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ABSTRACT

Many applications involve media that contain multiple scales and physical prop-

erties that vary in orders of magnitude. One example is a rock sample, which has

many micro-scale features. Most multiscale problems are often parameter-dependent,

where the parameters represent variations in medium properties, randomness, or

spatial heterogeneities. Because of disparity of scales in multiscale problems, solving

such problems is prohibitively expensive.

Among the most popular and developed techniques for efficiently solving the

global system arising from a finite element approximation of the underlying prob-

lem on a very fine mesh are multigrid methods, multilevel methods, and domain

decomposition techniques. More recently, a new large class of accurate reduced-

order methods has been introduced and used in various applications. These include

Galerkin multiscale finite element methods, mixed multiscale finite element methods,

multiscale finite volume methods, and mortar multiscale methods, and so on.

In this dissertation, a multiscale finite element method is studied for the com-

putation of heterogeneous problems involving high-contrast, no-scale separation, pa-

rameter dependency and nonlinearities. A general formulation of the elliptic hetero-

geneous problems is discussed, including an oversampling strategy and randomized

snapshots generation for a more efficient and accurate computation. Furthermore, a

multiscale adaptive algorithm is proposed and analyzed to reduce the computational

cost. Then, this multiscale finite element method is extended to the nonlinear high-

contrast elliptic problems. Specifically, both continuous and discontinuous Galerkin

formulations are considered. In the end, an application to high-contrast heteroge-

neous Brinkman flow is analyzed.
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I. INTRODUCTION

I.1 Motivation

Heterogeneous media with multiple scales and high-contrast occur in many prac-

tical applications, e.g., porous media, material sciences and Li-ion battery. Usually,

the medium properties in these applications vary across many scales. Hence, the

development and analysis of numerical methods for accurately resolving complex

processes in such media is of vital importance.

In practice, ad-hoc approximations are typically made for resolving the effects

of the small scales on a computational grid. For example, in multi-phase flow and

transport in porous media, the medium properties are averaged on a coarse grid, and

thus the important physical phenomena at small scales are approximated instead of

calculated accurately. One solution for this type of problem is multiscale methods.

There are a variety of multiscale methods, e.g. [1, 11, 44, 50, 51, 54], that efficiently

capture multiscale behavior by constructing a reduced representation of the solution

space on a coarse grid. While standard multiscale methods have proven effective for

a variety of applications (see, e.g., [43, 44, 45, 54]), a new multiscale algorithm is

needed for a more complicated setting.

The multiscale finite element methods (MsFEM’s) that we consider in this dis-

sertation hinge on the construction of coarse spaces that are spanned by a set of

independently computed multiscale basis functions. The multiscale basis functions

are then coupled via a respective global formulation in order to compute the solu-

tion. In particular, solutions may be computed on a coarse grid while maintaining

the fine-scale effects that are embedded into the basis functions.

The organization of this dissertation is as follows. We present the general frame-
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work of this multiscale algorithm for high-contrast heterogeneous elliptic flow in

Chapter II. We discuss an oversampling strategy which is introduced for reducing

the boundary effects associated with multiscale basis functions. Further, we dis-

cuss an efficient method of constructing snapshot space based on the randomized

SVD theory in this chapter. The multiscale adaptive algorithm aiming at finding a

smaller coarse space is given in Chapter III. The application of GMsFEM to nonlin-

ear elliptic equations through continuous Galerkin and discontinuous Galerkin global

formulations is presented in Chapter IV. In Chapter V, we develop GMsFEM for

Brinkman flow in high-contrast heterogeneous media. In the next section, a brief

introduction to each chapter is provided.

I.2 Outline of the dissertation

The general framework for elliptic equations is provided in Chapter II. In the

GMsFEM framework, as in many other multiscale model reduction techniques, one

divides the computation into two stages, i.e., the offline stage and the online stage. In

the offline stage, a reduced dimension space is constructed, and it is then used in the

online stage to construct multiscale basis functions. These multiscale basis functions

can be re-used for any input parameter to solve the problem on a coarse grid. The

main idea behind the construction of the offline and online spaces is to design appro-

priate local spectral-based selection of important modes that generate the snapshot

space. In [36], several general strategies for designing the local spectrum-based se-

lection procedures were proposed. Two strategies are included in this chapter for the

completeness.

One strategy that can increase the accuracy of the GMsFEM is oversampling.

Oversampling techniques have been developed in the context of the MsFEM [50] and

upscaling methods [22]. These techniques use the local solutions in larger domains

2



to construct multiscale basis functions to alleviate the effect of mismatch between

the artificial boundary condition and the nature of the underlying heterogeneities.

One promising strategy for an efficient calculation of the snapshot space is the

randomized snapshot space based on the randomized SVD theory. The main idea

behind this strategy is that a smaller number of basis can be calculated instead of

the whole snapshot space for a given accuracy.

A posteriori error estimates are discussed in Chapter III. We present two types

of residual-based error estimators and show their efficiency and reliability. These

error estimators are further used to develop an adaptive enrichment algorithm for

the linear elliptic equation in high-contrast heterogeneous media. Numerical tests

are provided for the validation of the theoretical results.

In Chapter IV, we discuss GMsFEM for nonlinear flow problems. In the numerical

solution of nonlinear elliptic problems, the discrete problem is usually formulated as

a system of nonlinear algebraic equations and then linearized through strategies such

as Newton’s method and Picard iteration. The pivotal advantage of this GMsFEM

algorithm lies in the efficient construction of a different online space (and an online

solution) at each iteration from the same offline space. Our main contribution is that

we have successfully extended GMsFEM to nonlinear problems in the context of both

a continuous Galerkin and interior penalty discontinuous Galerkin formulations.

In Chapter V, we develop a multiscale simulation technique for Brinkman flows.

The Brinkman model is widely accepted in the mathematical modeling of flows in

heterogeneous fields, e.g., flows in vuggy carbonate reservoirs, low porosity filtra-

tion devices and biomedical hydrodynamic studies [48, 56]. In these applications,

the Darcy model is inadequate to capture their essential physics [53, 65], while the

Darcy-Stokes interface model is not feasible since the precise information about the

location and geometry of the interface between vugs and the porous matrix as well as

3



experimentally determined values related to the interface conditions are not directly

accessible.

The Brinkman flow behaves like a Darcy flow and a Stokes flow for regions with

very small permeability values and large permeability values, respectively. Hence,

in comparison with the popular Stokes-Darcy interface model, the Brinkman model

can describe both a Stokes and a Darcy flow without involving a complex interface

condition. Hence, the accuracy and efficiency of the Brinkman flow simulation is of

significant practical interest [38, 32, 70, 73].

In Chapter V, we develop an efficient (multiscale) solver based on the GMsFEM

framework [36] for the Brinkman flow in heterogeneous media. In this chapter,

we focus on the generation of snapshots spaces, and rigorous convergence analysis

of the resulting coarse approximation. Further, we establish stability estimate of

the mixed GMsFEM (in the form of inf-sup conditions) for the proposed reduced

dimension spaces. The convergence analysis extends that for elliptic equations with

high-contrast coefficients [42].

4



II. GENERALIZED MULTISCALE FINITE ELEMENT METHODS. ELLIPTIC

PROBLEMS

II.1 Introduction

In this chapter, we will illustrate the GMsFEM framework in the context of a

linear elliptic equation in high-contrast flow, and refer to below for an outline of the

framework.

1. Offline computation:

– 1.0. Coarse grid generation;

– 1.1. Construction of snapshot space that will be used to compute an offline

space.

– 1.2. Construction of a small dimensional offline space by performing di-

mension reduction in the space of local snapshots.

2. Online computations:

– 2.1. For each input parameter, compute multiscale basis functions;

– 2.2. Solution of a coarse-grid problem for any force term and boundary

condition;

– 2.3. Iterative solvers, if needed.

In the offline computation, we first set up a coarse grid where each coarse-grid

block consists of a connected union of fine-grid blocks. A starting point for con-

structing the offline space is the snapshot space. The snapshot space consists of

local functions that can represent the solution space. In particular, we need to iden-

tify the local features of the solution space (see Figure II.1 for illustration) without
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Figure II.1: Local snapshot

computing the solution vectors. The construction of snapshot space in Step 1.1 in-

volves solving local problems for various choices of input parameters or the local

fine-grid functions can be used.

The offline space is then extracted from the snapshot space via a spectral de-

composition in Step 1.2. This spectral decomposition is typically based on the local

eigenvalue problem. The spectral decomposition enables us to select the high-energy

elements from the snapshot space by choosing those eigenvectors corresponding to

the dominant modes. More precisely, we seek a subspace of the snapshot space such

that it can approximate any element of the snapshot space in the appropriate sense

defined via auxiliary bilinear forms.

For parameter dependent problems, an online computation is needed. In the

online step 2.1, for a given input parameter, we compute the required online coarse

space. In general, we want this to be a small dimensional subspace of the offline

space. This space is computed by performing a spectral decomposition in the offline

6



space via an eigenvalue problem. Furthermore, the eigenvectors corresponding to the

dominant eigenvalues are identified and used to form the online coarse space. The

online coarse space is used within the finite element framework to solve the original

global problem.

Further, we investigate the performance of the oversampling strategy in GMs-

FEM. Oversampling techniques have been developed in the context of MsFEMs [50]

as well as upscaling methods [22]. These techniques use the local solutions in larger

domains to construct multiscale basis functions in the context of MsFEM. We bor-

row that main concept in this chapter. In particular, we use the space of snapshots

in the oversampled regions by constructing a snapshot space spanned by harmonic

functions or dominant eigenvectors of a local spectral problem formulated in the over-

sampled domain. Furthermore, we use special local spectral problems to determine

the dominant modes in the space of snapshots. This spectral problem is motivated

by the analysis and it uses a weighted mass matrix in the oversampled region while

the energy (stiffness) matrix is constructed in the target coarse domain.

We also describe the use of multiple local spectral problems for enhancing the

accuracy of the approximation and discuss their relation to single spectral problems

that use oversampled regions where the latter provides an optimal space.

In the end of this chapter, we consider a snapshot space which consists of harmonic

extensions of random boundary conditions defined in a domain larger than the target

region motivated by the randomized algorithm presented in [58, 49]. Furthermore, we

perform an eigenvalue decomposition in this small space. We study the application

of randomized sampling for GMsFEM in conjunction with adaptivity, where local

multiscale spaces are adaptively enriched. Convergence analysis is provided in [20].

We present representative numerical results to demonstrate our analysis results.

7



 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

2

4

6

8

10

12

14

16

18

x 104

(a) κ1(x)

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

2

4

6

8

10

12

14

16

18
x 104

(b) κ2(x)

Figure II.2: Decomposition of permeability field

The rest of this chapter is arranged in the following. The problem setup is

described in Section II.2. Then we present the calculation of snapshot space, offline

space and online space with a flavor of oversampling strategy in Section II.3. The

global formulation of the basis in the offline space or online space is shown in Section

II.4. We calculate the complexity of GMsFEM for high-contrast flow problems in

Section II.5. Finally, an efficient algorithm for the calculation of the snapshot space

is presented in Section II.6.

II.2 Preliminaries

We consider elliptic equations of the form

−div
(
κ(x;µ)∇u

)
= f inD, (II.1)

where u is prescribed on the boundary ∂D and µ is a parameter. We assume that

κ(x;µ) =
∑Q

q=1 Θ(µq)κq(x) and that the coefficient κ(x; ·) has multiple scales and

high variations (e.g., see Figure II.2).

For the finite element discretization, let T H be a usual conforming partition of the
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computational domain D into finite elements (triangles, quadrilaterals, tetrahedrals,

etc.). We refer to this partition as the coarse grid and assume that each coarse

subregion is partitioned into a connected union of fine grid blocks. The fine grid

partition will be denoted by T h. We use {xi}Nvi=1 (where Nv the number of coarse

nodes) to denote the vertices of the coarse mesh T H , and define the neighborhood

of the node xi by

ωi =
⋃
{Kj ∈ T H ; xi ∈ Kj}. (II.2)

See Figure II.3 for an illustration of neighborhoods and elements subordinated to

the coarse discretization. In particular, the oversampling technique is used in the

construction of local basis functions [40]. We denote by ω+
i an oversampled region

of ωi ⊂ ω+
i . In general, we will consider oversampled regions ω+

i defined by adding

several fine-grid or coarse-grid layers around ωi.

Next, we briefly outline the global coupling and the role of coarse basis functions

for the respective formulations under consideration. In this chapter, we use the

continuous Galerkin formulation, and use ωi as the support of basis functions even

though ω+
i will be used in constructing multiscale basis functions. For the purpose

of this description, we formally denote the basis functions of the online space Von by

ψωik . The solution will be sought as uH(x;µ) =
∑

i,k c
i
kψ

ωi
k (x;µ).

Once the basis functions are identified, the global coupling is given through the

variational form

a(uH , v;µ) = (f, v), for all v ∈ Von, (II.3)

and

a(u, v;µ) =

∫
D

κ(x;µ)∇u∇v.
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Figure II.3: Illustration of a coarse neighborhood and oversampled domain

II.3 Local basis functions

In this section we describe the offline-online computational procedure, and elab-

orate on several applicable choices for the associated bilinear forms to be used in the

coarse space construction. We will consider both oversampling and non-oversampling

spaces.

II.3.1 Snapshot space

We propose several choices for snapshot spaces that are relevant to Galerkin

discretization. We refer to [25] for the application of GMsFEM via the mixed finite

element method.

II.3.1.1 Harmonic extensions in oversampled region

Our first choice of the snapshot space consists of harmonic extension of fine-grid

functions defined on the boundary of ω+
i . More precisely, for each fine-grid function,

δhl (x), which is defined by δhl (x) = δl,k, ∀l, k ∈ Jh(ω
+
i ), where Jh(ω

+
i ) denotes the

10



fine-grid boundary node on ∂ω+
i we solve

−div(κ(x)∇ψ+,snap
l ) = 0 in ω+

i (II.4)

subject to boundary condition, ψ+,snap
l = δhl (x) on ∂ω+

i .

For parameter-dependent one, we can choose several values µj, j = 1, . . . , J (J

denotes the number of parameters used) to generate the snapshot space separately

as above and combine them to obtain the snapshot space (see details in Section

II.3.1.2).

Remark II.3.1. An efficient construction of snapshot space is shown in Section II.6

by an application of the randomized SVD theory.

II.3.1.2 Local spectral basis

We propose to solve the following Neumann eigenvalue problem on an oversam-

pled domain ω+
i :

A+(µj)ψ
+,snap
l,j = λ+,snap

l,j S+(µj)ψ
+,snap
l,j in ω+

i , (II.5)

where µj (j = 1, . . . , J) is a specified set of fixed parameter values, and we em-

phasize that the superscript + signifies that the eigenvalue problem is solved in an

oversampled coarse subdomain ω+
i . The matrices in Eq. (II.5) are defined as

A+(µj) = [a+(µj)mn] =

∫
ω+
i

κ(x;µj)∇φn · ∇φm and

S+(µj) = [s+(µj)mn] =

∫
ω+
i

κ̃(x;µj)φnφm,

(II.6)
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where φn denotes the standard bilinear, fine-scale basis functions and

κ̃ = κ

Nv∑
i=1

H2|∇χ+
i |2. (II.7)

Here H denotes the coarse mesh size.

Remark II.3.2. The application of κ̃ instead of κ comes from the analysis. We note

that the former provides a much more accurate solution than the latter.

We note that Eq. (II.5) is the discretized form of the continuous equation

−div(κ(x;µj)∇ψ+,snap
l,j ) = λ+,snap

l,j κ̃(x;µj)ψ
+,snap
l,j in ω+

i .

After solving Eq. (II.5), we keep the first Li eigenfunctions corresponding to the

dominant eigenvalues (asymptotically vanishing in this case) to form the space

V +
snap = span{ψ+,snap

l,j : 1 ≤ j ≤ J and 1 ≤ l ≤ Li},

for each oversampled coarse neighborhood ω+
i . We note that in the case when ωi

is adjacent to the global boundary, no oversampled domain is used. For the sake

of simplicity, throughout, we denote continuous and discrete solutions by the same

symbol (e.g., ψ+,snap
l,j in the above case).

We reorder the snapshot functions using a single index to create the matrices

R+
snap =

[
ψ+,snap

1 , . . . , ψ+,snap
Msnap

]
and Rsnap =

[
ψsnap

1 , . . . , ψsnap
Msnap

]
,

where ψsnap
j denotes the restriction of ψ+,snap

j to ωi, and Msnap denotes the total

number of functions to keep in the snapshot matrix construction.
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Note that the process above to generate local spectral basis is also applied to

parameter-independent problems.

II.3.2 Offline space

We will discuss two types of offline spaces where the first one will use one spectral

problem in the snapshot space and the other one will use multiple spectral problems

in the snapshot space (following Theorem 3.3 of [13]).

II.3.2.1 Offline space using a single spectral problem

In order to construct an oversampled offline space V +
off or standard neighborhood

offline space Voff, we perform a dimension reduction in the space of snapshots using

an auxiliary spectral decomposition. The main objective is to use the offline space

to efficiently (and accurately) construct a set of multiscale basis functions for each µ

value in the online stage. More precisely, we seek a subspace of the snapshot space

such that it can approximate any element of the snapshot space in the appropriate

sense defined via auxiliary bilinear forms.

At the offline stage the bilinear forms are chosen to be parameter-independent,

such that there is no need to reconstruct the offline space for each µ value. We will

consider the following eigenvalue problems in the space of snapshots:

AoffΨoff
k = λoff

k S
offΨoff

k (II.8)

A+,offΨoff
k = λoff

k A
offΨoff

k (II.9)

AoffΨoff
k = λoff

k S
+,offΨoff

k (II.10)

A+,offΨoff
k = λoff

k S
+,offΨoff

k (II.11)
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where

Aoff = [aoff
mn] =

∫
ωi

κ(x;µ)∇ψsnap
m · ∇ψsnap

n = RT
snapARsnap,

Soff = [soff
mn] =

∫
ωi

κ̃(x;µ)ψsnap
m ψsnap

n = RT
snapSRsnap,

A+,off = [a+,off
mn ] =

∫
ω+
i

κ(x, µ)∇ψ+,snap
m · ∇ψ+,snap

n =
(
R+

snap

)T
A

+
R+

snap,

S+,off = [s+,off
mn ] =

∫
ω+
i

κ̃(x, µ)ψ+,snap
m ψ+,snap

n =
(
R+

snap

)T
S

+
R+

snap.

The coefficients κ(x, µ) and κ̃(x, µ) are parameter-averaged coefficients (see [36]).

Again, we will take κ̃(x, µ) = κ(x, µ) though one can use multiscale partition of unity

functions to compute κ̃(x, µ) (cf. [41]). We note that A
+

and A denote analogous fine

scale matrices as defined in Eq. (II.5), except that parameter-averaged coefficients

are used in the construction, and that A is constructed by integrating only on ωi.

To generate the offline space we then choose the smallest Moff eigenvalues from

one of Eqs. (II.8)-(II.11) and form the corresponding eigenvectors in the respective

space of snapshots by setting ψ+,off
k =

∑
j Ψoff

kjψ
+,snap
j or ψoff

k =
∑

j Ψoff
kjψ

snap
j (for

k = 1, . . . ,Moff), where Ψoff
kj are the coordinates of the vector Ψoff

k . We then create

the offline matrices

R+
off =

[
ψ+,off

1 , . . . , ψ+,off
Moff

]
and Roff =

[
ψoff

1 , . . . , ψ
off
Moff

]
to be used in the online space construction.

Our analysis in [40] shows that the convergence of the GMsFEM is proportional

to the reciprocal of the eigenvalue that the corresponding eigenvector is not included

in the coarse space. We have compared the decay of the reciprocal of eigenvalues for

14



Eqs. (II.8), (II.9), and (II.11) (by choosing a subdomain for κ(x) in Figure II.4(a)).
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(a) Permeability field used in Figure II.5
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(b) Permeability field 2

Figure II.4: Permeability fields

We plot the decay of the eigenvalues for a coarse block in Figure II.5 (note

logarithmic y-scale). As we observe from this figure that the decay of eigenvalues

corresponding to Eq. (II.11) (when oversampling is used in formulating the eigenvalue

problem) is faster compared to Eq. (II.8) (when no oversampling is used).

Another view on local spectral problem is that we seek the subspace V ωi
off such

that for any µ and ψ ∈ V ωi
snapshots(µ) (V ωi

snapshots(µ) is the space of snapshots which are

computed for a given µ), there exists ψ0 ∈ V ωi
off , such that

aoff
ωi

(ψ − ψ0, ψ − ψ0;µ) � δsoff
ωi

(ψ − ψ0, ψ − ψ0;µ), (II.12)

where aoff
ωi

(φ, φ;µ) and soff
ωi

(φ, φ;µ) are auxiliary bilinear forms. In computations, this

involves solving an eigenvalue problem with a mass matrix and the basis functions are

selected based on dominant eigenvalues as described above. Note that this eigenvalue

problem is formed in the space of snapshots.
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Figure II.5: Eigenvalue decay on log-scale against the number of eigenvalues. x-axis
indicates the number of eigenvalue and y-axis indicates the inverse of the eigenvalue
(on log-scale)

Remark II.3.3. In general, aoff
ωi

and soff
ωi

contain partition of unity functions, penalty

terms, and other discretization factors that appear in coarse-grid finite element for-

mulations. The norm corresponding to soff
ωi

needs to be stronger, in general, to allow

the decay of eigenvalues. However, one can also take soff
ωi

to be weaker.
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II.3.2.2 Offline space using multiple spectral problems

In this subsection, we introduce an offline space that uses both Eq. (II.8) and

Eq. (II.11). In particular, we take a union of these eigenvectors to construct an offline

space. As described above, we use ψ+,off
k =

∑
j Ψ+,off

kj ψ+,snap
j (for k = 1, . . . ,M+,off)

or ψoff
k =

∑
j Ψoff

kjψ
snap
j (for k = 1, . . . ,Moff), where Ψ+,off

kj are the coordinates of the

vector Ψoff
k in Eq. (II.11) and Ψoff

kj are the coordinates of the vector Ψoff
k in Eq. (II.8).

Then, the offline space is constructed as a union of ψoff
k and ψ+,off

k after eliminating

linearly dependent vectors. Refer to [40] for the convergence of this type of snapshot

as well as the numerical tests.

II.3.3 Online space

We only describe the online space using a single spectral problem. One can

analogously construct the online space using multiple spectral problems. For the

parameter-dependent case, we next construct the associated online coarse space

Von(µ) for each fixed µ value on each coarse subdomain. In principle, we want this

to be a small dimensional subspace of the offline space for computational efficiency.

