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ABSTRACT

Improved Connected-Component Expansion Strategies for Sampling-Based

Motion Planning. (May 2013)

Juan L. Burgos
Department of Computer Science and Engineering Department

Texas A&M University

Research Advisor: Dr. Nancy M. Amato
Department of Computer Science and Engineering Department

Motion planning is the problem of computing valid paths through an environment. Since

computing exact solutions is intractable, sampling-based algorithms, such as Probabilistic

RoadMaps (PRMs), have gained popularity. PRMs compute an approximate mapping of

the planning space by sacrificing completeness in favor of efficiency. However, these algo-

rithms have certain bottlenecks that hinder performance, causing difficulty mapping narrow

or crowded regions, with the asymptotic bottleneck of these algorithms being the nearest-

neighbor queries required to connect the roadmap. Thus, roadmaps may fail to efficiently

capture the connectivity of the planning space. In this thesis, we present a set of connected

component (CC) expansion algorithms, each with different biases (random expand, expand

to the nearest CC, expand away from the host CC, and expand along the medial-axis) and

expansion node selection policies (random, farthest from CC’s centroid, and difficult nodes),

that create a linked-chain of configurations designed to enable efficient connection of CCs.

Given an a priori roadmap quality requirement in terms of roadmap connectivity, we show

that when our expansion methods augment PRMs, we reach the required roadmap connec-

tivity in less time.
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CHAPTER I

INTRODUCTION

Motion planning is the problem of finding a valid (e.g., collision-free) path through an envi-

ronment given specified start and goal positions for a moveable object (e.g. a robot). Motion

Planning has applications in fields such as robotics, computer animation [1], and computa-

tional biology [2]. However, it is intractable to use exact algorithms in scenarios involving

more than five degrees of freedom (dofs) [3].

Therefore, sampling-based methods such as Probabilistic RoadMaps (PRMs) [4] and Rapidly-

exploring Random Trees (RRTs) [5] are preferred because they compute approximate map-

pings of the space that can be used to solve problems. These algorithms sacrifice complete-

ness for improved efficiency to scale to complex systems (many dof problems). PRMs, in

particular, first sample valid configurations from the configuration space (Cspace) [6], the set

of all possible (valid and invalid) positions that a robot can take, and then attempt to add

valid edges between neighboring configurations with simple local planners (e.g., straight line

or others) or deterministic paths. PRMs compute an approximate mapping of the free space

producing a roadmap (graph) that may solve queries. Queries are solved by connecting

start and goal configurations to the roadmap (if possible), and finding a path (if one exists)

using a graph search algorithm. There exist a variety of PRMs, some differing in how they

bias node placements and/or edge assignments [7–11]. All variants, however, still retain the

bottleneck of nearest-neighbor queries since each new node is connected to the roadmap.

However, some variants have trouble capturing the connectivity of the free space.

In this thesis, we present a set of linked-chain expansion methods designed to support PRMs

by efficiently improving their roadmap’s connectivity. These methods work by expanding

from a selected node in some direction until an obstacle is encountered or reaching a max-

imum expansion distance, and then repeating the process with a new expansion direction.
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Expansion nodes are connected to their predecessor and successor nodes without the need

for nearest-neighbor queries resulting in chains of connected configurations in the free space.

Our first linked-chain method expands in a random direction chosen from a uniform distri-

bution along all dofs, two others perform goal-biased expansions that explore either towards

or away from a particular configuration, respectively, and the fourth grows in both directions

tangent to the medial axis.

The primary contributions of this work are as follows:

• Introduction of linked-chain based expansion methods; RandomExpand, ExpandTo,

ExpandFrom, and MedialAxisExpand to improve roadmap coverage and connectivity.

• Comparative 2dof, 6dof, and 9dof experiments running PRM, OBPRM, and a hy-

brid of both, with and without our expansion methods, to show improvements in

efficiency in mapping Cfree.

