection of smooth-
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ing parameters by least-squares cross-validation, and the asymptotic behavior of the

corresponding conditional mean function estimator.

The k-nearest neighbor method for nonparametric regression has the advantage

that, in cases where the explanatory variables are unevenly distributed over their

range, it automatically adjusts the size of the bandwidth to account for the relative

density or sparseness of the data. It is generally best to decrease the size of the

bandwidth where the data are dense and increase the size of the bandwidth where the

data are sparse; by always using the k nearest observations, the k-nearest neighbor

method makes such an adjustment automatically. This may be of particular help in

areas where the data are sparse, as it ensures that even here estimates are driven

by a sufficient number of observations, with no single observation receiving undue

weight.

Ouyang, Li, and Li (2006) study the k-nearest neighbor method for nonparamet-

ric regression for the case in which all explanatory variables are continuous. They

derive the probability order of smoothing parameters selected by least-squares cross-

validation, and the asymptotic normal distribution of the corresponding conditional

mean function estimators. We generalize their results to the case of mixed continuous

and discrete explanatory variables.

The remainder of this paper is organized as follows: In section 2.2 we describe our

proposed method, which smooths the continuous explanatory variables using the k-

nearest neighbor method and smooths the discrete explanatory variables as in Aitchi-

son and Aitkin (1976) and Racine and Li (2004). We examine the asymptotic be-

havior of smoothing parameters selected by least-squares cross-validation. We show

that these smoothing parameters are asymptotically equivalent to non-stochastic

smoothing parameters that minimize a weighted mean square error. We then derive

the asymptotic normal distribution of the corresponding conditional mean function

6



estimator. In section 2.3 we present Monte Carlo simulations that demonstrate the

good finite sample performance of the proposed estimator. In section 2.4 we use

our method to estimate the conditional mean of corn yield in Iowa as a function

of agricultural district, average annual temperature and precipitation. Section 2.5

concludes the paper. All proofs are relegated to the appendix.

2.2 K-nn Estimation and Cross-Validation

We consider a nonparametric regression model with both discrete and continuous

regressors. We write the vector of regressors Xi as Xi = (Xc
i , X

d
i ), where Xc

i is

a q × 1 vector of continuous regressors and Xd
i is an m × 1 vector of discrete

regressors. We let D ⊂ Rm denote the range of Xd
i . We consider the nonparametric

regression model

Yi = g(Xi) + ui, i = 1, 2, ....., n (2.1)

where the functional form of g(·) is not specified. We assume that the data (Yi, Xi)
n
i=1

are independent and identically distributed.

We use the k-nearest neighbor method to smooth the continuous regressors, and

we smooth the discrete regressors in the spirit of Racine and Li (2004) and Hall, Li,

and Racine (2007). For the discrete regressors, we first define a univariate kernel

function given by

l(Xd
s,i, x

d
s, λs) =


1 if Xd

s,i = xds,

λs if Xd
s,i 6= xds

(2.2)

where the range of λs is [0, 1]. The product kernel is then defined by L(Xd
i , x

d, λ) =∏m
s=1 l(X

d
s,i, x

d
s, λs).
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Next we consider the continuous regressors. Given a vector xc ∈ Rq, we let

Dn(xc, k) denote the distance between xc and its kth-nearest neighbor. We then

define

Rx = Dn(xc, k) ≡ Euclidean distance between xc and its kth-nearest neighbor among
{
Xc

j

}n
j=1

.

(2.3)

We let Ri denote the distance between Xc
i and its kth-nearest neighbor, i.e.

Ri = Dn(Xc
i , k) ≡ Euclidean distance between Xc

i and its kth-nearest neighbor among {Xc
j }j 6=i.

(2.4)

Next, let w(·) : Rq → R be a bounded non-negative weight function satisfying

w(v) = w(−v),
∫
w(v)dv = 1, and w(v) = 0 for ‖v‖≥ 1, where ‖·‖ denotes the

Euclidean norm. The k-nearest neighbor estimator of f(x), the density function of

Xi, is given by

f̂(x) =
1

nRq
x

n∑
i=1

w

(
Xc
i − xc

Rx

)
L(Xd

i , x
d, λ). (2.5)

Then the local constant k-nearest neighbor estimator of g(x) is given by

ĝ(x) =
1

nRq
x

n∑
i=1

Yi w

(
Xc
i − xc

Rx

)
L(Xd

i , x
d, λ)/f̂(x) (2.6)

We consider the selection of k and λ by leave-one-out least squares cross-validation.

Specifically, we choose k̂ and λ̂ to minimize

CV (k, λ) =
n∑
i=1

(Yi − ĝ−i(Xi))
2M(Xi) (2.7)

8



where ĝ−i(Xi) is the leave-one-out k-nearest neighbor estimator of g(Xi), given by

ĝ−i(Xi) =
∑
j 6=i

Yj w

(
Xc
j −Xc

i

Ri

)
L(Xd

j , X
d
i , λ)/f̂−i(Xi),

and

f̂−i =
∑
j 6=i

w

(
Xc
j −Xc

i

Ri

)
L(Xd

j , X
d
i , λ)

is the leave-one-out estimator of f(Xi); and M(Xi) is a non-negative weight function

that trims away data near the boundary of the data support.

Before analyzing the asymptotic properties of the cross validation selected smooth-

ing parameters, we first list some regularity conditions.

Assumption 1 (i) (Xi, Yi)
n
i=1 are i.i.d as (X, Y ); (ii) ui ≡ Yi− g(Xi) has zero mean

and finite fourth moment; (iii) g(·, xd) and f(·, xd) are both continuously differen-

tiable up to the fourth order for all xd ∈ D; (iv) defining σ2(x) = E(u2
i |Xi = x),

σ2(·) is continuous in x; (v) f(x) is bounded from below on the support of M(·).

Assumption 2 (i) The kernel function w(·) is bounded, symmetric, and non-negative;

(ii) w(v) = 0 for all v outside the unit sphere; (iii)
∫
w(v)dv = 1; (iv)

∫
w(v)vv′dv =

cwIq, where cw is a positive constant and Iq is the q×q identity matrix; (v)
∫
w2(v)dv =

dw, where dw is a positive constant; (vi)
∫
w2(v)vv′dv = νwIq, where νw is a positive

constant.

Assumption 3 (λ̂, k̂) ∈ Λ × K , where, for some C0 > 0, Λ = {λ ∈ Rm| ‖λ‖<

C0(log n)−1)}; and K = [nδ, n1−δ] for some arbitrarily small δ ∈ (0, 1/2).

In analyzing the asymptotic behavior of the smoothing parameters, we first give

the leading term of the CV function in the following theorem:

Theorem 1 Under assumptions 1-3,

9



CV (k, λ) = CV0(k, λ) + (s.o.),

where

CV0(k, λ) = B1

(
k

n

) 4
q

+B2

(
1

k

)
+B3(λ) +B4(λ)

(
k

n

) 2
q

,

where B1 and B2 are positive constants, B3(λ) and B4(λ) can be written as B3(λ) =
m∑
s=1

λ2
sds + 2

m−1∑
s=1

m∑
t>s

λsλtdts and B4(λ) =
m∑
s=1

λscs, where dt, dts and cs are some

constants, (s.o.) denotes terms have probability orders smaller than CV0(k, λ).

Let k̂ and λ̂ denote, respectively, the values of k and λ selected by least squares

cross-validation, and let k0 and λ0 denote, respectively, the values of k and λ that

minimize CV0(k, λ). From Theorem 1 we immediately have the following result:

Theorem 2 Under the same assumptions as in Theorem 1, we have that

k̂ = k0 + op(k0)

λ̂ = λ0 + op(‖λ0‖)

We further derive the rate of convergence of k̂ and λ̂ to k0 and λ0, respectively:

Theorem 3 Under assumptions 1-3, we have

(i) If q ≤ 3, (k̂ − k0)/k0 = Op

(
n−q/[2(4+q)]

)
and λ̂− λ0 = Op

(
n−1/2

)
.

(ii) If q ≥ 4, (k̂ − k0)/k0 = Op

(
n−2/(4+q)

)
and λ̂− λ0 = Op

(
n−4/(4+q)

)
.

Let γ = (k, λ′) and γ̂ = (k̂, λ̂′). We use ĝγ̂(x) to denote the local constant k-

nearest neighbor estimator of g(x) using k = k̂ and λ = λ̂. Theorem 4 gives the

asymptotic distribution of ĝγ̂(x):
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Theorem 4 Under assumptions 1-3, for each x ∈ Rq+m such that f(x) > 0, we

have that

k̂1/2
[
ĝγ̂(x)− g(x)−

(
µk(x) (k0/n)2/q + λ̂′µl(x)

)]
d−→ N

(
0, c0dwσ

2(x)
)

where

µk(x) = cw(c0f(x))−2/q
[
tr[∇2g(x)]/2 + [∇f(x)′∇g(x)]/f(x)

]
,

µl(x) is an m× 1 vector whose s-th element is given by

µls(x) =
∑
zd∈D

1s
(
zd, xd

) [
g
(
xc, zd

)
− g(x)

]
f
(
xc, zd

)
/f(x),

c0 is the volume of a unit ball in Rq, cw =
∫
w(v)v2

sdv, dw =
∫
w2(v)dv, and

1s
(
zd, xd

)
= 1(zds 6= xds)

∏
t6=s 1(zdt = xdt ).

2.3 Monte Carlo Simulations

In this section, we use Monte Carlo simulations to examine the finite sample per-

formance of the proposed estimator. We consider the following two data generating

processes, for i = 1, . . . , n,

• DGP1:

Yi = Xd
1,i +Xd

2,i + 3
Xc

1,i

{Xc
1,i}4 + 1

+ ui, ;

• DGP2:

Yi = Xd
1,i +Xd

2,i + 3
Xc

1,i

{Xc
1,i}4 + 1

+ log(Xc
2,i) + ui,

where Xd
j,i ∈ {0, 1} with P(Xd

j,i = 1) = 0.5 for j = 1, 2, Xc
1,i ∼ N(0, 2), Xc

2,i ∼ χ2
3,

ui ∼ N(0, 1), and Xd
1,i, X

d
2,i, X

c
1,i, X

c
2,i, and ui are independent. We experiment with

three sample sizes: n = 50, 100 and 200. Each experiment is repeated 1,000 times.
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We plot in Figure 2.1 the function f(x) = x/(x4 +1) for x ∈ [−5, 5]. This curve is

rather smooth except for a sharp peak and a sharp trough about zero. This kind of

abrupt change in curvature calls for local or variable bandwidths in kernel regressions,

and the nearest neighbor method is likely to outperform the kernel method. We

consider in our experiments:

• KNW : the (Nadaraya-Watson) kernel estimator for mixed discrete and contin-

uous regressors of Racine and Li (2004).

• Knn,1: the k-nearest neighbor estimator for mixed discrete and continuous

regressors with a single k for all continuous variables.

For the sake of comparison, we also consider the following alternative nearest neigh-

bor estimators:

• Knn,f : ‘frequency’ nearest neighbor estimator, which estimates a separate

model for each possible outcome of the discrete variables.

• Knn,2: the k-nearest neighbor estimator for mixed discrete and continuous

regressors with k being allowed to differ across continuous variables.

We employ the method of least-squares cross validation, as is discussed in the

previous section, to select the bandwidths in all experiments. We use the package

np for nonparametric methods in R to implement the simulations. We use the mean

integrated square error to measure the overall performance of these estimators, where

the mean integrated square error is approximated by the sum of mean square errors

at all sample points. The simulation results are reported in Table 2.1.

Across the three sample sizes and two DGP’s, we observe that the nearest neigh-

bor estimators outperform the kernel estimators in our experiments. Similar to the

results of Racine and Li (2004) on the kernel estimators, the kernel smoothing of
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Figure 2.1: Plot of x/(x4 + 1)

−4 −2 0 2 4

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

x

x/
(x

^4
 +

 1
)

Table 2.1: Summary of simulation results

KNW Knn,1 Knn,f Knn,2

DGP1
n = 50 Mean MSE 0.418 0.352 0.455

Median MSE 0.401 0.337 0.445
n = 100 Mean MSE 0.277 0.225 0.302

Median MSE 0.269 0.215 0.294
n = 200 Mean MSE 0.179 0.138 0.181

Median MSE 0.177 0.133 0.178
DGP2
n = 50 Mean MSE 0.680 0.614 0.732 0.616

Median MSE 0.655 0.594 0.715 0.589
n = 100 Mean MSE 0.538 0.489 0.612 0.478

Median MSE 0.525 0.479 0.597 0.471
n = 200 Mean MSE 0.412 0.376 0.467 0.371

Median MSE 0.408 0.369 0.460 0.364
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discrete variables in the nearest neighbor estimators significantly improves upon the

frequency estimator, as is evident by the considerable performance gap between Knn,1

and Knn,f . In DGP2 with two continuous variables, we observe little difference be-

tween Knn,1 and Knn,2, where the latter allows different k’s for different variables.

This result seems to support using a single k in multivariate nearest neighbor re-

gression. Practitioners may benefit from this recommendation since using a single

k would undoubtedly reduce the computation cost of cross-validation-bandwidth-

selection, especially when the dimension of continuous variables is large.

2.4 Empirical Application

In this section, we apply the proposed estimator to estimate the relationship

between crop yield and climate conditions. We are concerned with the average corn

yield as a function of average temperature and precipitation in Iowa, the largest

corn-producing state in the United States. Our data consist of annual average corn

yield (in bushes per acre), growing season temperature (centigrades), precipitation

(in inches) for 9 agriculture reporting districts in Iowa from 1990 through 2011. The

data were downloaded from the United States Department of Agriculture (USDA)

website.

We apply the nearest neighbor estimator Knn,1 and the kernel estimator KNW

for mixed discrete and continuous variables to our dataset. We use data from the

years 1990 through 2005 for estimation. Our model takes the form, for i = 1, . . . , 9

and t = 1990, . . . , 2005,

Yieldi,t = g(Districti,Temperaturei,t,Precipitationi,t) + ui,t,

where the Districti’s are dummy variables for agriculture districts in Iowa, g is the

conditional mean of average corn yield given agriculture district, temperature and
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precipitation, and ui,t is an error term with mean zero and finite variance.

We use the out-of-sample mean square error (MSE) on data from the years 2006

through 2011 to assess the performance of our estimators. The out-of-sample MSE

from the Knn,1 estimator is 1,713, considerably lower than 2,099 from the KNW .

Below in Figure 2.2 we examine the ’marginal effect’ of the two climate variables on

corn yield by plotting the conditional mean of corn yield as a function of temperature

or precipitation, evaluated at the median of the other regressors. We indicate the

asymptotic 95% confidence interval by dotted lines above each evaluation point.

Our estimation results clearly suggest nonlinear relationships between corn yield and

climate variables. It is seen that average corn yield increases with average growing

season temperature between 19 and 20.5 centigrade, declines between 20.5 and 22.5

centigrade, and largely levels off above 22.5 centigrade. Similarly, moderate levels

of average precipitation (between 100 and 150 inches per year) are associated with

higher corn yields relative to a lower or higher amount of precipitation.

2.5 Conclusion

In this paper, we consider a method of nonparametric conditional mean function

estimation for data with both continuous and discrete regressors whereby the contin-

uous regressors are smoothed using the k-nearest neighbor method and the discrete

regressors are smoothed as in Racine and Li (2004). We analyze the asymptotic

behavior of smoothing parameters selected by least-squares cross-validation, and we

derive the asymptotic normal distribution of the corresponding regression function

estimator. Our Monte Carlo simulations demonstrate the good finite sample perfor-

mance of the proposed estimator. We then apply our method to the estimation of

conditional corn yield in Iowa as a function of agricultural district, annual average

temperature and precipitation.
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Figure 2.2: Estimated marginal effects
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3. TESTING ERROR SERIAL CORRELATION IN FIXED EFFECTS

NONPARAMETRIC PANEL DATA MODELS, WITH WEI LONG AND

CHENG HSIAO

Nonparametric and semiparametric methods allow for the estimation of panel

data models that impose relatively few assumptions. This flexibility has made these

methods increasingly popular among applied researchers. An early paper by Li and

Stengos (1996) proposes a method for estimating a fixed effects panel data model

that uses standard methods for estimating nonparametric additive models such as the

marginal integration method of Linton and Nielson (1995) or a backfitting method

such as in Opsomer and Rupert (1997) or Mammen, Linton, and Nielsen( 1999).

However, this method does not take full advantage of the structure of the model,

and several more recent papers introduce methods that use more of this structure.

Baltagi and D. Li (2002) propose a method that uses a series approximation to

estimate the regression function. Henderson, Carroll, and Li (2008) introduce an

iterative nonparametric kernel estimator and conjecture its asymptotic distribution.

At the same time, parametric dynamic panel models, which allow for the inclu-

sion of lagged dependent variables as regressors, are also becoming more popular.

Dynamic panel models are useful not only in applications in which the relation-

ship between the dependent variable and its lagged values are of direct interest, but

also in applications in which the lagged dependent variable is an important con-

trol variable. For an overview of dynamic panel models, see Baltagi (2008). While

parametric dynamic panel models are increasingly popular, until very recently few,

if any, estimators for dynamic panel models allowed the lagged dependent variable

to enter the regression function nonparametrically. A recent paper by Su and Lu

17



(2013) addresses this gap in the literature. The authors introduce a recursive local

polynomial estimation method for fixed effects dynamic panel models. They use

methods developed in Mammen, Støve, and Tjøstjeim (2009) to derive the uniform

consistency and asymptotic normality of the estimators under the assumption of zero

serial correlation in the idiosyncratic errors.

