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ABSTRACT

An Analysis of Energy Use in Grocery Stores (December 1993)
Ralph Luther Cox III, B.S., Texas A&M University

Chairman of Advisory Committee: Dr. Jeff S. Haberl

Approximately 3% of the United States' commercial building energy
consumption is attributable to food sales facilities. Although this is one of the
smallest consumption percentages, it is still significant, amounting to about 151
trillion Btu, or $2.17 billion per year. Food sales facilities ranging from 10,000 to
100,000 ft2 use 3 to 5.5 W/ft2 (32 to 60 W/m?) of electricity -- two to three times what
typical office buildings of the same size use (EIA 1986). Identifying potentials for
energy savings in food sales facilities is therefore a worth-while pursuit.

Why do people study energy consumption? According to Haberl et al. (1990),
there are five different groups of people who can benefit from building energy
monitoring and at least seven basic applications of energy monitoring projects. The
five groups of beneficiaries are: the energy analyst; the energy consumer;
governmental agencies; engineers, manufacturers, and contractors; and, utility and
fuel suppliers. The seven basic applications are: energy consumption and load
forecasting, evaluation of end-use energy data, the monitoring of energy savings from
retrofits, determining system efficiencies, environmental quality issues, analyzing the

human factor, and diagnosing operational and maintenance problems.

This thesis is a study of the energy use in supermarkets, which fall into the
category of the energy consumer. This study is of interest to the energy analyst and
the manufacturers of grocery store equipment, and to utilities which can use the
results of energy consumption modeling procedures developed herein as inputs to
load-predicting models. Many papers and reports have been written about the energy
use in grocery stores. In general, they addressed three major issues: energy use
surveys and market analyses, refrigeration and HVAC system improvements, and
energy use modeling methods. This thesis extends the foregoing work by first
performing a general energy use survey of over 90 grocery stores, and presenting
statistics regarding their energy use characteristics. Then, several of the previous
methods of energy consumption modeling are adapted and applied to the whole-
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building and sub-metered component load data from two case study grocery stores.
Two methods of modeling, multiple linear regression and principal component
analysis are evaluated. Finally, a new method is developed and tested that allows for
the accurate estimation of sub-metered loads without incurring the expense of

collecting many months of hourly, sub-metered data.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Approximately 3% of the United States' commercial building energy
consumption is attributable to food sales facilities, as shown in Figure 1.1. Although
this is one of the smallest consumption percentages, it is still significant, amounting to
about 151 trillion Btu, or $2.17 billion per year. Food sales facilities ranging from
10,000 to 100,000 ft2 use 3 to 5.5 W/ft? (32 to 60 W/m?) of electricity -- two to three
times what typical office buildings of the same size use (EIA 1986). Identifying

potentials for energy savings in food sales facilities is therefore a worth-while pursuit.
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Figure 1.1 Percentages of Total US Energy Consumption in Commercial

Buildings (Source of data: EIA 1986).
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Why do people study energy consumption? According to Haberl et al. (1990),
There are five different groups of people who can benefit from building energy
monitoring and at least seven basic applications of energy monitoring projects. The
five groups of beneficiaries are: the energy analyst; the energy consumer;
governmental agencies; engineers, manufacturers, and contractors; and, utility and
fuel suppliers. The seven basic applications are: energy consumption and load
forecasting, evaluation of end-use energy data, the monitoring of energy savings from
retrofits, determining system efficiencies, environmental quality issues, analyzing the
human factor, and diagnosing operational and maintenance problems. Figure 1.2 is a
matrix of the beneficiaries and uses of energy monitoring. In it, the reader can see that
the energy consumer is primarily interested in environmental quality issues,
operational and maintenance problems, retrofit energy savings, and system and

component evaluation.
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Figure 1.2 Beneficiaries and their uses of energy monitoring (Adapted

from data in Haberl et al.(1990)).



This thesis is a study of the energy use in supermarkets, which fall into the
category of the energy consumer. The four factors listed above affect the profitability
of the sale of food and other merchandise. This study is also of interest to the energy
analyst, utilities, and the manufacturers of grocery store equipment.

1.2 LITERATURE REVIEW

Many papers and reports have been written about the energy use in grocery
stores. In general, they addressed three major issues: energy use surveys and market
analyses (FEA [1977], DOE [1981]), refrigeration and HVAC system improvements
(Adams [1985], Adams [1992], Khattar [1991]), and energy use modeling methods
(Howell [1993], Hill and Lau [1993], Wong [1988], Khattar et al. [1991], Fels [1986],
Shrock and Claridge [1989], Ruch and Claridge [1991], Chen [1991], Ruch et al.
[1991], Wu et al. [1992], Reddy and Claridge [1993]).

1.2.1 Energy Use Surveys and Market Analyses
In 1977, the Federal Energy Administration (FEA) published its Guide to

energy Conservation for Grocery Stores, in which it stated that food retail
establishments comprise about 3% of the nation's total energy use, and 4% of the
nation's electricity use. Grocery stores typically experience energy costs which are 1 to
3% of their sales. This amount often exceeds profits (FEA 1977). The FEA found
that for the more than 200,000 food retail outlets in 1977 typical total! energy use for

stores of given average floor area was as follows:

Store Size Annual Energy Consumption Energy Use Intensity

(ft2 [m?]) (kWh/yr) (W/ft2 [W/m?])
5,000 (465) 670,000 15.3 (165)
13,500 (1255) 1,750,000 14.8 (159)
30,000 (2788) 3,630,000 13.8 (149)

! This includes electrical and non-electrical energy converted to kWh.



During this period, a concerted effort was made to improve the energy performance of
supermarkets. The values for energy use intensity (W/ft?) have decreased significantly

in the years since the FEA study was published.?

