
 

 

 
 

OPEN ACCESS | www.microbialcell.com 94 Microbial Cell | April 2015 | Vol. 2 No. 4 

www.microbialcell.com 

Review 

ABSTRACT  Protein synthesis underpins much of cell growth and, 

consequently, cell multiplication. Understanding how proliferating cells 

commit and progress into the cell cycle requires knowing not only which 

proteins need to be synthesized, but also what determines their rate of 

synthesis during cell division.  
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INTRODUCTION 

Experiments with proliferating populations of microbial 

strains, animal or plant cell lines, have rigorous expecta-

tions. Under the same culture conditions, cells ought to 

have the same properties and composition in every single 

experiment. The basic “metrics” of proliferating cells re-

main constant, even after many rounds of cell division [1, 

2]. These metrics include cellular mass and volume, and 

macromolecular composition [1, 3]. The constancy of such 

parameters reflects the fundamental ability of cells to co-

ordinate their growth with their division [1, 4, 5]. Balancing 

cell growth with cell division determines the overall rates 

of cell proliferation [4-8]. Despite the obvious significance 

of this phenomenon, how cells manage to coordinate their 

growth with their division remains largely mysterious. 

Proteins are often the most abundant macromolecules 

in proliferating cells. For example, in steady-state cultures 

of the budding yeast Saccharomyces cerevisiae, the protein 

content ranges from 35% to 44% of all macromolecules, 

depending on culture conditions [3]. Furthermore, much of 

the proteome (>20%) is dedicated to making ribosomes 

and translation factors, enabling cells to make more pro-

teins [9]. On top of that, making ribosomal components 

and assembling them into functional ribosomes involves a 

dizzying array of molecular players and cellular processes 

[10-12]. Consequently, protein synthesis is viewed as a 

fundamental measure of cell growth. Decades ago, a 

founding father of cell cycle studies put it this way: “No 

sensible interpretation of cell growth can be made without 

a knowledge of the overall pattern of protein synthesis” 

[13]. 

In the following sections, we discuss the interplay of 

protein synthesis and cell division. Examples of translation-

al control in embryonic and meiotic cell divisions have 

been covered comprehensively elsewhere [14, 15]. Here, 

the focus is on mitotic cell division and specifically on the 

G1 phase of the cell cycle, when cells commit to a new 

round of cell division. The examples discussed are mainly, 

but not exclusively, from the budding yeast S. cerevisiae. 

The discussion centers on un-perturbed, continuously di-

viding cells, and the impact of genetic, nutritional or chem-

ical perturbations. 

 

OVERALL PATTERN OF PROTEIN SYNTHESIS IN THE CELL 

CYCLE 

In animal cells, protein synthesis is much lower in mitosis 

than in other cell cycle phases [16-18]. Mechanisms that 

enable translation of specific mRNAs in animal cells under-

going mitosis have been reviewed elsewhere [15, 19]. In 

contrast to the mitotic block in protein synthesis in animal 

cells, early studies indicated that budding yeast cells syn-

thesize proteins, including ribosomal proteins, continuous-

ly during the cell cycle [20-23]. These experiments relied 

mostly on incorporation of labeled amino acids into poly-

peptides, which were then visualized after electrophoresis 

[21-23]. Hence, those early experiments sampled abundant, 

constitutively expressed proteins that make up the vast 

majority of the proteome [9, 24-26]. Obviously, transcrip-
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tional waves drive periodic synthesis of hundreds of pro-

teins in the cell cycle [27, 28]. Nonetheless, the bulk of 

cellular protein synthesis appears to proceed at an expo-

nentially increasing rate in the cell cycle [21, 22]. This con-

clusion was reinforced by monitoring the accumulation of 

constitutively expressed fluorescent proteins in single cells 

[29]. In addition, continuous monitoring of cell volume 

supports an exponential mode of increase in the cell cycle 

[30]. Therefore, it appears that budding yeast cells make 

proteins and grow exponentially. Based on buoyant mass 

as a metric of cell growth, the same can be said about the 

growth of diverse types of cells, from bacteria to mouse 

lymphoblasts, with heavier cells growing faster than lighter 

cells [31]. However, whether or not the growth of animal 

cells is exponential is still controversial [32-34].   

