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ABSTRACT 

 

 This study combines hydro-climatological and biological components for 

addressing variability in precipitation and vegetation patterns under climate change. We 

explore the marginal and interactive effects of vegetation and atmospheric variables in 

order to better understand the plausible changes in terrestrial hydrological processes. We 

target the southwest United States, known for its diversified ecosystem and depleting 

water resources. Specifically, we employ an entropy-based disorder index to address 

precipitation variability and evaluate the marginal effect of watershed topography. Results 

show that the variability gradually increases westward. We concluded a significant 

watershed topography effect, which suggests that hilly reliefs have a stabilizing effect on 

seasonal precipitation variability in time and space. We conclude the necessity to include 

watershed topography information in climate model parameterizations. However, the 

implication of a spatial precipitation gradient raises questions regarding vegetation 

dynamics. In order to understand these dynamics, we analyze the inclusion of precipitation 

variability in conjunction with the Normalized Difference Vegetation Index (NDVI) 

during the growing season. We identify three climatic regions based on the United Nations 

Aridity Index (AI): a relatively humid region with AI≥0.65, an intermediate region with 

0.50≤AI<0.65, and a relatively dry region with AI<0.50. We target four types of 

vegetation covers: deciduous forest, shrubland, pasture, and grassland. We conclude 

significant positive trends in the NDVI series for both relatively humid and intermediate 

climatic regions. In the arid region, we find distinct responses to precipitation for perennial 
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vegetation versus annual vegetation types. The magnitude of these responses tends to 

increase with environmental aridity. Later we apply the entropy theory to investigate the 

joint inclusion of precipitation, soil moisture, and temperature in vegetation dynamics 

analysis. Results reveal trends toward maximum entropy; however, the variable 

precipitation remained particularly determinant from a marginal point of view. We use a 

probabilistic approach to analyze the climate change impact on future precipitation 

patterns. We conclude significant drifts in seasonal precipitation regimes and a meaningful 

spatial weight. Finally, we emphasize the plausible implications of our findings for future 

water management. Nevertheless, we suggest further studies on the topic particularly at a 

global scale.   
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CHAPTER I  

INTRODUCTION 

 

1.1. Background and justification 

 The effects of climate change are increasingly manifested in many parts of the 

world with substantial impact on vegetation (Huntington, 2006; IPCC, 2012). However, 

there is still significant uncertainty related to future projections of climate. This sustains 

the debate on the plausible impact of climate change on precipitation patterns (Easterling 

et al., 2000; Salve et al., 2011). Yet, it is widely accepted that climate change will result 

into a disturbance in regular hydrological patterns. For instance, several studies have 

projected the future with high frequencies of extreme events, such as floods, droughts, 

extreme temperatures and desertification (Groisman et al., 2004; Overpeck et al., 2011; 

Wehner et al., 2011). During this last decade, questions regarding climate change impact 

in water resources were extensively addressed (Butcher et al., 2014; Lespinas et al., 2014). 

The complexity of the interactive relation between atmospheric variables and vegetation 

calls for a particular attention by water managers. In most regional watersheds, the 

vegetation is natural and spatially diversified. Often, there is a noticeable trend between 

precipitation type and vegetation density. It is common to find high density canopies in 

regions with high amounts of precipitation, while the vegetation density decreases as the 

precipitation amount decreases in space. Under the spectrum of climate change projected 

with high uncertainty, the sustainability of the natural balance of soil-water-atmosphere 

deserves a particular attention for its potential implications in water resources.  
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 Although advances in climate models motivated several impact studies, consistent 

disparities are reported within models simulations (Butcher et al., 2014; O’Gorman, 2012). 

Increased extreme precipitation is consistently represented across climate models 

(O’Gorman, 2012). In the same geographic region, some models project increased inland 

precipitation amount, while other models project the opposite. This is an evidence of the 

uncertainty imbedded in the projections. Reviewing studies related to the impacts of 

climate change on hydrological processes, Whitehead et al., (2009) concluded with a 

consensual view of potential increase in temperature and significant change in 

precipitation. Maestre et al. (2012) asserted that the potential benefit of an increased 

precipitation amount would be likely cancelled by an increase in evapotranspiration 

related to the increase in temperature. Based on multimodels ensemble simulations, Seager 

et al. (2007) projected a consistent drier climate in the southwest United States for the 21st 

century. 

 The expected behavior of vegetation under climate change can hardly be 

dissociated from the subsequent precipitation variability. Precipitation and natural 

vegetation growth are customarily characterized by seasonal patterns. Several studies 

addressing climate change emphasize seasonality. The hydrological importance of 

different seasons vary more or less depending on the geographic location. Oreskes et al. 

(2010) identified summer precipitation as a critical component for water supply, 

agricultural productivity, and risk of floods and droughts. Physically based models are 

developed to project future biomass behavior. However, the difficulty to integrate the 

complex interactive relationships is likely to affect the reliability of these models. Changes 
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in precipitation amount and frequency are likely to affect vegetation dynamics differently. 

At the regional watershed scale, understanding the future behavior of the natural 

vegetation is critical, as changes in land cover have shown a significant impact on 

hydrologic processes (Yang et al., 2010). At a large watershed scale, the flux in water 

budget depends significantly on the vegetation. For that reason, it is critical to have a good 

understanding of how the vegetation would respond to future climate change and 

particularly to precipitation variability. Our study aims to emphasize seasonality and the 

need of understanding particularly in the southwest United States region.  

 Primarily, our research aims to investigate the seasonal precipitation variability 

and prospect the behavior of natural vegetation as a response to climate change. Actually, 

studies on precipitation and vegetation dynamics often employ data derived from satellite 

images. For instance, Schmidt and Karnieli (2000) concluded a meaningful correlation 

between the normalized difference vegetation index NDVI and precipitation series, but 

with a time lag. At a large scale, remote sensing approaches are reliable and practical for 

vegetation dynamics analysis (Le Maire et al., 2011; Roerink et al., 2003).  Specifically 

we consider the NDVI series in the study. 

 The study describes the actual disorder in rainfall sequences and examines the 

effect on vegetation dynamics. The southwest U.S. is relatively dry compared to the rest 

of the country. Water resource depletion is a real issue in this area, which certainly needs 

more attention under climate change. At that point, our study aims to contribute for an 

improved understanding of the plausible vegetation behavior under perturbations related 

to climate change. 
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1.2. Objectives 

 This dissertation research investigates interactions between vegetation, 

precipitation and watershed morphology over the southwest region of the United States. 

The study considers the past real time vegetation response to precipitation variability and 

examines the plausible future implications in terrestrial hydrological processes. The 

primary objective is to improve the understanding of the plausible behavior of natural 

vegetation under the context of changes in precipitation patterns. Beside this primary 

motivation, we intend to consider remote sensing products and also examine the inclusion 

of soil moisture, and temperature. Explicitly, we address five specific research objectives 

which are: 

i) Expound the spatial and temporal variability of precipitation using entropy 

based rainfall disorder index and analyze the influence of watershed 

topography across regional watersheds in the southwestern US.  

ii) Use the last two decades of NDVI series to investigate trends of vegetation 

dynamics in relation to aridity gradient across the southwest US and evaluate 

statistical relationships with precipitation patterns. 

iii) Investigate the inclusion of precipitation, soil moisture, and temperature in 

vegetation dynamics analysis using entropy theory; and propose an algorithm 

for retrieving the joint patterns. 

iv) Explore the climate change impact on future precipitation scenarios, based on 

regional climate model simulations of future climate scenarios and propose a 

probabilistic approach for impact assessment. 
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v) Discuss the implications of results by emphasizing plausible changes in future 

hydrological processes. 

 

1.3. Study region 

 We conduct the research on the monsoon region of the southwest United States. 

As indicated by Gutzler (2000), the monsoon region of the southern United States covers 

mainly the states of Arizona, New Mexico and Texas. However, the regional watersheds 

in those states span neighboring states as well. To have a better view of the interactive 

relations between watersheds and seasonal precipitation variability, it was essential to 

extend our study zone to six states of the southwest United States, including the states of 

Arizona, New Mexico, Texas, Oklahoma, Arkansas and Louisiana. In the selected region, 

the long-term availability of water represents a real issue. The study region is presented in 

the Figure 1.  The regional watersheds involved in the study are: Lower Colorado basin 

(United States Geological Survey Hydrologic Unit Codes USGS-HUC 15), Rio Grande 

(HUC 13), Texas Gulf (HUC 12), Arkansas Red-White (HUC 11) and Lower Mississippi 

(HUC 08). The region offers a diversified range of vegetation, climate and watershed 

characteristics. The diversifications mentioned are used for analysis. 
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Figure 1 Watersheds involved in the study spatial domain 

 

 

 

1.4. Methodology 

 We employ different methods for the accomplishment of each objective of the 

study. We present the details of approaches in each chapter. In sum, we present our 

methods in four sections in accordance with chapters as follow: 

i) In the chapter II reporting the analysis of precipitation variability and the 

watershed topography effects, we employ the theory of information entropy 

developed by Shannon (1948). Shannon entropy is probabilistic and applies for 

random events and its applicability in water resources has been consistently 
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demonstrated (Kawachi et al., 2001; Singh, 1997b). Specifically, we select 360 

land-based stations from the National Oceanic and Atmospheric 

Administration NOAA website (www.noaa.gov) and collect precipitation 

series over the period 1960 to 2010. We utilize the entropy disorder index 

(Mishra and Singh, 2009) and evaluate the magnitude of precipitation 

variability in time and space across the southwest US region. 

ii) In chapter III, we investigate vegetation dynamics in relation to precipitation 

variability. We emphasize the plant growing season May-September and the 

aridity gradient in the southwest US. The NDVI series derived from the 

Advanced Very High Resolution Radiometer (AVHRR) composite images are 

reliable and relevant for long-term vegetation dynamic studies (Fontana et al., 

2012). We collect the NDVI series for a 23 years period with 15 days temporal 

resolution for four vegetation types: deciduous forest, shrubland, pasture and 

grassland. We use the NDVI series along with precipitation series, and estimate 

the trends in vegetation dynamics.  

iii)  Chapter IV examines the inclusion of precipitation, soil moisture and 

temperature along with the NDVI series for vegetation dynamics analysis. We 

explore both marginal and joint effects using the entropy theory. Specifically, 

we employ the joint entropy and the entropy scaling approach. Foremost, we 

propose an entropy-based clustering method for seasonality analysis. Finally, 

we propose a mathematical algorithm to retrieve meaningful relationships 

between atmospheric variables and vegetation growth patterns. 

http://www.noaa.gov/
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iv) Chapter V expounds the magnitude of climate change impacts on plausible 

future precipitation scenarios. We evaluate a few customary statistical 

approaches in climate change assessment. We apply a probabilistic method for 

climate impact analysis. We address plausible changes in future precipitation 

seasonality using the North American Regional Climate Change Assessment 

Program’s Regional Climate Model NARCCAP RCM3-GFDL simulations. 

We conduct the analysis at the watershed scale and develop maps of plausible 

changes in which we distinguish the perturbation for different quartile ranges. 

 

1.5. Relevance and limitations 

 Water resources depletion is a real challenge in the southwest US. During the last 

century, the region has experienced an important population growth associated with an 

increase of irrigated lands. Subsequently, the pressure on water resources became a real 

concern and deficit in water budget was frequently reported. Unfortunately, the need  for 

water is projected to increase in the future. Therefore, it is essential that future water 

demand are planned in advance in the region. Although wastewater reuse represents a 

realistic alternative for the future, a wise management of precipitation water may 

contribute significantly to mitigate future water issues. At the watershed level, vegetation 

represents a major biophysical component that plays a critical function in the hydrological 

processes. Under climate change, the difficulty for realistic water resources planning is 

exacerbated as consistent perturbations are projected in future precipitation patterns. For 

that reason, it is meaningful to anticipate the behavior of natural vegetation and evaluate 
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the plausible implications for water resources. The present dissertation research explores 

the mentioned aims. The results would contribute to the understanding of future changes 

in precipitation patterns and vegetation dynamics. The outcomes of the research would be 

globally beneficial for the society in the long term.  

 Nevertheless, it is important to report a few limitations related to the method 

employed in the study. The main limitation we noted is about the remote sensing products, 

which we employed. Regarding the use of remote sensing for vegetation dynamics 

assessment, Fisher (1994) stated clearly that crops with the same phenology behave as the 

same canopy in a spectral view.  Alternatively, the use of Land Use Land Cover interface 

helped to differentiate vegetation types. However, it is important to know that Land Use 

Land Cover map is static and is not updated yearly. Another limitation is associated with 

the resolution of the satellite images used. Indeed we employed NOAA’s AVHRR images 

which have a spatial resolution of 1.1 km.  This means that the margin of error in 

vegetation assessment can be meaningful particularly in locations that do not have features 

spread continuously and homogeneously at a large scale. In other words, 1.1 km resolution 

pixels will generate the same DN for all the features that fall in the corresponding area 

without any distinction within the different features involved. However, the benefit of 

using 1.1 km resolution remote sensing images in vegetation assessment is justified by its 

long term availability and its capacity to be used for large scale studies, as it is the case in 

our research.  
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1.6. Structure of the dissertation 

 This dissertation reports the study through five chapters in accordance with the 

objectives stated above. The first chapter assesses the precipitation variability patterns and 

the related watershed topography effect. The second chapter examines the actual 

vegetation dynamics in precipitation and aridity gradient. The third chapter explores for a 

regional watershed and explores the joint effect of precipitation, temperature and soil 

moisture on vegetation dynamics. The fourth chapter evaluates the extent of climate 

change impact on precipitation. Finally, the fifth chapter recaps and discusses all the 

results under the scope of plausible changes on water resources.  
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CHAPTER II  

ANALYSIS OF WATERSHED TOPOGRAPHY EFFECTS ON SUMMER 

PRECIPITATION VARIABILITY* 

 

2.1. Synopsis 

With climate change, precipitation variability is projected to increase. The present 

section investigates the potential interactions between watershed characteristics and 

precipitation variability. The watershed is considered as a functional unit that may affect 

seasonal precipitation. The study uses historical precipitation data from 370 

meteorological stations over the last five decades, and digital elevation data from regional 

watersheds in the southwestern United States. This domain is part of the North American 

Monsoon (NAM) region, and the summer period (June-July-August, JJA) was considered. 

Based on an initial analysis for 1895–2011, the JJA precipitation accounts, on average, for 

22–43% of the total annual precipitation, with higher percentages in the arid part of the 

region. The unique contribution of this research is that entropy theory is used to address 

precipitation variability in time and space. An entropy-based disorder index was computed 

for each station’s precipitation record. The JJA total precipitation and number of 

precipitation events were considered in the analysis. The precipitation variability 

potentially induced by watershed topography is investigated using a spatial 

________________________________________________ 

*Reprint with permission from “Analysis of watershed topography effects on summer 

precipitation variability in the Southwestern United States” by D.C. Sohoulande Djebou, 

V.P. Singh, O.W. Frauenfeld, 2014. Journal of Hydrology, 511, 838-849, Copyright 

[2015] by Elsevier. 
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regionalization based on a combined principal component and cluster analysis. It is found 

that the disorder in precipitation total and number of events tends to be higher in arid 

regions. The spatial pattern shows that the entropy-based variability in precipitation 

amount and number of events gradually increases from east to west in the southwestern 

United States. Regarding the watershed topography influence on summer precipitation 

patterns, hilly reliefs have a stabilizing effect on seasonal precipitation variability in time 

and space. Results show the necessity to include watershed topography in global and 

regional climate model parameterizations. 

 

 2.2. Introduction 

In recent decades, a number of studies have shown that the sustainability of the 

natural soil-water-atmosphere balance is threatened by climate change (Thomas et al., 

2004; Junk et al., 2013). Several authors concur that an increase in sea surface temperature 

should induce an increase in atmospheric humidity (Huntington, 2006). However, there 

still remains a debate on whether, in general, climate change effects will result in 

decreased or increased precipitation amounts (Easterling et al., 2000; Salve et al., 2011). 

Nevertheless, it has been widely shown that climate change will result in higher 

frequencies of extreme events, such as floods, droughts, extreme temperatures, high 

precipitation variability, and desertification (e.g., Groisman et al., 2004; Overpeck et al., 

2011; Wehner et al., 2011; IPCC 2012). 

Under climate change, Oreskes et al. (2010) clearly designated summer 

precipitation as one of the critical components of climate affecting water supply, 
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agricultural productivity, and risk of floods and droughts. In contrast, projections from 

general circulation models (GCMs) are not consistent enough for decision making at the 

local level (Oreskes et al., 2010). Worldwide, studies addressing seasonal and annual 

precipitation variability have focused more attention on the large-scale causes, such as El 

Niño and Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO), and 

monsoons (Mohino et al., 2011; Giannini et al., 2003; Krishnamurthy and Shukla, 2000). 

At the regional scale, the potential forcing effect of the watershed topography has been 

less considered. 

Changnon and Vogel (1981) indirectly indexed the role of watershed topography 

by indicating that, unlike cloud movement, storm movement is from upstream to 

downstream. It was suggested that the morphologic characteristics of the watershed were 

a driving factor. Along similar lines, using warm-season precipitation events to examine 

the spatial variability of precipitation around Oklahoma City, Hand and Shepherd (2009) 

showed a significant effect of urbanization on spatial precipitation variability. However, 

again, at regional watershed scales the forcing effects of watershed biophysical 

characteristics have been less reported. This should also be a critical improvement to 

climate model parameterizations, to improve simulations of future precipitation extremes 

under climate change (O’Gorman, 2012).  

In addition to analyzing summer precipitation using an entropy/disorder approach, 

this study investigates how the watershed topography affects disorder of summer 

precipitation patterns in both time and space. Of all the interactions between precipitation 

and terrain complexity, the impact of orography is one of the most well-documented 
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phenomena (Roe, 2005). In the vicinity of large mountain barriers, orographic effects are 

so dominant that they sustain ecosystems and regional climates. Notable transitions can 

be observed between vegetation on the drier leeward flank, and the vegetation on the 

wetter windward side of mountain ranges (Roe, 2005). However, at the watershed scale 

and in regions which do not feature large mountain barriers, the terrain complexity’s 

effects on precipitation patterns have not been documented. The aim of this study is to 

investigate the disorder in summer precipitation to uncover the potential interactions 

between summer precipitation variability and the physical watershed characteristics for 

regional watersheds in the southern United States. 

 

2.3. Study area and importance of the JJA period 

The spatial domain encompasses six states in the southwestern United States: 

Arizona, New Mexico, Texas, Oklahoma, Arkansas, and Louisiana. This region covers an 

area of 1,780,636 km2 and represents more than 18% of the contiguous United States. As 

presented in Figure 2, the regional watersheds within this domain are the Lower Colorado 

basin (United States Geological Survey Hydrologic Unit Codes USGS-HUC 15), Rio 

Grande (HUC 13), Texas Gulf (HUC 12), Arkansas Red-White (HUC 11), and Lower 

Mississippi (HUC 08).  

The focus of our study is on JJA, because a large portion of the precipitation in the 

course of the year occurs during this period. This was determined by computing the yearly 

percentage of JJA precipitation over the period 1895 to 2011. We used climate division 

monthly precipitation from the Full Network Estimated Precipitation (FNEP) dataset 
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(McRoberts and Nielsen-Gammon, 2011), released by the Atmospheric Sciences 

Department at Texas A&M University. Based on an equal-area weighted average among 

the climate divisions, statewide monthly and yearly precipitation values were computed 

for 1895–2011. Aggregating the yearly JJA precipitation amount, we derived the yearly 

percentage for each state over the entire period. 

We found that JJA seasonal precipitation accounts for a significant portion of the 

yearly total precipitation in the region. By way of example, Figure 3 represents a time 

series of the yearly percentage of JJA precipitation amount over the period 1895 to 2011 

for Arkansas, Texas, and New Mexico. During 1895–2011, the overall average yearly 

percentages of JJA precipitation amounts varied from 22 to 43% in the region. Figure 4 

presents the spatial distribution of long-term average annual precipitation totals and Figure 

5 presents the average percentage of yearly JJA precipitation amounts. Analyzing these 

two maps, it is evident that the contribution of the JJA precipitation to the yearly 

precipitation increases, moving westward from humid to arid regions. In addition, Table 

1 shows the frequencies of JJA percentages of yearly precipitation in each state. Over the 

117-year time period (1895 to 2011), the JJA precipitation contribution is very high in the 

far western and arid states (New Mexico, Arizona), while it decreases in the eastern and 

humid states (Louisiana, Arkansas). Meanwhile, Texas and Oklahoma show more 

transitional characteristics.  

The importance of JJA precipitation in this region is due to the North American 

Monsoon (NAM). The NAM is a yearly phenomenon that controls the warm season 

climate over North America and causes summer precipitation in the southwestern regions 
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(Higgins and Shi, 2001). The moisture originating from the Gulf of Mexico and Gulf of 

California is driven by the NAM over the desert areas including the states of Arizona and 

New Mexico (Higgins et. al, 1997). Reviewing the southwestern United States climate, 

Sheppard et al. (2002) indicated that the July-August-September precipitation in Arizona 

and New Mexico account for 50% of the annual precipitation. The onset date of NAM is 

variable and the July–August period is considered to be the mature phase of the NAM. 