Four years after the FEA report, the Department of Energy (DOE), in
cooperation with Oak Ridge National Laboratory (ORNL), conducted a study to
investigate the potentials for energy-efficient supermarket refrigeration systems (DOE
1981). ORNL performed a market analysis detailing the overall structure of the
supermarket industry as well as the distribution of energy-using equipment in that
industry. The "supermarket industry" was defined as "the cumulative total of all retail
outlets in the country dealing in the sale of food, food-related and accompanying
items, and the associated organizational structures, distribution systems, equipment
suppliers, and support organizations necessary to retail food sales." (DOE 1989 p. xix)
Today's supermarkets are still included in that definition, but have grown beyond it by
often stocking dry goods and items not related to food or household needs. ORNL
found that for the 175,820 food retail outlets surveyed in 1981 typical total energy use

for stores of given average floor area was as follows:

Store Size Annual Energy Consumption Energy Use Intensity
(f2 [m?]) (KWh/yr) (W/ft2 [W/m2])
6,000 (558) or less 118,600 4.51 (48.6)

6,000 (558) or more 2,060,000 9.22(99.2)

25,000 (2323) or more 2,000,000 9.13 (98.3)

The survey performed in this thesis, in 1992, presents data which are comparable to
those in the ORNL study. The average energy use intensities in the 1992 thesis survey

wcere:

Store Size Annual Energy Consumption Energy Use Intensity
(ft2 [m2]) (kWh/yr) (W/1t2 [W/m?])

2 The FEA values seem quite high compared to the values of 7 to 9 W/ft? found in the survey performed for this thesis.



40,000 (3717) or less 2,676,000 9.5 (102)
40,000 to 50,000 3,173,000 8.2 (87.9)
50,000 (4647) or more 3,973,000 1.1 (82.9)

Neither the ORNL study nor this thesis list energy use intensities which are
comparable to those of the FEA.

Equipment analysis in the study focused mainly on refrigeration systems, but
provided some general statistics for all systems found in typical stores. The ultimate
goal of the ORNL study was to produce a model to investigate the potential benefits of
various energy-efficient refrigeration equipment. They recommended a system
consisting of unequally sized, parallel compressors, condensers controlled by floating-
head pressure, and microprocessor electronic control of the system pressures, for
installation as a retrofit for stores using standard, dedicated refrigeration compressor

systems.

ORNL cited FEA (1977) in claiming that refrigeration systems in typical
supermarkets often comprise 40 to 60% of the total in-store energy consumption. Of
this, 15% is often attributable to case lights and fans. Likewise, HVAC systems
comprise 15% to 20%, lighting 20% to 25%, and miscellaneous utility 5% to 10%.3
ORNL noted that while any of these systems could be improved, complex
relationships between them may make improvements in one detrimental to another.
The study found that typical supermarkets have about 200 horsepower of refrigeration
compressors and about 50 tons of air-conditioning capacity.# At the time, only ten
percent of the compressors systems in supermarkets were energy-efficient, parallel
systems. ORNL concluded that there was much opportunity for energy savings.
ORNL discussed how the various energy-using systems in the store affected one

another. Inter-relationships between these system are as listed in Table 1.1.

3 In the thesis study, for the College Station store, electricity end-use percentages were 29% for refrigeration compressors, 21%
for HVAC, 31% for lighting, and 19% for miscellaneous equipment and receptacles (including display case fans and anti-sweat
heaters).

4 ORNL did not specify what a "typical” store is, but the two stores studied for this thesis had about 100 tons of air-
conditioning capacity each, amounting to roughly 460 ft?/ton, and between 165 and 200 hp of refrigeration capacity each.



1.2.2 Refrigeration and HVAC System Improvements

Adams (1985) noted that supermarkets have HVAC requirements not seen in
other commercial buildings that do not have refrigeration®. He found that there exist
several potentials in supermarkets to optimize the interactions between the HVAC and
refrigeration systems. However, as of 1985, those systems were still handled by
different ends of the HVAC&R industry. According to Adams, there had been little
effort to organize information about the design and operation of HVAC and
refrigeration systems in concert. Thus, the single greatest influence on system
purchasing decisions is the persuasion of the equipment salesperson. Adams listed
several ways in which standard commercial HVAC systems could be tailored for use
in supermarkets by taking advantage of the refrigeration system's effects. These
supermarket HVAC units might include under-floor return air ducts which allow cool,
dry air escaping from display cases to be recycled immediately into the HVAC return
mixing after the cooling coils; tighter building construction which reduces infiltration
heat loads; evaporators in the air-conditioning system which are designed for moisture
removal; supply air distribution at the front of the store to provide fresh, conditioned
air at the point-of-sale area for customer and employee comfort; humidity control; heat
reclaim from the refrigeration system; and, night set-back operation. But, Adams says
that "[the] market for specialized supermarket HVAC equipment -- 1000-plus new
stores in 1983 -- is too small to attract more than a few manufacturers. These are the
smaller, custom HVAC companies. At the most, 10% of new stores in 1983 were
equipped with supermarket HVAC units".

Adams (1992) stated that the primary goal in the design and operations of
supermarkets is to maximize sales. Refrigerated merchandisers and display cases are
crucial to this effort, and their ability to attract the customer has always taken
precedence over energy efficiency issues. The more attractive and easily accessible
display cases are those which are less energy-efficient; efficient compressor systems
have higher initial costs, and without careful consideration may appear to be

unattractive investments for the store management.