An exponential mode of protein synthesis and growth 

is consistent with the existence of active mechanisms that 

sense some growth metric, perhaps somehow related to 

protein synthesis [7]. Such mechanisms would enable cells 

to monitor their growth and commit to a new round of cell 

division once their growth requirements are met [6, 7]. As 

a result, cells that are born small stay longer in the G1 

phase, until they grow enough to commit into and initiate 

a new round of cell division [4-7, 35]. In yeast, the point of 

commitment to a new round of cell division is called START 

[5]. START is marked molecularly by nuclear eviction of the 

Whi5p repressor [29, 36, 37], a protein that functions anal-

ogously to the retinoblastoma gene product of animal cells 

[38, 39]. Once cells pass through START in late G1, they will 

initiate and complete their division even if they encounter 

growth limitations [4, 5, 35]. To summarize simply, it seems 

that the bigger yeast cells get, the faster they make pro-

teins and grow, propelling them to divide. This simple con-

cept raises a series of key questions: What determines the 

rate of protein synthesis? How can the rate of protein syn-

thesis be altered and what would the effects of such alter-

ations be on the cell cycle? What are the RNA targets of 

translational control that affect cell cycle progression? 

 

INITIATE TO START?  

The rate of synthesis of any given protein depends on not 

only the concentration but also the translational efficiency 

of its mRNA. Discrepancies between the two parameters 

underpin translational control. It is often stated that con-

trol of translation in eukaryotic cells is exercised mainly at 

the initiation step, when ribosomes are recruited to mRNA 

[19]. As discussed in subsequent sections, additional layers 

of control may also change the rate at which proteins are 

made. Nonetheless, the initiation step remains a key con-

trol point of translation [40, 41]. Ribosomal recruitment in 

eukaryotes usually involves recognition of a cap structure 

at the 5’-end of the mRNA. The small (40S) ribosomal sub-

unit loaded with initiator Met-tRNA and with the contribu-

tion of various initiation factors begins scanning the 5’-UTR 

of the mRNA for an AUG (or near-cognate start codons). In 

the process, it has to navigate past the secondary structure 

of the 5’-UTR [42] or initiation codons upstream of the 

main open reading frame [43]. Such features may affect 

recognition and initiation from the correct start codon [40, 

41, 44].  

The earliest genetic evidence for specific cell cycle ef-

fects due to translational control was the isolation of bud-

ding yeast conditional mutants in what turned out to be 

translation initiation factors [5]. One would expect that 

cessation of a continuous vital cellular function, such as 

initiation of translation, would simply arrest each cell at 

whichever point in the cycle that cell happened to be at 

the time. In an asynchronously proliferating cell population, 

this would manifest in a pattern of random arrests along 

the cell cycle [5]. Yet cell division cycle (cdc) genetic screens 

yielded mutants carrying temperature-sensitive, hypo-

morphic alleles of translation initiation factors, which did 

not display a random arrest at their non-permissive tem-

perature. Instead, cells carrying cdc33 (encoding mRNA cap 

binding protein and translation initiation factor eIF4E [45, 

46]) or cdc63 (encoding the b subunit of translation initia-

tion factor eIF3 [47, 48]) mutations arrest uniformly in the 

G1 phase of the cell cycle, unable to initiate DNA replica-

tion and a new round of cell division [35, 46, 49, 50]. A 

conditional methionyl-tRNA synthetase (mes1) mutant also 

arrests in the G1 phase of the cell cycle [51]. These classical 

genetic analyses suggested strongly that G1 transit is sensi-

tive to translation initiation, more so than other phases of 

the cell cycle. This conclusion was strengthened when es-

sential gene function was interrogated with a collection of 

titratable TetO7 promoter alleles for essential genes [52]. In 

 

 

FIGURE 1: Schematic overview of the topics covered in this 

review. Open reading frames (ORFs) are shown in red.  
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addition to the eIF4E and eIF3b examples mentioned 

above, Yu et al. showed that inhibiting expression of eIF2a, 

eIF4A, eIF2b, eIF3i, or eIF1 resulted in G1 arrest in yeast 

([52]; and Table 1). Hence, impairing translation initiation 

in a number of ways, invariably and specifically also impairs 

the capacity of cells to initiate a new round of cell division. 

If initiation of translation is important for commitment 

to division, then signaling pathways that control initiation 

of division may do so, at least in part, by regulating transla-

tion initiation. Mitogenic pathways would be expected to 

activate translation initiation, while pathways that convey 

anti-proliferative signals may inhibit translation initiation. 

