
MATHLEX

A WEB-BASED MATHEMATICAL ENTRY SYSTEM

An Undergraduate Research Scholars Thesis

by

MATTHEW J. BARRY

Submitted to Honors and Undergraduate Research
Texas A&M University

in partial fulfillment of the requirements for the designation as

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Research Advisor: Dr. Philip B. Yasskin

May 2013

Major: Computer Science
Applied Mathematical Sciences

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/79650694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE OF CONTENTS

Page

ABSTRACT . 1

NOMENCLATURE . 2

I INTRODUCTION . 4

Audience . 4

Background Information . 4

Question 1 . 4

Question 2 . 4

Existing Technology . 4

Response to Question 1 . 4

Response to Question 2 . 5

Introducing MathLex . 8

II MATHLEX FOR THE NOVICE (STUDENT & INSTRUCTOR) 9

Introduction . 9

Language Specification for the Masses . 10

Summary . 10

Symbols by Type . 14

Symbols by Topic . 21

How MathLex Works . 26

Input to Syntax Tree . 26

Page

Syntax Tree to Output . 27

III MATHLEX FOR THE INSTRUCTOR . 30

Sample Page Source Code . 31

Page Layout . 33

JavaScript Inclusions . 33

Handling MathJax Output . 34

Live-Updating Math Display . 34

Sending Math to Sage . 35

Sage Processing . 37

Additional Comments . 37

IV MATHLEX FOR THE PROGRAMMER . 40

Grammar Basics and Theory . 40

Backus-Naur Form . 41

Extended Backus-Naur Form . 42

Modified EBNF . 43

MathLex Grammar . 44

MathLex Token Grammar . 44

MathLex Language Grammar . 50

Building a Renderer . 54

V FUTURE DEVELOPMENTS . 56

Page

Processing Incomplete Input . 56

Implicit Multiplication . 57

Type-Checking . 59

Third-Pass Parsing . 60

Additional Symbols and Alternate Notation . 61

Graphical and Handwritten Input . 62

REFERENCES . 63

ABSTRACT

MathLex
A Web-Based Mathematical Entry System. (May 2013)

Matthew J. Barry
Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. Philip B. Yasskin
Department of Mathematics

Mathematical formulas are easy to convey in handwritten media, but how should they be

represented in electronic format? Unfortunately, mathematical content has not been as well-

implemented on the Web as images and video. There are two sides to this problem: display

and input. The former has been solved in multiple ways by representing formulas as images,

MathML, or LATEX (via MathJax). Representing math input is much more difficult and is the

subject of this thesis. The goal is to enable users to enter complex formulas. Unfortunately,

existing languages either are too complex for an average user (difficult to learn and/or read),

only work in a particular environment (they have system and browser compatibility issues),

or lack certain math concepts. Some do not even retain mathematical meaning. This thesis

presents MathLex, an intuitive, easy-to-type, unambiguous, mathematically faithful input

language and processing system intended for representing math input (and potentially dis-

play) on the web. It aims to mimic handwritten math as much as possible while maintaining

semantic meaning.

1

NOMENCLATURE

AJAX Asynchronous JavaScript and XML; a misnomer acronym used to describe the process

of making an HTTP request without refreshing the active page

AST Abstract Syntax Tree

BNF Backus-Naur Form (for grammar encoding)

CAS Computer Algebra System

CCLI (NSF DUE) Course Curriculum and Laboratory Improvement program

CDN Content Distribution Network

CSS3 Cascading StyleSheets, version 3

DOM Document Object Model

DUE (NSF) Division of Undergraduate Education

EBNF Extended Backus-Naur Form (for grammar encoding; an extension of BNF)

Flash A browser plugin and animation framework designed by Macromedia and then ac-

quired by Adobe

Formal Language A strictly defined language for interpretation by a computer program

Grammar A standardized encoding of the syntax rules of a formal language

HTML5 HyperText Markup Language, version 5

HTTP HyperText Transfer Protocol

Java A popular object-oriented programming language built to run cross-platform software

in a virtual machine; developed by Sun Microsystems (obtained by Oracle in 2009)

Jison A JavaScript parser Generator Library developed by Zach Carter

JS JavaScript; technically an implementation of ECMAScript

2

JSON JavaScript Object Notation; an increasingly popular data serialization construct al-

ternative to XML

LATEX Extension of TEX macros for easier document typesetting; written in 1985 by Leslie

Lamport and still very popular today

LHS Left-Hand-Side (of a binary expression)

M4C Maplets for Calculus

MathML Math Markup Language, XML specification for representing mathematics on the

Web (version 3 released in Oct 2010)

NSF The National Science Foundation

OpenMath An XML standard similar to MathML, but designed to retain semantic mathe-

matical meaning

Parser Validates an input stream (in MathLex’s case, a Token stream) and optionally out-

puts a parse result (MathLex’s Parser produces an AST)

Renderer A recursive function utility that traverses the AST produced by MathLex’s Parser

RHS Right-Hand-Side (of a binary expression)

TEX A document typesetting language written by Donald Knuth in 1978

Token A string of one or more characters representing a mathematical symbol or quantity

Tokenizer Produces a list/stream of Tokens from an input string

Translator (see Renderer)

TUES (NSF) Transforming Undergraduate Education in Science

URL Uniform Resource Locator

W3C The World Wide Web Consortium

XML eXtensible Markup Language; a superset of HTML that uses arbitrary tag names

3

CHAPTER I

INTRODUCTION

Audience

This document is written for a broad audience. Although its content is heavily laced with

computer science and mathematical theory, the reader needs only a minimal understanding

of such concepts.

Background Information

Mathematical Formulas are easy to convey in handwritten media, but how should they be

represented in electronic forms such as email, a web forum, an online homework system, or

simple typesetting? There are two sides to this question:

Question 1. How is math embedded (accounting for visual appearance and semantic value)

in web pages and other electronic formats?

Question 2. How can a user input semantic math in an electronic form for submission?

(This is the topic of this thesis)

Existing Technology

Response to Question 1

The first computer typesetting system was TEX, written by Donald Knuth in 1978 [1]. Leslie

Lamport extended TEX to LATEX in 1985 to make it more user-friendly [2]. It is still the

most popular math typesetting language, and many technical journals require that papers

4

be submitted in some style of LATEX; even this thesis is written using LATEX. With the advent

of the Web, math was initially displayed by inserting images of rendered LATEX. Wikipedia

uses this method to represent intricate mathematical formulas. However, pixel-based images

do not scale as clearly as text and other page contents. A recent JavaScript plugin, named

MathJax, directly renders vector-based, scalable LATEX on a web page without using images,

and is currently lauded as one of the best method to display math on the Web [3].

With the growth in the use of computer algebra systems such as Maple [4], Mathematica [5],

TI’s Derive [6], Matlab [7], Sage [8], PocketCAS [9], etc., mathematicians became aware

that any system for storing mathematical formulas should also preserve the meaning of

those formulas. Unfortunately, LATEX is primarily meant to be a display language and is

not intended for storing semantic mathematical content. In contrast, all computer algebra

systems have input languages which preserve content and allow computers to interpret and

evaluate the input but can obscure math with unconventional notation.

In 1998, the World Wide Web Consortium (W3C) approved the first recommendation of

MathML , an XML representation of math content [10]. Even though MathML has under-

gone two major revisions, manually typing MathML is very tedious and lengthy. Further-

more, browsers’ built-in MathML renderers (if present at all) are often inferior compared

to LATEX. MathJax also addresses this problem since it can render MathML in the same

way as LATEX. Apart from MathML, mathematical content has not been well-implemented

compared to images and video as Web technology has improved [3].

Response to Question 2

Most average users dislike the programming-language-like rigidity of computer algebra sys-

tems (CAS) , so they should not be expected to type input for a CAS, let alone in MathML

or LATEX. Nonetheless, users should easily be able to enter subscripts, superscripts, fractions,

5

expanding brackets, special symbols, etc. Some web designers have solved this problem with

different plugins, but each has certain “flaws”:

• Illegibility and Difficulty. As mentioned previously, LATEX is hard for students to

learn, and MathML is essentially impossible. Similarly, most CAS input languages can

be difficult to learn and read since they are reminiscent of programming languages.

Indeed most systems adopt the conventions of the language on which they are built.

For example, Matlab resembles the C programming language; Maplets for Calculus

uses Maple’s input language, which in turn is based on Pascal; and Sage is a close

relative of Python. Thus the ease of learning to use a CAS often depends on the

user’s familiarity with the underlying language. This is especially apparent in simple

interfaces such as Sage Notebook or Maple Worksheet mode: the user is presented

with prompts for evaluating CAS expressions. The interfaces are minimal and usually

do not provide much assistance. Each supported math concept has a specific syntax

which must be learned and usually does not resemble handwritten math. For example,

the Sage code to evaluate

∫ π/3

π/6

ea t cos 3t dt must be entered as follows:

Listing I.1 Sample Integration in Sage

a = var(’a’)

t = var(’t’)

integrate(exp(a*t)*cos(3*t), t, pi/6, pi/3)

Although not too bizarre, this syntax might not be intuitive to someone who has never

used Sage before. Maple allows you to use palettes to enter this integral graphically,

but needs a space between a and t. A space is not needed between the 3 and t.

• Platform Compatibility. (i.e. browsers and operating systems). Online home-

work systems such as Pearson’s MyMathLab [11], WileyPlus [12], WeBWorK [13],

WebAssign [14], and MapleTA [15] use Oracle Java or Adobe Flash input plugins for

writing mathematics. These plugins use a combination of keyboard entry and palettes

to build a graphical formula in the input box. Java and Flash only work on some

6

platforms—even then only when the necessary software is installed. Mobile phones

and tablets do not support Java or Flash: support for these plugins has dwindled in

favor of HTML5 , CSS3 , and JavaScript.

• Mathematical Completeness. Any given CAS might lack certain concepts such as

boolean algebra, logic, calculus of finite differences, and certain mathematical opera-

tions.

• Retention of Semantic Mathematical Meaning. LATEX comes to mind as a math

entry system that does not retain mathematical meaning. It works great as a typeset-

ting system, but symbols such as \times (×, for multiplication, cross product, etc.)

and ^ (superscript or exponent) have multiple meanings that cannot be discriminated.

And rightly so, since LATEX was designed for presentation and not evaluation.

• Ambiguity. WolframAlpha accepts a wide variety of input formats (math included)

in a single-line text field and determines meaning based on context [16]. Since the

input domain is so large, many mathematical concepts are difficult for it to recognize

without the “interference” of non-mathematical interpretations.

Furthermore, entry palettes and graphical equation editors have made entry easier,

but hidden characters used can cause ambiguity: should ax be the name of a variable

with two characters, or the product of variable a with variable x? Graphical editors

often insert a hidden multiplication operator, but the true remedy to this ambiguity

would be to insert a dot (a ·x) or space (a x) between all multiplications, making them

explicit as they would be in a linear, plain text format

All of the technology mentioned so far have limitations, and these limitations are the moti-

vation to build a new and better solution for web-based mathematical input.

7

Introducing MathLex

MathLex is a mathematical input language and processing system intended for web browsers.

To ensure compatibility with portable media, the MathLex processing system is written in

pure JavaScript. All processing is done client-side to increase responsiveness. Its language is

meant to be natural, intuitive, easy to type, unambiguous, extensible, and mathematically

faithful. It aims to mimic traditional handwritten math as much as possible while maintain-

ing semantic meaning. At the same time, it also supports and draws inspiration from other

languages to enhance familiarity among programmers and other CAS users. To maximize

user-friendliness, MathLex should be intelligent and flexible enough to automatically repair

simple errors.

The MathLex processing system is currently nothing more than an advanced parser: it

accepts a linear input string and produces an interpreted syntax tree of the math’s seman-

tic value. The resulting syntax tree may then be translated into any CAS language, into

OpenMath [17] or MathML for storage, or into LATEX for display (rendered using MathJax).

MathLex materialized in response to a desire to port Maplets for Calculus (M4C) to mobile

devices. M4C is an electronic math tutor authored by Dr. Philip Yasskin and Dr. Douglas

Meade that guides students through randomly generated problems and gives feedback at

each intermediate step [18]. Rather than building native apps for each device, the goal was

to create web apps that could be accessed anywhere on any platform. Since M4C relies on

Maple’s math language and CAS for math evaluation, accepting student input is relatively

easy from the Maplet windowing system’s text fields. However, it still insists on using Maple’s

input language, which many students find cryptic. Furthermore, few web-based math input

solutions exist, and the available plugins will not work on mobile devices.