5 This is due to the interactions between a store’s HVAC system and its refrigeration system.



TABLE 1.1

Inter-relationships Between Energy-using Systems in a Supermarket
(adapted from DOE [1981])

System

Affects

Affected by

Refrigeration

HVAC

Lighting

Miscellaneous

L

HVAC load

ambient space conditions
refrigeration system

HVAC load
refrigeration load

HVAC load
refrigeration load

* HVAC via heat reclaim

* heat from case lighting

* ambient space conditions

* food temperature requirements

» heat from case anti-sweat
heaters

e customer use

* outdoor ambient conditions
* refrigeration loads

* heat from lighting loads

* heat from misc. loads

* customer occupancy

* store operating schedule
* number of daylight hours/day

* store operating schedule
* customer use




Adams found that the development of cost-to-display numbers can be used to
help management make better-informed decisions about which systems to purchase.
For example, in comparing an open, roll-in milk display without glass doors to a
sealable display cooler with an enclosure on the back and a glass door in the front
between the product and the customer. The difference in refrigeration cost was 3.5%,
or $115 per linear foot of display case per year. For a typical 72-ft display case, this
amounts to $8,280 which is the profit on $552,000 worth of annual sales.® Thus, once
a display case is installed, a store which uses the roll-in display case versus a closed
door case must sell $552,000 more merchandise to justify the its higher operating cost.
Management is responsive to persuasion to use the efficient display cases, such as
those with glass doors, if it can be shown that overall profitability is increased. This
thesis takes advantage of the advice of Adams in providing information to the
management of the case study stores in relation to the costs associated with any
operational problems noticed through the energy monitoring, and provides owners of
multiple grocery stores with a procedure to estimate the electrical end-use

consumption without expensive sub-metering.

In an effort to bring together the technologies which serve the needs of
supermarkets, the Electric Power Research Institute (EPRI) has published several
studies on supermarket refrigeration and HVAC systems. As part of this effort,
Khattar (1991) discussed new HVAC systems and requirements for supermarkets. He
stressed the significance of indoor humidity control as the principal factor which
distinguishes grocery stores from other commercial HVAC users. This discussion
pertains to this thesis since dehumidification control is used in one of the two case

study grocery stores.

The control of indoor humidity is important. Too little humidity can damage
merchandise such as produce and meat. Too much humidity unduly burdens the
refrigeration system. Both the HVAC system and the refrigeration display case coils
have the effect of removing moisture from the air. But if the humidity removal is
performed chiefly by the refrigeration system, it is inefficient because the moisture
must be frozen out of the air rather than being condensed out by the HVAC coils. The
ice that subsequently collects on the refrigeration coils must then be thawed by defrost

heating since it otherwise decreases the heat transfer capacity of the coils. In addition,

6 Adams uses a before-taxes profit of 1.5%.



in a humid store, anti-sweat heaters must be installed in display case doors to prevent

condensation.

While exposing the refrigeration cases to moist space air does have the effect
of dehumidifying it, Khattar states that HVAC systems are much more efficient at
removing moisture from the air than refrigeration cases. The 50% relative humidity
values which are common in grocery stores without dehumidification are merely
coincidental to the cooling effect produced by the HVAC systems (set at about 75°F
[24°C]). When conventional systems are used to reduce the humidity below 50%, the
resulting air is too cold, and must be reheated. According to Khattar, alternative
methods of dehumidification include gas-fired desiccant systems, dual-path electric
air-conditioning systems’, and recycling of cool space air collected near refrigerated
areas.® All of these methods allow for air-flow rates to be lowered from the
conventional 0.7 to 1 CFM per square foot of floor area to as low as 0.5 CFM/ft2. The
first case study grocery store in this thesis has a flow rate of 0.78 CFM/ft2.
Dehumidification is provided during the heating season by using the cooling coils

when the store's relative humidity goes above 55%.

1.2.3 Energy Use Modeling Methods

Howell (1993) developed a mathematical procedure to evaluate the theoretical
effects of in-store ambient relative humidity on the energy use of single- and multi-
shelf supermarket refrigeration cases both with and without case doors. The
theoretical results of the model were compared with limited experimental data for ten
types of display cases, with uncontrolled values of relative humidity. Howell found
that agreement between the theoretical and actual energy use ranged from 0.3%, for
multi-shelf deli cases with no doors, to 135% for single-shelf frozen food cases with
no doors. Of the ten cases modeled, the theoretical energy use predictions for only
four agreed to within 20% of the actual values. Considering this acceptable level of
error, Howell used the model to determined the correlation between varying relative
humidity and the energy use of the display case. As one might expect, higher store
relative humidities resulted in higher required energy input to the refrigeration system.

Savings in refrigeration case energy use due to changing from 55% relative humidity

7T A dual-path system has separate cooling coils -- one for conditioning the return air, and one for conditioning the incoming
outdoor air. The air streams are mixed after being conditioned. This type of system can reduce the need for reheating since a
significant portion of the dehumidification can be achieved without cooling the supply air to unsuitably low temperatures,

8 This recornmendation was also made by Adams (1985).
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to 35% ranged from 5% (for cases with glass doors) to 29% for reach-in cases without
doors. This seems to indicate that cases with glass doors are not as sensitive to store
humidity as those without doors. Howell's work was significant in that it showed the
importance of store humidity control. But, it did not detail any particular methods of
maintaining a desired relative humidity, rather, merely the effects of doing so.
Dehumidification is only used at one of the stores studied in this thesis, which does not
attempt to make any conclusions regarding the effects of store dehumidification
control on the display cases. However, the interactions between the refrigeration
system and the HVAC system, via the heat reclaim coils used during dehumidification

are explored.