The cardinal example for the former case is the Target of 

Rapamycin (TOR) pathway. How the TOR pathway activates 

initiation of translation and overall protein synthesis has 

been reviewed elsewhere [53, 54]. Loss of TOR function 

was known to cause G1 arrest in mammals [55, 56] and 

yeast [53, 57]. Connecting the G1 arrest with the effects of 

TOR on translation, however, was not obvious. In a land-

mark paper, it was shown that upon loss of TOR function in 

yeast, the cause of the G1 arrest was a direct consequence 

of a block in translation initiation [58]. De-repressing trans-

lation of the G1 cyclin Cln3p was sufficient to abrogate the 

G1 arrest of TOR-inhibited yeast cells [58]. TOR is not the 

only mitogenic pathway that activates translation initiation. 

The RAS/MAPK pathway in animals phosphorylates and 

increases the activity of eIF4B [40, 59]. Remarkably, phos-

phorylation of eIF4B on the same residue is a common 

output of both the TOR and MAPK pathways [59], under-

scoring the significance of activating translation initiation 

for commitment to cell division. Conversely, upon stress or 

starvation it is not prudent to either initiate cell division or 

make many proteins. It turns out that phosphorylation of 

eIF2α is a conserved response from yeast to mammals that 

inhibits overall translation initiation, and it is an output of 

anti-mitogenic signals [40, 41, 53, 60].  

 

TRANSLATIONAL TARGETS (?) FOR COMMITMENT TO 

DIVISION 

The above examples suggest that translation initiation goes 

hand-in-hand with G1 progression and initiation of cell 

division. By and large, however, they do not answer how 

this is brought about. What are the relevant proteins im-

portant for G1 transit, whose synthesis is sensitive to limi-

tations in translation initiation, and how do these proteins 

impinge on the machinery of cell division? In the case of 

the G1 cyclin Cln3p was mentioned above, Hall and col-

leagues replaced the long 5’-UTR of the yeast CLN3 mRNA 

with that of UBI4, which is efficiently translated when TOR 

function is low [58]. Cells carrying this non-repressible 

CLN3 did not arrest in G1 when TOR function was inhibited 

by rapamycin [58]. Similarly, efficient translation of CLN3 

enabled G1 arrested cdc33 cells, in which the activity of the 

eIF4E is impaired (see Table 1), to initiate cell division [61]. 

The Whi3p RNA-binding protein, which sequesters CLN3 

mRNA in cytoplasmic foci, may inhibit translation of CLN3 

[62].  There is also a uORF in the 5’-UTR of the CLN3 mRNA 

[63]. We had proposed that the uORF lowers the number 

of scanning ribosomes that reach the downstream main 

AUG, especially when the ribosome content of the cell is 

low in poor media [8, 63]. As predicted, inactivation of the 

uORF in CLN3 allowed cells growing in poor medium, with 

glycerol as the source for carbon, to accelerate completion 

of START [63]. Nitrogen limitation was also reported to 

repress translation of CLN3 [64]. In contrast, another study 

reported that 20 min after amino acid starvation, transla-

tion of CLN3 was up-regulated [43]. While this later dis-

crepancy may simply reflect the different experimental set-

ups, there is overall compelling evidence that synthesis of 

Cln3p, whose levels control the timing of START [65, 66], is 

regulated at least in part at the translational level. It should 

be noted, however, that all the examples above rest on 

comparisons between different conditions: with or without 

inhibitors of TOR [58, 63]; mutant vs. wild type [61-63]; 

different nutrients [43, 63, 64]. It is important to stress that 

although CLN3 is a translational target, there is no evi-

dence yet that it is targeted in a periodic manner in the cell 

cycle, in G1 or any other cell cycle phase. 

It has been reported that CLN3 transcription oscillates 

early in the cell cycle [67, 68], but Cln3p protein levels 

were not evaluated in these studies. Cln3p is very unstable 

[69], and difficult to detect by immunoblotting. Early stud-

ies reported that Cln3p levels do not oscillate in the cell 

cycle [70]. Recently, however, more sensitive approaches 

from two independent studies showed that Cln3p protein 

is nearly absent in early G1 cells, but it gradually accumu-

lates as cells approach START (Fig. 9 in [71], and Fig. 10 in 

[72]), without a corresponding increase in the mRNA levels 

of CLN3. The data from Thorburn et al. [71] and Zapata et 

al. [72] strongly implicate post-transcriptional mechanisms 

that control abundance of Cln3p in the cell cycle, perhaps 

due to control of its synthesis, degradation, or both. Both 

of these studies relied on centrifugal elutriation to isolate 

highly synchronous early G1 daughter cells, which were 

then sampled as they progressed in the cell cycle [71, 72]. 