Maplets for Calculus and MathLex are supported in part by the NSF Division of Undergrad-

uate Education (DUE) Course Curriculum and Laboratory Improvement Program (CCLI)

grants 0737209 (Meade) and 0737248 (Yasskin); and Transforming Undergraduate Education

in Science (TUES) grants 1123170 (Meade) and 1123255 (Yasskin).

8

CHAPTER II

MATHLEX FOR THE NOVICE (STUDENT & INSTRUCTOR)

Introduction

MathLex aims to create a natural language for mathematical entry, and the Web is its

primary target. Uniform entry across multiple platforms is another cornerstone to this

project: MathLex should be easy and natural to use from a computer, from a tablet, and from

a smartphone. Therefore, to kickstart this application, the MathLex Language specification

has been implemented as a JavaScript plugin for websites. Webkit- and Gecko-based browsers

(e.g. Google Chrome, Apple Safari, and Mozilla Firefox) have been the primary target

browsers as they are the most widely used browsers and provide the best support for new

Web technologies. The MathLex plugin has been successfully tested on Windows, Macintosh,

and Linux operating systems and on multiple Apple iOS and Google Android devices.

The entirety of this and the next chapter has been made available as public documentation at

the following web address: http://ugrthesis.mathlex.org. Much of the information here

is also available in chapter IV, but this chapter is intended to be a non-technical reference

for end-users (student and perhaps instructor) in contrast to developers seeking to imple-

ment the parser for the MathLex Language or write a renderer for the MathLex JavaScript

implementation.

9

http://ugrthesis.mathlex.org

Language Specification for the Masses

Summary

This section describes the syntax used to enter mathematical content into MathLex. All

input consists of Tokens, or strings of characters representing mathematical symbols or

quantities. For example, the token ‘>=’ represents the mathematical symbol ≥ and the

concept “greater than or equal to”. Tokens in the input string may be separated by spaces,

but MathLex is intelligent enough to automatically separate tokens in most cases. MathLex

looks for tokens in a greedy fashion in which it tries to match the largest token possible. For

example, 5!=120 would be interpreted as 5 6= 120 even though the intended meaning might

have been 5! = 120. Therefore, it is necessary to insert spaces to separate tokens that might

be part of other tokens. See page 44 for more detailed information about this issue.

The basic types of tokens in MathLex are Numbers (further subdivided into Integers and

Floats/Decimals), Identifiers (further subdivided into Keywords and Variables), Constants,

and Operators. After these basic types are defined, the collection of all tokens is presented

in two sets of tables: the first is organized by how symbols are used in mathematics (e.g.

binary operators, relations, etc.); the second is organized by the topic (e.g. calculus, set

theory, etc.). The second set of tables is redundant but included for clarity.

Numbers

A Number is exactly as it seems: 42, 3.14, etc. Scientific notation is also allowed: 5e-2,

3.0E8. In either case, decimal points do not need a leading or trailing zero: .5, 78., 9.E-4,

.22e7.

Note that negative numbers are treated as a negation operation on the positive value of

the number (consistent with algebraic notation). Likewise, fractions are treated as division

operations on whole numbers.

10

Identifiers

An Identifier is an upper- or lowercase letter followed by any number of upper- or lowercase

letters, numbers, or underscores (). All of the following are valid identifiers: x, A, b0,

my var, infinity, union, and arccos. Identifiers fall into two categories: reserved and

unreserved. Reserved identifiers, also called keywords, may be synonyms for certain constants

or operators or may be the names of known functions. Each keyword for a constant or

operator has its own token. They are listed in Table II.1 and again later in the tables

of constant and operator tokens. The keywords for known functions are all assigned as

TIdentifier tokens and are treated as general functions by the parser. They only get treated

as specific functions by the translators and renderers. They are listed in Table II.2 and

again later in the table of functions and occasionally in the tables of constant and operator

tokens. Unreserved identifiers may be used as variables or user-defined functions. Of the

above identifiers, infinity is a constant keyword, union is an operator keyword and arccos

is a known function keyword, while the rest are valid variable or user-defined function names.

Table II.1 Reserved Constant and Operator Keywords

and as congruent divides

equiv exists false forall

if iff impliedby implies

in infinity intersect minus

mod ndivide ndivides nequiv

not notdivide notdivides onlyif

or para parallel perp

perpendicular propersubset propersuperset propersupset

propsubset propsuperset propsupset psubset

psuperset psupset sim similar

subset superset supset then

true union unique when

whenever xor

11

Table II.2 Reserved Function Name Keywords

abs acos acosh acot acoth acsc

acsch arccos arccosh arccot arccoth arccsc

arccsch arcsec arcsech arcsin arcsinh arctan

arctanh asec asech asin asinh atan

atanh C ceil ceiling cos cosh

cot coth csc csch curl diff

div exp floor gamma grad int

int Integral integral Intersect lim limit

ln log P pdiff prod product

root sec sech sin sinh sqrt

sum tan tanh Union

Constants

Similar to Identifiers, Constants are globally defined values or constructs. In MathLex,

constants are usually typed as a number sign (#; also called hash, sharp, or pound) followed

by the name of the constant. For example in MathLex, one would type #pi (or #p for short)

to represent “pi” (π) and #R to represent the set of real numbers (R). See the table of

Constants below for a comprehensive list.

Operators

An Operator is just a catch-all term for any symbol that is not a Number, Identifier, or

Constant, but is generally a mathematical operation or delimiter. With the exception of a

few reserved keywords, operators usually consist of a few non-alphanumeric characters. Some

operators start with an ampersand (&) to distinguish them from similar symbols. Some

mathematical operators can be represented in multiple ways in MathLex. The following

tables outline all mathematical operators understood by MathLex and all ways to represent

them. Pick your favorite.

12

The numbers in the Precedence column of operator tables reflect which operations are more

tightly bound (e.g. the “Parentheses-Exponents-Multiplication-Division-Addition-Subtraction

(PEMDAS)” order of operations from grade school mathematics). Operators of higher prece-

dence (or greater numeric value) will be identified and grouped before operations with lower

precedence (or lesser numeric value). Operators of equal precedence will be grouped as they

are encountered according to their associativity.

For unary and binary operators, the precedence number in the Precedence/Associativity

(P/A) column is followed by an indicator of Associativity, i.e. how chained operations would

be bound together:

• Left-associative operators (L) will be grouped from left to right (like subtraction and

division): a− b− c− d = ((a− b)− c)− d

• Right-associative operators (R) will be grouped from right to left (like exponents):

a∧b∧c∧d = ab
cd

= a(b(c
d))

• Non-associative operators (N) cannot be chained. For example, the triple dot product

&v a &. &v b &. &v c = ~a · ~b · ~c does not make any sense since the result of a dot

product is a scalar.

• Associative operators (like addition and multiplication) may be considered left- or

right-associative without loss of meaninng. However, MathLex handles such operators

as left-associative for definiteness.

At present, MathLex cannot chain relations, so they are regarded as non-associative.

A special note about Functions. Functions receive special treatment in that a majority of

them are tokenized initially as unreserved identifiers and then interpreted after being parsed,

but some functions have special tokens and syntax. Traditionally, functions are identifiers

appended with a parenthesized list of parameters, e.g. f(x,y,z). Some functions like sum,

product, and limit have alternate notations that closely mimic handwritten notation and are

thus called “written syntax”. For example, the traditional CAS-like function to represent

13

n∑
x=0

1

x
in MathLex is sum(1/x, x, 0, n), and MathLex’s alternate written syntax is &sum

& (x=0) &^n 1/x. Both are accepted by MathLex.

Function operators like composition and builder notation, e.g. (f ◦ g+h)(x), are allowed, so

function application is parsed as a parenthetical postfix. See the note below Table II.4 for

more information.

Symbols by Type

Table II.3 Constants
Name Symbol Code Description

Pi π #pi, #p 3.14· · ·
Tau τ #tau 2π ≈ 6.28 · · ·
E e #e 2.718· · ·, Natural Base, Euler-Napier number

Gamma γ #gamma 0.577· · ·, Euler-Mascheroni constant
Infinity ∞ #infinity, infinity ERROR: memory overflow

Imaginary Unit i #i
√
−1

True T #T, #true, true Case-insensitive
False F #F, #false, false Case-insensitive

Natural Numbers N #N

Integer Ring Z #Z

Rational Field Q #Q

Real Field R #R

Complex Field C #C

Quaternion Ring H #H Hamilton numbers
Octonion Algebra O #O Cayley numbers, Type “Oh”.

Universal Set U #U

Empty Set ∅ #empty, {}
Zero Vector ~0 #v0

x Unit Vector ı̂ #ui, #vi
y Unit Vector ̂ #uj, #vj

z Unit Vector k̂ #uk, #vk
Zero Matrix 0 #0 Type “zero”.
Unit Matrix I #1 Identity Matrix, Type “one”.

14

Table II.4 Unary Operators

Name Symbol Code Description P/A

Positive +a +a 17R
Negative −a -a 17R

Positive/Negative ±a +/- a, &pm a 17R
Negative/Positive ∓a -/+ a, &mp a 17R

Square Root
√
a sqrt(a) *

Absolute Value |a| abs(a) *
Factorial n! n! 21L

Natural Exponential exp(a) exp(a) *
Natural Logarithm ln(a) ln(a) *

Real Part <a &Re a 17R
Imaginary Part =a &Im a 17R

Not ¬p not p, ∼p, !p Logical Negation 17R
Prime derivative f ′ f’ Derivative w.r.t. x, 1st, or only var 21L

Dot derivative ḟ f. Derivative w.r.t. t or second var 21L
Change ∆x &D x Coordinate Difference 17N

Differential dx &d x 17N
Partial Differential ∂x &pd x 17N

Vector ~a &v a 17N
Unit Vector â &u a 17N

Gradient ~∇f , grad(f) &del f, grad(f) 17L

Divergence ~∇ · F , div(F) &del. F, div(F) 17N

Curl ~∇× F , curl(F) &delx F, curl(F) 17L

In general, prefix operators are right-associative and postfix operators are left-associative.

* Although not listed, a pair of parentheses, when used as a function application, may be

considered a postfix unary operator. As such, it is left-associative and has a precedence

of 18, just below that of function composition and exponents.

15

Table II.5 Binary Operators

Name Symbol Code Description P/A

Plus a+ b a+b Addition 9L
Minus a− b a-b Subtraction 9L

Plus/Minus a± b a+/-b, a &pm b 9L
Minus/Plus a∓ b a-/+b, a &mp b 9L

Times a · b a*b Multiplication 14L

Divided by
a

b
, a/b a/b, a &/ b Division 14L

Power ab a^b, a**b Exponentiation 20L
n-th Root n

√
a root(a, n) *

Logarithm with Base logb a log(a, b) *
Ratio p : q p&:q 8N

Modulus a (mod n) a%n, a mod n 14L

Combination
(
n
r

) &C(n,r), combination(n,r)
n choose r

Binomial Coefficient
choose; ; comb for short

15N*

Permutation P (n, r), &P(n,r), permutation perm for short *
Function Composition f ◦ g f @ g 19L

Function Repeated
Composition

f◦n f @@ n not implemented 20R

Dot Product ~a ·~b &v a &. &v b 15N

Cross Product ~a×~b &v a &x &v b 16L
Wedge Product dx ∧ dy &d x &w &d y 16L
Tensor Product T ⊗ S T &ox S 16L

Cartesian Product A×B A &* B, A &x B 16L
Direct Sum A⊕B A &o+ B 11L
Subscript ab a & b Indexing 22L

Multiple Subscript ai,j,k a & [i,j,k] 22L

Superscript ab a &^b Indexing 22L
Multiple Superscript ai,j,k a &^[i,j,k] 22L

Mixed Subscripts
and Superscripts

T i
j
k T &^i & j &^k Tensor Indexing 22L

Union A ∪B A union B 12L
Intersection A ∩B A intersect B 13L

Set Difference A \B A \ B, A minus B 10L

16

Table II.6 Logical Connectives and Quantifiers

Name Symbol Code Description P/A

And p ∧ q p && q, p and q Conjunction 5L
Or p ∨ q p || q, p or q Disjunction 3L

Exclusive Or p Y q p xor q Exclusion 4L

Implies p→ q
p -> q, p implies q,

p onlyif q, if p then q
Conditional 2L

Implied By p← q
p <- q, p impliedby q,

p if q, p when q,
p whenever q,

Reverse Conditional 2L

If And Only If p↔ q p <-> q, p iff q Biconditional 1N

Such That p : q p:q
Used with set builder

and quantifiers

Universal
Quantifier

∀x we have P (x)
∀x : Q(x)
we have P (x)

forall x->P(x)

forall x:Q(x)->P(x)
“For all . . . ” 6L

Existential
Quantifier

∃x : Q(x) exists x : Q(x) “There exists
. . . such that”

6L

Unique
Quantifier

∃!x : Q(x) unique x : Q(x) “There exists a unique
. . . such that”

6L

17

Table II.7 Relations
Name Symbol Code Prec.