The work presented in this thesis has also been submitted for publication. [12].

Organization of this Thesis

The rest of this thesis is organized with Chapter 2 detailing important related work, Chapter

3 introducing our expansion framework, Chapter 4 presenting results and discussion over

experimental outcomes, and Chapter 5 concludes the thesis and describes potential avenues

for future work.

5



CHAPTER II

PRELIMINARIES AND RELATED WORK

In this chapter, we cover the preliminaries of motion planning and describe the most signif-

icant related work that is relevant to the proposed methods.

Motion Planning Preliminaries

A robot is a movable object whose position and orientation can be described by n parameters,

or degrees of freedom (dofs), each corresponding to an object component (e.g., position,

orientation, link angles, and/or link displacements). Hence, a robot’s configuration q can be

uniquely described by an n-dimensional vector 〈q1, q2, . . . , qn〉 where qi is the ith dof. The

space, consisting of all possible robot configurations (feasible or not), is called configuration

space (Cspace) [6]. The subset of all feasible configurations is the free space (Cfree), while

the union of the infeasible configurations is the obstacle space (Cobst). Thus, the motion

planning problem becomes that of finding a continuous trajectory in Cfree from a given start

configuration to a goal configuration.

In general, it is intractable to compute explicit Cobst boundaries [3]. However, the feasibility

of configurations can be determined quite efficiently, e.g., by performing a collision detection

(CD) test in the workspace, the robot’s natural space, a two or three dimensional space. This

motivates the use of sampling-based approaches such as PRMs over exact methods because

they only consider a finite set of sampled robot configurations.
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Probabilistic RoadMaps

Probabilistic RoadMap [4] algorithms commonly have two major phases as seen below in Al-

gorithm 1: roadmap construction and query. During the construction phase, configurations

are sampled in Cspace and validated. This step is followed by a node connection step where

deterministic paths between neighboring nodes are computed using nearest-neighbors com-

putations. An optional CC connection step may then be applied, after the node connection

Algorithm 1 Basic PRM Algorithm with CC Connection

1: Roadmap G← ∅ {Roadmap C̈onstructionS̈tep}
2: while ¬DONE do

3: Sample nodes from Cfree.
4: Connect nodes to each other.
5: Connect CCs to each other.
6: end while{Roadmap Q̈ueryS̈tep}
7: Query the roadmap G.

step, with varying CC pairing policies to improve the roadmap’s connectivity [13]. Finally,

queries are attempted on the roadmap.

Some PRM variants improve sample generation [7–10,14–16]. Obstacle-based PRM, (OBPRM) [7]

and Uniform OBPRM (UOBPRM) [8], generate samples near Cobst. Medial-axis based meth-

ods [9,17,18] generate nodes in areas of high clearance. The Gaussian sampling strategy for

PRM [14] and the Bridge Test sampler for PRM [15] both filter node generation to specific

areas of the environment, either the boundary of Cobst or narrow passages respectively.

Making use of node visibility, the Visibility PRM (VISPRM) [10] strategy allows for roadmap

construction to be concentrated in unexplored areas of Cfree. Visibility can also be extended

towards considering nodes as representations of hyperspheres in Cfree instead of points [16],

and using those volumes to represent regions of configurations as opposed to single config-

urations. Each of these variants of the original PRM bias their sampling distributions, but

may still produce a disjoint roadmap with many connected-components (CCs).
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Reachability analysis [19] shows that more emphasis needs to be directed towards the con-

nection phase of PRM roadmap construction to improve coverage and connectivity. The

metrics described in [20] provide a way to measure the effectiveness of PRM’s to further our

understand where these methods perform best. This was extended to improve the sampling

process for PRMs by filtering new samples with respect whether they improve roadmap

connectivity [21]. The goal of sampling-based motion planning is to approximate Cfree as

well as possible. Hence, coverage is an important metric with which we can measure the

performance of a method.