Hill and Lau (1993) performed a study of six grocery stores at various locations
in the United States examining the effectiveness of using heat pipe heat exchangers to
provide dehumidification in the HVAC system. The heat pipe heat exchangers used to
dehumidify the air were able to reduce the indoor dew-point to 50°F (10°C) or lower,
amounting to a increase of 18% to 27% in the amount of moisture removed per unit of
HVAC compressor energy use (Ib_/kWh or kg/kWh). Hill and Lau reported an
average resulting refrigeration energy savings of 0.65% per degree Fahrenheit of
indoor dew-point reduction. However, while moisture removal efficiency increased,
the use of the heat pipe heat exchangers to dehumidify the air had a minimal effect on
the HVAC system's overall cooling efficiency. Hill and Lau noted that because of site-
to-site variations in thermal building loads, no general conclusions could be drawn

about the benefits of the application of heat pipe heat exchangers.

Other energy-saving measures in supermarkets were investigated by Wong
(1988) who presented the results of an energy conservation retrofit on the lighting and
refrigeration systems of a small grocery store (16,843 ft?) in Seattle. This store did not
have an air-conditioning system since what little cooling needs there were were
provided by the intereffects between the refrigeration display cases and the ambient
air. Lighting system modifications included changing from mercury vapor lamps to
high-pressure sodium lamps, adding photocell controls to the lights, and partial lamp

shut-off during selected operating and non-operating hours.

Refrigeration system modifications included strip curtains in stockroom
freezers, and case doors installed on horizontal display cases. Wong did not comment
on any effects the refrigeration system retrofits may have had on store comfort, though,
Wong found that the store management was pleased with the savings and willing to
cooperate in future retrofit measures. Hourly whole-building electricity use data for
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pre- and post-retrofit periods were monitored with data-acquisition equipment.
Annual energy consumption decreased 17%, from 86.4 to 71.8 kWh/ft2-yr.? Of this,
refrigeration loads decreased 10%, and lighting loads decreased 36%. The pay-back
period for all retrofits was 5.4 years. Because of utility billing structures involving
peak load periods (time-differentiated billing), Wong measured energy savings on a
monthly basis. He asked the reader how the actual, time-differentiated savings would
compare with those from a computer simulation of the retrofit measures. Would such
a simulation predict time-differentiated savings? In response to this question, it seems
reasonable that a model capable of predicting hourly data could be used to both
determine peak periods as well as evaluate energy savings during those periods if the
utility billing structure is known. This thesis develops such models and employs them
in predicting monthly energy consumption based on daily consumption and weather
data (see Chapter 4). The coefficients of the daily models are also applied to hourly
binned weather data (see Chapter 5). The models developed in the works cited below,
as well as in this thesis, could be used to determine time-differentiated savings in a

retrofit analysis.

Khattar et al. (1991) developed a computer model to predict the energy use of
various configurations of supermarket refrigeration equipment based on system
configuration, interaction with indoor and outdoor ambient conditions, defrost
schedules, heat reclaim, and load correlations. The model could simulate the
intereffects between HVAC and refrigeration equipment due to both the indoor
ambient conditions and to a heat reclamation system. This model's ability to predict
refrigeration system energy consumption was within 3% of field test measurements in
a 42,139 ft? grocery store in California, though only after the model was calibrated
using more than 200 channels of data sampled every 10 seconds. This type of
modeling was deemed important for the design, selection, and operation of cost-
effective equipment. The model was used to evaluate the energy use and pay-back
periods of potential refrigeration system installations. Its only drawback is the extent
of electrical and thermodynamic sub-metering required to calibrate the model. Its
most important feature, however, is its modularity. The user of the model may add

new components to the modeled system with ease.

9 Energy consumption in the two case study stores monitored for this thesis were 77.4 and 69.6 kWh/ft-yr, However, it should
be noted that these stores differ from Wong's case study in that they have significant air-conditioning energy use.
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Modeling the effects of climate on the energy-using systems in grocery stores
is important when the goal to see the effects of energy-saving measures without them
being obscured by variations in the weather. The need for a robust means of modeling
building energy use data in residential buildings based on climatic conditions has been
addressed by Fels (1986) through the use of the Princeton Scorekeeping Method
(PRISM). PRISM was developed to evaluate the energy savings realized by building
retrofits in such a way "that the effects of conservation [were not] obscured by
differences in weather from one year to the next.” (Fels 1986 p. 5) It provided a means
of tracking and presenting energy savings in a manner which was easy to understand.
The weather-dependent heating energy consumption models used by PRISM consisted
of three parameters -- a base-level energy consumption, a change-point temperature
below which the heating load was a function of outdoor temperature, and a heating
slope which represented the variation in heating energy use due to changes in outdoor
temperature. This three-parameter model assumed that heating energy was not
consumed when temperatures were above the change-point. This assumption worked
well for heating-only (HO) models and, to a limited extent, with cooling-only (CO)
models for residential buildings.

However, when applied to situations in which energy use is non-constant on
either side of a change-point temperature, a four-parameter model with slopes on
either side of the change-point may be more appropriate. This is, in fact, the type of
model used in this thesis. The idea of expanding the three-parameter model into a
four-parameter model was first proposed by Schrock and Claridge (1989), who
developed a four-parameter change-point linear regression model for predicting the
daily and hourly whole-building electricity use of a supermarket. The whole-building
energy use data clearly revealed a change-point temperature of about 17°C (62°F).
However, contrary to the PRISM assumption, slopes above and below the change—
point were also apparent. The change-point was estimated visually. Their work also
showed that predictor models identified from daily energy consumption data work as
well as those identified from hourly data when used to predict the hourly, whole-
building data. Daily models were found to be useful at identifying building
operational problems which appeared as deviations from model predictions of energy
use. A few short-comings of the whole-building models were that they were unable to
identify operational problems in small pieces of equipment, and that the change-point
temperature was estimated by visual inspection of the data. This presented a problem

since visual inspection is subjective, and non-reproducible. Subsequent studies,
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including this thesis, significantly improve on the estimation of the change-point.
Schrock and Claridge noticed a pattern of hourly fluctuations in the whole-building
energy use data, and suggested that it might be due to the operation of the time clocks
which control the defrost schedules of the refrigeration cases. If these clocks were not
synchronized properly, different defrost heaters might run at the same time, creating
and unnecessarily high electrical demand. The work performed for this thesis includes
sub-metering of the store's refrigeration system, as well as other end-use loads, and
helps to identify the source of the wave behavior in order to verify Schrock and

Claridge's hypothesis.
The work of Schrock and Claridge was extended by Ruch and Claridge (1991).

