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ABSTRACT

Today, online recruiting web sites such as Monster and Indeed.com have become

one of the main channels for people to find jobs. These web platforms have provided

their services for more than ten years, and have saved a lot of time and money for

both job seekers and organizations who want to hire people. However, traditional

information retrieval techniques may not be appropriate for users. The reason is

because the number of results returned to a job seeker may be huge, so job seekers are

required to spend a significant amount of time reading and reviewing their options.

One popular approach to resolve this difficulty for users are recommender systems,

which is a technology that has been studied for a long time.

In this thesis we have made an effort to propose a personalized job-résumé match-

ing system, which could help job seekers to find appropriate jobs more easily. We

create a finite state transducer based information extraction library to extract mod-

els from résumés and job descriptions. We devised a new statistical-based ontology

similarity measure to compare the résumé models and the job models. Since the

most appropriate jobs will be returned first, the users of the system may get a better

result than current job finding web sites. To evaluate the system, we computed Nor-

malized Discounted Cumulative Gain (NDCG) and precision@k of our system, and

compared to three other existing models as well as the live result from Indeed.com.

ii



ACKNOWLEDGEMENTS

My greatest thanks to the members of the Sketch Recognition Lab for their

continued support and help in the research work covered in this thesis. This thesis

would not have been possible without their support. In addition, I would like to

give extra thanks to my advisor Dr. Tracy Hammond, as well as to my committee

members Dr. Anxiao Jiang and Dr. Daniel W. Goldberg for their valuable sage

advice.

iii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Recommender System . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Job Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Information Extraction in Job Recommender System . . . . . . . . . 9
2.4 Matching Algorithms in Job Recommender Systems . . . . . . . . . . 11

3. PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4. SYSTEM OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Text Processing Stages . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5 System Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5. INFORMATION EXTRACTION . . . . . . . . . . . . . . . . . . . . . . . 23

iv



5.1 Semantic Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Patterns for Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Pattern Matching Library . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3.1 Finite-State Transducer . . . . . . . . . . . . . . . . . . . . . 27
5.3.2 Matchers in the Pattern Matching Library . . . . . . . . . . . 29
5.3.3 Implementation of the Pattern Matching Library . . . . . . . 32

6. MODEL SIMILARITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1 Similarity of Major and Academic Degree . . . . . . . . . . . . . . . . 37
6.2 Similarity of Job Title . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3 Similarity of Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7. ONTOLOGY CONSTRUCTION AND SIMILARITY . . . . . . . . . . . . 40

7.1 Semantic Similarity in JRSs . . . . . . . . . . . . . . . . . . . . . . . 40
7.2 Ontology Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.3 Ontology-Based Semantic Similarity . . . . . . . . . . . . . . . . . . . 44

7.3.1 Path-Based Approaches . . . . . . . . . . . . . . . . . . . . . 46
7.3.2 Feature-Based Measures . . . . . . . . . . . . . . . . . . . . . 47
7.3.3 Content-Based Measures . . . . . . . . . . . . . . . . . . . . . 47

7.4 Statistical-Based Ontology Similarity Measure . . . . . . . . . . . . . 48

8. EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.1 Experiments of Information Extraction . . . . . . . . . . . . . . . . . 52
8.2 Experiments of Ontology Similarity . . . . . . . . . . . . . . . . . . . 52
8.3 Evaluation of the System . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.4 Comparing with the Keyword Searching . . . . . . . . . . . . . . . . 57

9. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 60

9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

v



LIST OF FIGURES

FIGURE Page

1.1 Search Result of Indeed.com . . . . . . . . . . . . . . . . . . . . . . . 2
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1. INTRODUCTION

1.1 Motivation

Currently one of the main channels for job seekers is online job finding web sites,

like Indeed or Monster etc, that make the job finding process easier and decrease

the recruitment time. But most such web sites only allow users to use keywords to

search the jobs, which makes job searching tedious and blind task. For example, I

used keyword “Java” to search jobs with location restriction Mountain View, CA on

the job searching site indeed.com, the web site returned about 7,000 jobs (Figure 1.1).

The number of results of job searching is huge but not well ranked, so the job seeker

has to review every job description. Since no one has enough time to read all the

jobs in the searching result, the actual quality of job searching service is low. This

is a classic problem of information overflow.

The reason for such a result is because current job searching web sites use the same

information retrieval technology like “Inverted index” [53] as the common search

engines, which just use keywords to map all the stored documents. Modern search

engines all have some ranking algorithms to sort the search result, like page rank

[33], so the top results always be the most related ones. But such algorithms are

unavailable to the job search systems, because the criteria of how to rank the job

searching result is very personalized. A great job opening for one job seeker maybe

looks not good to the other, because the goodness of a job to a specular job seeker

is heavily depend on his personal background, like his education or professional

experience etc.

Since the people’s résumés contain the most important background information,

we believe the content of the résumé could be used to rank the job openings. We give

1



Figure 1.1: Search Result of Indeed.com

an example of résumés in Table 1.1. In this thesis, we created a web system which

uses the résumés of job seekers to find the jobs that match their profiles best. The

main idea is to calculate the similarity between the résumé model and job models,

which should be generated from résumés and job descriptions. We want to transfer

the job searching task from key word searching to candidate model matching. The

matching result should be sorted by the matching score, higher matching score means

a better matching. The matching algorithm does not only help job seekers to find the

appropriate jobs, but also offers priority to them [18]. The job with higher matching

score means the job is more appropriate to the job seeker, and if he applies to the

job, the chance of getting the interview will be higher as well. Figure 1.2 shows how

this approach works.
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Table 1.1: Résumé Example

Ryan Richman

WORK EXPERIENCE

Web Developer
Fabuso/Advanced Brain Technologies - Ogden, UT - February 2012 to Present
Created dynamic custom web applications for e-commerce and B2B clients.
Designed and edited audio-visual content for many different online applications.
Spearheaded migration of largest client’s website from Joomla platform into Java code
base.
Built dynamic event pages, document viewers, training course applications, shopping carts,
and more.
Utilized advanced e-mail standards and best practices, SQL database queries, and Google
Analytics.

IT Representative
Advanced Brain Technologies - Ogden, UT - April 2011 to February 2012
Provided internal software/hardware support for 20 employees both in-house and remote.
Designed using wireframes, tested, and debugged web pages.
Constructed dynamic projects and graphic designs in coordination with senior developers.
Created HTML-optimized emails for hundreds of campaigns.
Maintained and upgraded hardware for 20+ workstations company-wide.

Founder/Head Technician
Teton Media Services, LLC - Ogden, UT - October 2008 to January 2011
Created and developed websites for personal and small business customers
Sold high-speed cable and satellite internet access on the phone, online and in person.
Installed and serviced high-speed internet access hardware in residential and commercial
properties.
Designed and implemented networking solutions for homes and businesses.

EDUCATION

Computer Science
Weber State University - Ogden, UT 2010 to 2013

ADDITIONAL INFORMATION

Technical Skills
Adept in the use of HTML, CSS, jQuery, Javascript, SQL, PHP, JSON, Windows, Win-
dows Server, Mac, and Photoshop.

3



Figure 1.2: Matching the Jobs with Résumé

1.2 Contribution

We make the following contributions in this work:

1. We proposed a résumé - job matching system.

2. We proposed a finite state transducer based matching tool to extract informa-

tion from unstructured data source, which is a lightweight and flexible library,

and can be extended in very easy ways.

3. We proposed a semi-automatic approach, which can collect technical terms

from hr data sources, and by which we created a domain specific ontology for

recruitment.

4. We proposed statistical-based ontology similarity measure, which can measure

the similarities between technical terms .
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1.3 Organization

The subsequent chapters are organized as follows: we first describe what has been

done in terms of prior work. We introduce some basic conception of recommender

systems, and how to apply recommender technologies into Job Recommender Sys-

tems. Some previous Job Recommender Systems will be introduced, their advantages

and limits will be discussed as well. Two import problems of content-based Job Rec-

ommender Systems, Information Extraction and Similarity Calculation, will be fully

explained.

Then we introduce our work, RésuMatcher, a the Personalized Résumé-Job Match-

ing System. First, we give an overview of the system, which includes the architecture

and the interfaces. Then we explained details of how we resolve the problems of in-

formation extraction and model similarity calculation. We propose a finite state

transducer library which can match patterns in sentence, and extracts related infor-

mation. Ontology plays an important role in this system. We will present how to

construct the domain specific ontology for recruitment. We also give a brief review

of different ontology similarity measures, and explain the statistical-based ontology

similarity measure we used in this system.

Finally, we evaluate the accuracy of our information extraction approach. We

used NDCG to evaluate the accuracy of statistical-based ontology similarity mea-

sure. To evaluate the performance of the system, we compared our algorithm to some

classical information retrieval approaches by precision@k and NDCG. We created a

data set of job descriptions as documents, and use résumés as query to retrieval doc-

uments. The result shows the ranking performance is better than other information

retrieval approaches.