The online coarse space will be used within the finite element framework to solve

the original global problem, where a continuous Galerkin coupling of the multiscale

basis functions is used to compute the global solution. In particular, we seek a

subspace of the respective offline space such that it can approximate any element

of the offline space in an appropriate sense. We note that at the online stage, the

bilinear forms are chosen to be parameter-dependent. Similar analysis as in Section
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II.3.2 motivates the following eigenvalue problems posed in the offline space:

Aon(µ)Ψon
k = λon

k S
on(µ)Ψon

k (II.13)

A+,on(µ)Ψon
k = λon

k A
on(µ)Ψon

k (II.14)

Aon(µ)Ψon
k = λon

k S
+,on(µ)Ψon

k (II.15)

where

Aon(µ) = [aon(µ)mn] =

∫
ωi

κ(x;µ)∇ψoff
m · ∇ψoff

n = RT
offA(µ)Roff,

Son(µ) = [son(µ)mn] =

∫
ωi

κ̃(x;µ)ψoff
m ψ

off
n = RT

offS(µ)Roff,

A+,on(µ) = [a+,on
mn (µ)] =

∫
ω+
i

κ(x, µ)∇ψ+,off
m · ∇ψ+,off

n =
(
R+

off

)T
A+(µ)R+

off,

S+,on(µ) = [s+,on
mn (µ)] =

∫
ω+
i

κ̃(x, µ)ψ+,off
m ψ+,off

n =
(
R+

off

)T
S+(µ)R+

off,

and κ(x;µ) and κ̃(x;µ) are now parameter dependent. Again, we will take κ̃(x, µ) =

κ(x, µ) in our simulations though one can use multiscale partition of unity functions

to compute κ̃(x, µ) (cf. [41]).

To generate the online space we then choose the smallest Mon eigenvalues from

one of Eqs. (II.13)-(II.15) and form the corresponding eigenvectors in the offline space

by setting ψon
k =

∑
j Ψon

kjψ
off
j (for k = 1, . . . ,Mon), where Ψon

kj are the coordinates of

the vector Ψon
k .

At the online stage, for each parameter value, multiscale basis functions are com-

puted based on each local coarse region. In particular, for each ωi and for each

input parameter, we will formulate a quotient for finding a subspace of V ωi
on (µ) where

the space will be constructed for each µ (independent of source terms). We seek a

subspace V ωi
on (µ) of V ωi

off such that for each ψ ∈ V ωi
off , there exists ψ0 ∈ V ωi

on (µ) such
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Figure II.6: Schematic description of basis function construction. Left: subdomain
ωi. Right-Top: Selected eigenvector ψ`i corresponding to small eigenvalue. Right-
Bottom: product χiψ

`
i where χi is the initial basis function of node i.

that

aon
ωi

(ψ − ψ0, ψ − ψ0;µ) � δson
ωi

(ψ − ψ0, ψ − ψ0;µ) (II.16)

for some prescribed error tolerance δ (different from the one in the offline stage), and

the choices of aon
ωi

and son
ωi

. The corresponding eigenvalue problem is formed in the

space of offline basis functions.

We note that an assumption as in Remark II.3.3 is needed for obtaining a conver-

gence result and, in general, aon
ωi

and son
ωi

contain partition of unity functions, penalty

terms, and other discretization factors that appear in finite element formulations.

II.4 Global coupling

Once multiscale basis functions are constructed, we project the global solution

onto the space of basis functions. One can choose different global coupling methods

and we present some of them.

Basis functions are computed by selecting a number of eigenvalues (starting with

small ones) and multiplying corresponding eigenvectors by χi (see Figure II.6 for the

illustration).

Galerkin coupling. For a conforming Galerkin formulation, we need to generate
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conforming global basis functions. We modify V ωi
on by multiplying functions in this

space with partition of unity functions χi.

We recall that χi are initial multiscale basis functions satisfying

−div (κ(x;µ)∇χi) = 0 K ∈ ωi (II.17)

χi = gi on ∂K,

for all K ∈ ωi, where gi is assumed to be linear.

Remark II.4.1. Actually, we can using coarse scale nodal basis for the partition of

unity function χi in the simulation. We admit that the error will increase slightly in

this way.

The subsequent global space has the same dimension defined by spanj(χiψ
ωi,on
j ),

where ψωi,on
j ∈ V ωi

on (µ) and χi is supported in ωi. Then, the Galerkin approximation

can be written as

uGms(x;µ) =
∑
i,j

cijχi(x)ψωi,on
j (x;µ).

If we introduce

V G
on = spani,j(χiψ

ωi,on
j ), (II.18)

then Galerkin formulation is given by

a(uGms, v;µ) = (f, v), ∀ v ∈ V G
on. (II.19)

Petrov-Galerkin coupling. We denote V PG
on = spani,j{ψωij } and write the PG

approximation of the solution as

uPG
ms (x;µ) =

∑
i,j

cijψ
ωi
j (x;µ).

20



Then the Petrov-Galerkin formulation is given by

a(uPG
ms , v;µ) = (f, v), ∀ v ∈ V G

on. (II.20)

One can use various other coupling mechanisms, and the application of Symmetric

Interior Penalty Discontinuous Galerkin coupling will be discussed in Chapter IV.

II.5 Discussion on complexity

In this section, we will discuss the computational complexity of the GMsFEM

for high contrast flow problems. First, the offline and then the online computational

complexity will be discussed.

Notice that the offline computations consist of the generation of snapshot space

V ωi
snap. Recall that for each coarse neighborhood ωi, we have to solve n local prob-

lems defined in (II.4), where n is the number of fine-grid boundary nodes of the

coarse neighborhoods and is proportional to (H/h)d−1, where d is the dimension of

the computational domain. Since there are totally N coarse neighborhoods and N

is proportional to H−d, the offline stage requires the solution of O(H−1h1−d) local

problems. For computational times, we assume that each local problem is solved by

the conjugate gradient method and the computational times is O((H/h)d). Thus,

the total computational time is O((H/h)d−1h−d). We observe that this offline com-

putational time is equivalent to the total computational times for solving the fine

grid problem on the whole computational domain O((H/h)d−1) times. However, for

the offline computational times presented above, we assume that these problems are

solved serially. In fact, we achieve much more efficient solves of local problems by

computing these in parallel. We emphasize that, even though we spend more time in

this offline stage than solving the fine grid problem, the resulting basis functions can

be used repeatedly for various source functions and boundary conditions to obtain a
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much more reduced global problem. Hence, if one needs to solve the high contrast

problem many times, using our GMsFEM is still better than solving the problems

directly by discretization on fine grid. Regarding storage complexity, we notice that

each basis function needs a space of O((H/h)d) for storage. Hence, the total storage

space is O((H/h)d−1h−d).

II.6 Randomized snapshot. Efficient calculation of snapshot

In this section, we introduce an efficient algorithm for the calculation of the

snapshot space. The calculation of snapshot spaces may be costly if many local

problems are required to solve. We show that this efficiency can be achieved using

a moderate quantity of local solutions (or snapshot vectors) with random boundary

conditions on oversampled regions with zero forcing.

In the following, we generate inexpensive snapshots using random boundary con-

ditions. That is, instead of solving Eq. (II.4) for each fine boundary node, we solve

a small number of local problems imposed with random boundary conditions,

ψ+,rsnap
l,ωi

= rl on ∂ω+
i , (II.21)

where rl are independent identically distributed (i.i.d.) standard Gaussian random

vectors on the fine-grid nodes of the boundary. Then, we can obtain the local random

snapshot on the target domain ωi by restricting the solution of this local problem,

ψ+,rsnap
l,ωi

to ωi (which is denoted by ψrsnap
l,ωi

). The space generated by ψrsnap
l,ωi

is a

subspace of the space generated by all local snapshots Ψsnap
ωi

. Therefore, there exists

a random matrix R with rows composed by the random boundary vectors rl, such
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that,

Ψrsnap
ωi

= RΨsnap
ωi

. (II.22)

Using these snapshots, we follow the procedure in the previous section to generate

multiscale basis functions.

We summarize the algorithm in Table II.6. We denote the buffer number pωibf for

each ωi and the number of local basis functions by kωinb for each ωi. Later on, we use

the same buffer number for all ωi and simply use the notation pbf.

Table II.1: Randomized GMsFEM Algorithm

Input: Fine grid size h, coarse grid size H, oversampling size t, buffer number
pωibf for each ωi, the number of local basis functions kωinb for each ωi;

output: Coarse-scale solution uH .
1. Generate oversampling region for each coarse block: T H , T h, and ω+

i ;
2. Generate kωinb + pωibf random vectors rl and obtain randomized snapshots

in ω+
i (Eq. (II.21));

Add a snapshot that represents the constant function on ω+
i ;

3. Obtain kωinb offline basis by a spectral decomposition (Eq. (II.8));
4. Construct multiscale basis functions and solve (Eq. (II.3) ).

We present representative numerical experiments that demonstrate the perfor-

mance of the randomized snapshots algorithm. We take the domain D as a square,

set the forcing term f = 0 and use a linear boundary condition for the problem (II.1),

that is, u = x1 + x2 on ∂D where xi are the Cartesian components of each point. In

our numerical simulations, we use a coarse grid of 10 × 10 blocks, and each coarse

grid block is divided into 10 × 10 fine grid blocks. Thus, the whole computational

domain is partitioned by a 100 × 100 fine grid. We use a few multiscale basis func-
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tions per coarse block. These coarse basis set defines the problem size. We assume

that the fine-scale solution is obtained by discretizing problem (II.1) by the classical

conforming piecewise bilinear elements on the fine grid.

In Table II.2, a comparison between using all snapshots (refer to Eq. (II.4)) and

the randomized snapshots (refer to Eq. (II.21)) is shown. The first column shows

the dimension of the offline space for each test. We choose 5, 10, 15, 20, and 25 basis

functions per each interior node (in addition to the constant eigenvectors) and use an

oversampling layer that consists of three fine-grid blocks (t = 3). The offline space

Voff is defined via a local spectral decomposition as specified in Subsection II.3.2.

The snapshot ratio is calculated as the number of randomized snapshots divided

by the number of the full snapshots. This ratio is displayed in the second column.

Here, the total number of snapshots refers to the number of boundary nodes of the

oversampled region.

In our numerical results, an oversampled region has 26 × 26 fine-grid dimension

and there are total 104 snapshots if all boundary nodes are used. For example, when

the dimension of the offline space is 931, we only compute 14 snapshots instead of

104. This ratio gives the information on the computational savings of our algorithm

compared to the previous algorithm using all snapshots. The next two columns shows

the relative weighted L2 error and relative energy error using the full snapshots. The

weighted L2 norm and energy norm are defined as

‖u‖L2
κ

=

(∫
D

κu2

) 1
2

and ‖u‖H1
κ

=

(∫
D

κ|∇u|2
) 1

2

,

respectively. Further, the relative weighted L2 error and relative energy error using

the randomized snapshots are shown in the last two columns.

From Table II.2, we observe that the randomized algorithm converges in the sense
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that the relative error decreases as we increase the dimension of the coarse space.

Comparing the fourth column with the last column, we conclude that the accuracy

when using the randomized snapshots is similar to using all snapshot vectors. The

latter has much larger dimension as shown in the second column that shows the

percentage of the snapshots computed. Therefore, the proposed method is an order

of magnitude faster while having comparable accuracy. For example, when the di-

mension of the offline space is 931, the accuracy of the methods is comparable while

randomized snapshot approach uses only 13.46% of the snapshots. Similar results

are obtained when the fine mesh is refined to 200× 200. In particular, with the of-

fline space with the dimension 931 and the snapshot ratio of 10%, we obtain similar

L2
κ(D) and H1

κ(D) errors which are 1.28% and 24.02%. Here, pbf refers to the buffer

that is used to compute the eigenvectors. For example, pbf = 4 means that we use

n+ 4 snapshots to compute n basis functions for each coarse block.

Table II.2: Numerical results comparing the results between using all harmonic snap-
shots and the snapshots generated by random boundary conditions with pbf = 4, κ as
shown in Figure II.4(b). In the parenthesis, we show a higher value of the snapshot
ratio.

dim(Voff) Snapshot ratio (%)
All snapshots (%) Few randomized snapshots (%)
L2
κ(D) H1

κ(D) L2
κ(D) H1

κ(D)

526 8.65(15.38) 0.87 18.15 2.81(1.38) 44.95(26.04)
931 13.46 0.64 14.85 1.04 23.61

1336 18.27 0.55 13.59 0.70 18.08
1741 23.08 0.50 12.69 0.64 15.91
2146 27.88 – – 0.54 14.16

In Figure II.7, the fine-scale solution, coarse-scale solution using all snapshots

and coarse-scale solution using randomized snapshots are shown. They are obtained

using the second test (when the dimension of the offline space is 931) in Table II.2.
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(a) Fine-scale solution.
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(b) coarse-scale solution using
the full snapshots
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(c) coarse-scale solution using
the randomized snapshots

Figure II.7: The fine-scale solution and coarse-scale solutions correspond to Fig-
ure II.4(b).

These two coarse-scale solutions are a good approximation of the fine-scale solution.

II.7 Concluding remarks

In this chapter, we briefly introduce the GMsFEM, including the construction

of the snapshot space, the offline space, the global formulation, and an efficient

calculation of the snapshot space in the context of oversampling strategy based on

the randomized SVD theory.

There are several potential improvements in the construction of snapshots that

can be done in future. In the construction of harmonic snapshots, we can use network

models (see e.g., [15]) to reduce the computational cost. The main idea of network

models is to construct a low dimensional network approximation of the solution.

26



III. ADAPTIVITY FOR GENERALIZED MULTISCALE FINITE ELEMENT

METHODS. ELLIPTIC PROBLEMS

III.1 Introduction

In this chapter, we present a posterior error estimate for the GMsFEM based

on the result presented in [26]. In previous findings [42, 40], a priori error bounds

for the GMsFEM are derived for linear elliptic equations. It was shown that the

convergence rate is proportional to the inverse of the eigenvalue that corresponds

to the first eigenvector which is not included in the coarse space. Thus, adding

more basis functions will improve the accuracy and it is important to include the

eigenvectors that correspond to very small eigenvalues ([42]). Rigorous a posteriori

error estimators are needed to perform an adaptive enrichment which is a subject of

this chapter. We would like to point out that there are many related activities in

designing a posteriori error estimates [28, 30, 5, 52, 63, 69] for global reduced models.

The main difference is that our error estimators are based on special local eigenvalue

problem and use the eigenstructure of the offline space.

We consider two kinds of error indicators, where one is based on the L2-norm of

the local residual and the other is based on the weighted H−1-norm (we will also call

it H−1-norm based) of the local residual where the weight is related to the coefficient

of the elliptic equation. We show that the use of weighted H−1-norm residual gives

a more robust error indicator which works well for cases with high contrast media.

The convergence analysis of the method is given. In our analysis, we do not consider

the error due to the fine-grid discretization of local problems and only study the

errors due to the enrichment. In this regard, we assume that the error is largely due

to coarse-grid discretization. The fine-grid discretization error can be considered in
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general (e.g., as in [5, 30]) and this will give an additional error estimator. The pro-

posed error indicators allow adding multiscale basis functions in the regions detected

by the error indicator. The multiscale basis functions are selected by choosing next

important eigenvectors (based on the increase of the eigenvalues) from the offline

space.

The convergence proof of our adaptive enrichment algorithm is based on the tech-

niques used for proving the convergence of adaptive refinement method for classical

conforming finite element methods for second order elliptic problems [17, 59]. Con-

trary to [59] where mesh refinement is considered, we prove the convergence of our

adaptive enrichment algorithm as the approximation space is enriched for a fixed

coarse mesh size. The convergence is based on some previously developed spectral

estimates. In particular, we use both stability of the coarse-grid projection and the

convergence of spectral interpolation. Another key idea is that our error indicators

are defined in a variational sense instead of the pointwise residual of the differential

equation. By using this variational definition, we avoid the use of the gradient of

the multiscale coefficient. Moreover, our convergence analysis does not require that

the gradient of the coefficient is bounded, which is not the case for high-contrast

multiscale flow problems.

In the proposed error indicators, we consider the use of snapshot space in GMs-

FEM. In this case, the residual contains an irreducible error due to the difference

between the snapshot solution and the fine-grid solution. We consider the use of

snapshot space for approximating the residual error in the case of weighted H−1-

norm of the local residual.

We present several numerical tests by considering two different high-contrast

multiscale permeability fields. We study both error indicators based on the L2-

norm of the local residual and the weighted H−1-norm of the local residual. Our
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numerical results show that the use of weighted H−1-norm residual gives a more

robust error indicator which works well for cases with high contrast media. In our

numerical results, we also compare the results obtained by the proposed indicators

and the exact error indicator which is computed by considering the energy norm of

the difference between the fine-scale solution and the offline solution. Our numerical

results show that the use of the exact error indicator gives nearly similar results to

the case of using weighted H−1 error indicator. In our studies, we also consider the

errors between the fine-grid solution and the offline solution as well as the snapshot

solution and the offline solution. All cases show that the proposed error indicator

is robust and can be used to detect the regions where additional multiscale basis

functions are needed.

The rest of this chapter is organized in the following way. In Section III.2, we

recall the basic idea of GMsFEM and our main problem. Then in Section III.3,

we elaborate the adaptive algorithm and state the main convergence results related

to this algorithm and analyze the complexity of this algorithm in Section III.4. In

Section III.5, numerical results are illustrated to test the performance of this adaptive

algorithm. The proofs of the main results are presented in Section III.6. We conclude

with Section III.7.

III.2 Preliminaries

In this chapter, we consider high-contrast flow problems of the form

−div
(
κ(x)∇u

)
= f in D. (III.1)

We assume that κ(x) is a heterogeneous coefficient with multiple scales and very

high contrast (Figure II.4).

To discretize (III.1), we apply the same notion of fine and coarse grids as intro-
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duced in Section II.2. Let V be the conforming finite element space with respect to

the fine-scale partition T h. We assume u ∈ V is the fine-scale solution satisfying

a(u, v) = (f, v), v ∈ V, (III.2)

where a(u, v) =

∫
D

κ(x)∇u · ∇v dx, and (f, v) =

∫
D

fv dx.

The multiscale solution ums satisfies

a(ums, v) = (f, v) for all v ∈ Voff. (III.3)

We remark that Voff ⊂ V . We emphasize the use of ωi to denote a coarse neighbor-

hood and K a coarse element. Refer to Chapter II for the construction of the local

coarse spaces and the global formulation.

III.3 A posteriori error estimate and adaptive enrichment

In this section, we will derive an a posteriori error indicator for the error u−ums in

energy norm. We will then use the error indicator to develop an adaptive enrichment

algorithm. The a posteriori error indicator gives an estimate of the local error on

the coarse grid regions ωi, and we can then add more basis accordingly to improve

the solution.

We will give two kinds of error indicators, one is based on the L2-norm of the

local residual and the other is based on the weighted H−1-norm of the local residual

(for simplicity, we will also call it H−1-norm based indicator). The L2-norm residual

is also used in the classical adaptive finite element method. In our case, this type of

error indicator works well when the coefficient does not contain high contrast region.

We will provide a quantitative explanation for this in the next section. On the other

hand, the H−1-norm based residual gives a more robust error indicator which works
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well for cases with high contrast media. This section is devoted to the derivation of

the a posteriori error indicator and the corresponding adaptive enrichment algorithm.

The convergence analysis of the method will be given in section III.6.

Next we will give the definitions of the L2-based and H−1-based residuals.

L2-based residual:

Let ωi be a coarse grid region. We define a linear functional Qi(v) on L2(ωi) by

Qi(v) =

∫
ωi

fvχi −
∫
ωi

a∇ums · ∇(vχi). (III.4)

The norm of Qi is defined as

‖Qi‖ = sup
v∈L2(ωi)

|Qi(v)|
‖v‖L2(ωi)

. (III.5)

H−1-based residual:

Let ωi be a coarse grid region and let Vi = H1
0 (ωi). We define a linear functional

Ri(v) on Vi by

Ri(v) =

∫
ωi

fv −
∫
ωi

a∇ums · ∇v. (III.6)

The norm of Ri is defined as

‖Ri‖V ∗i = sup
v∈Vi

|Ri(v)|
‖v‖Vi

, (III.7)

where ‖v‖Vi = (
∫
ωi
κ(x)|∇v|2 dx)

1
2 .

We recall that, for each ωi, the eigenvalues λωij are ordered increasingly, and the

eigenfunctions corresponding to λωi1 , · · · , λωili are used in the construction of Voff. We

also define κ̃i = minx∈ωi κ̃(x).

In section III.6, we will prove the following theorem.
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Theorem III.3.1. Let u and ums ∈ Voff be the solutions of the fine scale problem

(III.2) and the multiscale problem (III.3) respectively. Assume that

Voff = span{ψi,k : 1 ≤ i ≤ N and 1 ≤ k ≤ li}

where ψi,k = χiψ
ωi,off
k and li is the number of eigenfunctions used for the coarse

neighborhood ωi. Then

‖u− ums‖2
V ≤ Cerr

N∑
i=1

‖Qi‖2(κ̃iλ
ωi
li+1)−1, (III.8)

‖u− ums‖2
V ≤ Cerr

N∑
i=1

‖Ri‖2
V ∗i

(λωili+1)−1. (III.9)

where Cerr is a uniform constant, ‖Qi‖ and ‖Ri‖V ∗i are respectively the L2-based and

H−1-based residuals. Moreover, λωili+1 denotes the (li + 1)-th eigenvalue over coarse

neighborhood ωi, and corresponds to the first eigenvector that is not included in the

construction of Voff.

From (III.8) and (III.9), we see that the norms ‖Qi‖ and ‖Ri‖V ∗i give indications

on the size of the energy norm error ‖u − ums‖V . Even though (III.8) and (III.9)

have the same form, we emphasize that they give different convergence behavior in

the high contrast case.

We will now present the adaptive enrichment algorithm. We use m ≥ 1 to

represent the enrichment level and V m
off be the solution space at level m. For each

coarse region, we use lmi be the number of eigenfunctions used at the enrichment

level m for the coarse region ωi.

Adaptive enrichment algorithm: Choose a fixed number θ with, 0 < θ < 1.

Choose also an initial offline space V 1
off by specifying a fixed number of basis functions
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for each coarse neighborhood, and this number is denoted by l1i . Then, we will

generate a sequence of spaces V m
off and a sequence of multiscale solutions umms obtained

by solving (III.3). Specifically, for each m = 1, 2, · · · , we perform the following

calculations:

Step 1: Find the multiscale solution in the current space. That is, find umms ∈ V m
off

such that

a(umms, v) = (f, v) for all v ∈ V m
off . (III.10)

Step 2: Compute the local residual. For each coarse region ωi, we compute

η2
i =


‖Qi‖2(κ̃iλ

ωi
lmi +1)−1, for L2-based residual

‖Ri‖2
V ∗i

(λωilmi +1)−1, for H−1-based residual

where

Qi(v)=

∫
ωi

fvχi −
∫
ωi

a∇umms · ∇(vχi)

Ri(v)=

∫
ωi

fv −
∫
ωi

a∇umms · ∇v

and their norms are defined in (III.5) and (III.7) respectively. Next, we re-enumerate

the coarse neighborhoods so that the above local residuals η2
i are arranged in de-

creasing order η2
1 ≥ η2

2 ≥ · · · ≥ η2
N . That is, in the new enumeration, the coarse

neighborhood ω1 has the largest residual η2
1 and the coarse neighborhood ωN has the

least residual η2
N .