Until analogous studies are performed with alternative 

synchronization methods, it is formally possible that the 

results reflect idiosyncrasies of elutriation. Note also that 

the CLN3 mRNA cannot possibly be the only physiological 

target of translational control for cell cycle progression. 

Cells lacking Cln3p are viable [65, 66] and they also re-

spond as expected to nutrient limitations, reducing their 

size [38]. 

In other systems, the best example of a translational 

target important for initiation of mitotic cell division is the 

cyclin-dependent kinase inhibitor p27
Kip1

 in human cells, 

whose translation appears to be periodic in the cell cycle, 

decreasing at the G1/S transition [73-77]. Translational 

control of p27
Kip1

 is complex, involving both cap-dependent 

and independent mechanisms [75, 77]. However, because 

p27
Kip1

 synthesis decreases at the G1/S transition, this case 

of translational control cannot account for the postulated 

activating role of protein synthesis in triggering cell divi-

sion. Other reported translational targets include the G1 

cyclin D1 in mammals [78-80], and the G1/S cyclins E1 [81] 

and E2 [82] in mammals, and Cig2 in fission yeast [83] (re-

viewed in [84]). Trans-acting factors influencing translation  
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TABLE 1. Cell cycle phenotypes of loss-of-function mutants in essential genes encoding protein synthesis and ribosome biogenesis factors in 

S. cerevisiae. 

Systematic 

name 

Standard name/ 

alias 

Function Cell cycle  

phenotype 

Ref. 

Translation Initiation Factors 

YER165W PAB1 Poly(A) binding protein G1 [136] 

YJR007W SUI2 eIF2α G1 [52] 

YKR059W TIF1 eIF4A G1 [52] 

YLR291C GCD7 eIF2Bβ G1 [52] 

YMR146C TIF34 eIF3i G1 [52] 

YNL244C SUI1/MOF2 eIF1 G1 [52] 

YOL139C CDC33/TIF45 eIF4E G1 [45, 46] 

YOR361C PRT1/CDC63 eIF3b G1 [47, 48] 

Translation Elongation Factors 

YLR249W YEF3 eEF1Bγ G2/M, other [52] 

tRNA synthetases 

YGR264C MES1 MetRS G1 [51] 

YLL018C DPS1 AspRS G1 [52] 

YOR335C ALA1/CDC64 AlaRS G1 [50] 

YPL160W CDC60 LeuRS G1 [50] 

tRNA 

tQ(CUG)M CDC65 tRNA-Gln G1 [137] 

Ribosome biogenesis and assembly 

YBL004W UTP20 18S rRNA biogenesis other [52] 

YBR142W MAK5 60S ribosome subunit biogenesis G1 [52] 

YCL054W SPB1 AdoMet-dependent methyltransferase G1 [52] 

YCR057C PWP2/UTP1 18S rRNA biogenesis G1 [108, 138] 

YDL031W DBP10 40S biogenesis and  35S pre-rRNA processing    G1 [52] 

YDL060W TSR1 20S pre-rRNA processing G1 [52] 

YDL148C NOP14/UTP2 18S rRNA biogenesis G1 [138] 

YDL153C SAS10/UTP3 18S rRNA biogenesis G1, other [52, 138] 

YDL166C FAP7 20S pre-rRNA processing G1 [52] 

YDR060W MAK21 60S ribosome subunit biogenesis G1 [52] 

YDR091C RLI1 Ribosome biogenesis G1 [52] 

YDR324C UTP4 18S rRNA biogenesis G1 [138] 

YDR398W UTP5 18S rRNA biogenesis G1 [52, 138] 

YDR449C UTP6 18S rRNA biogenesis G1 [138] 

YER006W NUG1 Export of 60S ribosomal subunits from the nucleus G1 [52] 

YER082C UTP7 18S rRNA biogenesis G1 [52, 138] 

YER127W LCP5 18S rRNA maturation G1 [52] 

YFL002C SPB4 60S ribosome biogenesis G1 [52] 

YGR090W UTP22 18S rRNA biogenesis G1 [52] 

YGR103W NOP7 60S ribosome subunit biogenesis G1 [52] 

YGR128C UTP8 18S rRNA biogenesis G1 [52, 138] 

YGR245C SDA1 60S ribosome biogenesis and actin organization G1 [52] 

YHR072W-A NOP10 18S rRNA maturation G2/M [52] 