We propose a test for the null hypothesis zero serial correlation. As argued in Li

and Hsiao (1998), testing for serial correlation has long been a standard practice in

applied econometric analysis because if the errors are serially correlated, not only an

estimator ignoring serial correlation is generally inefficient, it can be inconsistent if

the regressors contain lagged dependent variables. Moreover, strong serial correlation

is often an indication of omitting important explanatory variables. Hence, testing

autocorrelation is important because the choice of an appropriate estimation proce-

dure for a given panel data model crucially depends on the error structure assumed

by the model. Often the estimation methods could be considerably simplified if the

errors are not autocorrelated. In this paper, we will generalize Li and Hsiao’s test for

zero error serial correlation in a nonparametric model to a fixed effects nonparametric

model.

The remainder of the paper is organized as follows: Section 2 introduces the test

statistic for a nonparametric model fixed effects model and derives its asymptotic

distribution. Section 3 proposes using a bootstrap method to better approximate

the null distribution of the test statistics. Section 4 reports Monte Carlo simulation

results to examine the finite sample performance of the proposed test. Section 5

concludes the paper. The proofs of the main results are given in the two appendices.
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3.1 The nonparametric fixed effects panel data model

We consider the following fixed effects nonparametric panel data model:

yit = g(xit) + µi + νit, i = 1, ..., N ; t = 1, ..., T, (2.1)

where xit = (yi,t−1, x̃
′
it)
′, x̃it is of dimension (d− 1)× 1 (d ≥ 2) vector of explanatory

variable that does not contain any lagged value of the dependent variable, µi is the

fixed effect term.

We are interested in testing the null hypothesis that there is zero first order serial

correlation in νit. That is, we test

H0 : E(νitνi,t−1) = 0.

We would like to test H0 against an alternative that E(νitνi,t−1) 6= 0. However, since

we have to first remove the fixed effects µi by first difference, the first difference

error εit ≡ νit − νi,t−1 at an MA(1) error structure when νit is serially correlated,

our test statistic will be based on the sample analogue of E(εitεi,t−1) which equals

to zero under H0. If H0 is false, νit is serially correlated, then E(εitεi,t−1) = E[(νit −

νi,t−1)(νi,t−1 − νi,t−3)] = 2γ2 − γ1 − γ3, where γj = E(νi,t−jνit). Thus, our test will

have power against the alternative hypothesis that 2γ2 − γ1 − γ3 6= 0.

Because νit is not observable, we need to first estimate the g(·) function in order

to estimate νit. Also, since the fixed effects can be arbitrarily correlated with the

regressor xit and there are no instrumental variables available that can take care of

the correlation between xit and µt, following Henderson et al (2008) and Su and Lu
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(2013) we take a first difference to remove the fixed effects:

yit − yi,t−1 = g(xit)− g(xi,t−1) + νit − νi,t−1. (2.2)

Model (6) is an additive model with the restriction that, except for the negative

sign in front of the second function, the two additive functions have identical func-

tional forms. Henderson et al (2008) proposed using a profile likelihood back-fitting

method to estimate model (6) under the assumptions that xit and νjs are independent

with each other for all it and js. Su and Lu (2013) consider a similar dynamic panel

data model in which xit contains one lagged dependent variable, yi,t−1, and propose

to use a local polynomial method to estimate the g(·) function using a back-fitting

method. In this paper we will adopt the estimation method proposed by Su and Lu

(2013).

Note that xit contains yi,t−1 which is correlated with νi,t−1. However, given that

νit is a serially uncorrelated process, xi,t−1 = (yi,t−2, x̃
′
i,t−1)′ is uncorrelated with

νit−νi,t−1. Hence, taking the conditional expectation of (6) conditional on xi,t−1 = x,

we obtain

E(∆yit|xi,t−1 = x) = E[g(xit)|xi,t−1 = x]− g(x). (2.3)

Let ft,t−1(z|x) denote the conditional density function of xit at xit = z conditional

on xi,t−1 = x and define r(x) = −E(∆yit|xi,t−1 = x). Then we can re-write (6) as

r(x) = g(x)−
∫
ft,t−1(z|x)g(z)dz ≡ g(x)− (Ag)(x), (2.4)

where (Ag)(x) =
∫
ft,t−1(z|x)g(z)dz.

Note that A is a linear operator. Equations (7) or (8) suggest a recursive (back-

fitting) method to estimate g(x). For expositional simplicity we will discuss a local
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constant recursive estimator below; see Su and Lu (2013) for a general local polyno-

mial estimator. Let ĝ[l−1](x) denote the l − 1 step estimate of g(x). Then the next

step estimator is given by

ĝ[l](x) = r̂(x) + Ê[g[l−1](xit)|xi,t−1 = x], (2.5)

where

r̂(x) = −
1

NT3

∑N
j=1

∑T
s=4 ∆yjsKj,s−1,x

f̂(x)
, (2.6)

Ê[g[l−1](xit)|xi,t−1 = x] =
1

NT3

∑N
j=1

∑T
s=4 ĝ[l−1](xjs)Kj,s−1,x

f̂(x)
, (2.7)

f̂(x) =
1

NT3

N∑
j=1

T∑
s=4

Kjs,x, (2.8)

where Tj = T − j and Kjs,x = K((xjs − x)/h) =
∏d

m=1 k((xjs,m − xm)/hm) is the

product kernel function.

The above estimation procedure requires one to use an initial estimator to start

the iterative procedure. Following Henderson et al (2008) and Su and Lu (2013)

we use a nonparametric series estimator as an initial estimator. Letting p(x) be a

L× 1 vector of series base functions, we use the linear combination of them: p(x)′β

to approximate g(x), so that the initial estimator of g(x) is given by

ĝ[0](x) = p(x)′β̂ = p(x)′(P̃ ′P̃ )−1P̃∆Y,

where P̃ is a (nT3) × L matrix with a typical row given by p(xit)
′ − p(xi,t−1)′ and

∆Y is (nT3)× 1 with a typical element given by yit − yi,t−1.

21



We define εit and ε̂it as follows:

εit = νit − νi,t−1,

ε̂it = yit − yi,t−1 − (ĝit − ĝi,t−1),

where git denotes g(xit).

Then our test statistic IN is based on the sample analogue of E(εitεi,t−2) defined as

follows:

IN ≡
1

NT3

N∑
i=1

T∑
t=4

ε̂itε̂i,t−2. (2.9)

We derive the asymptotic distribution of IN under zero serial correlation in νit

under the following assumptions which are similar to the ones imposed in Su and Lu

(2013):

Assumption A1

(i) The random variables (yi, xi, µi, νi), i = 1, ..., N are independent and identically

distributed across the i index, where yi = (yi1, ..., yiT ), xi = (xi1, ..., xiT ), νi =

(νi1, ..., νiT ).

(ii) (yit, xit, νit) is strictly stationary in t.

(iii) E[ε2it|xit] = σ2
ε .

(iv) Let ft(·) denote the PDF of xit, and let D denote its support. We assume that

D is a compact set.

(v) The PDF ft(·) is uniformly bounded and is bounded below from 0 on its sup-

port.
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(vi) E(νit|xit, xi,t−1, ..., xi1) = 0 a.s. under H0.

(vii) ‖g‖2< C for some C <∞, where ‖g‖2≡
(∫

g(x)2f(x)dx
)1/2

.

(viii)
∫ ∫

[g(z)− g(x)]2ft(x)ft|t−1(z|x)dxdz > 0 for t = 2, .., T .

(ix)
∫ ∫ [ft|t−1(z|x)

ft(z)

]2

ft(z)ft−1(x)dzdx <∞.

(x) supz∈D
∫
|g(z)|ft|t−1(z|x)dz <∞.

(xi) The functions ft(·) and g(·) have up to second-order partial derivatives that

exist and are uniformly continuous.

(xii) The kernel function k : R → R is a symmetric and continuous PDF that has

compact support.

(xiii) T is fixed. As N → ∞, ‖h‖→ 0, (Nh1...hd)/logN → ∞, N‖h‖8→ 0, where

‖h‖=
√∑d

j=1 h
2
j is the Euclidean norm.

Assumption A1 (i)-(ii) assume that the data is iid across the i index, and station-

ary across the t index, the stationarity assumption can be dropped (i.e., Su and Lu

2013), but it will make proof arguments longer. The conditional homoskedasticity

assumption A1 (iii) can also be relaxed to allow for conditional heteroskedastic errors

as in Li and Hsiao (1998), and Su and Lu (2013), again this will make the proofs

longer. Assumption A1 (iv)-(v) assume that xit has a compact support and that

its density function is bounded below away from zero in its support which. is also

assumed in Su and Lu (2013). This assumption can be relaxed by using a density

weight to modify our test statistic or using some trimming function to trim small

values of the estimated density as in Robinson (1988). Assumption A1 (vi) basi-

cally requires that νit is a martingale difference process and is also uncorrelated with

x̃it under H0. Assumptions A1 (vii)-(xi) impose some restrictions on g(·), f(·) and
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ft|t−1(·). They are quite standard and similar to those in Su and Lu (2013). Finally,

A1 (xii)-(xiii) impose restrictions on the kernel function and the smoothing param-

eters. Assumption A1 (xiii) restrict that d < 8. Given the ‘curse of dimensionality’

of nonparametric estimation method, it is unlikely that one apply nonparametric

estimation method to a model with d ≥ 8. Even so the condition that N‖h‖8→ 0

as N →∞ in assumption A1 (xiii) can be relaxed to N‖h‖4ν→ 0 as N →∞, where

ν ≥ min{2, [d/4] + 1} is an even integer, and also replace the second order kernel by

a higher νth order kernel.

Theorem 1 gives the asymptotic distribution of the test statistic.

Theorem 1 Under the null hypothesis of no serial correlation in νit, and under

Assumption A1, we have that

JN =

√
NT3IN
σ̂2
ε

d−→ N(0, 1),

where σ̂2
ε = 1

NT2

∑N
i=1

∑T
t=3 ε̂

2
t is a consistent estimator of σ2

ε .

It is easy to show that under H1 that νit is serially correlated, our test statistic

IN
p→ E(εitεi,t−1) = 2γ2 − γ1 − γ3 6= 0, where γj = E(νitνi,t−j). This together with

σ̂2
ε = Op(1) imply that JN =

√
NT3IN/σ̂

2
ε →∞ at the rate of

√
N . Hence, our test

will reject H0 with probability approaching one as N →∞.

3.2 A bootstrap test procedure

In order to improve the finite-sample performance of the test, we propose a boot-

strap procedure. The procedure consists of the following steps:

1. Estimate g(·) as discussed in Section 2 and obtain ûit = yit−ĝit, i = 1, 2, ..., N ; t =

1, ...., T .
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2. First-difference ûit to obtain ε̂it = ûit − ûi,t−1 for i = 1, .., N and t = 2, ..., T .

3. Obtain bootstrap errors ε∗it for i = 1, .., N and t = 1, ...T by random sampling

without replacement from {ε̂it}N,Ti=1,t=1.

4. Compute the test statistic J∗N as in section 2, replacing ε̂it with ε∗it.

5. Repeat steps 2 through 4 a large number (call it B) times and obtain the

empirical distribution of {J∗N,j}Bj=1, from which we can obtain bootstrap critical

values.

Note that when generating the bootstrap sample we have imposed the null hy-

pothesis that ε∗it is serially uncorrelated so that J∗N mimics the null distribution of JN

whether the null hypothesis is true or false. This procedure is relatively simple and

computationally efficient, as it does not require repeated estimation of g(·). In the

next section we show that this procedure performs well in finite sample applications.

We leave the theoretical justification to the above proposed bootstrap as a future

research topic.

3.3 Monte Carlo simulations

In this section we present the results of some Monte Carlo simulations to exam-

ine the finite sample performance of the bootstrap test procedure described in the

previous section. We consider the following three data generating processes (DGP)

which are similar to the cases considered in Su and Lu (2013):

DGP 1: yit = 1 + xit + µi + νit;

DGP 2: yit = 1 + xit + x2
it + µi + νit;

DGP 3: yit = 1 + sin(2xit) + µi + νit,
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where xit = 0.3xi,t−1+ξit, with ξit i.i.d U[-1,1]; µi = x̄i+ωi, where x̄i ≡ (1/T )
∑T

t=1 xit

and ωi is i.i.d N(0,1). DGP 1 specifies a linear model while DGP 2 and 3 specify

nonlinear panel data models. We use the Gaussian kernel function with bandwidth

h = σ̂x(nt)
−1/5, where σ̂x is the sample standard deviation of {xit}N,Ti=1,t=1. We follow

Li and Hsiao (1998) and use three different processes for the error νit:

(i) i.i.d: νit i.i.d N(0,1);

(ii) AR(1): νit = 0.3νi,t−1 + uit, where uit is i.i.d N(0,0.91);

(iii) MA(1): νit = 0.3ui,t−1 + uit, where uit is i.i.d N(0,0.91).

Case (i) above corresponds to the null hypothesis that νit is serially uncorrelated,

while cases (ii) and (iii) correspond to the alternative hypothesis that νit is a serially

corrected process. Table B.1-B.3 gives the rejection frequencies for the three DGPs.

Table B.1 corresponds to that the null hypothesis is true, while Tables B.2 and

B.3 correspond to the case that the alternative hypothesis holds. The number of

replications is 2000 and the number of bootstraps, B, is 1000. Table B.1 reports the

estimated size of the bootstrap test when the error is i.i.d N(0, 1) and T equals to 5

and 10. It shows that, for all the three DGPs, the estimated sizes are slightly lower

than the nominal size when T = 5. However, the estimated sizes increase toward

their nominal size as N becomes larger.

Table B.2 and B.3 show that our test is quite powerful in detecting the AR(1)

and MA(1) serially correlated errors: for MA(1) error process, even when N = 50,

the estimated power is close to 1 and when N = 100 or 200, the estimated power

equals to 1 for almost all the cases. Thus, the Monte-Carlo simulation results show

that our proposed bootstrap test performs reasonably well in finite samples for the

DGPs we considered.
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For a robustness check, we further consider a conditional heteroskedastic error

case: uit = σitεit, where εit is i.i.d N(0,0.91) and σit =
√

1 + x2
it. Specifically, we

consider the following three cases:

(i)’ νit is σitN(0, 1);

(ii)’ AR(1): νit = 0.3νi,t−1 + uit, where uit is σitN(0, 0.91);

(iii)’ MA(1): νit = 0.3ui,t−1 + uit, where uit is σitN(0, 0.91).

To save space, we only consider DGP 2 and fix T = 10. The results are presented

in Table B.4. From Table B.4 we observe that the testing results for DGP 2 are

very similar to its conditional homoskedastic error cases (compared with the results

for DGP 2 in Table B.1, B.2 and B.3). The estimated sizes are quite close to the

nominal sizes and the test remains powerful under conditional heteroskedatic errors.

Finally we report simulation result using critical values from the asymptotic stan-

dard normal distribution. The results for DGP 2 with T = 10 and with conditional

heteroskedastic error cases (i)’, (ii)’ and (iii)’ are displayed in Table B.5. We also

report the mean and standard errors of the test statistic JN . From Table B.5 we

observe that the estimated sizes are significantly larger than the nominal sizes for

all cases. This shows the necessity of using bootstrap method to overcome the size

distortion of the asymptotic test.
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4. VARYING-COEFFICIENT SINGLE-INDEX MODELS WITH

ENDOGENEITY: THEORY AND APPLICATION, WITH ZHONGJIAN LIN

4.1 Introduction

Varying-coefficient models retain much of the flexibility of fully nonparametric

models while offering improved interpretability and mitigating the ”curse of dimen-

sionality” through dimension reduction. Because of these and other advantages,

varying-coefficient models have been the subject of much research. In an early pa-

per, Hastie and Tibshirani (1993) introduce spline and kernel estimation methods

for varying-coefficient models. Fan, Yao, and Cai (2003) and Cai, Fan, and Yao

(2000) consider estimation of varying-coefficient models for panel data; Chen and

Tsay (1993) and Cai, Fan, and Li (2000) consider the case of stationary times series;

Cai, Li, and Park (2009) , Xiao (2009), and Sun, Cai, and Li (2013) consider the

case of nonstationary time series.

Cai, Das, Xiong, and Wu (2006) argue that varying-coefficient models represent a

particularly attractive compromise between parametric and nonparametric methods

when some regressors are endogenous: by restricting the endogenous variables to

enter the model linearly but allowing their coefficients to vary according to unknown

functions of the exogenous variables, one can avoid some of the difficulties of esti-

mating nonparametric models under endogeneity without sacrificing much in the way

of flexibility. The authors propose a two-step instrumental variables procedure for

estimating this type of model. Cai and Xiong (2012) consider instrumental variables

estimation of a more general partially varying coefficient model.

While the model considered in Cai, Das, Xiong, and Wu (2006) has lower dimen-

sionality than a fully nonparametric model, further dimension reduction might be
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desirable if the number of exogenous explanatory variables is large. In our model,

such dimension reduction is achieved by restricting the coefficients to depend only

on a single index of the exogenous variables. Single-index models have proven popu-

lar, due in part to their effective treatment of high dimensionality and their relative

ease of interpretation (see Härdle and Hall (1993), Ichimura (1993), Li and Racine

(2007) and the references therein), and single-index structure can be introduced

quite naturally in varying-coefficient models. Xia and Li (1999) and Fan, Yao, and

Cai (2003) consider estimation of varying-coefficient single-index models with ex-

ogenous regressors; to the best of our knowledge, ours is the first paper to consider

varying-coefficient single-index models with endogenous regressors. For expositional

simplicity, we restrict our analysis to the case of a single endogenous regressor.