Connecting CCs requires a choice of local planners, such as Toggle Local Planner [22], and

distance metrics [23]. Some metrics for choosing CC pairings to connect are described in [13]

and include size and distance of CC’s as well as others.

Optimal sampling-based methods [24] guarantee that the solution returned by the algorithm

is the asymptotically optimal roadmap in terms of shortest paths. PRM*, one such method,

is optimal, but suffers from the same bottleneck of nearest-neighbor queries as its sub-optimal

variants.

Parallel PRMs

In recent years, much focus has been given to parallel processing to address the issue of the

resource/workload problem. Not only can parallel computing reduce the computation time

by distributing work flow over several processors, the quality of the data that is produced

can also be improved. The sequential PRM strategy was first parallelized in [25], then spe-

cialized for protein folding applications in [26]. In this approach, each processor generates

an equal number of nodes throughout the configuration space and added it to the roadmap.

Each processor followed by attempting to connect its nodes to its k closest neighbors. Major

bottlenecks with this strategy have included the total workload per processor and local-

ity of information. By subdividing the workspace space into separate partitions, we limit
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the total workload and communication costs of each processor to processing data from its

corresponding partition and neighboring partitions.

Each of our ρ processors asynchronously performs the sequential PRM strategy in its region

which results in at least ρ CCs. These CCs are disjoint subsets of the overall roadmap that

reflect the connectivity of their respective regions. If possible we want to connect these

neighboring disjoint subsets of the roadmap to increase the connectivity of our roadmap;

therefore we need strategies to connect them. Due to this, we see that CC expansion tech-

niques won’t simply be useful in sequential sampling-based methods, they will become crucial

in supporting parallel strategies.
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CHAPTER III

LINKED-CHAIN EXPANSION METHODS

Our proposed CC expansion methods are designed to augment PRMs by running immedi-

ately after the node connection step and before any subsequent optional CC connection step,

where CCs can form because attempted connections between CCs possibly fail due to the

presence of obstacles. By running our methods prior to the CC connection step our methods

attempt to improve each CC’s coverage and connection success rate.

Starting from a chosen expansion node, these methods generate a directional ray in Cspace

and linearly expand in the given direction until some stopping condition is met, e.g., an

obstacle is encountered or a maximum expansion distance is reached. At which point either

a new expansion direction is generated or the expansion ends. The expansion nodes and

directions will depend on the chosen biases that will be explained in Sections III and III,

respectively.

Each node in our CC expansion phase can be considered a link in a connected set (usually

a chain). Nodes in this set are immediately connected to their predecessor and successor

nodes, removing the need for a nearest-neighbor search. Thus, we can avoid nearest-neighbor

queries during our expansion process. If multiple CCs exist, these algorithms should increase

the likelihood that these CCs will be connectible.

In this section, we will detail the ideas behind CC expansion; first by providing an overview

of our CC expansion setup in Section III, followed by a description of our node selection

process in Section III, and a detailed description of each expansion algorithm in Section III.
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Expansion Setup

We present our expansion setup in Algorithm 2. We iterate over every connected component

in the roadmap and apply the chosen CC expansion method on the candidate set of expansion

nodes.

Algorithm 2 General Expansion Scheme

Input: Roadmap R, ExpandStrategy ES

1: for all CC ∈ R do

2: S ← SelectExpansionNodes(CC)
3: for all s ∈ S do

4: ES.Expand(s)
5: end for

6: end for

Many of the algorithms will also make reference to two global input variables δmin and δmax

which provide limits on expansion distances.

1. δmin provides a lower-bound for inter-node distances between expansion nodes so that

we prune expansions that yield little to no new coverage and to attempt to provide

a certain degree of minimal clearance, to each new node, from obstacles (and other

nodes in Algorithm 7).

2. δmax provides an upper-bound to expansion distances so that we do not produces paths

that are too long without intermediate nodes being present.