5



2. BACKGROUND

Some scholars found that current boolean search and filtering techniques can-

not satisfy the complexity of candidate-job matching requirement [29]. They hope

the system can understand the job requirement, determine which requirements are

mandatory and which are optional, but preferable. So they moved to use recom-

mender systems technique to address the problem of information overflow. Recom-

mender systems are broadly accepted in various areas to suggest products, services,

and information items to latent customers.

2.1 Recommender System

Job searching, which has been the focus of some commercial job finding web sites

and research papers is not a new topic in information retrieval. Usually scholars

called them Job Recommender Systems (JRS), because most of them used technolo-

gies from recommender systems. Wei et al. classified Recommender Systems into

four categories [48]: Collaborative Filtering, Content-based filtering, Knowledge-

based and Hybrid approaches. Some of these techniques had been applied into JRS;

Zheng et al. [44] and AlOtaibi et al. [3] summarized the categories of existing on-

line recruiting platforms and listed the advantages and disadvantages of technical

approaches in different JRSs. The categories include:

1. Content-based Recommendation (CBR). The principle of a content-based rec-

ommendation is to suggest items that have similar content information to the

corresponding users, like Prospect [43].

2. Collaborative Filtering Recommendation (CFR). Collaborative filtering recom-

mendation finds similar users who have the same taste with the target user and

6



recommends items based on what the similar users, like CASPER [35].

3. Knowledge-based Recommendation (KBR). In the knowledge-based recommen-

dation, rules and patterns obtained from the functional knowledge of how a

specific item meets the requirement of a particular user, are used for recom-

mending items, like Proactive [24].

4. Hybrid recommender systems combine two or more recommendation techniques

to gain better performance, and overcome the drawbacks of any individual one.

Usually, collaborative filtering is combined with some other technique in an

attempt to avoid the ramp-up problem.

2.2 Job Recommender Systems

Rafter et al. began to use Automated Collaborative Filtering (ACF) in their Job

Recommender System, “CASPER” [35]. In the system user profiles are gotten from

server logs, that includs: revisit data, read time data, and activity data. All these

factors are viewed as measure of relevance among users. The system recommend jobs

in two steps: First, the system finds a set of users related to the target user; second,

the jobs that related users liked will be recommend to the target user. The system

use cluster-based collaborative filtering strategy. The similarity between users are

based on how many jobs they both reviewed, or applied.

CASPER also allows users to search jobs by a query which is a combination of

some fields: like location, salary, skill and so on. The system uses such query to find

jobs, and the returned jobs are ranked with the collaborative filtering algorithm.

In their paper, the authors do not give a detailed description on how to detect the

related fields they need and how to the transfer semi-structured job description to

the structured data.

7



The shortages of collaborative filtering: First, since the number of search results

is huge, and the results are sorted randomly, the probability of two similar users

reviewing the same jobs is low, which causes the sparsity problem of collaborative

filtering. The authors also noticed the sparseness problem caused by few in users

profile, so they try to user cluster-based solution to resolve this problem. Second,

because recommended jobs are from others users’ search results, since the quality of

current searching result are low, the quality of recommendation cannot be high.

Färber et al. [14] presented a recommender system built on a hybrid approach.

The system integrate two methods, content-based filtering and collaborative filtering,

which tries to overcome the problem of rating data sparsity by leveraging a combined

model. In the system, the data source is synthetic resumes. The latent aspect model

is shown in Figure 2.1.

Figure 2.1: Latent Aspect Model

In Malinowski et al. [29], they classified the job recommender systems into t-

wo categories, CV-recommender, which recommends CVs to recruiter, and the job-

recommender, which recommends jobs to job seekers. The system collects the users’

profile data by asking input their profiles to the web form based interface field by

8



field. The input data collected are:

1. Demographic data (e.g. date of birth, contact information)

2. Educational data (e.g. school courses, grades, university, type of degree, inter-

mediate and final university examinations, postgraduate studies)

3. Job experience (e.g. name of the company, type of employment, industry group,

occupational field)

4. Language skills (e.g. language, level of knowledge)

5. IT skills (e.g. type of skill, level of knowledge)

6. Awards, scholarships, publications, others

The system also asked the users to upload their resumes, but the resumes were only

for facilitating the human judgment. In Malinowski’s study, the latent aspect model

is a statistical model, which needs to be trained before applied to recommendation.

The system uses the users’ search results as the training data to train the model for

recommendation, so the system needs a a long time training for each user.

2.3 Information Extraction in Job Recommender System

Big IT companies met the similar problem of information overflow when they

received many resumes for one job opening. The recruiter had to screen the all the

applications manually, but this task was also tedious and time consuming. For this

reason these companies tried to build systems to help screen the resumes.

Amit et al. in IBM presented a system, “PROSPECT” [43], to aid shortlisting

candidates for jobs. The system uses a résumé miner to extract the information from

résumés, which use a conditional random field (CRF) model to segment and label

9



the résumés. The CRF model used three kinds of features, they are: Lexicon, Visual,

and Named Entity. The paper compared some algorithms to ranked the candidates

applicants, such methods include: Okapi BM25, KL, Lucene Scoring, and Lucene

Scoring + SkillBoost.

HP also built a system to solve the similar problem, which is introduced in Gon-

zalez et al.’s paper [17]. The system also pays a lot of attention to information

extraction.

The dictionaries which are used to tag entities need to be updated often since

there always new terms appears. So an adaptive learning module is used to achieve

two objectives: use semantic data to enhance the information extraction and to

discover new terms.

A domain-oriented ontology is used to represent knowledge, inference rules are

defined based on the ontology knowledge base. When a detected term found, the

system will search in external knowledge base, like DBpedia. The résumés are also

classified to different categories like “Web Technology” and “No Web Technology” by

naive Bayes classifier. The company can allocate appropriate employees to required

positions with the system.

The goal of the systems built by IBM and HP is to help the companies to select

good applicants, but cannot help job seekers to find appropriate jobs.

Yu et al. [51] used a cascaded IE framework to get the detailed information from

the résumés. In the first stage, the Hidden Markov Modeling (HMM) model is used

to segment the résumé into consecutive blocks. Based on the result, a SVM model is

used to obtain the detailed information in the certain block, the information include:

name, address, education etc.

Celik Duygua and Elci Atilla proposed a Ontology-based Rsum Parser (ORP) [7],

which uses ontology to assistant the information extraction process. The system

10



processes a résumé in following steps: converting the résumé file into plain text,

separating the text into some segments, using the ontology knowledge base to find

the concepts in the sentences, normalizing all the terms, and classifing the sentences

to get the wanted terms.

But the personal information the system retrieved like name and addresses is not

the information that the recruiters care about. The recruiters want some information

that relate to the job opening, and can help them to judge the competence of job

applicants.

2.4 Matching Algorithms in Job Recommender Systems

Lu et al. [28] used latent semantic analysis (LSA) to calculate similarities between

jobs and candidates, but they only selected two factors “interest” and “education”

to compare candidates. Xing et al. [50] used structured relevance models (SRM) to

match résumés and jobs.

Drigas et al.[13] presented a expert system to match jobs and job seekers, and

to recommend unemployed to the positions. The expert system used Neuro-Fuzzy

rules to evaluate the matching between user profiles and job openings. The system

uses a relation matrix to represent the fuzzy relation between these specialities. The

system needs the training data to train that Neuro-Fuzzy network. Both résumé

data and job opening data were manually input into the system.

Daramola et al.[10] also proposed a fuzzy logic based expert system(FES) tool for

online personnel recruitment. In the paper, the authors assumed that the information

already be collected. The system uses a fuzzy distance metric to rank candidates’

profiles in the order of their eligibility for the job.

Yao et al. [28] also presented a hybrid recommender system which integrated

content-based and interaction-based relation. In content-based part, relations be-

11



tween job-job, job-job seeker, and job seeker-job seeker can be identified by their

similarity of profiles. There two approaches are used to calculate the similarities:

For the structured data, like age and gender, the weight sum values will be returned;

for the unstructured data, like similarity between job and user profile, the latent

semantic analysis is applied in the system.

In summary, there are some problems exist in previous Job Recommender Sys-

tems:

1. Most systems can only process the structured data of résumés and job descrip-

tions, but in reality both them are in unstructured formats, such as text files

or HTML web pages.

2. The systems that have information extraction modules are designed for re-

cruiters to select applicants, not for job seekers to select jobs.

3. In the systems the information fields to match résumés and job descriptions

are coarse-grained. To improve the quality of recommendation, we need to

improve the granularity of the information fields.
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3. PROBLEM

3.1 Problem Definition

The basic problem in this thesis is how to find appropriate job descriptions by

user’s résumé, which means we need calculate the similarity between the users rsum

and the job. If we take the résumé as a query and the job descriptions as documents,

we need to build an information retrieval model to get the most relevance documents.