YHR085W IPI1 35S pre-rRNA processing G1 [52] 

YHR088W RPF1 Export of 60S ribosomal subunits from the nucleus G1 [52] 

YHR089C GAR1 Modification and cleavage of the 18S pre-rRNA other [52] 

YHR143W-A RPC10 RNA polymerase subunit common to RNA polymerases I, II, and III G2/M [52] 

YHR196W UTP9 18S rRNA biogenesis G1 [52, 138] 

YJL033W HCA4 18S rRNA biogenesis G1 [52] 

YJL069C UTP18 18S rRNA biogenesis G1 [52] 

YJL109C UTP10 18S rRNA biogenesis G1 [138] 

YJR002W MPP10 18S rRNA biogenesis G1, other [52] 

YKL009W MRT4 Ribosome assembly G1 [52] 

YKL099C UTP11 18S rRNA biogenesis G1 [52, 138] 

YKL172W EBP2 25S rRNA maturation  G1 [52] 

YLL008W DRS1 DEAD-box protein, 60S ribosomal subunits G1 [52] 

YLR002C NOC3 60S ribosome subunit biogenesis G2/M [52] 

YLR009W RLP24 60S ribosome subunit biogenesis G1 [52] 

YLR129W DIP2 18S rRNA biogenesis G1 [52, 138] 

YLR167W RPS31 Ribosomal protein G1, other [52] 

YLR175W CBF5 Pseudouridine synthase other [52] 

YLR186W EMG1 Methyltransferase for rRNA G1 [52] 

YLR222C UTP13 18S rRNA biogenesis G1 [138] 

YLR276C DPB9 DEAD-box helicase, 27S rRNA processing G1 [52] 

PLEASE SEE THE END OF THE TABLE BELOW. 
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TABLE 1. Cell cycle phenotypes of loss-of-function mutants in essential genes encoding protein synthesis and ribosome biogenesis factors in 

S. cerevisiae. 

PLEASE SEE THE BEGINNING OF THE TABLE ABOVE. 

Systematic 

name 

Standard name/ 

alias 

Function Cell cycle 

 phenotype 

Ref. 

Ribosome biogenesis and assembly 

YML093W UTP14 18S rRNA biogenesis G1 [52, 138] 

YMR093W UTP15 18S rRNA biogenesis G1 [138] 

YMR128W ECM16 DEAD-box helicase, 18S rRNA synthesis G1 [52] 

YMR290C HAS1 Helicase, biogenesis of 40S and 60S ribosome subunits G1 [52] 

YNL113W RPC19 RNA polymerase subunit common to RNA polymerases I and III G1 [52] 

YNL124W NAF1 pre-rRNA processing G1 [52] 

YNL163C RIA1 80S ribosome assembly G1 [52] 

YNL207W RIO2 40S ribosome subunit biogenesis G1 [52] 

YNR038w DPB6 DEAD-box helicase G1 [52] 

YNR053C NOG2 60S ribosome subunit biogenesis G1 [52] 

YOL010W RCL1 18S rRNA maturation G2/M, other [52] 

YOR078W BUD21/UTP16 18S rRNA biogenesis G1 [138] 

YOR119C RIO1 40S ribosome subunit biogenesis other [52] 

YOR210W RPB10 RNA polymerase subunit common to RNA polymerases I, II, and III G1 [52] 

YOR224C RPB8 RNA polymerase subunit common to RNA polymerases I, II, and III G1 [52] 

YOR294W RRS1 Export of 60S ribosomal subunits from the nucleus G1, other [52] 

YOR340C RPA43 RNA polymerase I subunit G1 [52] 

YOR341W RPA190 RNA polymerase I subunit G1 [52] 

YPL012W RRP12 Export of ribosomal subunits from the nucleus G1 [52] 

YPL043W NOP4 27S rRNA processing, 60S ribosome subunit biogenesis G1, other [52] 

YPL093W NOG1 60S ribosome subunit biogenesis G1 [52] 

YPL126W NAN1 18S rRNA biogenesis G1 [52, 138] 

YPL211W NIP7 60S ribosome subunit biogenesis G1, other [52] 

YPL217C BMS1 40S synthesis and  35S pre-rRNA processing    G1 [52] 

YPL266W DIM1 18S rRNA dimethylase G1 [52] 

YPR016C TIF6/CDC95 eIF6 G1 [52] 

YPR110C RPC40 RNA polymerase subunit common to RNA polymerases I and III G1 [52] 

YPR144C UTP19 Maturation and nuclear export of 40S ribosomal subunits G1 [52] 

 

initiation of these targets include the helicase DDX3 for 

cyclin E1 [81] and Ded1 for Cig2 [83]. It is not clear, howev-

er, if translation of these cyclins is periodic in cycling cells. 