Step 3: Find the coarse regions where enrichment is needed. We choose the smallest

integer k such that

θ

N∑
i=1

η2
i ≤

k∑
i=1

η2
i . (III.11)
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The above inequality says that the total residual in the coarse neighborhoods ω1,ω2,· · · ,

ωk is just larger than a percentage of the total residual, and the percentage θ is a

user defined quantity chosen in the beginning of the simulation. These coarse neigh-

borhoods ω1, ω2, · · · , ωk are the regions where the solution contains the largest error.

Step 4: Enrich the space. For each i = 1, 2, · · · , k, we add basis function for the

region ωi according to the following rule. Let s be the smallest positive integer such

that λlmi +s+1 is large enough (see the proof of Theorem III.3.3) compared with λlmi +1.

Then we include the eigenfunctions Ψoff
lmi +1, · · · ,Ψoff

lmi +s in the construction of the basis

functions. The resulting space is denoted as V m+1
off . Mathematically, the space V m+1

off

is defined as

V m+1
off = V m

off + span ∪ki=1 ∪
lmi +s

j=lmi +1{ψi,j}

where ψi,j = χiψ
ωi,off
j and ψωi,off

j =
∑li

r=1 Ψoff
jrψ

snap
r , with j = lmi + 1, · · · , lmi + s,

denote the new basis functions obtained by the eigenfunctions Ψoff
lmi +1, · · · ,Ψoff

lmi +s. In

addition, we set lm+1
i = lmi + s.

Remark III.3.2. The algorithm above can be described as follows. We start with an

initial space with a small number of basis functions for each coarse grid block. Then

we solve the problem and compute the error estimator. We locate the coarse grid

blocks with large errors and add more basis functions for these coarse grid blocks. This

procedure is repeated until the error goes below a certain tolerance. We remark that

the adaptive strategy belongs to the online process, because it is the actual simulation.

On the other hand, the generation of basis functions belongs to the offline process.

About stopping criteria for this algorithm, one can stop the algorithm when the

total number of basis functions reach a certain level. On the other hand, one can stop

the algorithm when the value of the error indicator goes below a certain tolerance.

We remark that the choice of s above will ensure the convergence of the enrich-
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ment algorithm, and in practice, the value of s is easy to obtain. We also remark that

the choice of k defined in (III.11) is called the Dorlfer’s bulk marking strategy [28].

Moreover, contrary to classical adaptive refinement methods, the total number of

basis functions that we can add is bounded by the dimension of the snapshot space.

Thus, the condition (III.11) can be modified as follows. We choose the smallest

integer k such that

θ

N∑
i=1

η2
i ≤

∑
i∈I

η2
i ,

where the index set I is a subset of {1, 2, · · · , k} and contains indices j such that lmj

is less than the maximum number of eigenfunctions for the region ωj.

We now describe how the norms ‖Qi‖ and ‖Ri‖V ∗i are computed. Let Wi be the

diagonal matrix containing the nodal values of the fine grid cut-off function χi in the

diagonal. Then the norm ‖Qi‖ can be computed as

‖Qi‖ = ‖Wi(R
T
0 F0 − ART

0 U0)‖. (III.12)

According to the Riez representation theorem, the norm ‖Ri‖V ∗i can be computed as

follows. Let zi be the solution of

∫
ωi

a∇zi · ∇v = Ri(v), for all v ∈ Vi. (III.13)

Then we have ‖Ri‖V ∗i = ‖zi‖Vi . Thus, to find the norm ‖Ri‖V ∗i , we need to solve a

local problem on each coarse region ωi.

Finally, we state the convergence theorem.

Theorem III.3.3. Let u be the solution of the fine scale problem (III.2) and let

umms, m = 1, 2, · · · , be the sequence of solutions obtained by the adaptive enrichment

algorithm. Then, there are positive constants τ, δ, ρ, L1 and L2 such that the following

35



contracting property holds

‖u− um+1
ms ‖2

V +
τ

1 + τδL2

N∑
i=1

Sm+1(ωi)
2 ≤ ε

(
‖u− umms‖2

V +
τ

1 + τδL2

N∑
i=1

Sm(ωi)
2
)
,

where Sm(ωi) is defined in (III.26) and Cerr is defined in Theorem III.3.1. Note that

0 < ε < 1 and

ε = max(1− θ2

L1(1 + τδL2)
,
2Cerr

τL1

+ ρ).

We remark that the precise definitions of the constants τ, δ, ρ, L1 and L2 are given

in Section III.6.

III.4 Discussion on complexity

In this section, we will discuss the complexity of the multiscale enrichment al-

gorithm proposed above. Refer to Section II.5 for the complexity of GMsFEM. We

focus on the online computation only in this section for the brevity.

The computational complexity of the online stage can be divided into two parts:

(1) the projection of the right hand side onto multiscale space; (2) the computation

of the weighted H−1 norm of the local residual if the proposed indicator is used.

Because the right hand side f is an online quantity, the projection of the right hand

side onto the multiscale space at any iteration will require performing calculations on

the fine grid. Even though these calculations are inexpensive, our main goal is to keep

the computations in the online stage independent of the fine-grid computations. This

can be avoided if the right hand side (or a set of right hand sides) can be represented

with the multiscale basis functions in the offline stage. For example, if we assume

that the right hand side is represented by a few multiscale basis functions, then

its projection onto multiscale basis functions in each iteration will require only a

few updates. The assumption that the right hand side can be represented by the
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multiscale basis function is practical as one can a priori determine the space of right

hand side functions (e.g., in subsurface applications) and determine its subspace

that can be represented accurately using multiscale basis functions. In this regard,

our approach shares similarities with a posteriori error estimators in reduced basis

methods ([66]) where the online stage includes proposing a new parameter µ, in

κ(x, µ). As for the computations of the weighted H−1 norm of local residual, one

can use approximate snapshot spaces to approximate this quantity as we show in

Section III.5.4.

III.5 Numerical results

In this section, we will present some numerical experiments to show the perfor-

mance of the error indicators and the adaptive enrichment algorithm. We take the

domain D as a square, set the forcing term f = 1 and use a linear boundary condi-

tion for the problem (III.1). In our numerical simulations, we use a 20 × 20 coarse

grid, and each coarse grid block is divided into 5 × 5 fine grid blocks. Thus, the

whole computational domain is partitioned by a 100×100 fine grid. We assume that

the fine-scale solution is obtained by discretizing (III.1) by the classical conforming

piecewise bilinear elements on the fine grid. To test the performance of our algo-

rithm, we consider two permeability fields κ as depicted in Figure II.4. We obtain

similar numerical results for these cases, and therefore we will mainly demonstrate

the numerical results for the first permeability field (Figure II.4(b)).

Below, we list the indicators used in our simulations. In particular, we will recall

the definitions of the L2-based and H−1-based error indicators. For comparison

purpose, we also use an indicator computed by the exact error in energy norm. We

remark that the indicators are computed for each coarse neighborhood ωi and are

defined as follows.
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• The indicator constructed using the weighted H−1-based residual is

ηEn
ωi

= ‖Ri‖2
V ∗i

(λωilmi +1)−1 (III.14)

and we name it the proposed indicator.

• The indicator constructed using the L2-based residual is

ηL2
ωi

= ‖Qi‖2(κ̃iλ
ωi
lmi +1)−1 (III.15)

and we name it the L2 indicator.

• The indicator constructed using the exact energy error is

ηEx
ωi

= ‖u− ums‖2
Vi

(III.16)

and name it the exact indicator.

We recall that, in the above definitions, the norms ‖Qi‖ and ‖Ri‖V ∗i are com-

puted in the way described in (III.12) and (III.13) respectively. For each enrichment

level, we will compute the multiscale solution (Step 1) and the corresponding error

indicators (Step 2). The indicators ηEx
ωi

, ηEn
ωi

and ηL2
ωi

are then ordered in decreasing

order. To enrich the approximation space, we select a few coarse neighborhoods such

that (III.11) holds for a specific value of θ (Step 3). In our simulations, we consider

θ = 0.7 and 0.2. Finally, for selected coarse neighborhoods, we will enrich the offline

space by adding more basis functions (Step 4).

We will consider two types of snapshot spaces, namely the space spanned by all

κ-harmonic extensions and the space spanned by all fine-scale conforming piecewise

bilinear functions. The sequence of offline basis functions is then obtained by solving
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the local spectral problem (II.8) on the space of snapshots. We will call the first

type of basis functions as harmonic basis and the second type of basis functions as

spectral basis. In addition, we use the notations ηH,En
ωi

, ηH,L2
ωi

and ηH,Ex
ωi

to denote the

H−1-based, L2-based and exact error indicators for the case when the offline space

is formed by harmonic basis. Similarly, we use the notations ηU,En
ωi

, ηU,L2
ωi

and ηU,Ex
ωi

to denote the H−1-based, L2-based and exact error indicators for the case when the

offline space is formed by spectral basis (here, superscript U stands for the fact that

the snapshot space consists of all fine-grid unit vectors).

In the following, we summarize the numerical examples we considered in this

chapter.

• Numerical results with harmonic basis (see Section III.5.1). We will

present numerical results to test the performance of the error indicator ηH, En
ωi

and the adaptive enrichment algorithm with θ = 0.7 and θ = 0.2. We also

compare our results with the use of ηH,Ex
ωi

with θ = 0.7.

• Numerical results with spectral basis (see Section III.5.2). We will

present numerical results to test the performance of the error indicator ηU, En
ωi

and the adaptive enrichment algorithm with θ = 0.7 and θ = 0.2. We also

compare our results with the use of ηU,Ex
ωi

with θ = 0.7.

• Numerical results with L2 indicator (see Section III.5.3). We will

present numerical results to test the performance of the error indicator ηH,L2
ωi

and the adaptive enrichment algorithm with θ = 0.7.

• Numerical results when the proposed indicator is computed in the

snapshot space (see Section III.5.4). We will present numerical results to

test the performance of the error indicator ηH,En
ωi

and the adaptive enrichment
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algorithm with θ = 0.7. In this case, the norm ‖Ri‖V ∗i is computed in the

snapshot space instead of the fine-grid space.

In the following, we will give a brief summary of our conclusions before discussing

the numerical results.

• The use of both ηH, En
ωi

and ηU, En
ωi

gives a convergent sequence of numerical

solutions. This verfies the convergence of our adaptive GMsFEM.

• The performance of the proposed indicators ηH, En
ωi

and ηU, En
ωi

is similar to that

of the exact indicators ηH,Ex
ωi

and ηU,Ex
ωi

. Thus, the proposed indicator gives a

good estimate of the exact error.

• The performance of the weighted H−1-based indicator is much better than that

of the L2-based indicator for high-contrast problems.

• The use of the snapshot space to compute ηH, En
ωi

and ηU, En
ωi

in (III.13) gives

similar results compared to the use of local fine-grid solves. Thus, the compu-

tations of ηH, En
ωi

and ηU, En
ωi

can be performed efficiently.

• With the use of θ = 0.2, we obtain more accurate results for the same dimen-

sional offline spaces compared with θ = 0.7.

In the tables listed below, we recall that Voff denotes the offline space; u, usnap and

uoff denote the fine-scale, snapshot and offline solutions respectively. Moreover, to

compare the results, we will compute the error u − uoff using the L2 relative error

and the energy relative error, which are defined as

‖u− uoff‖L2
κ(D) :=

‖u− uoff‖L2(V )

‖u‖L2(V )

and ‖u− uoff‖H1
κ(D) :=

a(u− uoff, u− uoff)
1
2

a(u, u)
1
2

,

(III.17)
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where the weighted L2-norm is defined as ‖u‖L2(V ) = ‖κ 1
2u‖L2(D). We will also

compute the error usnap − uoff using the same norms

‖usnap − uoff‖L2
κ(D) :=

‖usnap − uoff‖L2(V )

‖usnap‖L2(V )

,

‖usnap − uoff‖H1
κ(D) :=

a(usnap − uoff, u− uoff)
1
2

a(usnap, usnap)
1
2

.

(III.18)

III.5.1 Numerical results with harmonic basis

In this section, we present numerical examples to test the performance of the

proposed indicator ηH,En
ωi

and the convergence of our adaptive enrichment algorithm

with θ = 0.7 and θ = 0.2. We will also compare our results with the use of the

exact indicator ηH,Ex
ωi

. In the simulations, we take a snapshot space of dimension

7300 giving errors of 0.05% and 3.02% in weighted L2 and weighted H1 norms,

respectively. Thus, the solution usnap is as good as the fine-scale solution u. For the

adaptive enrichment algorithm, the initial offline space has 4 basis functions for each

coarse grid node. At each enrichment (Step 4), we will add one basis function for

the coarse grid nodes selected in Step 3. We will terminate the iteration when the

energy error ‖u− uoff‖V is less than 5% of ‖u− usnap‖V .

In Table III.1 and Table III.2, we present the convergence history of the adaptive

enrichment algorithm for θ = 0.7 and θ = 0.2 respectively. For both cases, we

see a convergence of the algorithm. For the case θ = 0.7, the algorithm requires 18

iterations to achieve the desired accuracy. The dimension of the corresponding offline

space is 3378. Moreover, the error u− uoff in relative weighted L2 and energy norms

are 0.54% and 7.83% respectively, while the error usnap− uoff in relative weighted L2

and energy norms are 0.51% and 7.22% respectively. And we see the similarity of

the errors u − uoff and usnap − uoff. For the case θ = 0.2, the algorithm requires 66
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dim(Voff)
‖u− uoff‖ (%) ‖usnap − uoff‖ (%)

L2
κ(D) H1

κ(D) L2
κ(D) H1

κ(D)

1524 4.50 31.29 4.49 34.14
1711 4.24 27.37 4.23 27.19
2434 2.34 20.13 2.36 20.31
2637 1.64 15.43 1.61 15.13
3378 0.54 7.83 0.51 7.22

Table III.1: Convergence history for harmonic basis with θ = 0.7 and 18 iterations.
The snapshot space has dimension 7300 giving 0.05% and 3.02% weighted L2 and
weighted energy errors. When using 12 basis per coarse inner node, the weighted
L2 and the weighted H1 errors will be 2.34% and 19.77%, respectively, and the
dimension of offline space is 4412.

dim(Voff)
‖u− uoff‖ (%) ‖usnap − uoff‖ (%)

L2
κ(D) H1

κ(D) L2
κ(D) H1

κ(D)

1524 4.50 31.29 4.49 34.14
1646 4.05 26.80 4.04 26.62
1864 3.09 20.34 3.07 20.11
2220 1.24 14.43 1.20 14.11
3135 0.48 7.98 0.45 7.39

Table III.2: Convergence history for harmonic basis with θ = 0.2. The number of
iterations is 66. The snapshot space has dimension 7300 giving 0.05% and 3.02%
weighted L2 and weighted energy errors. When using 12 basis per coarse inner node,
the weighted L2 and the weighted H1 errors will be 2.34% and 19.77%, respectively,
and the dimension of offline space is 4412.

iterations to achieve the desired accuracy. The dimension of the corresponding offline

space is 3135. Moreover, the error u− uoff in relative weighted L2 and energy norms

are 0.48% and 7.98% respectively, while the error usnap− uoff in relative weighted L2

and energy norms are 0.45% and 7.39% respectively. Furthermore, we observe that

the use of θ = 0.2 gives the same level of error for a smaller offline space compared

with θ = 0.7. Thus, we conclude that a smaller value of θ will give a more economical

offline space. To show that our adaptive enrichment algorithm gives a more efficient
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scheme, we report some computational results with uniform enrichment. In this case,

we use 12 basis functions for each interior coarse grid node giving an offline space of

dimension 4412. The relative weighted L2 and energy errors are 2.32% and 19.53%

respectively. From this result, we see that our adaptive enrichment algorithm gives

a smaller offline space and at the same time a better accuracy than a scheme with

uniform number of basis functions.

dim(Voff)
‖u− uoff‖ (%) ‖usnap − uoff‖ (%)

L2
κ(D) H1

κ(D) L2
κ(D) H1

κ(D)

1524 4.50 31.29 4.49 34.14
1762 3.96 27.09 3.95 26.91
2333 2.07 19.00 2.04 18.75
2522 1.38 15.12 1.36 14.81
3466 0.46 7.52 0.44 6.89

Table III.3: Convergence history for harmonic basis with θ = 0.7 and the exact
indicator. The number of iterations is 23. The snapshot space has dimension 7300
giving 0.05% and 3.02% weighted L2 and weighted energy errors.

To test the reliability and efficiency of the proposed indicator, we apply the

adaptive enrichment algorithm with the exact energy error as indicator and θ =

0.7. The results are shown in Table III.3. In particular, the algorithm requires 19

iterations to achieve the desired accuracy. The dimension of the corresponding offline

space is 3466. Moreover, the error u− uoff in relative weighted L2 and energy norms

are 0.46% and 7.52% respectively, while the error usnap − uoff in relative weighted

L2 and energy norms are 0.44% and 6.89% respectively. Comparing the results

in Table III.1 and Table III.3 for the use of the proposed and the exact indicator

respectively, we see that both indicators give similar convergence behavior and offline

space dimensions.

43



 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

(a) Proposed indicator with
θ = 0.7
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θ = 0.2
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0.7

Figure III.1: Dimension distributions of the last offline space for harmonic basis with
permeability field II.4(b).
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the final offline space the 3th coarse space the final offline space the 3th coarse space

Table III.4: Coarse-grid energy error distribution using harmonic basis with perme-
ability field II.4(b).

In Figure III.1, we display the number of basis functions for each coarse grid

node of the last offline spaces for the proposed indicator with θ = 0.7, the proposed

indicator with θ = 0.2 and the exact indicator with θ = 0.7. From Figures III.1(a)

and III.1(b), we observe a similar dimension distribution for the use of the proposed

indicator with θ = 0.7 and θ = 0.2, and the case θ = 0.2 gives a smaller number of

basis functions. For the case with the exact indicator, we see from Figure III.1(c) that

the dimension distribution follows a similar pattern, but with regions that contain

larger number of basis functions.

Finally, we present the energy errors on coarse neighborhoods for θ = 0.7 for
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an intermediate offline space and the last offline space of the proposed indicator

ηH,En
ωi

and the exact indicator ηH,Ex
ωi

. In Figures III.5.1 and III.5.1, the energy error

distributions for the last offline spaces and an intermediate offline space obtained

by the proposed indicator are shown respectively. We see how the energy error is

reduced by enriching the space from an intermediate step to the final step. A similar

situation is also seen from Figures III.5.1 and III.5.1 for the case with the exact

indicator.

III.5.2 Numerical results with spectral basis

In this section, we repeat the above tests using the spectral snapshot space instead

of the harmonic snapshot space with the proposed indicator ηU,En
ωi

and the exact

indicator ηU,Ex
ωi

. The results are presented in Tables III.5, III.6 and III.7. In the

simulations, we take a snapshot space of dimension 3690 giving errors of 0.01% and

2.84% in weighted L2 and energy norms respectively. Thus, the solution usnap is as

good as the fine-scale solution u. For the adaptive enrichment algorithm, the initial

offline space has 2 basis functions for each coarse grid node. At each enrichment

(Step 4), we will add one basis function for the coarse grid nodes selected in Step 3.

We will terminate the iteration when the energy error ‖u− uoff‖V is less than 5% of

‖u− usnap‖V .

In Table III.5 and Table III.6, we present the convergence history of the adaptive

enrichment algorithm for θ = 0.7 and θ = 0.2 respectively. For both cases, we see

a clear convergence of the algorithm. For the case θ = 0.7, the algorithm requires 5

iterations to achieve the desired accuracy. The dimension of the corresponding offline

space is 1410. Moreover, the error u− uoff in relative weighted L2 and energy norms

are 0.10% and 7.43% respectively, while the error usnap − uoff in relative weighted

L2 and energy norms are 0.10% and 6.87% respectively. For the case θ = 0.2, the
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dim(Voff)
‖u− uoff‖ (%) ‖usnap − uoff‖ (%)

L2
κ(D) H1

κ(D) L2
κ(D) H1

κ(D)

802 0.87 20.15 0.87 19.94
868 0.83 16.51 0.83 16.26
979 0.33 12.62 0.33 12.30
1106 0.32 10.44 0.32 10.05
1410 0.10 7.43 0.10 6.87

Table III.5: Convergence history for spectral basis with θ = 0.7 and 5 iterations.
The snapshot space has dimension 3690 giving 0.01% and 2.84% weighted L2 and
weighted energy errors. When using 5 basis per interior coarse node, the weighted
L2 and the weighted energy errors will be 0.09% and 7.40%, respectively, and the
dimension of offline space is 1885.

dim(Voff)
‖u− uoff‖ (%) ‖usnap − uoff‖ (%)

L2
κ(D) H1

κ(D) L2
κ(D) H1

κ(D)

802 0.87 20.15 0.87 19.94
856 0.83 16.25 0.82 16.00
960 0.34 12.58 0.33 12.26
1116 0.32 10.27 0.32 9.87
1334 0.09 7.55 0.09 6.99

Table III.6: Convergence history for spectral basis with θ = 0.2 and 19 iterations.
The snapshot space has dimension 3690 giving 0.01% and 2.84% weighted L2 and
weighted energy errors. When using 5 basis per interior coarse node, the weighted
L2 and the weighted energy errors will be 0.09% and 7.40%, respectively, and the
dimension of offline space is 1885.

algorithm requires 19 iterations to achieve the desired accuracy. The dimension

of the corresponding offline space is 1334. Moreover, the error u − uoff in relative

weighted L2 and energy norms are 0.09% and 7.55% respectively, while the error

usnap−uoff in relative weighted L2 and energy norms are 0.09% and 6.99% respectively.

Furthermore, we observe that the use of θ = 0.2 gives the same level of error for a

smaller offline space compared with θ = 0.2. Thus, we conclude that a smaller value

of θ will give a more economical offline space. To show that our adaptive enrichment
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algorithm gives a more efficient scheme, we report some computational results with

uniform enrichment. In this case, we use 5 basis functions for each interior coarse

grid node giving an offline space of dimension 1885. The relative weighted L2 and

energy errors are 0.09% and 7.40% respectively. From this result, we see that our

adaptive enrichment algorithm gives a smaller offline space and at the same time a

better accuracy than a scheme with uniform number of basis functions.

dim(Voff)
‖u− uoff‖ (%) ‖usnap − uoff‖ (%)

L2
κ(D) H1

κ(D) L2
κ(D) H1

κ(D)

802 0.87 20.15 0.87 19.94
884 0.42 14.73 0.42 14.45
1000 0.18 12.25 0.18 11.91
1119 0.17 9.83 0.17 9.41
1392 0.10 7.12 0.10 6.53

Table III.7: Convergence history for spectral basis with θ = 0.7 and the exact indi-
cator. The number of iteration is 6. The snapshot space has dimension 3690 giving
0.01% and 2.84% weighted L2 and weighted energy errors. When using 5 basis per
interior coarse node, the weighted L2 and the weighted energy errors will be 0.09%
and 7.40%, respectively, and the dimension of offline space is 1885.