Equal a = b a = b, a == b 7
Not Equal a 6= b a /= b, a != b, a <> b 7
Less than a < b a < b 7

Greater than a > b a > b 7
Less than or Equal a ≤ b a <= b 7

Greater than or Equal a ≥ b a >= b 7
Divides p | q p|q, p divides q 7

Not Divides p - q p /| q, p ∼| q, p ndivides q, p ndivide q

p notdivides q, p notdivide q
7

Ratio Equality a : b :: c : d a&:b :: c&:d, a&:b as c&:d 7
Congruent A ∼= B A ∼= B, A congruent B 7

Similar A ∼ B A ∼B, A sim B, A similar B 7
Parallel A ‖ B A para B, A parallel B 7

Perpendicular A ⊥ B A perp B, A perpendicular B 7
Subset A ⊆ B A subset B 7

Superset A ⊇ B A superset B, A supset B 7
Proper Subset A ⊂ B A propersubset B, A propsubset B, A psubset B 7

Proper Superset A ⊃ B
A propersuperset B, A propsuperset B,

A psuperset B, A propersupset B,
A propsupset B, A psupset B

7

Inclusion a ∈ A a in A 7
Equivalent a ≡ b a === b, a equiv b 0

Not Equivalent a 6≡ b a /== b, a !== b, a nequiv b 0

As previously stated, all relations are non-associative since a = b = c = d is NOT the

same as ((a = b) = c) = d or a = (b = (c = d)). Later versions of MathLex may sup-

port such expressions as a = b = c = d to be “syntactic sugar” for (a = b) and (b = c)

and (c = d).

18

Table II.8 Delimiters and Indexing

Name Symbol Code Description

Parentheses () () Order of operation
Curly Braces { } { } Sets

Square Brackets [] [] Lists
Angle Brackets 〈 〉 < >, <: :> Vectors

Matrix
[〈 〉 , 〈 〉] [< >, < >], [<: :>, <: :>] Row of Columns
〈[] , []〉 <[], []>, <:[], []:> Column of Rows

Vertical Bars | | | |, |: :|
Absolute Value, Length,

Determinant, Norm
Double Bars ‖ ‖ || ||, ||: :|| Length, Norm

Floor bxc floor(x)

Ceiling dxe ceil(x), ceiling(x)

Such That p : q p:q
Used with set builder

and quantifiers
List Separator , ,

Subscript ab a & b Indexing
Multiple Subscript ai,j,k a & [i,j,k]

Superscript ab a &^b Indexing
Multiple Superscript ai,j,k a &^[i,j,k]
Mixed Subscripts

and Superscripts
T i

j
k T &^i & j &^k Tensor Indexing

Open Interval (a, b) (:a,b:) Exclusive Range Delimiters
Closed Interval [a, b] [:a,b:] Inclusive Range Delimiters

Half-Open Interval [a, b) [:a,b:) Mixed Range Delimiters
Bra-Ket Notation 〈A | B〉 <:A|B:>, <A||B>

Bra 〈A| <A|

Ket |B〉 |B>

Note that some delimiters have more than one format either with or without colons. Namely,

absolute value can be written as | | or |: :|, norm can be written as || || or ||: :||,

and vectors can be surrounded by either < > or <: :>. Those with colons are matched pairs

and should be used whenever there might be a chance of confusion about pairing. Those

without colons are context-sensitive in that they have multiple meanings and therefore may

not be automatically matched by the Lexer. Additionally, if an expression is opened with one

type of delimiter, it must be closed with the same type (i.e. matched vs. context-sensitive).

All delimiters have “infinite” precedence; any and all contents will be grouped together.

19

Table II.9 Functions
Name Symbol Code Description

Trig sin(θ), . . . sin(theta), . . .
Also cos, tan,

cot, sec, csc

Inverse Trig arcsin(x), . . . arcsin(x), asin(x), . . .
Also arccos, acos, arctan, atan

arccot, acot, arcsec, asec,
arccsc, acsc

Hyperbolic Trig sinh(λ), . . . sinh(lambda), . . .
Also cosh, tanh,

coth, sech, csch

Inv. Hyp. Trig arcsinh(x), . . . arcsinh(x), asinh(x), . . .
Also arccosh, acosh, arctanh, atanh,

arccoth, acoth, arcsech, asech,
arccsch, acsch

Absolute Value |a| abs(a)

Floor bxc floor(x)

Ceiling dxe ceil(x), ceiling(x)
Square Root

√
a sqrt(a)

nth Root n
√
a root(a, n)

Natural Exponential exp(a) exp(a)

Natural Logarithm ln(a) ln(a)

Logarithm with Base logb a log(a, b)

Combination
(n
r

)
C(n,r) Binomial Coefficient

choose
Permutation P (n, r) P(n,r)

Limit lim
x→a

f(x)
lim(f(x), x, a)

&lim & (x -> a) f(x)
Also limit, Lim, Limit

Derivative
d

dx
(f(x))

diff(f(x), x)

&df(x)/&dx

Partial Derivative
∂

∂x
(f(x, y))

pdiff(f(x,y), x)

&pdf(x)/&pdx

Indefinite Integral

∫
f(x) dx

int(f(x),x)

&int f(x) &dx
Also Int, integral, Integral

Definite Integral

∫ b

a
f(x) dx

int(f(x),x,a,b)

&int & a &^b f(x) &dx
(see note above)

Sum Over Range
n∑

i=m

ai
sum(a& i,i,m,n)

&sum & (i=m) &^n a& i
Also Sum

Sum Over Set
∑
i∈T

ai
sum(a& i, i in T)

&sum & (i in T) &^n a& i
(see note above)

Product Over Range

n∏
i=m

ai
prod(a& i,m,n)

&prod & (i = m) &^n a& i
Also product, Prod, Product

Product Over Set
∏
i∈T

ai
prod(a& i, i in T)

&prod & (i in T) &^n a& i
(see note above)

Union Over Range

n⋃
i=m

Si
Union(S& i, i, m, n)

&Union & (i=m) &^n S& i

Union Over Set
⋃
i∈T

Si
Union(S& i, i in T)

&Union & (i in T) S& i

Intersection Over Range

n⋂
i=m

Si
Intersect(S& i, i, m, n)

&Intersect & (i=m) &^n S& i

Intersection Over Set
⋂
i∈T

Si
Intersect(S& i, i in T)

&Intersect & (i in T) S& i

20

Symbols by Topic

Repetition can lead to discrepancy, and this section is already quite repetetive. Please refer

to the tables above for precedence and associativity information. These tables are provided

merely for convenience when attempting to find a particular token. Hence it is redundant

to provide extra information.

Table II.10 Arithmetic
Name Symbol Code Description

Plus, Positive + + binary or unary
Minus, Negative − - binary or unary

Plus/Minus ± +/-, &pm binary or unary
Minus/Plus ∓ -/+, &mp binary or unary

Times · * Multiplication
Divided by a

b , a/b a/b, a&/b Division
Power ab a^b, a**b Exponentiation

Square Root
√
a sqrt(a)

n-th Root n
√
a root(a,n)

Log Base n logn a log(a,n)

Natural Exponential exp(a), ea exp(a), #e^a
Natural Logarithm ln(a) ln(a)

Absolute Value |a| |a|, |:a:|, abs(a)
Factorial n! n!

Imaginary Unit i #i
√
−1

Real Part <a &Re a

Imaginary Part =a &Im a

Ratio a : b p&:q

Ratio Equality a : b :: c : d a&:b :: c&:d, a&:b as c&:d

Equal = =, ==
Not Equal 6= /=, !=, <>
Less Than < <

Greater Than > >

Less Than or Equal ≤ <=

Greater Than or Equal ≥ >=

Parentheses () ()

21

Table II.11 Algebra

Name Symbol Code Description

Natural Numbers N #N

Integer Ring Z #Z

Rational Field Q #Q

Real Field R #R

Complex Field C #C

Function Composition f ◦ g f @ g

Function Repeated Composition f◦n f @@ n not implemented

Sum Over Range

n∑
i=m

ai
sum(a& i,i,m,n)

&sum & (i=m) &^n a& i
Also Sum

Sum Over Set
∑
i∈T

ai
sum(a& i, i in T)

&sum & (i in T) a& i
(see note above)

Product Over Range

n∏
i=m

ai
prod(a& i,m,n)

&prod & (i=m) &^n a& i
Also product,

Prod, Product

Product Over Set
∏
i∈T

ai
prod(a& i, i in T)

&prod & (i in T) a& i
(see note above)

Table II.12 Geometry

Name Symbol Code Description

Pi π #pi, #p 3.14· · ·
Tau τ #tau 2π ≈ 6.28 · · ·

Open Interval (a, b) (:a,b:) Exclusive Range Delimiters
Closed Interval [a, b] [:a,b:] Inclusive Range Delimiters

Half-Open Intervals [a, b) [:a,b:) Mixed Range Delimiters
Congruent ∼= ∼=, congruent

Similar ∼ ∼, sim, similar
Parallel ‖ parallel

Perpendicular ⊥ perp, perpendicular
Vector Components 〈a, b, c〉 <a,b,c>, <:a,b,c:>

Vector ~a &v a

Unit Vector â &u a

Vector Length
|~a|
‖~a‖

|&v a|, |:&v a:|,
||&v a||, ||:&v a:||

Zero Vector ~0 #v0

x Unit Vector ı̂ #ui, #vi
y Unit Vector ̂ #uj, #vj

z Unit Vector k̂ #uk, #vk

Dot Product ~a ·~b &v a &. &v b

Cross Product ~a×~b &v a &x &v b

22

Table II.13 Trigonometry

Name Symbol Code Description

Trig sin(θ), . . . sin(theta), . . .
Also cos, tan,

cot, sec, csc

Inverse Trig arcsin(x), . . . arcsin(x), asin(x), . . .
Also arccos, acos, arctan, atan

arccot, acot, arcsec, asec,
arccsc, acsc

Hyperbolic Trig sinh(λ), . . . sinh(lambda), . . .
Also cosh, tanh,

coth, sech, csch

Inv. Hyp. Trig arcsinh(x), . . . arcsinh(x), asinh(x), . . .
Also arccosh, acosh, arctanh, atanh,

arccoth, acoth, arcsech, asech,
arccsch, acsch

Table II.14 Discrete
Name Symbol Code Description

Natural Numbers N #N

Integer Ring Z #Z

Factorial n! n!

Floor bxc floor(x)

Ceiling dxe ceil(x), ceiling(x)
Modulus a (mod n) a%n, a mod n

Divides p | q p|q

Not Divides p - q
p /| q, p ∼| q,

p ndivides q, p ndivide q

p notdivides q, p notdivide q

Combination
(
n
r

)
C(n,r) Binomial Coefficient

choose
Permutation P (n, r) P(n,r)

Sum Over Range

n∑
i=m

ai
sum(a& i,i,m,n)

&sum & (i=m) &^n a& i
Also Sum

Sum Over Set
∑
i∈T

ai
sum(a& i, i in T)

&sum & (i in T) &^n a& i
(see note above)

Product Over Range
n∏

i=m

ai
prod(a& i,m,n)

&prod & (i = m) &^n a& i
Also product,

Prod, Product

Product Over Set
∏
i∈T

ai
prod(a& i, i in T)

&prod & (i in T) &^n a& i
(see note above)

Union Over Range

n⋃
i=m

Si
Union(S& i, i, m, n)

&Union & (i=m) &^n S& i

Union Over Set
⋃
i∈T

Si
Union(S& i, i in T)

&Union & (i in T) S& i

Intersection Over Range

n⋂
i=m

Si
Intersect(S& i, i, m, n)

&Intersect & (i=m) &^n S& i

Intersection Over Set
⋂
i∈T

Si
Intersect(S& i, i in T)

&Intersect & (i in T) S& i

23

Table II.15 Calculus
Name Symbol Code Description

Pi π #pi, #p 3.14· · ·
Tau τ #tau 2π ≈ 6.28 · · ·
E e #e

2.718· · ·, Natural Base,
Euler-Napier number

Gamma γ #gamma 0.577· · ·, Euler-Mascheroni constant
Infinity ∞ #infinity, infinity ERROR: Memory overflow

Limit lim
x→a

f(x)
lim(f(x), x, a)

&lim & (x -> a) f(x)
Also limit, Lim, Limit

Derivative
d

dx
(f(x))

diff(f(x), x)

&df(x)/&dx

Partial Derivative
∂

∂x
(f(x, y))

pdiff(f(x,y), x)

&pdf(x)/&pdx

Prime derivative f ′ f’ Derivative w.r.t. x or 1st/only var.