Ruch and Claridge developed a four-parameter change-point modeling procedure
using the same grocery store as Schrock and Claridge. The fourth parameter in the
model was a slope for temperatures below the change-point.10 Their study developed a
rigorous, computerized method for determining the whole-building change-point
temperature. In addition, Ruch and Claridge formally compared their new four-
parameter model to the three-parameter model made using a cooling-only application
of PRISM. It was found that the slope of the data below the change-point was
appreciable, and that including a below change-point slope in the new model resulted
in a statistically better fit for the data than did the 3-parameter PRISM model. This
work used daily data only, citing the added noise and processing time which hourly
data added as the reason for not using hourly data. This thesis uses the same modeling
procedure to estimate end-use component loads as well as whole-building loads for

grocery stores.

Researchers have seen a strong outdoor air temperature dependency in grocery
store energy use as well as a large, non-weather-dependent base-level consumption,
but have noted that other variables effect energy use as well. One of these researchers
was Chen (1991). Chen applies principal component analysis in combination with a
change-point modeling method to predict the energy use of the grocery store studied
by Schrock and Claridge. Briefly stated, principal component analysis (PCA) is a
statistical modeling technique involving data transformation that may be used, in
theory, to provide a more accurate fit to data when the independent variables in the
data are intercorrelated (not truly independent of one another). PCA transforms a set

of n intercorrelated variables into a set of n independent, uncorrelated, and statistically

10 This is the same procedure used in this thesis to estimate the change-point temperature for the case study grocery stores.
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significant variables called principal components. If one of these independent
variables is ignored, and a regression is performed on the remaining principal
component variables, the resulting model parameter coefficients are more stable (have
smaller standard errors) than they would have had if all n principal component
variables had been regressed.!! Chen reported that as a result of dropping one PC
variable, the goodness-of-fit of the model decreases slightly, but, that the gain in
parameter stability is considered to be worth the sacrifice in goodness-of fit. The
resulting parameters may then be easily translated back into terms corresponding to the
original variables, and are considered to better represent the effects of the regressor
variables. The variable and parameter transformation methods are covered in more
detail in Appendix D of this thesis. Chen stated that PCA has been used extensively in
the field of meteorology (Henry and Hidy 1979) and in the study of residential space
heating (Hadley and Tomich 1986). But, the use of PCA with change-point models by
Chen represented the first combined application of these methods.

Attempts by other researchers (MacDonald and Wasserman 1988) to use
standard multiple linear regression (MLR) techniques to predict building energy
consumption as a function of climate variables have been plagued by intercorrelations
between predictor variables. In a follow-up to Chen's work, Ruch et al. (1991)
hypothesized that if predictor variables!? in a change-point model were strongly
correlated, the parameter estimates provided by standard multiple linear regression
(MLR) would be inaccurate since not all of the predictor variables were independent
of one another. Principle component analysis (PCA) was tested as a means of
providing a more accurate change-point (CP) model when highly correlated variables
are used. Ruch refined Chen's CP/PCA model, applying it to the same grocery store
used by Ruch and Claridge (1991) and Schrock and Claridge (1989). For Ruch's
analysis, PCA proved superior to MLR in separating out the effects of temperature,
relative humidity, solar radiation, and customer count on the electricity consumption
of the store.!* Ruch did not determine how PCA compares to MLR when used to
predict data from a period different from that used to identify the models. This thesis

1 pn fact, if all n PCs are used in the regression, the resulting model parameters, when back-transformed into terms of the
original intercorrelated variables, are identical to those which would be obtained with standard multiple linear regression (MLR)
analyses.

12 These variables were outdoor dry-bulb temperature (°C), specific humidity (kg moisture/kg dry air), solar radiation (W/m?),
and daily sales ($/day).

13 Ruch et al. evaluated PCA and MLR using the same year's worth of data from which the respective models were identified.
But the ultimate goal of energy modeling is to predict energy use for future periods.
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tests Ruch's 1989 PCA and MLR models on 1992 energy consumption data for the
same store, and also compares the 1989 models to new PCA and MLR models
identified from 1992 data.

Wu et al. (1992) compared PCA to MLR using measured energy use data from
a large commercial building in central Texas. They modeled the building's space
conditioning load as a function of outdoor dry-bulb temperature, specific humidity,
solar radiation, and internal lighting and receptacle loads. Wu et al. stated that for the
levels of correlation found in the predictor variables, there was no apparent
justification for selecting PCA over MLR based on the criteria of model R2, RMSE,
and CV value. They concluded, however, that further investigation involving data sets
which exhibit a wide range of correlation strengths for the regressor variables was

required to determine if and when PCA is superior to MLR.