To test the reliability and efficiency of the proposed indicator, we apply the

adaptive enrichment algorithm with the exact energy error as indicator and θ = 0.7.

The results are shown in Table III.7. In particular, the algorithm requires 6 iterations

to achieve the desired accuracy. The dimension of the corresponding offline space is

1392. Moreover, the error u−uoff in relative weighted L2 and energy norms are 0.10%

and 7.12% respectively, while the error usnap−uoff in relative weighted L2 and energy

norms are 0.10% and 6.53% respectively. Comparing the results in Table III.5 and

Table III.7 for the use of the proposed and the exact indicator respectively, we see

that both indicators give similar convergence behavior and offline space dimensions.
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We also observe that the exact indicator performs better in this case.

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

(a) Proposed indicator with
θ = 0.7
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0.7

Figure III.2: Dimension distributions of the last offline space for spectral basis with
permeability field II.4(b).

In Figure III.2, we display the number of basis functions for each coarse grid

node of the last offline spaces for the proposed indicator with θ = 0.7, the proposed

indicator with θ = 0.2 and the exact indicator with θ = 0.7. From Figures III.2(a)

and III.2(b), we observe a similar dimension distribution for the use of the proposed

indicator with θ = 0.7 and θ = 0.2, and the case θ = 0.2 gives a smaller number of

basis functions. For the case with the exact indicator, we see from Figure III.2(c) that

the dimension distribution follows a similar pattern, but with regions that contain

larger number of basis functions.

Finally, we present the energy errors on coarse neighborhoods for θ = 0.7 for

an intermediate offline space and the last offline space of the proposed indicator

ηH,En
ωi

and the exact indicator ηH,Ex
ωi

. In Figures III.5.2 and III.5.2, the energy error

distributions for the last offline spaces and an intermediate offline space obtained by

the proposed indicator are shown respectively. We see clearly that how the energy

error is reduced by enriching the space from an intermediate step to the final step.

A similar situation is also seen from Figures III.5.2 and III.5.2 for the case with the
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Table III.8: Coarse-grid energy error distribution using spectral basis with perme-
ability field II.4(b).

exact indicator.

III.5.3 Numerical results with the L2 indicator

In this section, we present some numerical simulations to test the performance of

the L2 indicator. We note that this is the most natural error indicator, as it is more

efficient to compute and is widely used for classical adaptive finite element methods

[59]. However, this indicator does not work well for high contrast coefficients. In

the simulation, we will conduct the same test as in Section III.5.1 with the indicator

replaced by ηH,L2
ωi

.

In Table III.9, we present the convergence history of the adaptive enrichment

algorithm for θ = 0.7, and we observe a clear convergence of the algorithm. Notice

that, the algorithm requires 94 iterations to achieve the desired accuracy. The di-

mension of the corresponding offline space is 4509. If we compare these results to

the case with the proposed indicator, we see that the L2 indicator will give a much

larger offline space and a larger number of iterations, in order to achieve a similar

accuracy.

Finally we will compare the basis function and error distributions for the L2

indicator with those for the proposed indicator. In Figure III.3(a), the number of
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dim(Voff)
‖u− uoff‖ (%) ‖usnap − uoff‖ (%)

L2
κ(D) H1

κ(D) L2
κ(D) H1

κ(D)

1524 4.50 31.29 4.49 31.14
1913 3.59 26.88 3.57 26.69
2513 2.43 21.46 2.43 20.89
3006 1.11 17.11 1.12 16.83
4509 0.06 7.97 0.04 7.37

Table III.9: Convergence history for harmonic basis using the L2 indicator with
θ = 0.7 and 94 iterations. The snapshot space has dimension 7300 giving 0.05% and
3.02% weighted L2 and weighted energy errors. When using 12 basis per interior
coarse node, the weighted L2 and the weighted energy errors will be 2.34% and
19.77%, respectively, and the dimension of offline space is 4412.
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(c) Energy error with an inter-
mediate offline space

Figure III.3: Basis distribution and error distribution for harmonic basis with L2

indicator.

basis functions for each coarse node is shown. We observe that the distribution is

similar to the case with the proposed indicator shown in Figure III.1(a). We also

observe that the number of basis functions for the L2 indicator is much larger than

that for the proposed indicator. In Figures III.3(b) and III.3(c), the energy error

distributions for the last offline spaces and an intermediate offline space obtained by

the L2 indicator are shown respectively. We see clearly that how the energy error is

reduced by enriching the space from an intermediate step to the final step. However,

we also see a very slow decay in energy error for the L2 indicator.
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III.5.4 Numerical results using snapshot solutions for the proposed indicator

In this section, we present numerical tests to show that our adaptive method is

equally good when the proposed indicator ηH,En
ωi

is computed in the snapshot space.

In particular, we will solve the local problems (III.13) in the space of snapshots

instead of the fine scale space, in order to reduce the computational costs. We will

again repeat the same test as in Section III.5.1. In Table III.10 we present the

convergence history of the adaptive enrichment algorithm with θ = 0.7, and observe

a clear convergence of the algorithm. Moreover, the algorithm requires 22 iterations

to achieve the desired accuracy. The dimension of the corresponding offline space is

3688. In addition, the error u − uoff in relative weighted L2 and energy norms are

0.17% and 7.83% respectively, while the error usnap−uoff in relative weighted L2 and

energy norms are 0.14% and 7.26% respectively. If we compare these results with

those for the proposed indicator (see Table III.1), we see the use of snapshot space to

compute the error indicator will give a similar offline space and accuracy, but with

a larger number of iterations.

dim(Voff)
‖u− uoff‖ (%) ‖usnap − uoff‖ (%)

L2
κ(D) H1

κ(D) L2
κ(D) H1

κ(D)

1524 7.60 50.86 7.59 50.75
1772 4.18 27.08 4.18 26.90
2398 2.41 20.59 2.39 20.36
2824 1.28 13.98 1.25 13.64
3688 0.17 7.83 0.14 7.26

Table III.10: Convergence history for harmonic basis using snapshot space to com-
pute the proposed indicator. We take θ = 0.7 and the algorithm converges in 22
iterations.
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III.6 Convergence analysis

In this section, we will give the proofs for the a posteriori error estimates (III.8)-

(III.9) and the convergence of the adaptive enrichment algorithm.

For each i = 1, 2, · · · , N , we let Pi : V → span{ψωi,off
k } be the projection defined

by

Piv =

li∑
k=1

(∫
ωi

κ̃vψωi,off
k

)
ψωi,off
k .

The projection Pi has following stability bound

‖χi(Piv)‖Vi ≤ Cωi
stab‖v‖Vi (III.19)

where the constant Cωi
stab = max(1, H−1(λωili+1)−

1
2 ). Moreover the following conver-

gence result holds

‖χi(v − Piv)‖Vi ≤ Cωi
conv(λωili+1)−

1
2‖v‖Vi (III.20)

where Cωi
conv is a uniform constant. We also define the projection Π : V → Voff by

Πv =
∑N

i=1 χi(Piv). For the analysis below, we let

Cstab = max
1≤i≤N

Cωi
stab and Cconv = max

1≤i≤N
Cωi

conv.

III.6.1 Proof of Theorem III.3.1

Let v ∈ V be an arbitrary function in the space V . Using (III.2), we have

a(u− ums, v) = a(u, v)− a(ums, v) = (f, v)− a(ums, v).
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Then

a(u−ums, v) = (f, v)−a(ums, v) = (f, v−Πv)+(f,Πv)−a(ums,Πv)−a(ums, v−Πv).

Thus, using (III.3), we have

a(u− ums, v) = (f, v − Πv)− a(ums, v − Πv). (III.21)

Writing (III.21) as a sum over coarse regions,

a(u− ums, v) =
N∑
i=1

(∫
ωi

f(v − Piv)χi −
∫
ωi

a∇ums · ∇((v − Piv)χi)
)
. (III.22)

Using the definition of Qi, we see that (III.22) can be written as

a(u− ums, v) =
N∑
i=1

Qi(v − Piv).

Thus, we have

a(u− ums, v) ≤
N∑
i=1

‖Qi‖‖v − Piv‖L2(ωi).

Using the definition of κ̃i, we have

a(u− ums, v) ≤
N∑
i=1

(κ̃i)
− 1

2‖Qi‖‖κ̃
1
2 (v − Piv)‖L2(ωi).

Thus, by the definition of the eigenvalue problem (II.8),

a(u− ums, v) ≤
N∑
i=1

(κ̃i)
− 1

2 (λωili+1)−
1
2‖Qi‖‖v‖Vi .

The inequality (III.8) is then followed by taking v = u−ums and
∑N

i=1 ‖v‖2
Vi
≤ C‖v‖2

V .
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Using the definition of Ri, we see that (III.22) can be written as

a(u− ums, v) =
N∑
i=1

Ri(χi(v − Piv)).

Thus, we have

a(u− ums, v) ≤
N∑
i=1

‖Ri‖V ∗i ‖χi(v − Piv)‖Vi .

Using (III.20),

a(u− ums, v) ≤ Cconv

N∑
i=1

‖Ri‖V ∗i (λωili+1)−
1
2‖v‖Vi .

The inequality (III.9) is then followed by taking v = u−ums and
∑N

i=1 ‖v‖2
Vi
≤ C‖v‖2

V .

III.6.2 Some auxiliary lemmas

In this section, we will prove some auxiliary lemmas which are required for the

proof of the convergence of the adaptive enrichment algorithm stated in Theorem

III.3.3. We use the notation Pm
i to denote the projection operator Pi at the enrich-

ment level m. Specifically, we define

Pm
i v =

lmi∑
k=1

(∫
ωi

κ̃vψωi,off
k

)
ψωi,off
k .

In Theorem III.3.1, we see that ‖Ri‖V ∗i gives an upper bound of the energy error

‖u− ums‖V . We will first show that, ‖Ri‖V ∗i is also a lower bound up to a correction

term. To state this precisely, we define

Sm(ωi) = (λωilmi +1)−
1
2 sup
v∈Vi

|Ri(v − (Pm+1
i v)χi)|

‖v‖Vi
, (III.23)

which is a measure on how small (v − χiPm+1
i v) is. Notice that the residual Ri is
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computed using the solution umms obtained at enrichment level m. We omit the index

m in Ri to simplify notations. Next, we will prove the following lemma.

Lemma III.6.1. We have

‖Ri‖2
V ∗i

(λωilmi +1)−1 ≤ 2(Cωi
stab)

2(λωilmi +1)−1‖um+1
ms − umms‖2

Vi
+ 2Sm(ωi)

2. (III.24)

Proof. By linearity

Ri(v) = Ri(χi(P
m+1
i v)) +Ri(v − χi(Pm+1

i v)).

Since χi(P
m+1
i v) is a test function in the space V m+1

off , by the definition of Ri and

(III.10), we have

Ri(χi(P
m+1
i v)) =

∫
ωi

f(Pm+1
i v)χi −

∫
ωi

a∇umms · ∇((Pm+1
i v)χi)

=

∫
ωi

a∇um+1
ms · ∇((Pm+1

i v)χi)−
∫
ωi

a∇umms · ∇((Pm+1
i v)χi).

Using the stability estimate (III.19),

Ri(χi(P
m+1
i v)) ≤ ‖um+1

ms − umms‖Vi‖(Pm+1
i v)χi‖Vi ≤ Cωi

stab‖um+1
ms − umms‖Vi‖v‖Vi .

Thus, we obtain

‖Ri‖V ∗i ≤ Cωi
stab‖um+1

ms − umms‖Vi + sup
v∈Vi

|Ri(v − (Pm+1
i v)χi)|

‖v‖Vi
. (III.25)

The inequality (III.24) follows from the definition of Sm(ωi).

We remark that one can replace um+1
ms by usnap and Pm+1

i by P snap
i , where P snap

i
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is the projection onto the snapshot space defined by

P snap
i v =

Wi∑
k=1

(∫
ωi

κ̃vψωi,off
k

)
ψωi,off
k .

We also define S(ωi) by

S(ωi) = (λωilmi +1)−
1
2 sup
v∈Vi

|Ri(v − (P snap
i v)χi)|

‖v‖Vi
. (III.26)

Following the proof of the above lemma, we get

‖Ri‖2
V ∗i

(λωilmi +1)−1 ≤ 2(Cωi
stab)2(λωilmi +1)−1‖usnap − umms‖2

Vi
+ 2S(ωi)

2,

which suggests that ‖Ri‖2
V ∗i

(λωilmi +1)−1 gives a lower bound of the error ‖usnap−umms‖2
Vi

up to a correction term S(ωi)
2.

To prove Theorem III.3.3, we will need the following recursive properties for

Sm(ωi).

Lemma III.6.2. For any αR > 0, we have

Sm+1(ωi)
2 ≤ (1 + αR)CR

λωilmi +1

λωi
lm+1
i +1

Sm(ωi)
2 + (1 + α−1

R )DR(λωi
lm+1
i +1

)−1‖um+1
ms − umms‖2

Vi
,

(III.27)

where the enrichment level dependent constants CR and DR are defined by

CR = (1 + 2Cωi
conv(λ

ωi
lmi +1)−

1
2 (λωi

lm+1
i +1

)−
1
2 )2 and DR = (Cωi

stab)
2(1 + 2Cωi

conv(λ
ωi
lm+1
i +1

)−
1
2 )2.
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Proof. By direct calculation, we have

∫
ωi

f(v − (Pm+2
i v)χi)−

∫
ωi

a∇um+1
ms · ∇(v − (Pm+2

i v)χi)

=

∫
ωi

f(v − (Pm+1
i v)χi)−

∫
ωi

a∇umms · ∇(v − (Pm+1
i v)χi)

−
∫
ωi

a∇(um+1
ms − umms) · ∇(v − (Pm+2

i v)χi)

+

∫
ωi

f(Pm+1
i v − Pm+2

i v)χi −
∫
ωi

a∇umms · ∇((Pm+1
i v − Pm+2

i v)χi).

(III.28)

By definition of Sm(ωi), we have

Sm(ωi) = (λωilmi +1)−
1
2 sup
v∈Vi

|
∫
ωi
f(v − (Pm+1

i v)χi)−
∫
ωi
a∇umms · ∇(v − (Pm+1

i v)χi)|
‖v‖Vi

.

(III.29)

Multiplying (III.28) by (λωi
lm+1
i +1

)−
1
2‖v‖−1

Vi
and taking supremum with respect to v,

we have

Sm+1(ωi) ≤ (
λωilmi +1

λωi
lm+1
i +1

)
1
2Sm(ωi) + I1 + I2, (III.30)

where

I1 = (λωi
lm+1
i +1

)−
1
2 sup
v∈Vi

| −
∫
ωi
a∇(um+1

ms − umms) · ∇(v − (Pm+2
i v)χi)|

‖v‖Vi

and

I2 =

(λωi
lm+1
i +1

)−
1
2 sup
v∈Vi

|
∫
ωi
f(Pm+1

i v − Pm+2
i v)χi −

∫
ωi
a∇umms · ∇((Pm+1

i v − Pm+2
i v)χi)|

‖v‖Vi
.
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To estimate I1, we use the stability estimate (III.19) to obtain

∫
ωi

a∇(um+1
ms − umms) · ∇(v − (Pm+2

i v)χi)

=

∫
ωi

a∇(um+1
ms − umms) · ∇v −

∫
ωi

a∇(um+1
ms − umms) · ∇((Pm+2

i v)χi)

≤Cωi
stab‖um+1

ms − umms‖Vi‖v‖Vi ,

which implies

I1 ≤ Cωi
stab(λωi

lm+1
i +1

)−
1
2‖um+1

ms − umms‖Vi .

To estimate I2, we use the definition of Ri to obtain

I2 ≤ (λωi
lm+1
i +1

)−
1
2‖Ri‖V ∗i sup

v∈Vi

‖χi(Pm+1
i v − Pm+2

i v)‖Vi
‖v‖Vi

.

By the convergence bound (III.20) and the fact that λωi
lm+1
i +1

< λωi
lm+2
i +1

, we have

‖χi(Pm+1
i v − Pm+2

i v)‖Vi ≤ ‖χi(Pm+1
i v − v)‖Vi + ‖χi(v − Pm+2

i v)‖Vi

≤ 2Cωi
conv(λωi

lm+1
i +1

)−
1
2‖v‖|Vi ,

which implies

I2 ≤ 2Cωi
conv(λωi

lm+1
i +1

)−1‖Ri‖V ∗i .

Combining results and using (III.30), we get

Sm+1(ωi) ≤ (
λωilmi +1

λωi
lm+1
i +1

)
1
2Sm(ωi) + Cωi

stab(λωi
lm+1
i +1

)−
1
2‖um+1

ms − umms‖Vi

+ 2Cωi
conv(λωi

lm+1
i +1

)−1‖Ri‖V ∗i .
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Using (III.25) and the definition of Sm(ωi),

Sm+1(ωi) ≤(1 + 2Cωi
conv(λωilmi +1)−

1
2 (λωi

lm+1
i +1

)−
1
2 )(

λωilmi +1

λωi
lm+1
i +1

)
1
2Sm(ωi)

+ Cωi
stab(λωi

lm+1
i +1

)−
1
2 (1 + 2Cωi

conv(λωi
lm+1
i +1

)−
1
2 )‖um+1

ms − umms‖Vi .

Hence, (III.27) is proved.

Next, we consider the L2-based residual Qi and prove similar inequalities. We

define

Sm(ωi) = (κ̃iλ
ωi
lmi +1)−

1
2 sup
v∈L2(ωi)

|Qi(v − Pm+1
i v)|

‖v‖L2(ωi)

, (III.31)

which is a measure on how small (v − Pm+1
i v) is. Notice that the residual Qi is

computed using the solution umms obtained at enrichment level m. We omit the index

m in Qi to simplify notations. We also note that we have used the same notation

Sm(ωi) as the case for the H−1-based residual to again simplify notations. It will

be clear which residual we are referring to when the notation Sm(ωi) appears in the

text. We define the jump of the coefficient in each coarse region by

βi =
maxx∈ωi κ(x)

minx∈ωi κ(x)
.

Next, we will prove the following lemma.

Lemma III.6.3. We have

‖Qi‖2(κ̃iλ
ωi
lmi +1)−1 ≤ 2(Cinvβ

1
2
i h
−1)2(λωilmi +1)−1‖um+1

ms − umms‖2
Vi

+ 2Sm(ωi)
2. (III.32)

Proof. By linearity

Qi(v) = Qi(P
m+1
i v) +Qi(v − Pm+1

i v).
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By the definition of Qi and (III.10), we have

Qi(P
m+1
i v) =

∫
ωi

f(Pm+1
i v)χi −

∫
ωi

a∇umms · ∇((Pm+1
i v)χi)

=

∫
ωi

a∇um+1
ms · ∇((Pm+1

i v)χi)−
∫
ωi

a∇umms · ∇((Pm+1
i v)χi),

which implies

Qi(P
m+1
i v) ≤ ‖um+1

ms − umms‖Vi‖(Pm+1
i v)χi‖Vi .

Using the inverse inequality,

‖(Pm+1
i v)χi‖Vi ≤ Cinvh

−1‖κ̃ 1
2Pm+1

i v‖L2(ωi) ≤ Cinvh
−1‖κ̃ 1

2v‖L2(ωi),

where Cinv is independent of the mesh size. Thus, we obtain

(κ̃i)
− 1

2‖Qi‖V ∗i ≤ Cinvβ
1
2
i h
−1‖um+1

ms −umms‖Vi+(κ̃i)
− 1

2 sup
v∈L2(ωi)

|Qi(v − Pm+1
i v)|

‖v‖L2(ωi)

. (III.33)

The inequality (III.32) follows from the definition of Sm(ωi).

Next we will prove the following recursive property for Sm(ωi). The proof follows

from the same lines as Lemma III.6.2.

Lemma III.6.4. For any αQ > 0, we have

Sm+1(ωi)
2 ≤ (1 + αQ)CQ

λωilmi +1

λωi
lm+1
i +1

Sm(ωi)
2 + (1 + α−1

Q )DQ(λωi
lm+1
i +1

)−1‖um+1
ms − umms‖2

Vi
,

(III.34)

where the enrichment level dependent constants CR and DR are defined by

CQ = (1 + β
1
2
i )2 and DQ = Cinvβ

1
2
i h
−1(2κ̃i + β

1
2
i ).

60



Proof. By direct calculation, we have

∫
ωi

f(v − Pm+2
i v)χi −

∫
ωi

a∇um+1
ms · ∇((v − Pm+2

i v)χi)

=

∫
ωi

f(v − Pm+1
i v)χi −

∫
ωi

a∇umms · ∇((v − Pm+1
i v)χi)

−
∫
ωi

a∇(um+1
ms − umms) · ∇((v − Pm+2

i v)χi)

+

∫
ωi

f(Pm+1
i v − Pm+2

i v)χi −
∫
ωi

a∇umms · ∇((Pm+1
i v − Pm+2

i v)χi).

(III.35)

By definition of Sm(ωi), we have

Sm(ωi) = (κ̃iλ
ωi
lmi +1)−

1
2 sup
v∈L2(ωi)

|
∫
ωi
f(v − Pm+1

i v)χi −
∫
ωi
a∇umms · ∇((v − Pm+1

i v)χi)|
‖v‖L2(ωi)

.

(III.36)

Multiplying (III.35) by (κ̃iλ
ωi
lm+1
i +1

)−
1
2‖v‖−1

L2(ωi)
and taking supremum with respect to

v, we have

Sm+1(ωi) ≤ (
λωilmi +1

λωi
lm+1
i +1

)
1
2Sm(ωi) + I1 + I2, (III.37)

where

I1 = (κ̃iλ
ωi
lm+1
i +1

)−
1
2 sup
v∈L2(ωi)

| −
∫
ωi
a∇(um+1

ms − umms) · ∇((v − Pm+2
i v)χi)|

‖v‖L2(ωi)

and

I2 = (κ̃λωi
lm+1
i +1

)−
1
2 sup
v∈L2(ωi)

|Yi(V )|
‖v‖L2(ωi)

.

Here,

Yi(v) =

∫
ωi

f(Pm+1
i v − Pm+2

i v)χi −
∫
ωi

a∇umms · ∇((Pm+1
i v − Pm+2

i v)χi).
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To estimate I1, we use the inverse inequality to obtain

∫
ωi

a∇(um+1
ms − umms) · ∇(v − (Pm+2

i v)χi) ≤ 2Cinvh
−1‖um+1

ms − umms‖Vi‖κ̃
1
2v‖L2(ωi),

which implies

I1 ≤ 2Cinv(κ̃iλ
ωi
lm+1
i +1

)−
1
2β

1
2
i h
−1‖um+1

ms − umms‖Vi .