Dot derivative ḟ f. Derivative w.r.t. t or 2nd var.
Change ∆x &D x Coordinate Difference

Differential dx &d x

Partial Differential ∂x &pd x

Riemann Sum
n∑

i=1

f(xi) ∆xi
sum(f(x& i)*&Dx& i,i,1,n)

&sum & (i=1) &^n f(x& i)*&Dx& i
Also Sum

Indefinite Integral

∫
f(x) dx

int(f(x),x)

&int f(x) &dx
Also Int, integral, Integral

Definite Integral

∫ b

a
f(x) dx

int(f(x),x,a,b)

&int & a &^b f(x) &dx
(see note above)

Infinite Series

∞∑
i=1

ai
sum(a& i,i,1,infinity)

&sum & (i=1) &^infinity a& i
(see note above)

Gradient ~∇f , grad(f) &del f, grad(f)

Divergence ~∇ · F , div(F) &del. F, div(F)

Curl ~∇× F , curl(F) &delx F, curl(F)

Table II.16 Logic

Name Symbol Code Description

True T #T, #true, true
False F #F, #false, false
And p ∧ q p && q, p and q Conjunction
Or p ∨ q p || q, p or q Disjunction

Exclusive Or p Y q p xor q Exclusion
Not ¬p ∼p, !p, not p Logical Negation

Implies p→ q
p -> q, p implies q,

p onlyif q, if p then q
Conditional

Implied By p← q
p <- q, p impliedby q,

p if q, p when q,
p whenever q,

Reverse Conditional

If And Only If p↔ q p <-> q, p iff q Biconditional
Equivalent ≡ ===, equiv

Not Equivalent 6≡ /==, !==, nequiv

Universal Quantifier
∀x we have P (x)
∀x : Q(x)
we have P (x)

forall x->P(x)

forall x:Q(x)->P(x)
“For all . . . ”

Existential Quantifier ∃x : Q(x) exists x : Q(x) “There exists
. . . such that”

Unique Quantifier ∃!x : Q(x) unique x : Q(x) “There exists a unique
. . . such that”

24

Table II.17 Set Theory

Name Symbol Code Description

Set Delimiters { } { }
Such That p : q p:q

Used with set builder
and quantifiers

Universal Set U #U

Empty Set ∅ #empty, {}
Natural Numbers N #N

Integer Ring Z #Z

Rational Field Q #Q

Real Field R #R

Complex Field C #C

Quaternion Ring H #H Hamilton numbers
Octonion Algebra O #O Cayley numbers, Type “Oh”.

Subset A ⊆ B A subset B

Superset A ⊇ B A superset B, A supset B

Proper Subset A ⊂ B A propersubset B, A propsubset B

A psubset B

Proper Superset A ⊃ B
A propersuperset B, A psupset B

A propsuperset B, A propsupset B

A psuperset B, A propersupset B

Inclusion a ∈ A in

Union A ∪B A union B

Intersection A ∩B A intersect B

Set Difference A \B A \ B, A minus B

Cartesian Product A×B A &* B, A &x B

Direct Sum A⊕B A &o+ B

Union Over Range
n⋃

i=m

Si
Union(S& i, i, m, n)

&Union & (i=m) &^n S& i

Union Over Set
⋃
i∈T

Si
Union(S& i, i in T)

&Union & (i in T) S& i

Intersection Over Range

n⋂
i=m

Si
Intersect(S& i, i, m, n)

&Intersect & (i=m) &^n S& i

Intersection Over Set
⋂
i∈T

Si
Intersect(S& i, i in T)

&Intersect & (i in T) S& i

Table II.18 Linear Algebra

Name Symbol Code Description

Vector Delimiters 〈 〉 < >, <: :>

Zero Vector ~0 #v0

x Unit Vector ı̂ #vi

y Unit Vector ̂ #vj

z Unit Vector k̂ #vk

Matrix
[〈 〉 , 〈 〉] [< >, < >], [<: :>, <: :>] Row of Columns
〈[] , []〉 <[], []>, <:[], []:> Column of Rows

Zero Matrix 0 #0 Type “zero”.
Unit Matrix I #1 Identity Matrix, Type “one”.

25

How MathLex Works

MathLex works in two phases. The first phase compiles a MathLex expression into an

Abstract Syntax Tree (AST) that can be represented in memory, and the second phase

converts the AST into some type of output.

Input to Syntax Tree

When provided with a valid MathLex string, MathLex.parse() produces an abstract syntax

tree (AST) representing the inferred value of the MathLex code. Under the hood, this first

phase has two components: a preprocessor called a Tokenizer and then the main Parser.

The Tokenizer is responsible for translating the characters in the MathLex input string

into a list of Tokens, a way to group related characters into a single symbol. For example,

“<=” is shorthand for “less than or equal to” (in display math, ‘≤’) and is comprised of two

separate characters. The Tokenizer groups these characters into a TLessEqual Token for the

parser. A list of all Tokens is given in Grammars T1 through T7 of Chapter IV.

The Parser then reads the list of tokens and assembles the corresponding AST. The AST is

built from different “node” types represented as a recursive array. Every node has a string

name indicating the type of node, and optionally one or more subnodes for its arguments.

The grammar rules used by the parser are given in Grammars L1 through L4 of Chapter IV.

For example, the MathLex input for the quadratic formula,

x =
−b±

√
b2 − 4a c

2a

is x = (-b +/- sqrt(b^2-4*a*c))/(2*a). This is an equation, so the root node is an

equality (=), and its two subnodes are an identifier (x) and a quotient (÷), which is further

broken down into its subnodes as displayed in Figure II.1.

26

Fig. II.1. AST for the Quadratic Formula

=

x ÷

±

−

b

√

−

∧

b 2

×

×

4 a

c

×

2 a

Syntax Tree to Output

The AST returned by the parser gives a mathematically faithful model of the meaning behind

the interpreted input text. It is evaluated correctly by evaluating each nodes’ children and

then performing the parent node operation on the child values (this is called a recursive

postorder traversal). Such tools to recursively evaluate the AST are called Translators

or Renderers. These terms are used interchangeably in this thesis. So far, translators

have been written for LATEX, the Sage CAS (partially), and a textual version of the AST.

The author plans to write additional translators (Maple, Mathematica, and MathML, for

example), and volunteers willing and able to help write such translators are welcome.

27

LATEX Translator. Using the quadratic formula example in Figure II.1, one could build a

LATEX translator from the following rules:

• An equality is represented as “LHS = RHS”

• Variables and numbers are expressed as-is

• A fraction is represented as “\frac{NUMERATOR}{DENOMINATOR}”

• Plus-or-Minus is represented as “LHS \pm RHS”

• Negation is represented as “-SUBEXPR”

• Square Roots are represented as “\sqrt{SUBEXPR}”

• Subtraction is represented as “LHS - RHS”

• Exponents are represented as “BASE^{POWER}”. Note the braces around the exponent.

• Multiplication is represented as a space between operands: “LHS \, RHS”

This latex translator would start at the root node: since it is an equality, the translator will

translate the left-hand-side (LHS) and the right-hand-side (RHS) and then put an equals

sign (=) between them. The LHS is a variable (x), so its translated value would be x. The

RHS is a quotient, and the numerator and denominator will each have to be translated before

they can be entered into the LATEX fraction command. The translator will continue until all

sub-nodes are translated, and then the root node’s translation will be returned as

x = \frac{-b \pm \sqrt{b^{2} - 4 \, a \, c}}{2 \, a}.

Sage Translator. The sage translator works similarly and returns the following line of

code:

x == ((? PlusMinus ?))/(2*a)

Note that Sage does not support the Plus/Minus operation and therefore cannot be accu-

rately translated. Future support for this operation may split the returned Sage expression

into two forms: one plus, and the other minus. If the +/- operator is replaced by a +, then

the Sage renderer returns

x == (-b + sqrt(b^(2) - 4 * a * c))/(2 * a)

28

Text-Tree Renderer. The text-tree renderer yields the output in Listing II.1.

Listing II.1 Sample Text-Tree Output

Equal

Variable: x

Divide

PlusMinus

Negative

Variable: b

Function

Builder:

Variable: sqrt

Arguments:

Minus

Exponent

Variable: b

Literal: 2

Times

Times

Literal: 4

Variable: a

Variable: c

Times

Literal: 2

Variable: a

29

CHAPTER III

MATHLEX FOR THE INSTRUCTOR

This chapter is meant to be a quick lesson on how to use the MathLex JavaScript library pro-

vided on the companion website: http://ugrthesis.mathlex.org. If you would like more

information on how MathLex works internally, please see Chapter II. For more information

on how MathLex works internally, see Chapter IV. In this chapter, the reader will be guided

in building a sample page that contains a simple calculator powered by Sage Cell (Aleph)

server [19]. It may be viewed at the companion website: http://ugrthesis.mathlex.org/

quick-start/mathlexsample.html (shown in Figure III.1)

Fig. III.1. MathLex Simple Calculator

Before continuing, the reader should have basic knowledge of HTML, JavaScript, and how

web pages function. More information on these subjects can be obtained easily from sites

such as the Mozilla Developer Network [20], TutsPlus [21], and W3Schools [22]. Before

30

http://ugrthesis.mathlex.org
http://ugrthesis.mathlex.org/quick-start/mathlexsample.html
http://ugrthesis.mathlex.org/quick-start/mathlexsample.html

building the page, please download the mathlex.js file from the companion website and

place it in a directory that will be accessible from the web page to be created.

Sample Page Source Code

The entire, self-contained source code for the sample Sage calculator is given in Listing III.1.

Each section of code is explained in-depth below.

31

Listing III.1 Sample Page
1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <meta charset="utf -8">

5 <title>MathLex Sample </title>

6 <style>

7 body { text -align: center; }

8 #math -display , #math -output { border: 1px solid #000; margin: 5px 0; }

9 </style >

10 </head>

11 <body>

12 <h1>MathLex Sample </h1>

13 <h2>A Simple Calculator </h2>

14 <input id="math -input" type="text" placeholder="Type math here">

15 <div id="math -display">\[\]</div>

16 <input id="send -math" type="button" value="Calculate">

17 <div id="math -output">\[\]</div>

18
19 <script src="javascripts/mathlex.js"></script >

20 <script src="http :// ajax.googleapis.com/ajax/libs/jquery /1.7.2/ jquery.min.js"></script >

21 <script src="http ://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX -AMS -MML_HTMLorMML"></script >

22 <script >

23 $(document). ready(function () {

24 // get MathJax output object

25 var mjDisplayBox , mjOutBox;

26 MathJax.Hub.Queue(function () {

27 mjDisplayBox = MathJax.Hub.getAllJax(’math -display ’)[0];

28 mjOutBox = MathJax.Hub.getAllJax(’math -output ’)[0];

29 });

30
31 // "live update" MathJax whenever a key is pressed

32 $(’#math -input ’).on(’keyup ’, function (evt) {

33 var math = $(this).val ();
34 $(this).css(’color ’, ’black ’);

35
36 if (math.length > 0) {

37 try {

38 var tree = MathLex.parse(math),

39 latex = MathLex.render(tree , ’latex ’);

40 MathJax.Hub.Queue([’Text ’, mjDisplayBox , latex]);

41 } catch (err) {

42 $(this).css(’color ’, ’red ’);

43 }

44 } else {

45 // clear display and output boxes if input is empty

46 MathJax.Hub.Queue([’Text ’, mjDisplayBox , ’’]);

47 MathJax.Hub.Queue([’Text ’, mjOutBox , ’’]);

48 }

49 });

50
51 // send output to sage server

52 $(’#send -math ’).on(’click ’, function (evt) {

53 var math = $(’#math -input ’).val();
54 if (math.length > 0) {

55 try {

56 var tree = MathLex.parse(math),

57 sageCode = MathLex.render(tree , ’sage ’);

58 $.post(’http :// aleph.sagemath.org/service?callback=?’,
59 { code: ’print latex(’+sageCode+’)’ }, function (data) {

60 // HACK: Firefox does not convert data to JSON.