We propose a multi-step estimation procedure. In the first step, the coefficient

function is estimated using existing multivariate kernel instrumental variable meth-

ods which do not take advantage of the function’s single-index structure. The first-

step coefficient estimates are then fit to a single-index model using an iterative proce-

dure adapted from Xia and Härdle (2006). Xia and Härdle show that their procedure

has the advantage of not requiring
√
n-consistent pilot estimators in order to achieve

√
n -consistent estimation of the index parameters; we show that the same is true of

our procedure. In addition, we show that our estimator of the coefficient function

converges to its true value at the standard rate for single-index models.

Finally, we apply the proposed method to study the determinants of aggregate

liquidity in the U.S. stock market. We use a measure of illiquidity based on ”price

impact”– the responsiveness of stock returns to stock-specific order flow (i.e., to

signed trading volume). In particular, to isolate illiquidity from information effects,

we measure illiquidity by the price impact of order flow coming from uninformed

traders. Inspired by Coval and Stafford (2007), we identify as uninformed traders
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those mutual funds that are experiencing extreme inflows or outflows of funds: as

Coval and Stafford argue, trades made by these funds are likely motivated more by

the need to quickly adjust the size of their portfolio than by any new information

about the stocks involved. With a measure of this ”forced trading” by mutual funds

serving as an instrument for our proxy of order flow, we are able to estimate the

price impact with a regression of stock returns on this proxy. Using quarterly data

on a sample of S&P 500 stocks, we apply this instrumental variable approach and

our varying-coefficient methods to investigate how the price impact varies according

to market conditions. Due to sample size concerns, we restrict our analysis to the

relationship between liquidity and interest rates – specifically, the Federal Funds

Rate and a term spread variable.

The remainder of the paper is organized as follows: In section 4.2 we describe our

model. In section 4.3 we describe our estimation method and present our asymp-

totic results. In section 4.4 we discuss a Monte Carlo simulation demonstrating the

finite-sample performance of the estimators. In section 4.5 we present our empirical

application. Section 4.6 concludes the paper.

4.2 The Varying Coefficient Single Index Model

We consider the following varying-coefficient single-index model

Yt = Xtβ(ZT
t γ0) + ut, (t = 1, ..., n), (4.1)

where Yt, Xt and ut are scalars,1 Zt is q × 1 and γ0 is a q × 1 vector of unknown

parameters; the functional form of β(·) is not specified. Zt is exogenous. We allow

for Xt to be endogenous, so we can have E(Xtut) 6= 0. We assume that there exists

1It straightforward to generalize the model for Xt to be a vector of random variables, for expo-
sitional simplicity, we will only consider the scalar Xt case in the paper.
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an instrumental variable Wt such that E(WtXt) 6= 0 and E(Wtut) = 0. In fact, we

will further assume that E(ut|Wt, Zt) = 0. Then multiplying (4.1) by Wt and taking

conditional expectations we obtain

E(WtYt|Zt) = E(WtXt|Zt)β(ZT
t γ0) (4.2)

because E(Wtut|Zt) = E[WtE(ut|Zt,Wt)|Zt] = 0. Provided that E[WtXt|Zt] is

invertible, equation (4.2) leads to

β(ZT
t γ0) = E[WtXt|Zt]−1E(WtYt|Zt) ≡ g(Zt). (4.3)

The conditional mean functions in (4.3) are unknown, but they can be consistently

estimated by nonparametric methods. In this paper we will estimate g(Zt) by the

local-constant kernel method:

g̃(Zt) = Ê[WtXt|Zt]−1Ê(WtYt|Zt), (4.4)

where Ê(At|Zt) =
∑n

s=1 AsHb,stMn,s/
∑n

s=1Hb,stMn,s is the local constant kernel es-

timator of E(At|Zt), where Hb,st = b−q
∏q

j=1 L((Zsj − Ztj/b) is the product kernel

function,2 and Ztj is the jth component of Zt; Mn,s is a trimming function that trims

out data near the boundary of the support so that we can obtain a uniform convergent

rate for max1≤t≤n|g̃(zt) − g(zt)| over zt ∈ Mn,t. Consider the simple case that Zt ∈

[0, 1]q: the trimming function Mn,t can be chosen as Mn,t =
∏q

l=1 1[δn ≤ Ztj ≤ 1−δn],

where δn → 0 and b/δn → 0 as n→∞. The use of the trimming function guarantees

that the estimation bias is the same whether at the interior point or at the boundary

2For expositional simplicity, we assume that b1 = b2 = ... = bq = b. In practice, one should
always use a different bl for different l, for l = 1, ..., q.
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point of the trimmed data support. Also note that limn→∞Mn,t =
∏q

l=1[0 ≤ Ztj ≤ 1]

so that asymptotically we include all observations in the data support when com-

puting the nonparametric conditional mean functions.

We discuss how to estimate γ0 and the unknown function β(·) in the next section.

4.3 The Estimation Method

Our estimation strategy follows similar steps as in Xia and Härdle (2006); see also

Chen, Gao, and Li (2013). The main difference is that we allow Xt to be endogenous,

and so our estimation method uses instrumental variable and nonparametric kernel

estimation methods.

For the index coefficient vector γ0 to be identified, we need an identification

condition. We assume that there is a unique vector γ0 ∈ Rq with γT0 γ0 = 1 that

makes

E[(g(Zt)− β(ZT
t γ0)]2 = 0.

Or equivalently, we assume that for all γ 6= γ0 with γTγ = 1, we have

E[(g(Zt)− β(ZT
t γ)]2 > 0.

Note that

γ0 = argminγE
{[
g(Zt)− β(ZT

t γ)
]2}

(5)

subject to γTγ = 1. By conditioning on ZTγ, we observe that (5) equals to

E(σ2(ZT
t γ)), where

σ2(ZT
t γ) = E

[(
g(Zt)− β(ZT

t γ)
)2 |ZT

t γ
]
. (6)
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By the law of iterative expectations, it follows that

E
{[
g(Zt)− β(ZT

t γ)
]2}

= E[σ2(ZT
t γ)].

Hence,

γ0 = argminγE[σ2(ZT
t γ)] (7)

subject to γTγ = 1.

When Zs is close to Zt (the closeness will be guaranteed by a kernel weight

function), we have

β(ZT
s γ0) ≈ β(ZT

t γ0) + β′(ZT
t γ0)(Zs − Zt)Tγ0.

For a given vector γ, an infeasible estimate of σ2
γ(Z

T
t γ) is given by (infeasible

because β′(·) and γ are unknown)

σ̂2
γ(Z

T
t γ) =

1

n

n∑
s=1

[
g̃(Zs)− g̃(Zt)− β′(ZT

t γ)(Zs − Zt)Tγ
]2
Hb(Zs, Zt), (8)

where Hb(Zs, Zt) = b−q
∏q

l=1 L
(
Zsl−Ztl

b

)
is the multivariate product kernel function.

We estimate β′(ZT
t γ0) and γ0 by dt and γ, where dt and γ minimize the following

objective function (sample analogue of E[σ2(ZT
t γ)]):

1

n

n∑
t=1

σ̂2
γ(Z

T
t γ) =

1

n2

n∑
s=1

n∑
t=1

[
g̃s − g̃t − dt(Zs − Zt)Tγ

]2
Hb(Zs, Zt). (9)

We will use the shorthand notation: Zst = Zs − Zt and Hb,st = Hb(Zs, Zt). For a
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given vector γ with γTγ = 1, minimizing (9) with respect to dt gives

dt =

[
n∑
s=1

(ZT
stγ)2Hb,st

]−1 n∑
s=1

ZT
stγ(g̃s − g̃t)Hb,st. (10)

Also, for a given dt, minimizing (9) with respect to γ leads to

γ =

[
n∑
s=1

n∑
t=1

d2
tZstZ

T
stHb,st

]−1 n∑
s=1

n∑
t=1

dtZst(g̃t − g̃s)Hb,st, (11)

and we standardize γ = sgn1 γ/|γ|, where sgn1 is the sign of the first component of

γ, |γ|=
√
γTγ is the Euclidean norm of γ.

In practice we iterate between (10) and (11) until convergence. We use γ̄ to

denote the convergent value of γ.

The above estimator uses a multivariate kernel and is not efficient since it does

not utilize the univariate single-index structure. Next, we replace the multivariate

(product) kernel function Hb,st by a univariate kernel function Kγ
h,st = h−1K((ZT

s γ−

ZT
t γ)/h), where K(·) is a univariate symmetric density function. Then the estimates

for β′(ZT
t γ0) and γ0 are given by d̃t and γ̃ which are based on the following iterative

procedures:

d̃t =

[
n∑
s=1

(ZT
stγ̃)2K γ̃

h,st

]−1 n∑
s=1

ZT
stγ̃(g̃s − g̃t)K γ̃

h,st , (12)

and

γ̃ =

[
n∑
s=1

n∑
t=1

d̃2
tZstZ

T
stK

γ̃
h,st

]−1 n∑
s=1

n∑
t=1

d̃tZst(g̃s − g̃t)K γ̃
h,st , (13)

and we standardize γ̃ = sgn1 γ̃/|γ̃|, where sgn1 is the sign of the first component of

γ̃, |γ̃| is the Euclidean norm of γ̃.

In (12) and (13), the initial values for dt and γ are obtained from the convergent

values of dt and γ using the multivariate kernel function, i.e., from (10) and (11).
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Before discussing our asymptotic results, we list the assumptions underlying

them.

Assumptions

1. The observations {(Xt, Yt, Zt)}Tt=1 are a stationary β-mixing, where the mixing

rate β(τ) = O(ρ−τ ) for some 0 < ρ < 1 .

2. With probability 1, Zt lies in a compact set D. .

3. The kernel functions H(·) and K(·) are symmetric, second-order kernel func-

tions with bounded derivatives and compact support. The kernel H(·) is Lip-

schitz continuous. K(·) has a finitely integrable Fourier transform. .

4. Let fZ(·) and fθ(·) denote the marginal density functions of Zt and ZT
t θ, re-

spectively. Then: fZ(·) has bounded derivatives; fθ(·) has bounded derivate for

any θ such that |θ|= 0 ; there exists a compact set B such that infz∈Bfz(z) > 0.

5. β(·) has bounded, continuous νth derivative function, where ν ≥ 2 is a positive

integer. The functions E(Zt| ZT
t γ = v) and E(ZtZ

T
t | ZT

t γ = v) have bounded

derivatives; for some r¿3, E(yr| Zt = z) is bounded.

6. E(WtXt| Zt = z) 6= 0 for all z ∈ D.

7. E(ut|Wt, Zt) = 0.

8. H(v) =
∏q

l=1 L(vl) is a product kernel with L(·) being a second order univariate

bounded symmetric density function.

9. Let b denote the bandwidth used in the multivariate kernel stage. Then b→ 0

and nbq+2/logn→∞.
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10. Let h denote the bandwidth used in the univariate kernel stage. Then h → 0

and nh3/logn→∞.

11. The univariate kernel function K(·) is a νth order kernel function, where ν ≥ 2

is a positive integer.

The following theorem shows that the convergent value γ̄ obtained using the

multivariate kernel weights is a consistent estimator of γ0.

THEOREM 4.3.1 Under assumptions 1 - 9 we have γ̄ − γ0 = op(1).

The proof of Theorem 4.3.1 is given in the appendix.

Theorem 4.3.1 states that for any initial value γ with γTγ = 1, iterations between

(10) and (11) lead to a consistent convergent value γ̄.

These consistent initial estimators are sufficient to allow for the
√
n-consistency

of the resulting estimators using the single-index kernel weights: letting γ̂ denote the

convergent value of γ̃, we have

THEOREM 4.3.2 Under assumptions 1 - 11, we have

γ̂ − γ = Op(b
ν + h2 + n−1/2). (14)

The proof of Theorem 4.3.2 is given in the appendix.

If one further imposes the conditions that bν = Op(n
−1/2) and h = Op(n

−1/4) (an

under-smoothing condition), then (14) implies that γ̂ − γ = Op(n
−1/2).

With the result of Theorem 4.3.2, our estimator for β(zTγ0) is given by

β̂(zTγ0) =
n−1

∑n
s=1 g̃sKh((Zs − z)T γ̂0/h)

f̂γ(zTγ0)
, (15)
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where Kh(v) = h−1K(v), f̂γ(z
Tγ0) = n−1

∑n
s=1Kh((Zs − z)T γ̂0/h) is the kernel

estimator of the univariate density function fγ(z
Tγ0). Using γ̂ − γ0 = Op(n

−1/2), it

is easy to show that

β̂(zTγ0)− β(zTγ0) = Op(b
ν + h2 + (nh)−1/2).

In the next section, we conduct Monte Carlo simulations to examine the finite-

sample performances of our proposed semiparametric estimators γ̂ and β̂(z′γ̂).

4.4 Monte Carlo Simulations

In our simulations we consider models of the form

Yt = Xtβ(ZT
t γ) + ut, (16)

where xt = 0.8wt + 0.6νt , (17)

ut = 0.5νt + 0.5et , (18)

and Zt = (Z1t, Z2t)
T , with Z1t and Z2t i.i.d uniformly on the interval [−

√
3,
√

3]; Wt

and νt are i.i.d uniformly on the interval [−
√

3,
√

3]; et is i.i.d asN(0, 1); Z1t, Z2t,Wt, νt,

and et are independent of one another.

We consider four specifications for β(·):

1. β(v) = 1.5 sin
(
2−3/2π v

)
2. β(v) = 1.5 sin

(
2−1/2π v

)
3. β(v) = cos

(
2−3/2π v

)
− 0.8
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4. β(v) = 0.8v2 − 0.4
√

2v − 1

In each replication, we use a random starting value of γ. Before normalization,

the starting values of γ1 and γ2 are distributed independently, uniformly on the

interval [−1, 1]. All kernel functions are Gaussian. In the steps involving multivariate

kernel weighting we use a product kernel, with corresponding smoothing parameters

h = n−1/6σ̂Z , where σ̂Z = (σ̂Z1 , σ̂Z2)
T is a vector of sample standard deviations of the

Zt’s . In the steps involving univariate kernel weighting based on the single index,

we use smoothing parameter h = n−1/5σ̂v, where σ̂v is the sample standard deviation

of the single index vt ≡ ZT
t γ. Table 4.1 provides the results from 1,000 Monte Carlo

replications for each of the sample sizes n = 50, 100, 200, and 400. It can be seen

that the MSEs are often quite high when n = 50, but fall rapidly as the sample size

increases.

Table 4.1: Mean squared errors for the four specifications for β(·).

specification T γ1 γ2 β(·)
1 50 0.0157 0.04816 1.89728

100 0.0062 0.01115 0.10984
200 0.00177 0.00179 0.06646
400 0.00081 0.0008 0.04291

2 50 0.02378 0.13206 0.78059
100 0.00575 0.00785 0.47587
200 0.00185 0.00188 0.34763
400 0.00061 0.00061 0.24847

3 50 0.03821 0.20072 7.16526
100 0.01654 0.03837 1.47082
200 0.00623 0.00622 0.05939
400 0.00284 0.00286 0.03909

4 50 0.01891 0.09582 0.38415
100 0.00568 0.01057 0.31509
200 0.00182 0.0018 0.13405
400 0.00071 0.00071 0.08987
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4.5 An Empirical Application

In this section we consider an empirical application to the determinants of liq-

uidity in the stock market. We introduce a measure of aggregate liquidity, and we

investigate how this measure varies according to market conditions.

Liquidity is defined by Pastor and Stambaugh (2003) as ”a broad and elusive con-

cept that generally denotes the ability to trade large quantities quickly, at low cost,

and without moving the price”. Liquidity has been a major subject of research in the

finance literature. Chordia, Roll, and Subrahmanyan (2000), Hasbrouck and Seppi

(2001), Huberman and Halka (2001) , and Jones (2002) show that a common compo-

nent explains much of the variation in liquidity; Chordia, Roll, and Subrahmanyan

(2001) study the determinants of this common component. A number of papers –

including Pastor and Stambaugh (2003) , Acharya and Pedersen (2005), Watanabe

and Watanabe (2008), Sadka (2006), Bekaert, Harvey, and Lundblad (2007), Kora-

jczyk and Sadka (2008) , and Hasbrouck (2009) – show that investors require higher

returns to hold assets that are less liquid and assets whose returns are more sensitive

to fluctuations in market liquidity.

A natural measure of the illiquidity of an asset is the ”price impact”– the change

in the asset’s price resulting from a trade of a given size. (See Goyenko, Holden,

andTrzcinka (2009) for a discussion of short-term price impact measures, as well

as other measures of liquidity.) In order to estimate an average price impact for a

sample of stocks, we might consider running a pooled regression of the stocks’ returns

on their order flow. However, this regression may not yield consistent estimates of

the average price impact of interest. This may be the case for at least two reasons.