To estimate I2, we use the definition of Qi to obtain

I2 ≤ (κ̃iλ
ωi
lm+1
i +1

)−
1
2‖Qi‖ sup

v∈L2(ωi)

‖Pm+1
i v − Pm+2

i v‖
‖v‖L2(ωi)

,

which implies

I2 ≤ (κ̃iλ
ωi
lm+1
i +1

)−
1
2β

1
2
i ‖Qi‖.

Combining results and using (III.37), we get

Sm+1(ωi) ≤(
λωilmi +1

λωi
lm+1
i +1

)
1
2Sm(ωi) + 2Cinv(κ̃iλ

ωi
lm+1
i +1

)−
1
2β

1
2
i h
−1‖um+1

ms − umms‖Vi

+ (κ̃iλ
ωi
lm+1
i +1

)−
1
2β

1
2
i ‖Qi‖.

Using (III.33),

Sm+1(ωi) ≤ (1+β
1
2
i )(

λωilmi +1

λωi
lm+1
i +1

)
1
2Sm(ωi)+Cinv(λωi

lm+1
i +1

)−
1
2β

1
2
i h
−1(2κ̃i+β

1
2
i )‖um+1

ms −umms‖Vi .

Hence, (III.34) is proved.

III.6.3 Proof of Theorem III.3.3

In this section, we prove the convergence of the adaptive enrichment algorithm.

We will give a unified proof for both the L2-based and H−1-based residuals. First of
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all, we use ηi as a unified notation for the residuals, namely,

η2
i =


‖Qi‖2(κ̃iλ

ωi
lmi +1)−1, for L2-based residual,

‖Ri‖2
V ∗i

(λωilmi +1)−1, for H−1-based residual.

Then Lemma III.6.1 and Lemma III.6.3 can be written as

η2
i ≤ Bi(λ

ωi
lmi +1)−1‖um+1

ms − umms‖2
Vi

+ 2Sm(ωi)
2, (III.38)

where the constant Bi is given by

Bi =


2(Cinvβ

1
2
i h
−1)2, for L2-based residual

2(Cωi,m+1
stab )2, for H−1-based residual.

We remark that the definitions of Sm(ωi) are given in (III.31) and (III.23) for the L2-

based and H−1-based residuals respectively. Moreover, Lemma III.6.2 and Lemma

III.6.4 can be unified as

Sm+1(ωi)
2 ≤ (1 + αS)CS

λωilmi +1

λωi
lm+1
i +1

Sm(ωi)
2 + (1 + α−1

S )DS(λωi
lm+1
i +1

)−1‖um+1
ms − umms‖2

Vi
,

(III.39)

where αS = αQ, CS = CQ and DS = DQ for the L2-based residual while αS =

αR, CS = CR and DS = DR for the H−1-based residual. Notice that αS > 0 is

a constant defined uniformly over coarse regions and is to be determined. The

convergence proof is based on (III.38) and (III.39).

Let 0 < θ < 1. We choose an index set I so that

θ2

N∑
i=1

η2
i ≤

∑
i∈I

η2
i . (III.40)
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We also assume there is a real number γ with 0 < γ < 1 satisfies

γ2

n∑
i=1

Sm(ωi)
2 ≤

∑
i∈I

Sm(ωi)
2. (III.41)

We will then add basis function for those ωi with i ∈ I. Then, using Theorem III.3.1

and (III.40), we have

θ2‖u− umms‖2
V ≤ θ2Cerr

N∑
i=1

η2
i ≤ Cerr

∑
i∈I

η2
i .

By (III.38),

θ2‖u− umms‖2
V ≤ 2Cerr

N∑
i=1

Sm(ωi)
2 + L1‖um+1

H − umH‖2
V ,

where

L1 = Cerr max
1≤i≤N

(
Bi(λ

ωi
lmi +1)−1

)
. (III.42)

Note that, by Galerkin orthogonality, we have

‖um+1
ms − umms‖2

V = ‖u− umms‖2
V − ‖u− um+1

ms ‖2
V .

So, we have

θ2‖u− umms‖2
V ≤ 2Cerr

N∑
i=1

Sm(ωi)
2 + L1(‖u− umH‖2

V − ‖u− um+1
H ‖2

V ),

which implies

‖u− um+1
ms ‖2

V ≤ (1− θ2

L1

)‖u− umms‖2
V +

2Cerr

L1

N∑
i=1

Sm(ωi)
2. (III.43)
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On the other hand,

N∑
i=1

Sm+1(ωi)
2 =

∑
i∈I

Sm+1(ωi)
2 +

∑
i 6=I

Sm+1(ωi)
2.

By (III.39) and that Sm+1(ωi) = Sm(ωi) for i 6= I, we have

N∑
i=1

Sm+1(ωi)
2 ≤

∑
i∈I

(
(1 + αS)CS

λωilmi +1

λωi
lm+1
i +1

Sm(ωi)
2

+ (1 + α−1
S )DS(λωi

lm+1
i +1

)−1‖um+1
ms − umms‖2

Vi

)
+
∑
i 6=I

Sm(ωi)
2.

We assume the enrichment is obtained so that

δ = CS max
1≤i≤N

λωilmi +1

λωi
lm+1
i +1

< 1.

We then have

N∑
i=1

Sm+1(ωi)
2 ≤ (1+αS)

N∑
i=1

Sm(ωi)
2−(1+αS)(1−δ)

∑
i∈I

Sm(ωi)
2+δL2‖um+1

ms −umms‖2
V ,

where

L2 = (1 + α−1
S ) max

1≤i≤N

(
DSC

−1
S (λωilmi +1)−1

)
. (III.44)

By assumption on γ,

N∑
i=1

Sm+1(ωi)
2 ≤ (1+αS)

N∑
i=1

Sm(ωi)
2−(1+αS)(1−δ)γ2

N∑
i=1

Sm(ωi)
2+δL2‖um+1

ms −umms‖2
V .

Let ρ = (1 + αS)(1 − (1 − δ)γ2). We choose αS > 0 small so that 0 < ρ < 1. The
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above is then written as

N∑
i=1

Sm+1(ωi)
2 ≤ ρ

N∑
i=1

Sm(ωi)
2 + δL2(‖u− umms‖2

V − ‖u− um+1
ms ‖2

V ). (III.45)

Next, we take a constant τ so that

τ > 0,
2Cerr

τL1

+ ρ < 1.

Finally, we combine (III.43) and (III.45) to obtain the following

‖u− um+1
ms ‖2

V + τ
N∑
i=1

Sm+1(ωi)
2 ≤ (1− θ2

L1

)‖u− umms‖2
V +

2Cerr

L1

N∑
i=1

Sm(ωi)
2

+ τρ
N∑
i=1

Sm(ωi)
2 + τδL2(‖u− umms‖2

V − ‖u− um+1
ms ‖2

V ).

Rearranging the terms, we have

(1 + τδL2)‖u− um+1
ms ‖2

V + τ
N∑
i=1

Sm+1(ωi)
2 ≤ (1− θ2

L1

+ τδL2)‖u− umms‖2
V

+ (
2Cerr

L1

+ τρ)
N∑
i=1

Sm(ωi)
2.

Hence we obtain

‖u− um+1
ms ‖2

V +
τ

1 + τδL2

N∑
i=1

Sm+1(ωi)
2 ≤ (1− θ2

L1(1 + τδL2)
)‖u− umms‖2

V

+
τ

1 + τδL2

(
2Cerr

τL1

+ ρ)
N∑
i=1

Sm(ωi)
2.
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III.7 Concluding remarks

In this chapter, we derive an a posteriori error estimate for the Generalized Mul-

tiscale Finite Element Method (GMsFEM). In particular, we study an adaptive spec-

tral enrichment procedure and derive an error indicator which gives an estimate of

the local error over coarse grid regions.

We consider two kinds of error indicators where one is based on the L2-norm

of the local residual and the other is based on the weighted H−1-norm of the local

residual, where the weight is related to the coefficient of the elliptic equation. We

show that the use of weighted H−1-norm residual gives a more robust error indicator

which works well for cases with high contrast multiscale problems. The convergence

analysis of the method is given.

Numerical results are presented that demonstrate the robustness of the proposed

error indicators. We show the convergence of the proposed indicators and their

similarities to the ones when exact solution is used in the indicator. We compare

the performance of the weighted H−1-based indicator with that of the L2-based

indicator for high-contrast problems. Our numerical results show that the former is

more appropriate for high-contrast multiscale problems.

Although the results presented in this chapter are encouraging, there is scope for

further exploration. As our intent here was to derive and demonstrate the robust-

ness of error indicators for challenging high-contrast multiscale problems, we did not

consider the fine-grid discretization error and assumed that the coarse-grid error is

the main contributor, and thus assuming that the fine-grid solution is the desired

quantity. In general when solving continuous PDEs, one can also add fine-grid dis-

cretization errors due to basis computations. This will be a subject of our future

research.
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IV. GENERALIZED MULTISCALE FINITE ELEMENT METHODS.

NONLINEAR ELLIPTIC PROBLEMS

IV.1 Introduction

In this chapter, we extend the GMsFEM to nonlinear elliptic problems in het-

erogeneous high-contrast media (see [39]). We apply a Picard iteration and treat an

upscaled quantity of a previous solution iterate as a parameter in the problem. With

this convention, we follow an offline-online procedure in which the coarse space con-

struction is split into two distinct stages; offline and online (see [14, 16, 29, 62, 68]).

The main goal of this approach is to allow for the efficient construction of an

online space (and an online solution) for each fixed parameter value and iteration.

In the process, we precompute a larger-dimensional, parameter-independent offline

space that accounts for an appropriate range of parameter values that may be used

in the online stage. As construction of the offline space will constitute a one-time

preprocessing step, only the online space will require additional work within the

solution procedure. In the offline stage we first choose a fixed set of parameter

values and generate an associated set of “snapshot” functions by solving localized

problems on specified coarse subdomains. The functions obtained through this step

constitute a snapshot space which will be used in the offline space construction. To

construct the offline space we solve localized eigenvalue problems that use averaged

quantities of the parameter(s) of interest within the space of snapshots. We then

keep a certain number of eigenfunctions (based on some criterion) to form the offline

space. At the online stage we solve similar localized problems using a fixed parameter

value within the offline space, and keep a certain number of eigenfunctions for the

online space construction.
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We remark that the underlying machinery of the proposed technique incorporates

some ideas from the reduced-basis (RB) community (see, e.g., [6, 7, 29, 27, 57]), where

computations are split into offline and online stages. In particular, the concept of

the offline stage is typically devoted to the construction of a reduced basis set which

captures the relevant behavior of the parameter dependence. As a result, the online

solutions may be quickly obtained through the use of a precomputed (or adaptively

computed) surrogate space. The proposed method may be regarded as a local model

reduction approach for nonlinear elliptic equations (see also [6, 4, 29] for some related

work). In [6] the authors present a related approach for treating linear problems, in

which reduced-basis computations are performed to increase the efficiency of solving

localized cell problems. As a result, for the local online computations the authors

are able to quickly obtain effective cell properties that are required of the high-

order coarse scale discretizations. A reduced-basis approach for treating nonlinear

problems (parabolic and hyperbolic) is offered in [29]. In this work, the authors de-

compose the nonlinear operator into distinct contributions (parameter-independent

and -dependent) using so-called empirical operator interpolation. The reduced-basis

spaces are then constructed for the approximation of the operator, such that they are

able to accurately capture the time evolution of parabolic and hyperbolic equations.

In this chapter, we consider the continuous Galerkin (CG) and discontinuous

Galerkin (DG) formulations for the global coupling of the online basis functions. We

show that each method offers a suitable solution technique, however, at this point we

highlight some distinguishing characteristics of the respective methods as motivation

for considering both formulations. For the nonlinear elliptic equation considered

in this chapter, the CG coupling yields a bilinear form that closely resembles the

standard finite element method (FEM). In particular, the integrations that define

the CG formulation are taken over the whole domain, and result in a reduced-order
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system of equations that is similar in nature to the fine-scale system. As such,

the ease of implementation, classical FEM analogues, and well understood structure

make CG a tractable method for coupling the coarse basis functions in order to solve

the global problem [50]. While the discontinuous Galerkin formulation is arguably

more delicate than its CG counterpart, DG offers an attractive feature such as it

does not require partition of unity functions to couple basis functions. DG methods

also allow for flexible meshing, and directly yield a local mass conservation property

that is required for coupling to transport problems. As for the accuracy of these

approaches, we observe that the error between the online and the offline solutions

is comparable for CG and DG GMsFEM except in the case of very low dimensional

coarse spaces. In this case, DG GMsFEM gives larger errors which are due to the

penalty error. The flexibility of the coarse space enrichment, along with the choice

of using CG or DG as the global coupling mechanism, makes GMsFEM a robust

and suitable technique for solving the model equation that we consider. A variety

of numerical examples are presented to validate the performance of the proposed

method.

We note that some numerical results for GMsFEM in the context of continuous

Galerkin methods for nonlinear equations are presented in [36]. These numerical

results are mostly presented to demonstrate the main concepts of GMsFEM and we

do not have careful studies for nonlinear problems in [36]. Moreover, the numerical

results presented in [36] use reduced basis approach to identify dominant eigenmodes

which is different from the local mode decomposition approach presented here. More-

over, the current chapter also studies DG approach for nonlinear equations.

The organization of the remaining of this chapter is as follows. In Section IV.2

we introduce the model problem, the iterative procedure, and notations. In Sec-

tion IV.3, we carefully describe the coarse space enrichment procedure, and introduce
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the continuous and discontinuous Galerkin global coupling formulations. In particu-

lar, SubSection IV.3.1 is devoted to the offline-online coarse space construction, and

in SubSection IV.3.2 we describe the CG and DG global coupling procedures. A vari-

ety of numerical examples are presented in Section IV.4 to validate the performance

of the proposed approaches, and in Section IV.5, we offer some concluding remarks.

IV.2 Preliminaries

We consider non-linear, elliptic equations of the form

−div
(
κ(x;u)∇u

)
= f inD, (IV.1)

where u = 0 on ∂D. We assume that u is bounded above and below, i.e., u0 ≤

u(x) ≤ uN , where u0 and uN are pre-defined constants.

In order to solve Eq. (IV.1) we will consider a Picard iteration

−div
(
κ(x;un(x))∇un+1(x)

)
= f in D, (IV.2)

where superscripts involving n denote respective iteration levels. To discretize (IV.2),

we follow the notions of fine and coarse grids introduced in Chapter II.

Next, we briefly outline the global coupling and the role of coarse basis functions

for the respective formulations that we consider. For the discontinuous Galerkin

(DG) formulation, we will use a coarse element K as the support for basis functions,

and for the continuous Galerkin (CG) formulation, we will use ωi as the support of

basis functions. In turn, throughout this chapter, we use the notation

τ =

 ωi for CG

K for DG
(IV.3)
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when referring to a coarse region where respective local computations are performed

(see Figure II.3). To further motivate the coarse basis construction, we offer a brief

outline of the global coupling associated with the CG formulation below. For the

purposes of this description, we formally denote the CG basis functions by ψωik . In

particular, we note that the proposed approach will employ the use of multiple basis

functions per coarse neighborhood. In turn, the CG solution at n-th iteration will

be sought as uCG
ms (x;µ) =

∑
i,k c

i
kψ

ωi
k (x;µ), where ψωik (x;µ) are the basis functions

for n-th iteration, and µ is used to denote dependence on the previous solution. We

note that a main consideration of our method is to allow for rapid calculations of

basis functions at each iteration.

IV.3 CG and DG GMsFEM for nonlinear problems

IV.3.1 Local basis functions

To motivate the local basis construction, we introduce an approximation to the

solution of Eq. (IV.2) given by

−div
(
κ(x;un(x))∇un+1(x)

)
= f inD, (IV.4)

where u denotes the average of u in each coarse region τ (recall Eq. (IV.3)) depending

on the global formulation. Since the nonlinearity of the problem depends only on the

solution, un may be treated as a scalar in each coarse subregion. As the solution is

a smooth function, we can assume un to be approximately constant in these regions

(and we use un as the value). As a result, the nonlinearity may be treated through

introduction of an auxiliary scalar parameter which represents the nearly constant

solution dependence within the iteration. Because the variation in un is not known a

priori, we will use µ to represent the dependence of the solution on un in the following
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sections.

As part of the iterative solution process, multiscale basis functions will be com-

puted for a selected number of the parameter values at the offline stage, and we will

compute multiscale basis functions for each new value of un at the online stage. For

the sake of brevity, we refer to Chapter II for the construction of snapshot space,

local offline space and online space. We denote the derived local online space over

τ as V τ
on(µ) with dimension of M τ

on. Note that we maintain the convention of denot-

ing u by the parameter µ. We omit the iterative index n (and n + 1) for additional

notational brevity, although note that the iterative process should be clearly implied.

IV.3.2 Global coupling

In this section, we illustrate the global basis generation for CG and DG, sepa-

rately. We will also show those two global formulations in detail.

IV.3.2.1 Continuous Galerkin coupling

In this subsection, we aim to create an appropriate solution space and variational

formulation that is suitable for a continuous Galerkin approximation of Eq. (IV.4).

We begin with an initial coarse space V init
0 (µ) = span{χi}Nvi=1, where the χi are the

standard multiscale partition of unity functions defined in Eq. (II.17). We then

multiply the partition of unity functions by the eigenfunctions in the online space

V ωi
on (µ) to construct the resulting basis functions

ψCG
i,k = χiψ

ωi,on
k for 1 ≤ i ≤ Nv and 1 ≤ k ≤Mωi

on , (IV.5)

where Mωi
on denotes the number of online eigenvectors that are chosen for each coarse

node i. We note that the construction in Eq. (IV.5) yields inherently continuous basis

functions due to the multiplication of online eigenvectors with the initial (continuous)
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partition of unity. This convention is not necessary for the discontinuous Galerkin

global coupling, and is a focal point of contrast between the respective methods.

However, with the continuous basis functions in place, we define the continuous

Galerkin spectral multiscale space as

V CG
on (µ) = span{ψCG

i,k : 1 ≤ i ≤ Nv and 1 ≤ k ≤Mωi
on}. (IV.6)

Using a single index notation, we may write V CG
on (µ) = span{ψCG

i }Nci=1, where Nc

denotes the total number of basis functions that are used in the coarse space con-

struction. We also construct an operator matrix RT
0 =

[
ψCG

1 , . . . , ψCG
Nc

]
(where ψCG

i

are used to denote the nodal values of each basis function defined on the fine grid),

for later use in this subsection.

Before introducing the continuous Galerkin formulation, we recall that the pa-

rameter µ is used to denote a solution that is computed at a previous iteration level

(see Eq. (IV.4)). In turn, to update the solution at the current iteration level we

seek uCG
ms (x;µ) =

∑
i ciψ

CG
i (x;µ) ∈ V CG

on (µ) such that

aCG(uCG
ms , v;µ) = (f, v) for all v ∈ V CG

on (µ), (IV.7)

where aCG(u, v;µ) =

∫
D

κ(x;µ)∇u · ∇v dx, and (f, v) =

∫
D

fv dx. We note that

variational form in (IV.7) yields the following linear algebraic system

A0U
CG
0 = F0, (IV.8)

where UCG
0 denotes the nodal values of the discrete CG solution, and

A0(µ) = [aIJ ] =

∫
D

κ(x;µ)∇ψCG
I · ∇ψCG

J dx and F0 = [fI ] =

∫
D

fψCG
I dx.
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Using the operator matrix RT
0 , we may write A0(µ) = R0A(µ)RT

0 and F0 = R0F ,

where A(µ) and F are the standard, fine scale stiffness matrix and forcing vector

corresponding to the form in Eq. (IV.7). We also note that the operator matrix may

be analogously used in order to project coarse scale solutions onto the fine grid.

IV.3.2.2 Discontinuous Galerkin coupling

One can also use the discontinuous Galerkin (DG) approach (see also [12, 31, 67])

to couple multiscale basis functions. This may avoid the use of the partition of unity

functions; however, a global formulation needs to be chosen carefully. Here, we

would like to briefly mention a general global coupling that can be used. The global

formulation is given by

aDG(u, v;µ) = f(v) for all v = {vK ∈ VK}, (IV.9)

where

aDG(u, v;µ) =
∑

K

aDG
K (u, v;µ) and f(v) =

∑
K

∫
K

fvKdx, (IV.10)

for all u = {uK}, v = {vK} with K being the coarse element depicted in Figure II.3.

Each local bilinear form aDG
K is given as a sum of three bilinear forms:

aDG
K (u, v;µ) := aK(u, v;µ) + rK(u, v;µ) + pK(u, v;µ), (IV.11)

where aK is the bilinear form,

aK(u, v;µ) :=

∫
K

κK(x;µ)∇uK · ∇vKdx, (IV.12)
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where κK(x;µ) is the restriction of κ(x;µ) in K; rK is the symmetric bilinear form,

rK(u, v;µ) :=
∑
E⊂∂K

1

lE

∫
E

κ̃E(x;µ)

(
∂uK

∂nK

(vK − vK′) +
∂vK

∂nK

(uK′ − uK)

)
ds,

where κ̃E(x;µ) is the harmonic average of κ(x;µ) along the edge E, lE = 1 if E ⊂ ∂D,

and lE = 2 if E ⊂ T H\∂D. Here, K′ and K are two coarse elements sharing the

common edge E. Recall that T H is the coarse grid mesh. pK is the penalty bilinear

form,

pK(u, v;µ) :=
∑
E⊂∂K

1

lE

1

hE
δE

∫
E

κ̃E(x;µ)(uK′ − uK)(vK′ − vK)ds. (IV.13)

Here hE is harmonic average of the length of the edge E and E ′, δE is a positive

penalty parameter that needs to be selected and its choice affects the performance

of GMsFEM.

The inherent unconformal property of DG formulation determines the removal

of the partition of unity functions while constructing basis functions in Eq. (IV.5).

Similarly, we can obtain the discontinuous Galerkin spectral multiscale space as

V DG
on (µ) = span{ψK, on

k : 1 ≤ k ≤MK
on, ∀ coarse element K ⊂ D}. (IV.14)

Using the same process as in the continuous Galerkin formulation, we can obtain

an operator matrix constructed by the basis functions of V DG
on (µ). For the consistency

of the notation, we denote the matrix as R0, and RT
0 =

[
ψDG

1 , . . . , ψDG
Nc

]
. Recall that

Nc denote the total number of coarse basis functions.