Alternatively, their translational regulation may be an out-

put of a continuous process that affects their overall levels. 

The levels of these cyclins may oscillate in the cell cycle for 

other reasons, such as mechanisms that control mRNA 

levels and protein degradation.  Overall, there is a critical 

gap in our understanding of the role of translational con-

trol in mitotic cell cycle progression, especially in G1 pro-

gression and commitment to division.  There have not 

been any studies that directly and systematically looked for 

mRNAs that are translated differentially in the G1 phase, in 

cycling, un-perturbed cells. 

 

START ON CYCLOHEXIMIDE 

After the initiation step, the rate of translation depends on 

the concentration and activity of translating ribosomes 

that elongate the nascent polypeptides. If elongation of 

protein synthesis is inhibited, then what are the conse-

quences on cell cycle progression? This question was first 

tackled pharmacologically, monitoring cell cycle progres-

sion in the presence of varying doses of cycloheximide [35, 

85-87]. Cycloheximide inhibits the translocation step in 

eukaryotic 80S ribosomes, blocking translational elonga-

tion [88]. Increasing doses of cycloheximide increase the 

population doubling time, mostly because cells spend more 

time in the G1 phase of the cell cycle [35, 85]. Cyclo-

heximide also affects size homeostasis. In budding yeast, 

cycloheximide reduces the newborn cell size [35, 85] and 

the rate at which cells increase in size [89]. It also increases 

the critical size threshold for START [85, 89]. These changes 

account for the increase in the duration of the G1 phase 

upon treatment with cycloheximide. The effects of cyclo-

heximide support the notion that a critical rate of protein 

synthesis is required for G1 transit and completion of 

START in budding yeast [86] and animal cells [90, 91]. The 

reports that interrogated cycloheximide’s effects on G1 

progression have been influential. They have often been 

taken to imply a requirement for the continuous synthesis 

of unstable protein(s), whose rate of synthesis parallels 

overall protein synthesis rates and cell growth. Identifying 

those proteins and how they affect the cell division ma-

chinery would then hold the promise of explaining molecu-

larly how cells couple their growth with their division [90, 

91]. Various such candidate proteins have been proposed 

over the years. However, there is no report of a protein 

whose levels increase due to cell cycle-dependent transla-

tional control, as cycling cells approach START [7].  

 

RIBOSOME MAKES PROTEIN MAKES CELLS? 

Ribosomes are the complex macromolecular machines that 

catalyze protein synthesis. Hence, changing the concentra-
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tion of functional ribosomes in the cell is expected to 

change the overall rates of protein synthesis. 

Bacterial cells grown under conditions that favor fast 

growth and proliferation (i.e., "rich" media) have more 

ribosomes than those propagated in "poor" media [92]. 

These observations suggest that the rate of protein synthe-

sis in bacteria is controlled mostly by ribosome numbers 

[93]. Although growth rate does not seem to affect signifi-

cantly the fraction of active ribosomes in the cell (≈80%) or 

their activity [94], recent observations suggest  that even in 

rich media bacterial ribosomes do not function at maximal 

elongation rates [95]. Hence, translation rates may be ad-

justed to proliferation rates by means other than ribosome 

content. 

In budding yeast, although protein synthesis rates de-

crease with decreasing growth rates, there is no propor-

tional decrease in the number of ribosomes per cell [96, 

97]. For example, a 10-fold drop in growth rate is only ac-

companied by a 2-fold drop in the number of ribosomes 

per cell (see Table 4 in [96]). On the other hand, synthesis 

of ribosomal components is inhibited as cells begin to ex-

haust the available nutrients and prepare to enter station-

ary phase [98], or upon amino acid starvation [99]. Appar-

ently, both the activity and the number of ribosomes may 

be affected in yeast as a function of growth rate. 

In cycling, unperturbed yeast cells, synthesis of riboso-

mal components is not cell cycle dependent [10, 22, 23]. 

Interfering with ribosome biogenesis, however, affects cell 

cycle progression dramatically. In yeast, 59 of a total of 78 

ribosomal proteins of cytoplasmic ribosomes are encoded 

by pairs of very similar or identical paralogous genes [100]. 