Our choice of the JJA period thus includes this mature phase of the NAM as well as the 

warmer summer period. Heat and humidity are two main components that control 

biophysical processes, such as plant growth and evapotranspiration. In regard to the 

socioeconomic importance of farming in the southwestern United States, the JJA period 

is of great importance for summer precipitation studies.  
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Figure 2 Study region showing the watershed boundaries and the location of the rain gauge 

stations involved in the study 

 

 

 

Figure 3 Comparison of time series of yearly JJA precipitation from 1895–2011 for 

Arkansas (AR), New Mexico (NM), and Texas (TX) 
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Figure 4 Average annual precipitation (mm) across the study area for the period 1895–

2011 

 

 

Figure 5 Average percentage of JJA precipitation across the study area for the period 

1895–2011. 
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Table 1 Frequency of JJA precipitation contribution to yearly totals for the period 1895–

2011 

%JJA  New Mexico Arizona Texas Oklahoma Louisiana Arkansas 

>50% 24% 6% 0% 2% 0% 0% 

>40% 63% 21% 5% 11% 0% 0% 

>30%  92% 60% 44% 25% 28% 11% 

 

 

2.4. Data and methods 

2.4.1. Elevation data 

For each watershed, we used a digital elevation model (DEM) with 30 m 

resolution. We obtained the National Hydrography Datasets (NHDPlus) DEM from the 

Horizon System Corporation website (www.horizon-systems.com). NHDPlus was 

developed with the assistance of the United States Environmental Protection Agency 

(EPA) in collaboration with the United States Geological Survey (USGS). Based on the 

DEM, watershed slopes were computed to differentiate hilly terrains from plains. In 

particular, the variability in slope across the watersheds was determined using a 5% slope 

as a threshold. This threshold was chosen based on previous studies involving the Lower 

Colorado watershed (e.g., Wang et al., 2009; Ahmad et al., 2010), which reported that the 

spatial contrast in topography is best resolved by applying a 5% threshold.  

2.4.2. Precipitation data 

The spatial domain is characterized by a sharp east-west precipitation gradient. 

Studying summer precipitation in the monsoon region of the southwestern United States, 

http://www.horizon-systems.com/
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which coincides with our study domain, Gutzler (2000) considered precipitation data for 

the months of July and August. Here, we consider monthly precipitation amount and 

number of wet days with precipitation greater than 13 mm (i.e. 0.5 inches) for JJA. The 

correlation between the rain event days and monthly precipitation totals was higher when 

the threshold for the rain event days definition was set lower. Across the precipitation 

stations considered, on average the number of rain event days with precipitation depth >3 

mm (0.1 inches) explained more than 72% of the variance in JJA total precipitation time 

series , while this variance was less than 58% for depth >13 mm. However, defining rain 

event days as days with precipitation >13 mm reduces the potential collinearity inference 

on the robustness of the study. 

Precipitation data for the last five decades, 1960–2010, were used from 370 

precipitation stations over the selected watersheds (Figure 2). We collected the data from 

the National Oceanic and Atmospheric Administration (NOAA) National Climatic Data 

Center (NCDC) (http://www.ncdc.noaa.gov). NOAA’s NCDC provides historical 

precipitation data from land based stations. Of those 370 stations, 62 are in Arizona, 71 in 

Arkansas, 36 in Louisiana, 59 in New Mexico, 69 in Oklahoma, and 73 in Texas. A 

number of criteria were defined for selecting precipitation stations. First, we only 

considered stations with historical data for the period 1960 to 2010. Note that from the 

thousands of operating rain gauge stations, only a low percentage of them met this 

criterion. As a second criterion, we only retained rain stations having less than 5% of 

missing data. We used the inverse distance weighted (IDW) method (Di Luzio et al., 

2008), based on the three nearest stations to in-fill missing values.  

http://www.ncdc.noaa.gov/
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2.4.3. Measurement of precipitation disorder 

Various indices and statistics have been used to analyze the variability of 

biophysical phenomena in time and space. Among them, approaches based on variance 

are common. Variance is an expression of the dispersion from the mean. However, 

variance is unit based and is amplified, depending on the scale of measurement. The unit 

issue can be corrected using the coefficient of variation (CV), which is the ratio of the 

standard deviation (σ) to the mean (μ), CV . The coefficient of variation can be 

viewed as the rate of departure from the mean. In the case of seasonal precipitation the 

magnitude depends on the spatial location. Two precipitation stations may have records 

following the same probability distribution but they may have different statistics because 

the range of precipitation totals is high at one station and low at another. Thus, it may be 

problematic to compare an arid region to a humid region using standard deviation for 

assessing variability in precipitation records. However, there are unique approaches to 

overcome these shortcomings in quantifying precipitation variability that are not biased 

by the spatial heterogeneity of precipitation. One of these approaches is based on Shannon 

entropy, which has been successfully used in a number of studies (e.g., Kawachi et al., 

2001; Singh, 1997). 

The entropy theory, developed by Shannon (1948), is probabilistic and therefore 

applies to random events. Two locations with precipitation data of similar probability 

distributions will have the same entropy value. At each rain gage k, the historical 

precipitation data were binned in order to derive a probability distribution. The Shannon 

entropy Hk was then computed using the formula:  



 

22 

 

 





n

i

iik pLogpH
1

2                                                                    (1) 

where Hk has units in bit, N is the number of discrete intervals for events (precipitation 

amount, number of rainy days), and pi is the probability associated with bin i. While 

assessing the entropy based precipitation variability over the state of Texas, Mishra et al. 

(2009) used a Disorder Index (DI), which is the difference between the maximum entropy 

value Hmax and the computed entropy value at a specific rain gage k (Hk):  





n

i

iikk pLogpNLogHHDI
1

22max                                 (2) 

The maximum entropy here is the entropy value of a scenario of uniform precipitation 

distribution (Mishra et al., 2009). The DI is a measurement of the difference between the 

maximum entropy and the actual entropy. A lower entropy value is equivalent to a bigger 

difference, or DI, which indicates higher variability.  

We also employ this DI approach and, from the entropy based disorder indices 

generated for the stations, produce maps of the precipitation variability distribution across 

our domain. Combined maps of precipitation disorder and terrain slope were constructed 

for each watershed and comparative analyses are then employed. 

2.4.4. Investigating watershed topography effect on summer precipitation disorder  

We compare how precipitation disorder varies across hilly versus flat terrains to 

infer the potential role of watershed topography. We focus on the lower Colorado basin, 

as it presents a clear differentiation between these two reliefs (hilly/plain). The central part 

of the Lower Colorado River basin, which also encompasses central Arizona, is 

particularly hilly and was therefore also considered by Wang et al. (2009) as part of the 
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intermountain region of the Western United States. Using a threshold of 5% slope, we 

produce a map where hilly regions are differentiated from the plains regions and the 

intermountain region of the watershed (Wang et al. 2009).  

To assess the role of watershed topography on the disorder in summer precipitation 

patterns, we first selected transects of 2 km regions across the watershed. The averaged 

slope and entropy-based disorder indices were derived for each region and analyzed via 

regression analysis. We then used spatial regionalization based on principal component 

analysis (PCA). PCA is widely used in climate regionalization analyses (e.g., White et al., 

1991; Comrie and Glenn, 1998; Frauenfeld and Davis, 2002; Gutzler, 2004). Our purpose 

is to identify similar topographic regions in the Lower Colorado basin based on the 

disorder in summer precipitation records. Indeed, in the western U.S region, the 

topography influences warm season precipitation, particularly in terms of precipitation 

totals (Leung et al., 2003). 

 

2.5. Results and discussion 

2.5.1. Summer precipitation variability in time and space   

During the period 1960 to 2010, monthly summer precipitation totals and monthly 

number of days with precipitation events greater than 13 mm were considered at each 

station. Entropy values were then derived for the JJA monthly records. Figure 6 presents 

the spatial distribution of disorder in summer precipitation events across the study region.  

Theoretically, the maximum value of entropy corresponds to a scenario of uniform 

probability distribution (Mishra et al., 2009) of summer precipitation records. Therefore, 
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the higher the precipitation variability at a station, the less its entropy value will be. Here 

we use the entropy-based DI.  

Figure 6 shows a notable pattern of increasing variability as we move from east to 

west. Relating Figure 6 to Figure 5, we observe that disorder in summer precipitation, in 

terms of the number of events, tends to be higher in arid regions when compared to humid 

regions. However, we still note some isolated patches indicating discontinuity in the 

spatial variability. These patterns can potentially be explained by the biophysical 

characteristics of the watershed, which interact with the precipitation variability. Figure 7 

illustrates the variability in the JJA precipitation totals across the region for 1960–2010. 

Summer precipitation totals exhibit more disorder moving from north to south. This may 

suggest that variability in precipitation totals is more susceptible to regional climate 

forcing, rather than local factors such as watershed characteristics, as we emphasized the 

above precipitation variability.  
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Figure 6 Entropy-based spatial distribution of DI of JJA number of precipitation events 

across the study area 

 

 

Figure 7 Entropy-based spatial distribution of DI of JJA precipitation depth across the 

study area 
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2.5.2. Seasonal precipitation variability analysis at watershed level 

Of all the watersheds in this study, the Lower Colorado exhibits a very pronounced 

relief. Many locations with high slopes (>5%) are evident, particularly in the central part 

of the watershed, extending from east to west (Figure 8). When comparing the variability 

in seasonal precipitation events (precipitation depth >13 mm), a sharp gradient in 

variability is evident within the region of high slopes. Similarly, the seasonal variability 

in terms of precipitation totals shows contours with sharp gradients around the regions 

with high slopes.  

In general, the variability in the seasonal precipitation characteristics (totals and 

number of events) decreases (increasing entropy value) as we move from low-slope 

regions to high-slope regions. This suggests that the seasonal precipitation characteristics 

tend to be steadier in regions with high relief compared to flat regions. Note that in the 

Texas Gulf (Figure 9), the combined Arkansas Red-White and Lower Mississippi (Figure 

10), and the Rio Grande (Figure 11) watersheds, high slopes (>5%) were not very frequent, 

i.e. these watersheds are relatively flat. However, similar patterns observed in the Lower 

Colorado’s seasonal precipitation characteristics are evident based on the entropy contours 

in the Texas Gulf (Figure 9) and the Rio Grande watersheds (Figure 11). We note some 

breaks in the continuity of the entropy contours, which are located in the regions of the 

watersheds having high slopes.  

The results suggest a potential influence of watershed topography on the JJA 

precipitation variability. The orographic influence on precipitation is well known. 

Particularly in the Southwest United States, which includes our study region, Sheppard et 



 

27 

 

 

al. (2002) related the orographic effect with annual precipitation amounts. However, the 

watershed topography effect on the disorder in precipitation needs to be further clarified. 

 

 

 

 

Figure 8 Entropy based seasonal precipitation variability across the Lower Colorado 

watershed 
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Figure 9 Entropy based seasonal precipitation variability across Texas gulf watershed 

 

 

 

Figure 10 Entropy based seasonal precipitation variability across the study domain’s part 

of the Arkansas Red-White and Lower Mississippi watersheds 
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Figure 11 Entropy based seasonal precipitation variability across the U.S part of the Rio 

Grande watershed 

 

 

2.5.3. Analyzing the influence of watershed topography on summer precipitation 

disorder 

2.5.3.1. Approach based on a linear regression   

Across the Lower Colorado watershed, a total of 160 locations were selected along 

transects presented in Figure 12. Each location represents a 2 km diameter region 

associated with a terrain slope and an entropy-based DI value. Consecutive locations were 

selected 5 km apart in order to avoid overlap along transects. For individual locations, the 

corresponding DI and slope values were derived by averaging the values of all the pixels 
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within its 2 km region. The slope distribution across the Lower Colorado (Figure 12) 

confirms the terrain contrast in the watershed topography.  

The scatter plots of JJA precipitation DI by the percentage terrain slope (Figure 13) show 

decreasing trends for both the JJA precipitation depth and the number of events. The 

computed Pearson correlation coefficients between the terrain slope and the JJA 

precipitation’s DI (r=-0.52 for number of rainy days, r=-0.44 for precipitation depth) are 

significant at the 99% level. These values are also similar to Spearman’s rank correlation 

coefficient (Table 2).  The negative correlation coefficients indicate that the DI decreases 

when the terrain slope increases. This confirms the trends observed in section 4.2, which 

indicate that the disorder in precipitation patterns tends to decrease in hilly regions 

compared to flat areas. Furthermore, the coefficients of determination indicate that even 

in the absence of major orographic forcing such as from mountain barriers, the terrain 

variability still accounts for 27% of the variance of JJA number of events’ DI (r2=0.27), 

while it accounts for 19% of the variance in JJA precipitation total’s DI (r2=0.19). 

The computed mean absolute error (MAE) and root mean square error (RMSE) 

seem to indicate a better estimation of the JJA precipitation total’s DI. In contrast, a higher 

correlation is obtained between terrain slope and JJA’s rainy days’ DI. In sum, the 

statistics computed based on the linear relationship between the JJA precipitation disorder 

pattern and the watershed slope strengthen the assumption of watershed topography 

influence on precipitation variability patterns at the watershed scale.  

McLaughlin (1995) described a part of the Lower Colorado basin as characterized by 

several small and isolated ranges of mountains that sustain perennial and diversified 
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vegetation. These ranges of mountains are reported to be separated by plains with deserts 

and desert grasslands.  Yet the spatial contrast reported in the vegetation may reflect local 

climatic responses. Through this study, the observed trends in precipitation variability in 

relation with terrain characteristics (flat or hilly) could be indirectly justified based on 

local vegetation structure. Furthermore, McLaughlin (1995) showed the existence of a 

positive and strong relationship between the flora diversity and the terrain elevation. 

 

 

 

Figure 12 Locations selected across the Lower Colorado watershed (right) and the related 

distribution of percentage terrain slope (left) 
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Figure 13 Scatter plot of the disorder index by the corresponding terrain slope (%) based 

on the 204 locations across the Lower Colorado watershed 

 

 

Table 2 Summary statistics of the relationship between the entropy based Disorder Index 

and the percentage terrain slope 

Statistics Formula 
JJA number of 

precipitation event 

JJA Precipitation 

total 

DI’s Mean (μ) 



n

i

iDIn
1

1 *  1.19 0.86 

DI’s Coefficient 

of variation (CV) 
CV  0.28 0.31 

Linear regression )(' SlopefDIi   '

iDI 1.3-0.012 

*Slope 

'

iDI 0.96-0.0078 

*Slope 

Pearson 

Correlation (r)  



 








n

i

n

i

ii

n

i

ii

SlopeSlopeDIDI

SlopeSlopeDIDI

r

1 1

22

1

)()(

))((
 

- 0.52* - 0.44* 

Spearman’s rank 

correlation 

nn

d

r

n

i

i

S






3

1

26

1  
-0.59 -0.52 

Root Mean 

Square Error 

(RMSE) 

2/1
2

1

'1












 




n

i

ii DIDInRMSE
 0.29 0.24 

Mean Absolute  

Error (MAE) 







 




n

i

ii DIDInMAE
1

'1  0.25 0.21 

*Coefficient of Correlation is significant at p < 0.01 

 



 

33 

 

 

2.5.3.2. Approach based on combined principal component and cluster analyses 

In this part of the study, we focus on the Lower Colorado basin and its 74 

precipitation stations. To examine precipitation anomalies across the watershed, we 

created boxplots on the z-scores of 50 stations randomly selected from the two regions: 

25 stations in the hilly region and 25 in the plain region. For each station precipitation 

time series, outliers were defined based on the interquartile range (IQR). A threshold was 

defined around the first quartile (Q1) and the third quartile (Q3) where: 

IQRQMinimum *5.11  , and IQRQMaxmum *5.11  . All precipitation records 

falling outside this range are considered as outliers. Overall, we observe a much greater 

number of outliers (noted as “+” signs) in the plains region (Figure 14 and Figure 15). 

Next, we used principal component analysis (PCA) with an oblique rotation. White 

et al. (1991) indicated that the oblique rotation is useful for loading of factor variance 

purposes, and creates a balance between the variance loaded in the PCs. At each station, 

the precipitation values were standardized into z-scores. Hence, PCA was performed on 

the 74 z-score time series. For the PC selection, we considered PCs with eigenvalues 

greater than one (Kaiser, 1958) and thus retained 4 PCs based also on the scree plots 

represented in Figure 16. Using the first 4 PCs in each case (JJA precipitation totals and 

number of rainy days), oblique rotation was performed. For the JJA period, the 4 PCs 

explained 75% and 59% of the variance in precipitation totals and number of rainy days, 

respectively (Figure 16). In PCA-based regionalization, the PC coefficients are commonly 

used for factor grouping. To identify similar regions, we performed cluster analysis on the 

PCs. The use of cluster analysis in PCA based spatial regionalization is well described 
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(Baeriswyl and Rebetez, 1997; Pecher et al., 2013).  Of the existing cluster analysis types, 

the hierarchical clustering algorithm is best suited for this type of study. Hence, 

hierarchical clustering was performed to group stations into four homogenous regions, 

based on the PC loading factors. From each of the JJA precipitation variables we were 

able to identify four main regions (Figure 17). For both precipitation amount and number 

of rain event days, precipitation regions 1 and 3 are dominated by more hilly terrain 

(Figure 17). Meanwhile, precipitation region 2, in both cases of JJA precipitation 

variables, extends southeastward and corresponds in large part to the flat terrain. Similarly, 

precipitation region 4 is mainly characterized by flat terrain. Combining these two 

clustering results, we obtain an idealized classification of terrain as shown in Figure 18. 

Results from the combined PC and cluster analyses show a general correspondence 

between terrain topography and rainfall patterns. We note from Figure 17 and Figure 18 

that each cluster has grouped precipitation stations into regions with similar geographic 

characteristics (hilly versus plain). We also infer that the analysis performed on JJA 

precipitation series captures the variability and correspondence with the topography. In 

other words, these results indicate that the different regions identified based on the JJA 

precipitation anomalies are characterized by different topographies. We thus indirectly 

conclude that there is a topographic influence on the JJA precipitation anomalies. 

Consequently, it would be reasonable to consider the role of the watershed topography in 

global and regional climate model parameterizations.  
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Figure 14 Boxplots of z-score time series of number of JJA precipitation events (>13 mm) 

for 50 stations randomly selected, 25 from the flat region (left) and 25 from the hilly region 

(right) 

 

 

 

 

Figure 15 Boxplots of z-score time series of JJA precipitation depth for 50 stations 

randomly selected, 25 from the flat region (left) and 25 from the hilly region (right) 
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Figure 16 Scree plot used for selecting the PCs. The bars describe each of the first 30 PCs 

and their corresponding eigenvalues. The curve describes the percentage of cumulative 

variance accounted for by the PCs 

 

 

 

Figure 17 Spatial domains resulting from the cluster analysis performed on the selected 

PCs, identified based on JJA precipitation depth (right) and number (left) based on 

precipitation stations in the Lower Colorado watershed 
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Figure 18 Regions identified based on JJA precipitation depth and number of rainy days. 

Region A is the intersection of the two Regions 1 in Figure 17. Region B is the intersection 

of the two Regions 2 in Figure 17. Region C is the intersection of the two Regions 

 

 

2.6. Conclusions 

The JJA period corresponds to the warm season and is important in the 

southwestern U.S. due to its contribution to annual precipitation. Most crops are grown 

during this period. The moisture during that period is highly influenced by the NAM. 

However, the variability in the summer precipitation characteristics (precipitation amount 

and number of events) may not be fully explained by the NAM.  

From this study, we find that the entropy-based variability in seasonal precipitation 

records is not homogeneously distributed in space. Seasonal precipitation characteristics 

(number of events and precipitation amount) increase from east to west in the southwest 
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U.S. In the east and humid part of the region, the fluctuations in the summer precipitation 

characteristics are lower, while the same fluctuations increase in arid regions.  

At the watershed level, the entropy-based variability indicates a potential influence 

of local watershed morphology characteristics on the JJA precipitation variability. While 

the orographic influence on precipitation generation is well documented in areas 

characterized by large mountain barriers, its more general effect on terrain variability, and 

its effect on precipitation disorder have not been previously shown. Leung et al. (2003) 

indicate how the interaction between atmospheric circulation and orography influences 

the climate regime in the western U.S. region. However, integrating that interaction in 

future climate simulations represents a real challenge for modelers.  

In general, GCMs are designed to simulate future climate at resolutions of 

hundreds of kilometers. Because of that coarse spatial resolution, their outputs are not 

adequate at the local level (Oreskes et al., 2010). Furthermore, feedbacks associated with 

terrestrial processes are poorly represented in most GCMs (Knight and Harrison, 2012). 

This issue with GCMs is improved by regional climate models (RCMs), which project 

simulations at finer spatial and temporal resolutions. Even if RCMs embed some 

topographic influences (Sobolowski and Pavelsky, 2012), a better approach is to employ 

multi-model ensemble simulations. A typical example is the approach developed by the 

North American Regional Climate Change Assessment Program (NARCCAP), which 

developed a multi-model approach combining GCMs and RCMs for future precipitation 

and temperature projections.  
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Studies have indicated that the NARCCAP models perform well in representing 

extreme weather events (Wang et al. 2009; Wehner 2012). The idea of increased extreme 

events is consistent under climate change scenarios, nevertheless it may be relevant to 

evaluate and integrate the effects induced by hilly versus flat terrains on the precipitation 

regime, which may result in a relative reduction of extreme events. In fact, results from 

this study indicate that summer precipitation characteristics tend to show less disorder in 

complex terrain compared to plains regions. The magnitude of watersheds’ effects on 

precipitation was assessed partially through the presented results by focusing on terrain 

slope. Although this study did not target all possible watershed physical characteristics for 

quantifying the effects on precipitation anomalies, it has established 1) that 19–27% of 

precipitation variability is related to slope, 2) clustered precipitation variability 

corresponds to terrain variations, and 3) there is a stabilizing effect of hilly relief on the 

JJA precipitation characteristics. It would also be relevant to extend such studies to 

quantify the watershed topography influence on other atmospheric factors.  
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CHAPTER III  

VEGETATION RESPONSE TO PRECIPITATION ACROSS THE ARIDITY 

GRADIENT OF THE SOUTHWESTERN UNITED STATES 

 

3.1. Synopsis 

The atmospheric water demand significantly affects primary production, as well 

as the terrestrial water balance. However, the precipitation gradient from arid to humid 

regions extends beyond simple water balance and raises questions regarding the vegetation 

dynamic at large scales. For a 23-year period (1989–2011), we analyzed precipitation 

during the growing season in conjunction with the Normalized Difference Vegetation 

Index (NDVI) series for 21 satellite scenes spread across the southwestern United States. 