The RésuMatcher will parse the job descriptions to the job models, and store them

in the database. When a user searches the jobs by their résumé in the system, the

system will compare the similarity values between the résumé and the job models,

and return the jobs sorted by their similarity values.

The core idea of our algorithm is calculate similarity between the résumé model

and job model. We give a formal definition of our problem. All of the notations will

be used frequently throughout the thesis.

We use r to denote the user’s résumé model, which has some features ri like

their academic degree, their major, their skills and so on. The symbol J is the

set of job models stored in the database, and j is a job model in the set J . The

similarity function sim(r, j) gives the similarity values between résumé r and job j.

The return list of search function search(r, J) will calculate all the similarity value

in the database, and the result of the function will be the job description list ranked

by their similarity values. The equation of how to calculate similarity value is given

below:

sim(r, j) =
n∑
i=1

simfuni(ri, ji)× wi
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The value of sim(r, j) is the summation of the similarity values of different fields

times their corresponding weights. Different fields like major and skills, may have

different functions to calculate their similarity values. We will describe the similarity

functions of individual fields in later parts.

3.2 Challenges

There are two challenges exist in our system. The first one is how to extract

models of jobs and résumés. To calculate the similarity between a job and a resume,

the RésuMatcher system needs structured digital models of each document. To get

the structured data, some JRSs ask the job seekers input their profiles in forms field

by field, and the recruiter input their job descriptions in the same way. However, as

we discussed in Chapter 2, the users are reluctant to take the tedious process [43].

Job seekers prefer upload their resumes directly, and recruiters prefer to post the

whole job descriptions to web sites. So we need extract the structured information

from un-structured data source, like résumés and job descriptions.

The other challenge is how to compute the similarity between rsum and job

models. We observed that simple keyword matching is not a good similarity measure,

because job descriptions and résumés both contain richer and more complex words

that cannot be described simply by keywords. In these documents, some concepts

can be written in different ways, and other concepts can have close relationships. For

example, Table 3.1 shows portions of a résumé and a job description:

If just looking at the text, we can find that the résumé has very few common

words with the job description. But from the view of an experienced engineer, the

candidate is closely matches the job: the two relational databases Oracle and Mysql

are very similar, OOA/OOD is the same meaning of many years of Java and C++

experience, and Tomcat and JBOSS are both Java web applications servers. If we
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Table 3.1: Portions of Resume and Job Description
Resume Portion Job Description Portion
B.S. degree in computer science
5+ years Java
2+ year C++
Some experience in Oracle database
Other experience like:
Hibernate, JBOSS, JUnit, Tomcat etc.

BS degree above
4+ years Java
Some experience of Python
Mysql, MS-SQL
Java web application Server
OOA/OOD

use keyword matching, the system does not provide a strong matching result in very

common cases such as this. So we need a better approach to calculate the similarity

between different technical concepts.
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4. SYSTEM OVERVIEW

4.1 System Overview

The system uses information extraction technique to parse job descriptions and

résumés, and it gets information such as skills, job titles and education background.

The information is used to create the models of job openings and job seekers. A

domain specific ontology is used to construct the knowledge base, which includes the

taxonomies that support résumé-job matching.

The models of résumé includes job seekers’ specialties, working experience and

education background, and all the fields are extracted from their résumés. The job

models are extracted from job descriptions, and they have the same information

fields as the résumé models. When a job seeker searches the jobs by their résumé,

the system calculates the similarity between the résumé model and job models, then

gives every job model a similarity value.

4.2 System Architecture

Figure 4.2 shows the architecture of the whole system, which includes such mod-

ules:

1. The Web Crawler can access and download all new IT job opening web pages

from indeed.com everyday.

2. The Job Parser can parse the job opening web pages, extract the information

and create the job models.

3. The Resume Parser is much like the Job Parser; it parses the résumés and

creates the résumé models.
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4. All the job descriptions and job models are stored in the database.

5. When a user searches the jobs with their résumé, the Ontology Matcher calcu-

lates the similarity values of jobs in the database and returns the jobs ranked

by their similarity values.

Figure 4.1: System Architecture

4.3 Text Processing Stages

Information Extraction is the task of automatically extracting structured infor-

mation such as entities, relationships between entities, and attributes describing

entities from unstructured sources [42]. The IE framework in our system uses six

stages in order to extract the information from job descriptions: HTML parsing,

segmenting, preprocessing, tokenizing, labeling and pattern matching, which is show

in Figure 4.2.
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1) The HTML Parsing will parse the web pages that contain job descriptions,

which are obtained from web crawler. The parser uses HTML tag template to extract

attributes of the jobs, like job title, location, company name, content and so on. A

job will be saved as a record with these attributes in the database. In the record, the

content field contains the text part of the job description, which will be processed in

later stages.

2) In the segmenting stage, the content field of the job description is be sep-

arated into paragraphs according HTML tags. Then paragraphs are separated into

sentences by either HTML tags or punctuation, and after this step, all HTML tags

will be removed.

3) Web pages of job description are created in different character sets, (e.g. UTF8

and ISO 8859-1), and almost always contain some unreadable characters. In the

prepossessing stage, characters in the sentences are converted to ASCII characters,

unreadable characters will be deleted, and some punctuation will be replaced by

spaces (e.g. / and -).

4) In the tokenizing stage, the sentences will be tokenized into arrays of tokens

by NLTK [5].

5) In the labeling stage, the sentences will be given two layers of labels by a

dictionary matching approach. The labels in the first layer are the semantic value of

the text, and the labels in the second layer are the ontology hypernym of the labels

in the first layers.

6) In the pattern matching stage, the FST library is used to matching the

labels of the labeled sentences. If a layered sentence match any pre-defined pattern,

the information will be extracted and added to the job model. After every sentence

of a job description has be processed, a job model will be created and saved in the

database. More details about matching will follow in Section C.
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Figure 4.2: Job Description Process Pipeline
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4.4 System Implementation

We will describe some implementation details here. The whole system is imple-

mented in Python and uses some third party libraries and frameworks. We used

Flask, a lightweight web framework, to build the web application. We used Rdflib

as the Web Ontology Language (OWL) file parser, Python Lex-Yacc (PLY) as the

token regular expression compiler, whoosh as the inverted index builder and Beauti-

ful Soup as the HTML parser. All the jobs retrieved by the Web Crawler are stored

in the MongoDB NoSQL database. For the natural language processing procedure,

we used Natural Language Toolkit (NLTK), a natural language processing library,

to extract and tokenize the sentences.

4.5 System Interface

The system provides some interfaces to end users. The most important interfaces

are the web pages like: reviewing all the jobs in the database, searching the jobs by

keyword (Figure 4.3), uploading users’ résumés (Figure 4.4) and matching the jobs

with a résumé (Figure 4.5).
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Figure 4.3: Job Description List

Figure 4.4: Upload Resume
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Figure 4.5: Résumé Job Matching
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5. INFORMATION EXTRACTION

In this chapter we will explain how the Information Extraction (IE) module of our

system extracts information from these unstructured data source. An example of job

description is shown in Table 5.1. The IE framework will be introduced by example

of processing the job descriptions. The Finite-State Transducer(FST) library, which

is used as pattern matching tools, will be introduced as well.

5.1 Semantic Labeling

In this section, we will introduce why and how we add two layers of labels to

the tokenized sentences. In natural language, a single concept often has multiple

expressions to represent it. For example, the simple concept bachelor’s degree, can

be expressed in many ways in job descriptions, e.g. B.S., BA/BS, 4-years-degree,

and so on. Table 5.2 shows the words that if followed with word “degree” have the

semantic value of “bachelor’s degree”.