61 if (typeof(data) === ’string ’) { data = $.parseJSON(data); }

62 // AJAX success callback

63 if (data.success) {

64 MathJax.Hub.Queue([’Text ’, mjOutBox , data.stdout]);

65 } else {

66 MathJax.Hub.Queue([’Text ’, mjOutBox ,

67 ’\\text{Sage could not understand that input }’]);

68 }

69 });

70 } catch (err) {

71 MathJax.Hub.Queue([’Text ’, mjOutBox ,

72 ’\\text{Check your syntax and try again }’]);

73 }

74 }

75 });

76 });

77 </script >

78 </body>

79 </html>

32

Page Layout

The HTML snippet in Listing III.2 creates the layout: The first two lines (12 and 13) create a

header, then the input field (named math-input) is below on line 14, the following <div> tag

on line 15 creates a preview window that will be rendered by MathJax, the second <input>

tag on line 16 makes the submit button, and finally the last line, 17, creates the output

window that will also be rendered by MathJax.

Listing III.2 Sample Page Layout

12 <h1>MathLex Sample </h1>

13 <h2>A Simple Calculator </h2>

14 <input id="math -input" type="text" placeholder="Type math here">

15 <div id="math -display">\[\]</div>

16 <input id="send -math" type="button" value="Calculate">

17 <div id="math -output">\[\]</div>

JavaScript Inclusions

To be able to process the math input, the MathLex JavaScript file must be included in the

HTML, which is done on line 19. The author recommends putting JavaScript inclusions

just before the closing </body> tag, but the reader may choose to put it in the <head> or

elsewhere. Note that the src attribute should be replaced by the appropriate path to the

reader’s copy of the MathLex JavaScript file.

If the reader plans to use MathJax [3], jQuery [23], MooTools [24], Prototype [25], YUI [26],

Dojo [27], or another JavaScript toolkit/library, please refer to the corresponding site for

installation instructions. This example uses the jQuery library and MathJax, so lines 20 and

21 load jQuery and MathJax from their respective Content Distribution Network (CDN)

URLs:

33

Listing III.3 Sample Page JS Inclusions

19 <script src="javascripts/mathlex.js"></script >

20 <script src="http :// ajax.googleapis.com/ajax/libs/jquery /1.7.2/

21 jquery.min.js"></script >

22 <script src="http :// cdn.mathjax.org/mathjax/latest/

23 MathJax.js?config=TeX -AMS -MML_HTMLorMML"></script >

Handling MathJax Output

The math input from the text field line 14 is processed in two ways:

1. MathLex automatically parses it and translates it into LATEX, which MathJax displays

in the math-display window on line 15.

2. When the Calculate button on line 16 is clicked, MathLex parses it, translates it into

Sage, and transmits it to a Sage Cell server. The result returned by Sage is rendered

by MathJax into the math-output window on line 17.

To interface with MathJax, the output objects, mjDisplayBox and mjOutBox, must be de-

fined. These tell MathJax where to put the output, namely the math-display box on line

15 and the math-output box on line 17. This is done in lines 24 to 29.

Listing III.4 Sample Page MathJax Objects

24 // get MathJax output object

25 var mjDisplayBox , mjOutBox;

26 MathJax.Hub.Queue(function () {

27 mjDisplayBox = MathJax.Hub.getAllJax(’math -display ’)[0];

28 mjOutBox = MathJax.Hub.getAllJax(’math -output ’)[0];

29 });

Live-Updating Math Display

To automatically parse the math-input from line 14, we use jQuery’s DOM event handling

systems in lines 31 through 49. Line 32 watches for a keyup event in the math-input box.

34

When this occurs, line 33 stores the value of the math-input as a variable math. Line 36

checks if math has a non-zero length. If it does, then in lines 37 through 39, MathLex

tries to parse it into an AST structure and render that structure into LATEX. Then in line

40, MathJax tries to display the LATEX code in the mjDisplayBox (previously linked to the

math-display box). If this fails, then the math-input box turns red. Here this represents

the math-input box that is handling the keyup event. If math is empty (i.e. has zero length),

then lines 45 to 47 blank out the math-display and math-output boxes.

Listing III.5 Sample Page Live Math Display Update

31 // "live update" MathJax whenever a key is pressed

32 $(’#math -input ’).on(’keyup ’, function (evt) {

33 var math = $(this).val();
34 $(this).css(’color ’, ’black ’);

35
36 if (math.length > 0) {

37 try {

38 var tree = MathLex.parse(math),

39 latex = MathLex.render(tree , ’latex ’);

40 MathJax.Hub.Queue([’Text’, mjDisplayBox , latex]);

41 } catch (err) {

42 $(this).css(’color’, ’red’);

43 }

44 } else {

45 // clear display and output boxes if input is empty

46 MathJax.Hub.Queue([’Text’, mjDisplayBox , ’’]);

47 MathJax.Hub.Queue([’Text’, mjOutBox , ’’]);

48 }

49 });

Sending Math to Sage

The last thing to do is listen to the Calculate button to send the math-input from line 14

to a Sage processor and display the result in the math-output box. We again use jQuery’s

DOM event handling system in lines 51 through 70. Line 52 watches for a click event in

the send-math button. When this occurs, line 53 stores the value of the math-input as

a variable math. Line 54 checks if math has a non-zero length, and if it does, then, in

35

lines 56–57, MathLex tries to parse the math into an AST, translate it into Sage code,

and then store the result in a variable appropriately named sageCode. Then in lines 58–

59, the sageCode is sent to a Sage server as an Asynchronous (AJAX) request. When the

browser receives the AJAX response, it executes the associated function, which is receiving

the associated data (more about this later). If the Sage execution was successful, then,

on line 64, MathJax displays the result (data.stdout) in the mjOutBox object (previously

linked to the math-output box). If the server encountered an error, then lines 66–67 display

“Sage could not understand that input” in the mjOutBox. If anything else fails (most likely

a syntax error), lines 71–72 display “Check your syntax and try again” in the mjOutBox.

Listing III.6 Sample Page Sage Submission

51 // send output to sage server

52 $(’#send -math’).on(’click ’, function (evt) {

53 var math = $(’#math -input’).val();
54 if (math.length > 0) {

55 try {

56 var tree = MathLex.parse(math),

57 sageCode = MathLex.render(tree , ’sage’);

58 $.post(’http :// aleph.sagemath.org/service?callback =?’,
59 {code: ’print latex(’+sageCode+’)’}, function (data) {

60 // HACK: Firefox does not convert data to JSON.

61 if (typeof(data) === ’string ’) { data = $.parseJSON(data); }

62 // AJAX success callback

63 if (data.success) {

64 MathJax.Hub.Queue([’Text’, mjOutBox , data.stdout]);

65 } else {

66 MathJax.Hub.Queue([’Text’, mjOutBox ,

67 ’\\text{Sage could not understand that input}’]);

68 }

69 });

70 } catch (err) {

71 MathJax.Hub.Queue([’Text’, mjOutBox ,

72 ’\\text{Check your syntax and try again}’]);

73 }

74 }

75 });

36

Sage Processing

Finally, a few words on the Sage processing code on lines 58–64: This sample page commu-

nicates with a Sage Cell server at http://aleph.sagemath.org operated by the Sage Math

organization. The HTTP POST request sends the Sage code print latex(<sageCode>),

where <sageCode> is the injected code generated by MathLex. Sage will evaluate the sent

sageCode, simplify the result, convert it to LATEX, and print it to standard output (hence

stdout). This output is passed back to the client in the form of a JSON object in List-

ing III.7. This value is stored as the data parameter to the AJAX callback function; so

data.success on line 63 yields true or false and data.stdout yields the output string in

LaTeX form (assuming data.success is true) to be processed by MathJax on line 64.

Listing III.7 JSON response from Sage Cell

{

success: true|false ,

stdout: ’output string ’

}

Finally, the Firefox web browser does not automatically convert the string response into a

JSON object. Rather, the data parameter is left as a string representation of the JSON

data. Therefore, line 61 is a necessary “hack” to make Firefox properly handle the JSON

response data.

Additional Comments

• Both the live-update and Sage-submission callbacks follow the same abstract structure:

1. get Mathalex code from math-input text field

2. parse the MathLex code into an AST

3. translate the AST into another format (e.g. LATEX or Sage code)

4. do something with the translated code

37

http://aleph.sagemath.org

• The value of math-input was obtained on line 53 using a jQuery command of the

form “var math = $(’#’ + inputID).val();”, where inputID is the input field. In

the example, this was “math-input”. There are many ways to obtain a text field’s

value; here are the corresponding code snippets for standard JavaScript and each of

the libraries mentioned earlier:

1. Standard JavaScript: var math = document.getElementById(inputID).value;

2. MooTools: var math = document.id(inputID).value; or

var math = $(inputID).value; (The $ function is aliased to document.id).

3. Prototype: var math = $(inputID).value;

4. YUI: var math = Y.one(’#’ + inputID).get(’value’);

5. Dojo: var math = dom.byId(inputID).value;

After any of these, math now contains the MathLex input value, but any name is

acceptible so long as it is not a JavaScript reserved keyword [28].

• MathLex input is passed to MathLex.parse(), which returns an AST. To improve

performance, inputs should be parsed only once if possible, although this was not done

in the sample page above to keep the code simple. The AST can be used multiple

times without unnecessary overhead of reinterpreting the input’s meaning.

• An AST can be rendered into several formats with MathLex.render(ast, format),

where format is the name of a built-in renderer or translator. Three such translators

are included by default:

– latex: for use in typesetting LATEX (perhaps using MathJax)

– sage: input language for the open-source Sage CAS

– text-tree: plain-text, indented tree representation of the AST (for debugging)

These translators simply walk through the tree recursively, performing a certain action

at each node of the AST. For more information about how renderers/translators work,

38

please refer to page 27 in Chapter II. Instructions on how to create a renderer/translator

are given on page 54 in Chapter IV.

• The LATEX and Sage translators are demonstrated in the example above,

so here is an example using the text-tree renderer: In your HTML, place a

“<pre id="text-tree-output"></pre>” tag somewhere in the <body>, and then in-

clude the lines of JavaScript in Listing III.8.

Listing III.8 Rendering a Text-Tree

var treeCode = MathLex.render(syntaxTree , ’text -tree’);

document.getElementById(’text -tree -output ’). innerHTML = treeCode;

39

CHAPTER IV

MATHLEX FOR THE PROGRAMMER

Unlike human languages such as English, computer languages (known in the computer science

field as formal languages) are strictly defined and often have no flexibility for ambiguity or

exceptions. This rigidity allows the rules governing a formal language to be encoded as a

grammar, which may then be written as a computer program.

Since MathLex is a language that is meant to be understood by a computer, its syntax must

be put forth in a grammar that can be written as a program. At the same time, MathLex

is also meant to be understood by human beings, so the language must be expressive and

closely resemble classical handwritten math notation.

Before introducing the MathLex grammar, one must have a background in grammar theory

and notation.

Grammar Basics and Theory

If you are already familiar with Grammars and BNF/EBNF notation, you may skip to the

next section.

The MathLex language is specified in a subset of the Extended Backus-Naur Form (EBNF)

grammar notation [29], an extension of the simpler Backus-Naur Form (BNF) [30]. BNF and

EBNF provide a systematic representation of rules that define a valid, syntactically correct

statement by using two types of symbols: non-terminal and terminal. Before discussing the

“extensions” provided by EBNF, one should know the fundamentals of BNF notation.

40

Backus-Naur Form

Non-terminal symbols are surrounded by angle brackets 〈 〉 and may be expanded into any

combination of terminal and non-terminal symbols.

Terminal symbols are quoted literals of text that would be typed by the user.

BNF is simple and best understood by examples. Take a look at Grammar 1, which identifies

any string with zero or more a’s.

Grammar 1 Zero or more a’s

〈start〉 ::= 〈a〉

〈a〉 ::= ‘a’ 〈a〉
| ε

The special non-terminal symbol 〈start〉 defines the entry point into the grammar. In this

case, 〈start〉 is an alias for 〈a〉, and thus the grammar could have been represented as a single

rule. However for clarity, 〈start〉 will only be an alias for entry points into the grammar.

Each rule in this grammar has a single non-terminal symbol on the left side of the ::=

“expansion operator” and any combination of non-terminal and terminal symbols on the

right side. Grammars of this format are called context-free grammars [31]. The | “alternate

operator” denotes an alternate expansion for the rule. Alternates may be defined in-line or

on a new line. In the example above, the non-terminal symbol 〈a〉 has two valid expansions:

1. the terminal symbol ‘a’ followed by the same non-terminal symbol 〈a〉, or

2. the empty string terminal symbol represented by ε.