The satellite scenes were classified into three different groups based on the United Nations 

Aridity Index (AI). Group 1 was categorized as relatively humid, with AI≥0.65, group 2 

was intermediate with 0.50≤AI<0.65, and group 3 was relatively dry with AI<0.50. Four 

types of vegetation covers were targeted: deciduous forest, shrubland, pasture, and 

grassland. On a long-term basis, significant positive trends in the NDVI series were 

evident for all types of vegetation in groups 1 and 2. However, neither the total 

precipitation nor the number of precipitation events (>3 mm and >13 mm) changed during 

this time. The magnitudes of trends in NDVI decreased with the aridity level. Cross-

correlation analyses were used to track the lagged behavior of the four types of vegetation 

in relation to precipitation amount and number of events. The vegetation response was 

similar between precipitation amount and number of precipitation events. The general 
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behavior of vegetation depends on the region, precipitation, and the type of vegetation 

cover. In the arid region, we find distinct responses to precipitation for perennial 

vegetation versus annual vegetation types. The magnitude and significance of vegetation 

responses to precipitation patterns increase with environmental aridity.  

 

3.2. Introduction 

Ongoing climate change is being attributed to multiple factors, and evidence of 

climate change has been reported widely around the globe (Huntington, 2006). The 

increasing emission of greenhouse gases is recognized to be the main driver of climate 

warming. As a result, during the period of 1906 to 2005, a global increase in temperature 

of 0.74°C has been reported (IPCC, 2007). Furthermore, the atmospheric temperature is 

projected to increase by 2 to 4°C by the end of the current century (IPCC, 2007). Changes 

in climate are expected to alter arid ecosystems. However, the predicted changes in 

precipitation amount vary widely, depending on the models and their underlying 

assumptions (O’Gorman, 2012). Any potential benefit from an increase in precipitation 

amount would likely be cancelled by an increase in evapotranspiration due to climate 

warming (Maestre et al., 2012).  

Water stress on vegetation is one of the ways of characterizing the level of 

available moisture. Based on simulations from different multi-model ensembles, Seager 

et al. (2007) projected a consistently drier climate in the southwest United States for the 

21st century. In contrast, Maestre et al. (2012) reported several gaps in our knowledge 

regarding future impacts of climate change on drylands and highlighted the need to 
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consistently determine these impacts. Relying on model outputs to understand the future 

of climate and vegetation is clearly essential. However, no matter how sophisticated or 

robust any projection may appear, most models have uncertainties associated with their 

simulations. Therefore, it is necessary to first consider the observed trends, to improve our 

observational understanding and hence the interpretability of model simulations. 

During the last two decades, the use of remote sensing has been essential for 

vegetation studies at large scales. The Normalized Differential Vegetation Index (NDVI) 

has been a successful and reliable tool in a variety of vegetation and precipitation studies 

(e.g., Rigge et al., 2013; Vicente-Serrano et al., 2006). Our study analytically investigates 

the influence of precipitation characteristics on the NDVI series during the vegetation 

growing season of May through September, as defined by Slayback et al. (2003). We cover 

a 23-year period from 1989 to 2011. Four different types of vegetation cover are 

considered, and their observational variability is investigated with particular focus on the 

southwestern U.S., which spans a wide range in terms of aridity. NDVI has been 

frequently employed to address the influence of climatological components, such as 

temperature and precipitation on vegetation cover. However, the long-term impacts of 

precipitation patterns are still unclear at regional scales because of the temporal limitation 

of satellite data. 

It is generally recognized that climate change will bring about a decrease in 

precipitation across arid regions (Huntington, 2006; IPCC 2012). Furthermore, significant 

variability in precipitation patterns is reported, as is greater frequency of extreme events. 

A timely supply of water via precipitation is critical for rain-fed plants. The expected 
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future behavior of vegetation will be closely tied to the variability of precipitation, as 

driven by climate change. This study uses remotely sensed vegetation data during the 

vegetation growing season to address how precipitation characteristics (number of events 

and precipitation amount) may relate to the growth pattern of different types of vegetation. 

As part of this main objective, we also estimate vegetation and precipitation trends, 

potential temporal lags of the vegetation response, as well as the effects of seasonality on 

vegetation growth.  

 

3.3. Climate classification across the study domain  

The southwestern United States is relatively dry, compared to the rest of the 

country. Water availability is already a critical issue and will become of heighted 

importance due to climate change. Because of the crucial role of vegetation in hydrological 

processes, it is paramount to understand the future variability in the southwestern U.S. The 

study region encompasses the states of Louisiana, Arkansas, Oklahoma, Texas, New 

Mexico, and Arizona (Figure 19). We classify the study domain based on an aridity index, 

which is a useful indicator (Deniz et al., 2011) and describes the degree of dryness of the 

climate in a specific region. 

Indeed, several indices have been developed and proposed for regional 

classification according to their aridity level (Sahin, 2012; Gao and Giorgi, 2008; Erinç, 

1965; De Martonne, 1926). However, the best known aridity index is defined by the 

United Nations Environmental Program (UNEP; Maestre et al., 2012). This UNEP aridity 

index (AI) is the ratio of annual precipitation (P, mm) to the annual potential 
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evapotranspiration (PET, mm): AI = P/PET. This aridity index is widely accepted for 

characterizing dryland climatic boundaries (Maestre et al., 2012). The UNEP AI is 

employed here to characterize the degree of aridity across the spatial domain of our study. 

Based on AI, drylands are defined as regions where AI<0.65. An extended UNEP 

classification identified climate types (Maestre et al., 2012; Sahin, 2012) according to AI 

as: hyper-arid (AI<0.05), arid (0.05≤AI<0.20), semi-arid (0.20≤AI<0.50), sub-humid 

(0.50≤AI<0.65), semi-humid (0.65≤AI<0.80), humid (0.80≤AI<1.0), and very humid 

(1.0≤AI<2.0). We assessed the UNEP AI across the study domain using the long term 

average yearly Penman-Monteith PET (Vorosmarty et al., 1998) and precipitation, 

provided by the Earth Observation System (EOS)-EarthData at the University of New 

Hampshire (http://eos-earthdata.sr.unh.edu). The original PET and precipitation data were 

gridded at a 0.5 degree resolution. Figure 19 indicates that large parts of the domain have 

an AI<0.65 and can thus be classified as drylands. The dryness level gradually increases 

from east to west over the study region (Figure 19). The local vegetation follows that trend 

in that it is much denser in the more moist east and gets sparser westward (Homer et al., 

2004). 

For the vegetation dynamics analysis, we selected 21 Landsat satellite scenes (see 

details in methodology section) across the study domain. Each satellite scene has, on 

average, a footprint of 170 × 185 km. For purposes, of this study, the 21 satellite scenes 

were classified into three groups (Table 3) based on the dryness of the climate. The first 

group (group 1), here designated as “moist,” is comprised of scenes 1 to 7 which span the 

relatively humid regions with AI≥0.65. The second group (group 2), here designated 

http://eos-earthdata.sr.unh.edu/
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“intermediate,” includes scenes 8 to 12, which span regions with 0.50≤AI<0.65. The third 

group (group 3), here designated as “dry,” is composed of scenes 13 to 21, which span 

regions with AI<0.50. Group 2 (intermediate) can be considered to be a transitional 

climate zone, between the humid (group 1) and the arid (group 3) parts. For each group, 

the precipitation and vegetation data series were derived by averaging the data for the 

respective satellite scenes.  

 

 

 

Figure 19 UNEP Aridity Index variability and selected satellite scene (footprint) locations 

across the study region 
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. 

Table 3 Characteristics of selected satellite scenes across the study region; the Worldwide 

Reference System 2 (WRS-2) identifies the selected satellite scenes shown in Figure 19   . 

Group 1: moist region with AI≥0.65. Group 2: intermediate region with 0.50≤ AI<0 
Climate  

groupin

g based 

on 

UNEP’s 

AI 

Sce

ne 

Aridity Index 

WRS-2 

Ref. 

Scene center 

coordinates Vegetation coverage (%) 

Mean 

(AI) 

CV 

(AI) 

Pat

h 

Ro

w 

Lat. 

(°N) 

Lon. 

(°W) 

Deciduous 

Forest 

Grassl

and 

Past

ure 

Shrubl

and 

G
ro

u
p

 1
 (

h
u

m
id

) 

1 1.45 0.06 22 39 30.3 -90.1 2.2 2.4 16.7 10.8 

2 1.17 0.02 24 36 34.6 -92.1 18.7 0.8 10.1 4.0 

3 1.09 0.04 24 38 31.7 -92.9 14.2 2.2 5.4 16.4 

4 1.02 0.1 26 35 36 -94.7 40.7 6.5 48.3 0.3 

5 1 0.1 25 39 30.3 -94.8 0.7 8.9 19.0 7.3 

6 0.82 0.08 26 37 33.2 -95.6 18.8 12.9 38.2 4.9 

7 0.69 0.12 26 40 28.9 -96.7 16.8 15.8 35.5 15.7 

G
ro

u
p

 2
 

(t
ra

n
si

ti
o

n
a

l)
 8 0.64 0.13 27 38 31.7 -97.5 9.1 39.5 26.6 17.6 

9 0.52 0.12 27 41 27.4 -98.6 1.3 14.7 13.0 49.2 

10 0.51 0.07 29 35 36 -99.4 0.2 62.5 0.2 12.9 

11 0.62 0.12 28 39 30.3 -99.4 5.9 11.4 0.6 63.0 

12 0.53 0.13 29 38 31.7 -100.6 1.6 8.3 1.3 77.8 

G
ro

u
p

 3
 (

a
ri

d
) 

13 0.38 0.11 30 37 33.2 -101.7 0.2 32.2 0.4 24.5 

14 0.32 0.13 31 39 30.3 -104.1 0.1 11.1 0.0 76.7 

15 0.43 0.21 32 35 36 -104 0.0 75.4 0.1 18.1 

16 0.36 0.14 32 37 33.2 -104.8 0.0 36.4 0.1 52.4 

17 0.4 0.27 34 36 34.6 -107.5 0.0 21.9 0.6 56.1 

18 0.38 0.19 35 37 33.2 -109.5 0.1 1.8 0.2 67.9 

19 0.29 0.22 36 35 36 -110.2 0.0 20.1 0.0 78.7 

20 0.38 0.25 37 36 34.6 -112.2 0.1 3.4 0.1 63.5 

21 0.09 0.28 38 37 33.2 -114.1 0.1 2.4 5.4 91.8 
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 3.4. Characteristics of vegetation types  

In general, water availability is a key requirement for plant photosynthetic activity. 

In most ecosystems, the natural vegetation is a mixture of different species of plants. Based 

on their adaptability and survival under local conditions, species can be classified into two 

major plant types: perennial or annual. In arid ecosystems, this distinction is critical for 

vegetation dynamics. Hence, Salguero-Gomez et al. (2012) distinguished perennial 

species from annual ones, while describing the effect of precipitation on vegetation 

dynamics in drylands. Perennial species exhibit higher longevity and better resistance to 

droughts, while annual species conserve their population through high seed dormancy. 

The behavior of these two groups of plants in arid regions is more the result of a long-term 

adaptation process. Generally, during the cold season, the annual plant population 

decreases considerably and seeds remain on the ground. During the warm (plant growing) 

season, the combined effect of heat and moisture induce the germination of seeds.  

The U.S. Geological Survey (USGS) distinguished a large variety of vegetation 

types in the southwestern United States (Lowry et al., 2007). Four of these vegetation 

types, including deciduous forest, shrubland, grassland, and pasture, were targeted in our 

study. The characteristics of each of these four vegetation covers are described by Homer 

et al. (2004, 2007), and more detailed descriptions are also available from the USGS 

Southwest Regional Gap Analysis Project (http://earth.gis.usu.edu/swgap). It should be 

noted that these vegetation covers are not equally represented across the study region. 

Table 4 presents the relative coverage of each of the selected vegetation types in the 

individual satellite scenes’ spatial domain. In the southwestern United States, the 

http://earth.gis.usu.edu/swgap
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precipitation gradient decreases westward (Sohoulande Djebou et al., 2014) and seems to 

drive the land cover distribution. While the western and arid parts are less favorable for 

dense vegetation, some forest patches, including deciduous forests, are reported (Lowry 

et al., 2007). Indeed, some of these forest patches are part of riparian ecosystems and are 

sustained by perennial or ephemeral watercourses (Webb and Leake, 2006). In terms of 

percentage coverage, these forest formations are less represented in the arid region, but 

highly valued as they represent habitat for migratory animals and play an essential role in 

the local ecosystem (Webb and Leake, 2006; Ohmart and Anderson, 1982). Webb and 

Leake (2006) reported that the setting of such forest formations in the arid and semi-arid 

parts of the southwestern United States depends on the interaction between ground and 

surface water. Despite the low representativeness of deciduous forest and pasture in the 

arid and semi-arid region (Table 4), they play an important role in the local ecosystems 

and are therefore considered here, along with shrubland, pasture and grassland.  

 

3.5. Methodology 

3.5.1. Remote sensing and vegetation index data 

A number of remotely sensed vegetation indices have been proposed and 

employed to address vegetation growth. Each of these indices presents both advantages 

and disadvantages. The Normalized Difference Vegetation Index (NDVI), the Enhanced 

Vegetation Index (EVI), and the Soil Adjusted Vegetation Index (SAVI) are three indices 

frequently employed in analyses of vegetation dynamics. NDVI is the most common, and 

has been applied to assess vegetation dynamics at large scales during the last two decades. 
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NDVI is sensitive to chlorophyll activity and changes in vegetation cover, which it can 

reproduce relatively well (Huete et al., 2002; Carlson and Ripley; 1997). However, NDVI 

has a saturation limitation when it is employed for leaf area index (LAI) estimates, 

particularly in high vegetation density regions (Huete et al., 2002). EVI is designed to 

improve vegetation monitoring in high biomass regions (Huete el al. 2002; Lobell et al., 

2010), as it can better capture variations in canopy structure and LAI. However, the 

southwestern United States is characterized by sparser vegetation, which supports the use 

of NDVI. SAVI was proposed to minimize soil brightness noise on NDVI (Huete, 1988). 

However, Liu and Huete (1995) reported on the instability of SAVI regarding atmospheric 

variables, as soil brightness and atmospheric noise are not independent. Corrections have 

been proposed to improve NDVI by reducing the uncertainty related to soil brightness and 

atmospheric noise. The Landsat Ecosystem Disturbance Adaptive Processing System 

provides algorithms for calibration and atmospheric correction of satellite scenes (Masek 

et al., 2006). The USGS Earth Resources Observation and Science (USGS-EROS) center 

used such algorithms to correct the satellite bands such that the uncertainty of the final 

NDVI products is greatly reduced. 

This study, thus, uses NDVI from USGS-EROS for assessing vegetation growth. 

The NDVI values span from −1 to 1; the positive values indicate vegetation cover, while 

the zero and negative values represent non-vegetated features. The original NDVI data are 

generated from Advanced Very High Resolution Radiometer (AVHRR) images through 

the USGS Greenness Mapping and Remote Sensing Phenology projects (Eidensshink, 

2006; Reed, 2006). Aboard the National Oceanic and Atmospheric Administration 
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(NOAA) series of environmental satellites, AVHRR sensors collect images with a 1.1 km 

spatial resolution on a daily basis over the entire globe. The NDVI series were derived 

from biweekly cloud and haze free composite images. For individual vegetation types, the 

NDVI series were obtained by intersecting the NDVI composite images with the National 

Land Cover Database (NLCD). The USGSG-EROS used NLCD versions 1991 and 2001. 

The NLCD are 30 m spatial resolution raster layers generated from Landsat thematic 

mapper images for the whole conterminous U.S. (Homer et al., 2004; Vogelmann et al., 

2001). 

Landsat’s sensors provide continuous scenes spanning approximately 170 km 

north-southward, 185 km east-westward and follow the worldwide Reference System 2 

(WRS-2) which indicates, for each scene, the corresponding path and row. Using Landsat-

derived land cover data as the interface, the AVHRR NDVI composites are resampled 

with respect to Landsat scene sizes. Hence, within each Landsat scene’s footprint, the 

NDVI value for a specific land cover is the average value of all pixels corresponding to 

that land cover. The USGS-EROS has been consistently producing NDVI data since 1989 

for the conterminous United States (Eidenshink, 2006; Wang et al., 2003). In this study 

we used 23 years of NDVI data (1989–2011) and focused on the warm period of 

approximately May through September (i.e., April 23–September 23 based on the 

biweekly time scale), which was defined as the vegetation growing season by Slayback et 

al. (2003). 
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3.5.2. Precipitation data 

Daily precipitation data were acquired from the NOAA National Climatic Data 

Center (NCDC). A total of 92 ground-based precipitation stations were considered. All 

stations are located within the 21 selected Landsat satellite scenes, and each scene 

encompasses 3 to 6 precipitation stations. Based on the time scale of bi-weekly remotely 

sensed vegetation data, the yearly period from April 23 to September 23 (Julian days 113 

to 266) was considered over the entire available record from 1989 to 2011. Daily 

precipitation data were aggregated into the biweekly time scale. The specific precipitation 

variables used here are the number of precipitation events and the total precipitation 

amount. To derive the number of precipitation events, we considered two thresholds: the 

number of days with precipitation greater than 3 mm (0.1 in), and those greater than 13 

mm (0.5 in). For both the precipitation and vegetation time series, the Mann-Kendall test 

was performed to detect monotonic trends, and Kendall’s tau (τ) coefficients were 

evaluated to estimate seasonality effects. Specifically, we used Kendall’s tau-b because, 

unlike Kendall’s tau-a, it adjusts for potential ties in the ranked correlations. The purpose 

of evaluating seasonality is to identify potential cumulative trends (i.e. season-to-season 

dependence) in the vegetation growth cycles.    

3.5.3. Vegetation dynamics metrics 

Plant photosynthesis results in primary production, which indicates vegetation 

growth and the level of photosynthetic activity (Wang et al., 2003; Di et al., 1994). NDVI 

series have been consistently employed as an indicator for addressing vegetation growth 

(Fang et al. 2005; Wang et al., 2003). Fang et al. (2005) utilized NDVI to assess grassland 
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and deciduous forest growth in temperate biomes of China. Carlson and Ripley (1997) 

emphasized that NDVI captures the dynamics of vegetation cover. Focusing on sparse 

vegetation coverage during the growing season, Carlson and Ripley (1997) reported that 

NDVI is sensitive to vegetation density until full coverage is reached. This characteristic 

of NDVI is used particularly for LAI estimates (Huete et al., 2002; Carlson and Ripley, 

1997). Besides the direct application of NDVI, several metrics have been successfully 

employed to assess the impact of precipitation on vegetation dynamics. The NDVIRatio is a 

metric that describes biological green-up events (Clinton et al., 2010; White et al., 1997). 

For a specific time t, the NDVIRatio is defined as: 

 
 
 MinMax

Mint

Ratio
NDVINDVI

NDVINDVI
NDVI




                                          (3) 

Explicitly, the NDVIRatio does not incorporate any precipitation component. 

Instead, cross-correlation allows for the analysis of relationship between vegetation 

growth and precipitation. Based on the approach of Clinton et al. (2010), we applied cross-

correlation to investigate vegetation dynamics in relation to precipitation.  

Over the course of a 5-month growing season (Julian days 113–266), the biweekly 

time step allows for only 11 data points of NDVI and precipitation. For the entire 23-year 

period (1989–2011) this resulted in a sample size of only 253, which is too few for the 

cross-correlation analysis (Clinton et al., 2010). To overcome this time-scale issue, 

previous authors have suggested the use of spline methods (Hermance et al., 2007; 

Rozhenko, 2010). Cubic spline interpolation has been reported as an efficient, stable, and 

powerful approach (Duan et al., 1998). Therefore we applied a cubic spline interpolation, 
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which also minimizes the residual and provided us with data at a finer temporal resolution 

for subsequent cross-correlation analysis.  

Following the approach of Clinton et al. (2010), we defined the time scale (t) to be 

a hundredth of the growing season. Then, for each year, the 11 biweekly NDVI and 

precipitation points were used to derive 100 values. For the 23-year period, each satellite 

scene was thus represented by a series of 2300 points. For the cross-correlation analysis 

we selected a lag (l) such that    tttl 100,...,2,,0  and 100 cross-correlation values 

were computed. If the precipitation and NDVI series are indexed with time factor t, the 

NDVI series can be identified as  2300,...,1: tNDVI t  and the precipitation series by 

 2300...,,1:tP . Finally, the cross-correlation between the vegetation (NDVI) and 

precipitation (P) series was defined as:  

                                    (4) 

where     and   

The resulting cross-correlation provided the timing (lag) and magnitude at which NDVI 

and precipitation co-varied during the 23-year period.  
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3.6. Results  

3.6.1. Analysis of trends in NDVI series 

The NDVI series for each of the four types of vegetation cover in different aridity 

groups is presented in Figure 20. The seasonal Kendall rank correlation (Hirsch et al., 

1982) analysis was performed to estimate the effect of seasonality on the overall trend. 