The expansion framework makes use of the following utility functions:

• UpdateRoadmap(q1, q2[, q3]) : This method updates the roadmap by adding node pairs

with edges between them. It works by checking if a valid path can be constructed

between nodes (q1, q3), and if so adds this edge. Else, we add edges (q1, q2) and (q2, q3).

The third argument [, q3] is optional since we may only want to add the pair (q1, q2) to

the roadmap.
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• ShortDist(q, r) and LongDist(q, r) : These methods return a valid configuration that

is at most δmin or δmax from node q in the direction of ray r, during an expansion step.

Expansion Node Selection Policies

In order to expand roadmap CCs, we first need to identify the candidate nodes in each CC

from which to perform the expansion. Since the goal of the expansion process is to increase

the connectivity of the roadmap, the choice of expansion node becomes an important first

step. We want to expand nodes in areas of low visibility and/or node density since these areas

may be potential pathways between CCs and would be more likely to provide an increase in

coverage. We provide several policies for choosing potential candidate nodes:

1. Random: Picks some random configuration c ∈ CC for expansion.

2. Farthest: Picks the farthest node from the CC’s centroid using some distance metric

(e.g., Euclidean). The centroid represents the configuration with the average of each

dof in the represented CC.

3. Difficult: Makes use of approximate node visibility as its metric [20] by computing

the ratio of successful and total connection attempts to each configuration c ∈ CC.

The least visible nodes are those with the lowest ratios. We select these as candidates

for expansion.

Expansion Algorithms

In this section, we describe four expansion algorithms, each of which is a specific derivation

of the two-step expansion technique shown in Algorithm 3. The first expansion step performs

the expansion in a direction biased towards a suitable goal specific to the method, until an

obstacle is reached. The second expansion step acts on the node resulting from the first step

and expands in some direction in preparation for the next expansion iteration.
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Algorithm 3 Expansion Technique Outline

Input: Configuration q

1: for i = 1 . . .MaxIterations do

2: q′ ← FirstExpansion(q)
3: q′′ ← SecondExpansion(q′)
4: UpdateRoadmap(q, q′[, q′′])
5: q ← q′′

6: end for

13



Random Expand

The first method in the expansion framework, as shown in Algorithm 4 and Figure III.1, is

the random expansion algorithm. A list of configurations is produced by first performing

a long distance expansion in a randomly chosen direction (Fig. III.1(a),III.1(b)), executing

a short distance expansion meant to gain some clearance for the next expansion iteration

(Fig. III.1(c)), and repeating (Fig. III.1(d)).

Algorithm 4 RandomExpand

Input: Configuration q

1: for i = 1 . . .MaxIterations do

2: q′ ← LongDist(q, RandomDir())
3: q′′ ← ShortDist(q′, RandomDir())
4: UpdateRoadmap(q, q′, q′′)
5: q ← q′′

6: end for

(a) (b) (c) (d)

Fig. III.1. Example environment (a) shown with a CC (blue) to be expanded. A
random vector is chosen and expanded along (b), then a small random directional
vector is chosen to push away from obstacles (c). The process is repeated in (d).

Expand-From-CC-Centroid

This method is described in Algorithm 5 and shown in Figure III.2. We produce a list of

configurations that expand away from the centroid of the node’s CC in the PushAwayFrom(..)

step until an obstacle is reached (Fig. III.2(a),III.2(b)), and execute a short expansion in

a random direction to gain some clearance for the next iteration, which may help escape

14



local minima (Fig. III.2(c)). We continue repeating this process until the max number of

iterations is met (Fig. III.2(d)).

Algorithm 5 ExpandFrom

Input: Configuration q

1: centroid← GetCCCentroid(q)
2: for i = 1 . . .MaxIterations do

3: q′ ← PushAwayFrom(q, centroid)
4: q′′ ← ShortDist(q′, RandomDir())
5: UpdateRoadmap(q, q′, q′′)
6: q ← q′′

7: end for

(a) (b) (c) (d)

Fig. III.2. Example environment (a) shown with a CC (blue) to be expanded.
A vector away from the center of mass of the CC (blue square) is chosen and
expanded along (b), then a small random directional vector is chosen to push
away from obstacles (c). The process is repeated in (d).