To further investigate when PCA is superior to MLR, Reddy and Claridge
(1993) performed a study using one year's worth of synthetic energy data sequences
generated from models of climatic data from three different locations in the U.S.
These models were considered to be true values of the synthetic energy data. They
took the predictions of these models and intentionally added random scatter in such a
manner as to create synthetic data sets with various, prescribed R? values and
correlation coefficients between the regressor variables. Reddy and Claridge then used
PCA and MLR methods to identify new models from the synthetic data sets, and
compared these models to the original, true ones. They concluded that PCA should do

a better job at identifying the true parameters of the model than MLR if either:

a) one or more pair of regressor variables has correlation coefficients of

0.5 or higher, and the model R2 value is less than about 0.5.
or,

b) only one pair of regressor variables has correlation coefficients of 0.8 or
higher, regardless of the model R? value.

The criteria used to judge the superiority of the modeling approach were: 1) how well
each model re-identified the true model parameters and, 2) how well each identified
the mean of data generated for another year. This thesis tests Reddy and Claridge's
method to determine if their recommendations hold true for a grocery store.

This thesis extends the foregoing work by first performing a general energy use

survey of over 90 grocery stores, and presenting statistics regarding their energy use
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characteristics. Then, several of the previous methods of modeling energy
consumption are adapted and applied to the whole-building and sub-metered
component load data from the grocery store studied by Schrock and Claridge (1989).
Models identified from 1992 data are compared to those identified from 1989 data by
Ruch et al. (1991). The purpose of this effort is to verify the original findings of Ruch
et al., and Wu et al., and to see if PCA performs better than MLR at identifying models
based on data sets from different time periods. In addition, the two methods are
further evaluated by a comparison to ASHRAE CLTDS!4 and building U-A energy

load models.

Finally, a new method is developed and tested that will allow for the accurate
estimation of sub-metered daily loads without incurring the expense of collecting
many months of hourly, sub-metered data. Component electricity use models
identified from sub-metered electricity load data are compared to models identified
from less expensive, walk-through survey methods. The models are then applied in
bin calculations to estimate yearly electricity loads. The ability to accurately estimate
component end-use electricity loads without having to resort to months of expensive
sub-metered hourly data can provide grocery store owners with valuable information
about what electrical loads may be excessive and therefore in need of further attention.
Such information can also provide electric utilities with valuable input data for load-

forecasting models.

14 cLTDS = Cooling Load Temperature Difference for Solar contribution. Refer to Knebel (1983).
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CHAPTER II

THE SURVEY STUDY

With the goals of identifying key predictors of energy use and discovering the
potentials for energy-saving retrofit measures, a project to monitor and assess the
energy use of typical urban grocery stores was initiated. As part of this effort, a
database for 93 grocery stores in the south Texas area was developed. These stores are
all owned and operated by a single nationwide grocery retailer. In addition, two case
study stores were monitored. Insight gained from the case studies is expected to be
applicable to the 93 stores since most are of similar construction and geographic

location. This section details the database/survey portion of this project.

2.1 SURVEY METHODS

Data were obtained from recent annual utility bills for the 93 stores provided
by the supermarket corporate management. Information was also obtained with a
mail-in store survey questionnaire developed with the help of the regional chief
facilities engineer of the retail chain. Data were compiled into a spreadsheet database,
discussed with the chief facilities engineer, and spot-checked with visits to a local,
case study store. Questionnaire and report parameters that were assembled into the
database are listed in Table 2.1.!1

Stores were indexed by climatic zones based on the annual wet-bulb degree
hours above 66 °F (19°C). Ten zones were defined for the south Texas area -- zone #1
having the least degree-hours (least humid climate), and zone #10 having the most
degree-hours (most humid climate), as shown in Figure 2.1 (adapted from Dubin and
Long, 1978).

The second index used was a heating-type code which designated "e" for
electric heating, "g" for gas, "E" for process reclaim heat with electric booster heat,
and "G" for process reclaim heat with natural gas booster heat. These codes were used

I Some parameters represented conditions as recorded during store construction. Others represented conditions at the
time of the annual billing report. Refrigeration horsepower represented installed, rated capacity, and did not necessarily
represent present operating conditions.
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TABLE 2.1
Parameters Included in Store Database

store location

construction status

climatic zone index

floor area

hours per budgetary period
store acquisition date

recent store improvement date
source of heating

installed refrigeration capacity
annual electricity consumption
actual peak electric demand
billed peak electric demand
average daily electricity use

annual electricity consumption per ft2
annual electricity cost

annual electricity cost per ft?

annual natural gas consumption
annual natural gas cost

annual water consumption

annual water cost

linear feet of freezers/coolers

number of fluorescent lamps

number and type of parking lot lamps
method of thermostat adjustment
method of inside lamp control
method of parking lot lamp control

4400

5000

5600

L] 1 -5 stores
@ 10-20stores

* wet-bulb degree hours above 19°C

Figure 2.1

6100

6700

7200

= Sdnoy aaybaq

7800

8300

8900

9400

Climatic Zones. This figure shown the wet-bulb degree hours

above 66°F (19°C) (adapted from Dubin and Long [1988]).
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as data labels in several subsequent figures. The numbers "1" and "2" are used in these
figures to refer to the College Station and Bryan case study stores, respectively. The
College Station store uses reclaim heating with gas booster heat, while the Bryan store

does not have reclaim heating, and uses natural gas fired duct heaters.

2.2 SURVEY RESULTS

Whole-building electricity use and store size were the most useful parameters.
For the stores surveyed, the floor areas ranged from approximately 20,000 to 80,000 ft2
(2,000 to 8,000 m?). The average store size was 43,000 ft? (4,000 m?), with 50% of the
stores having floor areas between 41,000 and 47,000 ft? (3,800 and 4,400 m?) (see
Figure 2.2a). While a number of the larger stores were built to more closely adhere to
corporate specifications, some of the smaller stores were acquired from other retail
chains, and did not meet all of the same standards.