To add labels to a sentence, we use regular expression over tokens. A regular

expression over token transfer a patten to a Finite-State Transducer (FST), and every

token of that will be transferred to an edge of FST. If we use all the expressions of a

semantic value to create a pattern, the pattern will be very large, and there are too

many states in the FST. For example, if we use some words in Table 5.2 to create

the pattern of semantic value “bachelor’s degree”, the pattern will like below:

( Baccalaureate | bachelors | bachelor | B.S | BS | BA ) degree

If all words in Table 5.2 are added to the pattern, the FST will have too many edges,

and the matching process will be very slow because of the problem of combinatorial
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Table 5.1: Example of Job Description

Senior/Principal Software Engineer
RichRelevance - San Francisco, CA

RichRelevance powers personalized shopping experiences for the worlds largest and most
innovative retail brands, including Target, Sears, Marks & Spencer, John Lewis and oth-
ers. Founded and led by the e-commerce expert who helped pioneer personalization at
Amazon.com, RichRelevance helps retailers increase sales and customer engagement by
recommending the most relevant content to consumers regardless of the channel they
are shopping. RichRelevance has delivered more than $5.5 billion in attributable sales
for its retail clients to date, and is accelerating these results with the introduction of a
new form of digital advertising called Shopping Media which allows manufacturers to en-
gage shoppers where it matters most – in the digital aisles on the largest retail sites in
world. RichRelevance is headquartered in San Francisco, with offices in New York, Seattle,
Boston, Reading and Malmho, and has been twice recognized as one of the Best Places to
Work in the Bay Area.
RichRelevance is looking for a Senior/Principal Software Engineer to join our growing
team!
Primary responsibilities:
• Working with large scale distributed systems
• Work with Hadoop ecosystem (technologies like Hive, Impala, HBase)
• Algorithmic development with primary focus Machine Learning
• Working with rapid and innovative development methodologies like: Kanban,

Continuous Integration and Daily deployments
• Unit testing with JUnit, Performance testing and tuning

Minimum requirements:
• BS/MS in CS, Electrical Engineering or foreign equivalent plus relevant software

development experience
• At least 5+ years of software development experience
• Expert in Java, Scala or any other object oriented language
• Proficient in SQL concepts (HiveQL or Postgres a plus)
• Additional language skills for scripting and rapid application development

Desired skills and experience:
• Working with large data sets in the PBs
• Familiarity with UNIX (systems skills a plus)
• Working in a distributed environment and has dealt with challenges around scaling

and performance
• Mobile development for Android or iOS.

RichRelevance is an Equal Opportunity Employer and does not discriminate against any
applicant on the basis of race, color, religion, national origin, gender, marital status, age,
disability, sexual orientation, military/veteran status, or any other status protected by
Federal or State law or local ordinance.
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Table 5.2: All Words Mean Bachelors
”Baccalaureate”,”bachelors”, ”bachelor” ,”B.S.”, ”B.S”,”BS”,”BA”,”BA/BS”,
”BABS”, ”BSBA”, ”B.A.” ,”4-year”,”4-year”, ”4 year”, ”four
year”,”college”,”Undergraduate” , ”University”

explosion.

To resolve this problem, we proposed an approach to use the patterns to match

the labels of the tokens, not the the original text. In the system, we don’t care what

words the sentences really use, but want to extract the semantic value of the tokens

which match the pattern. The details of the approach is described below.

At first, we created two dictionaries, which are used to label the tokens. In the

first dictionary, the keys are the tokens, like words in Table 5.2, and the values

are the symbols for semantic values, like “BS-LEVEL” for “bachelor’s degree”, or

“MS-LEVEL” for “master’s degree”. The values of the the second dictionary are the

ontology hypernym of their keys, like keys “BS-LEVEL” and “MS-LEVEL” both

have value “DE-LEVEL”, which means that bachelor’s degree and master’s degree

are both one kind of degree level. We show the dictionaries for degree information

in Table 5.3. There are also some words in the dictionaries that have the same first

layer and second layer labels, which is shown in Table 5.4.

With the two dictionaries, we can label the tokens with two layers. Table 5.5

shows how the sentence “Bachelors degree in computer science or information sys-

tems.” is labeled.

The pattern “DE-LEVEL DEGREE IN MAJOR OR MAJOR ” can match the

sentence above, and the output of the matching process is “BS-LEVEL” for bachelor’s

degree, “MAJOR-CS” and “MAJOR-INFO” for two majors mentioned in sentence.

In our system, most patterns match the labels in second layer. With this approach,
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Table 5.3: Semantic Labeling
Original Text Layer 1 Layer 2

bachelors BS-LEVEL DE-LEVEL
bachelor
B.S.
Baccalaureate
Master MS-LEVEL
MS
M.S.
PhD PHD-LEVEL
Ph.D
Doctorate

Table 5.4: More Labels
”Be”, ”be”, ”is”, ”are”, ”am” BE BE

”a”, ”A”, ”an”, ”An”, ”The”, ”the” DE DE

”MBA”, ”BSCS”, ”BSEE”, ”MSCS” MAJOR-DEGREE MAJOR-DEGREE
”MSEE”, ”MSCE”,”MPH”

”practical experience”, ”work experience” EXPERIENCE EXPERIENCE
”professional experience”, ”experience

”preferred”, ”required”, ”desired” PREFER-VBD PREFER-VBD

”a plus”, ”mandatory”, ”desirable” PREFER-JJ PREFER-JJ

”similar”, ”related”, ”Relevant” DEGREE-JJ DEGREE-JJ
”equivalent”, ”based”

the size of the FST for the pattern will be minimized, so speed of matching process

can be improved.

5.2 Patterns for Matching

As we explained in section B, we mentioned matching tokens in the second layer

to patterns we defined. To match the labels in sentences to our patterns, we proposed

a library that support matching pattern over tokens. The difference between this

library and traditional regular expression is that the basic unit to be matched is

token, not character. Some patterns used to match degree phrases are in Table 7.2.
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Table 5.5: Labeled Sentence
layer 2 DE-LEVEL DEGREE IN MAJOR OR MAJOR .

layer 1 BS-LEVEL DEGREE IN MAJOR-CS OR MAJOR-INFO .

words bachelors degree in computer science or information systems .

The patterns looks like regular expression, but they use tokens as the basic units.

Table 5.6: Patterns to Match Degree Sentences
DE-LEVEL, DE-LEVEL, OR DE-LEVEL DEGREE
DE-LEVEL DEGREE ( IN | OF ) DT MAJOR
MAJOR-DEGREE , MAJOR-DEGREE OR MAJOR
DE-LEVEL (, DE-LEVEL)* (OR DE-LEVEL)? BE? PERFER-VBD

5.3 Pattern Matching Library

In section C we introduced how we use the library of pattern matching over tokens

to match the sentences. In this section we will introduce more details of this library,

including its advantages and implementation details.

5.3.1 Finite-State Transducer

Finite-State Transducers [39] have been used as a tool to match patterns and

extract information for more than 20 years. This approach has been demonstrated

to be very effective in extracting information from text like CIRCUS [25] and FAS-

TUS [19]. In the widely used NLP toolkit GATE [9], the semantic tagger JAPE

(Java Annotations Pattern Engine) could describe patterns that are used to match

and annotate tokens. JAPE adopts a version of CPSL (Common Pattern Specifica-

tion Language) [4], which provides FST over annotations. Chang et al. presented

cascaded regular expressions over tokens [8], which proposed a cascaded pattern
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matching tool over token sequences.

After studying these tools, we found most of them to be powerful and complex,

but not very flexible. One reason is that developers need to learn some Domain

specific Languages (DSLs) like CPSL. The other reason is the extra effort and time

required to integrate the pattern matching tool into the system. So here we proposed

a more flexible and lightweight FST framework, which can do regular expression

matching over labeled tokens. We give the definition of Finite-State Transducer

here. A Finite-State Transducer is a 6-tuple (Σ1,Σ2, Q, i, F, E) where:

• Σ1 is a finite alphabet, called the input alphabet.

• Σ2 is a finite alphabet, called the output alphabet.

• Q is a finite set of states.

• i ∈ Q is the initial state.

• F ⊂ Q is the set of final states.

• E ⊂ Q× Σ∗1 × Σ∗2 ×Q is the set of edges.

For example, the FST Td3 = ({0, 1}, {0, 1}, {0, 1, 2}, Ed3) where Ed3 = { ( 0, 0, 0,

0 ), ( 0, 1, 0, 1 ), ( 1, 0, 0, 2 ), ( 1, 1, 1, 0 ), ( 2, 1, 1, 2 ), ( 2, 0, 1, 1 ) } is shown in

Figure 5.1.

Regular expressions can be converted to automata [2], and FST is also an au-

tomata. To convert a regular expression over token to a FST we need two steps: The

first is parsing the expression to a tree of matchers, the second is transfer the tree of

matchers to the FST. We will introduce these two steps in next.
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Figure 5.1: Zero or One NFA

5.3.2 Matchers in the Pattern Matching Library

In our library, a “matcher” could be a token to be matched, or a composition of

other matchers. Our library supports syntax used in traditional regular expressions

over strings. We list the syntax that the library supports in Table 5.7. The first

column is the names of the matchers, the second column is the explanation of the

function of the matchers, and third column is the their counterpart syntaxes of

traditional regular expression. The RegexMatcher in our library is constructed with

a regular expression, and the matcher matches any string that matches the regular

expression in the matcher. We give examples of the syntax of these matchers in

Table 5.8.