Mutants carrying single deletions of those ribosomal pro-

tein genes are usually viable [101]. Many of these deletion 

strains have a small overall cell size [102, 103]. A small 

overall cell size is also characteristic of cells lacking Sfp1p, a 

transcriptional activator of ribosome biosynthesis and ribo-

somal protein genes [89]. Cells lacking Sfp1p are born very 

small [104], and their growth rate is about half of that of 

wild type cells [71, 104]. As a result, the duration of the G1 

phase of the cell cycle is greatly increased in sfp1Δ cells [71, 

89, 104]. Still, the smaller critical size threshold of sfp1Δ 

cells and the smaller overall size of ribosomal protein mu-

tants led Tyers and colleagues to propose that ribosome 

biogenesis inhibits START in wild type cells [6, 89]. In this 

model, ribosome biogenesis sets the critical size threshold 

for START, while translation rates of functional ribosomes 

enable the cells to pass that threshold [6, 89]. This model 

appears paradoxical and counterintuitive, especially since 

in animals ribosome biosynthesis is thought to promote 

cell proliferation and cancer [105]. But another finding, 

that ribosomal proteins may function as haploinsufficient 

tumor suppressors in animals, appeared to offer support 

for a negative role of ribosome biogenesis in cell division 

[106]. However, it was subsequently reported that such 

effects may be due to cell non-autonomous routes [107]. 

Furthermore, the following observations argue against the 

notion that ribosome biogenesis has a general inhibitory 

role for the initiation of division: First, inhibition of ribo-

some maturation delays START [108]. Second, despite their 

small cell size, most ribosomal protein mutants have a 

longer G1 phase [104, 109, 110]. Third, loss-of-function of 

the vast majority of essential ribosome biogenesis factors 

leads to G1 arrest (see Table 1 and [52]). The most straight-

forward interpretation of the evidence outlined above is 

that ribosome biogenesis promotes initiation of cell divi-

sion in budding yeast. 

Even when there is a G1 delay due to loss of a riboso-

mal protein, G1 variables such as birth and critical size of 

cells lacking individual ribosomal proteins are not uniform, 

differing qualitatively and quantitatively [104, 109, 111]. 

Furthermore, although a delay in G1 is the most common 

phenotype upon loss of a ribosomal protein, this pheno-

type is not universal. In several cases, there is no cell cycle 

phenotype, or a G2/M block is observed instead [104, 110]. 

The basis of all those differences in ribosomal protein mu-

tant phenotypes related to the cell cycle is not clear. Do 

they reflect specialized translational roles of some ribo-

somes? Are overall translation rates affected? Is the con-

centration of ribosomes, their composition, their activity, 

localization in the cell (or any combination of the above) 

that is affected? Examples of specialized ribosomal func-

tions abound [112-115], leading some to speculate on the 

existence of a “ribosome code” [116]. There are even cases 

of extraribosomal roles for ribosomal proteins [117]. Re-

gardless of the answers to the above questions, it is imper-

ative that the relevant mRNA substrates affected in each 

ribosomal protein mutant must be identified, to under-

stand how cell cycle progression might be impacted. How-

ever, as is the case for wild type cells (see INITIATE TO 

START? above), there are no systematic surveys of mRNAs 

that are translated differentially in the cell cycle in riboso-

mal protein mutants. 

 

THE OTHER RIBOSOME SUBSTRATES: tRNAS 

For the ribosome to elongate at its maximal rate, all its 

substrates must be present at saturating concentrations. 

This includes the aminoacyl-tRNAs and the various elonga-

tion factors [95]. Inhibition of elongation factor eEF2 may 

be one way that protein synthesis is inhibited in animal 

cells in mitosis [118]. However, unlike the numerous ex-

amples of perturbations in translation initiation factors 

that lead to G1 arrest in yeast (Table 1), there is very little 

analogous evidence for translation elongation factors af-

fecting cell cycle progression. The only reported example is 

from a large survey of essential genes, reporting that 

blocking expression of eEF1Bγ in yeast leads to cell cycle 

arrest in mitosis ([52], see Table 1). 