The seasonality in the NDVI series based on Kendall’s τ is presented in Figure 21. The 

red lines in Figure 21 indicate the upper and lower limits of Kendall’s τ values at the 95% 

confidence level. The significance of trend lines in Figure 20 is indicated by Kendall’s τ 

values corresponding to the 0-year seasonality in Figure 21. A joint interpretation of 

Figure 20 and Figure 21 illustrates that there are significant positive trends, for all four 

types of vegetation cover in the moist (group 1) and intermediate (group 2) climate regions 

during the 1989–2011 period. In the dry region (group 3), except for the deciduous forests, 

there are no significant trends in the NDVI series (Figure 20a and Figure 21a). Overall, 

the trends are very similar for all four types of vegetation. The trends in the NDVI series 

decrease with the aridity level of the region. Kendall’s τ increases with the seasonality 

effect (Figure 21). This seasonality analysis suggests that the primary production increases 

yearly in the humid ecosystems, while in the arid region there are no significant changes 

in primary production, except for deciduous forests.  
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Figure 20 Trends in vegetation greenness as an indicator of primary productivity. (a) 

Deciduous forests, (b) shrublands, (c) pastures, and (d) grasslands. Group 1: moist region 

with AI≥0.65. Group 2: intermediate region with 0.50≤AI<0.65. Group 3: dry region with 
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Figure 21 Seasonality effect on Kendall’s τ for four types of vegetation. Red lines 

represent 95% upper and lower significance limits for Kendall’s τ. Group 1: moist region 

with AI≥0.65. Group 2: intermediate with 0.50≤AI<0.65. Group 3: dry with AI<0.50 

 

 

3.6.2. Analysis of trends in precipitation series 

The Mann-Kendall test (95% confidence level) was performed on the precipitation 

time series for each of the three climate regions (Table 4). The precipitation variables are 

total biweekly precipitation amount and number of biweekly precipitation events. The 

precipitation events greater than 3 mm and 13 mm were considered separately. For the 

NDVI analysis, only the growing seasons over the period 1989-2011 were considered. The 
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Mann-Kendall test indicated no significant trends in the annual growing seasons’ 

precipitation variables (Table 4). However, the analysis computed by partitioning 

biweekly the growing season, revealed some cases of significant negative trends (Table 

4). These significant trends were consistently observed in the biweekly periods 141–154 

(May 21–June 3) and 169–182 (June 18–July 1) for the moist and intermediate regions, 

respectively. For these two biweekly periods, the precipitation variables (total 

precipitation, number of events) showed a gradual decrease over the 23-year period. This 

finding suggests that during the early part of the growing season, drying may be occurring. 

In addition, most of the Kendall τ values indicate negative trends, although they are not 

significant (p-value < 5%). However, this trend analysis in precipitation needs to be 

considered in the context of the relatively short time frame used in this study (only 23 

years). 

 

Table 4 Summary of the Mann-Kendall test performed on the 23-year precipitation 

variables for each of the groups. Group 1: moist region with AI≥0.65, group 2: 

intermediate region with 0.50≤AI<0.65, and group 3: dry region with AI<0.50. The 

significant Kendall’s τ values (95% level) are in bold.  

Precipitation 

variables 

An

nua

l 

Biweekly period (Julian days) 

113-

126 

127-

140 

141-

154 

155-

168 

169-

182 

183-

196 

197-

210 

211-

224 

225-

238 

239-

252 

253-

266 

E
v

en
t 

>
 

3
m

m
 Group1 -0.22 -0.27 -0.16 -0.30 -0.24 -0.15 -0.15 0.07 -0.03 -0.14 0.19 0.00 

Group2 -0.13 -0.07 -0.11 -0.15 -0.15 -0.34 0.08 0.17 0.04 -0.28 0.04 0.13 

Group3 -0.10 0.01 -0.15 0.02 -0.15 -0.19 0.19 0.11 0.10 -0.02 -0.20 -0.18 

E
v

en
t 

>
 

1
3

m
m

 Group1 -0.26 -0.18 -0.11 -0.30 -0.24 -0.23 -0.10 0.12 0.00 0.05 0.11 0.13 

Group2 -0.05 0.01 -0.07 -0.13 -0.11 -0.39 0.11 0.15 -0.03 -0.22 0.13 0.08 

Group3 -0.07 0.16 -0.10 0.03 -0.19 -0.19 0.17 -0.01 0.03 0.08 -0.22 -0.21 

T
o

ta
l 

(m
m

) Group1 -0.18 -0.19 -0.07 -0.34 -0.15 -0.19 -0.16 0.10 0.03 -0.02 0.10 0.23 

Group2 -0.11 -0.15 -0.04 -0.19 -0.09 -0.37 0.09 0.10 0.00 -0.27 0.11 0.14 

Group3 -0.10 0.04 -0.07 0.04 -0.17 -0.19 0.15 0.08 0.08 -0.08 -0.16 -0.19 
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3.6.3. Cross-correlation analysis between vegetation growth and precipitation  

For each vegetation type, we calculated cross-correlations with precipitation at 

various lags (Figure 22). The lags spanned from 0 to 100t with a time step t = 1/100 of the 

growing season. Positive cross-correlations are of primary interest in this analysis as we 

are tracking the positive response of vegetation. However, we might also expect a potential 

negative response of vegetation under some circumstances. For each set of cross-

correlations the maximum value and its corresponding lag (converted to days) are 

indicated in Table 5. Comparison of cross-correlation curves for all four vegetation types 

shows many similarities, with moisture availability (aridity) primarily defining the 

response. The response of vegetation to total precipitation increases with the aridity level. 

In the moist region (group 1) the maximum positive cross-correlations are very low, and 

the intermediate (group 2) and dry regions (group 3) exhibit much higher positive 

correlations, peaking at lags between 6 and 12 days. This suggests that vegetation growth 

during the warm season in the moist region (group 1) does not depend strongly on 

precipitation forcing. This could be explained by the fact that, under water stress, plants 

react positively to any amount of water. Vegetation cover in arid regions is more likely 

under constant water stress compared to that in humid regions, and therefore its response 

to precipitation varies. In all cases the lags corresponding to the maximum cross-

correlation values are approximately 7 days, which is below the biweekly time step of the 

original NDVI and precipitation series.  
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Figure 22 Cross-correlations between NDVI for different types of vegetation and 

precipitation amounts. Correlations exceeding ±0.05 are statistically significant (95%-

level). Group 1: moist region with AI≥0.65. Group 2: intermediate region with 

0.50≤AI<0.65. Group 3: dry region with AI<0.50. 
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Table 5 Temporal lags of vegetation response based on cross-correlation analysis; 

maximum correlation ρ(l,t) indicates the highest positive response of vegetation at lag l. 

Note that only the maximum values of positive cross-correlations are provided. Group 1: 

moist region with AI≥0.65, group 2: intermediate region with 0.50≤AI<0.65, and group 

3: dry region with AI<0.50. The significant correlations (95% level) are in bold. 

Type of 

vegetation 

Climate 

type 

(group) 

Total 

precipitation 

Precipitation 

events (>13mm) 

Precipitation 

events (>3mm) 

Max. 

ρ(l,t) 

Lag 

(days) 

Max. 

ρ(l,t) 

Lag 

(days) 

Max. 

ρ(l,t) 

Lag 

(days) 

D
ec

id
u

o
u

s 
 

F
o
re

st
 Group 1 0.07 3 0.09 1 0.00 1 

Group 2 0.33 6 0.35 7 0.35 9 

Group 3 0.44 6 0.42 6 0.44 6 

G
ra

ss
la

n
d

 

Group 1 0.09 10 0.12 7 0.04 10 

Group 2 0.42 7 0.44 9 0.44 10 

Group 3 0.56 9 0.54 7 0.54 7 

P
a
st

u
re

 

Group 1 0.14 4 0.16 6 0.07 9 

Group 2 0.41 10 0.43 10 0.44 12 

Group 3 0.59 6 0.57 6 0.60 6 

S
h

ru
b

la
n

d
 

Group 1 0.08 4 0.11 6 0.03 4 

Group 2 0.42 6 0.44 7 0.44 9 

Group 3 0.55 9 0.52 7 0.55 9 

 

 

3.6.4. Comparative analysis of vegetation response to precipitation characteristics 

One of the main goals in this study was to understand which of the precipitation 

characteristics (total precipitation and number of precipitation events) impact vegetation 

dynamics the most. The preceding section indicates that precipitation amount and 

vegetation growth during the growing season co-vary in dry and intermediate regions 

(group 3 and group 2), but not in moist areas (group 1). To explore the impact of 

precipitation events, we target just the dry region (group 3) and present the cross-
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correlation analysis by considering two types of vegetation cover: deciduous forests 

(Figure 23a) and shrublands (Figure 23b). Note that these two vegetation types are selected 

as examples only, and the results for the other two vegetation types (grassland and pasture) 

are described in Table 6. Table 6 presents the statistical relationships between the cross-

correlation series of precipitation variables and each of the four vegetation types. Overall, 

the cross-correlations performed based on each of the three precipitation variables and 

NDVI’s series are highly correlated (0.87≤R2≤0.99). Although correlation cannot 

establish cause and effect, it is nonetheless apparent that the number of precipitation events 

has a similar relationship with vegetation as precipitation amount does.  

 

 

 

Figure 23 Cross-correlation between NDVI as a measure of vegetation growth, and 

different precipitation variables: total precipitation, number of precipitation events > 13 

mm, number of precipitation events > 3 mm. The dry region (group 3 with AI<0.50) was 

target as an example for this plot 
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Table 6 Coefficients of determination based on the Pearson correlations computed pair-

wise between cross-correlation series. The cross correlation series are computed between 

NDVI and precipitation variables (number of precipitation events >3 mm, events >13 mm) 

and total precipitation cross-correlation series. Group 1: moist region with AI≥0.65. Group 

2: intermediate region with 0.50≤AI<0.65. Group 3: dry region with AI<0.50. 

Precipitation 

variables 

Climate 

classes 
Deciduous Forest Grassland Pasture Shrubland 

E
v
en

ts
 

 >
3
m

m
 Group1 0.93* 0.97* 0.96* 0.98* 

Group2 0.98* 0.98* 0.97* 0.99* 

Group3 0.97* 0.92* 0.97* 0.93* 

E
v
en

ts
 

>
1
3
m

m
 

Group1 0.99* 0.92* 0.99* 0.87* 

Group2 0.98* 0.99* 0.99* 0.99* 

Group3 0.99* 0.99* 0.99* 0.99* 

*P-value <0.001 

 

 

3.7. Discussion 

The Mann-Kendall test indicated significant positive trends in the NDVI series 

representing grassland, pasture, shrublands, and deciduous forest. At the same time the 

precipitation variables (number of precipitation events and total precipitation) did not 

show any significant trends. This discrepancy between precipitation and vegetation trends 

indicates that the vegetation dynamics are not a direct consequence of precipitation in the 

southwestern United States. In the moist and intermediate regions (groups 1 and 2) the 

increasing trends observed in vegetation growth seem consistent with prior studies on 

NDVI trends (e.g., Los, 2013). Slayback et al. (2003) also reported an overall consistent 

positive trend in AVHRR’s NDVI series in the North American region.  

According to Los (2013), 40% of the positive NDVI trend observed in North 

America during the period 1982 to 2006 is related to CO2 fertilization. Los (2013) also 
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related 40% of the trends to climate variation. However, the spatial trend patterns were 

not homogeneous. Hence, the difference in trends we observed for the moist and 

intermediate regions (groups 1 and 2) compared to the dry region (group 3) may warrant 

a different explanation. The discrepancies could be due to farming activities as well as the 

plants’ adaptive responses in each of the regions. The arid environments of the U.S. 

southwest are often used for livestock production. The effect of grazing pressure on 

vegetation reduction has been reported for some locations in the western U.S. to the degree 

that mitigation strategies were even developed (Pellant et al., 2004). The primary 

productivity differs in humid and arid regions because of plant regeneration processes. In 

humid regions, there is a cumulative effect in the primary production over the years. 

However, in arid regions, particularly where annual vegetation dries up and mostly dies 

back during winter, it mostly regenerates during the growing season. Therefore, in arid 

regions there is no significant cumulative effect in the prior primary productivity on 

vegetation cover. This is also supported by the fact that only deciduous forests have a 

significant positive trend in the dry region (group 3). Indeed, the NDVI fluctuations 

indicate vegetation photosynthetic activity (Fang et al., 2005) and specific algorithms can 

be used to estimate LAI (Bresloff et al., 2013). Therefore, the observed trends in the NDVI 

series can be shown to be consistently associated with LAI and consequently related to the 

land cover dynamics. 

Vegetation growth in arid environments should be considered as the result of 

various interactions. In the western U.S., Riggie et al. (2013) assert that grazing intensity, 

fire, and weather variability (i.e. temperature and precipitation) affect land cover 
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regeneration and therefore disturb biomass production. The inter-annual changes in 

primary production depend on these factors (Riggie et al., 2013). Therefore, the magnitude 

of primary productivity for a particular vegetation type may also be seen as a result of the 

long-term growth pattern. 

Cross-correlation analysis suggests that the response of vegetation to precipitation 

increases with environmental aridity. This is consistent with the results obtained by Fang 

et al. (2005) who also reported that the vegetation cover response to precipitation became 

less significant with high precipitation frequency. Vegetation cover responses to different 

precipitation characteristics (frequencies of events versus total precipitation) are very 

similar.  

One of the limitations of this research is that the period of study spans only 23 

years, which is somewhat short for climate analysis. While precipitation data are available 

for almost a century in the southwestern U.S., consistent remotely sensed vegetation data 

are only available for less than three decades.  

 

3.8. Conclusions 

The southwestern United States is characterized by a strong gradient in aridity that 

affects the vegetation cover. A large part of the study region is arid and the aridity level 

increases westward. During the growing seasons, the responses of vegetation cover to 

precipitation are very similar in the three aridity classes targeted in the study. However, in 

the arid region, the perennial vegetation (deciduous forests) behaves differently from 

shrublands and the annual vegetation types (grasslands, pastures). We find that the 
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magnitude and significance of vegetation responses to precipitation patterns increase with 

the environmental aridity. Further, frequencies of precipitation events can be used 

similarly as precipitation amounts for vegetation monitoring in arid ecosystems. 

Regarding climate change, an increase in precipitation disorder should be considered a 

threat for rain-fed vegetation the same way as a decrease in total precipitation. However, 

another important component to consider in vegetation growth studies is soil moisture. 

Compared to precipitation, soil moisture data are poorly monitored and are not commonly 

available in time and space. Further research on the topic should involve soil moisture and 

investigate the role on large scale vegetation dynamics.  
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CHAPTER IV  

RETRIEVING VEGETATION GROWTH PATTERNS FROM SOIL MOISTURE, 

PRECIPITATION AND TEMPERATURE USING ENTROPY 

 

4.1. Synopsis 

This study employed entropy theory to evaluate the relation of vegetation cover to 

soil moisture, precipitation and temperature patterns in the Texas Gulf watershed. Over a 

12 year period, the Normalized Differential Vegetation Index (NDVI) of the growing 

season (May to September) for deciduous forest and grasslands, as well as precipitation, 

temperature and soil moisture data at a biweekly time scale were considered. Using three 

different vegetation growth metrics, we analyzed patterns in vegetation responses. An 

entropy scaling of the system of vegetation-soil moisture-precipitation-temperature 

reveals trends toward maximum entropy and shows the relevance of coupling these 

atmospheric variables in vegetation dynamic analysis. Our analysis indicates that soil 

moisture is potentially more efficient to use for vegetation dynamics monitoring at finer 

time scales compared to precipitation. However, the near-surface (5 cm) soil moisture 

series seems to better explain vegetation growth compared to 25 cm depth soil moisture 

series. This seems interesting as the recent satellite soil moisture monitoring projects are 

designed for estimating near-surface moisture. Month-wise, the vegetation response to 

atmospheric variables showed important dissimilarities. Therefore, we used an entropy-

based clustering approach to discriminate the growing season. Later, a nested statistical 

model was employed for retrieving an estimate of NDVI. Meanwhile the best fit of 
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vegetation growth was obtained by coupling soil moisture and mean temperature. We 

found that the inclusion of soil moisture and temperature explained up to 68% and 62% of 

the variation of NDVI, respectively, for deciduous forest and grassland during June and 

July. However these relationships appeared weaker during the end of the growing season 

(August and September). Results of the study contribute to the debate on the relevance of 

soil moisture measurements, and may help large scale vegetation monitoring. 

Nevertheless, further studies on the topic are necessary and should involve diversified 

ecosystems and remote sensed products.   

 

 4.2. Introduction 

The climate system is governed by complex interactions between the atmosphere, 

the hydroshepere, the lithosphere, the biosphere and the cryosphere (Peixoto et al., 1991). 

Changes in vegetation cover are merely a response resulting from both environmental and 

biological conditions. However, it is a conundrum to accurately incorporate into 

vegetation and climate models all the interactions emanating from the biophysical 

components of the climate. Consequently, the real vegetation and ecosystem 

functionalities are commonly simplified (Reich et al., 2007; Sitch et al., 2003).  

Several authors have reported significant relationships between precipitation, 

temperature and remotely sensed vegetation indices (Brunsell and Young 2008; Pettorelli 

et al, 2006, Kawabata et al., 2001). The choice of focusing on individual factors rather 

than all of them at the same time is guided by the aim to depict their influence separately. 

However, attempts at using solely precipitation or temperature for vegetation dynamics 
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estimates have resulted in low efficiency, i.e., low overall correlation coefficients between 

Normalized Differential Vegetation Index (NDVI) and precipitation series (Liu et al., 

2013; Nicholson et al., 1990). Ichii et al. (2001) found significant but weak relationships 

between vegetation growth and precipitation and pointed out insufficient long-term data. 

Outside of certain precipitation thresholds, Nicholson et al. (1990) reported weaker 

relationships between NDVI and precipitation, indicating non-linear overall relationships. 

At a global level, Kawabata et al. (2001) reported different scenarios of NDVI trends in 

relation to temperature and precipitation according to the location. However, efforts in 

retrieving NDVI from climate components poorly involved observed soil moisture data. 

Brunsell and Young (2008) emphasized the role of soil moisture in the short-term land 

surface response. Unfortunately, real observed soil moisture data are not consistently 

available in time and space (Seneviratne et al, 2006) and this has limited their use in large-

scale vegetation dynamic studies.  

Soil moisture is the water stored in the soil pores. Originally this water is 

replenished by atmospheric water through infiltration but can also be recharged through 

capillary rise (Legates et al., 2011). The rate of each of these two processes of soil water 

recharge depends on environmental and geophysical factors (Wang et al., 2013; Legates 

et al., 2011). In contrast to precipitation, the water in the soil is the one directly available 

for plant roots. Compared to precipitation and temperature, land-based soil moisture 

measuring instruments are relatively more expensive and costly in terms of monitoring 

and maintenance. For that reason, historical land-based soil moisture measurements are 

not consistently available in time and space explaining why several studies have been 
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conducted using model-generated soil moisture data (Seneviratne et al, 2006). Such an 

approach has led to model dependent conclusions which clearly affect the uncertainty in 

model results.  Meanwhile, moisture sensitivity to microwave represents a crucial 

alternative for deriving soil moisture using satellite images (Pellarin et al., 2009; Wagner 

et al., 2003). Hence, remote sensing of soil moisture has made possible the quantification 

of near-surface moisture by combining infrared remote sensing and vegetation index, i.e., 

the Advanced Microwave Scanning Radiometer of the Earth Observing System (AMSR-

E) uses passive microwave signals to generate mean term soil moisture estimates at a 25 

km spatial resolution (Njoku et al., 2003). Lately the National Aeronautics and Space 

Administration NASA’s Soil Moisture Active Passive (SMAP) mission (Entekhabi et al., 

2010) is proposing a high resolution (spatial = 9 km, temporal = 3 days) global soil 

moisture measurement (Das et al., 2011). Although the SMAP project offers promising 

application perspectives, the algorithm proposed for retrieving soil moisture from remote 

sensed signals imbeds a vegetation water content correction (Das et al., 2011).  

A potential weakness of using remote sensed vegetation index in the algorithm 

utilized for deriving remote sensed soil moisture estimation is that once estimated in such 

a way it becomes questionable to reuse the estimated soil moisture in a vegetation growth 

model. Doing this may cause redundant information which may lead to conflicting 

conclusions. Recently, Chen et al. (2014) used remote sensed soil moisture and concluded 

a significant relationship with NDVI. Note that both variables involved in Chen et al. 

(2014)’s analysis are derived from satellite images. That is a typical case of the concern 

regarding possible redundant information. Our approach departs from Chen et al. (2014) 
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as we used land-based measurements of soil moisture. Indeed, our study aims to contribute 

to the understanding of relationships between vegetation growth patterns, soil moisture, 

precipitation, and temperature. A main point is to explore the relevance of coupling land-

based records of soil moisture, temperature and precipitation for vegetation growth 

analysis. However, further studies may be necessary to compare the inclusion of remote 

sensed and land-based soil moisture in vegetation growth estimate. 

Specifically in this study, we applied different statistical tools as well as entropy 

theory. Along with remotely sensed vegetation index series; land-based historical records 

of precipitation, temperature and soil moisture were considered to appraise patterns of 

vegetation growth in the Texas Gulf watershed. The effectiveness of coupling soil 

moisture, precipitation, and temperature was addressed by performing an entropy scaling 

analysis on two types of vegetation cover: deciduous forest and grassland. Month-wise 

analysis of vegetation growth was conducted. We applied an entropy-based clustering 

method to the growing season and the result was employed in a nested statistical model. 