Table 5.7: Matchers of Our Library
Matcher Name Function Counter Part of regex
UnitMatcher token is matches the it character in regex
SequenceMatcher A list of Matcher sequence of characters
QuestionMatcher One or more of the preceding token ?
StarMatcher Zero or more of the preceding token *
PlusMatcher Zero or one of the preceding token +
DotMatcher Any token .
RegexMatcher Any token matches the regular ex-

pression
N/A
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Table 5.8: Examples of Matcher
Matcher Name Example
UnitMatcher DEGREE
SequenceMatcher DE-LEVEL DEGREE
QuestionMatcher DE-LEVEL (OR DE-LEVEL)? DEGREE
StarMatcher DE-LEVEL (, DE-LEVEL)* DEGREE
PlusMatcher DEGREE IN MAJOR +
DotMatcher HAS . DEGREE
RegexMatcher r“d-d” years

The framework supports three styles of creating patterns: regular expression

style, operator style and object style. The second and third styles are flexible be-

cause developers can create their own matcher class to extend the feature of the

library. We use examples to show how the three styles work. The most common

style is defining pattern expression in a string, which is much like traditional regular

expression.

The pattern is: DE-LEVEL DEGREE ( IN | OF ) DT? MAJOR

The code is:

seqMatcher =parser.parse("DE-LEVEL DEGREE ( IN | OF ) DT? MAJOR")

The second style is using algebraic operators to connect matchers, which can help

developer reuse previous patterns when the new patterns include old ones. It is

shown in follows:

The pattern is: ”DE-LEVEL DEGREE (IN | OF) MAJOR”

The code is:

seqMatcher = UnitMatcher("DE-LEVEL") + UnitMatcher("DEGREE") +
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( UnitMatcher("IN") | UnitMatcher("OF" ) ) + UnitMatcher("MAJOR")

We also could create a complex matcher in object-oriented programming style.

The pattern is: ”DE-LEVEL DEGREE (IN | OF) MAJOR”

The code is:

matcher1 = UnitMatcher("DE-LEVEL")

matcher2 = UnitMatcher("DEGREE")

matcher3 = UnitMatcher("IN")

matcher4 = UnitMatcher("OF")

matcher5 = UnitMatcher("MAJOR")

matcher6 = AlternateMatcher([matcher3,matcher4])

seqMatcher = SeqMatcher([matcher1, matcher2, matcher6, matcher5])

The flexibility of the tool also comes from the fact that developers can determine

which layer of the array should be matched, the original text, or labels in the first

layer or labels in the second layer. Developers can assign a lambda expression to

the matcher’s catching function, which defines how to get the matching input strings

from the sentences, as well as an out function, which defines what should be outputed.

For example, the labeled sentence is a sequence of arrays, each array includes the

original text token and its labels in the other two layers, which is shown in table 5.5.

To match the labeled sentence, we set the lambda expression for catching function to

“lambda x:x[2]”, and the out function to “lambda x:x[1]”, which make the matcher

match the label in second layer, and output the the value of semantic value in the

first layer.
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5.3.3 Implementation of the Pattern Matching Library

We use PLY(Python Lex-Yacc) as the grammar parser, which is a pure-Python

implementation of the popular compiler construction tools lex and yacc. We defined

syntaxes of regular expression over tokens in the parser, which can parse the token

regular expression to the tree structure of matchers.

We use the algorithm proposed by Thompson and Ken [45] to construct the FST

from the tree of matchers, which is shown in Algorithm 1. The algorithm accesses

the inner structure of a matcher recursively, and create state for the matcher. Each

state is a partial Nondeterministic Finite Automaton (NFA), which has one or more

dangling arrows. The algorithm builds the whole NFA by connecting the arrows of

the partial NFAs. Different operator will have different structures of NFA, which is

shown below:

The NFAs for matching single token is shown in Figure 5.2.

Figure 5.2: Single Token NFA

The NFA for the concatenation e1e2 connects the final arrow of the e1 machine

to the start of the e2 machine, as shown in Figure 5.3.

Figure 5.3: Concatenation NFA
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The NFA for the alternation e1 | e2 adds a new start state with a choice of either

the e1 machine or the e2 machine, which is shown in Figure 5.4.

Figure 5.4: Alternation NFA

The NFA for e? alternates the e machine with an empty path, which is shown in

Figure 5.5.

Figure 5.5: Zero or One NFA

The NFA for e* uses the same alternation but loops a matching e machine back

to the start, which is shown in Figure 5.6.

Figure 5.6: Zero or More NFA
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The NFA for e+ also creates a loop, but one that requires passing through e at

least once, which is shown in Figure 5.7.

Figure 5.7: One or More NFA

With the above rules, we can convert the expression “DL (, DL)* (or DL)?

DEGREE” to an FST in Figure 5.8.

Figure 5.8: Finite Automata Transducers

Comparing our method to other state of art machine learning-based information

extraction algorithms, our method has such advantages:

1. Easy to implement. According to the pseudo code in 1, even some undergrad-

uate students without strong machine learning background can implement our

algorithm in a few days.

2. There is no need for data labeling. Supervised machine learning algorithms

always need a large labeled training data set, but data labeling is tedious work
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Input: matcher, nfa
Output: NFA
switch matcher do

case UnitMatcher
state = compileToNFA(matcher]) ;
connect( nfa.last, [state] ) ;
nfa.last = [state] ;
break;

case SequenceMatcher
for (i = 0; i < len(matcher.list); i + +) do

state = compileToNFA(matcher.list[i]) ;
connect( nfa.last, [state] ) ;
nfa.last = [state] ;

end
break;

case AlternateMatcher
state1 = compileToNFA(matcher.list[0]) ;
state2 = compileToNFA(matcher.list[1]) ;
connect( nfa.last, [state1, state2] ) ;
nfa.last = [state1, state2] ;
break;

case QuestionMatcher
state1 = compileToNFA(matcher.list[0]) ;
connect( nfa.last, [state1, nfa.last] ) ;
nfa.last = [state1, nfa.last] ;
break;

case PlusMatcher
state1 = compileToNFA(matcher.list[0]) ;
connect( state1, state1 ) ;
connect( nfa.last, state1 ) ;
nfa.last = [state1 ] ;
break;

case StarMatcher
state1 = compileToNFA(matcher.list[0]) ;
connect( state1, state1 ) ;
connect( nfa.last, state1 ) ;
nfa.last = [state1, nfa.last] ;
break;

endsw
Algorithm 1: CompileToNFA
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for users. With our pattern matching algorithm, we avoid the work manual

data labeling.

3. The accuracy of information extraction can increase monotonously as the num-

ber of patterns increase. So with enough patterns, the accuracy becomes quite

high.

4. High speed for labeling data. The time complexity of pattern matching is O(n)

[45], which is smaller than some complex machine learning based approach-

es. One example is Conditional Random Fields(CRFs), which uses Viterbi

algorithm [47] to label the sequence, the time complexity of it is O(n2t).

In this chapter we have introduced how we extracted the information from the

resumes and job descriptions, and the implementation details of the pattern matching

library, regular expression over tokens. We can get the models of resumes and job

descriptions through the procedure described in this chapter. In the next chapter,

we will discuss how our system searches and ranks job models by resume models.
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6. MODEL SIMILARITY

The similarity value between a job model and a résumé model is the summation

of weighted similarity values of different fields. The equation is given below:

sim(r, j) =
n∑
i=1

simfuni(ri, ji)× wi

The value of sim(r, j) is the summation of similarity values of different fields times

their corresponding weights. simfuni(ri, ji) is the similarity function of the ith field

of the model. In our system, the résumé model and job model both have four fields:

job title, major, academic degree and skills. The similarity value between a résumé

model and job model is the sum of the productions of similarity values of all the

fields pairs and their weights. We will introduce how to calculate the similarity value

for each field in this chapter.

6.1 Similarity of Major and Academic Degree

In the simplest case, if the majors in the résumé model and job model are the

same, the similarity value is 1. If they are different, we can check whether the major

in the résumé model is in the list of related majors for the major in the job model.

If it is, the similarity value is 0.5; otherwise the similarity value is 0. The equation

is shown below:

MajorSim(r, j) =


1, rmajor = jmajor

0.5, rmajor ∈ related(jmajor)

0, otherwise


There are five kinds of academic degrees in the system: high school, associate,
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bachelor, master, and Ph.D., which are mapped to the integer values form 1 to 5. If

the degree value in the résumé model is less than that in the job model, which means

that the job seeker’s education background cannot satisfy the requirement of the job,

the similarity value in this case is 0. If the degree value in the résumé model is equal

to the job model and no more than 2 above, the similarity value is 1. In some cases,

the degree value in the résumé model is greater than that of the job model, and the

difference is greater than 2, which means that the job seeker’s degree is much higher

than the requirement of the job. The situation is also a kind of relative matching,

so the similarity value here is 0.5. The equation is shown below:

DegreeSim(r, j) =


0, rdegree < jdegree

1, 0 < rdegree − jdegree 6 2

0.5, rdegree − jdegree > 2


6.2 Similarity of Job Title

Another field of needs similarity calculation is the job titles in the models. A

job title can be parsed into some sub fields: job role, level, platform, programming

language. The value of job roles includes: developer, manager, administrator and

so on. There are levels values in such roles: such as junior, senior and architect.