Notice that this rule’s expansion includes itself. Rules of this nature are called directly

recursive. Rules may also be indirectly recursive like in Grammar 2, which recognizes any

alternating pattern of a’s and b’s.

41

Grammar 2 Alternating a’s and b’s

〈start〉 ::= 〈a〉 | 〈b〉

〈a〉 ::= ‘a’ 〈b〉
| ε

〈b〉 ::= ‘b’ 〈a〉
| ε

The non-terminal symbols 〈a〉 and 〈b〉 reference each other in their expansions, thus they

are indirectly recursive.

Extended Backus-Naur Form

All of the examples so far have been in standard BNF notation. EBNF has the following

modifications that make grammars easier to type, read, and encode as plain text [29].

• non-terminal symbols are not enclosed in angle brackets

• the expansion operator is simply = instead of ::=

• rules are terminated by a semi-colon (;)

• symbols in an expansion are concatenated by a comma (,)

• repeated sequences may be surrounded by braces { } instead of using recursion

• optional sequences may be surrounded by brackets [] instead of using alternates

• “sub-expressions” may be grouped with parentheses () instead of creating and refer-

encing a new non-terminal symbol

• special “named” terminal symbols may be described between question marks

• comments are placed between (* and *) delimiters.

42

Modified EBNF

EBNF offers much flexibility that makes encoding grammars easier. However, for the pur-

poses of this thesis, only the repetition, option, and grouping delimiters are used. In addition,

basic regular expressions will be used to define special classes of symbols where appropriate

instead of the question marks notation of EBNF. To clarify any confusion about the “repe-

tition” delimiters, { } will represent “one or more”, whereas [{ }] will represent “optionally

one or more” or simply “zero or more”.

Each of the grammars in the previous section can be rewritten in our subset of EBNF as in

Grammars 3 and 4.

Grammar 3 Modified EBNF encoding of Grammar 1

〈start〉 ::= 〈a〉

〈a〉 ::= [{ ‘a’ }]

Grammar 4 Modified EBNF encoding of Grammar 2

〈start〉 ::= 〈a〉 | 〈b〉

〈a〉 ::= [‘a’ 〈b〉]

〈b〉 ::= [‘b’ 〈a〉]
OR

〈start〉 ::= 〈ab〉

〈ab〉 ::= [‘a’] [{ ‘ba’ }] [‘b’]

43

MathLex Grammar

MathLex Token Grammar

In MathLex, a mathematical symbol will be called a token and is entered as a sequence of

characters, which are the terminal symbols. Some tokens may be entered as several different

sequences of characters and some can have different meanings when used in different contexts.

All of the MathLex tokens are defined in Grammars T1 through T7 and are detected by a

lightweight parser called a tokenizer. Each token may be considered a non-terminal symbol,

but the convention to prevent confusion with other grammar rules will be to prefix a terminal

token by a capital ‘T’ (for “token”) and ‘CamelCase’ its name.

Grammar T1 MathLex Alphanumeric Tokens

〈letter〉 ::= /a-zA-Z/

〈digit〉 ::= /0-9/

〈TIntegerLiteral〉 ::= { 〈digit〉 }

〈TFloatLiteral〉 ::= [{ 〈digit〉 }] ‘.’ { 〈digit〉 } [(‘E’ | ‘e’) [(‘+’ | ‘-’)] { 〈digit〉 }]
| { 〈digit〉 } (‘E’ | ‘e’) [(‘+’ | ‘-’)] { 〈digit〉 }

〈TConstant〉 ::= ‘false’ | ‘true’ | ‘infinity’
| ‘#’ { (〈letter〉 | 〈digit〉) }

〈TIdentifier〉 ::= 〈letter〉 [{ (‘_’ | 〈letter〉 | 〈digit〉) }]

Unlike other tokens, the Literals, Constants, and Identifiers have values; so they are written

with their value. For example, the integer token for 549 is written as TIntegerLiteral :549,

the decimal token for 5.23e42 is written as TFloatLiteral :5.23e42, the constant token for

#pi (π) is written as TConstant :pi, and the function arccos is written as TIdentifier :arccos

As briefly mentioned in Chapter II, MathLex’s tokenizer is greedy in that it will try to find

tokens of maximal length in a given input string. Whitespace is treated as a token delimiter

and is otherwise ignored. For example, the tokenizer will treat the text ‘whenabc123’ as a

44

single TIdentifier :whenabc123 token, but ‘when abc 123’ will result in the following token

stream:

[TIf, TIdentifier :abc, TIntegerLiteral :123]

Similarly, the Tokenizer will treat the input 5!=120 as

[TIntegerLiteral :5, TNotEqual, TIntegerLiteral :120]

(equivalent to 5 6= 120), but treat the input 5! = 120 as

[TIntegerLiteral :5, TBang, TEqual, TIntegerLiteral :120]

(equivalent to 5! = 120).

Grammar T2 MathLex Logical Tokens

〈TQForall〉 ::= ‘forall’

〈TQExists〉 ::= ‘exists’

〈TQUnique〉 ::= ‘unique’

〈TIff 〉 ::= ‘<->’ | ‘iff’

〈TImplies〉 ::= ‘->’ | ‘implies’ | ‘onlyif’

〈TIf 〉 ::= ‘<-’ | ‘if’ | (‘when’ [‘ever’]) | ‘impliedby’

〈TThen〉 ::= ‘then’

〈TAnd〉 ::= ‘&&’ | ‘and’

〈TOr〉 ::= ‘||’ | ‘or’

〈TXor〉 ::= ‘xor’

〈TNot〉 ::= ‘not’

〈TSuchThat〉 ::= ‘:’

45

Grammar T3 MathLex Relational Tokens

〈TEqual〉 ::= ‘=’ | ‘==’

〈TNotEqual〉 ::= ‘!=’ | ‘/=’ | ‘<>’

〈TLess〉 ::= ‘<’

〈TLessEqual〉 ::= ‘<=’

〈TGreater〉 ::= ‘>’

〈TGreaterEqual〉 ::= ‘>=’

〈TEquivalent〉 ::= ‘===’ | ‘equiv’

〈TNotEquivalent〉 ::= ‘!==’ | ‘/==’ | ‘nequiv’

〈TCongruent〉 ::= ‘~=’ | ‘congruent’

〈TSimilar〉 ::= ‘sim’ [‘ilar’]

〈TSubset〉 ::= ‘subset’

〈TProperSubset〉 ::= ‘p’ [‘rop’ [‘er’]] ‘subset’

〈TSuperset〉 ::= ‘sup’ [‘er’] ‘set’

〈TProperSuperset〉 ::= ‘p’ [‘rop’ [‘er’]] ‘sup’ [‘er’] ‘set’

〈TIn〉 ::= ‘in’

〈TDivides〉 ::= ‘divides’

〈TNotDivides〉 ::= ‘/|’ | ‘~|’ | ‘n’ [‘ot’] ‘divide’ [‘s’]

〈TParallel〉 ::= ‘para’ [‘llel’]

〈TPerpendicular〉 ::= ‘perp’ [‘endicular’]

〈TRatio〉 ::= ‘&:’

〈TRatioEqual〉 ::= ‘::’ | ‘as’

46

Grammar T4 MathLex Arithmetic Tokens

〈TPlus〉 ::= ‘+’

〈TMinus〉 ::= ‘-’

〈TPlusMinus〉 ::= ‘+/-’ | ‘&pm’

〈TMinusPlus〉 ::= ‘-/+’ | ‘&mp’

〈TTimes〉 ::= ‘*’

〈TDivide〉 ::= ‘/’

〈TSlashDiv〉 ::= ‘&/’

〈TExponent〉 ::= ‘^’ | ‘**’

〈TModulus〉 ::= ‘%’ | ‘mod’

〈TImaginary〉 ::= ‘&Im’

〈TReal〉 ::= ‘&Re’

〈TCompose〉 ::= ‘@’

〈TRepeatCompose〉 ::= ‘@@’

〈TUnion〉 ::= ‘union’

〈TIntersect〉 ::= ‘intersect’

〈TSetDifference〉 ::= ‘\’ | ‘minus’

〈TCartesianProduct〉 ::= ‘&*’

〈TDirectSum〉 ::= ‘&o+’

〈TVectorizer〉 ::= ‘&v’

〈TUnitVectorizer〉 ::= ‘&u’

〈TSubscript〉 ::= ‘&_’

〈TSuperscript〉 ::= ‘&^’

〈TDot〉 ::= ‘&.’

〈TCross〉 ::= ‘&x’

〈TWedge〉 ::= ‘&w’

〈TTensor〉 ::= ‘&ox’

47

Grammar T5 MathLex Delimiter Tokens

〈TLParen〉 ::= ‘(’

〈TRParen〉 ::= ‘)’

〈TLCurlyBrace〉 ::= ‘{’

〈TRCurlyBrace〉 ::= ‘}’

〈TLSquareBracket〉 ::= ‘[’

〈TRSquareBracket〉 ::= ‘]’

〈TLRngIncl〉 ::= ‘[:’

〈TRRngIncl〉 ::= ‘:]’

〈TLRngExcl〉 ::= ‘(:’

〈TRRngExcl〉 ::= ‘:)’

〈TLPipe〉 ::= ‘|:’

〈TRPipe〉 ::= ‘:|’

〈TLDoublePipe〉 ::= ‘||:’

〈TRDoublePipe〉 ::= ‘:||’

〈TLVector〉 ::= ‘<:’

〈TRVector〉 ::= ‘:>’

〈TListSep〉 ::= ‘,’

48

Grammar T6 MathLex Differential Calculus Tokens

〈TPrimeDiff 〉 ::= ‘ ’ ’

〈TDotDiff 〉 ::= ‘.’

〈TChangeDelta〉 ::= ‘&D’

〈TDifferential〉 ::= ‘&d’

〈TPartial〉 ::= ‘&pd’

〈TGradient〉 ::= ‘&del’

〈TDivergence〉 ::= ‘&del.’

〈TCurl〉 ::= ‘&delx’

〈TSum〉 ::= ‘&’ (‘s’ | ‘S’) ‘um’

〈TProduct〉 ::= ‘&’ (‘p’ | ‘P’) ‘rod’ [‘uct’]

〈TLimit〉 ::= ‘&’ (‘l’ | ‘L’) ‘im’ [‘it’]

〈TDivDiff 〉 ::= ‘/&d’

〈TDivPartial〉 ::= ‘/&pd’

〈TIntegral〉 ::= ‘&’ (‘i’ | ‘I’) ‘nt’ [‘egral’]

Grammar T7 MathLex Miscellaneous Tokens

〈TTilde〉 ::= ‘~’

〈TPipe〉 ::= ‘|’

〈TBang〉 ::= ‘!’

The miscellaneous tokens are used in multiple contexts to mean different things. Their

meaning is determined by the Parser based on their context.

49

MathLex Language Grammar

Grammars L1 through L4 outline all parts of the current MathLex language specification.

In particular, they define the ways in which the tokens may be combined to form valid math-

ematical statements. In general, the rules are presented in order of increasing precedence.

For more information about the precedence of each recognized operation, please refer to the

tables in Chapter II. The names of each rule indicate when that operation may be identified.

For example, a logical disjunction may be matched as such, or it may be expanded by the

exclusion rule, which could then in turn be an exclusion operation or a conjunction, and so

on.