Solving the problem (IV.1) in the coarse space V DG
on (µ) using the DG formula-

tion described in Eq. (IV.9) is equivalent to seeking uDG
ms (x;µ) =

∑
i ciψ

DG
i (x;µ) ∈
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V DG
on (µ) such that

aDG(uDG
ms , v;µ) = f(v) for all v ∈ V DG

on (µ), (IV.15)

where aDG(u, v;µ) and f(v) are defined in Eq. (IV.10). Similar as the CG case, we

can obtain a coarse linear algebra system

A0U
DG
0 = F0, (IV.16)

where UDG
0 denotes the discrete coarse DG solution, and

A0(µ) = R0A(µ)RT
0 and F0 = R0F.

Here, A(µ) and F are the standard, fine scale stiffness matrix and forcing vector

corresponding to the form in Eq. (IV.10). After solving the coarse system, we can

use the operator matrix R0 to obtain the fine-scale solution in the form of RT
0 U

DG
0 .

We emphasize that using either GMsFEM formulation offers a computational

gain as compared to solving the fine scale problem directly. This is partially due to

the fact that the offline stage involves the independent construction of the partition

of unity and offline basis functions. In particular, all quantities required of the

online computation are pre-computed offline. Furthermore, the size of online system

is typically much smaller than the fine scale system, and the online construction only

involves a stiffness matrix assembly and local basis computations. An advantage of

local approaches in the studied problems is that the solution can be treated as a

scalar within each coarse region. In turn, it is cost effective to represent the stiffness

matrix via pre-computed matrices. We note that this matrix summation is automatic

for the case when the coefficient has a linear representation, however, the discrete

77



 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

20

40

60

80

100

120

(a) Random field values

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

10

20

30

40

50

60

70

80

90

100
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Figure IV.1: High-contrast permeability fields

empirical interpolation method (see, e.g., [21]) allows for a similar (but approximate)

representation for more general cases.

IV.4 Numerical Results

In this section we solve the nonlinear elliptic equation given in Eq. (IV.1) using

both the continuous (CG) and discontinuous Galerkin (DG) GMsFEM formulations

described in Section IV.3. More specifically, we consider the equation

−div
(
eκ(x)u(x)∇u(x)

)
= f in D (IV.17a)

u = 0 on ∂D, (IV.17b)

where the general coefficient from (IV.1) is taken to be κ(x;u) = eκ(x)u(x). For

the coefficient κ(x), we consider the high-contrast permeability fields as illustrated

in Figure IV.1. Figure IV.1(a) represents a field whose high-permeability values

are randomly assigned, while the field in Figure IV.1(b) has a different channelized

structure with fixed maximum values. We use a source term f = 0.1, and solve the

problem on the unit two-dimensional domain D = [0, 1]×[0, 1].
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To solve Eq. (IV.17) we first linearize it by using a Picard iteration. In particular,

for a given initial guess u0 we solve

−div
(
eκ(x)un(x)∇un+1(x)

)
= f in D (IV.18a)

un+1 = 0 on ∂D, (IV.18b)

for n ≥ 0.

In our simulations, we take the initial guess u0 = 0, and terminate the iterative

loop when ‖A(un+1)un+1 − b‖ ≤ δ ‖b‖, where δ is the tolerance for the iteration and

we select δ = 10−3. We note that A and b correspond to the linear system resulting

from either the CG or DG global formulations. In particular, we solve the problem

as follows,

A(un)un+1 = b for n = 0, 1, . . . . (IV.19)

We note that since un and un+1 will not necessarily be computed in coarse spaces

of the same dimension, we cannot directly use the residual criterion listed above.

Actually, we use the Galerkin projection of the fine solution to the corresponding

coarse space to calculate the residual error from above. For all cases presented in

this section, the global iteration resulting from the linearization converges in 4 or 5

iterations.

Remark IV.4.1. In this section we will consider two types of coefficients κ(x) to be

used in Eq. (IV.17). We recall that throughout this chapter we have used an auxil-

iary variable µ = un to denote the solution dependence of the nonlinear problem. As

such, we have referred to the model equation as parameter-dependent while describ-

ing the iterative solution procedure. Consequently, we are careful to introduce (and
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Figure IV.2: Decomposition of permeability field IV.1(b)

distinguish) a related case where we use a “physical” parameter µp for the purpose of

constructing a field of the form κ(x) = µpκ1(x) + (1− µp)κ2(x). See Figure IV.2 for

an illustration of κ1(x) and κ2(x). We note that the coefficient will be constructed

by summing contributions that depend on the physical parameter µp, in addition to

the auxiliary parameter dependence from the iterative form. In SubSection IV.4.1 we

use a field that does not depend on µp, and in SubSection IV.4.2 we use a field that

does depend on µp.

IV.4.1 Parameter-independent permeability field

In the following simulations we first generate a snapshot space, use a spectral

decomposition to obtain the offline space, and then for an initial guess apply a

similar spectral decomposition to obtain the online space. We recall that in order to

construct the snapshot space we choose a specified number of eigenfunctions (denoted

by Msnap) on either a coarse neighborhood or coarse element depending on whether

we use continuous (CG) or discontinuous Galerkin (DG) global coupling, respectively.

In our simulations, we select the range of solutions [umin, umax] that correspond to
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solving the fine scale equation using a source term that ranges from f ∈ [0.1, 1].

For the first set of simulations we divide the domain [umin, umax] into Ns − 1 equally

spaced subdomains to obtain Ns discrete points u1, . . . , uNs . For these simulations

we fix a value of Ns = 9.

For either formulation, we solve a localized eigenvalue problem as defined in

SubSection IV.3.1 for each point uj on a coarse neighborhood and keep a spec-

ified number of eigenfunctions. For example, in the CG case we keep lmax = 3

snapshot eigenfunctions, and this construction leads to a local space of dimension

Msnap = lmax×Ns = 3×9 = 27. In the DG case, we adaptively choose the number of

eigenfunctions based on a consideration of the eigenvalue differences. In the offline

space construction we fix u as the average of the previously defined fixed snapshot

values. We then solve the offline eigenvalue problem and construct the offline space

by keeping the eigenvectors corresponding to a specified number of dominant eigen-

values. At the online stage we use the initial guess u0 = 0 in order to solve the

respective eigenvalue problem required for the space construction. We note that

the size of our online space and the associated solution accuracy will depend on the

number of eigenvectors that we keep in the online space construction.

In the CG formulation, we recall that the online eigenfunctions are multiplied by

the corresponding partition of unity functions with support in the same neighborhood

of the respective coarse node. We then solve Eq. (IV.17) iteratively within the

online space. In particular, for each iteration we update the online space and solve

Eq. (IV.17) using the previously computed solution.

In the simulations using the CG formulation, we discretize our domain into coarse

elements of size H = 1/10, and fine elements of size h = 1/100. The results cor-

responding to the permeability fields from Figures IV.1(a) and IV.1(b) are shown

in Tables IV.1 and IV.2, respectively. The first column shows the dimension of the
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online solution space, and the second column shows the eigenvalue λ∗ which corre-

sponds to the first eigenfunction that is discarded from space enrichment. We note

that this eigenvalue is an important consideration in error estimates of enriched mul-

tiscale spaces ([42]). As a formal consideration, we mention that the error analysis

typically yields estimates of the form ‖u − ums‖ ∼ O(Hγλ∗) when the dominant

eigenvalues are taken to be small. The next two columns correspond to the L2-

weighted relative error ‖u− ums‖L2
κ(D) / ‖u‖L2

κ(D)×100% and energy relative error

‖u− ums‖H1
κ(D) / ‖u‖H1

κ(D)×100% between the GMsFEM solution ums and the fine-

scale solution u. We note that as the dimension of the online space increases (i.e.,

we keep more eigenfunctions in the space construction), the relative errors decrease

accordingly. As an example, for the field in Figure IV.1(a), we encounter L2 relative

errors that decrease from 1.43−0.24%, and energy relative errors that decrease from

16.12−6.85% as the online space is systematically enriched. In the tables, analogous

errors between the online GMsFEM solution and the offline solution are computed.

The dimension of the offline space is taken to be the maximum dimension of the on-

line space. We note that in this case the Picard iteration converges in 4 steps for all

simulations. In Figure IV.3 we also plot the fine and coarse-scale CG solutions that

correspond to the field in Figure IV.1(b). We note that the fine solution, and the

coarse solutions corresponding to the largest and smallest online spaces are nearly

indistinguishable.

We also illustrate the relation between the online-offline energy errors and λ∗ in

Figure IV.4 for the same permeability fields considered above. From the plots in

Figure IV.4, we see that the energy error predictably decreases as λ∗ decreases, thus

following the appropriate error behavior.

In order to solve the model problem using the DG formulation, we note that the

space of snapshots is constructed in a slightly different fashion. In this case, the se-
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dim(V CG
on ) λ∗

GMsFEM Relative Error (%) Online-Offline Relative Error (%)
L2
κ(D) H1

κ(D) L2
κ(D) H1

κ(D)

319 0.0021 1.43 16.12 1.25 16.33

497 0.0010 0.69 11.71 0.48 10.66

770 3.36× 10−4 0.40 9.13 0.20 7.30

1043 1.06× 10−4 0.31 7.76 0.09 4.43

1270 — 0.24 6.85 0.00 0.00

Table IV.1: CG relative errors corresponding to the permeability field in Fig-
ure IV.1(a)

dim(V CG
on ) λ∗

GMsFEM Relative Error (%) Online-Offline Relative Error (%)
L2
κ(D) H1

κ(D) L2
κ(D) H1

κ(D)

316 0.0026 1.36 15.28 1.18 15.74

482 0.0010 0.71 11.89 0.51 11.17

722 3.18× 10−4 0.43 9.53 0.22 7.77

996 1.02× 10−4 0.33 8.02 0.11 4.72

1236 — 0.26 7.05 0.00 0.00

Table IV.2: CG relative errors corresponding to the permeability field in Fig-
ure IV.1(b)

lection of eigenvectors hinges on a comparison between the difference of consecutive

eigenvalues resulting from the localized computations. In contrast to the CG case,

the initial number of eigenfunctions (call this number lKinit) used in the snapshot space

construction are adaptively chosen based on the relative size of consecutive eigenval-

ues. We note that either way for choosing eigenfunctions is relevant for both global

formulations, and both constructions yield a predictable snapshot space dimension.

For the results corresponding to the DG formulation, we note that two configurations

for the snapshot space construction are used. In particular, we consider a case when

the original number of eigenfuctions lKinit are used in the construction, and a case
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Figure IV.3: Comparison of fine and coarse CG solutions corresponding to Fig-
ure IV.1(b)
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(a) Corresponds to Figure IV.1(a)
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(b) Corresponds to Figure IV.1(b)

Figure IV.4: Relation between the first discarded eigenvalue and the CG relative en-
ergy error; permeability from Figure IV.1(a) (left), permeability from Figure IV.1(b)
(right)

when lKmax = lKinit + 3 are used in the construction.

In the simulations using the DG formulation, we partition the original domain

using a coarse mesh of size H = 1/10, and use a fine mesh composed of uniform

triangular elements of mesh size h = 1/100. The numerical results for permeability

fields IV.1(a) and IV.1(b) are represented in Tables IV.3 and IV.4, respectively. The

first column shows the dimension of the online space, the second column represents
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the corresponding eigenvalue (λ∗) of the first eigenfunction discarded from the online

space, and the next two columns illustrate the interior energy relative error (Eint)

and the boundary energy relative error (E∂) between the fine scale solution and DG

GMsFEM solution. We follow the definition of Eint and E∂ as in [37] and using the

notation introduced in SubSection IV.3.2.2,

T =
∑
K⊂D

∥∥∥κ 1
2
K(x;u)∇u

∥∥∥2

L2(K)
+
∑
K⊂D

∑
E⊂∂K

1

lE

1

hE

∫
E

κ̃E(x;u)(uK − uK′)2 ds,

Eint =

(∑
K⊂D

∥∥∥κ 1
2
K(x;u)∇e

∥∥∥2

L2(K)

/
T

) 1
2

, (IV.20)

E∂ =

(∑
K⊂D

∑
E⊂∂K

1

lE

1

hE

∫
E

κ̃(x;u)(eK − eK′)2 ds
/
T

) 1
2

. (IV.21)

Here, e = u− ums.

The errors between the offline and online solutions are offered in the final two

columns. We note that as the dimension of the online space increases (i.e., we

keep more eigenfunctions in the space construction), the relative errors decrease

accordingly. For example, the DG solution corresponding to Figure IV.1(a) yields

interior relative energy errors that decrease from 55.08 − 34.86%, and boundary

relative energy errors that decrease from 8.94− 6.40%. We note that in this case the

Picard iteration converges in 4 or 5 steps for all simulations. In Figure IV.5 we also

plot the fine and coarse DG solutions that correspond to the field in Figure IV.1(b).

We note that the fine solution and the coarse solution corresponding to the smallest

online space show some slight differences. However, the discrepancies noticeably

diminish when the coarse DG solution is computed within the largest online space.

As in the CG case, we also illustrate the relation between the DG online-offline

interior errors and λ∗ in Figure IV.6. From the plots in Figure IV.6, we see that the
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dim(V DG
on ) λ∗

GMsFEM Relative Error (%) Online-Offline Relative Error (%)
Eint E∂ Eint E∂

271 1.53× 10−4 55.08 8.94 44.38 8.43

331 1.24× 10−4 36.59 6.63 10.05 3.08

466 3.03× 10−5 35.57 6.56 7.00 1.67

624 1.72× 10−5 34.90 6.48 2.12 0.40

716 — 34.86 6.40 0.00 0.00

Table IV.3: DG relative errors corresponding to the permeability field in Fig-
ure IV.1(a); snapshot space uses lKinit eigenfunctions

dim(V DG
on ) λ∗

GMsFEM Relative Error (%) Online-Offline Relative Error (%)
Eint E∂ Eint E∂

270 1.56× 10−4 56.29 10.30 46.37 9.75

331 1.05× 10−4 36.72 6.71 9.54 3.32

444 3.12× 10−5 35.67 6.56 6.48 1.67

582 1.21× 10−5 35.06 6.48 2.14 0.41

663 — 35.03 6.48 0.00 0.00

Table IV.4: DG relative errors corresponding to the permeability field in Fig-
ure IV.1(b); snapshot space uses lKinit eigenfunctions

relative errors decrease as λ∗ decreases. However, we elaborate on two distinctions

between these results and the CG results. In particular, we first note that the

snapshot error for the DG solutions is roughly 35% (recall Tables IV.3 and IV.4).

Thus, we accept this residual error and use the online-offline error as a measure of

convergence. In addition, we omit the error quantity that corresponds to the lowest

dimensional online space for the plots in Figure IV.6. In this case, the smallest space

does not offer an adequate representation of the solution because of the dominant

penalty.

Remark IV.4.2. When solving the nonlinear equation using the discontinuous Galerkin
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Figure IV.5: Comparison of fine and coarse DG solutions correpsonding to Fig-
ure IV.1(b)
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(a) Corresponds to Figure IV.1(a)
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Figure IV.6: Relation between the first discarded eigenvalue and the DG relative
interior energy error; permeability from Figure IV.1(a) (left), permeability from Fig-
ure IV.1(b) (right) IV.1(a) and IV.1(b)

approach, we use different penalty parameters for fine-grid problem and coarse-grid

problem (refer back to SubSection IV.3.2.2). However, we observe that for different

coarse penalty parameters that yield a convergent solution, the number of iterations

and the relative errors (both interior and boundary) stay the same.

Remark IV.4.3. Recall that we use the Galerkin projection of the previous coarse

solution onto the current online space as the approximation of the previous coarse
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dim(V DG
on ) λ∗

GMsFEM Relative Error (%) Online-Offline Relative Error (%)
Eint E∂ Eint E∂

381 1.47× 10−4 37.34 7.42 22.80 6.00

440 1.54× 10−4 35.92 6.16 20.07 4.36

707 9.54× 10−5 32.80 5.29 13.64 2.90

958 2.71× 10−5 29.44 5.48 4.80 0.98

1352 — 28.98 5.39 0.00 0.00

Table IV.5: DG relative errors corresponding to the permeability field in
FigureIV.1(b); snapshot space uses lKmax = lKinit + 3 eigenfunctions

solution to obtain the terminal condition. If the coarse penalty parameter is changed,

we should use the current coarse penalty parameter to construct the Galerkin projec-

tion.

We observe from Tables IV.1-IV.4 that the offline spaces for DG formulation are

much smaller than those obtained through CG formulation. As a result, in Table

IV.5 we use more eigenfunctions (more specifically, we set lKmax = lKinit + 3) in the

snapshot space construction to yield a larger offline space. For these examples, we

use the permeability field from Figure IV.1(b). Due to the increase of the offline

(and corresponding online) space dimensions, we see more accurate results than

those offered in Table IV.4.

IV.4.2 Parameter-dependent permeability field

For the next set of numerical results, we consider solving the nonlinear elliptic

problem in Eq. (IV.17) with a coefficient of the form

κ(x, u, µp) = exp [(µpκ1(x) + (1− µp)κ2(x))u(x)] .
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For κ1(x) and κ2(x) we use the fields shown in Figure IV.2(a) and IV.2(b), respec-

tively.

As for the parameter-dependent simulation, we are careful to distinguish the

difference between the auxiliary parameter µ = un which is used to denote a previous

solution iterate, and a “physical” parameter µp that is used in the construction of a

new permeability field. We take the range of µp to be [0, 1], and use three equally

spaced values in order to construct the snapshot space in this case. We use the same

[umin, umax] interval from the previous results, yet use four equally spaced values in

this case. In particular, we use the pairs (uj, µ
p
l ), where 1 ≤ j ≤ 4, and 1 ≤ l ≤ 3

as the fixed parameter values for the snapshot space construction. At the online

stage we use the initial guess u0 = 0 and a fixed value of µp = 0.2 while solving the

respective eigenvalue problem required for the continuous or discontinuous Galerkin

online space construction.

In Table IV.6 we offer results corresponding to the CG formulation, and in Ta-

bles IV.7 and IV.8 we offer results corresponding to the DG formulation. In all cases

we encounter very similar error behavior compared to the examples offered earlier

in the section. In particular, an increase of the dimension of the online space yields

predictably smaller errors, and smaller values of λ∗ correspond to the error decrease.

And while it suffices to refer back to related discussions earlier in the section, we em-

phasize that this distinct set of results serves to further illustrate the robustness of

the proposed method. In particular, we show that the solution procedure allows for a

suitable treatment of nonlinear problems that involve auxiliary parameters that are

used to represent the nearly constant solution behavior on a coarse subregion, and

physical parameters that are explicitly used in the permeability field construction.

89



dim(V CG
on ) λ∗

GMsFEM Relative Error (%) Online-Offline Relative Error (%)
L2
κ(D) H1

κ(D) L2
κ(D) H1

κ(D)

309 0.0027 1.30 14.89 1.10 15.32

492 0.0010 0.59 10.82 0.39 9.76

580 6.76× 10−4 0.45 9.55 0.24 7.92

728 3.33× 10−4 0.34 7.87 0.12 5.23

991 — 0.28 6.74 0.00 0.00

Table IV.6: CG relative errors corresponding to the parameter-dependent field con-
structed from Figure IV.2(a) and IV.2(b)

dim(V DG
on ) λ∗

GMsFEM Relative Error (%) Online-Offline Relative Error (%)
Eint E∂ Eint E∂

300 1.02× 10−4 37.56 7.94 10.15 3.16

313 6.25× 10−5 37.55 7.81 10.00 2.85

403 2.58× 10−5 36.81 7.35 5.83 1.38

497 1.22× 10−5 36.37 7.21 0.84 0.10

517 — 36.36 7.21 0.00 0.00

Table IV.7: DG relative errors corresponding to the parameter-dependent field con-
structed from Figure IV.2(a) and IV.2(b); snapshot space uses lKinit eigenfunctions

IV.5 Concluding remarks

In this chapter, we implement the Generalized Multiscale Finite Element (GMs-

FEM) framework to nonlinear elliptic equations in high-contrast heterogeneous me-

dia. In order to solve this type of problem we linearize the equation such that upscaled

quantities of previous solution iterates can be regarded as auxiliary coefficient param-

eters in the problem formulation. As a result, we are able to construct a respective set

of coarse basis functions using an offline-online procedure in which the precomputed

offline space allows for the efficient computation of a smaller-dimensional online space

for any parameter value at each iteration.
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dim(V DG
on ) λ∗

GMsFEM Relative Error (%)Online-Offline Relative Error (%)
Eint E∂ Eint E∂

300 2.13× 10−4 37.59 7.94 22.54 6.40

440 1.54× 10−5 35.78 5.92 18.89 3.74

668 7.69× 10−5 32.54 5.39 11.62 2.58

902 1.51× 10−5 30.23 5.29 3.87 1.06

1093 — 29.88 5.29 0.00 0.00

Table IV.8: DG relative errors corresponding to the parameter-dependent field con-
structed from Figure IV.2(a) and IV.2(b); snapshot space uses lKmax = lKinit + 3 eigen-
functions

The coarse space construction involves solving a set of localized eigenvalue prob-

lems that are tailored to either continuous Galerkin (CG) or discontinuous Galerkin

(DG) global coupling mechanisms. In particular, the respective coarse spaces are

formed by keeping a set of eigenfunctions that correspond to the localized eigen-

value behavior. Using either formulation, we show that the process of systematically

enriching the coarse solution spaces yields a predictable error decline between the

fine and coarse-grid solutions. As a result, the proposed methodology is shown to

be an effective and flexible approach for solving the nonlinear, high-contrast elliptic

equation that we consider in this chapter.

Similar to the reduced basis (RB) method, the main computation lies in the cal-

culations of the offline space. The latter depends on the choice of representative

solutions to generate each local snapshot space. It is of great interest and impor-

tance if we can get a series of representative solutions with minimal efforts. There

are several strategies, e.g., greedy sampling algorithm, for this type of problems.

Further, we can replace the Picard iteration method with Newton’s method for a

faster convergence rate. Adaptive enrichment algorithm presented in Chapter III

can be extended to nonlinear elliptic problems for a smaller online space.

91



V. GENERALIZED MULTISCALE FINITE ELEMENT METHODS.

BRINKMAN FLOW

V.1 Introduction

In this chapter, we investigate Brinkman flow in high-contrast heterogeneous

permeability fields as analyzed in [46].

The Brinkman model can be written as

∇p− µ∆u+ κ−1u =f in D,

divu =0 in D,

(V.1)

where p is the fluid pressure and u represents the velocity. Here, µ is the viscosity

and κ = κ(x) is a heterogeneous multiscale coefficient that models the permeability

of the porous medium.

We assume that the variations of κ occur within a very fine scale and therefore a

direct simulation of this model is costly. As mentioned in Chapter I, one of the main

advantages of the Brinkman model is that it can capture Stokes and Darcy type

flow behavior depending on the value of κ without the usage of a complex interface

condition as needed in the Stokes-Darcy interface model. This is very convenient

when modeling complicated porous scenarios such as a vuggy medium. However, this

advantage of the Brinkman model does not come for free: it brings the challenge of

effectively designing numerical homogenization or upscaling methodologies since the

resulting upscaling method must capture the correct flow behavior in corresponding

regions. This difficulty increases in the case of high-contrast media due to the fact

that, in a single coarse region, the permeability field can have variations of several

orders of magnitude that make it difficult to compute effective coefficient or boundary
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conditions using classical multiscale finite element methods.