 

4.3. Data and theory 

4.3.1. Data and study domain 

The spatial domain studied is the Texas Gulf watershed (Figure 24) which spans 

approximately over 468,000 km2. The watershed sustains important socioeconomic 

activities and encompasses diversified ecosystems (Jayakrishnan et al., 2004; Sohoulande 

Djebou et al., 2014). In this study, the period of 2000-2011 was considered and only the 

yearly vegetation-growing months of May, June, July, August and September (MJJAS) 
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were targeted (Slayback et al., 2003). The NDVI data used are developed and released 

vegetation type wise with a biweekly temporal resolution by the United States Geological 

Survey’s Earth Resources Observation and Science USGS-EROS. Daily land-based 

measured soil moisture series (5 cm and 25 cm depth) were obtained from the North 

American Soil Moisture Database NASMD (Ford and Quiring, 2013). Daily precipitation 

and temperature (maximum and minimum) data were obtained from the National Oceanic 

and Atmospheric Administration’s National Climatic Data Center NOAA-NCDC. For 

consistency regarding the NDVI series, daily precipitation, temperature and soil moisture 

series were rescaled to a biweekly temporal resolution. Finally, the study targeted height 

Landsat satellite scenes and their spatial domains (Figure 24 and Table 7). Two types of 

vegetation covers, deciduous forest and grassland, were considered. These two vegetation 

covers are heterogeneously represented across the study domain and their specific futures 

are described through the USGS Southwest Regional Gap Analysis Project 

(http://earth.gis.usu.edu/swgap). Additional information on the vegetation covers 

classification are reported by Homer et al. (2004, 2007) and Lowry et al. (2007).   

 

 

http://earth.gis.usu.edu/swgap
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Figure 24 The Texas Gulf watershed showing the location for the land-based stations 

considered for the study. The location of each satellite scene considered is represented by 

the corresponding footprint 

 

 

 

Table 7 Spatial characteristics of satellite scenes selected across the Texas Gulf watershed; 

the Worldwide Reference System 2 (WRS-2) identifies the selected satellite scenes shown 

in Figure 24. The geographic coordinates indicate the central point of each scene 

Scene 

WRS-2 

References 
Scene center’s coordinates 

Path Row Latitude (°N) Longitude (°W) 

1 25 39 30.3 -94.8 

2 26 40 28.9 -96.7 

3 27 41 27.4 -98.6 

4 26 37 33.2 -95.6 

5 27 38 31.7 -97.5 

6 28 39 30.3 -99.4 

7 29 38 31.7 -100.6 

8 30 37 33.2 -101.7 
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4.3.2. Vegetation growth metrics 

 NDVI successfully captures plants photosynthesis activities as well as changes in 

canopy (Huete et al., 2002; Carlson and Ripley, 1997). These attributes made NDVI a 

reliable tool for quantifying vegetation growth. Besides the vegetation index series 

(NDVI), we considered two additional vegetation growth metrics, the NDVIRatio and the 

NDVISlope (Clinton et al., 2010; White et al., 1997). The objective was to identify a suitable 

metric for analysis. Based on the NDVI time-series, the NDVIRatio at a specific time t can 

be defined as:  

)(

)(

MinMax

Mint

Ratio
NDVINDVI

NDVINDVI
NDVI




                                                 (5) 

NDVIt is the vegetation index at a time t while NDVIMin and NDVIMax are the minimum 

and maximum vegetation indices of the season, respectively. On the other side, NDVISlope 

is computed as the difference between two consecutive vegetation index values divided 

by the time difference. Note that our methodology did not address vegetation dynamic in 

order to appraise any lag time influence. Yet the results obtained in the chapter 3 indicated 

that the optimum lags range from 6 to 12 days. Meanwhile the biweekly temporal 

resolution considered in this chapter, overlaps the optimum time lags, which therefore 

should not be a major concern. 

4.3.3. Description of joint entropy 

We employed joint entropy to address vegetation behavior based on precipitation, 

temperature and soil moisture. The joint entropy expresses the dependence between two 

or more variables. The relevance of entropy is its applicability to both linear and non-
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linear systems (Singh, 2013). The joint entropy was applied to address the probabilistic 

relation between vegetation growth and the atmospheric variables (soil moisture, 

precipitation and temperature). Given the probability distribution of a variable X, the 

entropy H(X) is expressed by: 

])([log)()(
1

2



n

i

ii XpXpXH                                                         (6) 

where p(Xi) is the probability of event Xi; n is the number of possible events. The 

Probability Density Function PDF of variable X is addressed using discrete intervals for 

the values of X. In that approach, the discrete PDF is defined for n equal-width bins defined 

for the range of X. The entropy H(X) is a measurement of information or uncertainty 

(Sohoulande Djebou et al., 2014; Singh, 2013), contained in the distribution of variable X. 

Similarly, entropy can be computed for a joint probability distribution of two or more 

variables. With three variables, the process for inferring the joint probability distribution 

is based on a three-way contingency analysis which we illustrated in Table 8. For each 

variable, events are categorized using n equal-width bins. The joint discrete PDF inferred 

from the three-way contingency analysis is utilized for the joint entropy estimate. 

Considering the three variables: (i) Precipitation (P), (ii) Soil moisture (SM) and (iii) 

Vegetation growth index (VI),  the process generates a discrete PDF made of n3 discrete 

probabilities such that:  
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The magnitude of information contained in the joint probability distribution can be 

determined by: 


n

i

n

j

n

k

kjikji VISMPpVISMPpVISMPH )],,([log),,(),,( 2              (8) 

The joint entropy ),,( VISMPH is the total information contained in the three 

variables. The maximum entropy occurs when the uncertainty is maximum and it 

corresponds to a scenario of uniform probability distribution 3

1
),,(

n
VISMPp kji  . Singh 

(1997, 2011, 2013) discussed the relevance of entropy theory in environmental and water 

engineering. In the scheme of our study, Figure 25 illustrates the information shared within 

the coupled variables (SM, P) and VI. Moreover the same methodology was applied using 

the couplings of temperature and soil moisture (T, SM), temperature and precipitation (T, 

P) along with VI.  
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Figure 25 Schematic illustration of the joint entropy approach.  H(P, SM, VI) stands for 

the three dimensional  joint entropy including soil moisture and precipitation (P, SM) and 

vegetation growth index (VI). H(P, VI) and H(SM, VI) represent two dimensional joint 

entropies 

 

 

 

Table 8 Illustration of a three-way contingency table employed to infer joint probability 

distribution. In this example we consider series X, Y and Z. Each variable is categorized 

into 2 classes (n=2). Observations are cross-classified and the discrete PDF is estimated 

Variables 
Discrete Probabilities 

 21, XXX    21, YYY    21, ZZZ   

X = X1 

Y= Y1 
Z = Z1 p (X=X1, Y=Y1, Z=Z1) 

Z = Z2 p (X=X1, Y=Y1, Z=Z2) 

Y = Y2 
Z = Z1 p (X=X1, Y=Y2, Z=Z1) 

Z = Z2 p (X=X1, Y=Y2, Z=Z2) 

X = X2 

Y= Y1 
Z = Z1 p (X=X2, Y=Y1, Z=Z1) 

Z = Z2 p (X=X2, Y=Y1, Z=Z2) 

Y = Y2 
Z = Z1 p (X=X2, Y=Y2, Z=Z1) 

Z = Z2 p (X=X2, Y=Y2, Z=Z2) 
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 4.4. Results and discussion 

4.4.1. Entropy scaling of system vegetation, soil moisture, precipitation and 

temperature 

In accordance with the objective stated earlier regarding the use of entropy scaling, 

this section presents the relationship between the probability distribution of vegetation 

index, soil moisture, temperature, and precipitation. NDVI series and each couple of the 

atmospheric variables were rescaled accordingly by using different time intervals. Hence, 

NDVI, temperature and soil moisture values were averaged to derive the value 

corresponding to each discrete time interval. The precipitation values were totalized for 

each time interval. Lotsch et al. (2003) and Liu et al. (2013) used similar approaches for 

identifying appropriate time scales for a vegetation and precipitation study. However, their 

methods were based on linear correlation analysis which requires a normality assumption 

on the variables in contrast with entropy theory which is applicable to any type of 

distribution (Singh, 1997, 2013). Prior to entropy computation, a spline interpolation 

(Rozhenko, 2010) was applied to the variables. Such an approach minimizes residuals 

(Duan et al., 1998) and allowed us to employ finer increments of time interval. The three 

dimensional relationships between NDVI and each couple of the atmospheric variables 

(soil moisture, precipitation, temperature) were evaluated independently for both 

grassland and deciduous forest at different time intervals. Graphs a and b, in Figure 26, 

present the entropy scaling for deciduous forest and grassland respectively. The fitted 

curves depict the trend and give an estimate of the entropy values with a coefficient of 

determination (R2≥0.84). The overall paradigms are very similar for deciduous forest and 
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grassland. Both entropy curves tend to converge gradually toward a maximum entropy 

state HMax. These trends corroborate with the second law of entropy which states on the 

moving toward entropy maximization (Swenson, 1989). Therefore, coupling soil 

moisture, precipitation, and temperature is quite consistent for vegetation dynamic 

analysis in regard to the entropy law. Indeed, Dewar (2010) emphasized that the carbon 

balance of the ecosystems can be approximated to a steady state at a large time scale. 

Implicitly the steady state can be interpreted as the state of maximum entropy. From Figure 

26, the computed actual entropy increases remarkably within 0 and 2 months-time 

intervals. Beyond 2 months, the increasing rate is moderate and becomes smoother toward 

6 months. This overall trend indicates that finer time intervals provide more incremental 

information for studying vegetation dynamics. The analysis presented in the next sections 

considered a biweekly time scale which is more informative than the monthly time scale 

recently considered by Liu et al. (2013) for vegetation dynamic analysis.  

 

 

 

Figure 26 Three dimensional entropy scaling of vegetation index VI, precipitation P, 

temperature T and soil moisture SM. Approach based on joint entropy computation 
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4.4.2. Month-wise analysis of vegetation response to soil moisture, temperature and 

precipitation during the vegetation growth period 

In this section, biweekly soil moisture, temperature, and precipitation series were 

analyzed to primarily identify the goodness of using each of the three vegetation metrics 

(NDVI, NDVIRatio, NDVISlope) indicated earlier in the methodology. Hence, we derived the 

biweekly vegetation metrics series and analyzed the correlation along with each of the 

atmospheric data series.  The results are presented in Figure 27. Soil moisture series at 5 

cm and 25 cm were highly correlated (R2>64). However, soil moisture at 5 cm showed 

higher correlation with vegetation growth in the case studied. The relationships presented 

in Figure 27 seems to depend on the month and the vegetation metric rather than on the 

vegetation type. The signals obtained indicated the capacity of NDVI to better depict the 

impact of each of the atmospheric variables (temperature, precipitation, soil moisture) on 

vegetation growth. However NDVIRatio and NDVISlope may be consistently involved in the 

vegetation dynamic in relation to temperature for particular months of the growing season, 

i.e., May for NDVIRatio (R=-0.67) and July for NDVISlope (R=-0.72). Compared to the entire 

growing season (Table 9), the month of May shows a lower mean daily temperature 

(23.22˚C) with a high variability (CV=0.09). Paradoxically, the month of July is 

characterized by a relative low temperature variability (CV=0.04).  Indeed, Joseph et al. 

(2014) reported that high soil water content increases the temperature sensitivity of 

photosynthesis. From their results, we could infer the difficulty of explaining vegetation 

growth by focusing marginally on a single atmospheric variable. Figure 28 presents the 
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probability distribution of each of the variables considered in the study. With a 95% 

confidence interval, soil moisture and NDVI follow a truncated normal probability 

distribution, which is not the case for cumulative precipitation and temperature. This 

observation is relevant to highlight the use of entropy theory in our study. However, results 

obtained at this stage need to be considered with the climatic context of ecosystems in the 

Texas Gulf Watershed. In sum, one can infer from Figure 27 and Figure 28 that the 

vegetation growth patterns seem heterogeneous within the growing season months. This 

leads to the next section where we performed a clustering analysis in order to discriminate 

the growing season.  
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Figure 27 Analysis of NDVI, NDVIRatio, NDVISlope responses to soil moisture, 

precipitation and temperature for each month of the vegetation growing season (May, 

June, July, August and September). 
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Figure 28 Probability Distribution of NDVI, soil moisture, temperature and cumulative 

precipitation. 

 

 

 

Table 9 Summary of temperature series during the growing season; CV=coefficient of 

variation 

 May June July August September 

Average 23.22˚C 27.31˚C 29.02˚C 29.73˚C 27.27˚C 

CV 0.094 0.061 0.040 0.043 0.056 
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4.4.3. Entropy-based clustering of vegetation growing seasons  

In the previous section, the month-wise analysis showed different patterns of 

vegetation response to atmospheric variables during the growing season (May, June, July, 

August and September). Attempts to retrieve NDVI pooling all the months together led to 

poor statistical relationships. In this section we apply an entropy-based clustering method 

to discriminate the growing season. Our clustering method is derived from Ratkowsky 

(1984) and Krasovskaia (1997). Despite their usefulness, conventional hierarchical 

clustering methods are not designed to indicate the optimum number of clusters. To obtain 

the optimum number of clusters, Mojena (1977) described a statistical stopping rule for 

selecting partitions. However, Mojena’s process was designed particularly for hierarchical 

clustering. Later, Ratkowsky (1984) proposed a stopping rule with wider application to 

hierarchical and nonhierarchical clustering methods. In his process, Ratkowsky (1984) 

employed the Jaccard similarity coefficient which measures the matching between two 

individuals X and Y by 
||

||
),(

YX

YX
YXJ




 . Ratkowsky (1984) proposed a criterion whose 

maximization indicated the optimum number of clusters. Krasovskaia (1997) used entropy 

theory and developed a clustering method which was somehow inspired from 

Ratkowsky’s approach. However, the method proposed by Krasovskaia (1997) was 

typically designed for river flow regime classification. In this section, we emphasized 

Ratkowsky’s method by using entropy theory. Compared with Krasovskaia (1997), our 

method seems simple and may have wider usage. Indeed, we employed the joint entropy 

to measure relationships between groups of variables. As mentioned in previous sections, 
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the entropy method provided consistent results regardless of the distribution patterns of 

variables (Krasovskaia, 1997).  

Our entropy-based clustering has three steps. The first step consists of the 

computation of a p by p matrix of entropy-based similarity index. Note that p is the number 

of variables and in our case p is the number of months during the growing season (p=5). 

We present here our similarity index by using the example of mean temperature denoted 

as T. Given Tx and Ty, two mean temperature series for months x and y of the vegetation 

growing season, },,,,{ SeptemberAugustJulyJuneMayyandx  , the corresponding 

similarity index ),( yxT is defined as the ratio of the trans-entropy by the joint entropy: 

),(

),()()(
),(

yx

yxyx

T
TTH

TTHTHTH
yx


                                                      (9) 

where H(Tx) and H(Ty) are the marginal entropy values for x and y, respectively. For x=y, 

)(),( xxx THTTH  as the joint distribution of two identical series is invariant. The 

numerator term stands for the trans-entropy. Our similarity index is probabilistic and 

inferred from the Jaccard similarity coefficient (Ratkowsky, 1984). The other two steps of 

our method can be referred at as within-group and inter-group steps. The clustering aimed 

to minimize the within-group dissimilarity while the inter-group’s one should be higher. 

The within-group step leads to a pooled mean index value 1 . This step has only one stage 

where all the elements of the matrix obtained from the first step are averaged. The third 

step consists in clustering the growing season into n groups ( pn 1 ). At each level of n 

groups, months in the same group and having the same average similarity index are 
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considered similar and assigned a unit similarity index for the inter-group similarity 

calculation, otherwise the initial index is conserved. A corresponding similarity index n  

is computed. Like Ratkowsky (1984), the stopping rule criterion  
2/1

1 /)( nn    is 

computed at each stage of this clustering process. Indeed the optimum number of groups 

is reached when the criterion attains a maximum value. 

Table 10 presents the method and its application to the growing season based on 

each of the atmospheric variables (soil moisture, precipitation, temperature). The results 

indicate different clustering patterns depending on the atmospheric variable. Based on soil 

moisture or precipitation, the growing season can be optimally clustered in two groups, 

whereas the optimum number of clusters is three with temperature. The months of June 

and July appeared in the same clusters regardless of the atmospheric variable. However, 

the discriminating criteria is still maximum when we move from two to three clusters in 

both cases of soil moisture and precipitation. With this trade-off we could retain three 

clusters for all the three atmospheric variables: cluster M (month of May), cluster JJ 

(months of June and July), and cluster AS (months of August and September).   
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Table 10 Clustering the growing season month using an entropy based stopping rule process. The number of group at each stage 

of the process is n. *Optimum value of the discriminating criteria indicating the optimum number of clusters. 
Soil moisture Cumulative biweekly precipitation 

 M J J A S  M J J A S 

M 1 0.73 0.76 0.80 0.80 M 1 0.75 0.76 0.77 0.70 

J 0.73 1 0.73 0.74 0.76 J 0.75 1 0.81 0.80 0.76 

J 0.76 0.73 1 0.73 0.74 J 0.76 0.81 1 0.80 0.78 

A 0.80 0.74 0.73 1 0.77 A 0.77 0.80 0.80 1 0.76 

S 0.80 0.76 0.74 0.77 1 S 0.70 0.76 0.78 0.76 1 

  0.82 0.79 0.79 0.81 0.81   0.80 0.82 0.83 0.83 0.80 

n n  1 n  
2/1

1 /)( nn    Clusters n n  1 n  
2/1

1 /)( nn    Clusters 

1 0.81 0 0 MJJAS 1 0.81 0 0 MJJAS 

2 0.96 0.16 0.11* MAS, JJ 2 0.96 0.15 0.11* MS, JJA 

3 1 0.19 0.11 M, JJ, AS 3 1 0.19 0.11 M, JJ, AS 

4 1 0.19 0.10 M,JJ, A, S 4 1 0.19 0.09 M, JJ, A,S 

5 1 0.19 0.09 M, J, J, A,S 5 1 0.19 0.08 M, J, J, A,S 

Temperature       

 M J J A S       

M 1 0.71 0.71 0.77 0.67       

J 0.71 1 0.71 0.76 0.70       

J 0.71 0.71 1 0.77 0.69       

A 0.77 0.76 0.77 1 0.68       

S 0.67 0.70 0.69 0.68 1       

  0.77 0.78 0.78 0.80 0.75       

n n  1 n  
2/1

1 /)( nn    Clusters       

1 0.77 0 0 MJJAS       

2 0.91 0.13 0.09 MJJ, AS       

3 0.96 0.18 0.11* M, JJ, AS       

4 1 0.23 0.11 M,JJ, A, S       

5 1 0.23 0.10 M, J, J, A,S      
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4.4.4. Estimate of vegetation growth from soil moisture, temperature and precipitation  

Using monthly cumulative precipitation, mean temperature, and soil moisture 

series as independent variables, we first derived bivariate statistical models for VI 

estimate. Analyses were performed using each of the three clusters identified in section 

3.3. In most cases, linear fitting of the NDVI series to precipitation, temperature or soil 

moisture series resulted in poor correlation coefficients and high root mean square errors 

which indicate weak accuracy. To comprehend such results, it is necessary to recall plant 

physiology sustaining primary production. In fact, the vegetation growth can be 

summarized by the simple balance between leaf transpiration and photosynthesis. 

However, this flux describing plant growth depends on stomatal conductance and may not 

be monotonic in relation to atmospheric variables (Duursma et al., 2014). For example, 

the temperature sensitivity of photosynthesis increases up to an optimum and later 

decreases when the temperature gets higher (Duursma et al., 2014). Cluster-wise, we 

attempted a two dimensional fitting using NDVI as predictand and each of the atmospheric 

variables as predictor. We noted that a simple logarithmic transformation on precipitation 

series gave a better relationship with vegetation index for both deciduous forest and 

grassland.  With soil moisture and temperature, a quadratic model exhibited a better fitting. 

However a power transformation revealed a stronger relationship between NDVI and soil 

moisture particularly for cluster AS. Results, for both deciduous forest and grassland, are 

presented in Table 11. The overall patterns are similar for both vegetation types. In 

contrast, discrepancies are more notable from one cluster to another. Later, we proposed 

a nested statistical model (Figure 29) for retrieving NDVI by coupling atmospheric 
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variables. Different candidate equations were tested to fit Vegetation Index (VI) by 

coupling pair-wise soil moisture (SM), Temperature (T) and Precipitation (P). The fitting 

procedure aimed to minimize the sum of squared residuals. The ensemble E of candidate 

equations can be summarized as:  

}),(;),(;),({ ,,, PTfVITSMfVIPSMfVIE PTTSMPSM                        (10)  

Likewise, analysis was performed with each cluster (M, JJ, AS). For both 

deciduous forest and grassland, we obtained the best fitting by combining pair-wise 

logarithmically transformed precipitation with a second degree polynomial of soil 

moisture and temperature (Table 12). In particular, during the months of June and July 

(cluster JJ), the coupling of soil moisture and temperature provided an estimate of NDVI 

with R2=0.68 for deciduous forest and R2=0.62 for grassland. However, the relation was 

weaker during August and September (cluster AS). The nested model proposed is 

explicitly presented in Figure 29. Table 12 reports the performance of the model. The 

RMSE values indicate an overall better accuracy for the estimates during the months of 

May, June and July. The three dimension scatter-plots of the couplings are presented in 

Figure 30. Compared to the coupling (SM, T) or (P, T), the coupling (SM, P) seems to 

underestimate high values of VI. In fact, plant growth is naturally regulated by certain 

limiting factors. Hence, a minimum temperature, solar energy, and water content are 

required to stimulate the growth of most plants (Duursma et al., 2014; Joseph et al., 2014; 

Szeicz, 1974). While the solar energy flux may not be a limiting factor during the growing 

season (Szeicz, 1974), the condition on temperature and soil water content may play a 

determinant role by affecting photosynthesis. Therefore, the biophysical interpretation of 
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our results requires an understanding of the continuum of soil, water and plant. Indeed, 

the fraction of soil water available for plants is the difference between the water content 

at field capacity and the one at the permanent wilting point.  However, plants ability to 

uptake water is related to the pressure at which the water is attached to the soil particles. 