Expand-To

Unlike ExpandFrom, Algorithm 6 (example shown in Figure III.3) produces a list of config-

urations as it expands towards the centroid of the nearest neighboring CC using NearestC-

CCentroid(..) (Fig. III.3(a),III.3(b)), executes a long distance walk in a random direction

(Fig. III.3(c)), and repeats (Fig. III.3(d)). The second expansion step is a long distance

instead of a short distance walk because short walks would not provide enough clearance for

the proceeding iteration because the algorithm may get stuck expanding into an obstacle.
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The algorithm stops when an expansion node is determined to be close enough to that CC’s

centroid, as calculated by the WithinProximity(..) subroutine. This method, on line 4 of

Algorithm 6, returns true if nodes n1 and n2 are within our predefined distance δmin from

each other and false otherwise.

Note that the number of CCs, and hence the input size of a nearest-neighboring CC com-

putation, is typically much smaller (and never more) than the number of configurations. In

the event that there is only one CC in the environment, a random direction is selected for

expansion instead since there may still be benefit in expanding.

Algorithm 6 ExpandTo

Input: Configuration q

1: targetCC ← NearestCCCentroid(q)
2: for i = 1 . . .MaxIterations do

3: q′ ← PushToTarget(q, targetCC)
4: if WithinProximity(q′, targetCC) then
5: UpdateRoadmap(q, q′, targetCC)
6: Break
7: else

8: q′′ ← LongDist(q′, RandomDir())
9: UpdateRoadmap(q, q′, q′′)
10: q ← q′′

11: end if

12: end for

(a) (b) (c) (d)

Fig. III.3. Example environment (a) shown with a CC (blue, bottom left) to be
expanded towards the other CC (blue, top right). A vector towards the center
of mass of the target CC (blue square) is chosen and expanded along (b), then a
small random directional vector is chosen to push away from obstacles (c). The
process is repeated in (d).
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Medial-Axis Expand

Unlike the previous methods, our final expansion strategy, as seen in Algorithm 7 and Fig-

ure III.4, biases expansion along the medial axis. This method requires a history of the

previous two expansion nodes, so we initialize this history by shooting a ray in a random

direction from our initial expansion node q until we impact an obstacle or reach max distance

δmax, where we place a valid (non-colliding) “bump” node q′ (Fig. III.4(a),III.4(b)). We push

q′ to the medial-axis and place a second temporary node q′′ (Fig. III.4(c)). After running

UpdateRoadmap(..), we recursively expand in both directions of the tangent (lines 10 and

14 of Algorithm 7), and repeat (Fig. III.4(d)).

The IsClear(..) method, on lines 7 and 11 of Algorithm 7, is a method designed to make sure

that we do not expand into areas already mapped by other expansion branches by making

sure that each new medial-axis nodes is at least δmin distance away from all the others.

This is meant to prune expansion branches that are expected to garner little-to-no gain in

coverage.

Note that we check to see if we are currently in iteration zero since our first random expansion

may produce initial nodes that are too close and may trigger the IsClear(..) condition to

return false.