Translation elongation rates may be affected by several 

parameters [119], including the supply and demand for 

each tRNA. The genetic code is essentially universal. One 

and the same codon does not code for different amino 

acids in different organisms. The code, however, is also 

degenerate. Most amino acids can be specified by more 

than one codon. A decades-old speculation has been that 

codons for an amino acid that are used more frequently in 

an organism would be translated more rapidly than codons 

for the same amino acid that are rarely used [120]. Differ-
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ences in codon usage were difficult to test until the advent 

of ribosome profiling. Sequencing ribosome-protected 

mRNA fragments allows estimates of ribosome residency 

on individual codons [43]. Several analyses that included 

the original ribosome profiling datasets in yeast [43] have 

examined various parameters, including codon usage, and 

reached contradictory conclusions [42, 119, 121-126]. 

Nonetheless, common codons may be translated faster 

than rare ones in yeast [127]. Modulating which codon is 

used and the effective concentration of its corresponding 

tRNA may be a way to influence translation elongation 

rates both within an mRNA, and across the transcriptome 

[128]. Surveying codon usage across each codon and tRNA 

availability revealed that in highly expressed mRNAs rare 

codons are more prevalent in the first 30-50 codons, slow-

ing down and crowding ribosomes along that stretch [129]. 

It was proposed that this slow “ramp” is a mechanism that 

promotes faster translation downstream, by alleviating 

ribosome “traffic jams” along the mRNA [129]. Further-

more, it turns out that once a particular codon has been 

used, it will also be used more frequently whenever the 

same amino acid is encoded downstream in that mRNA 

[130]. Based on these observations, it was theorized that 

tRNAs do not diffuse away from the ribosome once they 

are expelled from it. Instead, the same tRNA for a codon 

specifying the repeating amino acid is re-charged and 

channeled for re-use, enabling translation to proceed fast-

er than tRNA diffusion [130]. 

The examples outlined above illustrate how alterations 

in the supply and demand for each tRNA could impact 

translation rates. The pertinent question for this review, 

however, is whether such mechanisms could lead to trans-

lational control during the cell cycle. Remarkably, a recent 

study proposed exactly that kind of regulation, based on 

codon usage [131]. Optimal codon usage is more prevalent 

in mRNAs expressed in the G1 phase of the cell cycle, im-

plying that the corresponding mRNAs are translated more 

efficiently [131]. Interestingly, it has been known for dec-

ades that loss-of-function mutations in several tRNA syn-

thetases, and even in a tRNA gene, lead to G1 arrest in 

yeast (see Table 1). Optimizing translation elongation rates 

in G1 through codon usage is an exciting possibility. But a 

correlation is not causation, and the above predictions 

must await experimental validation, measuring the transla-

tional efficiencies of the putative mRNA targets in cycling 

cells. On a cautionary note, a recent study in mouse em-

bryonic stem cells reported that translation elongation 

rates were not only independent of codon usage, but also 

very similar across different mRNAs [132]. Likewise, anoth-

er study in yeast reported that the rate of translation elon-

gation and translational efficiency were not affected by 

tRNA abundance, and codon translation rates were not 

correlated with codon bias [133]. Hence, these issues re-

main controversial and there might be some time before 

the dust settles.  

 

 

 

DIVIDE TO TRANSLATE?  

Implicit in the discussion of all the examples mentioned 

above is the notion that cell growth and protein synthesis 

drive cell cycle progression, not the other way around. This 

is generally the case, established in classic and particularly 

lucid experiments by Hartwell and colleagues [4, 5, 35]. 

However, there are also some changes in the pattern of 

growth once cell cycle progression is blocked [134, 135]. 

Does that mean that progressing in the cell cycle might also 

affect the translational control of specific mRNAs? The 

answer is a resounding yes. Ruggero and colleagues exam-

ined by ribosome profiling human cells arrested by thymi-

dine block (G1 and S phases) and nocodazole treatment 

(G2 phase) in the cell cycle, reporting extensive transla-

tional control of numerous mRNAs [17]. Interestingly, this 

work revealed functional clusters of co-regulated mRNAs. 

Translational control may be used to coordinate expression 

of specific cellular machines and processes [17]. These 

experiments are very important, answering how cell divi-

sion controls translation. However, they do not answer 

how translation controls cell division.  

 

OUTLOOK 

The role of protein synthesis and translational control has a 

long history in the cell cycle field. The pioneering experi-

ments of decades ago were incisive, but also largely de-

scriptive. Since then, progress has been incremental and 

focused on a limited number of putative mRNA transla-

tional targets. Identifying all the mRNAs that are under 

periodic translational control in cycling cells is an obvious 

and necessary goal. Given the transformative methodolo-

gies now available and the current pace of progress, it is 

only a matter of time before we know how protein synthe-

sis drives cell cycle progression. 
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