First, if measured over a sufficiently long time horizon, the price impact esti-

mated by the above procedure will likely be driven not just by illiquidity, but also
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by information effects. The immediate price impact of a trade is likely to be inde-

pendent of its information content, as only the market participant who initiates it

can determine the extent to which the trade was driven by information. However,

the same is unlikely to be true of the longer-term price impact: while we would

expect that the immediate price impact of an uninformed trade will eventually be

reversed, that of an informed trade may persist as more market participants acquire

the same information. Thus, since our hypothetical regression does not distinguish

between order flow coming from uninformed and informed traders, the price impacts

that it estimates will capture information effects as wells as illiquidity if measured

over a sufficiently long time horizon. (For a discussion of the relationship between

information content and price impact, and how it evolves, see Hasbrouck (1988)).

Second, market participants may have information about the current level of

aggregate liquidity, as well as the relative liquidity of different stocks – information

that is likely to influence their trading behavior. Thus, even after controlling for

market conditions observable to us as researchers, market participants may tend to

make more trades at times when aggregate liquidity is higher, and to trade liquid

stocks more than illiquid ones. Thus, absolute order flow may be positively correlated

with liquidity in the cross section and in the time series. If this is the case, our

hypothetical regression will assign more weight to individual stocks and periods with

higher liquidity, resulting in downward-biased estimates of average price impact.

Our analysis is further complicated by the fact that we do not directly observe

signed order flow; following Pastor and Stambaugh (2003), we proxy signed order

flow by volume signed by contemporaneous returns in excess of the market return.

The use of this proxy adds to our concerns about endogeneity.

We address this potential endogeneity with an instrumental variables approach.

Inspired by Coval and Stafford (2007), among others, we instrument our order flow
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proxy by a measure of ”forced trading” by mutual funds - trades made by funds with

extreme inflows or outflows of capital. Coval and Stafford document that funds ex-

periencing extreme inflows tend to expand existing positions, while those experience

extreme outflows contract existing positions. Based on this observation, they argue

that trading by firms with extreme inflows or outflows can be seen as uninformed

trading. Consistent with this theory, they find that flow-induced selling exerts down-

ward pressure on security prices, flow-induced buying exerts upward pressure, and

these effects are eventually reversed.

A number of recent papers consider the implications of the flow-induced pres-

sure identified by Coval and Stafford (2007). Edmans, Goldstein, and Jiang (2012)

and Khan, Kogan, and Serafeim (2012) identify some of its real effects. They find,

respectively, that flow-induced price increases are associated with increased probabil-

ity of takeover; and with increased probability of a seasoned equity offering, insider

sales, and undertaking a merger or acquisition. Lou (2012) demonstrates that flow-

induced trading can explain in full or in part three well-documented patterns: the

persistence of mutual fund performance, the ”smart money” effect, and stock price

momentum. Jotikasthira, Lundblad, and Ramadorai (2012) find that flow-induced

trading of emerging market stocks by funds in developed countries has significant

impact on emerging market equity prices.

Using our instrumental variables approach to identify the average price impact,

we examine how this price impact varies according to market conditions. The ques-

tion of how liquidity and trading activity vary according to market conditions is

considered extensively by Chordia, Roll, and Subrahmanyan (2001). Using data on

a large sample of NYSE stocks spanning the period 1988 to 1998, they measure

liquidity by daily market averages of quoted spreads, effective spreads, and market

depth, and they measure trading activity by dollar volume and the total number of
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transactions. They perform first-differenced regressions to examine the effects of a

number of explanatory variables on their measures of liquidity and trading activity;

here we briefly summarize their results. In their regressions, both the Federal Funds

rate and the term spread have positive effects on the quoted and realized spread

(the effects are statistically significant for the quoted spread) and negative and sta-

tistically significant effects on depth and the measures of trading activity. They find

little evidence that the default spread, measured by the difference in yield between

Moody’s Baa or better corporate bond index and that on a 10-year constant matu-

rity Treasury bond, significantly affects liquidity or trading activity. They also find

substantial day-of-the-week effects, substantial effects of contemporaneous market

returns, and that depth and trading activity are higher in the two days leading up

to an announcement of GDP, unemployment, or inflation figures.

Chordia, Sarkar, and Subrahmanyam (2003) show that increases in volatility

predict decreases in liquidity, unexpected decreases in the Federal Funds rate increase

liquidity, and increases in aggregate fund flows predict decreases in liquidity. Hameed,

Kang, Viswanathan (2010) find that market returns affect liquidity, and the effect is

asymmetric: negative returns lower liquidity more than positive returns increase it.

Due to sample size concerns, we concentrate on studying the relationship between

interest rates and illiquidity. We consider two interest rate variables – the Federal

Funds rate and a term spread variable. Chordia, Roll, and Subrahmanyan (2001)

argue that there should be a negative relationship between interest rates and liquidity,

as higher interest rates increase inventory costs for market makers and increase the

costs of margin trading. Thus, we expect a positive relationship between the Federal

Funds rate and our measure of illiquidity. Chordia, Roll, and Subrahmanyan (2001)

argue that an increase in longer-term bond yields may cause investors to reallocate

their portfolios, raising volume and in turn affecting liquidity. Thus, we may expect
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liquidity to be related to the term spread, although the sign of the relationship is

unclear.

4.5.1 Model, Variable Description, and Data

We estimate the model

Rit = Xitβ(Zt) + uit , (19)

where Rit is the return in excess of the market return ( here defined as the Fama-

French Big Neutral benchmark) for stock i in quarter t; Xit is volume, signed by

Rit, as a fraction of the number of shares outstanding; Zt is a vector containing the

Federal Funds rate and the term spread – the return on a 10-year treasury bond

minus the Federal Funds rate.

As described above, we use a flow-induced mutual fund trading variable as an

instrument for Xit in 19. We define flow-induced trading as the sum of a) purchases

made by funds with flow in the top decile, and b) sales from funds with flow in the

bottom decile. We construct our flow-induced trading variable Wit using the formula

of Khan, Kogan, and Serafeim (2012), which is similar to the preferred formula of

Coval and Stafford (2007). This formula can be expressed as

Wit =

J∑
j=1

(
max(0,∆shrijt)I(flowjt > Percentile(90th))−max(0,−∆shrijt)I

(
flowjt < Percentile(10th)

))
shroutit

,

(20)

where ∆shrijt is the first difference of the number of shares of stock i held by fund

j in quarter t; flowjt is the inflow for fund j in quarter t as a fraction of its total

net assets in quarter t− 1; shroutit is the number of shares of stock i outstanding in

quarter t; I(·) is the indicator function.
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Following Coval and Stafford (2007), we define the flow for mutual fund j in

quarter t as

flowj,t =
TNAj,t − (1 +Rj,t)TNAj,t−1

TNAj,t−1

(21)

where TNAj,t is fund j’s total net assets in quarter t, and Rj,t is the return for

fund j in quarter t. We calculate the quarterly flow by summing the monthly flows.

Our data on stock returns come from CRSP, and our data on mutual fund flows

and mutual fund holdings come from the CRSP Survivor-Bias-Free U.S. Mutual Fund

Database. Our sample consists of 418 stocks that were in the S&P 500 in 2003. Our

sample period extends from the third quarter of 2003 through the fourth quarter of

2012.

4.5.2 Empirical Results

For purposes of comparison, we first consider estimation of (19 ) treating Xit as

exogenous. In this estimation, we use a procedure which is identical to that detailed

above, except that first-step coefficient estimates g̃(Zit) are obtained using standard

kernel methods for varying-coefficient models with exogenous regressors instead of

by instrumental variables methods. Specifically, rather than estimating g(·) from

(4.4) by
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g̃(Zt) = Ê [WtXt|Zt]−1E(WtYt|Zt)

(22)

we instead estimate it by

g̃(Zt) = Ê
[
X2
t |Zt

]−1
E(XtYt|Zt) (23)

where, as before, the conditional expectations are estimated using standard kernel

methods.

This estimation yielded index coefficient γ̂1 = 0.94 for the Federal Funds rate and

coefficient γ̂2 = 0.33 for the term spread. Panel (a) of Figure 4.1 gives the estimated

price impact as a function of the single index Vt = ZT
t γ̂. This price impact falls into

a narrow range, from 0.121 to 0.138, with a median of 0.130.

We next present results of instrumental variable estimation of (19). This esti-

mation yielded index coefficient γ̂1 = .16 for the Federal Funds Rate and γ̂2 = 0.99

for the term spread. Noting that the standard deviation of the Federal Funds rate

for our sample is 1.93 percentage points, while the standard deviation of the term

spread is 1.34 percentage points, it can be seen that, for any fixed interest rates,

the estimated standardized marginal effect of the term spread on β(·) is greater in

absolute value than that of the Federal Funds rate. This is contrary to the results of

our estimation using equation (22) (treating Xit as exogenous). Panel (b) of figure

4.1 shows the estimated price impact as a function of the index Vt ; it can be seen

that this function is nonlinear. The price impact is increasing in Vt (and thus in the

interest rate variables, as γ̂ is positive) for most values of Vt, although for high values

it is decreasing in Vt. Thus, our results are consistent with Chordia, Roll, and Sub-

rahmanyan (2001) in that the Federal Funds rate and the term spread are generally
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positively related with illiquidity. The estimated price impact ranges widely, from

0.024 to 0.249, with a median of 0.201.

In order to highlight the differences between the results obtained using the in-

strumental variable and those obtained by treating Xit as exogenous, we combine the

price impact curves from panels (a) and (b) of Figure 4.1 in Figure 4.2. It should be

noted that, since the index coefficients – and thus the indexes for the two estimations

– differ, a given index value does not correspond to the same interest rates for each

curve. Our purpose here is simply to compare the distributions of the price impacts

and the strength and linearity of their relationship with the index and thus the in-

terest rate variables. It can be seen from Figure 4.2 that ignoring the endogeneity

of Xit results in an estimated price impact curve that is relatively flat (the dashed

curve), while our instrumental variable estimation shows a much more pronounced

nonlinear relationship between price impact and the interest rate variables (the solid

curve). It can also be seen that the instrumental variable estimates of price impact

are generally higher.

While we do not present statistical tests of the endogeneity of Xit, these differ-

ences in the results obtained using the instrument and those obtained from treating

Xit as exogenous may suggest that the the latter method underestimates the price

impact, the degree to which the price impact depends on the interest rates, and the

importance of the term spread relative the Federal Funds rate for liquidity.

4.6 Conclusion

We introduce instrumental variable methods for estimating varying-coefficient

single-index models with an endogenous regressor. These methods provide an effec-

tive treatment of endogeneity, and of high dimensionality of the exogenous regressors,

while retaining a good deal of flexibility. We show the consistency of our estima-
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Figure 4.1: Estimated price impact

(a) Treating Xit as exogenous (b) Instrumental variables estimates

Figure 4.2: Price impact estimated using instrument (solid) and treating Xit as
exogenous (dashed)

tors of the coefficient function, and the
√
n-consistency of our estimator of the index

parameters. We demonstrate the practical power of our estimators in Monte Carlo

simulations. An empirical application to liquidity in U.S. stock markets suggests

that liquidity has a nonlinear and generally negative relationship with two interest

rate variables – the Federal Funds rate and a term spread variable.
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5. CONCLUSION

This dissertation adds to the literature on nonparametric and semiparametric

regression methods. We consider nonparametric regression with mixed continuous

and discrete explanatory variables. We introduce a test for error serial correlation in

fixed effects nonparametric panel data models. Finally, we consider the estimation

of varying-coefficient single-index models with an endogenous explanatory variable.
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APPENDIX A

APPENDIX TO SECTION 2

We re-state Lemma 1 and Lemma 2 from Ouyang, Li, and Li (2006) below for

ease of reference.

Let Sr = {v : ||v−x||< r} (a ball centered at x with radius r), G(r) = Prob[Xi ∈ Sr],

Sn = {v : ||v − x||< Rx} and P (Sn) = Prob[Xi ∈ Sn]. Obviously G(Rx) = P (Sn).

Lemma 1 Let h(r) = 1/[rµGγ(r)], µ and γ are integers such that E[h(Rx)] exists,

then

E[h(Ri)|Xi] = (c0f(Xi))
µ/q

(
k

n

)−(µ/q)−γ

[1 + op(1)] (1)

where c0 = πq/2/Γ((q + 2)/2) is the volume of unit ball in Rq.

Proof: See page 459 of Ouyang, Li, and Li (2006).

Remark 1: Using equation (12) of Mack and Rosenblatt (1979), Liu and Lu (1997)

have shown that (see lemma 1 of Liu and Lu) for ξ = (µ+η)/q, where µ is an integer

and η is a nonnegative integer less than or equal to q − 1 (0 ≤ η ≤ q − 1),

E[h(Ri)|Xi] = (c0f(Xi))
µ/qn!

k!

(k − ξ − γ)!

(n− ξ − γ)!

(
(k − ξ − γ)

(n− ξ − γ)

)η/q
[1 + op(1)]. (2)

Note that n!
k!

(k−ξ−γ)!
(n−ξ−γ)!

(
(k−ξ−γ)
(n−ξ−γ)

)η/q
=
(
n
k

)ξ+γ ( k
n

)η/q
[1 + o(1)] =

(
k
n

)η/q−ξ−γ
[1 + o(1)] =(

k
n

)−λ/q−γ
[1 + o(1)]. Substituting this into (2) proves lemma 1.
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Lemma 2 Let A(x) be a measurable function of x. Then

E[A(Xj)w(
Xj −Xi

Ri
)|Xi, Ri] =

(k − 1)

nG(Ri)

∫
||xj−Xi||<Ri

f(xj)A(xj)w(
xj −Xi

Ri
)dxj . (3)

Proof: It follows directly from equation (22) of Mark and Rosenblatt (1979) and the

fact that w(
xj−Xi

Ri
) = 0 for ||xj − Xi||≥ Ri. See page 459 of Ouyang, Li, and Li

(2006).
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Proof of Theorem 1

Using Yi = g(Xi) + ui, we have (Mi = M(Xi))

CV (k, λ) =
1

n

n∑
i=1

[g (Xi)− ĝ−i (Xi)]
2Mi +

2

n

n∑
i=1

[g (Xi)− ĝ−i (Xi)]uiMi +
1

n

n∑
i=1

u2
iMi

≡ CV1(k, λ) + CV2(k, λ) +
1

n

n∑
i=1

u2
iMi, (4)

where CV1(k, λ) = 1
n

∑n
i=1 [g (Xi)− ĝ−i (Xi)]

2Mi

and CV2(k, λ) = 2
n

∑n
i=1 [g (Xi)− ĝ−i (Xi)]uiMi. The last term on the right of (4)

does not depend on k or λ. We can show that CV2(k, λ) has smaller probability

order than does CV1(k, λ). Hence, CV1(k, λ) is the leading term of CV (k, λ). We

first consider CV1(k, λ).

Using arguments similar to those used to prove lemma A.4 in Ouyang, Li, and

Li (2006), we can show that the leading term of CV1(k, λ) is given by CV1,1(k, λ),

which is defined below

CV1(k, λ) =
1

n

n∑
i=1

[g (Xi)− ĝ−i (Xi)]
2M(Xi)

=
1

n

n∑
i=1

[g (Xi)− ĝ−i (Xi)]
2 f̂−i(Xi)

2M(Xi)/f̂−i(Xi)
2

=
1

n

n∑
i=1

[g (Xi)− ĝ−i (Xi)]
2 f̂−i(Xi)

2M(Xi)/f−i(Xi)
2 + (s.o.)

= CV1,1(k, λ) + (s.o.), (5)

where CV1,1(k, λ) = 1
n

∑n
i=1 [g (Xi)− ĝ−i (Xi)]

2 f̂−i(Xi)
2M(Xi)/f−i(Xi)

2 and (s.o.)

denotes terms that have probability order smaller than that of CV1,1(k, λ).

We can show, using U-statistic H-decomposition arguments similar to those used

to prove lemma A.6 in Ouyang, Li, and Li (2006), that the leading term of CV1,1(k, λ)
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is E[CV1,1(k, λ)]. Following Ouyang, Li, and Li (2006), we define

m̂1i =
1

(n− 1)Rq
i

n∑
j 6=i

(g (Xj)− g (Xi))w(
Xc
j −Xc

i

Ri

)L(Xd
i , X

d
j , λ) (6)

and

m̂2i =
1

(n− 1)Rq
i

n∑
j 6=i

ujw(
Xc
j −Xc

i

Ri

)L(Xd
i , X

d
j , λ) (7)

Then (ĝ−i(Xi)− g(Xi))f̂−i(Xi) = m̂1i + m̂2i. We have that

E[CV1,1(k, λ)] =E[(m̂1i + m̂2i)
2M(Xi)/f(Xi)

2]

=E[m̂2
1iM(Xi)/f(Xi)

2] + E[m̂2
2iM(Xi)/f(Xi)

2] (8)

because E[m̂1im̂2iM(Xi)/f(Xi)
2] = 0.

We consider the first term in (8). Using Lemma 2 we have (
∫
dx =

∑
xd

∫
dxc):

E
(
m̂2
i1|Xi = x,Ri = r

)
=

1

(n− 1)2 r2q

E
 n∑
j 6=i

(g (Xj)− g (x))w

(
Xc
j − xc

r

)
L(Xd

j , x
d, λ)

2

|Xi = x,Ri = r


=

(k − 1)(k − 2)

(n− 1)2 r2qG(r)2

(∫
f(xj)

[
(g(xj)− g(x))w

(
xcj − xc

r

)
L(xdj , x

d, λ)

]
dxj

)2

+
k − 1

(n− 1)2 r2qG(r)

(∫
f(xj)

[
(g(xj)− g(x))2w2

(
xcj − xc

r

)
L2(xdj , x

d, λ)

]
dxj

)
≡ A1n(x, r) +A2n(x, r).