(a) (b) (c) (d)

Fig. III.4. Example environment (a) shown with a CC (blue) to be expanded with
bias along the medial axis (dotted gray line). A direction is chosen to expand
along (b), and then this node is pushed towards the medial axis (c). Finally, a
vector combination of the dotted red lines (from the previous expansions) is used
to expand along both directions of the tangent of the medial axis (d).
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Algorithm 7 MedialAxisExpand

Input: Configuration q, Directional Ray r ∈ ℜ3, Integer i
1: if i > MaxIterations then

2: return

3: end if

4: q′
1
← LongDist(q, r)

5: q′
2
← LongDist(q,¬r)

6: q′′
1
← PushToMedialAxis(q′

1
)

7: q′′
2
← PushToMedialAxis(q′

2
)

8: if IsClear(q′′
1
) && i 6= 0 then

9: UpdateRoadmap(q, q′
1
, q′′

1
)

10: r′ ← MedialAxisTangent(q, q′
1
, q′′

1
)

11: MedialAxisExpand(q′′
1
, r′, i+ 1)

12: end if

13: if IsClear(q′′
2
) && i 6= 0 then

14: UpdateRoadmap(q, q′
2
, q′′

2
)

15: r′ ← MedialAxisTangent(q, q′
2
, q′′

2
)

16: MedialAxisExpand(q′′
2
, r′, i+ 1)

17: end if

Algorithm 8 MedialAxisTangent

Input: Configurations q, q′, q′′

1: ~a = 〈q, q′〉

2: ~b = 〈q′, q′′〉

3: ~c1 = ~a×~b

4: ~c2 = ~b× ~c1

5: return ~c2

18



Algorithm 8 uses two cross products to produce a ray ~c2 tangent to the medial-axis at node

q′′. We only use the robot’s positional degrees of freedom when computing the tangent rays

since using rotational dofs would cause us to return rays that do not reflect the medial-axis

of the workspace and may produce trajectories into obstacles.
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CHAPTER IV

EXPERIMENTS AND RESULTS

In this section, we perform a case study of six environments of varying topologies and dif-

ficulties. The experiments aim to compare PRM, OBPRM, and a Hybrid (PRM/OBPRM)

method with and without a CC expansion step. The experiments compare the efficiency in

mapping Cfree.

Experimental Setup

All experiments were run on a Rocks Cluster running CentOS 5.1 with Intel XEON CPU

2.4 GHz processors with the GNU gcc compiler version 4.1.2.

All the PRM variants and expansion methods described in this thesis were implemented in

a C++ library developed in the Parasol Lab at Texas A&M University. It uses a distributed

graph data structure from the Standard Template Adaptive Parallel Library (STAPL) [27],

a C++ library designed for parallel computing. Samples are generated with uniform (PRM),

obstacle-based (OBPRM), mixed (Hybrid) distributions.

To connect nodes, a euclidean distance metric is used with a brute-force neighborhood finder

to identify the 5 nearest neighbors and attempt connections to them using a straight-line

local planner. Each of our sampler’s continuously sampled 50 nodes before running our CC

expansion methods each iteration until our goal of 90% approximate roadmap connectivity

was achieved. We attempted to expand from two expansion nodes per CC for seven expan-

sion iterations in all cases involving CC expansion. Our stopping condition made use of a

sample query of over 100 nodes, that were uniformly sampled from each environment, as a

representative set for Cfree. After each iteration, we attempted queries between all pairs of
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these nodes using the current roadmap and computed the approximate connectivity as the

ratio between successful and total number of query attempts.

All run time results have been normalized such that all PRM results are normalized to the

Basic PRM method, similarly the OBPRM and Hybrid experiments have been normalized.

Each of the plots in Sections IV, IV, and IV abide by the legend in Fig. IV.4: The x-axes of

these plots will also make use of the keys in Table IV.1 to denote CC expansion method and

node selection policy combinations. The “BASIC” label will be applied to experiments where

PRM, OBPRM, or Hybrid do not include any expansion methods. Otherwise, the following

keys will be used to refer to method combinations where the first two letters denote the

expansion method and the third letter, after the hyphen, refers to the node selection policy.

Six environments were used in our experiments: three 2dof, two 6dof, one 9dof as dis-

played in Fig. IV.1, IV.2, and IV.3 respectively.

(a) (b) (c)

Fig. IV.1. (a) simple tunnel (s-tunnel) environment with two open areas and
one narrow passage. (b) cluttered environment with 250 square obstacles. Maze
environment (c) which contains many long narrow passages and two entrances.
Each of our environments has a 2dof translational robot.