The platforms: web, mobile and cloud are used by the very roles. The similarity

value between two titles is the sum of all the similarity values of these fields. The

similarity value of each sub filed ranges from 0 to 1, and we also normalized the

similarity summation value to 1 by dividing the number of sub fields. If the job

seeker has some working experience, there may be some job titles in their résumé.

When calculating the similarity value between a résumé model and a job model, the

system calculates the similarity values of the title of job model to all the titles in the
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résumé model and returns the maximum one.

6.3 Similarity of Skills

The job model usually has requirements of some skills, and the résumé model

lists the skills the job seeker has as well. The similarity value of skills field is the

normalized summation of all the similarity values of skills in the job model.

SkillSetSim(SJ, SR) =

∑
sji∈SJ SkillSim(sji, SR)

|SJ |

For every skill in the job model, the similarity value is the maximum value it can get

from the skills in the résumé model. The equation is shown below:

SkillSim(sji, SR) =

 1, sji ∈ SR

max(sim(sji, rjk)), sji /∈ SR


In the equation, sji is the ith skill in the job model, and SR is the skill set of the

résumé model. If there is the skill sji in the skill set SR, the similarity value for sji is

1, otherwise the system chooses the maximum similarity value from all the similarity

values between skill sji and the skills in the the résumé model.

We introduced how to calculate similarity values for three fields in résumé and

job models. In the next chapter, we will introduce how to use a domain specific

ontology to calculate similarity values between the skills fields of the two models.
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7. ONTOLOGY CONSTRUCTION AND SIMILARITY

7.1 Semantic Similarity in JRSs

After getting job models by the information extraction module, users can search

for jobs in the system. In previous studies of JRSs, ontology is used as a knowledge

base to store knowledge and rules, which could help compare the similarity between

different concepts. Liu and Dew [27] used Resource Description Framework (RDF)

to represent and store the expertise of experts, and they used a RDF-based expertise

matcher to retrieve the experts whose expertise included the required concept.

Proactive [24] used two kinds of ontology, job category and company information.

The system used an ontology checker to classify the job information, stored the

domain knowledge and calculated the weight value in recommendations.

Fazel [15] used a hybrid approach to match job seekers and job postings, which

takes advantage of the benefits of both logic-based and ontology-based matching. In

his paper the description logics (DL) are used to represent the candidate and job

opening, and the ontology is used to organize the skills in a taxonomy. The paper

provides an equation to calculate the matching degree:

sim (P, j) =
∑

xij × u(dsi)

where xji is the Boolean variable indicating whether desire i is satisfied by appli-

cant Aj in the set of all qualified applications.

Kumaran et al. [21] also used an ontology to calculate the similarity between the

job criteria and candidates’ résumé in their system [21]. The similarity equation they
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used is:

M (i1, i2) =

∑n
k=1 Sim (pi1k , p

i2
k ) ∗W i2

k∑n
k=1W

i2
k

The similarity function Sim(p1, p2) is defined as follows:

Sim(p1, p2) =

1, if similarity of p1 and p2 > t

0, otherwise


7.2 Ontology Construction

Before calculating the similarity between concepts, we need to construct the on-

tology first. Semantic web has been a popular research topic in previous years, and

at the same time thousands of domain ontologies have been created [11]. A paradig-

matic example is WordNet [16], which is a general purpose thesaurus, and contains

more than 100,000 general English concepts. ACM has created a poly-hierarchical

ontology that can be utilized in semantic web applications [1], but it is mostly used

in academic areas. DBpedia [6] provides structured information from Wikipedia and

make this information available on the Web, but its coverage is huge, and most of

them is not related to job finding. Currently, there is no domain specific technology

ontology built for recruiting purpose.

The domain specific technology ontology for recruiting should include a lot of

technical terms, like programming language, programming library, commercial prod-

ucts and so on. Furthermore, there are new techniques invented everyday, so new

IT terms will appear continuously. Ding et al. [12] gave a survey of current ontol-

ogy generation approaches such as manual, semi-automatic, and automatic. Some

aspects of the approaches were discussed in the paper, like the source data, concept

extraction methods, ontology representation, and construction tools. Inspired by
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this paper, we propose a semi-automatic approach to construct the IT skill ontology,

which use a pattern matching approach to collect possible technical terms, and use

DBpedia to verify the them.

From the observation, we found that sentences with skill requirements in job

descriptions always list several skills in the sentence, which is shown in Table 7.1.

Based on this character, we propose a bootstrap approach to collect IT terms in

job descriptions. First, we manually collect about fifty terms from job descriptions,

and add them to the term list. Then we use our pattern match library to find the

sentences that matching the pattern in Table 7.2 from a set of job descriptions. An

example of a sentence which matches the pattern is shown in Table 7.3. We extract

the tokens which match the star symbol from the sentences; these tokens have high

probability to be technical terms. Then we could check the tokens in Dbpedia to

see whether they are under the categories like software, programming language or

any other technical related ones. If they are, we could classify them as terms, and

add them to the terms list. After scanning all the sentences in the job description

set, the term list will be larger, and we can use the larger term list to start a new

iteration of scaning. This process stops when the number of found new terms is

below a threshold. The process is shown Figure 7.1.

Table 7.1: Example Sentences in Job Descriptions
1. A high-level language such as Java, Groovy, Ruby or Python; we use Java
and Groovy extensively
2. HTML5/CSS3/JavaScript, web standards, jQuery or frameworks like An-
gularJS would be great
3. HTML CSS and Javascript a must
4. Experience with AJAX, XML, XSL, XSLT, CSS, JavaScript, JQuery, HTM-
L and Web Services
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Table 7.2: Patterns to Extract Terms
term , * , *, term
term , * , *, and term

Table 7.3: An Example Sentence Matches the Pattern
Experience with TERM , * , * , TERM , and *
Experience with AJAX , XML , XSL , XSLT , and CSS

For example, we extract the token ”XSL”, which currently is not in the terms list.

We check the word on DBpedia by accessing the URL:http://dbpedia.org/page/XSL.

If we can get the XML formatted description of XSL, and any element in “dc-

terms:subject” section has the value which is a technical category, like “Program-

ming languages”, “Markup languages” and so on, we can indicate that the word is a

technical term, and add it to the term list.

Figure 7.1: Procedure of Finding Technical Terms

But not all the extracted terms can be verified in DBpedia, because some terms
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have multiple meanings in English, and the URLs of their DBpedia pages are unpre-

dictable. For example, the word “Python” could be an animal name or a program-

ming language. The meaning of the programming language has the DBpedia URL

http://dbpedia.org/page/Python (programming language), which is difficult to pre-

dict. In this case, we have to check the term manually. After getting all terms, we

use Protege [32], an open source ontology editor, to edit the domain specific ontology,

and saved it in RDF format. The interface of Protege is shown in Figure 7.2. Part

of the technical ontology is shown in Figure 7.3.

Figure 7.2: Interface of Protege

7.3 Ontology-Based Semantic Similarity

Sánchez et al. [41] summarized ontology-based similarity assessment into three

kinds and gave both advantages and disadvantages of each approach. The three kinds
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Figure 7.3: Part of Ontology
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of categories are: Edge-counting approaches, Feature-based measures, and Measures

based on Information Content.

7.3.1 Path-Based Approaches

In path-based approaches, the ontology is viewed as a directed graph, in which

the nodes are the concepts, and the edges are taxonomic relation (e.g. is-a). Rada, et

al. [34] measure the similarity by the distance of two nodes in the graph. Therefore,

the semantic distance of two concepts a and b will be:

disrad(a, b) = min|pathi(a, b)|

Wu and Palmer [49] realized that the depth in the taxonomy will impact the

similarity measure of two nodes, because the deeper of the nodes are in the tree, the

semantic distance is smaller. Therefore they gave a new measure of ontology:

simw&p(a, b) =
2×N3

N1 +N2 + 2×N3

N1 and N2 is the numbers of is-a links from each term to their Least Common

Subsumer(LCS), N3 is the number of is-a links of the LCS to the root of the ontology.

Based on the same idea, Leacock and Chodorow [23] also proposed a similarity

measure that combined distance Np between terms a and b and the depth D of the

taxonomy.

siml&c(a, b) = − log(Np/2D)

There are some limitations of path-based approaches. First, it only considers

the shortest path between concept pairs. When they meet a complex situation like

multiple taxonomical inheritance, the accuracy of them will be low. Another problem
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of the path-based approaches is that they assume that all links in the taxonomy have

uniform distance.

7.3.2 Feature-Based Measures

Feature based approaches assess the similarity between concepts as a function of

their properties. They consider the degree of overlapping between sets of ontological

features, like Tversky’s model [46], which subtracts the non-common features from

common features of two concepts.

simtve(a, b) = α · F (Ψ(a) ∩Ψ(b))− β · F (Ψ(a) \Ψ(b))− γ · F (Ψ(b) \Ψ(a))

Where F is salience of a set features, and α, β and γ are weights of the contribution

of each component.