Richards and Weaver (1943) determined the permanent wilting point as 15 bar for most 

of plants, while the field capacity was 0.33 bar (Ritchie, 1981; Slatyer, 1957). The 

corresponding volumetric soil moisture varies depending on the soil type (Richards and 

Weaver, 1943), i.e., a clay soil compared to sandy soil. Soil type characterization may be 

a critical component which could be used along with soil moisture in models for describing 

and simulating vegetation growth. Therefore, future research on the topic may consider 

the spatial variability of soil type.   
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Table 11 Bivariate fitting of deciduous forest and grassland’s NDVI series. Analyses are 

conducted cluster-wise for each type of vegetation with each of the atmospheric variables 

(soil moisture SM, cumulative precipitation P, mean temperature T). Quadr.= quadratic, 

Corr.=correlation., Equ. = equation 

 Deciduous Forest 

 VI=f(SM) VI=f(P) VI=f(T) 

Cluster M JJ AS M JJ AS M JJ AS 

Equ. Quadr. Quadr. Power Log Log Log Linear Quadr. Quadr. 

Corr. 0.54 0.73 0.69 0.65 0.35 0.30 0.73 0.63 0.36 

P value <0.01 <0.01 <0.01 <0.01 <0.05 <0.05 <0.01 <0.01 <0.05 

 Grassland 

 VI=f(SM) VI=f(P) VI=f(T) 

Cluster M JJ AS M JJ AS M JJ AS 

Equ. Quadr. Quadr. Power Log Log Log Linear Quadr. Quadr. 

Corr. 0.50 0.64 0.55 0.55 0.52 0.32 0.58 0.66 0.40 

P value <0.05 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 

 

 

 

Table 12 Summarizing the results of the nested model. VI = Vegetation Index; P = 

Precipitation; T=Temperature; SM = Soil Moisture; Corr. = correlation coefficient; RMSE 

= Root Mean Square Errors. 

 

Deciduous Forest 

Cluster M Cluster JJ Cluster AS 

Correlation RMSE Correlation RMSE Correlation RMSE 

VI = f (SM, P) 0.71 0.13 0.73 0.12 0.39 0.21 

VI = f (P, T) 0.78 0.11 0.63 0.14 0.38 0.21 

VI = f (SM, T) 0.88 0.09 0.83 0.10 0.44 0.20 

 Grassland 

VI = f (SM, P) 0.63 0.14 0.71 0.14 0.38 0.26 

VI = f (P, T) 0.63 0.14 0.70 0.14 0.41 0.26 

VI = f (SM, T) 0.76 0.12 0.79 0.12 0.46 0.25 
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Figure 29 Diagram presenting the nested statistical model used for vegetation index VI 

estimate. SM = Soil Moisture a 5 cm, P=Cumulative Precipitation, T=Mean Temperature, 

x=month of the growing season; a, b, c, d, e are the parameters identified base on a least 

square errors approach 
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Figure 30 Three dimensional scatter-plots of Vegetation Index (NDVI) as a function of 

coupled atmospheric variables [soil moisture (SM), precipitation (P) and temperature (T)]. 
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4.5. Synthesis and conclusions 

Application of entropy illustrates the consistency of coupling soil moisture, 

temperature and precipitation for vegetation growth analysis. The three dimensional joint 

entropy analysis reveals that finer temporal scales are more informative. Interestingly, the 

overall relationships with both deciduous forest and grassland NDVI series show 

similarity confirming a conclusion recently reported by Liu et al. (2013). Indeed, Liu et 

al. (2013) indicated similitude in NDVI response to climate variables regardless of the 

vegetation type. However, the three vegetation metrics tested in our study, exhibit 

interesting vegetation growth patterns which significantly differ according to the growing 

season’s month and the atmospheric variable. Despite the overall relevance of the raw 

NDVI series, the NDVIRatio gave interesting signals with temperature series during the 

month of May while NDVISlope had its highest signal with July’s temperature series. Note 

that for the location considered, May has the lower mean daily temperature of the growing 

season. In addition, the temperature during May seems very unstable (highest variability), 

while July is warmer with the lowest variability. Such an observation seems interesting 

and could be fully addressed through further studies.  

Although the consistency of coupling atmospheric variables is demonstrated, 

attempts to retrieve vegetation growth pattern by assuming a total exchangeability of the 

growing season months lead to poor relationships. The entropy-based clustering method 

proposed, discriminate the growing season into three clusters. We distinguish cluster M 

(May), cluster JJ (June and July) and cluster AS (August and September).  
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Marginally, each of the atmospheric variables studied shows a relatively poor 

linear relationship with NDVI. In biophysical processes, it is common to observe non-

linear relationships between factors even if they appear to interact. Through variable 

transformation, we are able to extract significant relationships which lead to statistical 

models employed for retrieving vegetation growth patterns. Coupling the atmospheric 

variables, we propose a nested statistical model for retrieving vegetation growth patterns.  

However, there is a discrepancy of RMSE depending on the cluster, coupled atmospheric 

variables and vegetation types. The coupling of soil moisture and temperature is able to 

explain up to 68% and 62% of vegetation index variation for deciduous forest and 

grassland, respectively. Although our study is constrained by the environmental and 

climate conditions of the ecosystems in the Texas Gulf watershed, results can be extended 

in order to improve the use of soil moisture measurement in land-atmosphere models. 

However, the models established using the coupling of atmospheric variable may also be 

relevant for downscaling remote sensed vegetation growth patterns. Despite this general 

remark, it is important to recall the discrepancies mentioned earlier regarding the 

magnitudes of the statistical relationships obtained suggesting more research efforts on 

the topic. In summary, we highlight the following conclusions:  

(i) The entropy scaling of NDVI, soil moisture, temperature and precipitation 

reveal common patterns, showing the goodness of coupling atmospheric variables 

for vegetation dynamic. 
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(ii) Vegetation response to atmospheric variables varies very much during the 

growing season period. Therefore, it may be wise to cluster the growing season 

while conducting a vegetation dynamic study.   

(iii) Soil moisture and temperature seem consistently coupled for vegetation 

dynamic studies at finer temporal resolution. i.e, soil moisture and temperature 

series could be relevant for vegetation growth appraisal at finer time scales, while 

precipitation may be interesting to address vegetation patterns at seasonal and 

inter-seasonal scales (Ichii et al., 2002; Kawabata et al., 2001; Knapp and Smith, 

2001). 

The results obtained, using the spatial domain of the Texas Gulf watershed, are 

supported by previous studies conducted in similar climatic regions of the globe. The 

scope of our conclusions may be extended at a regional level and considered wisely in 

vegetation dynamics as well as water resources studies. However, a transition toward 

continental and global stage may require additional research efforts. Therefore, further 

study on this topic are encouraged and should address diversified ecosystems, vegetation 

types and involve as well long-term remote sensed and land-based measurement data. 
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CHAPTER V  

IMPACT OF CLIMATE CHANGE ON PRECIPITATION PATTERNS: A 

COMPARATIVE APPROACH  

 

5.1. Synopsis 

Impacts of climate change on precipitation are usually reported in time and space 

but seem insufficiently described for use in water resources management and planning. 

Although customary trend and extreme event analyses are essential, they may not be 

sufficient to determine the ampleness of changes due to climate change. Our study 

addresses the effect of climate change on precipitation patterns. Specifically, we employ 

parsimonious methods to examine changes over the entire ranges of monthly precipitation 

total and number of events (>3mm). We consider a regional climate model simulation of 

historical (1971-2000) and future (2041-2070) precipitation series across the Texas Gulf 

watershed. The precipitation series are bias corrected. We explore different technics 

frequently involved in impact analysis and resorted limitations. We then propose and use 

a probabilistic approach to depict the magnitudes of plausible effects of climate change. 

Finally, we infer temporal changes in seasonal precipitation regimes. The temporal 

variability of changes is remarkable across the watershed, suggesting important spatial 

weights. Whereas it is not a substitute for other approaches, our probabilistic method is 

useful for a better understanding of critical changes in precipitation amounts and 

occurrences under climate change spectra.   
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5.2. Introduction 

Climate factors are often characterized by cyclic patterns and it is common to 

associate the range of precipitation events with seasonality. In most of terrestrial biomes, 

this seasonality plays a critical role and determines the dynamics of plants and animal 

populations (Sillett et al., 2000). Precipitation characteristics, such as amount, duration, 

intensity and frequency, vary from year to year and are driven by climatic factors at the 

regional and continental scales (Cai et al., 2014; Wehner, 2013). That is the case with the 

North American Monsoon (NAM) that controls summer precipitation in North America 

(Higgins and Shi 2001). Similar schemes are noticeable across the globe, as precipitation 

regimes are characterized, to some extent, by cyclic variations with certain return periods. 

However, non-cyclic anomalies are becoming more evident these days, perhaps due to 

climate change (Cai et al., 2014; Huntington, 2006; Dore, 2005).  Therefore, it is important 

that the cyclic patterns do not mask the influence of climate change (e.g. Cai et al., 2014; 

raised such concern regarding the millennium drought recently experienced in Australia).  

The climate change signals have started to receive increasing attention in recent 

years. Even though studies on climate change impact have been increasingly reported 

worldwide, the approaches employed in the assessment have mainly focused on extreme 

events and risk analyses (Tohver et al., 2014; Ahmed et al., 2013; Haylock et al., 2006; 

Dore, 2005). Further, long-term statistics, including trend analyses and jump detection, 

are applied to precipitation series (Kalra and Ahmad, 2011; Hamed, 2008; Haylock et al., 

2006). However, the future effects of climate change on water resources are still being 

debated (Lespinas et al., 2014; Groves et al., 2008). Several authors emphasize the scheme 
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of climate change with higher occurrences of extreme events (Chiew et al., 2009; Dore, 

2005). Likewise, shifts in the precipitation seasonality are observed in different parts of 

the globe (Regonda et al., 2005). It seems therefore logical to partition the effects that are 

attributable to climate change under the circumstances where regular cyclic patterns are 

known to embed variability as well. Meanwhile, model simulations are useful for 

addressing the effects of climate change on water resources (Butcher et al., 2014).  

For water resource management, it is essential to address the impacts of climate 

change by considering the watershed as a functional unit. At the watershed scale, local 

characteristics, such as basin topography and vegetation cover, are reported to have 

significant effects on precipitation distribution (Sohoulande Djebou et al., 2014). In 

addition, some of these characteristics are interactive, compounding the complexity of 

factors driving changes in precipitation regimes. This makes the inclusion of plausible 

climate change effects in water resources management, challenging (Groves et al., 2008). 

Usually, the approaches employed to quantify the impact of climate change focus on 

extreme precipitation events, often neglecting other events. Recently, Ntegeka et al. 

(2014) employed a quartile change analysis to address climate change impact on 

precipitation series. Their method of analysis is interesting as it sheds light on different 

aspects of future perturbations based on individual quartile range. This suggests that it 

may be necessary to employ more diversified approaches in climate change impact 

assessment. Our study expounds technics regularly used in climate change impact 

assessment, then we highlight limitations. Upon these technics, we propose a probabilistic 

impact analysis. Specifically, we report a probabilistic assessment of climate change 
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impact on precipitation. We examine alterations of precipitation characteristics across the 

Texas Gulf watershed. The study describes an explanatory approach for addressing 

changes in seasonal precipitation patterns. The analysis is done within the realm of climate 

change based on regional climate model simulations. We also employ a bias correction 

for the precipitation series (Ahmed et al., 2013; Wood et al., 2002).  

 

 5.3. Methodology 

The methodology consists of the following steps: (1) Data and study region, (2) 

bias correction, (3) pooled analysis of changes in precipitation patterns, (4) non-parametric 

analysis of changes in precipitation across precipitation ranges, and (5) probabilistic 

estimates of changes in precipitation patterns.  Each of these steps is now discussed.  

 5.3.1. Data and study region 

The study area considers the Texas Gulf watershed that is characterized by a wide 

range of ecosystem and climatic features. We employ model generated precipitation series 

for two time periods: 1971-2000 (historical) and 2041-2070 (future). We obtain the 

precipitation data from the North American Regional Climate Change Assessment 

Program NARCCAP. The NARCCAP releases a number of regional climate model 

(RCM) simulations over the conterminous United States for historical and future periods 

(Wehner, 2013). Specifically, RCM’s future climate simulations are driven by the Special 

Report on Emissions Scenario SRES-A2 (Nakicenovic et al., 2000). The SRES-A2 

scenario is based on the assumptions that include a world population reaching ten billions 

by 2050, a regionally oriented economic development, a projected CO2 concentration of 
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575 ppm by 2050 and of 870 ppm by 2100 (Nakicenovic et al., 2000). The RCM’s 

historical and future simulations of the NARCCAP have been frequently employed to 

address the impact of climate change on water resources in the North American region 

(Mearns et al, 2012; Bürger et al., 2011).  

We utilize the NARCCAP RCM3-GFDL ensemble model simulations which 

revealed consistency for precipitation studies in the various regions of North America 

(Ahmed et al., 2013). The ensemble RCM3-GFDL encompasses uncertainties related to 

boundary conditions defined by the Geophysical Fluid Dynamics Laboratory (GFDL) 

(Mearns et al, 2012). The RCM3-GFDL precipitation series are gridded data, available for 

historical (1971-2000) and future (2041-2070) periods with a 50 km spatial resolution. 

The time slices for RCM3-GFDL products are predefined. The data are available for 

transient runs which is a limitation for exploring a wider period.  Mearns et al. (2012) 

analyzed the goodness of the NARCCAP’s ensemble outputs based on individual grid 

cells and addressed seasonality by distinguishing winter DJF (December-January-

February), spring MAM (March-April-May), summer JJA (June-July-August), and 

autumn SON (September-October-November) precipitation. Likewise, we selected and 

addressed 25 grid cells across the Texas Gulf watershed (Figure 31 and Table 13). For 

ease of presentation, we find it convenient to select representative grid cells. Hence, we 

apply a k-means clustering to the precipitation series of the 25 grid cells (Hartigan and 

Wong, 1979) and identify two clusters (Table 13). The clustering displays a clear spatial 

pattern as we could note from Figure 31 that the cluster 1 encompasses isohyets of mean 

annual precipitation varying within 700 and 1400 mm, while the isohyets corresponding 



 

101 

 

 

to cluster 2 vary within 500 and 700 mm. From clusters 1 and 2 we retain grid cells A and 

H, Q and X. Meanwhile, bias correction was critical to improve the accuracy of the RCM3-

GFDL precipitation series (Bürger et al., 2011). To set the parameters of the bias 

correction algorithm, we use land-based precipitation series obtained from the National 

Oceanic and Atmospheric Administration’s Global Historical Climatological Network 

database NOAA-GCHN. We identify 25 precipitation stations with respect to each of the 

grid cells. However, by pairing the RCM3-GFDL’s daily precipitation series with the 

selected land-based station, we note discrepancies in the occurrence sequences. This is 

inherent in model simulations in general (Weichert and Bürger, 1998). To remedy this 

problem and get a better fitting, we consider daily average values for the months. We now 

discuss the bias correction procedure in the next section.  
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Figure 31 Map of the Texas Gulf watershed showing the selected RCM3-GFDL grid cells 

(referred to by letters), the land-based precipitation stations considered for the bias 

correction and the annual precipitation gradient 
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Table 13 References corresponding to the selected grids in the Texas Gulf watershed 

GRID Lat Long 
RCM3 Ref. Cluster GRID Lat Long RCM3 Ref. Cluster 

yc xc     yc xc  

A 31.02 266.52 14 73 1 N 28.94 261.54 9 63 1 

B 31.92 265.55 16 71 1 O 27.24 261.58 5 63 2 

C 30.20 265.48 12 71 1 P 26.40 262.06 3 64 2 

D 32.38 264.54 17 69 1 Q 32.35 260.43 17 61 2 

E 31.08 264.51 14 69 1 R 30.20 260.52 12 61 1 

F 29.36 264.47 10 69 1 S 28.49 260.58 8 61 2 

G 33.26 263.52 19 67 1 T 33.19 259.35 19 59 2 

H 30.23 263.50 12 67 1 U 31.45 259.45 15 59 2 

I 32.39 262.49 17 65 1 V 34.01 258.25 21 57 2 

J 29.80 262.51 11 65 1 W 31.84 258.41 16 57 2 

K 28.10 262.52 7 65 1 X 33.08 257.28 19 55 2 

L 33.25 261.44 19 63 1 Y 33.91 256.67 21 54 2 

M 31.08 261.49 14 63 1       

 

 

 

5.3.2. Bias correction procedure 

Systematic bias is often associated with climate model outputs. In some cases, bias 

can mislead to conclusions regarding climate impact analysis (Ahmed et al., 2013; Piani 

et al., 2010). For that reason, bias correction becomes essential in climate modeling. A 

wide range of algorithms have been used for bias correction. Piani et al. (2010) proposed 

a histogram equalization method for bias correction of precipitation series that has shown 

potential for application in water resources for several regions of the globe. We chose to 

remove the bias from the RCM3-GFDL series by applying the algorithm suggested by 

Piani et al. (2010). Considering the model simulated and corrected precipitation series as 

Pmod and Pcor, respectively, the algorithm used is defined by:  

modPbaPcor                                                                                                            (11) 
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)]/)((1[)( 0modmod PPExpPbaPcor                              (12) 

where a, b, P0, and τ are the parameters. In equation (11), a and b simply represent the 

intercept and the coefficient for a linear regression. In equation (12), τ is a rate factor, and 

a and b are related to P0 through the relation baP /0   which is known as the dry day 

correction factor. Whereas both equations (11) and (12) are valuable for bias correction 

for daily precipitation series, equation (12) is less parsimonious. At individual grid cells 

and for each month of the year, we apply equation (11) or (12) by preferring the one 

providing lower root mean squared errors (RMSE). In equation (12), we estimate the 

parameters by addressing the objective function that aims to minimize the RMSE; results 

for grids A, H, Q and X are recapitulated in Table 14. The parameters in the algorithm are 

set month-wise by fitting land-based precipitation series and the RCM3-GFDL historical 

simulation. Finally, at each grid cell, we utilize the set parameters and correct the historical 

and future precipitation series.  
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Table 14 Estimated parameters for the bias correction algorithm [equation (5.2)]; example with grid cells A, H, Q and X are 

presented. 
 Parameter JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

A 

a -0.22 -0.48 -0.49 -0.48 -0.47 0.5 -0.48 -0.49 -0.47 -0.47 -0.46 -0.47 

b 0.01 0.01 0.01 0.01 0.01 0.5 0.01 0.01 0.01 0.01 0.01 0.01 

P0 22.00 48.00 49.00 48.00 47.00 -1.00 48.00 49.00 47.00 47.00 46.00 47.00 

τ 6 20 20 20 18 2 22 24 22 22 18 18 

RMSE 2.68 2.51 1.79 2.13 2.37 2.95 1.77 2.02 1.83 2.54 2.89 2.31 

H 

a -0.45 -0.47 -0.49 0.5 -0.47 -0.49 -0.49 -0.49 -0.49 -0.48 -0.48 -0.39 

b 0.03 0.01 0.01 0.41 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 

P0 15.00 47.00 49.00 -1.22 47.00 49.00 49.00 49.00 49.00 48.00 48.00 19.50 

τ 6 24 24 2 18 20 30 28 22 22 22 8 

RMSE 1.92 1.80 1.52 1.62 2.03 2.59 1.47 1.63 1.99 3.57 2.17 1.46 

Q 

a 0.28 0.32 0.5 -0.31 0.5 -0.48 -0.48 -0.48 -0.49 -0.48 -0.37 -0.06 

b 0.07 0.06 0.03 0.01 0.25 0.01 0.01 0.01 0.01 0.01 0.02 0.01 

P0 -4.00 -5.33 -16.67 31.00 -2.00 48.00 48.00 48.00 49.00 48.00 18.50 6.00 

τ 2 2 2 20 2 28 28 24 34 34 18 2 

RMSE 0.31 0.46 0.51 0.80 1.05 1.33 1.53 1.53 1.17 1.65 0.48 0.53 

X 

a -0.49 -0.39 -0.32 -0.48 -0.46 -0.48 -0.32 -0.48 -0.49 -0.44 -0.48 -0.42 

b 0.01 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.04 

P0 49.00 13.00 16.00 48.00 46.00 48.00 32.00 48.00 49.00 44.00 48.00 10.50 

τ 52 8 10 34 22 26 24 34 28 24 42 8 

RMSE 0.57 1.19 0.64 1.12 1.88 1.25 0.84 1.31 2.18 1.73 0.83 0.91 
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5.3.3. Pooled analysis of changes in precipitation pattern 

Very often, the effect of climate change on precipitation series is inferred, based 

on mean and variance (Dore, 2005). However, these two statistics are not sufficient to 

represent some critical features that are attributable to climate change. Table 15 resumes 

a comparative analysis of future and past precipitation series for seasons of DJF, MAM, 

JJA and SON. The pooled averages show changes which we evaluated by performing a 

Student’s t test of independence of means. Indeed, previous authors explored changes 

using the t test. E.g. Cai et al. (2014) employed the t test to evaluate the significance of 

seasonal precipitation decrease in Australian regions. Our results show significant 

differences between past and future monthly precipitation totals and monthly numbers of 

events (>3mm) during seasons MAM, JJA and SON. Paradoxically, the changes during 

DJF are not significant. As stated earlier, analysis in Table 15 is informative but may not 

be strong enough to conclude the changes observed. A boxplot analysis may be useful to 

clear potential weighing factors shaded in the analysis. In Figure 32, we present boxplots 

of monthly precipitation totals for the 25 grid cells series. Due to the high discrepancies 

between precipitation ranges across the Texas Gulf watershed (Figure 31), data 

transformation is necessary for a standard comparative analysis. Therefore, we employ the 

percentage precipitation changes, which quantify the departure from the long term mean 

(Tebaldi et al., 2004) defined as:  

P

Pi
P

P
i 


 .100                                                                             (13) 
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Pi is a given precipitation value, 
P is the long term mean and 

iP is the corresponding 

percentage precipitation change. 