RandomExpand ExpandTo ExpandFrom MedialAxisExpand
Random Node RE-R ET-R EF-R MA-R
Farthest Node RE-F ET-F EF-F MA-F
Difficult Node RE-D ET-D EF-D MA-D

Table IV.1
Acronym key for the x-axis of each stacked histogram plot.
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(a) (b)

Fig. IV.2. Both of our 6dof environments provide narrow passages. The U-
Tunnel (a) has several curved passages with with four entrances, two on the top
and bottom. The Z-Tunnel (b) has a series of straight inter-connected tunnels
that zigzags through the interior of the rectangular box (we’ve removed the ceiling
to reveal the tunnel in the above image). A box is used in the Z-Tunnel and a
spinning-top is used in the maze as the robot.

Fig. IV.3. The Heterogeneous environment was used in our 4-link 9dof robot
experiments, it consists of a box with a narrow passage with a cluttered region
followed by open space at both openings of the narrow passage.

Fig. IV.4. Color key for all the stacked histogram plots mapping color to
sampling-based method.
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2dof - Experimental Results

S-Tunnel Environment

The 2dof S-Tunnel environment, as shown in Fig. IV.5, contains open areas connected by

a curved narrow passage. We show that when our expansion methods are applied, there

is a decrease in total mapping time in most PRM experiments. Choosing the Difficult

nodes was the best choice since they were more likely to be within the narrow passages,

thus expansion were more likely to improve the roadmap’s representation of the narrow

passage’s free space. The Random and Farthest node selection policies were more likely

to select nodes for expansion that were less likely to yield reductions in the total mapping

time. When attempting to expand in narrow passages, it is not beneficial to pick random

nodes to expand from since it is not likely they will be in the narrow passage. Choosing the

Farthest nodes will not help either due to the random structure that CCs can take, making

the Farthest node(s) a poor choice. Since OBPRM managed to place more nodes in the

narrow passage, forming CCs in the narrow passage, we see significant improvement in all

method combinations. The Hybrid experiments also reflected this pattern, in all cases, since

the OBPRM nodes placed in the narrow passage allowed the expansion methods, regardless

of node selection policy, to map it.

Fig. IV.5. Total Cfree mapping time normalized over the corresponding “Basic”
sampling-based method in our 2dof S-Tunnel environment.
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Clutter Environment

The 2dof Clutter environment, as shown in Fig. IV.6, contains a large number of obsta-

cles produce many narrow passage areas that needed to be navigated to connect CCs. The

PRM experiments show an improvement in the majority of experiments, the best improve-

ment came from MedialAxisExpand with a 25% improvement in total mapping time since

the expansions along the medial-axis expanded each CC’s coverage much quicker than the

other methods. The OBPRM and Hybrid experiments followed this pattern, though we saw

improvement beyond 50% during the OBPRM experiments when using MedialAxisExpand.

Fig. IV.6. Total Cfree mapping time normalized over the corresponding “Basic”
sampling-based method in our 2dof Clutter environment.

Maze Environment

The 2dof maze environment, as shown in Fig. IV.7, contains many long narrow passages;

we see that MedialAxisExpand mapped Cfree very quickly with ExpandFrom close behind.

ExpandFrom worked well because when expanding away from a CC’s centroid in straight

narrow passages, the nodes could be placed at the ends of the passages allowing other CCs

to possibly connect to them. ExpandTo, using Random node selection, returned the lowest

gain and sometimes increased the running time. This is because very few expansion attempts
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would yield any benefits since a thin wall separating two CCs may cause the CCs to attempt

to expand into each other. Notice that ExpandTo also produced a large outlier when using

the Random node selection policy. This was because choosing to expand to the nearest CC

from a random node would fail very often.