Grammar L1 MathLex Language Entry Rules

〈start〉 ::= 〈expression〉

〈expression〉 ::= 〈logical〉 [(〈TEquivalent〉 | 〈TNotEquivalent〉) 〈logical〉]

50

Grammar L2 MathLex Language Logical Rules

〈logical〉 ::= 〈biconditional〉

〈biconditional〉 ::= 〈implication〉 〈TIff 〉 〈implication〉

〈implication〉 ::= 〈reverse implication〉
| { 〈disjunction〉 〈TImplies〉 } 〈disjunction〉
| 〈TIf 〉 〈disjunction〉 〈TThen〉 〈disjunction〉

〈reverse implication〉 ::= 〈disjunction〉 [{ 〈TIf 〉 〈disjunction〉 }]

〈disjunction〉 ::= [{ 〈exclusion〉 〈TOr〉 }] 〈exclusion〉

〈exclusion〉 ::= [{ 〈conjunction〉 〈TXor〉 }] 〈conjunction〉

〈conjunction〉 ::= [{ 〈negation〉 〈TAnd〉 }] 〈negation〉

〈negation〉 ::= [(〈TNot〉 | 〈TTilde〉 | 〈TBang〉)] 〈quantification〉

〈quantification〉 ::= 〈relation〉
| 〈TQForall〉 〈relation〉 〈TComma〉 〈quantification〉
| (〈TQExists〉 | 〈TQUnique〉) 〈relation〉 〈TSuchThat〉 〈quantification〉

〈relation〉 ::= 〈ratio〉 [〈TRatioEqual〉 〈ratio〉]
| 〈algebraic〉 (〈TEqual〉 | 〈TNotEqual〉 | 〈TCongruent〉 | 〈TSimilar〉 | 〈TTilde〉) 〈algebraic〉
| 〈algebraic〉 (〈TParallel〉 | 〈TPerpendicular〉) 〈algebraic〉
| 〈algebraic〉 (〈TLess〉 | 〈TLessEqual〉 | 〈TGreaterEqual〉 | 〈TGreater〉) 〈algebraic〉
| 〈algebraic〉 (〈TSubset〉 | 〈TProperSubset〉 | 〈TSuperset〉 | 〈TProperSuperset〉 | 〈TDirectSum〉) 〈algebraic〉
| 〈algebraic〉 〈TIn〉 〈algebraic〉
| 〈algebraic〉 (〈TDivides〉 | 〈TPipe〉 | 〈TNotDivides〉) 〈algebraic〉

〈ratio〉 ::= 〈algebraic〉 [〈TRatio〉 〈algebraic〉]

51

Grammar L3 MathLex Language Algebraic Rules

〈algebraic〉 ::= 〈summation〉

〈summation〉 ::= [{ 〈composition〉 (〈TPlusMinus〉 | 〈TMinusPlus〉 | 〈TPlus〉 | 〈TMinus〉) }] 〈composition〉

〈composition〉 ::= [{ 〈set difference〉 〈TCompose〉 }] 〈set difference〉

〈set difference〉 ::= [{ 〈set union〉 〈TSetDifference〉 }] 〈set union〉

〈set union〉 ::= [{ 〈set intersection〉 〈TUnion〉 }] 〈set intersection〉

〈set intersection〉 ::= [{ 〈product〉 〈TIntersect〉 }] 〈product〉

〈multiplication〉 ::= [{ 〈dot product〉 (〈TTimes〉 | 〈TSlash〉 | 〈TDivide〉 | 〈TModulus〉) }] 〈dot product〉

〈dot product〉 ::= 〈vector product〉 〈TDot〉 〈vector product〉

〈vector product〉 ::= [{ 〈prefix 〉 (〈TCross〉 | 〈TWedge〉 | 〈TTensor〉 | 〈TCartesianProduct〉) }] 〈prefix 〉

〈prefix 〉 ::= [{ (〈TNot〉 | 〈TPlus〉 | 〈TMinus〉 | 〈TPlusMinus〉 | 〈TMinusPlus〉) }] 〈function〉
| [(〈TPartial〉 | 〈TDifferential〉 | 〈TChangeDelta〉 | 〈TVectorizor〉 | 〈TUnitVectorizer〉)] 〈function〉

〈function〉 ::= 〈exponent〉 [{ 〈TLParen〉 〈expression〉 [{ 〈TComma〉 〈expression〉 }] 〈TRParen〉 }]

〈exponent〉 ::= 〈suffix 〉 [{ 〈TExponent〉 〈prefix 〉 }]

〈suffix 〉 ::= 〈function〉 [{ (〈TBang〉 | 〈TPrime〉 | 〈TDotDiff 〉) }]

〈index 〉 ::= 〈primary〉 [{ (〈TSubscript〉 | 〈TSuperscript〉) 〈primary〉 }]

52

Grammar L4 MathLex Language Primary Value Rules

〈primary〉 ::= 〈TEmpty〉 | 〈TIdentifier〉 | 〈TIntegerLiteral〉 | 〈TFloatLiteral〉 | 〈TConstant〉
| 〈vector〉 | 〈absolute value〉 | 〈norm〉 | 〈bra ket〉
| 〈TLCurlyBrace〉 〈set〉 〈TRCurlyBrace〉
| 〈TLSquareBracket〉 [〈expression〉 [{ 〈TComma〉 〈expression〉 }]] 〈TRSquareBracket〉
| (〈TLRngIncl〉 | 〈TLRngExcl〉) 〈algebraic〉 〈TComma〉 〈algebraic〉 (〈TRRngIncl〉 | 〈TRRngExcl〉)
| 〈TLParen〉 [〈expression〉] 〈TRParen〉
| 〈TIntegral〉 〈integral bounds〉 〈algebraic〉 〈TDifferential〉 〈algebraic〉

〈vector〉 ::= 〈TLess〉 〈algebraic〉 [{ 〈TComma〉 〈algebraic〉 }] 〈TGreater〉
| 〈TLVector〉 〈algebraic〉 [{ 〈TComma〉 〈algebraic〉 }] 〈TRVector〉

〈absolute value〉 ::= 〈TPipe〉 〈algebraic〉 〈TPipe〉
| 〈TLPipe〉 [〈algebraic〉] 〈TRPipe〉

〈norm〉 ::= 〈TOr〉 〈algebraic〉 〈TOr〉
| 〈TLDoublePipe〉 [〈algebraic〉] 〈TRDoublePipe〉

〈bra ket〉 ::= 〈TLess〉 〈algebraic〉 〈TPipe〉
| 〈TPipe〉 〈algebraic〉 〈TGreater〉
| 〈TLess〉 〈algebraic〉 〈TOr〉 〈algebraic〉 〈TGreater〉
| 〈TLVector〉 〈algebraic〉 〈TPipe〉 〈algebraic〉 〈TRVector〉

〈integral bounds〉 ::= 〈TSubscript〉 〈primary〉 [〈TSuperscript〉 〈primary〉]
| 〈TSuperscript〉 〈primary〉 [〈TSubscript〉 〈primary〉]

53

Building a Renderer

The AST returned by the JavaScript parser are represented as a recursive array: the first

element (i.e. index 0) is a string ID of the node type, and the remaining elements are

that node’s parameters. Renderers should operate recursively on the AST, checking each

node’s ID and performing a corresponding action. Listing IV.1 shows some snippets from the

built-in LATEX translator. MathLex is programmed in CoffeeScript [32], a highly expressive

language that compiles into JavaScript. The names of all nodes and their structure are given

in the documentation on the companion website (http://ugrthesis.mathlex.org) as the

list is not yet stable. The reader may also choose to copy the LATEX translator and modify

it.

54

http://ugrthesis.mathlex.org

Listing IV.1 LATEX Translator Snippets in CoffeeScript
exports.render = render = (ast) ->

switch ast[0]

when ’Plus ’ then "#{ render ast [1]} + #{ render ast [2]}"

when ’Minus ’ then "#{ render ast [1]} - #{ render ast [2]}"

when ’PlusMinus ’ then "#{ render ast [1]} \\pm #{ render ast [2]}"

when ’MinusPlus ’ then "#{ render ast [1]} \\mp #{ render ast [2]}"

when ’Times ’

op = if implMult(ast[1], LEFT) or implMult(ast[2], RIGHT)

" \\, "

else

" \\cdot "

(render ast [1]) + op + (render ast [2])

when ’Divide ’

if ast[3]

"\\ frac {#{ render unwrap ast [1]}}{#{ render unwrap ast [2]}}"

else

"#{ render ast [1]} / #{ render ast [2]}"

when ’Ratio ’ then "#{ render ast [1]} : #{ render ast [2]}"

when ’Modulus ’ then "#{ render ast [1]} \\pmod {#{ render unwrap ast [2]}}"

when ’Exponent ’ then "#{ render ast [1]}^{#{ render unwrap ast [2]}}"

when ’Superscript ’

rhs = unwrap ast[2]

if rhs[0] is ’List ’

elements = (render elem for elem in rhs [1])

sup = elements.join " ,\\, "

else

sup = render rhs

"#{ render ast [1]}{}^{#{ sup}}"

when ’Subscript ’

rhs = unwrap ast[2]

if rhs[0] is ’List ’

elements = (render elem for elem in rhs [1])

sub = elements.join " ,\\, "

else

sub = render rhs

"#{ render ast [1]}{}_{#{sub }}"

when ’DotProduct ’ then "#{ render ast [1]} \\cdot #{ render ast [2]}"

when ’CrossProduct ’ then "#{ render ast [1]} \\ times #{ render ast [2]}"

when ’Union ’ then "#{ render ast [1]} \\cup #{ render ast [2]}"

when ’Intersection ’ then "#{ render ast [1]} \\cap #{ render ast [2]}"

when ’SetDiff ’ then "#{ render ast [1]} \\ setminus #{ render ast [2]}"

when ’DirectSum ’ then "#{ render ast [1]} \\oplus #{ render ast [2]}"

when ’CartesianProduct ’ then "#{ render ast [1]} \\ times #{ render ast [2]}"

when ’Positive ’ then "+#{ render ast [1]}"

when ’Negative ’ then "-#{ render ast [1]}"

when ’PosNeg ’ then "\\pm #{ render ast [1]}"

when ’NegPos ’ then "\\mp #{ render ast [1]}"

when ’Partial ’ then "\\ partial #{ render ast [1]}"

when ’Differential ’ then "\\ mathrm{d} #{ render ast [1]}"

when ’Change ’ then "\\ Delta #{ render ast [1]}"

when ’Gradient ’ then "\\ vec\\ nabla #{ render ast [1]}"

when ’Divergence ’ then "\\vec\\nabla \\cdot #{ render ast [1]}"

when ’Curl ’ then "\\vec\\ nabla \\ times #{ render ast [1]}"

55

CHAPTER V

FUTURE DEVELOPMENTS

At present, MathLex does not encompass all of mathematics and probably never will. How-

ever, that should not stop us from making additions to the mathematical content. In ad-

dition, there is written syntax not yet implemented into the MathLex input language, and

the ease of entering math could be further refined. This chapter discusses these future

improvements.

Processing Incomplete Input

The Grammar given in Chapter IV parses only mathematically valid strings. While this is

desired in most CAS circumstances, languages such as LATEX allow for partial expressions.

For example, when parsing input in real-time, the expression &int x*(3*x+)/ would fail

to parse under the current grammar rules, but the desired interpretation is an unfinished

expression of the form ∫
x (3x+�)

�
d�

where each box represents an expected sub-expression. Graceful error handling would provide

a better user experience with more feedback, especially while entering an expression.

Theoretically, the way to allow such parsing is to add the empty string, ε, to the primary

grammar rule. However, in practice, this would cause much ambiguity and should only be

allowed when no alternative interpretation is possible. MathLex’s parser is generated using a

JavaScript library called Jison [33] , and adding such behavior to the grammar would require

more time and research (of Jison’s programming and documentation) than what was allowed

for this thesis. Nonetheless, the author regards this enhancement with high priority and will

likely be implemented soon.

56

MathLex already handles automatic insertion of matched delimiters where possible. How-

ever, the way in which this is handled could be made better: the current “fix” prepends

missing opening delimiters at the very beginning of the stream and missing closing delim-

iters immediately before the next expected closing delimiter (or at the end of the stream if

none are found). This is actually handled at the Tokenizer level and, to be proper, should

be handled by the Parser.

Implicit Multiplication

At present, all multiplications must be explicitly stated using the ‘*’ operator. In contrast,

the norm in handwritten mathematics is to place variables of the same term next to each

other with no symbol between. While this appears natural, it could introduce ambiguity to

a computer; that is, whether ax is a single variable that happens to be two characters in

length or the product of two variables depends on the language specification. MathLex allows

variables to have an arbitrary length (for flexibility and familiarity among programmers),

so ax would be understood as a single variable ‘ax’. So the cure is to put a space between

the ‘a’ and the ‘x’. This is because whitespace is ignored and discarded by the Tokenizer,

except to separate tokens. Thus parsing implicit multiplication would require detection of

adjacent “factors” in the token stream with no separator or operator between. A grammar

rule for this might look like the following:

〈implicit multiplication〉 ::= 〈factor〉 〈factor〉

Unfortunately, the above grammar introduces a new problem: it treats an adjacent parenthe-

sized expression as a factor, which creates ambiguity with function application. For example,

is (f + g)(x+ y) a function application on a builder meaning f(x+ y) + g(x+ y), or is it the

factorized multiplication of f ·x+f ·y+g ·x+g ·y? Determining meaning requires extra type

information about f and g. (See Type-Checking below.) To a mathematician, the variables

57

f and g are commonly used to represent functions, and thus the first interpretation seems

more natural. However, to a parser, f and g, could represent anything.