59



We first consider A1n(x, r). We have that

∑
xdj

∫
f(xcj, x

d
j )

[
(g(xj)− g(x))w

(
xcj − xc

r

)
L(xdj , x

d, λ)

]
dxcj

=

∫
f(xcj, x

d)

[(
g(xcj, x

d)− g(x)
)
w

(
xcj − xc

r

)]
dxcj

+
∑
xdj 6=xd

∫
f(xcj, x

d
j )

[
(g(xj)− g(x))w

(
xcj − xc

r

)
L(xdj , x

d, λ)

]
dxcj. (9)

We consider the first term in (9):

∫
f(xcj , x

d)
(
g(xj , x

d)− g(x)
)
w

(
xcj − xc

r

)
dxcj

= rq
∫
f
(
xc + rv, xd

)
(g (xc + rv)− g (x))w (v) dv

= rq
∫ (

f (x) + rv′∇f (x)
)(
∇g (x) rv +

1

2
r2v′∇2g (x) v

)
w (v) dv[1 + o(1)] + (s.o.)

= rq+2cw
[
f (x) tr[∇2g(x)]/2 +∇f(x)′∇g(x)

]
+O(rq+4)

≡ rq+2B1,1(x) +O(rq+4),

where cw =
∫
w(v)v2

sdv and the definition of B1,1(x) should be apparent.

We now consider the second term in (9):

∑
xdj 6=xd

∫
f(xcj, x

d
j ) (g(xj)− g(x))w

(
xcj − xc

r

)
L
(
xdj , x

d, λ
)
dxcj

=
∑
xdj∈D

m∑
s=1

λs1s(x
d
j , x

d)

∫
f(xcj, x

d
j ) (g(xj)− g(x))w

(
xcj − xc

r

)
dxcj +O(‖λ‖2rq).

(10)

where 1s(z
d, xd) ≡ 1(zds 6= xds)

∏
t6=s 1(zdt = xdt ).

60



We have that, for xdj 6= xd,

(11)

∫
f
(
xcj , x

c
j

) (
g
(
xcj , x

d
j

)
− g(x)

)
w

(
xcj − xc

r

)
dxcj

= rq
∫
f
(
xc + rv, xdj

)(
g
(
xcj + rv, xdj

)
− g(x)

)
w(v)dv

= rq
∫

(f(xc, xdj ) + rv′∇f(xc, xdj ))

[
(g(xc, xdj )− g(x)) +∇g(xc, xdj )rv

+
1

2
r2v′∇2g(xc, xdj )v

]
w (v) dv + (s.o.)

= rqf(xc, xdj )
[(
g(xc, xdj )− g(x)

)
+ cwr

2
(
tr[∇2g(x)]/2 +∇f(x)′∇g(x)

)]
+ (s.o.)

= rqf(xc, xdj )(g(xc, xdj )− g(x)) +O(rq+2).

Substituting (11) into (10), we have

∫
f(xj) (g(xj)− g(x))w

(
xcj − xc

r

)
L
(
xdj , x

d, λ
)
dxj

=
∑
xdj∈D

(
m∑
s=1

λs1s(x
d
j , x

d)
(
rqf(xc, xdj )

(
g(xc, xdj )− g(x)

)
+O

(
rq+2

)))
+O

(
‖λ‖2rq

)

= rq
∑
xdj∈D

(
m∑
s=1

λs1s(x
d
j , x

d)f(xc, xdj )
(
g(xc, xdj )− g(x)

))
+O

(
‖λ‖rq+2 + ‖λ‖2rq

)
≡ rqB1,2(x, λ) +O

(
‖λ‖rq+2 + ‖λ‖2rq

)
, (12)

where the definition of B1,2(x) should be apparent.

We now consider A2n(x, r):

∑
xj

∫
f(xj) (g(xj)− g(x))2w2

(
xcj − xc

r

)
L2(xdj , x

d, λ)dxcj

=

∫
f(xcj, x

d)(g(xcj, x
d)− g(x))2w2

(
xcj − xc

r

)
dxcj

+
∑
xdj 6=xd

∫
f(xcj, x

d
j )(g(Xj)− g(x))2w2

(
Xc
j − xc

r

)
dxcj. (13)
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We consider the first term in (13).

∫
f(xcj, x

d)(g(xcj, x
d)− g(x))2w2

(
xcj − xc

r

)
dxcj

= rq
∫
f(xc + rv, xd)(g(xc + rv, xd)− g(x))2w2(v)dv

= rq+2νwf(x)[

q∑
s=1

gs(x)]2 +O(rq+4)

≡ rq+2B3 +O(rq+4), (14)

where B3 = νwf(x)[
∑q

s=1 gs(x)]2 and νw =
∫
w2(v)v2

sdv.

Now we consider the second term in (13)

∑
xdj 6=xd

∫
f(xcj , x

d
j )(g(xj)− g(x))2w2

(
xcj − xc

r

)
L2(xdj , x

d, λ)dxcj

=
∑
xdj∈D

(
m∑
s=1

λ2
s1s(x

d
j , x

d)

∫
f(xcj , x

d
j ) (g(xj)− g(x))2w2

(
xcj − xc

r

)
dxcj

)
+O(rq‖λ‖3)

=
∑
xdj∈D

(
m∑
s=1

λ2
s1s(x

d
j , x

d)

[
rqf(xc, xdj )

(
g(xc, xdj )− g(x)

)2
+O(rq+2)

])
+O(rq‖λ‖3)

= rq
∑
xdj∈D

(
m∑
s=1

λ2
s1s(x

d
j , x

d)f(xc, xdj )
(
g(xc, xdj )− g(x)

)2
)

+O(‖λ‖2rq+2 + rq‖λ‖3)

≡ rqB4(λ) +O(‖λ‖2rq+2 + rq‖λ‖3), (15)

where the definition of B4(λ) should be obvious.
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Substituting from (11) and (12) and using Lemma 1, we have that

E [A1n(Xi, Ri) | Xi]

= E

[
k2

n2R2q
i G(Ri)2

(
Rq+2
i B1,1(Xi) +RqiB1,2(Xi, λ)

)2
| Xi

]
+ (s.o.)

=
k2

n2
B2

1,1(Xi)E

[
R4
i

G(Ri)2
| Xi

]
+
k2

n2
B2

1,2(Xi, λ)E

[
1

G(Ri)2
| Xi

]
+ 2

(
k2

n2
B1,1(Xi)B1,2(Xi, λ)E

[
R2
i

G(Ri)2
| Xi

]]
+ (s.o.)

=

(
1

c0f(Xi)

) 4
q

B2
1,1(Xi)

(
k

n

) 4
q

+B2
1,2(Xi, λ)

+ 2

(
1

c0f(Xi)

) 2
q

B1,1(Xi)B1,2(Xi, λ)

(
k

n

) 2
q

+ (s.o.)

=

(
1

c0f(Xi)

) 4
q

B2
1,1(Xi)

(
k

n

) 4
q

+B2
1,2(Xi, λ) + 2B1,1(Xi)B1,2(Xi, λ)

(
1

c0f(Xi)

) 2
q
(
k

n

) 2
q

+O

((
k

n

) 6
q

+ ‖λ‖
(
k

n

) 4
q

+ ‖λ‖2
(
k

n

) 2
q

+ ‖λ‖3
)
.

Substituting from (14) and (15) and using Lemma 1, we have that

E [A2n(Xi, Ri) | Xi]

= E

[
k

n2R2q
i G(Ri)

(
Rq+2
i B3 +R2

iB4(λ)
)
| Xi

]
+ (s.o.)

=
k

n2
B3E

[
1

Rq−2
i G(Ri)

| Xi

]
+

k

n2
B4(λ)E

[
1

Rq
iG(Ri)

| Xi

]
+ (s.o.)

= (c0f(Xi))
q−2
q B3

1

k

(
k

n

) 2
q

+ (c0f(Xi))B4(λ)
1

k
+ (s.o.) (16)
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We now consider E[m̂2
2iM(Xi)/f(Xi)

2]. We have that

E
(
m̂2
i2|Xi = x,Ri = r

)
= (17)

1

(n− 1)2 r2q
E

(
n∑
j 6=i

u2
jw

2

(
Xc
j −Xc

i

Ri

)
L2(Xd

j , x
d, λ)|Xi = x,Ri = r

)
.

We note that

E

(
n∑
j 6=i

u2
jw

2

(
Xc
j −Xc

i

Ri

)
L2(Xd

j , x
d, λ)|Xi = x,Ri = r

)

=
k − 1

G(r)

∑
xdj∈D

(
L(xdj , x

d, λ)2

∫
f(xcj, x

d
j )σ

2(xcj, x
d
j )w

2

(
xcj − xc

r

)
dxcj

)

=
k − 1

G(r)

∫
f(xcj, x

d)σ2(xcj, x
d)w2

(
xcj − xc

r

)
dxcj

+
k − 1

G(r)

∑
xdj∈D

m∑
s=1

(
λ2
s1s(x

d
j , x

d)

∫
f(xcj, x

d
j )σ

2(xcj, x
d
j )w

2

(
xcj − xc

r

)
dxcj

)
+ (s.o.).

(18)

We note that

∫
f(xcj, x

d)σ2(xcj, x
d)w2

(
xcj − xc

r

)
dxcj

= rq
∫
f
(
xc + rv, xd

)
σ2
(
xc + rv, xd

)
w2 (v) dv

= rqf (x)σ2 (x)

∫
w2 (v) dv[1 +O(r2)]

= rqdwσ
2 (x) f (x) [1 +O(r2)] (19)

where dw =
∫
w2 (v) dv.
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Substituting (19) into the second term in (18), we obtain

∑
xdj∈D

m∑
s=1

(
λ2
s1s(x

d
j , x

d)

∫
f(xcj , x

d
j )σ

2(xcj , x
d
j )w

2

(
xcj − xc

r

)
dxcj

)

=
∑
xdj∈D

m∑
s=1

rq
(
λ2
s1s(x

d
j , x

d)σ2
(
xc, xdj

)
f
(
xc, xdj

)∫
w2 (v) dv[1 + o(1)]

)
= O(‖λ‖2rq).

(20)

Combining the results from above, we have that

E
[
m̂2
i2|Xi = x,Ri = r

]
=

k − 1

(n− 1)2rqG(r)

(
σ2 (x) f (x)

∫
w2 (v) dv + o(1)

)

Thus, using Lemma 1, we have that

E
[
m̂2
i2|Xi

]
=

k

n2

(
σ2 (Xi) f (Xi)

∫
w2 (v) dv

)
E

[
1

Rq
iG(Ri)

| Xi

]
= dwσ

2(Xi)f(Xi) (c0f(Xi))
1

k
+ (s.o.)

= c0dwσ
2(Xi)f(Xi)

2

(
1

k

)
+O

((
1

k

)(
k

n

) 2
q

+ ‖λ‖2

(
1

k

))
.
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Combining the results from above, we have shown that

E[CV1,1(k, λ)] = E
[(
m̂2
i1 + m̂2

i2

)
f(Xi)

−2M(Xi)
]

=

(
1

c0

) 4
q

E
[
B2

1,1(Xi)f(Xi)
−4
q M(Xi)

](k
n

) 4
q

+ c0dwE
[
σ2(Xi)M(Xi)

](1

k

)
+ E

[
B2

1,2(Xi, λ)f(Xi)
−2M(Xi)

]
+ 2

(
1

c0

) 2
q

E
[
B1,1(Xi)B1,2(Xi, λ)f(Xi)

− 2+2q
q M(Xi)

](k
n

) 2
q

+O

((
k

n

) 6
q

+

(
1

k

)(
k

n

) 2
q

+ ‖λ‖
(
k

n

) 4
q

+ ‖λ‖2
(
k

n

) 2
q

+ ‖λ‖3
)

≡ B1

(
k

n

) 4
q

+B2

(
1

k

)
+B3(λ) +B4(λ)

(
k

n

) 2
q

+O

((
k

n

) 6
q

+
1

k

(
k

n

) 2
q

+ ‖λ‖
(
k

n

) 4
q

+ ‖λ‖2
(
k

n

) 2
q

+ ‖λ‖3
)
.

Lemma 3 CV2(k, λ) = (nk)−1/2C1 + n−1/2(k/n)2/qC2 + n−1/2C3(λ),

where C1 and C2 are Op(1) and C3(λ) is Op(‖λ‖). Therefore, CV2(k, λ) has a proba-

bility order smaller than that of CV1(k, λ).

Let wRi,ij denote R−qi w
(
Xc

i−Xc
j

Ri

)
and let lλ,ij denote L(Xd

i , X
d
j , λ). We can show that

CV2(k, λ) = CV2,1(k, λ)[1+op(1)], where CV2,1(k, λ) = n−1
∑

i ui(gi− ĝ−i)f̂−i/fi. We

can write CV2,1(k, λ) as CV2,1(k, λ) = B1n+B2n, whereB1n = [n(n−1)]−1
∑

i

∑
j 6=i ui(gi−
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gj)wRi,ijlλ,ij/f−i and B2n = [n(n− 1)]−1
∑

i

∑
j 6=i uiujwRi,ij lλ,ij/f−i.

E[B2
1n] =

1

n2(n− 1)2

∑
i

∑
j 6=i

∑
l 6=i

E
[
u2
i (gi − gj)wRi,ijlλ,ijwRi,illλ,il/f

2
i

]
=

1

n2(n− 1)2

∑
i

∑
j 6=i

E
[
σ2(Xi)(gi − gj)2w2

Ri,ij
l2λ,ij/f

2
i

]
+

1

n2(n− 1)2

∑
i

∑
j 6=i

∑
l 6=i,l 6=j

E
[
σ2(Xi)(gi − gj)wRi,ijlλ,ij(gi − gl)wRi,illλ,il/f

2
i

]
≡ B1n,1 +B1n,2.

We first consider B1n,1:

E
[
(g(Xi)− g(Xj))

2w2
Ri,ij

l2λ,ij|Xi, Ri

]
=

∫
f(xcj, x

d)(g(xi)− g(xcj, x
d))2w2

Ri,ij
l2λ,ijdx

c
j

+
∑
xj 6=xd

f(xcj, x
d
j )(g(xi)− g(xcj, x

d))2w2
Ri,ij

l2λ,ijdx
c
j

= O

(
R2
i

Rq
i

)
+O

(
‖λ‖2

Rq
i

)
.

Thus B1n,1 = n−2O
(
E[R2−q

i ] + ‖λ‖2E(R−qi )
)

= O(n−2(k/n)
2−q
q +‖λ‖2n−2(k/n)−1) =

O((nk)−1(k/n)2/q + ‖λ‖2n−2(k/n)−1) using Lemma 1.

Next we consider B1n,2:

E [(gi − gj)wRi,jilλ,ij|Xi, Ri] =∫
f(xcj, x

d)(g(Xi)− g(xcj, x
d))w

(
Xc
i − xcj
Ri

)
dxcj

+
∑
xdj 6=xd

∫
f(xcj, x

d
j )(g(Xi)− g(xcj, x

d
j ))w

(
Xc
i − xcj
Ri

)
L(Xd

i , x
d
j , λ)dxcj

= O
(
R2
i

)
+O (‖λ‖) .
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Thus B1n,2 = n−1O (E(R4
i ) + ‖λ‖2) = O

(
n−1(k/n)4/q + n−1‖λ‖2

)
=

O
(
n−1(k/n)4/q + n−1‖λ‖2

)
by using Lemma 1.

Thus, combining these results, we have that

E [B2
1n] = B1n,1 +B1n,2 =

O
(
(nk)−1(k/n)2/q + n−1(k/n)4/q + ‖λ‖2n−2(k/n)−1 + n−1‖λ‖2

)
= O

(
(nk)−1(k/n)2/q + n−1(k/n)4/q + +n−1‖λ‖2

)
.

It follows that B1n = Op

(
n−1/2(k/n)2/q + n−1/2‖λ‖

)
.

We now consider B2n:

B2n =
1

n(n− 1)

∑
i

∑
j>i

uiuj
[
wRi,ijlλ,ij + wRj ,jilλ,ij

]
.

E[B2
2n] =

1

n2(n− 1)2

∑
i

∑
j>i

E
{
u2
iu

2
j

[
wRi,ijlλ,ij + wRj ,jilλ,ij

]2}
=

1

n2(n− 1)2

∑
i

∑
j>i

E
{
σ2(Xi)σ

2(Xj)
[
wRi,ijlλ,ij + wRj ,jilλ,ij

]2}
≤ 4

n2(n− 1)2

∑
i

∑
j>i

E
[
σ2(Xi)σ

2(Xj)w
2
Ri,ij

l2λ,ij
]

= n−2O(E[R−qi ]) = O(n−2(k/n)−1) = O((nk)−1)

using Lemma 1.

Thus, we have that B2n = Op

(
(nk)−1/2

)
and so

B1n +B2n = Op

(
(nk)−1/2 + n−1/2(k/n)2/q + n−1/2‖λ‖

)
. It follows that we can write

CV2(k, λ) as CV2(k, λ) = (nk)−1/2C1 + n−1/2(k/n)2/qC2 + n−1/2C3(λ), where C1 =

Op(1), C2 = Op(1), and C3(λ) = Op(‖λ‖).