Annual electricity consumption in 1990 ranged from about 1.5 to 6.0 GWh/yr
(million kWh/yr), with 70% of the stores consuming between 2.7 and 3.7 GWh/yr, as
shown in Figure 2.2b. Of the 68 stores using natural gas, approximately 70%
consumed between 300 and 1,000 million Btu/yr (see Figure 2.2c).

Interestingly, one of the most revealing ways of looking at trends in the energy
use was the use of simple scatter plots. An energy use intensity (EUI) was defined for
electricity and natural gas consumption. The electricity EUI (W/ft? or W/m?) was
created for the annual electricity use (kWh/ft2-yr or kWh/m?2-yr) to represent an
average electricity intensity. EUIs were also defined for refrigeration nameplate
capacity (W/ft?2 or W/m?), and natural gas use (Btu/m2-yr).
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gas, 70% consumed between 300 and 1,000 million Btu/yr.
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As expected, Figure 2.3a shows an increase in electricity consumption as floor
area increases. On average, stores tended to have an electricity EUI of roughly 9 W/ft?
(96.9 W/m?), and varied to extremes by + 2 W/ft? (+ 21.5 W/m?2), as shown in Figure
2.3b. These values differ from those presented by EIA (1986)2 by an about 100%.
Stores smaller than 40,000 ft? had an average electricity EUI of 9.5 + 1.7 W/ft2 (102 +
18 W/m? )(+ twice the sample standard deviation). Stores larger than 50,000 ft2 had an
average EUI of 7.7 £ 1.1 W/ft? (83 + 12 W/m?). Stores between 40,000 and 50,000 ft2
had an average EUI of 8.2 + 1.4 W/ft? (88 + 15 W/m?).

It was initially thought that the latent load on the stores' air-conditioning
systems would be a significant determinant of the electricity consumption, and
therefore easy to determine either statistically or graphically. Unfortunately, a
significant influence was not readily apparent using a climate index based on wet-bulb
degree hours and annual electricity consumption. This can be seen when the whole-
building electricity EUI is plotted against the climatic index (see Figure 2.4a).

Stores in the more humid zones (i.e., zones 5+) tended to show only slightly
greater EUIs than those in the dryer zones. While this may well be due to an increased
latent air-conditioning load in the more humid climates, the increase only represents
on average about 1 W/ft? (10.76 W/m2) which is 11 % of the average EUI value .
Also, since this climate index considers only wet-bulb temperature, stores closer to the
Gulf of Mexico may not be represented as well as they could be with a dry-bulb
temperature index because they may have higher latent loads yet lower outside dry-
bulb temperatures than stores which are farther inland where temperatures are higher
and latent loads are lower. The counteractive effect between wet-bulb and dry-bulb
temperatures in this region may mask the influence of either dry-bulb or wet-bulb
when considered separately. Constant lighting and miscellaneous loads may also
make it difficult to see a climate effect when only annual whole-building EUIs are

available.

In Figure 2.4, a more significant trend can be seen in the plot of gas use versus
climate index. Stores in the drier, northern zones (zones 1 to 3) tended to have higher
gas EUIs (Btu/m?-yr) than do the other stores. Stores in the more humid zones (higher

2 The EIA reported an average of 4.3 W/ft2.
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An increase can be seen in electricity consumption as floor area
increases. Stores tended to have an electricity EUI of roughly

9 Wift? (96.9 W/m?), and varied to extremes by + 2 W/ft? (+

21.5 W/m?). These values differ from those presented by EIA
(1986) by an average of 100%.
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Elcctricity EUI { W/m?)

Gas EUI ( Btu/m2-yr)

A significant influence was not readily apparent using a climate
index based on wet-bulb degree hours and annual electricity
consumption. A more significant trend can be seen in the plot
of gas EUI versus climate index. Stores in the drier, northern

zones (zones 1 to 3) have higher gas EUIs than do the other

stores.
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zone indices) tended to show only slightly greater electricity EUIs (annual, averaged
W/m?) than those in the dryer zones. The College Station store (store 1 in Figure 2.4)
has a slightly higher natural gas use per unit floor area than the Bryan store. As will be
noted later in Chapter 3, although the College Station store used about 100 million Btu
per year more than the Bryan store in 1990, the Bryan store has the higher peak gas
consumption in the heating season. This makes sense since the Bryan store uses its

gas for heating instead of cooking.

All but six of the stores used waste heat recovered from the condensers of the
refrigeration system to provide space heating. These stores were equipped with either
gas-fired or electric booster heat for use when the reclaim heat was not adequate.
Seventy-six stores use reheat for dehumidification. Figure 2.5 shows a typical heat
reclamation system installed in many stores. Heat is extracted from the condensing
units of the refrigeration system, and used for space heating. According to discussions
with the facilities engineer, stores in zones 4 to 7 only called for gas booster heat about
1% of the time (or less); the majority of their gas usage went to cooking. Stores in the
more inland regions (zones 1 and 2) made significant use of their booster heating,

which accounted for their greater gas usage compared to stores in other zones.

As shown in Figure 2.6a, stores built by the corporation after about 1979 are
larger than those built prior to that year ("construction date" actually refers to the date
each store was acquired and/or built). As shown in Figure 2.6b, post-1979 stores use
less electricity per ft2, due in part to the use of heat reclaim from the refrigeration
compressors and natural gas booster heat for space heating. These buildings were built
to new corporate engineering specifications. An appreciable decrease in electricity
EUI (W/m?) is seen after 1979, which corresponds to the beginning of a new energy
conservation policy. New stores average 8.3 W/ft2 (89 W/m?), while older stores
average 9.1 W/ft2 (98 W/m?), a difference of about 9%. As shown in Figure 2.6c,

stores using gas, built after about 1983, tend to use less gas per unit area as well.