Rodŕıguez and Egenhofer [40] computed similarity by summing the weighted sum

of similarities between synsets, features, and neighbour concepts.

simre(a, b) = w · Ssynsets(a, b) + u · Sfeatures(a, b) + v · Sneighborhoods(a, b)

The feature-based methods consider more semantic knowledge than path-based

methods. But only big ontologies/thesauri like Wordnet [31] have this kind of in-

formation. Ding et al. [11] revealed that domain ontologies very occasionally model

any semantic feature apart from taxonomical relationship.

7.3.3 Content-Based Measures

Other approaches want to overcome the limitations of edge-counting approach-

es are Content-based measures. Resnik [36] proposed a similarity measure, which
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depends on the amount of shared information between two terms:

simres(a, b) = IC(LCS(a, b))

LCS is the Least Common Subsumer of terms in a ontology, and IC is Information

Content, which is the negative log of its probability of occurrence, p(a). Lin [26]

and Jiang and Conrath [20] extended Resnik’s work. They also considered the IC

of each of the evaluated terms, and they proposed that the similarity between two

terms should be measured as the ratio between the amount of information needed to

state their commonality and the information needed to fully describe them.

simlin(a, b) =
2× simres(a, b)

(IC(a) + IC(b))

The are also two disadvantages of the content-based measures. First, the approaches

cannot compute the concepts of leave nodes, because they don’t have subsumers.

Second, if the concepts do not have enough common subsumers, their similarities are

hard to be calculated.

7.4 Statistical-Based Ontology Similarity Measure

In this thesis, we proposed a new statistical-based ontology similarity measure. In

most job descriptions, they list many skills the positions required. From observation,

we found that related skills always exist in the job description simultaneously, and the

positions of them are always close, e.g. HTML and CSS are always required together,

and appear in the same sentence. We could see this phenomenon in Table 7.4, which

include some skill requirement sentences from some job descriptions.

We can see from the Table 7.4, the closely related concepts are always have

short distance. Based on such observation, we give a new statistical-based ontology
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Table 7.4: Some sentences of Job Descriptions
1. A high-level language such as Java, Groovy, Ruby or Python; we use Java
and Groovy extensively
2. HTML5/CSS3/JavaScript, web standards, jQuery or frameworks like An-
gularJS would be great
3. HTML CSS and Javascript a must
4. Experience with AJAX, XML, XSL, XSLT, CSS, JavaScript, JQuery, HTM-
L and Web Services

similarity measure. If two concepts a and b have the same direct hypernym or one

is the hypernym of the other, the similarity between them is given:

S(a, b) =
Na∩b/Na∪b

avg(log2(mindis(di, a, b) + 1))

The numerator is the ratio of the number of documents in which the two terms

exist together (Na∩b) and the number of documents have a least one of them (Na∪b).

The denominator is the average log value of minimum distance mindis(doc, a, b) of

the two terms in documents that have them both.

We set the restriction on the position of the two concepts in the ontology, because

the position of the concepts in the ontology are based on their technical similarity

to others. Similar techniques will be assigned into the same category, so they should

share the same hypernym, and one could be an alternative to the other. For example,

we put EJB and Hibernate in the same category, because they are both J2EE persis-

tence layer technologies, and both have the O/R mapping concept. If the applicant

is familiar one of them, they can master the other very quickly. Another example is

Grail and Django, they are both web frameworks and share same web design philoso-

phies, but one of them is designed for Java web application and the other is created

for Python web application. If a developer has some some experience with one of
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them, he/she still need to spend a lot of time to learn the other to overcome the gap

between programming languages. The algorithm to calculate the similarity of two

concepts is in Algorithm 2.

Input: Docs term1, term2
Output: similarity
total = 0; hastwo = 0; dislist = [ ];
for i = 1; i ≤ len(Docs); i+ + do

if Docsi has at least one term then
total + = 1 ;
if Docsi has both terms then

hastwo + = 1 ;
mindis = minimium distance (Docsi, term1, term2) ;
dislist. add (log2(mindis+ 1)) ;

end

end

end
factor1 = hastwo / total ;
factor2 = avg(dislist) ;
return factor1 / factor2;

Algorithm 2: Calculating Statistical-based Similarity

The matrix in Table 7.5 show the similarity values among of some skills, which

is gotten from 500 job descriptions. For example the skill HTML, the most relevant

skills in order are CSS, Javascript, and jQuery, which is the same from the perspective

of experienced developers. The other example is Java, the most relevant skill in the

matrix is JSP, which is also agree with the general technical knowledge.
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Table 7.5: Similarities of Skills List 1
Term Java JDBC Spring Hibernate MySql Oracle
Java 1 0.0523 0.091 0.0458 0.0339 0.0608

JDBC 0.0523 1 0.0525 0.0799 0.006 0.0616
Spring 0.091 0.0525 1 0.2008 0.0194 0.0878

Hibernate 0.0458 0.0799 0.2008 1 0.0073 0.115
MySql 0.0339 0.006 0.0194 0.0073 1 0.049
Oracle 0.0608 0.0616 0.0878 0.115 0.049 1

Table 7.6: Similarities of Skills List 2
Term Javascript jQuery HTML CSS Java Python Ruby JSP

Javascript 1 0.1981 0.2087 0.2439 0.0665 0.0189 0.023 0.0253
jQuery 0.1981 1 0.0979 0.1328 0.0439 0.0142 0.0266 0.0232
HTML 0.2087 0.0979 1 0.3569 0.0473 0.0175 0.023 0.0103

CSS 0.2439 0.1328 0.3569 1 0.0537 0.0153 0.0181 0.015
Java 0.0665 0.0439 0.0473 0.0537 1 0.0498 0.0287 0.075

Python 0.0189 0.0142 0.0175 0.0153 0.0498 1 0.1333 0.0025
Ruby 0.023 0.0266 0.023 0.0181 0.0287 0.1333 1 0.012
JSP 0.0253 0.0232 0.0103 0.015 0.075 0.0025 0.012 1
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8. EVALUATION

In this section we will evaluate the performance of the key components of the

system, the Information Extraction module, the Ontology Similarity module, and

the overall system resulting from the combination of the components.

8.1 Experiments of Information Extraction

To evaluate the performance of the information extraction module, we extract

sentence types through the use of sentence filters. To explain the process of our

experiment, we use the sentences whose content pertains to the applicant’s college

degree information.

In the experiment, we selected 100 sentences from existing job descriptions, and

the content of these sentences were requirements of candidate degree and major.

We labeled the values for ”degree” and ”major” manually. We use some content

patterns that we can identify from these sentences to match and extract the degree

information. When we used 6 patterns, the accuracy of ”degree” became 94%. We

also compared our pattern matching method to the conditional random fields (CRFs)

model [22], which is a state of art machine learning model for sequence labeling. We

used 200 labelled sentences to train the CRF model, and the features of the CRF

model are words in the sentences and part of speech tags of the words. The accuracies

of information extraction of the three fields with our two methods, pattern matching,

and the application of the CRF model are shown in Table 8.1.

8.2 Experiments of Ontology Similarity

We selected some common skills from 500 job descriptions; table 8.2 shows simi-

larity values between these skills. Higher values correspond to greater similarities, so
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Table 8.1: Information Extraction
Field Pattern Num Accuracy of Pattern Matching Accuracy of CRF

Degree 6 0.94 0.85
Major 10 0.85 0.72

Our pattern matching approach can get higher accuracy.

Table 8.2: Similarities of Skill List 1
Term Java JDBC Spring Hibernate MySql Oracle
Java 1 0.0523 0.091 0.0458 0.0339 0.0608

JDBC 0.0523 1 0.0525 0.0799 0.006 0.0616
Spring 0.091 0.0525 1 0.2008 0.0194 0.0878

Hibernate 0.0458 0.0799 0.2008 1 0.0073 0.115
MySql 0.0339 0.006 0.0194 0.0073 1 0.049
Oracle 0.0608 0.0616 0.0878 0.115 0.049 1

the similarity between one skill and itself is 1. We selected one concept and ranked

the other concepts by their similarity values to this concept. Human judges helped

rank these concepts by assigning them ”relevance scores” so that we can use NDCG

to evaluate the effectiveness of our approach.

We use the Normalized Discounted Cumulative Gain(NDCG) [30] to evaluate

the statistical-based similarity. NDCG is an important measure to evaluate the

ranked retrieval results, which is the ratio of Discounted Cumulative Gain ( DCG )

to Ideal Discounted Cumulative Gain ( IDCG ).