The present thinking is to treat implicit multiplication and function application as a single

“application” operator in the syntax tree: a b would be the “application of a and b”. An

application’s meaning will be determined later by the type-checker according to Table V.1,

which outlines all possible type relationships between the LHS and RHS of an application

operator.

Table V.1 Application Operator Interpretation: × = multiplication, f = func-
tion application

RHS Type
Parenthesis Variable Number Function

L
H

S
T

y
p

e Parenthesis f × × ×
Variable f × × ×
Number × × × ×

Function f f f f

Based on the patterns in Table V.1, three tests can determine the interpretation of an

application as described in Algorithm 1

Algorithm 1 Application Operator Interpretation

if LHS = Function then return function application
else if LHS = Number then return implicit multiplication
else if RHS = Parenthesis then return function application
else return implicit multiplication
end if

This interpretation is not perfect because for example it would misinterpret (x+y)(y+z) and

x(x+2) as function applications unless the type of x has been previously determined.

Also note that Table V.1 implies the addition of a new Function-type token. At present,

the number sign (#), the ampersand (&), and the colon(:) are used to decorate constants,

operators, and delimiters (respectively) to distinguish them from alternate meanings. The

58

addition of a “function decorator” would inform the Tokenizer and ultimately the Type-

Checker that the current variable identifier is to be treated as a function. The currently

unused keyboard characters are: Dollar Sign ($), Back-tick (‘), Double-Quote ("), and

Question Mark (?). Any of these symbols would make a good decorator, and the least

intrusive of these in the author’s opinion is a dollar-sign prefix (type $f to represent the

function f). This is similar to how PHP treats variables, e.g. $var, and the “address-of”

operator (&) used by C, C++, and Ruby to refer to function blocks). However, by introducing

additional unfamiliar syntax, such a decorator might oppose the aim of this thesis to create

a natural math input language. Since it may only be possible to identify the identifier’s

type after creating the AST, the identification of an application operator as a multiplication

or function application will likely require Type-Checking and/or Third-Pass Parsing. (See

below.)

Other delimiters can also lead to ambiguity with implicit multiplication. For example, with-

out multiplication signs, the expression |x+2|y+3|z| could be interpreted as |x+2|*y+3*|z|

or as |x+2*|y+3|*z|. We already have a solution to this ambiguity with matched delimiters:

the former would be entered into MathLex as |:x+2:| y+3 |:z:|, while the latter would

be entered as |:x + 2|:y+3:|z:|.

Type-Checking

As briefly mentioned in the section on implicit multiplication, a type-checking system would

allow the same operator to have different meanings in different contexts. A great example

is the × symbol: between scalars, it means multiplication; between vectors, this is a cross

product; and between sets, it becomes a Cartesian product.

Furthermore, a type-checker would ensure mathematical validity. For example, a dot product

operates on two vectors and returns a scalar. At present, MathLex would allow a dot product

between a set and a scalar, neither of which are vectors.

59

Type-checking is easy in statically typed languages since the type of every variable is known.

However, MathLex is dynamically typed since variables could represent anything. As men-

tioned in the implicit multiplication section, adding decorators to specify type would aid in

type-checking, but would introduce unnatural syntax.

Another approach is to use type hinting, or finding a type assignment that satisfies the

operator constraints. For example, addition works only for scalars, vectors, vector spaces,

etc., and only then when both operands are of the same type. Similarly, the cross product

only works on vectors, but the Cartesian product only works on sets. So the variables

contained in the expression a &x b + c must either all be vectors or all be vector spaces.

By themselves, a, b, and c could be anything, but when combined (by precedence) under

the × and + operators, their types may be determined by the operator definitions.

One problem associated with type hinting is uncertainty when multiple type assignments

would make sense. The only way to deal with such ambiguity is to make the type domain of

each variable consistent by eliminating the types that are incompatible with other variables’

domains. For example, the division operation makes sense for scalars and vectors (even then

only if the vector is in the numerator). Therefore, the expression a / b has the following

valid type assignments:

a : {Number,Vector} b : {Number}

Third-Pass Parsing

MathLex employs two levels of parsing to construct an AST: The tokenizer operates on a

linear stream of characters and, adding semantic meaning, groups them into a linear stream

of tokens based on predefined patterns. The Parser then operates on this linear stream of

tokens and groups them into a tree based on context. However, just as operator tokens

can be represented by multiple strings, so too can mathematical concepts be represented

by multiple contexts. For example, gradient, divergence, and curl can be represented by

60

functions or prefix operators, and each representation results in a different substructure in

the AST: a function node in which the LHS is a “builder” consisting of a single identifier

(grad, div, or curl) or a prefix node in which the name of the node is the operation itself.

The latter of these representations is preferred since it is easier to build a renderer/translator

for such a structure.

For ideal uniformity, the final AST should have only one way to represent each supported

mathematical concept. In the previous example, gradient, divergence, and curl should each

have only one representation in the syntax tree instead of different structures that depend on

syntax. Unfortunately, the parser has no way of jumping states from “looking for a function”

to “just found a gradient operation” internally: the parser operates on token types and not

on their values.

A more subtle concern is the representation of associative operations (such as addition,

multiplication, and union) in the AST. The parser currently treats such operations as left-

associative. While there is nothing wrong with this representation, a more mathematically

correct representation would be to group chained associative operations under a single node

with an arbitrary number of parameters.

The solution to these issues is another (third) layer of parsing that operates on a rudimentary

AST and produces a more refined AST by matching and replacing certain substructures with

better alternatives.

Additional Symbols and Alternate Notation

The title of this section speaks for itself: many desirable mathematical operations and con-

cepts are still lacking or have a somewhat unintuitive syntax. For instance,

• Matrix display:

 a b

c d

• Function convolution: (f ∗ g)(t) =

∫ t

0

f(v) g(t− v) dt)

61

• Inner Products: 〈~x, ~y〉

• Geometric Constructs and Units: ∠ABC, PQ, 4XY Z, 45◦

In general, more written-style input can and will be added, and the need for ampersands

on some operations will be reduced. Alternate intuitive notations for currently supported

operations will be added as they are brainstormed or suggested by others.

Graphical and Handwritten Input

Keyboard entry in MathLex is doable on mobile devices, but still tedious. The demonstration

page at the companion website (http://ugrthesis.mathlex.org) has graphical palettes to

insert symbols and templates more quickly. These are not yet provided in the MathLex

JavaScript plugin but should be soon. Even so, the palettes are too big to fit comfortably on

mobile displays. The ideal method for mobile entry would be handwriting recognition. This

may not be implemented for a very long time, but such an interface should be the desired

goal for now. This may change as mobile devices, browsers, and Web technologies continue

to mature.

62

http://ugrthesis.mathlex.org

REFERENCES

[1] D. E. Knuth, The TEXbook. Addison Wesley, 13th ed., December 1987.

[2] L. Lamport, LATEX: A Document Preparation System: User’s Guide and Reference
Manual. Addison Wesley, 2nd ed., November 1994.

[3] D. Cervone, “MathJax.” http://www.mathjax.org, November 2012.

[4] Maplesoft, “Maple.” http://www.maplesoft.com/products/maple/.

[5] Wolfram Research, “Mathematica.” http://www.wolfram.com/mathematica/.

[6] Texas Instruments, “Derive.” http://education.ti.com/en-GB/uk/products/
computer-software/derive-6/features/features-summary.

[7] MathWorks, “Matlab.” http://www.mathworks.com/products/matlab/.

[8] Sagemath, “Sage.” http://sagemath.org/.

[9] “PocketCAS for iOS.” http://pocketcas.com.

[10] S. Buswell, S. Devitt, A. Diaz, N. Poppelier, B. Smith, N. Soiffer, R. Sutor, and S. Watt,
“Mathematical Markup Language (MathML) 1.0 Specification.” http://www.w3.org/
TR/1998/REC-MathML-19980407/, April 1998.

[11] Pearson, “MyMathLab.” http://www.mymathlab.com/.

[12] John Wiley & Sons, Inc., “WileyPLUS.” https://www.wileyplus.com/WileyCDA/.

[13] Mathematical Association of America, “WeBWorK.” http://webwork.maa.org/.

[14] N. Carolina State Univ., “WebAssign: Online Homework and Grading.” http://www.
webassign.net/.

[15] Maplesoft, “Maple T.A..” http://www.maplesoft.com/products/mapleta/.

[16] Wolfram Research, “About Wolfram|Alpha.” http://www.wolframalpha.com/about.
html.

[17] The OpenMath Society, “OpenMath.” http://www.openmath.org.

[18] MYMathApps, “Maplets for Calculus.” http://www.mymathapps.com/.

[19] Sagemath, “Sage Cell Server (Aleph).” http://aleph.sagemath.org/.

[20] Mozilla Developer Network, “Learn HTML.” https://developer.mozilla.org/
en-US/learn/html.

[21] TutsPlus, “30 Days to Learn HTML & CSS.” http://learncss.tutsplus.com/.

[22] W3Schools, “Learn HTML.” http://www.w3schools.com/html/.

[23] The jQuery Foundation, “jQuery.” http://jquery.com.

[24] “MooTools: A Compact JavaScript Framework.” http://mootools.net.

[25] A. Dupont, “Prototype JavaScript Framework.” http://prototypejs.org.

63

http://www.mathjax.org
http://www.maplesoft.com/products/maple/
http://www.wolfram.com/mathematica/
http://education.ti.com/en-GB/uk/products/computer-software/derive-6/features/features-summary
http://education.ti.com/en-GB/uk/products/computer-software/derive-6/features/features-summary
http://www.mathworks.com/products/matlab/
http://sagemath.org/
http://pocketcas.com
http://www.w3.org/TR/1998/REC-MathML-19980407/
http://www.w3.org/TR/1998/REC-MathML-19980407/
http://www.mymathlab.com/
https://www.wileyplus.com/WileyCDA/
http://webwork.maa.org/
http://www.webassign.net/
http://www.webassign.net/
http://www.maplesoft.com/products/mapleta/
http://www.wolframalpha.com/about.html
http://www.wolframalpha.com/about.html
http://www.openmath.org
http://www.mymathapps.com/
http://aleph.sagemath.org/
https://developer.mozilla.org/en-US/learn/html
https://developer.mozilla.org/en-US/learn/html
http://learncss.tutsplus.com/
http://www.w3schools.com/html/
http://jquery.com
http://mootools.net
http://prototypejs.org

[26] Yahoo, “YUI Library.” http://yuilibrary.com.

[27] The Dojo Foundation, “The Dojo Toolkit.” http://dojotoolkit.org.

[28] Mozilla Developer Network, “Reserved Words - JavaScript Reference.” https://
developer.mozilla.org/en-US/docs/JavaScript/Reference/Reserved_Words.

[29] “Information technology - Syntactic metalanguage - Extended BNF,” No. ISO 14977,
ISO, Geneva, Switzerland, 1996.

[30] J. W. Backus, “The Syntax and Semantics of the Proposed International Algebraic
Language of the Zurich ACM-GAMM Conference,” in Proceedings of the Intl. Conf. on
Info. Processing, UNESCO, pp. 125–132, 1959.

[31] N. Chomsky, “On certain formal properties of grammars,” Information and Control,
vol. 2, pp. 137–67, June 1959.

[32] J. Ashkenas, “CoffeeScript.” http://coffeescript.org.

[33] Z. Carter, “Jison.” http://zaach.github.com/jison/.

64

http://yuilibrary.com
http://dojotoolkit.org
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Reserved_Words
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Reserved_Words
http://coffeescript.org
http://zaach.github.com/jison/

	ABSTRACT
	NOMENCLATURE
	Introduction
	Audience
	Background Information
	Question 1
	Question 2

	Existing Technology
	Response to Question 1
	Response to Question 2

	Introducing MathLex

	MathLex for the Novice (Student & Instructor)
	Introduction
	Language Specification for the Masses
	Summary
	Symbols by Type
	Symbols by Topic

	How MathLex Works
	Input to Syntax Tree
	Syntax Tree to Output

	MathLex for the Instructor
	Sample Page Source Code
	Page Layout
	JavaScript Inclusions
	Handling MathJax Output
	Live-Updating Math Display
	Sending Math to Sage
	Sage Processing

	Additional Comments

	MathLex for the Programmer
	Grammar Basics and Theory
	Backus-Naur Form
	Extended Backus-Naur Form
	Modified EBNF

	MathLex Grammar
	MathLex Token Grammar
	MathLex Language Grammar

	Building a Renderer

	Future Developments
	Processing Incomplete Input
	Implicit Multiplication
	Type-Checking
	Third-Pass Parsing
	Additional Symbols and Alternate Notation
	Graphical and Handwritten Input

	REFERENCES