Proof of Theorem 3

We have that CV (k, λ) = CV1(k, λ) + CV2(k, λ)+ terms unrelated to (k, λ), and
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CV1(k, λ) = B1

(
k

n

) 4
q

+B2
1

k
+B3(λ) +B4(λ)

(
k

n

) 2
q

+ O

((
k

n

) 6
q

+
1

k

(
k

n

) 2
q

+ ‖λ‖
(
k

n

) 4
q

+ ‖λ‖2

(
k

n

) 2
q

+ ‖λ‖3

)
.

Let CV0(k, λ) denote the leading term of CV1(k, λ). Then CV0(k, λ) = B1

(
k
n

) 4
q +

B2

(
1
k

)
+B3(λ) +B4(λ)

(
k
n

) 2
q . Let k0 and λ0 denote, respectively, the values of k and

λ that minimize CV0(k, λ). In order to derive first-order conditions for k0 and λ0, we

can first derive simple expressions for B3(λ) and B4(λ): We can write B1,2(x, λ) as:

B1,2(x, λ) =
∑
zd∈D

(
m∑
s=1

λs1s(z
d, xd)f(xc, zd)

(
g(xc, zd)− g(x)

))

=
m∑
s=1

λs

(∑
zd∈D

1s(z
d, xd)f(xc, zd)

(
g(xc, zd)− g(x)

))

≡
m∑
s=1

λsbs(x),

where the definition of bs(x) should be apparent.

Then

B4(λ) ≡ 2

(
1

c0

)2/q

E
[
B1,1(Xi)B1,2(Xi, λ) f(Xi)

− 2
qM(Xi)

]
= 2

(
1

c0

)2/q

E

[
B1,1(Xi)

(
m∑
s=1

λsbs(Xi)

)
f(Xi)

− 2
qM(Xi)

]

= 2

(
1

c0

)2/q m∑
s=1

λs

(
E
[
B1,1(Xi)bs(Xi)f(Xi)

− 2
qM(Xi)

])
≡

m∑
s=1

λscs, (21)

where the definition of cs should be apparent.
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Similarly, we can write B3(λ) as follows:

B3(λ) = E
[
B2

1,2(Xi, λ)f(Xi)
−2M(Xi)

]
= E

( m∑
s=1

λscs(Xi)

)2

f(Xi)
−2M(Xi)


=

m∑
s=1

λ2
sE
[
c2
s(Xi)f(Xi)

−2M(Xi)
]

+ 2
m−1∑
s=1

∑
t>s

λsλtE
[
cs(Xi)ct(Xi)f(Xi)

−2M(Xi)
]

≡
m∑
s=1

λ2
sds + 2

m−1∑
s=1

∑
t>s

λsλtdts, (22)

where the definitions of ds and dts should be obvious.

Using (21) and (22), we can derive the following first-order conditions for k0 and λ0:

(23)

∂CV0

∂k
=

(
4

q

)
B1

1

k

(
k

n

) 4
q

−B2
1

k2
+

(
2

q

)
B4 (λ)

1

k

(
k

n

) 2
q

= 0,
∂CV0

∂~λ

= 2



d1 d12 · · · d1m

d21 d2 d2m

...
. . .

dm1 dm2 dm





λ1

λ2

...

λm


+

(
k

n

) 2
q



c1

c2

...

cm


= 0.

After rewriting (23) as Aλ = −(k/n)2/qc , where the definition of the m×m matrix

A should be clear from (23) , and c is an m×1 vector whose ith element is ci , we can

solve to get λ = −(k/n)2/qA−1c. Thus, recalling that B4(λ) =
m∑
s=1

λscs, we have that

70



B4(λ0) = a0(k0/n)2/q for some constant a0. Substituting back into (23), we obtain

(
4

q

)
B1

1

k0

(
k0

n

) 4
q

−B2
1

k2
0

+ a0

(
2

q

)
1

k0

(
k0

n

) 4
q

= 0

(24)

Solving for k0, we obtain

k0 =

 B2n
4
q(

4
q

)
B1 + a0

(
2
q

)


q
4+q

≡ b1n
4/(4+q), (25)

where b1 =

(
(B2)

4
q

( 4
q )B1+a0( 2

q )

) q
4+q

. From λ0 = (k0/n)2/qA−1c and (25), we have that

λ0 = n−
2

4+qA−1c.

Let k̂ and λ̂ denote the values of k and λ that minimize CV (k, λ). When q ≤ 3,

CV (k, λ) =

B1

(
k

n

) 4
q

+B2
1

k
+B3(λ) +B4(λ)

(
k

n

) 2
q

+ (nk)−1/2C1 + n−
1
2

(
k

n

) 2
q

C2 + n−
1
2C3(λ) + (s.o.)

Noting that C3(λ) can be written as C3(λ) =
m∑
s=1

bsλs, we can derive the following

first-order conditions:

(26)

4

q
B1

(
k̂

n

) 4+q
q

−B2n
−1 +

2

q
B4(λ̂)

(
k̂

n

) 2+q
q

− 1

2
C1n

−1

(
k̂

n

) 1
2 2

q
C2n

−1/2

(
k̂

n

) 2+q
q

+ (s.o.) = 0,

Aλ̂+

(
k̂

n

) 2
q

c + n−1/2 b+ (s.o.) = 0,
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where A was defined above, and b is an m× 1 vector whose ith element is bi.

From (26) we have that λ̂ = (k̂/n)2/qA−1c+ n−1/2A−1b+ (s.o.). Then, recalling that

B4(λ) =
m∑
s=1

λscs, we have that B4(λ̂) = a0(k̂/n)2/q + a1n
−1/2 + (s.o.), where a0 was

defined above and a1 is another constant. Substituting for B4(λ̂) into (26), we obtain

(
4

q

)
B1

(
k̂

n

) 4+q
q

−B2n
−1 +

(
2

q

)
a0

(
k̂

n

) 4+q
q

+

(
2

q

)
a1n

− 1
2

(
k̂

n

) 4+q
q

− 1

2
C1n

−1

(
k̂

n

) 1
2

+

(
2

q

)
C2n

−1/2

(
k̂

n

) 2+q
q

+ (s.o.) = 0 (27)

Let k̂ = k0 + k̂1. Then, since CV0(λ, k) is the leading term of CV (λ, k), we have

that k̂1
k0

= op(1) and k̂1
n

= op(1). By Taylor’s Theorem

(
k̂

n

) 4+q
q

=

(
k0

n

) 4+q
q

+
4 + q

q

(
k0

n

) 4
q

(
k̂1

n

)
+ (s.o.). (28)

Substituting (28) into (27) and using (24), we obtain

4 + q

q

[(
4

q

)
B1 +

(
2

q

)
a0

](
k0

n

) 4
q k̂1

n
− 1

2
C1n

−1

(
k0

n

) 1
2

+

(
2

q

)
C2n

−1/2

(
k0

n

) 2+q
q

+ (s.o.) = 0.
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Solving for k̂1, we obtain

k̂1

n
=

−1
2
C1n

−1
(
k0
n

) q−8
2q +

(
2
q

)
C2n

−1/2
(
k0
n

) q−2
q(

4+q
q

) [(
4
q

)
B1 +

(
2
q

)
a0

] .

(29)

Then

k̂1

k0

=
−1

2
C1n

−1
(
k0
n

)− q+8
2q +

(
2
q

)
C2n

−1/2
(
k0
n

)− 2
q(

4+q
q

) [(
4
q

)
B1 +

(
2
q

)
a0

] . (30)

Recalling that k̂1 = k̂ − k0, and using k0 = b1n
4/(4+q) we have

k̂ − k0

k0

= Op

(
n−1

(
k0

n

)− q+8
2q

+ n−1/2

(
k0

n

)− 2
q

)
= Op

(
n−

q
2(4+q)

)
(31)

From (26) , we have that

λ̂ =

(
k̂

n

) 2
q

A−1c+ n−1/2A−1b+ (s.o.)

=

(
k0

n
+
k̂1

n

) 2
q

A−1c+ n−1/2A−1b+ (s.o.)

=

[(
k0

n

) 2
q

+
2

q

(
ko
n

) 2
q
−1
k̂1

n

]
A−1c+ n−1/2A−1b+ (s.o.)

= λ0 +
2

q

(
ko
n

) 2
q
−1
(
k̂1

n

)
A−1c+ n−1/2A−1b+ (s.o.) (32)

= λ0 +Op(n
−1/2) (33)

since (k0/n)(2/q)−1 (k̂1/n) = Op(n
−1/2) from (29) and (25).
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When q ≥ 5,

CV (k, λ) = B1

(
k

n

) 4
q

+B2

(
1

k

)
+B3(λ) +B4(λ)

(
k

n

) 2
q

+D1

(
k

n

) 6
q

+D2

(
1

k

)(
k

n

) 2
q

+ D3(λ)

(
k

n

) 4
q

+D4(λ)

(
k

n

) 2
q

+D5(λ) + (s.o.),

where D3(λ), D4(λ), and D5(λ) are polynomials in λ of order one, two, and three,

respectively. Suppose for simplicity that λ1 = λ2 = · · · = λm = λ.

Then we can write

CV (k, λ) = B1

(
k

n

) 4
q

+B2

(
1

k

)
+ B̄3λ

2 + B̄4λ

(
k

n

) 2
q

+D1

(
k

n

) 6
q

+D2

(
1

k

)(
k

n

) 2
q

+ D̄3λ

(
k

n

) 4
q

+ D̄4λ
2

(
k

n

) 2
q

+ D̄5λ
3 + (s.o.),

where B̄3, B̄4, D̄3, D̄4, and D̄5 do not depend on k or λ.

Then we can derive the following first-order conditions for k̂ and λ̂:

(
4

q

)
B1

1

k̂

(
k̂

n

) 4
q

−B2
1

k̂2
+

(
2

q

)
B4λ̂

(
1

k̂

)(
k̂

n

) 2
q

+

(
6

q

)
D1

1

k̂

(
k̂

n

) 6
q

+

(
2− q
q

)
D2

1

k̂2

(
k̂

n

) 2
q

+

(
4

q

)
D̄3λ̂

(
1

k̂

)(
k̂

n

) 4
q

+

(
2

q

)
D̄4λ̂

2

(
1

k̂

)(
k̂

n

) 2
q

+ (s.o.) = 0,

(34)

2B̄3λ̂+ B̄4

(
k̂

n

) 2
q

+ D̄3

(
k̂

n

) 4
q

+ 2D̄4λ̂

(
k̂

n

) 2
q

+ 3D̄5λ̂
2 + (s.o.) = 0. (35)

Let λ̂ = λ0 + λ̂1. Note that λ̂2 =
(
λ0 + λ̂1

)2

= λ2
0 + 2λ0λ̂1 + (s.o.) since λ̂1 = op(λ0)

and
(
k̂
n

)a
=
(
k0
n

+ k̂1
n

)a
=
(
k0
n

)a
+ a

(
ko
n

)a−1
(
k̂1
n

)
+ (s.o.) using Taylor’s Theorem
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and k̂1 = op(k0). Using these two equations, we can rewrite (34) and (35) as

(
4

q

)
B1

1

k0

(
k0

n

) 4
q

+

(
4− q
q

)(
4

q

)
B1

1

k2
0

(
k0

n

) 4
q

k̂1 −B2

(
1

k2
0

− 2k̂1

k3
0

)

+

(
2

q

)
B4

[
λ0 + λ̂1

] [( 1

k0

)(
k0

n

) 2
q

+

(
2− q
q

)(
1

k2
0

)(
k0

n

) 2
q

k̂1

]

+

(
6

q

)
D1

[
1

k0

(
k0

n

) 6
q

+

(
6− q
q

)
1

k2
0

(
k0

n

) 6
q

k̂1

]

+

(
2− q
q

)
D2

[
1

k2
0

(
k0

n

) 2
q

+

(
2− 2q

q

)
1

k3
0

(
k0

n

) 2
q

k̂1

]

+

(
4

q

)
D̄3(λ0 + λ̂1)

[
1

k0

(
k0

n

) 4
q

+

(
4− q
q

)
1

k2
0

(
k0

n

) 4
q

k̂1

]

+

(
2

q

)
D̄4

(
λ2

0 + λ0λ̂1

)[ 1

k0

(
k0

n

) 2
q

+

(
2− q
q

)
1

k2
0

(
k0

n

) 2
q

k̂1

]
+ (s.o.) = 0. (36)

2B̄3(λ0 + λ̂1) + B̄4

[(
k0

n

) 2
q

+

(
2− q
q

)
1

k0

(
k0

n

) 2
q

k̂1

]
+

D̄3

[(
k0

n

) 4
q

+

(
4− q
q

)
1

k0

(
k0

n

) 4
q

k̂1

]
+ 2D̄4(λ0 + λ̂1)

[(
k0

n

) 2
q

+

(
2− q
q

)
1

k0

(
k0

n

) 2
q

k̂1

]

+ 3D̄3

[
λ2

0 + 2λ0λ̂1

]
+ (s.o.) = 0. (37)

Using (23) we can solve (37) to obtain λ̂1 = Op

(
(1/k0)(k0/n)2/qk̂1

)
. Substitut-

ing this into (36), we obtain k̂1 = Op

(
k0(k0/n)2/q

)
, which implies that k̂1/k0 =

Op

(
(k0/n)2/q

)
. Recalling that k̂1 ≡ k̂ − k0 and k0 = O

(
n4/(4+q)

)
, we have that

(k̂ − k0)/k0 = Op

(
n−2/(4+q)

)
. Then, substituting into (32) , we obtain

λ̂− λ0 = Op

(
n−4/(4+q)

)
.
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When q = 4,

CV (k, λ) = B1

(
k

n

) 4
q

+B2

(
1

k

)
+B3(λ) +B4(λ)

(
k

n

) 2
q

+ (nk)−1/2C1 + n−
1
2

(
k

n

) 2
q

C2

+ n−
1
2C3(λ) + D1

(
k

n

) 6
q

+D2

(
1

k

)(
k

n

) 2
q

+ D3(λ)

(
k

n

) 4
q

+D4(λ)

(
k

n

) 2
q

+ D5(λ) + (s.o.)

We can see that having added some more terms of the same order, our results from

the case q ≥ 5 still hold. Hence, we have for q ≥ 4,

(k̂ − k0)/k0 = Op

(
n−2/(4+q)

)
and λ̂− λ0 = Op

(
n−4/(4+q)

)
.

Proof of Theorem 4

Let ĝ0(x) and f̂0(x) denote ĝ(x) and f̂(x), respectively, evaluated at k = k0 and

λ = λ0. We can write ĝ0(x) − g(x) = (ĝ0(x) − g(x))f̂0(x)/f̂0(x) ≡ m̂0(x)/f̂0(x),

where m̂0(x) = (ĝ0(x)− g(x))f̂0(x)

We can show that E[m̂0(x)] = f(x)
[
µk(x) (k0/n)2/q + λ′µl(x)

]
+o
(

(k0/n)2/q + ‖λ‖
)

,

where

µk(x) = cw(c0f(x))2/q
[
f(x)tr[∇2g(x)]/2 +∇f(x)′∇g(x)

]
,

µl(x) is an m× 1 vector whose s-th element is given by

µls(x) =
∑
zd∈D

1s
(
zd, xd

) [
g
(
xc, zd

)
− g(x)

]
f
(
xc, zd

)
.

We can also show that V ar[m̂0(x)] = c0dwσ
2(x)f 2(x) 1

k0
+ o
(

1
k0

)
. We can verify that
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the conditions for Liapunov’s central limit theorem hold. Then we have that

k
1/2
0

[
ĝ0(x)− g(x)− µk(x) (k0/n)2/q − λ′µl(x)

]
= k

1/2
0

[
m̂0(x)−

(
µk(x) (k0/n)2/q + λ′µl(x)

)
f̂0(x)

]
/f̂0(x)

= k
1/2
0

[
m̂0(x)−

(
µk(x) (k0/n)2/q + λ′µl(x)

)
f(x)

]
/f(x) + op(1)

d−→ N
(
0, c0dwσ

2(x)
)
. (38)

We now let ĝγ̂(x) and f̂γ̂(x) denote, respectively, f̂(x) and ĝ(x) evaluated at k = k̂

and λ = λ̂. We can write ĝ
ˆ
(x)− g(x) = [ĝγ̂(x)− g(x)] f̂γ̂(x)/f̂γ̂(x) ≡ m̂γ̂(x)/f̂γ̂(x),

where m̂γ̂(x) = [ĝγ̂(x)− g(x)] f̂γ̂(x). Using the same arguments as in Racine and Li

(2004), we can show that

k̂1/2
[
ĝγ̂(x)− g(x)− (µk(x) (k0/n)2/q + λ′µl(x))

]
= k

1/2
0

[
ĝ0(x)− g(x)− (µk(x) (k0/n)2/q − λ̂′µl(x))

]
+ op(1).

Thus by (38), we have that

k̂1/2

[
ĝγ̂(x)− g(x)−

(
µk(x)

(
k̂/n

)2/q

+ λ̂′µl(x)

)]
d−→ N

(
0, c0dwσ

2(x)
)
.
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APPENDIX B

APPENDIX TO SECTION 3

B.1 Proof of Theorem 1

For simplicity, we assume that h1 = h2 = . . . = hd = h. We assume further that

k(0) = 0, where k(·) is the kernel function. From Theorem 2.2 on page 117 of Su

and Lu (2013), we have the following result:

Result 1

ĝ(x)− g(x) = h2b(x) +
1

NT2hd

N∑
j=1

T∑
s=3

εjsc(x)K

(
xjs − x
h

)
+Rn(x), (1)

where the expressions for b(x) and c(x) can be derived from equations 2.16 and 2.17

of Su and Lu (2013). Rn(x) is the remainder term which is defined by (1), i.e.,

Rn(x) = ĝ(x)− g(x)− h2b(x)− 1

NT2hd

N∑
j=1

T∑
s=3

εjsc(x)K

(
xjs − x
h

)
.