Fig. IV.7. Total Cfree mapping time normalized over the corresponding “Basic”
sampling-based method in our 2dof Maze environment.

6dof - Experimental Results

U-Tunnel Environment

The U-Tunnel environment, as shown in Fig. IV.2(a), is an hourglass shaped environment

with 4 interconnected ”U” shaped tunnels. In the U-Tunnel, we see that only the Medi-

alAxisExpand strategy provided a significant performance increase. In higher dimensions,

RandomExpand is not likely to yield benefit in narrow passages. The ExpandFrom and

ExpandTo methods would be trapped in local minima produced by the curved nature of

the narrow passages, so the potential benefit of their secondary expansion steps, meant to

increase clearance, would not be of much benefit.
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Fig. IV.8. Total Cfree mapping time normalized over the corresponding “Basic”
sampling-based method in our 6dof U-Tunnel environment.

Z-Tunnel Environment

The Z-Tunnel environment, as shown in Fig. IV.2(b), contains interconnected narrow pas-

sages consisted of straight paths with sharp 90◦ turns. Due to this, ExpandFrom, ExpandTo,

and RandomExpand showed benefit in most cases since a straight line expansion could po-

tentially travel directly through the narrow passage. MedialAxisExpand worked very well

because, a well placed node in the narrow passage, would produce expansions in both direc-

tions allowing the narrow passage to be mapped and both free space halves of the environment

connected.

Fig. IV.9. Total Cfree mapping time normalized over the corresponding “Basic”
sampling-based method in our 6dof Z-Tunnel environment.
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9dof - Experimental Results

Heterogeneous Environment

The 9dof Heterogeneous environment is shown in Fig. IV.3. For our articulated-linkage

experiments, we used a complex environment with two cluttered regions with a narrow

passage separating them. The best expansion strategy was ExpandFrom, across all methods,

because it would expand well through the narrow passage and around obstacles allowing both

halves of the environment to be connected. The best node selection strategy was the Farthest

node policy. Expanding from Random nodes would yield little benefit in this environment.

Fig. IV.10. Total Cfree mapping time normalized over the corresponding “Basic”
sampling-based method in our 9dof Heterogeneous environment.

Discussion

From our experiments we have noticed that each of our expansion methods and node selection

policies are best applied in certain domains. RandomExpand works in most cases. In higher

dimensions the benefits are lessened. ExpandFrom works well, even at higher dimensions

and with articulated-linkage robots if narrow passages are not curved. ExpandTo worked

similarly to ExpandFrom, however, in maze-like environments this method increased the

total mapping time. MedialAxisExpand was the best expansion strategy in almost every
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case since expansions were always performed along the medial-axis guaranteeing that each

expansion step would produce long edges that may map difficult regions, especially narrow

passages since the expansion is performed along both directions of the medial-axis.

With respect to the node selection policies, the Farthest node policy was best suited to

narrow passage problems and the Difficult node policy was suited cluttered environments.

The Random node policy performed poorly in many cases when compared to the other two

strategies; this is understandable since expanding from a random node in a large roadmap

is unlikely to yield much benefit.
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CHAPTER V

CONCLUSION

In this thesis, we present a set of novel linked-chain expansion methods, and results from a

study of their performance in various 2dof, 6dof, and 9dof environments when compared

against PRM, OBPRM, and a Hybrid of both. These linked-chain expansion methods focus

expansion in different ways to increase the visibility of connected components and improve

roadmap coverage and connectivity. We experimentally show that in environments of varying

complexity that our methods tend to improve roadmap connectivity quicker than PRM

and OBPRM alone when the expansion bias and node selection policy compliments the

environment’s geometry. In more complicated scenarios, the performance of our methods

become more specialized showing that different problem types call for specific expansion

strategies.

In the future, we want to further explore the efficiency of these methods to improve roadmap

connectivity in higher dimensions. Exploring higher dimensional problems would allow us

to further analyze the benefits expansion method biases and node selection methods.
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