We present several numerical examples to illustrate the performance of the pro-

posed approach. In particular, four different high-contrast multiscale permeability

fields, which are representative of Brinkman flow scenarios: a fast Darcy flow going

through the slower region; a slower Darcy flow past Darcy flow regions; a free flow

going across the Darcy flow region; and a Darcy flow passing the strong free flow

region. All the numerical results indicate that the proposed GMsFEM is robust and

accurate.

The rest of this chapter is organized as follows. In Section V.2, we present

preliminaries on the Brinkman model and the GMsFEM. The construction of the

coarse spaces for the GMsFEM is displayed in Section V.3. In Section V.4, numerical

results for several representative examples are showed. The proofs of our main results,

including stability and a priori error estimates, are exhibited in Section V.5. At last,

we end this chapter with a conclusion in Section V.6.

V.2 Preliminaries

Let D be a polygonal domain in Rd (d = 2, 3) with a boundary ∂D in the

Brinkman problem (V.1). Here the source term f ∈ (L2(D))d, the boundary condi-

tion g ∈ (H
1
2 (∂D))d, and κ−1 is a positive definite heterogeneous tensor field with

high-contrast. Without loss of generality, we assume the viscosity parameter µ = 1

and g = 0 throughout.

To simplify the notation, we denote by V (D) = (H1
0 (D))d and W (D) = L2

0(D).

The variational formulation of the problem is given by: find u ∈ V (D) and p ∈ W (D)
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such that

a(u, v)+b(v, p)=lf (v) for all v ∈ V (D),

b(u, q)=0 for all q ∈ W (D),

where the bilinear forms a(·, ·) and b(·, ·) are respectively defined by

a(u, v) =〈∇u,∇v〉D +
〈
κ−1u, v

〉
D
, for all u, v ∈ V (D),

b(u, p) =〈div u, p〉D, for all u ∈ V (D), p ∈ W (D),

and the linear form lf is given by

lf (v) = 〈f, v〉D, for all v ∈ V (D),

where 〈· , ·〉D denotes the L2 inner product over D.

Let TH be a coarse-grid partition of the domain D and Th be a conforming fine

triangulation of D. We assume that Th is a refinement of TH , where h and H represent

the mesh size of a fine and coarse cell, respectively. Typically we assume that 0 <

h� H < 1, and that the triangulation Th is fine enough to fully resolve the spatial

variations of the coefficient κ, while H is too coarse to accurately resolve this spatial

variations inside a coarse element, and the coefficient κ may have large variations

within the coarse block. On the triangulation Th, we introduce the following finite

element spaces

Vh := {v ∈ V (D)|v|K ∈ (P 2(K))d for all K ∈ Th},

Wh := {q ∈ W (D)|w|K ∈ P 0(K), for all K ∈ Th}.
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The standard mixed finite element method for problem (V.1) is to seek an ap-

proximation (uh, ph) in the finite element space Vh × Wh ⊂ V (D) × W (D) such

that

a(uh, v)+b(v, ph)=lf (v) for all v ∈ Vh,

b(q, uh)=0 for all q ∈ Wh,

or which is equivalent to the solution of the following linear system

 A B

BT 0


u
p

 =

F
0

 .

Here the matrices denote

vTAu = a(u, v), for all u, v ∈ Vh, (V.2)

qTBu = b(u, q), for all u ∈ Vh and q ∈ Wh. (V.3)

Note that here and below, in order to simplify notation, we are using the same

notation for finite element functions and their corresponding vector representations.

It is well known the mixed finite element formulation described above is stable;

see for instance [73]. In the case of high-contrast media, a very refined grid is needed

in order to fully resolve small scale features, and thus it is prohibitively expensive

to solve the resulting system. Meanwhile, if we naively apply P 2/P 0 finite element

spaces over the coarse mesh TH , the resulting system is small but obviously the

solution can only represent a poor approximation to the exact solution. To turn

around the dilemma, we follow the GMsFEM framework proposed in [36].

In the GMsFEM methodology, one divides the computations into onffline and
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online computations. The offline computations are based upon a preliminary dimen-

sion reduction of the fine-scale finite element spaces (that may include dealing with

additionally important physical parameters, uncertainties and nonlinearities), and

then the online procedure (if needed) is applied to construct a reduced order model

on the offline space. We start by constructing offline spaces.

We construct the coarse function space

V off := span{φi}Nci=1,

where Nc is the number of coarse basis functions. Each φi is supported in some

coarse neighborhood w. For the pressure field p, we use the space of piecewise

constant functions over the coarse triangulation TH , that is,

W off := {q ∈ L2
0(D)|q|K ∈ P 0(K), for all K ∈ TH}. (V.4)

We denote NH = dimW off.

The idea is then to work on the reduced spaces V off×W off instead of the original

spaces V (D)×W (D). In the general GMsFEM methodology, these offline spaces are

used in the online computations where a further reduction may be performed; see

[42, 36] for details. The overall performance of the resulting GMsFEM depends on

the approximation properties of the resulting offline and online coarse spaces. In this

chapter, we focus on the construction of the offline spaces only. We mention that this

is sufficient for the effective numerical upscaling of the Brinkman model proposed

above where neither parameters nor nonlinearities are considered. The more general

case with additional parameters can also be studied using the proposed method, but

it requires online dimension reduction ([42, 36, 41]) and thus defer to a future study.
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The GMsFEM seeks an approximation (u0, p0) ∈ V off ×W off which satisfies the

coarse scale offline formulation,

a(u0, v)+bt(p0, v)=lf (v) for all v ∈ V off, (V.5a)

b(u0, q) =0 for all q ∈ W off. (V.5b)

We can interpret the method in the following way using matrix representations.

Recall that both coarse basis functions {φi}Nci=1 and {qi}NHi=1 are defined on the fine grid,

and can be represented by the fine grid basis functions. Specifically, we introduce

the following matrices,

RT
0 = [φ1, . . . , φNc ] and QT

0 = [q1, . . . , qNH ],

where we identify the basis φi and qi with their coefficient vectors in the fine grid

basis. Then the matrix analogue of the system (V.5) can be equivalently written as

 R0AR
T
0 R0BQ

T
0

Q0B
TRT

0 0


u0

p0

 =

R0F

0

 . (V.6)

Further, once we solve the coarse system (V.6), we can recover the fine scale solution

by RT
0 u0 and QT

0 p0. In other words, RT
0 and QT

0 can be regarded as the transformation

(also known as interpolation, extension, and downscaling) matrix from the space V off

to the space Vh and W off to the space Wh.

The accuracy of the GMsFEM relies crucially on the coarse basis functions {φi}.

We shall present one novel construction of suitable basis functions for the Brinkman

equation in Section V.3.
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V.3 The construction of the space V off

In this section, we present the construction of the space V off in detail. For the

pressure field p, we simply use piecewise constant functions over the coarse grid as

defined in (V.4). Therefore the focus below is on the construction of the offline ve-

locity space V off. To this end, we first introduce the concept of (harmonic) extension

of boundary data in the Brinkman sense, which will play an important role in the

construction. The precise definition is given below.

Definition V.3.1 (Brinkman Extension). For a domain K ⊂ Rd, we define the

Brinkman extension of any v ∈ (H
1
2 (∂K))d, denoted by H(v) ∈ (H1(K))d, to be the

unique solution of the following homogeneous Brinkman equation (with |K| being the

measure of K)

∇p− µ∆H(v)+κ−1H(v)=0 in K,

divH(v)=
1

|D|

∫
∂D

v · n in K,

H(v) =v on ∂K.

Remark V.3.2. In practice, the extension H(v) is the numerical solution of the

equation in the fine-scale finite element space Vh(K)×Wh(K), where K is a coarse

block (see Figure (V.1) for an illustration of coarse block and coarse neighborhood).

This computation can be efficiently performed due to the moderated size of the coarse

regions. Besides, the computations can be carried out in parallel, if the computations

are required over all coarse regions.

Now we are ready to state the detailed construction of the offline velocity space

V off. Our construction consists of the following three steps. We defer the analysis of

the resulting GMsFEM method to Section V.5.
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V.3.0.0.1 Building multiscale partition of unity functions. First we introduce a set

of generalized global partition of unity functions on the coarse grid. We denote the

set of all coarse edges by EH , and consider the following finite element space:

MH := {v ∈ C0(EH) : v|F ∈ P 2(F ), for all F ∈ EH}.

Let PH be the set of the shape functions of the space MH . Then PH also forms a

set of partition of unity functions over the skeleton EH .

Next we introduce the set of multicale partition of unity functions for a two-

dimensional domain ω. We remark that the construction for the three-dimensional

case is similar. For any χ ∈ PH , let ω denote the support of χ, and we call ω a coarse

neighborhood associated with χ. In Figure V.1, we sketch all three possible types of

the coarse neighborhood, ω1, ω2 and ω3, respectively. ω1 corresponds to partition of

unity function χ having nodal value 1 at the coarse node i; ω2 represents the support

of χ valuing 1 at node j, and ω3 stands for support of χ equaling to 1 at node k.

Figure V.1: Illustration of three types of coarse neighborhoods and coarse element:
ω1, ω2 and ω3 denote the support of partition of unity functions χ.
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For each χ ∈ PH , we have two Brinkman extensions of χ: H(χx) and H(χy).

Here H(χx) is the Brinkman extension of the Dirichlet data χx = (χ, 0), and it

is defined on each coarse block K ⊂ ω. The extension H(χy) is defined similarly,

with χy = (0, χ). We note that these vector functions can be extended by 0 to the

entire domain D, since χ vanishes over ∂ω. Finally, the generated partition of unity

functions associated with χ is χx = 1
2
(H(χx))x, χy = 1

2
(H(χy))y, where (·)x and (·)y

denote the first component and second component of a vector, respectively. Thus,

for each χ ∈ PH , we generate two partition of unity functions supported on ω. All

these extensions together form a set of multiscale partition of unity functions, which

are denoted by:

Pext = {χi}Npi=1,

where Np is the number of multiscale partition of unity functions. We note that the

set Pext does not have the default property of partition of unity over the domain D,

but only over the skeleton EH , i.e.,

Np∑
i=1

χi ≡ 1 on EH . (V.7)

V.3.0.0.2 Constructing local snapshot space V ω
snap. In this step, we construct the

local snapshot spaces. Proceeding as before, for each χ ∈ Pext, we let ω denote its

support set, and call it the coarse neighborhood associated with χ, which consists

of either two or four coarse blocks, cf. Figure II.3. The construction of the local

snapshots is further divided into two substeps: generating the snapshot space over

all coarse neighborhoods ω and then improving their linear independence.

Step 2.1. Computing snapshots: For each coarse neighborhood ω, let Jh(∂ω)

denote the set of fine nodes on ∂ω. Let δk ∈ C0(∂ω) denote the shape function
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associated with the node xk ∈ Jh(∂ω). i.e., δk ∈ C0(∂ω) is the piecewise linear

function that takes value 1 on the node xk and vanishes on all other nodes. For each

δk, it generates two Brinkman extensions:

ψk,x = H((δk, 0)) and ψk,y = H((0, δk)).

Now the raw snapshot space on ω is given by

Ṽ ω
snap = span{ψi,x, ψi,y : for all xi ∈ Jh(∂ω)}+ span{(1, 0), (0, 1)}.

Here, we artificially add two constant vectors in the basis; see Remark V.3.3 below

for the discussions.

Step 2.2: Improving linear independence of snapshots: After obtaining a

family of local functions for each coarse neighborhood, we need to discard the possible

linearly dependent local snapshots. To this end, we use a spectral problem based on

the Euclidian inner product. Specifically, Let U be a matrix with columns being the

local snapshots vector representation. We extract the important modes of U through

the spectral decomposition of UTU . In this manner, we keep the linearly independent

snapshots for each coarse neighborhood ω and denote the resulting space by

V ω
snap = span{ψω,snap

l : 1 ≤ l ≤ Lω},

with Lω being the number of local basis functions for the coarse neighborhood ω.

V.3.0.0.3 Step 3: Building the offline space V off. In this final step, we build the

global offline space V off from the snapshot spaces V ω
snap, and it involves two substeps:

constructing local offline space and constructing global offline space.
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Step 3.1: Local multiscale space Ṽ ω
off. The idea at this step is to extract only im-

portant information from the computed local snapshots V ω
snap corresponding to each

coarse neighborhood ω. This can be achieved by performing a dimension reduction

procedure in the space V ω
snap. Namely, we consider the following spectral eigenvalue

problem:

AΨ̂ω,off
k = λkSΨ̂ω,off

k , (V.8)

where the matrices A and S are defined by

A = [amn] =

∫
ω

κ(x)∇ψω,snap
m · ∇ψω,snap

n , 1 ≤ m,n ≤ Lω

S = [smn] =

∫
ω

κ(x)ψω,snap
m ψω,snap

n , 1 ≤ m,n ≤ Lω.

Then we reorder the eigenvalues λk are in an ascending order, and denote Ψ̂ω,off
k as

the coresponding eigenvectors.

To generate the offline space, we then choose the Moff smallest eigenvalues of

(V.8) and the corresponding eigenvectors in the respective space of snapshots by

setting Ψ̃ω,off
k =

∑
j Ψ̂off

kjψ
ω,snap
j , where Ψ̂off

kj are the coordinates of the vector Ψ̂ω,off
k .

We then construct the offline space Ṽ ω
off corresponding to the coarse neighborhood ω

as

Ṽ ω
off = span

(
Ψ̃ω,,off

1 , . . . , Ψ̃ω,off
Moff

)
.

We note that this step is performed only on each coarse neighborhood ω. The

dimensionality of the space Ṽ ω
off solely depends on the eigenvalue problem (V.8) within

the neighborhood ω. It is known that this space is related to important features of

the media (cf. [42]) such as high-conductivity channels and inclusions, and thus its

dimensionality depends on the structure of the heterogeneities.
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Remark V.3.3. In the construction of the local snapshot space, we have added con-

stant functions in addition to spectral basis functions. Hence, the constant function,

which is the eigenvectors corresponding to the zero eigenvalue of (V.8), will always

be in the offline space. By the construction of the offline space, each offline space

contains the partition of unity functions, and the smallest offline space consists of

those partition of unity functions only. This will be crucial in the stability analysis

of the methods in Section V.5.

Step 3.2: Construction of the global offline space V off by partition of unity.

The local multiscale spaces Ṽ ω
off are defined only on each neighborhood ω. However,

it is not conforming if we simply extend the functions by 0 to the whole domain. We

obtain a global conforming offline space V off as follows.

First, we multiply each local offline space Ṽ ω
off by the corresponding partition of

unity function χ:

χṼ ω
off = span

(
χΨ̃ω,off

1 , . . . , χΨ̃ω,off
Moff

)
.

Then the space χṼ ω
off ⊂ H1

0 (ω), and we can extend the functions in χṼ ω
off to the whole

domain D by zero, which is still denoted as χṼ ω
off. Finally, we need to make a correc-

tion of the divergence of the resulting functions to satisfy the following condition:

∇ · V off ⊂ W off.

To this end, for each basis function χΨ̃ω,off
i , within each coarse block K ⊂ ω, we

keep its trace along ∂K and modify its interior values to be the Brinkman extension

H(χΨ̃ω,off
i |∂K). We denote this modified space by H(χṼ ω

off). The global offline space

V off results from assembling all these modified local spaces as:

V off := {v ∈ (H1
0 (D))d : v|ω ∈ H(χṼ ω

off)}.
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This completes the construction of the offline space V off. Finally, we refer to Section

V.2 for the coupling of the offline basis functions.

V.4 Numerical results

Now we test our framework with several examples. In our experiments, we take

the domain D = [0, 1]× [0, 1], the source term f = 0, and the boundary condition is

the constant horizontal velocity:

g = (1, 0) on ∂D.

We study the model with different (inverse) permeability fields κ−1 depicted in Figure

V.2. Figure V.2(a) shows a fast Darcy flow goes through the slower region; in Figure

V.2(b), we exposit a slower Darcy flow past Darcy flow regions; in Figure V.2(c), a

free flow going across the Darcy flow region is represented; and in Figure V.2(d), a

Darcy flow passing the strong free flow region is shown.

We divide the computational domain D = [0 1] × [0 1] into Nf = 1/h2 equal

squares (where each square is further divided into two triangles), and use P2/P0

elements on the fine mesh with h = 1/100. We use a coarse-mesh size H = 1/10,

where we divide the domain D = [0, 1]× [0, 1] into 1/H2 squares.

We depict the fine-scale solution, and three coarse-scale solutions with coarse

spaces of dimensions 798, 1110 and 2726 in Figure V.3. The dimension of the fine

scale velocity space Vh is 80802. In these numerical tests, we use the value of the

inverse of permeability field κ−1 from Figure V.2(a). We observe that a larger coarse

space yields a better approximation of the fine-scale solution. Further, we have the

following observations.

(a) The use of one single basis function for each node gives large errors and thus
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(a) A slower Darcy flow past Darcy flow regions. (b) Fast Darcy flow going through a slower region.
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(c)A Darcy flow passing the strong free flow region. (d)A free flow going across the Darcy flow region.

Figure V.2: Four representative inverse permeability fields κ−1.

it is necessary to add spectral basis functions.

(b) The error decreases as more spectral basis functions are added in each coarse-

grid block.

(c) The error decreases if the solution displays fast flow in some regions instead of

Darcy flow over the whole region under the same contrast.

In Tables V.1-V.4, we present the results with the multiscale partition of unity

functions as required by the conforming Galerkin formulation corresponding to per-
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(a) Fine-scale solution. (b) Coarse solution with solution space of 798.
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(c) Coarse solution with solution space of 1110. (d) Coarse solution with solution space of 2726.

Figure V.3: The fine-scale solution and three coarse-scale solutions with different
dimensions of coarse spaces using the inverse permeability field κ−1 in Figure V.2
(b).

meability fields in Figure V.2. In the tables, the first column shows the dimension of

the offline space V off, and the L2-weighted error between the offline solution uoff and

the fine-scale solution u and the H1-weighted energy error are calculated respectively

by

‖u−uoff‖L2
κ(D) =

∥∥κ−1/2(u− uoff)
∥∥
L2(D)

‖κ−1/2u‖L2(D)

and ‖u−uoff‖H1
κ(D) =

∥∥κ−1/2∇(u− uoff)
∥∥
L2(D)

‖κ−1/2∇u‖L2(D)

.

In Table V.1, we display the velocity error results using a values of κ−1 larger
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Table V.1: Numerical results for problem (V.1) with κ−1 in Figure V.2(b). The L2-
weighted error and energy error are 66.34% and 99.73% for the MsFEM solution. In
the simulation, the dimension of the snapshot space is fixed at 4498 with a weighted
L2 and energy relative error 1.26% and 2.13%.

dim(Voff)
‖u− uoff‖ (%)

L2
κ(D) H1

κ(D)

888 35.46 74.91
1372 26.62 58.25
2028 11.79 26.05
2204 8.61 19.47

in the background, with smaller inclusions values, cf. Figure V.2(a). For simplicity,

we set a threshold value λoff for selecting eigenvectors in the construction of the

offline space. Specifically, for each coarse neighborhood ω, the offline space consists

of those eigenvectors in Eq. (V.8) with eigenvalues λk ≥ λoff. Notice that the

smaller is λoff, the larger is the velocity offline space. In the simulation, the choices

λoff = 1/3, 1/4, 1/7, and 1/10 give the offline spaces of dimension 888, 1372, 2028

and 2204, respectively. It is observed from Table V.1 that the error decreases from

74.91% to 19.47%.

Table V.2: Numerical results for problem (V.1) with κ−1 in Figure V.2(a). The L2-
weighted error and energy error are 74.68% and 130.42% for the MsFEM solution. In
the simulation, the dimension of the snapshot space is fixed at 4498 with a weighted
L2 and energy relative error 1.33% and 13.03%.

dim(Voff)
‖u− uoff‖ (%)

L2
κ(D) H1

κ(D)

682 7.86 36.90
1512 1.85 18.37
2230 1.51 15.27
2744 1.38 13.84
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The results in Table V.2 are calculated with values of κ−1 that are large in in-

clusions, and small in the background, cf. Figure V.2(b). Compared with results

in Table V.1, the errors in Table V.2 are slightly better in the sense that the rel-

ative energy errors are smaller when using the same dimensional offline space. In

this numerical test, we take λoff = 1/3, 1/4, 1/7, and 1/10 with the offline space of

dimension 682, 1512, 2230 and 2744 respectively. From Table V.2, the energy errors

decrease from 36.90% to 13.84%.

Table V.3: Numerical results for problem (V.1) with κ−1 in Figure V.2(d). The L2-
weighted error and energy error are 85.25% and 73.85% for the MsFEM solution. In
the simulation, the dimension of the snapshot space is fixed at 4498 with a weighted
L2 and energy relative error 1.94% and 3.54%.

dim(Voff)
‖u− uoff‖ (%)

L2
κ(D) H1

κ(D)

834 35.58 38.10
1512 14.34 19.41
2084 6.81 9.90
2306 4.54 7.65

In Tables V.3 and V.4, we employ certain inverse permeability fields κ−1 to get

fast flow and Darcy flow simultaneously. In Table V.3, we use the value of κ−1 small

in inclusions, and large in the background, cf. Figure V.2(c). In this numerical test,

we take λoff = 1/3, 1/4, 1/7, and 1/10 with the offline space of dimension 834, 1512,

2084 and 2316 respectively. From Table V.3, the energy errors decrease from 38.10%

to 7.65%. In Table V.4, we experimented with values of κ−1 large in inclusions, and

small in the background as shown in Figure V.2(d). In this numerical test, we take

λoff = 1/3, 1/4, 1/7, and 1/10 with the offline space of dimension 682, 1090, 1992

and 3344 respectively. From Table V.4, the energy error decreases from 43.26% to
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5.38%.

Table V.4: Numerical results for problem (V.1) with κ−1 in Figure V.2(c). The L2-
weighted error and energy error are 74.68% and 130.42% for the MsFEM solution. In
the simulation, the dimension of the snapshot space is fixed at 4498 with a weighted
L2 and energy relative error 1.47% and 3.75%.

dim(Voff)
‖u− uoff‖ (%)

L2
κ(D) H1

κ(D)

682 46.80 43.26
1090 30.92 30.30
1992 13.49 13.15
3344 6.36 5.38

In Table V.3, the solution represents fast flow in the inclusions (with high perme-

ability value) and Darcy flow in the background, whereas in Table V.4, the solution

is a fast flow in the background (with high permeability value) and Darcy flow in the

inclusions. The results in these four tables indicate that the errors are smaller when

fast flow exists.