It is easy to see that Rn(x) has a probability order uniformly (in x) smaller than

h2b(x) +
1

NT2hd

N∑
j=1

T∑
s=3

εjsc(x)K

(
xjs − x
h

)
.

Note that we do not give explicit expressions for b(x) and c(x) in (1) for two

reasons: (i) The explicit definitions of b(x) and c(x) would require one define many

quantities related a general local polynomial estimator, and operator related to a

recursive estimation procedure. These will take too much spaces. (ii) The explicit
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expressions for b(x) and c(x) do not enter the leading term of our test statistics. We

only need the term related to b(x) is of the order O(h2) and that the term associated

with c(x) is of the order O((Nhd)−2).

Below we give the expressions for b(x) and c(x) for the case of a local linear

estimation method. Readers interested in the detailed expressions for b(x) and c(x)

for the general local polynomial are referred to Su and Lu (2013). For the local linear

estimation method case, b(x) = (1−A)−1B0(x), B0(x) = (µ2/2)h2
∑d

j=1 ∂
2g(x)/∂x2

j ,

µ2 =
∫
k(v)v2dv, A is a linear operator defined in (2.8) in Su and Lu (2013). And

that c(x) = c/f(x) (c is a constant).

Note that

ε̂it = yit − yi,t−1 − (ĝit − ĝi,t−1)

= (git + νit)− (gi,t−1 + νi,t−1)− (ĝit − ĝi,t−1)

= (νit − νi,t−1)− [(ĝit − git)− (ĝi,t−1 − gi,t−1)]

= εit − η̂it, (2)

where

η̂it = (ĝit − git)− (ĝi,t−1 − gi,t−1). (3)

Thus

ε̂itε̂it−2 = (εit − η̂it)(εit−2 − η̂i,t−2)

= εitε,it−2 − εitη̂i,t−2 − η̂itεi,t−2 + η̂itη̂i,t−2, (4)
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Using equation (4) , we can write a new expression for IN :

(5)

IN =
1

NT3

N∑
i=1

T∑
t=4

ε̂itε̂i,t−2

=
1

NT3

N∑
i=1

T∑
t=4

εitεi,t−2 −
1

NT3

N∑
i=1

T∑
t=4

εitη̂i,t−2

− 1

NT3

N∑
i=1

T∑
t=4

η̂itεi,t−2 +
1

NT3

N∑
i=1

T∑
t=4

η̂itη̂i,t−2

≡ A1N + A2N + A3N + A4N ,

where the definitions of A1N , A2N , A3N , and A4N should be apparent.

By the Lindeberg central limit theorem, we have that

√
NT3A1N

d−→ N
(
0, σ4

ε

)
. (6)

We show in Appendix B that

A2N = Op

(
N−1/2h2 +N−1h−d/2

)
, (7)

A3N = Op

(
N−1/2h2 +N−1h−d/2

)
, (8)

A4N = Op

(
h4 +N−1

)
. (9)

By assumption A1 (xiii) we know that AjN = op(N
−1/2). Combining (6) with (9),

we have shown that √
NT3IN
σ2
ε

d→ N(0, 1)

under H0.

Similarly, one can show that σ̂2
ε = 1

NT3

∑N
i=1

∑T
t=4 ε

2
it + op(1)

p→ σ2
ε . Hence,

Theorem 1 follows.
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B.2 Appendix B: Proofs of (7) to (9)

Lemma 1 Under conditions given in the statement of Theorem 1, we have

A2N = Op

(
N−1/2h2 +N−1h−d/2

)
.

Note that εitη̂i,t−2 = εit [(ĝi,t−2 − gi,t−2)− (ĝi,t−3 − gi,t−3)]. Thus, we can write A2N

as

A2N =
1

NT3

N∑
i=1

T∑
t=4

εitη̂i,t−2

=
1

NT3

N∑
i=1

T∑
t=4

εit(ĝi,t−2 − gi,t−2)− 1

NT3

N∑
i=1

T∑
t=4

εit(ĝi,t−3 − gi,t−3)

≡ A2N,1 + A2N,2 ,

where the definitions of A2N,1 and A2N,2 should be apparent.

We first consider A2N,1. For convenience, we will use bit and cit to denote b(xit)

and c(xit), respectively. Using (1) we can write A2N,1 as follows:

A2N,1 =
1

NT3

N∑
i=1

T∑
t=4

h2εitbi,t−2 +
1

N2T1T3hd

N∑
i=1

T∑
t=4

N∑
j=1

T∑
s=2

εitεjsci,t−2Kjs,(i,t−2) + (s.o.)

≡ A2N,11 +A2N,12 + (s.o.),

where Kjs,it denotes K ((xjs − xit)/h). The notation AN = BN + (s.o.) means that

BN is the leading term of AN , and (s.o.) denote terms having probability orders

smaller than that of BN .

81



Below we first consider A2N,11. Using the fact that the data is cross-sectionally

independent, we have that E
[
A2

2N,11

]
= N−2h4O(N) = O (N−1h4). It follows that

A2N,11 = Op

(
N−1/2h2

)
.

We next consider A2N,12. Note that

A2N,12 ≡
1

N2T1T3hd

N∑
i=1

T∑
t=4

T∑
s=2

εitεisci,t−2Kis,(i,t−2)

+
1

N2T1T3hd

N∑
i=1

N∑
j 6=i

T∑
t=4

T∑
s=2

εitεjsci,t−2Kjs,(i,t−2)

≡ B1N +B2N , (10)

where the definitions of B1N and B2N should be apparent. We first consider B1N .

Note that under H0 we can write B1N as

B1N =
2

N2T1T3hd

N∑
i=1

T∑
t=4

ε2itci,t−2K(i,t),(i,t−2)

+
2

N2T1T3hd

N∑
i=1

T∑
t=4

T∑
s=2,s 6=t

εitεisci,t−2K(is),(i,t−2)

≡ B1N,1 +B1N,2, (11)

where the definition of B1N,1 and B1N,2 should be apparent.

Note that we can write B1N,1 as B1N,1 = 2
N2

N∑
i=1

ϑi, where

ϑi = 1
T1T3hd

T∑
t=4

εitεi,t−1ci,t−2K(i,t−1),(i,t−2). The ϑi’s are i.i.d, and we can show that ϑi

has finite a mean and variance of order h−d. It follows that
∑N

i=1 ϑi has mean of order

N and variance of order Nh−d. Thus we have that
N∑
i=1

ϑi = Op

(
N +N1/2h−d/2

)
=
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Op(N) and B1N,1 = Op (N−1). Similarly, one can show that B1N,2 = Op(N
−1).

Combining these results, we have that

B1N = Op

(
N−1

)
.

We next consider B2N . Note that we can write B2N as a degenerate second-order

U-statistic:

B2N ≡
1

N2

N∑
i=1

N∑
j 6=i

T∑
t=4

T∑
s=2

1

T1T3hd
εitεjsci,t−2Kjs,(i,t−2)

=
1

N2

N∑
i=1

N∑
j 6=i

HN,ij

=
1

N2

N∑
i=1

N∑
j 6=i

1

2
(HN,ij +HN,ji)

=
2

N2

N∑
i=1

N∑
j>i

H̄N,ij ,

where the definition of Hij should be apparent and H̄N,ij(HN,ij +HN,ji)/2 is a sym-

metrized version of HN,ij. Then we have that

E
[
B2

2N

]
=

2

N2
E
[
H̄2
N,ij

]
.

We can show using a Taylor expansion and a change of variables that E
[
H̄2
N,ij

]
=

O
(
h−d
)
. Thus we have that E [B2

2N ] = O(N−2h−d), which implies that B2N =

Op

(
N−1h−d/2

)
.

Then we have that A2N,12 = Op

(
N−1h−d/2 +N−3/2h−d +N−1

)
= Op

(
N−1h−d/2

)
,

and thus A2N,1 = Op

(
N−1/2h2 +N−1h−d/2

)
. It is clear that we can use similar
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arguments to show that A2,2N is of the same probability order. Thus, we have that

A2N = Op

(
N−1/2h2 +N−1h−d/2

)
.

Lemma 4 Under conditions given in the statement of Theorem 1, we have

A3N = Op

(
N−1/2h2 +N−1h−d/2

)
.

By using the same method as in the proof of lemma 1, one can easily prove that

A3N has the same probability order as that of A2N . We therefore omit the proof of

lemma 4 here.

Finally, we derive the probability order of A4N in the next lemma.

Lemma 5 Under conditions given Theorem 1, we have

A4N = Op

(
h4 +N−3/2h−2d +N−2h−d +N−1

)
.
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Using (3) we have that

A4N ≡
1

NT3

N∑
i=1

T∑
t=4

η̂itη̂i,t−2

=
1

NT3

N∑
i=1

T∑
t=4

[(ĝit − git)− (ĝi,t−1 − gi,t−1)] [(ĝi,t−2 − gi,t−2)− (ĝi,t−3 − gi,t−3)]

≡ 1

NT3

N∑
i=1

T∑
t=4

(ĝit− git)(ĝi,t−2− gi,t−2)− 1

NT3

N∑
i=1

T∑
t=4

(ĝit− git)(ĝi,t−3− gi,t−3)

− 1

NT3

N∑
i=1

T∑
t=4

(ĝi,t−1 − gi,t−1)(ĝi,t−2 − gi,t−2)

+
1

NT3

N∑
i=1

T∑
t=4

(ĝi,t−1 − gi,t−1)(ĝi,t−3 − gi,t−3)

≡ A4N,1 − A4N,2 − A4N,3 + A4N,4.

(12)

We first consider A4N,3. Since ĝ(·) satisfies the assumption in (1). Define Nj = N−j,

then we can write

A4N,3 =
1

NT3

N∑
i=1

T∑
t=4

h2bi,t−1 +
1

N1T1hd

N∑
j=1

ζ(i,t−1),j

(h2bi,t−2 +
1

N1T1hd

N∑
k=1

ζ(i,t−2),k

)

=
1

NT3

N∑
i=1

T∑
t=4

h4bi,t−1bi,t−2 +
1

NN1T1T3hd−2

N∑
i=1

N∑
j=1

T∑
t=4

bi,t−1ζ(i,t−2),k

+
1

NN1T1T3hd−2

N∑
i=1

N∑
j=1

T∑
t=4

bi,t−2ζ(i,t−1),j

+
1

NN2
1T3T 2

1 h
2d

N∑
i=1

N∑
j=1

N∑
k=1

T∑
t=4

ζ(i,t−1),jζ(i,t−2),k

≡ A4N,31 +A4N,32 +A4N,33 +A4N,34 ,

where

ζit,j ≡
T∑
s=2

εjscitKjs,it

and the definitions of A4N,31, A4N,32, A4N,33, and A4N,34 should be apparent.
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Note that

E[A2
4N,31] = N−2h8O(N2) = O

(
h8
)
.

It follows that A4N,31 = Op (h4).

We next consider A4N,32. Note that

A4N,32 =
1

NN1T1T3hd−2

N∑
i=1

N∑
j=1

T∑
t=4

T∑
s=2

bi,t−1εjsci,t−2Kjs,(i,t−2)

=
1

NN1T1T3hd−2

N∑
i=1

T∑
t=4

T∑
s=2

bi,t−1εisci,t−2Kis,(i,t−2)

+
1

NN1T1T3hd−2

N∑
i=1

N∑
j 6=i

T∑
t=4

T∑
s=2

bi,t−1εjsci,t−2Kjs,(i,t−2)

≡ B3N +B4N ,

where the definitions of B3N and B4N should be apparent.

We first considerB3N . It is straightforward to show that E[B2
1N ] = 1

N4h2d−4O(Nhd) =

O
(

1
N3hd−4

)
. It follows that B3N = Op

(
1

N3/2hd/2−2

)
= op(N

−1).

We next consider B4N . Note that we can write B4N as a second-order U-statistic:

B4N =
1

NN1

N∑
i=1

N∑
j 6=i

T∑
t=4

T∑
s=2

1

T1T3hd−2
bi,t−1εjsci,t−2Kjs,(i,t−2)

=
1

NN1

N∑
i=1

N∑
j 6=i

1

2
(Hij,N +Hji,N)

=
2

NN1

N∑
i=1

N∑
j>i

H̄ij,N ,
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where the definition of Hij,N should be apparent and H̄ij,N is symmetrized version

of Hij,N .

Using the H-decomposition, we have that

(13)B4N =
2

N

N∑
i=1

H̄i,N +
2

NN1

N∑
i=1

N∑
j>i

(H̄ij,N − H̄i,N − H̄j,N)

≡ B4N,1 +B4N,2 ,

where H̄i,N ≡ E
[
H̄ij,N |zi

]
with zi ≡ (x′i1, ..., x

′
iT , εi1, ...εiT )′. We can show that B4N,1

has a probability order larger than that of B4N,2.

Note that

B4N,1 =
1

N

N∑
i=1

T∑
t=2

T∑
s=4

1

T1T3hd−2
εitE

[
bj,s−1cj,s−2Kit,(j,s−2)|xit

]
(14)

We can show using a Taylor expansion and a change of variables that

E
[
bj,s−1cj,s−2Kit,(j,s−2)|xit

]
= hdf(xit)E[b(xj,s−1)]c(xit) +Op

(
hd+2

)
, (15)

where, after multiplying by h−d−2, the Op

(
hd+2

)
terms are bounded in probability

uniformly in xit ∈ D.

Using (14) and (15), we have that

B4N,1 =
1

N

N∑
i=1

T∑
t=2

T∑
s=4

1

T1T3hd−2
εitE

[
bjscj,s−2Kit,(j,s−2)|xit

]
=

1

N

N∑
i=1

T∑
t=2

1

T1

εith
2f(xit)E[b(xj,s−1)]c(xit) + (s.o.)

≡ B4N,11 + (s.o.) , (16)
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where the definition ofB4N,11 should be apparent. Note that E[B2
2N,11] = N−2h4O(N) =

O (N−1h4). It follows that B4N,11 = Op

(
N−1/2h2

)
. Thus, from (16) we have that

B4N,1 = Op

(
N−1/2h2 + h4

)
. Thus, since B4N,2 is of smaller order, we have that

B4N = Op

(
N−1/2h2 + h4

)
.

It follows that A4N,32 = Op

(
N−1 +N−1/2h2 + h4

)
= Op (N−1 + h4). It is clear that

we can show in a similar way that A4N,33 is on the same order order as A4N,32.

We next consider A4N,34. We have that

A4N,34 =
1

NN2
1T3T 2

1 h
2d

N∑
i=1

N∑
j=1

N∑
k=1

T∑
t=4

T∑
s=2

T∑
q=2

εjsεkqci,t−1ci,t−2K(i,t−1),jsK(i,t−2),kq

=
1

NN2
1

N∑
i=1

N∑
j=1

N∑
k=1

HN,ijk

=
1

NN2
1

N∑
i=1

N∑
j=1

N∑
k=1

H̄N,ijk

=
1

NN2
1

N∑
i=1

H̄N,iii +
2

NN2
1

N∑
i=1

N∑
j>i

H̄N,iij +
6

NN2
1

N∑
i=1

N∑
j>i

N∑
k>j

H̄N,ijk

≡ B5N +B6N +B7N ,

where the definitions of HN,ijk, B5N ,B6N , and B7N should be apparent and H̄N,ijk is

a symmetrized version of HN,ijk.

We first consider B5N . Note that we can write B1N as

B5N =
1

NN2
1

N∑
i=1

ξi + (s.o.) , (17)

where ξi ≡ (T3T
2
1 )−1

T∑
t=4

T∑
s=2

T∑
q=2

1

h2d
εisεiqci,t−1ci,t−2K(i,t−1),isK(i,t−2),iq. The ξi’s are

i.i.d, and we can show that they have mean of order 1 and variance of order h−2d.
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It follows that
N∑
i=1

ξi has mean of order N and variance of order Nh−2d. Thus we

have that
N∑
i=1

ξi = Op

(
N +N1/2h−d

)
= Op (N). Thus, from (17) we have that

B1N = Op (N−2).

We next consider B6N . Note that we can write B6N as

B6N =
1

N1

[
2

NN1

N∑
i=1

N∑
j>i

H̃N,ij

]
,

where the quantity in the brackets is second-order U-statistic that we denote it as

U2N . Using the U-statistic H-decomposition, we have that

(18)

U2N = E[H̃N,ij] +
2

N

N∑
i=1

[
H̃N,i − E[H̃N,ij]

]
+

2

NN1

N∑
i=1

N∑
j>i

[
H̃N,ij − H̃N,i − H̃N,j + E[H̃N,ij]

]
≡ U2N,1 + U2N,2 + U2N,3 ,

where the definitions of U2N,1, U2N,2, and U2N,3 should be apparent and H̃N,i ≡

E[H̃N,ij|zi]. We can show that U2N,1 = O (1) and that U2N,2 and U2N,3 are of smaller

probability order. Thus we have that B6N = Op (N−1).