NDCG =
DCG

IDCG

DCG is the measure of how documents are ranked according to their relevance

scores, and IDCG is the DCG value that the documents are strictly sorted by their
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Table 8.3: Javascript Similarity Evaluation
Term Similarity Value Position Relevance

jQuery 0.1981 4 8
HTML 0.2087 3 4

CSS 0.2439 2 3
Java 0.0665 5 1

Python 0.0189 8 1
Ruby 0.023 7 1
JSP 0.0253 6 2

Table 8.4: HTML Similarity Evaluation
Term Similarity Value Position Relevance

Javascript 0.2087 2 3
jQuery 0.0979 3 3

CSS 0.3569 1 5
Java 0.0473 4 1

Python 0.0175 6 1
Ruby 0.023 5 1
JSP 0.0103 7 3

relevance values.

DCG =

p∑
i=1

2reli − 1

log2(i+ 1)

Table 8.3 shows how we evaluate the similarity between the concept “Javascript”

and other concepts. The first column is a skill name, the second column is its simi-

larity value to “Javascript”, the third column is its position ranked by the similarity

value, and the fourth column is its relevance value given by the judges. The ND-

CG value for concept Javascript is 0.94, and in Table 8.4, NDCG value for concept

HTML is 0.97.
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8.3 Evaluation of the System

In a traditional information retrieval systems, precision and NDCG are widely

used measures [30]. Precision (P ) is the fraction of retrieved documents that are

relevant.

Precision =
#(releveant items retrieved)

#(retrieved items)

We first used Precision@K to compare the performance of our approach to the

classical information retrieval models: Okapi BM25 [37], Kullback-Leibler divergence,

and the TF-IDF. Precision@K is the proportion of relevant documents in the first K

positions and is given below:

P@k =
1

k

m∑
i=1

li1 (r(i) ≤ k)

Where 1 is the indicator function: 1(A) = 1 if A is true, 0 otherwise.

To evaluate a job finding, we compare the results of the system with three classi-

cal information retrieval models: Kullback-Leibler divergence [52], TF-IDF [30] and

Okapi BM25 [38]. We give the definition of these measures below.

Kullback-Leibler divergence is a non-symmetric measure of the difference between

two probability distributions P and Q. The score of a document D with respect to

query Q is given by:

s(D,Q) = −D(θQ ‖ θD)

= −
∑

ω∈V p(ω | θQ) log
p(ω|θQ)

p(ω|θD)

=
∑

ω∈V p(ω | θQ) log p(ω | θD)−
∑

ω∈V p(ω | θQ) log p(ω | θQ)

(8.1)

In the equation θQ is the language model for a query, and θD is the language

model for a document.
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TF-IDF is a Vector Space Model, which calculates the Cosine Similarity between

the vectors of the query q and the document d. In the equation, tf is the term

frequency, and idf is the inverse document frequency. The TF-IDF weighting scheme

assigned to term t a weight in document d given by:

tf -idft,d = tft,d × idft

The similarity between the query q and the document d given by:

score(q, d) =
∑
t∈q

tf -idft,d

Okapi BM25 is a bag-of-words retrieval model that ranks a set of documents

based on the query terms appearing in each document. Given a query q, the BM25

score of a document d is:

score(q, d) =
∑
t∈q

idft
tft,d · (k1 + 1)

tft,d + k1 · (1− b+ b · |D|
avgdl

)

In the formula, idft is IDF value of term t, tf is the term frequency; |D| is the

length of the document D; avgdl is the average length of all the documents, and k1

and b are the free parameters.

In the evaluation phase, we created a data set of 100 job descriptions that includes

several kinds of jobs such as web developers, server back-end developers, mobile

developers and so on. We used 5 candidate résumés and retrieved the top 20 jobs.

The relevance value of the job descriptions to each résumé were set manually by

ten human judge. We created a query q from the résumé, treated the text of the

job descriptions as documents d, and applied standard ad-hoc retrieval techniques

to rank the jobs. We intended to return jobs that better matched the candidates’
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résumés at the top. The result of Precision@k is in table 8.5.

Table 8.5: Precision of Job Ranking
k Okapi BM25 KL TF-IDF RésuMatcher
5 0.66 0.27 0.72 0.82
10 0.46 0.27 0.50 0.76
20 0.33 0.21 0.35 0.77

RésuMatcher get the highest precision.

The other measure we used is NDCG, which is explained in last section. Table 8.6

shows the NDCG value get from different information retrieval models. The result

shows that Ontology Similarity performs the best.

Table 8.6: NDCG of Job Ranking
k Okapi BM25 KL TF-IDF RésuMatcher
5 0.15 0.34 0.45 0.78
10 0.18 0.44 0.47 0.72
20 0.19 0.35 0.45 0.66

Our sytem get the highest NDCG value.

8.4 Comparing with the Keyword Searching

We also made experiments to compare the quality of search results quality be-

tween our system and the keyword searching approach. In one experiment, we first

selected a résumé, and picked a related keyword e.g. “Java” to search jobs in In-

deed.com. We used this process to simulate how a job seeker searches jobs on In-

deed.com. The top 100 jobs returned by Indeed.com were saved in our system,

then we used the résumé to match the 100 jobs. We compared the quality of the
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approaches by calculating the measures Precision@K and DCG. We use DCG not

NDCG because we compare the two approaches on the same data set, and the IDCG

is the same. Five judges gave the relevance values to the résumés and jobs, and

we used average values. Table 8.7 shows comparison between the two approaches

by using keyword “Java” and the résumé of a Java developer. The comparison for

keyword “Python” and the résumé of a Python developer is shown in Table 8.8, and

the average comparison for five keywords and five résumé is shown in Table 8.9. We

can see from the result that our system can get much better results than keyword

searching approach.

Table 8.7: Comparison of the Two Approaches - Java Developer

k
Precision@K DCG

Indeed RésuMatcher Indeed RésuMatcher
5 0.73 1.00 10.86 27.80
10 0.65 0.95 24.85 47.06
20 0.72 0.83 51.97 73.33

RésuMatcher can get better result.

Table 8.8: Comparison of the Two Approaches - Python Developer

k
Precision@K DCG

Indeed RésuMatcher Indeed RésuMatcher
5 0.45 0.63 11.27 11.98
10 0.32 0.62 13.43 15.79
20 0.22 0.42 16.44 20.21

RésuMatcher can get better result.
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Table 8.9: Comparison of the Two Approaches - Average

k
Precision@K DCG

Indeed RésuMatcher Indeed RésuMatcher
5 0.84 0.87 23.87 32.97
10 0.72 0.86 37.02 45.57
20 0.65 0.76 58.70 66.70

RésuMatcher can get better result.
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9. CONCLUSION AND FUTURE WORK

9.1 Conclusion

In this thesis we presented RésuMatcher, a personalized job-résumé matching

system that can help job seekers find appropriate jobs faster and more accurately by

using their résumé contents. The key components of the system are the information

extraction procedure and the ontology matching module.

In the system, job descriptions and résumés are parsed into job models and résumé

models by the information extraction module. When searching the jobs by a résumé,

similarity values between the résumé model and job description models are calculated

in the ontology matching module. The result is sorted by the ontology similarity

scores, which are the sum of similarities of different fields multiplied by their weights.

We made such contributions in our works:

1. We developed a résumé - job matching system.

2. We developed a finite state transducer based matching tool to extract informa-

tion from unstructured data source, which is a lightweight and flexible library,

and can be extended in very easy ways.

3. We developed a semi-automatic approach, which can collect technical terms

from hr data sources, and by which we created a domain specific ontology for

recruitment.

4. We developed statistical-based ontology similarity measure, which can measure

the similarities between technical terms .

In the experiment phase, we evaluated the accuracy of information extraction.

We calculated the ontology similarity with the NDCG. Finally, we also tested the
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performance of résumé job matching algorithm via precision@k and NDCG, which

showed that our algorithm can achieve a better searching result than other informa-

tion retrieval models like TF-IDF and OKpai BM25. We also compared our system

with the commercial job search engine www.indeed.com, and the results showed that

our system can return jobs with a better ranking.

9.2 Future Work

Finding a job is a complex process, affected by both explicit and implicit factors.

Our work establishes the validity of using information extraction techniques to create

a more personalized job matching system, with ample potential for improvement in

the future.

First we can introduce a more complex job and rsum model to improve perfor-

mance of the system. In the résumé model, we can consider hiring history and project

experience of the job seekers. To improve the job description model, job responsi-

bilities and company characteristics (size, dress code, etc.) should be considered as

well.

Second, to improve searching speed of our system, we can reduce the the number

of comparison by filtering out jobs that are clearly not related to résumés. The system

can classify the jobs into some different subsets, when searching jobs, the system only

need to calculate the similarity between the résumé and according subset of jobs.

RésuMatcher is a content based recommendation system that is mostly focused

on comparing the similarities between the résumé and a relevant job description.

In future work, we could introduce a hybrid recommendation system that would

take advantage of other recommendation algorithms such as Collaborative Filtering.

Future work on this system would place greater consideration on job seeker’s personal

preference like job location, career development plan, and company background.
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