Figure 32 shows some clustering of outliers foreshadowing the existing changes 

between past and future precipitation series. Particularly, these clustering patterns are 

remarkable during the DJF season (Figure 32) which we previously presented with no 

significant changes through the analysis of mean values. Such configuration is frequent in 

precipitation data analysis and points to further appraisal. 

 

 

Table 15 Comparison of RCM3-GFDL’s historical and future precipitation series in the 

Texas Gulf watershed.  The monthly precipitation total and number of events (>3mm) are 

considered for seasons DJF, MAM, JJA and SON. µ=monthly mean, σ=standard 

deviation, and CV=coefficient of variation 

 
Monthly PREC (mm) 

Number of events 

(PREC>3mm) 

1971-2000 2041-2070 1971-2000 2041-2070 

  

DJF 56.85a 57.48a 4.47a 4.41a 

MAM 109.96a 103.41b 8.88a 8.09b 

JJA 104.08a 96.35b 9.67a 8.45b 

SON 66.32a 75.29b 5.18a 5.45b 




CV  

DJF 0.69 0.73 0.60 0.58 

MAM 0.66 0.76 0.55 0.62 

JJA 0.93 1.02 0.77 0.85 

SON 1.07 1.13 0.73 0.77 

Student’s t-test for independent means, performed to compare the historical mean and the 

future mean of monthly precipitation total, monthly number of precipitation events>3mm; 

(a, b) indicates the rejection of the null hypothesis of mean equality with 95% confidence, 

otherwise both means are labeled with (a, a). 
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Figure 32 Boxplots of the percentage of changes in monthly precipitation series. 

Comparing the RCM3-GFDL precipitation series for historical (1971-2000) and future 

periods (2041-2070). 
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5.3.4. Non-parametric analysis of changes across precipitation ranges   

5.3.4.1. Kernel estimate 

In this section, we examine the magnitude of changes in the precipitation ranges. 

We considered the probability density functions PDFs derived from the past and the future 

precipitation series. In our approach, we applied a Gaussian kernel (Jann, 2007; Seaman 

and Powell, 1996; Silverman, 1986) to estimate and plot the density function of the 

monthly precipitation characteristics. The kernel estimator (.)f̂  is defined by: 


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 1)( dppK                                                                               (14c) 

where h is the band width or smoothing parameter; K(.) is the Gaussian kernel; n is the 

series size; Pi is any random value within the range of precipitation series; p denotes the 

center of any bin with the h width. The choice of band width h is critical for the kernel 

estimation, as it determines the degree of smoothness. Silverman (1986) proposed a simple 

calculus for the identification of the optimum band width hopt. In the case of Gaussian 

kernel, the formula (equation 14d) proposed by Silverman (1986) depends on the series 

size n and its standard deviation σ: 

5/106.1  nhopt                                                                       (14d) 

For each grid cell, the kernel estimates were analyzed by distinguishing the four 

seasons DJF, MAM, JJA and SON. Results were comparable and the overall paradigm is 
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described here by spotting grid cells A, H, Q and X, represented in Figure 33 and Figure 

34.  

At the first glance, curves for the kernel density estimates in Figure 33 and Figure 

34 exhibit discrepancies between the past and future precipitation series. However, an 

analytical insight shows notable patterns spread differently along the precipitation ranges. 

Explicitly, the differences between past and future precipitation series are not just tied to 

extreme events part of the curves suggesting the need to revise prior conceptions on 

climate change impact. This observation motivates the importance of addressing climate 

change pattern not by focusing only on extreme events but the entire range of precipitation 

values. In support of this assertion, we performed a binary bivariate analysis. The approach 

begins with a binary transformation of past P and future P’ precipitation series. We 

considered different percentiles (1st, 2nd and 3rd quartiles) as thresholds and performed the 

binary transformation as: 



 




 


otherwise

PpercentilePif
Pand

otherwise

PpercentilePif
P

0

)'('1
'

0

)(1
                  (15) 

Pairing both past and future precipitation series, we derived contingency tables 

(Table 16) and later estimated the degree of association by calculating Pearson’s    values 

as:  

 

.01.0.1.

10010011

NNNN

NNNN 
                                                                          (16) 



 

111 

 

 

Symbols in equation (16) are defined in Table 16. Guilford (1941) demonstrated 

that Pearson’s    is related to the critical 2 statistic that is addressed with 1 degree of 

freedom and an arbitrary p-value as: 

22  N                                                                                              (17) 

Results of testing the match between historical and future precipitation series are 

presented in Table 17 and Table 18. Significant values in the tables indicate strong 

similarity or match between the past and future precipitation series. However, there are 

only a few cases of significant similarities with monthly precipitation total (Table 17) and 

number of precipitation events (Table 18). The binary bivariate analysis confirms and 

shows the significance of the changes resorted earlier in Figure 33 and Figure 34. 
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Figure 33 Comparing the probability density estimates for past (blue curve) and future 

(red curve) monthly precipitation during the seasons of DJF (December-January-

February), MAM (March-April-May), JJA (June-July-August) and SON (September-

October-November). We estimated the probability density using a Gaussian kernel. 

Example based on grids A, H, Q and X (figure 31). 
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Figure 34 Comparing the probability density estimates for past (blue curve) and future 

(red curve) monthly number of precipitation events (>3mm) during the seasons of DJF 

(December-January-February), MAM (March-April-May), JJA (June-July-August) and 

SON (September-October-November). We estimated the probability density using a 

Gaussian kernel. Example based on grids A, H, Q and X (figure 31). 
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Table 16 Binary bivariate contingency table obtained by pairing past P and future P’ 

precipitation series. 

 P’=1 P’=0 Total 

P=1 N11 N10 N1. 

P=0 N01 N00 N0. 

Total N.1 N.0 N 

 

 

Table 17 Values of 22  N ;  estimating the degree of association between past P and 

future P’ monthly precipitation total using RCM3-GFDL ensemble model simulations. 

The critical 2 for 1 degree of freedom and a p-value = 0.05 is 3.84 and the significant 

values are marked with “*”. Q1, Q2 and Q3 represent the 1st, 2nd and 3rd quartiles. Example 

based on grids A, H, Q and X (figure 31). 

 Thresholds < Q1 Q1 – Q2 Q2 – Q3 > Q3 

A 

DJF 0.02 0.14 1.48 1.66 

MAM 0.52 1.69 0.07 0.07 

JJA 1.22 0.01 0.37 0.48 

SON 4.43* 0.52 0.52 0.22 

H 

DJF 3.11 0.13 0.12 6.41* 

MAM 0.98 0.50 0.18 0.02 

JJA 1.20 2.77 0.00 0.03 

SON 1.17 0.59 0.02 0.94 

Q 

DJF 2.21 0.00 1.70 0.45 

MAM 0.59 1.75 0.12 0.00 

JJA 7.72* 0.27 0.25 0.30 

SON 0.39 0.89 0.98 2.81 

X 

DJF 1.00 0.44 4.09* 0.74 

MAM 0.10 0.63 0.02 0.08 

JJA 8.22* 3.24 3.29 4.08 

SON 0.11 0.00 1.18 0.53 
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Table 18 Values of 
22  N   estimating the degree of association between past P and 

future P’ monthly number of precipitation events (>3mm) using RCM3-GFDL ensemble 

model simulations. The critical 
2 for 1 degree of freedom and a p-value = 0.05 is 3.84 

and the significant values are marked with “*”. Q1, Q2 and Q3 represent the 1st, 2nd and 

3rd quartiles, respectively. Example based on grids A, H, Q and X (figure 31). 

Thresholds < Q1 Q1 – Q2 Q2 – Q3 > Q3 

A 

DJF 1.03 0.34 1.59 15.16* 

MAM 2.53 0.31 3.04 5.00* 

JJA 5.22* 0.69 2.26 0.49 

SON 0.88 0.16 0.22 0.00 

H 

DJF 0.98 1.77 1.51 23.04* 

MAM 0.47 0.18 1.76 0.45 

JJA 2.06 0.01 0.87 1.51 

SON 2.67 0.65 0.00 0.00 

Q 

DJF 0.00 1.28 0.13 1.95 

MAM 5.56* 0.07 0.77 0.85 

JJA 0.10 1.90 0.23 1.18 

SON 1.59 6.15* 0.12 0.00 

X 

DJF 0.10 0.00 3.91 0.44 

MAM 4.55* 0.44 0.07 0.71 

JJA 0.11 0.19 2.73 3.63 

SON 2.21 0.45 0.46 0.00 

 

 

5.3.4.2. Trends analysis 

This section examines and compares monotonic trends in the precipitation series. 

The time series of the seasonal precipitation values are presented in the Figure 35. We 

observe an alternation of peaks particularly in the precipitation series corresponding to the 

future climate scenario. These peaks account for extreme precipitation events and their 

presence is noticeable during each of the four seasons. However, their magnitude and pace 

in time and space seem very irregular.  Upon the pattern observed in Figure 35, we 

estimate trends in the seasonal precipitation series by performing the Mann-Kendall test 
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with a p-value =0.05 (Hamed 2008; Yue et al., 2002). In accordance with the Figure 35, 

we consider precipitation series for the grids A, H, Q and X; then we evaluate the 

Kendall’s tau values. This computation begins by ranking the precipitation series. Let’s 

suppose (Pi, Ti) and (Pj, Tj) a pair in the precipitation series of size n, such that 1≤i<j≤n. 

P. is the precipitation value at the date T.. If Pi-Pj and Ti-Tj have the same sign, the pair is 

said concordant otherwise discordant. In case a difference is zero, the pair is considered 

as tied. The formula for the Kendall’s tau is given by the equation (18): 

]2/)1(2/)1(][2/)1(2/)1([
''

 



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dc
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nn
tausKendall      (18) 

Where nc and nd are the number of concordant and discordant pairs respectively; ti is the 

number of tied values at a particular rank for P. and ui is the number of tied for T. 

We resume the results in Table 19. For both case of monthly precipitation total and 

number of events, there is no significant trends in the future precipitation series except 

with the grid Q during MAM, which seems to be exceptional. However, with the past 

precipitation series, we report positive and significant trends with the grid cells A, H and 

Q during JJA season and the grid X during MAM. This observation is consistent with both 

precipitation total and number of events. From a joint analysis of Figure 35 and Table 19, 

we may assert that the future scenario does not embed significant trends whilst the 

presence of peaks is notable. Yet, the statistically non-significant does not necessary mean 

that the trends are not practically meaningful (Yue et al., 2002). Rather, it seem reasonable 

to understand that the irregularity of the events in the future precipitation series is likely 

to shade meaningful information in time and space. Therefore, we are noting the 
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insufficiency of the monotonic trend analysis to expound adequately information on 

changes in precipitation patterns. This fact explain the essence of the probabilistic impact 

analysis presented in the next section. 

 

Figure 35 Comparing the seasonal precipitation series between historical (1971-2000) and 

future (2041-2070) climate. 
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Table 19 Report of Mann-Kendall’s non-parametric trend test. The table presents the 

Kendall's tau values computed with the seasonal precipitation series. 

 

*Significant trend with 95% CI. 

 

 

5.3.5. Probabilistic estimate of changes in precipitation patterns 

Deterministic projections of climate scenario are customary inferred from a ‘best 

guess’. However, such projections do not reflect the range of uncertainties contain in the 

scenario simulation. Palmer and Raisanen (2002) asserted that probabilistic projections 

are more useful as they provide wider view on plausible impacts. Previous studies 

attempted to address climate change impacts using a probabilistic framework (Pierce et 

al., 2013; News et al., 20107; Palmer and Ralsanen, 2002). The methods developed vary 

more or less among authors. E.g. Under climate change frame, Pierce et al. (2013) 

Season Grids 
Precipitation total Number of events (>3mm) 

1971-2000 2041-2070 1971-2000 2041-2070 

DJF 

A 0.01 0.03 -0.02 0.06 

H -0.05 0.09 -0.12 0.04 

Q -0.11 0.03 -0.04 0.03 

X -0.06 0.05 -0.01 0.02 

MAM 

A -0.06 -0.03 0.00 0.09 

H 0.03 -0.05 0.13 -0.04 

Q 0.06 -0.13 0.12 -0.17 

X 0.16* -0.04 0.16* -0.09 

JJA 

A 0.18* -0.08 0.24* -0.07 

H 0.17* 0.01 0.14* -0.03 

Q 0.13* 0.05 0.14* -0.02 

X 0.10 0.03 0.10 0.00 

SON 

A 0.10 0.02 0.11 0.06 

H 0.05 0.04 0.09 0.03 

Q 0.12 0.04 0.16* 0.02 

X 0.09 0.07 0.11 0.08 
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evaluated mean precipitation changes and retrieved the probability distributions by fitting 

climate models simulations. Their probabilistic method is more oriented toward a 

downscaling and it did not expound effectively the probabilistic impacts. However, 

Crosbie et al. (2013) reported a typical case study in which they presented a clear 

probabilistic assessment of climate change impact on water resources. Specifically, 

Crosbie et al. (2013) resorted probability of exceedances by targeting plausible future 

scenario. In a different style, Palmer and Raisanen (2002) considered climate change 

effects as binary responses and conducted a probabilistic impact study. All these methods 

enable a larger understanding of plausible future changes. However, the probabilistic 

assessment of climate change remains less explored and efforts toward a diversified 

method should likely be beneficial in water resource planning (News et al., 2007; Palmer 

and Raisanen, 2002). The approach developed here is a contribution to this general need.  

The aim of this section is twofold. The analysis reported here addresses changes 

in precipitation seasonality but also evaluates the changes in the probabilities of 

occurrence within precipitation ranges. The focus is more on the inner variations of 

precipitation within seasons. The method employed is probabilistic. Specifically, we 

applied a probit model to the historical and future RCM3-GFDL simulations separately, 

and evaluated the probabilities of precipitation events within the seasons. For this purpose, 

we restructured values in the future and present precipitation series by assigning four 

dichotomous dependent variables. For instance, the first dependent variable, named DJF, 

takes on the value 1 when the precipitation value in the series belongs to the DJF season, 

otherwise 0. Likewise, we derived the remaining three dependent variables by considering 
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seasons MAM, JJA and SON separately. Palmer and Raisanen (2002) reported similar 

proceeding in climate impact analysis. Indeed, they considered effects as a dichotomous 

response and successfully addressed climate change impact through a probabilistic 

framework. In our case, the four binary responses were associated with individual 

precipitation series. The binary transformation enables a probabilistic analysis of changes 

in seasonal patterns across the ranges of precipitation values. The explanatory variables 

were monthly precipitation characteristics (total and number of events >3mm). 

Subsequently, we applied a bivariate probit model to the future and present precipitation 

series by focusing on individual seasons separately. The bivariate probit model with 

predictor P (monthly precipitation) is defined by the link function: 
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where Y is the outcome of the probit model; Φ (.) is a cumulative distribution for a standard 

normal random variable; and Φ-1 (.) is the inverse normal distribution. Details of the probit 

model are explicitly presented in Table 20 and Table 21.  

The marginal response of changing variable P is given by the derivative: 
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In equation (19d), we note that the change depends not only on the value of β1 but 

also on P. This relation is interesting, as it permits to capture continuous changes within 
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the entire range of precipitation series. The demarche allows evaluating the probability 

that any value within the precipitation range occurs during a particular season of the year. 

By estimating separately these probabilities for past and future series, we consistently 

quantified the changes in precipitation regimes. Figure 36 and Figure 37 present the 

probability curves for the monthly precipitation total and the number of precipitation 

events, respectively. Clearly, we notice that the probability of occurrence of any 

precipitation value varies consistently within the precipitation ranges. Moreover, the 

changes between the past and future precipitation scenarios seem to display notable spatial 

characteristics. The amplitude of these changes depends on the season. Interestingly, we 

are able to address the magnitudes of these changes across the entire Texas Gulf watershed 

by estimating the future and past probabilities associated with each of the first (Q1), second 

(Q2) and third (Q3) quartiles of the 25 grid cells. Later we estimate the changes in terms 

of percentage using equation (20): 

100
(.)

(.)(.)'
(%)' 




prob

probprob
                                                   (20) 

where Δ’ is the percentage of change, and prob (.) and prob’ (.) are, respectively, the 

probability estimates based on the past and future precipitation series. 

We summarize the results of this analysis in terms of maps presented in Figure 38 

and Figure 39. For illustration, we utilize a color scale to feature the extent of changes. 

Between seasons, changes prevail differently exhibiting a relationship with seasonality. In 

addition to this overall seasonal trend, we can see from Figure 38 and Figure 39 spatial 

patterns associated with the changes. For both monthly precipitation total and number of 
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events (>3 mm) the contrast of probability changes are similar for the seasons DJF and 

SON on one hand, and MAM and JJA on the other hand. During DJF and SON, the 

changes are slightly erratic over the watershed, particularly at Q2 and Q3. However, the 

gradient of changes during MAM and JJA tend to vary westward. We can establish a 

relationship with the westward decreasing precipitation gradient displayed earlier by the 

isohyets in Figure 31. A large part of the watershed is associated with positive changes of 

probabilities at Q1 and Q2 during MAM and JJA, while the changes are negative during 

DJF and SON. Paradoxically, the trends are inversed with Q3.  

 

 

Figure 36 Probit estimate of monthly precipitation total (mm). A seasonal comparison of 

historical and future trends. 
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Figure 37 Probit estimate of monthly number of precipitation events (>3mm). A seasonal 

comparison of historical and future trends. 
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Figure 38 Estimate of seasonal changes in the probability of occurrence for the quartiles 

of monthly precipitation total. Q1, Q2 and Q3 represent the 1st, 2nd and 3rd quartiles, 

respectively 
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Figure 39 Estimates of seasonal changes in the probability of occurrence for the quartiles 

of monthly number of precipitation events (>3mm). Q1, Q2 and Q3 represent the 1st, 2nd 

and 3rd quartiles, respectively. 
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Table 20 Probit estimates of monthly precipitation total for grid cells. The table reports 

the probit parameters β0 and β1, as well as the model significance p. ** indicates a p-value 

<0.01; *indicates p-value <0.05. 

GRID 
DJF MAM JJA SON 

β1 β0 p β1 β0 p β1 β0 p β1 β0 p 

A Past -0.004 -0.31 ** 0.006 -1.39 ** 0.002 -0.92 * -0.007 0.04 ** 

 Future -0.002 -0.46 * 0.005 -1.28 ** -0.001 -0.58 * -0.003 -0.36 ** 

B Past -0.003 -0.37 ** 0.007 -1.40 ** 0.001 -0.81 * -0.008 -0.01 ** 

 Future -0.001 -0.55  0.007 -1.41 ** -0.002 -0.49  -0.005 -0.27 ** 

C Past -0.005 -0.17 ** 0.004 -1.17 ** 0.003 -0.96 ** -0.004 -0.32 ** 

 Future -0.004 -0.28 ** 0.004 -1.21 ** 0.001 -0.79 * -0.003 -0.39 ** 

D Past -0.003 -0.39 ** 0.007 -1.36 ** 0.000 -0.65 ** -0.007 -0.14 ** 

 Future -0.002 -0.51  0.007 -1.39 ** -0.001 -0.55  -0.005 -0.26 ** 

E Past -0.005 -0.23 ** 0.009 -1.59 ** 0.002 -0.86  -0.007 -0.05 ** 

 Future -0.003 -0.39 ** 0.004 -1.15 ** 0.001 -0.75  -0.004 -0.35 ** 

F Past -0.008 0.10 ** 0.002 -0.90 * 0.004 -1.24 ** -0.002 -0.42 ** 

 Future -0.006 -0.04 ** 0.002 -0.87 * 0.003 -1.02 ** 0.000 -0.62  

G Past -0.004 -0.39 ** 0.008 -1.41 ** -0.001 -0.62  -0.005 -0.28 ** 

 Future -0.003 -0.47 * 0.010 -1.56 ** -0.004 -0.41 ** -0.005 -0.35 ** 

H Past -0.007 -0.06 ** 0.007 -1.36 ** 0.003 -1.01 ** -0.006 -0.14 ** 

 Future -0.005 -0.20 ** 0.002 -0.94 ** 0.003 -0.99 ** -0.003 -0.41 ** 

I Past -0.004 -0.39 ** 0.011 -1.56 ** -0.002 -0.56  -0.007 -0.22 ** 

 Future -0.002 -0.51  0.010 -1.49 ** -0.004 -0.38 ** -0.004 -0.38 ** 

J Past -0.008 -0.07 ** 0.005 -1.15 ** 0.004 -1.04 ** -0.006 -0.17 ** 

 Future -0.008 -0.02 ** 0.002 -0.90 * 0.005 -1.18 ** -0.003 -0.46 * 

K Past -0.011 0.27 ** 0.000 -0.65  0.008 -1.64 ** -0.002 -0.51  

 Future -0.009 0.09 ** -0.001 -0.58  0.003 -1.11 ** 0.000 -0.72  

L Past -0.004 -0.41 ** 0.012 -1.49 ** -0.003 -0.48 * -0.006 -0.34 ** 

 Future -0.003 -0.49 * 0.010 -1.32 ** -0.006 -0.36 ** -0.002 -0.54  

M Past -0.005 -0.33 ** 0.010 -1.47 ** 0.000 -0.67  -0.007 -0.23 ** 

 Future -0.006 -0.31 ** 0.006 -1.15 ** 0.000 -0.70  -0.004 -0.40 ** 

N Past -0.009 0.03 ** 0.002 -0.88 ** 0.003 -1.02 ** -0.004 -0.35 ** 

 Future -0.011 0.11 ** 0.001 -0.73  0.005 -1.23 ** -0.001 -0.62  

R Past -0.009 -0.07 ** 0.004 -1.00 ** 0.005 -1.11 ** -0.006 -0.23 ** 

 Future -0.012 0.03 ** 0.003 -0.90 * 0.007 -1.22 ** -0.004 -0.41 ** 

O Past -0.011 0.21 ** -0.002 -0.47 * 0.007 -1.57 ** 0.000 -0.62  

 Future -0.010 0.18 ** -0.002 -0.50 * 0.004 -1.20 ** 0.000 -0.72 * 

P Past -0.010 0.26 ** -0.002 -0.46 ** 0.004 -1.34 ** 0.000 -0.68 * 

 Future -0.011 0.26 ** -0.001 -0.50 ** 0.003 -1.23 ** 0.000 -0.72  

Q Past -0.004 -0.45 * 0.012 -1.44 ** -0.003 -0.49 * -0.007 -0.32 ** 

 Future -0.003 -0.51 * 0.011 -1.33 ** -0.007 -0.32 ** -0.002 -0.55  

R Past -0.009 -0.07 ** 0.004 -1.00 ** 0.005 -1.11 ** -0.006 -0.23 ** 

 Future -0.012 0.03 ** 0.003 -0.90 * 0.007 -1.22 ** -0.004 -0.41 ** 

S Past -0.009 -0.04 ** 0.001 -0.77  0.007 -1.37 ** -0.003 -0.39 ** 

 Future -0.012 0.10 ** 0.001 -0.76  0.005 -1.18 ** -0.001 -0.61  

T Past -0.007 -0.33 ** 0.012 -1.42 ** -0.002 -0.54  -0.005 -0.41 ** 

 Future -0.005 -0.46 * 0.010 -1.26 ** -0.008 -0.29 ** 0.000 -0.65  

U Past -0.007 -0.34 ** 0.014 -1.52 ** -0.003 -0.53  -0.007 -0.30 ** 

 Future -0.007 -0.35 ** 0.008 -1.15 ** -0.001 -0.63  -0.003 -0.53  

V Past -0.012 -0.10 ** 0.010 -1.28 ** -0.001 -0.63  -0.001 -0.62 * 

 Future -0.009 -0.26 ** 0.007 -1.07 ** -0.004 -0.46 ** 0.002 -0.81  

W Past -0.007 -0.37 ** 0.015 -1.48 ** -0.006 -0.41 ** -0.004 -0.49 * 

 Future -0.005 -0.45 * 0.009 -1.09 ** -0.006 -0.44 ** 0.001 -0.70 * 

X Past -0.009 -0.24 ** 0.009 -1.20 ** -0.003 -0.54  0.000 -0.69  

 Future -0.006 -0.40 ** 0.004 -0.89 ** -0.003 -0.54  0.003 -0.81  

Y Past -0.011 -0.19 ** 0.009 -1.18 ** -0.004 -0.47 * 0.002 -0.79 * 

  Future -0.007 -0.37 ** 0.005 -0.91 ** -0.006 -0.42 ** 0.005 -0.93 ** 
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Table 21 Probit estimates of monthly number of precipitation events (>3mm). The table 

reports the probit parameters β0 and β1, as well as the model significance p. ** indicates 

a p-value <0.01; *indicates p-value <0.05. 