Finally, we consider B7N . Using the U-statistic H-decomposition, we can show that

B7N =
6N2

NN2
1

N∑
i=1

N∑
j>i

H̄N,ij + (s.o.) , (19)

where H̄N,ij = E
[
H̄N,ijk|zi, zj

]
. We can show that

89



H̄N,ij =
2

3

T∑
t=2

T∑
s=2

1

T 2
1 h

2d
εitεjsE

[
ck,q−1ck,q−2Kit,(k,q−1)Kjs,(k,q−2)|xit, xjs

]
=

2

3

T∑
t=2

T∑
s=2

1

T 2
1

εitεjsf(xit)f(xjs)citcjs +Op(h
2) ,

where the convergence is uniform in (xit, xjs) ∈ D2. From (19) we have that

E
[
B2

7N

]
=

36N2
2

N2N4
1

N∑
i=1

N∑
j>i

E
[
H̄2
N,ij

]
+ (s.o.)

=
36N2

2

N2N4
1

O
(
N2
)

+ (s.o.)

= O
(
N−2

)
.

It follows that B7 = Op (N−1). Combining the results from above, we have that

A4N,34 = Op (N−1). Thus, we have that, under H0, A4N,3 = Op (h4 +N−1).

We can show in a similar way that A4N,1, A4N,2, and A4N,4 are all of probability order

h4 +N−1. It follows that, under H0,

A4N = Op

(
h4 +N−1

)
.
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B.3 Results of Monte Carlo Simulations

Table B.1: Rejection frequency for DGP 1,2,3 under case (i): i.i.d error (estimated
size).

DGP 1 Estimated Sizes
N T 1% 5% 10% 20% 50%
50 5 0.0075 0.0435 0.0955 0.1890 0.4915
50 10 0.0085 0.0460 0.0970 0.1895 0.4855
100 5 0.0030 0.0415 0.1010 0.1965 0.4805
100 10 0.0100 0.0550 0.1090 0.2050 0.4915
200 5 0.0095 0.0480 0.0890 0.1845 0.4885
200 10 0.0140 0.0510 0.1050 0.1960 0.4960
DGP 2 Estimated Sizes
N T 1% 5% 10% 20% 50%
50 5 0.0065 0.0430 0.0940 0.1895 0.4885
50 10 0.0080 0.0460 0.0960 0.1870 0.4900
100 5 0.0030 0.0430 0.1000 0.1975 0.4775
100 10 0.0100 0.0540 0.1110 0.2035 0.4910
200 5 0.0090 0.0485 0.0890 0.1825 0.4865
200 10 0.0135 0.0505 0.1035 0.1940 0.4930
DGP 3 Estimated Sizes
N T 1% 5% 10% 20% 50%
50 5 0.0065 0.0430 0.0980 0.1890 0.4960
50 10 0.0090 0.0475 0.0940 0.1870 0.4885
100 5 0.0030 0.0420 0.1010 0.1980 0.4830
100 10 0.0115 0.0530 0.1095 0.2060 0.4920
200 5 0.0095 0.0480 0.0865 0.1835 0.4895
200 10 0.0135 0.0520 0.1020 0.1965 0.4980
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Table B.2: Rejection frequency for DGP 1,2,3 under case (ii): AR(1) (estimated
power).

DGP 1 Estimated Powers
N T 1% 5% 10% 20% 50%
50 5 0.0125 0.1100 0.2075 0.3635 0.6485
50 10 0.1015 0.3345 0.4855 0.6450 0.8580
100 5 0.0045 0.2195 0.3505 0.5020 0.7700
100 10 0.3300 0.6465 0.7655 0.8615 0.9590
200 5 0.1580 0.4570 0.5805 0.7240 0.8990
200 10 0.7740 0.9280 0.9610 0.9855 0.9965
DGP 2 Estimated Powers
N T 1% 5% 10% 20% 50%
50 5 0.0125 0.1110 0.2080 0.3625 0.6460
50 10 0.1020 0.3335 0.4875 0.6475 0.8565
100 5 0.0045 0.2185 0.3510 0.5045 0.7715
100 10 0.3305 0.6515 0.7650 0.8620 0.9595
200 5 0.1585 0.4550 0.5815 0.7220 0.9000
200 10 0.7735 0.9275 0.9610 0.9850 0.9965
DGP 3 Estimated Powers
N T 1% 5% 10% 20% 50%
50 5 0.0135 0.1090 0.2045 0.3655 0.6465
50 10 0.0995 0.3330 0.4860 0.6460 0.8555
100 5 0.0040 0.2195 0.3465 0.5015 0.7680
100 10 0.3270 0.6495 0.7635 0.8595 0.9575
200 5 0.1585 0.4575 0.5770 0.7235 0.9005
200 10 0.7750 0.9280 0.9610 0.9855 0.9965
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Table B.3: Rejection frequency for DGP 1,2,3 under case (iii): MA(1) (estimated
power).

DGP 1 Estimated Powers
N T 1% 5% 10% 20% 50%
50 5 0.1685 0.5815 0.7520 0.8720 0.9665
50 10 0.9025 0.9920 0.9965 0.9990 1.0000
100 5 0.1500 0.9270 0.9665 0.9895 0.9995
100 10 0.9985 1.0000 1.0000 1.0000 1.0000
200 5 0.9800 0.9985 1.0000 1.0000 1.0000
200 10 1.0000 1.0000 1.0000 1.0000 1.0000
DGP 2 Estimated Powers
N T 1% 5% 10% 20% 50%
50 5 0.1665 0.5810 0.7500 0.8725 0.9660
50 10 0.9010 0.9920 0.9960 0.9990 1.0000
100 5 0.1485 0.9270 0.9665 0.9895 0.9995
100 10 0.9985 1.0000 1.0000 1.0000 1.0000
200 5 0.9810 0.9985 1.0000 1.0000 1.0000
200 10 1.0000 1.0000 1.0000 1.0000 1.0000
DGP 3 Estimated Powers
N T 1% 5% 10% 20% 50%
50 5 0.1630 0.5870 0.7495 0.8735 0.9650
50 10 0.8970 0.9910 0.9960 0.9990 1.0000
100 5 0.1465 0.9270 0.9650 0.9880 0.9995
100 10 0.9985 1.0000 1.0000 1.0000 1.0000
200 5 0.9795 0.9995 1.0000 1.0000 1.0000
200 10 1.0000 1.0000 1.0000 1.0000 1.0000
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Table B.4: Rejection frequency for DGP 2 under case (i)’,(ii)’ and (iii)’.

Case (i)’ Estimated Sizes
N T 1% 5% 10% 20% 50%
50 10 0.0085 0.0465 0.0955 0.1875 0.4915
100 10 0.0105 0.0585 0.1120 0.2075 0.4920
200 10 0.0140 0.0520 0.1045 0.1955 0.4965
Case (ii)’ Estimated Powers
N T 1% 5% 10% 20% 50%
50 10 0.1055 0.3520 0.5005 0.6560 0.8650
100 10 0.3550 0.6665 0.7715 0.8730 0.9610
200 10 0.8030 0.9375 0.9690 0.9875 0.9960
Case (iii)’ Estimated Powers
N T 1% 5% 10% 20% 50%
50 10 0.7210 0.9470 0.9745 0.9925 0.9985
100 10 0.9885 0.9995 0.9995 1.0000 1.0000
200 10 1.0000 1.0000 1.0000 1.0000 1.0000

Table B.5: Rejection frequency for DGP 2 under case (i)’,(ii)’ and (iii)’: an asymp-
totic test.

Case (i)’ Estimated Sizes
N T 1% 5% 10% 20% 50% mean std
50 10 0.0280 0.0950 0.1570 0.2610 0.5660 -0.0207 1.1615
100 10 0.0335 0.1040 0.1750 0.2825 0.5760 -0.0121 1.1960
200 10 0.0270 0.0980 0.1685 0.2725 0.5615 -0.0311 1.1767
Case (ii)’ Estimated Powers
N T 1% 5% 10% 20% 50% mean std
50 10 0.2930 0.5160 0.6250 0.7370 0.8915 -1.9752 1.0839
100 10 0.5925 0.7775 0.8465 0.9155 0.9700 -2.8174 1.1230
200 10 0.9025 0.9665 0.9845 0.9930 0.9975 -4.0118 1.1075
Case (iii)’ Estimated Powers
N T 1% 5% 10% 20% 50% mean std
50 10 0.9225 0.9790 0.9910 0.9960 0.9990 -4.0755 1.0223
100 10 0.9995 0.9995 1.0000 1.0000 1.0000 -5.8311 1.0523
200 10 1.0000 1.0000 1.0000 1.0000 1.0000 -8.2893 1.0478
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APPENDIX C

APPENDIX TO SECTION 4: PROOFS OF THEOREMS

Before we prove Theorem 4.3.1 we will prove a Lemma which will be used in the

proof.

Lemma 1 Under the same conditions as in Theorem 4.3.1, we have

max
1≤t≤n

|dt − γTγ0dt,0|= Op(ηn), (1)

where dt,0 = β′(ZT
t γ0) and ηn = b2 + (log(n)/(nbq))1/2).

Proof of Lemma 1

It is well established that on a bounded trimmed set (with boundary regions

trimmed out) that nonparametric kernel estimator converges to the true unknown

function uniformly with a rate Op(ηn), where ηn = b2 + (log(n)/(nbq))1/2), i.e.,

max1≤t≤n|g̃(Zt)−g(Zt)|= Op(ηn). Then it is easy to see that (gt = g(Zt) = β(ZT
t γ0))

(2)

dt =

[
n∑
s=1

(ZT
stγ)2Hb,st

]−1 n∑
s=1

ZT
stγ(gs − gt)Hb,st +Op(ηn)

=

[
n∑
s=1

(ZT
stγ)2Hb,st

]−1 n∑
s=1

ZT
stγZ

T
stHb,stγ0dt,0 +Op(ηn)

= γTγ0 dt,0 +Op(ηn)

uniformly in 1 ≤ t ≤ n, where γT =
[∑n

s=1(ZT
stγ)2Hb,st

]−1∑n
t=1 Z

T
stγZ

T
stHb,st (it is

easy to check that γTγ = 1), and the second equality follows from Taylor expansion

gs = gt + β′(Z ′tγ0)ZT
s,tγ0 +Op

(
(ZT

s,tγ0)2
)
. This completes the proof of Lemma 1.
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Proof of Theorem 4.3.1

γ̄ =

[
n∑
s=1

n∑
t=1

d2
tZstZ

T
stHb,st

]−1 n∑
s=1

n∑
t=1

dtZst(gs − gt)Hb,st +Op(ηn)

=

[
n∑
s=1

n∑
t=1

d2
tZstZ

T
stHb,st

]−1 n∑
s=1

n∑
t=1

dtZstZ
T
stHb,stγ0dt,0 +Op(ηn)

= γ0 +

[
n∑
s=1

n∑
t=1

d2
tZstZ

T
stHb,st

]−1 n∑
s=1

n∑
t=1

dtZstZ
T
stHb,st[dt,0 − dt]γ0 +Op(ηn)

= γ0 +(γTγ0)−2

[
n∑
s=1

n∑
t=1

d2
t,0ZstZ

T
stHb,st

]−1

(γTγ0)
n∑
s=1

n∑
t=1

d2
t,0ZstZ

T
stHb,st[1−γTγ0]γ0

+Op(ηn)

= γ0 + (γTγ0)−1(1− γTγ0)γ0 +Op(ηn),

(3)

where the second equality follows from the Taylor expansion gs ≈ gt + dt,0Z
T
s,tγ0, in

the third equality we used dt,0 = dt + (dt,0− dt), the fourth equality follows from (2).

Equation (3) can be re-written as γ̄ = (γTγ0)−1γ0 +Op(ηn), i.e., γ̄ equals a constant

(scalar) time γ0 plus a op(1) term. By the normalization requirement that γ̄T γ̄ = 1

and γT0 γ0 = 1, we obtain

γ̄ = γ0 +Op(ηn).

This completes the proof of Theorem 4.3.1. Note that γ̄ = γ0 + op(1) implies that

dt = dt,0 + op(1), as we show below. Using max1≤t≤n|g̃(Zt)− g(Zt)|= Op(ηn), where
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ηn = b2 + (log(n)/(nbq))1/2), it is easy to see that (gt = g(Zt) = β(ZT
t γ0))

dt =

[
n∑
s=1

(ZT
stγ)2Hb,st

]−1 n∑
s=1

ZT
stγ(gs − gt)Hb,st +Op(ηn)

=

[
n∑
s=1

(ZT
stγ)2Hb,st

]−1 n∑
t=1

ZT
stγdt,0Z

T
stγ0Hb,st +Op(ηn)

= dt,0 +

[
n∑
s=1

(ZT
stγ)2Hb,st

]−1 n∑
s=1

ZT
stγZ

T
st(γ0 − γ)dt,0Hb,st +Op(ηn)

= dt,0 + E[(ZT
stγ)2|Zt]−1E[dt,0Z

T
stγZ

T
st|Zt](γ0 − γ) +Op(ηn), (4)

where the second equality follows from theTaylor expansion gs = gt+β
′(Z ′tγ0)ZT

s,tγ0+

Op

(
(ZT

s,tγ0)2
)
; the third equality follows from γ0 = γ+(γ0−γ); and the last equality

follows from the standard kernel estimation result. Equation (4) implies that dt =

β′(ZT
t γ0) + op(1) because γ̄ − γ0 = op(1) by Theorem 4.3.1.

Proof of Theorem 4.3.2

To prove Theorem 4.3.2, we need to modify An =
∑n

s=1

∑n
t=1 d

2
tZstZ

T
stHb,st to

Aγn =
∑n

s=1

∑n
t=1 d

2
tZstZ

T
stK

γ
h,st.

Aγn
def
=

1

n2

n∑
s=1

n∑
t=1

d2
tZstZ

T
stK

γ
h,st

= n−1

n∑
t=1

d2
t,0E{ZstZT

stK
γ
h,st|Zt}+Op(ηn)

= n−1

n∑
t=1

d2
t,0E{E[ZstZ

T
stK

γ
h,st|Z

T
s γ0, Zt]|Zt}+Op(ηn)

= n−1

n∑
t=1

d2
t,0fγ(Z

T
t γ0)(Zt − ξ(ZT

t γ0))(Zt − ξ(ZT
t γ0))T +Op(ηn)

= E
[
d2
t,0fγ(Z

T
t γ0)(Zt − ξ(ZT

t γ0))(Zt − ξ(ZT
t γ0))T

]
+Op(ηn), (5)

where ξ(ZT
t γ0) = E(Zt|ZT

t γ0) and dt,0 = β′(ZT
t γ0).
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Cn = n−2
∑n

s=1

∑n
t=1 dtZst(g̃s − g̃t − dtZT

stγ0)Hb,st is modified to

Cγ
n = n−2

∑n
s=1

∑n
t=1 dtZst(g̃s− g̃t− dtZT

stγ0)Kγ
h,st. The leading term C1n is modified

to

Cγ
1n =

1

n2

n∑
s=1

n∑
t6=s

dt,0Zst(gs − gt − dt,0ZT
stγ0)Kγ

h,st

=
1

n(n− 1)

n∑
s=1

n∑
t6=s

dt,0Zst(gs − gt − dt,0ZT
stγ0)Kγ

h,st +Op(n
−1)

≡ C1n,0 +Op(n
−1), (6)

where the Op(n
−1) term comes from the O(n−3) in 1/n2 = 1/[n(n− 1)] +O(n−3).

Note that C1n,0 can be written as a second order U-statistic. Define

Hn,st = {dt,0Zst[gs − gt − β′(Ztγ0)ZT
stγ0] + ds,0Zts[gt − gs − β′(Zsγ0)ZT

tsγ0)]Kγ
h,st}/2.

Then by the H-decomposition of a U-statistic, we have

Cγ
1n,0 =

2

n(n− 1)

n−1∑
s=1

n∑
t>s

Hn,st

= M +
2

n

n∑
t=1

[Hn,t −M ] +
2

n(n− 1)

n−1∑
s=1

n∑
t>s

[Hn,st −Hn,s −Hn,t +M ] (7)

where M = E[Hn,st], Hn,t = E[Hn,st|Zt]. It is straightforward to show that M =

h2D + o(h2), where D is a constant, and Hn,t = h2Dt, where E(Dt) = D + o(1) and

V ar(Dt) = O(1). The third term in the H-decomposition has a smaller order than

the first two terms. Hence, we have

Cγ
1n,0 = Op(h

2 + h2n−1/2) = Op(h
2).
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Note that Cγ
1n = Op(n

−1/2) if one selects h such that nh4 is bounded, h→ 0 and

nh→∞ as n→∞.

A tedious proof leads to Cγ
n −C

γ
1n = Op(b

ν + h2 + n−1/2). This then implies that

Cγ
n = Op(h

2 + n−1/2), which in turn implies that γ̂ − γ0 = Op(h
2 + n−1/2) because

Aγn = Op(1) (an exact order, i.e., An 6= op(1)). Hence,

γ̂ − γ0 = [Aγn]−1Cγ
n = Op(b

ν + h2 + n−1/2).

This completes the proof of Theorem 4.3.2.

One can also derive the asymptotic distribution of
√
n(γ̂ − γ0). It can be shown

that the asymptotic variance of
√
n(γ̂ − γ0) comes from Cγ

2n. Alternatively, one can

also use some bootstrap methods to do inferences.
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