V.5 Convergence analysis

In this section, we present a priori error estimates for the multiscale method

proposed above. we first derive the stability argument. Then we show the approxi-

mation property of the method. For the sake of simplicity, we assume a homogeneous

boundary condition g = 0 in the Brinkman equation (V.1).
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V.5.1 Stability argument

To prove the stability of the method, we apply the well known inf-sup argument.

First, we define a norm on V (D) by

|||u|||2V,D = a(u, u) +M〈div u, div u〉D, (V.9)

and the norm on W (D) is defined by

|||p|||P,D = M− 1
2 ‖p‖L2(D) , (V.10)

where M = max(‖κ−1‖L∞(D) , 1). We also define the following two null spaces:

Z := {v ∈ V (D) : b(v, p) = 0, for all p ∈ W (D)},

Zoff := {v ∈ V off : b(v, p) = 0, for all p ∈ W off}.

Under these definitions and the construction of V off and W off, it holds:

Zoff ⊂ Z, a(v, v) � |||v|||2V,D for all v ∈ Z. (V.11)

Here, and in what follows, we use the notation A � B to represent A ≥ CB with

a constant C independent of the contrast and the functions involve, and a similar

interpretation applies to the notation �. The above two results imply that the

bilinear form a(·, ·) is also coercive on Zoff.

We first verify that the continuous problem (V.1) satisfies the inf-sup condition.

Lemma V.5.1. Let ||| · |||V,D and ||| · |||P,D be defined in (V.9) and (V.10). Then the
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following inf-sup condition holds independent of the contrast

sup
v∈V (D)\{0}

〈div v, q〉D
|||v|||V,D

� |||q|||P,D, for all q ∈ W (D). (V.12)

Proof. It is well known [19] that the operator b(·, ·) satisfies the inf-sup condition

under the standard norms, i.e.,

sup
v∈V (D)\{0}

〈div v, q〉D
‖v‖H1(D)

� ‖q‖L2(D) , for all q ∈ W (D). (V.13)

By the definition of ||| · |||V,D and ||| · |||P,D, we have |||v|||V,D ≤ M
1
2 ‖v‖H1(D), and

‖q‖L2(D) = M
1
2 |||q|||P,D for all (v, q) ∈ V (D) ×W (D). Combining these facts with

(V.13) completes the proof.

Next, we show that the discrete problem (V.5) also satisfies this type of inf-

sup condition with a constant independent of the contrast for every offline space

V off ×W off. First, we consider the following auxiliary space:

VH(D) := {v ∈ H1(D)| v|K ∈ Q2(K), ∀K ∈ TH},

WH(D) := {q ∈ L2
0(D)| q|K ∈ Q0(K), ∀K ∈ TH}.

For the Brinkman model, we have the following inf-sup condition in VH(D)×WH(D)

(see [17]),

sup
v∈VH(D)\{0}

〈div v, q〉D
‖v‖H1(D)

� ‖q‖L2(D) , for all q ∈ WH(D). (V.14)

Following the proof of Lemma V.5.1, we can obtain the discrete inf-sup condition in
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VH(D)×WH(D) with ||| · |||V,D and ||| · |||P,D, i.e.,

sup
v∈VH(D)\{0}

〈div v, q〉D
|||v|||V,D

� |||q|||P,D, for all q ∈ WH(D). (V.15)

To prove the inf-sup condition for the space V off ×W off, we need the following

result, which states the stability of the Brinkman extension with respect to the

weighted norm defined in (V.9).

Lemma V.5.2. For any w ∈ (H1(K))d, the Brinkman extension H(w) of w on K

satisfies

|||H(w)|||V,K � |||w|||V,K . (V.16)

Proof. By the definition of the Brinkman extension, (H(w), p) ∈ (H(K))d × L2
0(K)

satisfies

∇p−∆H(w) + κ−1H(w) = 0, in K,

div H(w) =

∫
∂K
w · n
|K| in K,

H(w) = w, on ∂K.

Denote v = H(w)− w, then v satisfies

∇p−∆v + κ−1v = ∆w − κ−1w, in K, (V.17)

div v =

∫
∂K
w · n
|K| − divw in K,

v = 0, on ∂K.
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Since p ∈ L2
0(K), by Lemma 11.2.3 in [17], there exists φ ∈ (H1

0 (K))d such that

p = −div φ and ‖φ‖H1(K) � ‖p‖L2(K) . (V.18)

Multiplying Eq. (V.17) by φ and integrating by parts, we obtain,

〈p, p〉K + 〈∇v, ∇φ〉K +
〈
κ−1v, φ

〉
K

= −〈∇w, ∇φ〉K −
〈
κ−1w, φ

〉
K
.

Thus

〈p, p〉K = −〈∇v, ∇φ〉K −
〈
κ−1v, φ

〉
K
− 〈∇w, ∇φ〉K −

〈
κ−1w, φ

〉
K
.

Using the Cauchy-Schwarz inequality and (V.18), we arrive at,

‖p‖2
L2(K) � (‖∇v‖L2(K) +

∥∥κ−1v
∥∥
H−1(K)

+ (‖∇w‖L2(K) +
∥∥κ−1w

∥∥
H−1(K)

) ‖p‖L2(K)

� (‖∇v‖L2(K) +M
∥∥∥κ− 1

2v
∥∥∥
L2(K)

+ ‖∇w‖L2(K) +M
∥∥∥κ− 1

2w
∥∥∥
L2(K)

) ‖p‖L2(K) .

Then it yields the pressure estimate

‖p‖L2(K) �‖∇v‖L2(K) +M
∥∥∥κ− 1

2v
∥∥∥
L2(K)

+ ‖∇w‖L2(K) +M
∥∥∥κ− 1

2w
∥∥∥
L2(K)

. (V.19)

Multiplying Eq. (V.17) by v and integrating by parts, yields,

−〈p, div v〉K + 〈∇v,∇v〉K +
〈
κ−1v, v

〉
K

=
〈
∆w − κ−1w, v

〉
K
.

Using Cauchy-Schwarz inequality and the fact that p has zero mean on K, it follows
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that,

〈∇v,∇v〉K +
〈
κ−1v, v

〉
K

=
〈
∆w − κ−1w, v

〉
K

+ 〈p, div v〉K

=
〈
∆w − κ−1w, v

〉
K

+ 〈p, div (H(w)− w)〉K

=
〈
∆w − κ−1w, v

〉
K
− 〈p, div w〉K

≤ ‖∇w‖L2(K) ‖∇v‖L2(K) +
∥∥∥κ− 1

2w
∥∥∥
L2(K)

∥∥∥κ− 1
2v
∥∥∥
L2(K)

+ ‖p‖L2(K) ‖divw‖L2(K) .

Inserting the pressure estimate (V.19) and Young’s inequality, we deduce

〈∇v,∇v〉K +
〈
κ−1v, v

〉
K
≤ 1

2δ
(‖∇w‖2

L2(K) +
∥∥∥κ− 1

2w
∥∥∥2

L2(K)
)

+
δ

2

(
‖∇v‖2

L2(K) +
∥∥∥κ− 1

2v
∥∥∥2

L2(K)

)
+

δ

2M

(
‖∇v‖2

L2(K) +M
∥∥∥κ− 1

2v
∥∥∥2

L2(K)
+ ‖∇w‖2

L2(K)

+M
∥∥∥κ− 1

2w
∥∥∥2

L2(K)

)
+
M

2δ
‖divw‖2

L2(K) .

Now the choice δ = 1
4

yields

〈∇v,∇v〉K +
〈
κ−1v, v

〉
K
� ‖∇w‖2

L2(K) +
∥∥∥κ− 1

2w
∥∥∥2

L2(K)
+M ‖divw‖2

L2(K) = |||w|||2V,K .

Recall that H(w) = v + w. By triangle inequality, we have

〈∇H(w),∇H(w)〉K +
〈
κ−1H(w),H(w)

〉
K
� |||w|||2V,K .

It suffices to show

M
1
2 ‖divH(w)‖L2(K) � |||w|||V,K . (V.20)
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Indeed from the compatibility condition, we obtain: divH(w) = 1
|K|
∫
K

divw. Hence,

|divH(w)| = | 1

|K|

∫
K

divw| ≤ 1

|K|

∫
K

|divw| ≤ ‖divw‖L2(K) |K|−
1
2 ,

where in the last step we used Cauchy-Schwarz inequality. Consequently

‖divH(w)‖2
L2(K) � ‖divw‖2

L2(K) |K|−1|K| = ‖divw‖2
L2(K) ,

This completes the proof.

We are now ready to show the inf-sup condition in the space V off ×W off.

Lemma V.5.3. For ||| · |||V,D and ||| · |||P,D defined in (V.9) and (V.10), we have the

following inf-sup condition with inf-sup constant independent of the contrast

sup
v∈V off(D)\{0}

〈div v, q〉D
|||v|||V,D

� |||q|||P,D, for all q ∈ W off(D). (V.21)

Proof. First note W off = WH(D). By (V.15), we have

sup
v∈VH(D)\{0}

〈div v, q〉D
|||v|||V,D

� |||q|||P,D, for all q ∈ W off.

For any v ∈ VH(D), let H(v) be the Brinkman extension of v|EH , i.e., H(v) takes

the value of v on the skeleton EH and is extend to the interior by Brinkman exten-

sion within each coarse block. Then v|F ∈ [P 2(F )]2, ∀F ∈ EH . According to the

construction of the offline space V off in Section V.3, we have

H(v) ∈ V off.
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Moreover, for any q ∈ W off, q is piecewise constant on each coarse block. By com-

bining this fact and the definition of Brinkman extension, we have

〈div v, q〉K = 〈divH(v), q〉K ,

for every coarse block K. Finally, we complete the proof by using Lemma V.5.2:

|||q|||P,D � sup
v∈VH(D)\{0}

〈div v, q〉D
|||v|||V,D

= sup
v∈VH(D)\{0}

〈divH(v), q〉D
|||v|||V,D

� sup
v∈VH(D)\{0}

〈divH(v), q〉D
|||H(v)|||V,D

� sup
v∈V off(D)\{0}

〈div v, q〉D
|||v|||V,D

.

Now by combining Lemma V.5.1, Lemma V.5.3 and (V.11), we obtain the fol-

lowing stability result, by repeating the proof of Theorem 3.2 in [73].

Theorem V.5.4. Let (u, p) ∈ V (D) ×W (D) and (u0, p0) ∈ V off(D) ×W off(D) be

the Galerkin solutions of problem (V.1) and problem (V.5) respectively. We have

|||u− u0|||V,D � inf
w∈V off(D)

|||u− w|||V,D. (V.22)

V.5.2 Convergence results

Now we derive an error estimate for our method. To this end, we first give several

basic estimates on the Brinkman extension.

Lemma V.5.5. For each partition of unity function χi with support ωi, let (uc, pc) ∈
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(H1(ωi))
d × L2

0(ωi) solve

∇pc −∆uc+κ
−1uc=0 in ωi,

div uc=

∫
∂ωi

g · n
|ωi|

in ωi,

uc =g on ∂ωi.

Then the following a priori estimate holds

∫
ωi

χ2
i |∇uc|2+

∫
ωi

κ−1χ2
i |uc|2 �

∫
ωi

|∇χi|2|uc|2+

∫
ωi

κ−2|uc|2+

∫
ωi

|div uc|2+‖pc‖2
L2(ωi)

.

(V.23)

Proof. Multiplying the equation by χ2
iuc yields

−
〈
pc, div (χ2

iuc)
〉
ωi

+
〈
∇uc,∇(χ2

iuc)
〉
ωi

+
〈
κ−1uc, χ

2
iuc
〉
ωi

= 0.

Some simple algebraic manipulations give

∫
ωi

χ2
i |∇uc|2 +

∫
ωi

κ−1χ2
iu

2
c

= 〈pc, 2χi∇χi · uc〉ωi +
〈
pc, χ

2
idiv uc

〉
ωi
− 〈∇uc, 2χi∇χi · uc〉ωi ,

� ‖pc‖L2(ωi)
(‖∇χi · uc‖L2(ωi)

+ ‖div uc‖L2(ωi)
) + ‖χi∇uc‖L2(ωi)

‖∇χi · uc‖L2(ωi)
,

≤ δ

2
(‖pc‖2

L2(ωi)
+ ‖χi∇uc‖2

L2(ωi)
) +

1

2δ
(‖∇χi · uc‖2

L2(ωi)
+ ‖div uc‖2

L2(ωi)
).

Taking δ = 1
4
, we obtain the desired inequality.

Lemma V.5.6. Let ωi ⊂ TH be an arbitrary coarse neighborhood. Let (uN , pN) ∈

117



(H1
0 (ωi))

d × L2
0(ωi) solve

∇pN −∆uN+κ−1uN=f in ωi,

div uN=0 in ωi,

uN =0 on ∂ωi.

Then there holds

|||uN |||V,ωi � H ‖f‖L2(ωi)
. (V.24)

Proof. By multiplying the first equation by uN , integrating by parts and the diver-

gence free property of uN , we obtain

‖∇uN‖2
L2(ωi)

+
∥∥∥κ− 1

2uN

∥∥∥2

L2(ωi)
= 〈f, uN〉ωi .

In view of the boundary condition, we can apply Poincaré’s inequality,

‖uN‖L2(ωi)
� H ‖∇uN‖L2(ωi)

.

Thus

‖∇uN‖2
L2(ωi)

+
∥∥∥κ− 1

2uN

∥∥∥2

L2(ωi)
= 〈f, uN〉ωi � H ‖∇uN‖L2(ωi)

‖f‖L2(ωi)
.

Finally, we complete the proof by the Young’s inequality.

Now we are ready to state our main error estimate.
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Theorem V.5.7. Let Λ∗ = min
ωi

λωiLi+1. Then

|||u− u0|||2V,D �
1

Λ∗
‖∇u‖2

L2(D) +H2 ‖f(x)‖2
L2(D) + ‖pc‖2

L2(D) .

where pc is defined by (V.25) below.

Proof. In view of the linearity of the equation (V.1), on each coarse neighborhood

ωi ⊂ TH , u can be decomposed into u = H(u) + uN , where H(u) is the Brinkman

extension of u and uN is the residual in Lemma V.5.6. For each χi, let I0u be the

local interpolant of u in the local offline space Ṽ ωi
off . Then there exists pc ∈ L2(ωi),

s.t.

∇pc −∆(u− I0u)+κ−1(u− I0u)=0 in ωi, (V.25)

div (u− I0u)=

∫
∂ωi

hi · n
|ωi|

in ωi,

(u− I0u) =hi on ∂ωi,

since I0u equals 0 over ∂ωi (the support of χi is ωi) and each basis in Ṽ ωi
off has the

properties of divergence constant. Here, hi denotes the boundary value of u − I0u

over ∂ωi.

By the construction of the offline space V off, H(χiI
0u) ∈ V off. By Theorem V.5.4,
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we have

|||u− u0|||2V,D � inf
v∈V off

|||u− v|||2V,D

�
∣∣∣∣∣∣∣∣∣∣∣∣u− NC∑

i=1

H(χiI
0u)

∣∣∣∣∣∣∣∣∣∣∣∣
2

V,D

�
∣∣∣∣∣∣∣∣∣∣∣∣H(u)−

Nc∑
i=1

H(χiI
0u)

∣∣∣∣∣∣∣∣∣∣∣∣
2

V,D

+ |||uN |||2V,D,

�
∣∣∣∣∣∣∣∣∣∣∣∣H(

Nc∑
i=1

χiu)−
Nc∑
i=1

H(χiI
0u)

∣∣∣∣∣∣∣∣∣∣∣∣
2

V,D

+H2 ‖f(x)‖2
L2(ωi)

.

Here the last step follows from the estimate in Lemma V.5.6. For the first term, we

have

∣∣∣∣∣∣∣∣∣∣∣∣H(
Nc∑
i=1

χiu)−
Nc∑
i=1

H(χiI
0u)

∣∣∣∣∣∣∣∣∣∣∣∣
2

V,D

=

∣∣∣∣∣∣∣∣∣∣∣∣H(
Nc∑
i=1

(χiu− χiI0u)

∣∣∣∣∣∣∣∣∣∣∣∣
2

V,D

�
Nc∑
i=1

|||H(χiu− χiI0u)|||2V,ωi �
Nc∑
i=1

|||χi(u− I0u)|||2V,ωi ,

where at the last step we have applied Lemma V.5.2 on each coarse neighborhood

ωi. Consequently,

|||u− u0|||2V,D �
Nc∑
i=1

|||χi(u− I0u)|||2V,ωi +H2 ‖f‖2
L2(ωi)

�
Nc∑
i=1

∫
ωi

χ2
i |∇(u− I0u)|2 +

∫
ωi

κ−1χ2
i |u− I0u|2

+M

∫
ωi

χ2
i |div (u− I0u)|2 +M

∫
ωi

|∇χi|2|u− I0u|2 +H2 ‖f‖2
L2(ωi)

.
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By applying Lemma V.5.5 to the term u− I0u in Eqn. (V.25), we deduce

|||u− u0|||2V,D �
∑
i

M

∫
ωi

|∇χi|2|u− I0u|2 +

∫
ωi

(κ−1)2|u− I0u|2

+M

∫
ωi

χ2
i |div (u− I0u)|2 +H2 ‖f‖2

L2(ωi)
+ ‖pc‖2

L2(ωi)
.

Finally, using the spectral problem (V.8), with A and S defined by

A = [amn] =

∫
ωi

(χi)
2∇ψω,snap

m · ∇ψω,snap
n ,

S = [smn] =

∫
ωi

(κ(x)−2 +M(∇χi)2)ψω,snap
m · ψω,snap

n

+M

∫
ωi

(χi)
2divψω,snap

m divψω,snap
n ,

(V.26)

we have

∫
ωi

M(∇χi)2|u− I0u|2 +

∫
ωi

(κ−1)2|u− I0u|2 +M

∫
ωi

(χi)
2|div (u− I0u)|2

≤ 1

λωiLi+1

∫
ωi

(χi)
2|∇(u− I0u)|2.

Hence,

|||u− u0|||2V,D �
∑
i

1

λωiLi+1

∫
ωi

(χi)
2|∇(u− I0u)|2 +H2 ‖f(x)‖2

L2(ωi)
+ ‖pc‖2

L2(ωi)
.

Upon denoting Λ∗ = min
ωi

λωiLi+1, we deduce

|||u− u0|||2V,D �
1

Λ∗

∑
i

∫
ωi

(χi)
2|∇(u− I0u)|2 +H2 ‖f(x)‖2

L2(ωi)
+ ‖pc‖2

L2(ωi)
.
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Using the inequality ‖∇I0u‖L2(ωi)
� ‖∇u‖L2(ωi)

,

|||u− u0|||2V,D �
1

Λ∗

∑
i

‖∇u‖2
L2(ωi)

+H2 ‖f(x)‖2
L2(ωi)

+ ‖pc‖2
L2(ωi)

,

and thus

|||u− u0|||2V,D �
1

Λ∗
‖∇u‖2

L2(D) +H2 ‖f(x)‖2
L2(D) + ‖pc‖2

L2(D) .

This completes the proof of the theorem.

Remark V.5.8. We note that in the analysis, we have used the spectral problem

(V.26), instead of (V.8) in the numerical simulation. In view of the inequality

‖div u‖L2(D) ≤ ‖∇u‖L2(D) for any u ∈ (H1(D))d and the fact that χi is bounded,

these two spectral problems are equivalent provided that M is bounded. Hence our

analysis does provide partial justification for the algorithm. The constant M appears

as a result of the definition of the velocity and pressure norms, cf. (V.9) and (V.10),

which is needed for the inf-sup condition. It remains unclear how to get rid of the

constant M in the norm definition in the convergence analysis.

V.6 Concluding remarks

In this chapter, we have developed a mixed generalized multiscale finite element

method for the Brinkman flow in high-contrast media, which capture both the Stokes

flow and the Darcy flow in respective regions. In the fine grid, we approximate the

velocity and pressure with piecewise quadratic and piecewise constant functions. We

develop a novel approach to construct a coarse approximation for the velocity snap-

shot space, and a robust low-dimensional offline space for the velocity. The main

feature of our approach is to select the important modes by solving certain appropri-

ate local eigenvalue problem. The stability of the mixed GMsFEM and a priori error
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estimates are derived. The two-dimensional numerical examples illustrate clearly the

robustness and efficiency of our method. Besides, it also shows the consistency with

the convergence analysis.

In our discussion, we have focused on the approximation of the velocity space, and

simply take the piecewise constant space as the approximation space for pressure.

This may not be the best choice. The mixed finite element space may get better

results with a better pressure space and accordingly an enriched velocity space. Fur-

ther, it is natural to extend the proposed method to the Stokes model in perforated

domains ([24]).

There are many important open problems related to the Brinkman model. The

first one is on the model reduction of Stokes flow in the perforated domain. Recently,

Muljadi et al. [60] developed and tested a novel MsFEM for solving Stokes flow in

heterogeneous media based on Crouzeix-Raviart elements. In their approach, the

basis functions are calculated within each coarse element using stabilized Q1-Q1

elements. The results are very encouraging in terms of the L2 error; however, the H1

relative error of the velocity can be fairly large, especially when the number of holes

in the medium is large. One possible solution to this issue is to enrich the velocity

basis. Since the velocity error depends on the pressure space, and thus we need to

enrich the pressure space as well. The key idea is to balance the velocity space and

the pressure space in order to derive the stability estimate as required by the mixed

method. This will be a subject of my future research.

Secondly, one challenge with the Brinkman model is the construction of a stable

finite element discretization [73, 60]. There are many interesting works on stable

FEMs for Brinkman flow. However, the definition of the norms unavoidably involves

the maximum of the high contrast coefficient (i.e., the inverse of the permeability

field). Hence, the convergence analysis deteriorates for the high-contrast problem,
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and they can not be applied to Brinkman flow in high-contrast media directly. Fur-

ther, the convergence analysis of the multiscale algorithm in [46] with optimal rate

remains completely open.
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VI. CONCLUSIONS

GMsFEMs for partial differential equations in high-contrast heterogeneous media

are investigated in this dissertation. The general framework is provided in Chapter

II for linear elliptic equations. In this chapter, strategies to improve the accuracy

and efficiency are introduced and implemented, such as oversampling strategy and

randomized snapshot algorithms.

In Chapter III, a posteriori error estimate is shown and two types of error indi-

cators are proposed. Based on the reliability and efficiency of the error indicators,

we propose a robust adaptive enrichment algorithm, which involves local basis en-

richment instead of the refinement of grids.

In Chapter IV, the GMsFEM is extended to nonlinear elliptic equations in het-

erogeneous media. In this chapter, continuous Galerkin formulation and Interior

Penalty Discontinuous Galerkin formulation are employed separately into the GMs-

FEM framework. The numerical simulations are presented to demonstrate the con-

vergence of both approaches.

In Chapter V, the GMsFEM framework is applied to Brinkman flows in high-

contrast heterogeneous media. A new type of local basis generation is proposed and

analyzed. We build new norms for this problem using mixed element method, and a

stability argument is derived.
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