GRID 
DJF MAM JJA SON 

β1 β0 p β1 β0 p β1 β0 p β1 β0 p 

A Past -0.086 -0.03 ** 0.061 -1.22 ** 0.083 -1.42 ** -0.130 0.27 ** 

 Future -0.076 -0.12 ** 0.075 -1.32 ** 0.041 -1.01 ** -0.079 -0.10 ** 

B Past -0.087 -0.08 ** 0.068 -1.24 ** 0.066 -1.21 ** -0.119 0.12 ** 

 Future -0.061 -0.27 ** 0.081 -1.30 ** 0.036 -0.94 ** -0.095 -0.07 ** 

C Past -0.115 0.20 ** 0.050 -1.15 ** 0.101 -1.66 ** -0.094 0.07 ** 

 Future -0.109 0.15 ** 0.059 -1.23 ** 0.063 -1.27 ** -0.065 -0.15 ** 

D Past -0.079 -0.18 ** 0.093 -1.39 ** 0.049 -1.03 ** -0.131 0.09 ** 

 Future -0.063 -0.29 ** 0.095 -1.37 ** 0.031 -0.89 * -0.106 -0.05 ** 

E Past -0.103 0.03 ** 0.070 -1.28 ** 0.081 -1.36 ** -0.115 0.11 ** 

 Future -0.092 -0.06 ** 0.073 -1.27 ** 0.058 -1.14 ** -0.093 -0.04 ** 

F Past -0.131 0.37 ** 0.022 -0.90  0.112 -1.89 ** -0.051 -0.21 ** 

 Future -0.133 0.33 ** 0.033 -0.99 ** 0.070 -1.37 ** -0.027 -0.44 * 

G Past -0.075 -0.26 ** 0.114 -1.46 ** 0.024 -0.83 * -0.122 -0.03 ** 

 Future -0.046 -0.43 * 0.123 -1.44 ** -0.008 -0.63  -0.093 -0.21 ** 

H Past -0.124 0.20 ** 0.050 -1.13 ** 0.092 -1.53 ** -0.081 -0.07 ** 

 Future -0.116 0.13 ** 0.056 -1.17 ** 0.076 -1.35 ** -0.076 -0.11 ** 

I Past -0.070 -0.28 ** 0.111 -1.43 ** 0.022 -0.81  -0.103 -0.12 ** 

 Future -0.052 -0.40 ** 0.137 -1.52 ** -0.023 -0.55  -0.080 -0.27 ** 

J Past -0.126 0.17 ** 0.039 -1.02 ** 0.104 -1.64 ** -0.086 -0.06 ** 

 Future -0.132 0.19 ** 0.029 -0.92 * 0.102 -1.61 ** -0.063 -0.21 ** 

K Past -0.136 0.35 ** 0.001 -0.69  0.145 -2.36 ** -0.044 -0.28 ** 

 Future -0.143 0.34 ** -0.004 -0.64  0.117 -1.91 ** -0.025 -0.46 * 

L Past -0.071 -0.33 ** 0.149 -1.53 ** -0.017 -0.59  -0.085 -0.27 ** 

 Future -0.035 -0.52  0.166 -1.52 ** -0.092 -0.28 ** -0.049 -0.46 * 

M Past -0.103 -0.10 ** 0.088 -1.30 ** 0.046 -0.98 ** -0.089 -0.17 ** 

 Future -0.094 -0.18 ** 0.089 -1.25 ** 0.032 -0.87 * -0.068 -0.30 ** 

N Past -0.132 0.18 ** 0.013 -0.78  0.122 -1.85 ** -0.067 -0.18 ** 

 Future -0.158 0.28 ** 0.000 -0.67  0.128 -1.85 ** -0.040 -0.38 ** 

O Past -0.138 0.31 ** -0.013 -0.55  0.151 -2.42 ** -0.034 -0.37 ** 

 Future -0.160 0.39 ** -0.020 -0.50  0.134 -2.12 ** -0.014 -0.55  

P Past -0.154 0.47 ** -0.006 -0.61  0.142 -2.39 ** -0.026 -0.43 * 

 Future -0.157 0.46 ** -0.022 -0.47 * 0.127 -2.13 ** -0.006 -0.61  

Q Past -0.066 -0.38 ** 0.152 -1.50 ** -0.026 -0.55  -0.089 -0.28 ** 

 Future -0.045 -0.48 * 0.143 -1.37 ** -0.073 -0.37 ** -0.039 -0.51  

R Past -0.136 0.09 ** 0.045 -1.02 ** 0.084 -1.33 ** -0.069 -0.24 ** 

 Future -0.151 0.13 ** 0.033 -0.91 * 0.096 -1.38 ** -0.054 -0.34 ** 

S Past -0.118 0.08 ** 0.009 -0.75  0.120 -1.76 ** -0.059 -0.25 ** 

 Future -0.133 0.13 ** 0.003 -0.70  0.113 -1.64 ** -0.035 -0.42 ** 

T Past -0.099 -0.25 ** 0.168 -1.57 ** -0.033 -0.52  -0.061 -0.40 ** 

 Future -0.053 -0.46 * 0.148 -1.38 ** -0.098 -0.29 ** -0.015 -0.61  

U Past -0.074 -0.34 ** 0.131 -1.39 ** -0.009 -0.63  -0.082 -0.31 ** 

 Future -0.088 -0.32 ** 0.118 -1.25 ** -0.019 -0.59  -0.036 -0.52  

V Past -0.102 -0.21 ** 0.150 -1.50 ** -0.032 -0.52  -0.037 -0.50  

 Future -0.081 -0.34 ** 0.130 -1.30 ** -0.080 -0.34 ** 0.009 -0.71  

W Past -0.061 -0.42 ** 0.153 -1.43 ** -0.062 -0.42 ** -0.045 -0.49 * 

 Future -0.046 -0.51  0.120 -1.15 ** -0.115 -0.29 ** 0.010 -0.71  

X Past -0.100 -0.25 ** 0.132 -1.36 ** -0.045 -0.47 * -0.008 -0.63 * 

 Future -0.052 -0.47 * 0.075 -0.99 ** -0.072 -0.40 ** 0.033 -0.81 * 

Y Past -0.038 -0.52 * 0.112 -1.24 ** -0.047 -0.46 * 0.015 -0.74 * 

  Future -0.107 -0.22 ** 0.061 -0.94 ** -0.111 -0.26 ** 0.063 -0.95 ** 

 



 

128 

 

 

5.4. Discussion of results  

The objective of study was to understand the extent of climate change patterns 

across a regional watershed. The descriptive analyses of precipitation characteristics were 

informative, as they revealed significant changes in monthly precipitation totals and 

numbers of events. In addition, these analyses showed an overall significant decrease of 

mean precipitation total during the seasonal periods of MAM and JJA. The decreases 

seemed to be partially compensated for by an increase in mean precipitation during SON. 

However, those comparative analyses were not sufficient to explain fully the changes in 

precipitation regimes. An examination of the kernel density estimates of the past and 

future precipitation gave a realistic picture of the range of changes attributable to climate 

change. The matching test performed between the past and future precipitation series 

exhibited significant dissimilarities, which confirmed results from the kernel density 

analysis. Comparing the precipitation time series, we observed irregular precipitation 

peaks particularly with the future climate scenario. However, the Mann-Kendall trend 

analysis did not reveal the tendency of these peaks in the time series. We applied a 

systematic approach based on probit analyses, which permitted to capture the changes in 

precipitation patterns. The signals of changes appeared heterogeneous across the 

precipitation ranges and within the seasons. Such observations corroborated results 

reported by Kalra and Ahmad (2011) who analyzed trend changes in precipitation across 

the Colorado River basin. Along with the seasonal trends associated with changes, we 

detected some spatial patterns as well. Interestingly, we were able to evaluate the 
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magnitudes of changes within the seasons DJF, MAM, JJA and SON; and across the entire 

watershed.  

The probabilistic analysis of these changes suggested shifts occurring in 

precipitation characteristics (monthly total and number of events) within the seasons. 

Tebaldi et al. (2004) brought out similar changes in precipitation density function and 

reported high probability density regions. Likewise, our analysis indicated the presence of 

high density of changes in the PDFs of precipitation characteristics. In order to better 

explore the changes, we developed maps of plausible perturbations in future precipitation 

regimes. The relevance of such maps of probabilistic impacts was shown through previous 

studies on climate change impact in water resources (Crosbie et al., 2013; Palmer and 

Raisanen, 2002). From the maps, we observed that the magnitudes of the changes 

gradually vary from East to West at Q2 and Q3 during the seasons MAM and JJA. 

Analyzing historical precipitation series, Sohoulande Djebou et al. (2014) observed 

summer (JJA) as the wettest season in the region. Likewise, Oreskes et al. (2010) identified 

summer precipitation as a critical component for water supply, agricultural productivity, 

risk of floods and droughts, particularly in the context of changing climate. At Q3, we 

observed a prevailing decrease of probabilities for both precipitation total and number of 

events during JJA. The implication of this plausible drift of JJA precipitation total and 

number of events is critical, as it may disturb local ecosystems in the future. Whereas these 

maps of changes in probabilities may be considered as a comprehensive tool for water 

managers in the Texas Gulf watershed, our method in itself seems promising. Actually, 
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such a probabilistic way for climate change assessment seems flexible and can be 

replicated with any watershed.  

Recently, Lespinas et al. (2014) explored the impact of climate change on future 

water resources and outlined substantial discrepancy within seasons. They explained the 

relevance of providing seasonal insights in climate change studies. For instance, the four 

seasons spotted in our study, exhibit various signals, which may differently affect 

hydrological processes at the watershed scale. The analysis shows different situations 

among quartiles of precipitation values. Recently, Ntegeka et al. (2014) investigated 

changes in future precipitation scenarios by using a quantile-based approach. Even though 

their method was not probabilistic, the quantile consideration was useful to explore the 

changes over the entire range of precipitation distribution.  

The probabilistic method presented in this paper is meant for a double objective. 

On one hand, it enables to display the magnitude of plausible changes associated with 

future climate scenario. On the other hand, we are able to explore potential drifts within 

seasons. However, the method should not be considered as a substitute to other technics 

of climate impact assessment and should be used along with. The seasonal drifts are 

particularly displayed by Figure 36 and Figure 37. For instance, in Figure 36, grid A shows 

a continuous probability decrease for seasons MAM and JJA. This decreasing trend is 

compensated for by an increasing trend observed with the probability curves of DJF and 

SON. However, the tendency is more or less different for grids H, Q and X, confirming 

the spatial variability inferred earlier.   
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5.5. Conclusions 

Under the spectrum of climate change, projected scenarios vary within models 

(Christensen and Lettenmaier, 2007). Advance in the domain resulted into agreements on 

the capacity of regional climate models to simulate realistic scenarios (Lespinas et al., 

2014; Wehner, 2013). This consent on RCMs reliability was crucial for studies addressing 

the climate change impact on water resources (Butcher et al., 2014; Ntegeka et al., 2014; 

Graham, 2007). Particularly, Wehner (2013) documented the ability of the the 

NARCAAP’s RCMs to better project precipitation over the contiguous United States 

region. For instance, our study tagets the NARCCAP’s RCM3-GFDL simulations of 

precipitation and evaluates the ampleness of the changes likely to occure in the future. The 

paper examines climate change effects using different statistics. The primary results are 

informative as they provide mean tendency of the effects of climate change. However, 

limitation were noticeable. Later we describe and employ a probabibilistic and quantile 

based approach which reveals changes in ample detail.  We find distinct seasonal patterns 

associated with different quantiles of precipitation values. We find substantial plausible 

changes across the Texas Gulf watershed. The gradient of these changes suggests a spatial 

weight.  However, their magnitudes exhibit a seasonality pattern. Wehner (2013) 

described the biophysical and atmospheric features affecting seasonal precipitation in the 

NARCAAP’s simulations. Subsequently, the seasonality signals presesented in this study, 

may be a feed-back of future pertubations associated to the biophysical and atmospheric 

features reported by Wehner (2013).  
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Overall, our study is a meaningful contribution that may lead to improved 

understanding of climate change assessments. The results may be valued beyond the 

simple aspect of a case study and be subsequently exploited by water manager in the Texas 

Gulf catchment. The opportunity to probabilistically explore changes in seasonal 

precipitation patterns is relevant for better insights regarding climate change impact. 

However, we may view the probabilistic approach as complementary method. The results 

from our probabilistic procedure seem particularly insightful. According to News et al. 

(2007) the probabilistic assessment of climate change, is more informative as it provide 

exhaustive detail useful for quantifying potential risk. At the scale of the Texas gulf 

watershed, our probabilistic impact assessment may be incorporate to risk-based decision 

making. However, the spatial disparity observed across the watershed needs to get 

particular attention. Indeed, Crosbie et al (2013) emphasized on the consistency of 

considering the spatial specificities in managing response to climate change. Likewise, the 

specificities observed within events range should be worthwhile as well. Indeed, the 

consequence of a minor change of probabilities are differently manageable according to 

the range corresponding to the event; i.e. a minor change in extreme events occurrence 

may turn more damageable compared to an equivalent change in middle range events. In 

accordance with the results discussed in this paper, we can conclude on the capacity of 

our method to provide an exhaustive perceptivity of plausible pertubations in precipation 

regimes. In sum, it is advisable to include probabilistic approach as a diagnostic tool in 

climate change assessment. However, besides precipitation, customary water management 

planning encompasses a wider range of hydrological cycle components. At that point, we 



 

133 

 

 

recognize the necessity to replicate the method as a comprehensive tool for diversified 

climate change scenarios. We also suggest further research to consider the method and 

explore aspects, such as changes in surface flow, base flow, temperature, land cover, etc. 
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CHAPTER VI  

CONCLUSION AND RECOMMENDATIONS FOR FUTURE STUDIES 

 

6.1. Conclusion 

The dissertation research explored precipitation patterns in relation to vegetation 

dynamics. We resort to meaningful relationships between these two terrestrial 

components. The study region displays relevant spatial and topographic diversity which 

we investigated adequately in the scope of climate change impact. The regional climate is 

characterized by a strong seasonality. Indeed, the moisture in the southwest United States 

is influenced by several atmospheric forcings such as the North American Monsoon, the 

low jet winds, the Pacific decadal Oscillation and at certain point the El Nino Southwest 

Oscillation. These driving factors are consistently represented in most climate models. 

However, important discrepancies are often observed between climate model simulations 

and observations (Knight and Harrison, 2012).  

Efforts aiming to improve the representation of the land atmosphere interactions 

are likely to result in advances for realistic simulations (Sobolowski and Pavelsky, 2012; 

Leung et al., 2003). We examined precipitation variability in the southwest US region 

using an entropy based disorder index DI, and evaluated the marginal effect of watershed 

topography. We found significant effects and concluded a general tendency of less 

disorder in complex terrain compared to plains. We quantified the effect of watershed 

topography on precipitation variability and came up with a magnitude of 19-27%. 

Specifically, we concluded the stabilizing effect of hilly relief on the JJA precipitation 
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characteristics. These finding are worthwhile, for the southwest U.S. region particularly, 

as we investigated precipitation variability and vegetation dynamics.  

In fact, the southwest United States region is characterized by a westward aridity 

gradient which seems to drive vegetation cover. We targeted different types of vegetation 

cover and found that vegetation response to precipitation tends to increase with the 

environmental aridity. At that point, the high variability associated with aridity may result 

into threat for vegetation covers in the arid part of the region. However, the stabilizing 

effect observed for hilly regions may determine somehow the sustainability of ecosystems 

in the arid regions.  

We employed entropy theory and examined the joint relationship between 

precipitation, soil moisture, temperature and NDVI. Entropy scaling showed trends toward 

maximum entropy and supported the goodness of coupling atmospheric variables in 

vegetation dynamics analysis. We retrieved algorithms to describe both marginal and 

interactive relationship between these atmospheric variables and vegetation growth 

indices. We came up with a nested statistical model for vegetation pattern estimation. In 

particular, the couple comprising soil moisture and temperature was able to explain up to 

68% of NDVI variation. However, the marginal weight of precipitation was the most 

important.  

We explored the projected patterns in future precipitation by using NARCCAP’s 

RCM3-GFDL simulations. We described a probabilistic method which shows a promising 

capacity for depicting climate change impact within the entire precipitation range. The 

analysis, revealed a prominent spatial weigh (Crosbie et al; 2013), which we considered 
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as relevant for future water resources planning. The climate change impact on 

precipitation regimes, reflected well meaningful drifts within the regular seasons. At the 

watershed scale, the magnitude of the changes in probability varies very much and tends 

to be related to precipitation gradient. However, the consequence of a minor change of 

probabilities of event occurrence depend on the range. Therefore, it is critical to examine 

the changes in relation with the ranges.  

In sum, the study demonstrated the capacity to comprehend precipitation 

variability and vegetation dynamics and consistently hypothesize on plausible impact 

associated with climate change. More likely, we may expect vegetation of the west and 

arid part of the study region more vulnerable to climate change. Knowing the relevant role 

of vegetation covers in hydrological processes, it is clear that an alteration in vegetation 

dynamics patterns may cause perturbation in hydrological processes. However, the 

ecosystems in the east and humid part of the Southwest U.S. may benefit a buffering effect 

and show less vulnerability in the future. 

Through this study, we obtained realistic insights on vegetation behavior under 

precipitation variability and climate change by addressing each of the specific objectives 

stated in the chapter I. The outcomes of the study may be wisely considered in vegetation, 

climate and hydrological modelling. Results will be potentially useful for water resource 

planning and risk-based decision making. However, we recognize that potential 

improvements will be achieved through future research works.  
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6.2. Recommendations 

We propose further research, and specifically, we suggest the following: 

(i) Extend the study domain to a continental and global scale and use 

reanalysis data in order to get larger time period and finer temporal 

resolution. Indeed, most of our analyses were conducted with a biweekly 

and monthly temporal resolutions. However, the entropy scaling results 

show the relevance of finer time scales which tend to be more informative. 

(ii) Conduct a similar study by using different remote sensing products, such 

as EVI and SAVI particularly in humid and arid region, respectively.  

(iii) Investigate the probabilistic climate change impact by targeting diversified 

scenarios of climate change. Actually, one limitation of the probabilistic 

assessment of future climate impact is related to initial assumptions 

sustaining the climate scenario (News et al., 2007). For instance in our 

study, the probabilistic impact expounded for future precipitation patterns 

in the Texas Gulf watershed is conditioned by the assumption made 

through the SRES-A2 scenario.  

(iv) Research on the adequate way to include probabilistic impact projection in 

hydrological models. Whereas research on probabilistic climate change 

impact is getting attention, the study aiming to include the results in 

hydrological models need to be addressed as well. 
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