Typical energy-saving measures employed since 1979 by this grocery store chain

include:

1) better insulation (an R-4 increase),
2) the changeover from incandescent to fluorescent lamps,
3) installation of energy-efficient ballasts on fluorescent lamps,
4) the changeover from electric to gas-fired booster heating,
. (or elimination of booster heating altogether),
5) better sealing of building entrances using vestibules.
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In addition, an effort was made to ensure that buildings were built to the new corporate

design specifications.

It was thought that the lack of electric heating in gas-boosted stores explained
their lower electricity consumption. However, discussions with the chief facilities
engineer of the store chain revealed that stores using heat reclaim from the
compressors (92% of the stores) rarely needed booster heat whether it be gas or
electric. It is estimated that electric booster heating is needed about two days per year,
if at all. And indeed, at the case-study store located 100 miles northwest of Houston,
the fraction of booster heat time is only 1% of the HVAC system's operating hours
(Schrock, 1989). According to the chief facilities engineer, booster heating is no
longer installed in new stores built between climatic zone 6 and the Gulf coast. Thus,
since booster heating is so rarely used, it is unlikely that the absence of electric heat in
gas-boosted stores is the primary cause of the reduction in their electricity

consumption.

Figure 2.7a shows that there has been only a slight variation in the installed
refrigeration capacity over the last twenty years. The variation tended to follow the
same pattern as store size. As shown in Figure 2.7b, the refrigeration nameplate EUI
(W/m?2) has been fairly constant over the years, though a slight decrease is seen after
about 1983. This corresponds to the point at which the corporation began to build
larger stores which stock a considerable amount of dry merchandise that does not

require refrigeration.

Discussions with the stores' engineering personnel have revealed other possible
reasons for the trends that are displayed in Figure 2.8. Even the smaller stores seemed
to have a minimum amount of refrigeration, roughly 100 to 150 hp. As the stores
become larger, refrigeration capacity increases. But there seems to be an upper limit to
the capacity. When store size reaches about 50,000 ft? (4,600 to 5,600 m2), the
capacity-floor area curve appears to level off, indicating that additional refrigeration

capacity is not being added to service the additional floor area.

While whole-building energy consumption, floor size, and construction date
tell us general characteristics about the store buildings, specific information is difficult

to glean from the data without a detailed knowledge of the equipment in the store. The
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Construction Date. Variation in installed refrigeration capacity

tended to follow the same pattern as store size. Refrigeration

nameplate EUI has been fairly constant over the years, though
a slight decrease is seen after about 1983, when the corporation
began to build larger stores which stock a considerable amount

of dry merchandise that does not require refrigeration.
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energy-using components of a store do not all share the same characteristics with
respect to floor area. While some components, such as air-conditioning and lighting,
are intuitively functions of floor area, refrigeration capacity and other miscellaneous
loads may not be.

2.3 SUMMARY

The survey of the 93 grocery stores in south-Texas showed that there is much
that can be learned about energy use in grocery stores using annual EUIs and
information which can be gleaned from a mail-in survey. The following specific

points were made:

1) Total electricity EUI is as average of about 9 W/ft2 (96.9 W/m?), and varies to
extremes by = 2 W/ft2 (£ 21.5 W/m?). Stores smaller than 40,000 ft2 had an
average overall EUI of 9.5 + 1.7 W/ft2, while stores larger than 50,000 ft2 had
an average EUT of 7.7 = 1.1 W/ft2. Stores between 40,000 and 50,000 ft2 had
an average EUI of 8.2 + 1.4 W/ft2.

2) Annual electricity consumption in 1990 ranged from about 1.5 to 6.0 GWh/yr
(million kWh/yr), with 70% of the stores consuming between 2.7 and 3.7
GWh/yr. Of the 68 stores using natural gas, approximately 70% consumed
between 300 and 1,000 million Btu/yr.

3) With most of the stores in the same geographic area, it seems unlikely that
variations in climate-dependent loads explain the trend in EUL. Rather, this
seems to be due to component loads which do not increase as store size
increases. The largest such load is refrigeration.

4) Stores built after 1979 have roughly 9% less energy consumption per square
foot than those built before 1979. This is due to at least two reasons.

a) Stores built after 1979 were larger. These stores used their additional

space to stock merchandise that did not require refrigeration.

b) Stores built after 1979 included a significant number of energy-saving

measures.

5) In the south-Texas region, heat reclamation from the refrigeration systems

provides an adequate means of space heating for most winter-time conditions.
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However, there is a limit to what may be learned from general surveys. The two case
study stores, described in the next chapter, represent about 70% of the 93 stores in the
survey with respect to their building characteristics and energy use. In general, grocery
store energy use is divisible into components. Because only some of these
components are dependent upon store size and/or climate, a more detailed analysis
involving sub-metering of energy use 1s required in order to determine key predictors
of energy use for a particular store. Nevertheless, the database section of the project
provides a good foundation on which to apply the results of the findings in the case

study.
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CHAPTER III

CASE STUDY

The sections that follow describe the two case study grocery stores. First, the
College Station store will be discussed, followed by the Bryan store. General building
characteristics are given, followed by a description of the major energy-using
equipment in each store. Both stores are located approximately 100 miles northwest
of Houston, Texas, in the cities of College Station and Bryan, Texas. The 1% mean
dry bulb temperature for this area is 98°F (37°C), with a coincident wet bulb of 76°F
(25°C). The location has 1786 annual heating degree-days and 2806 annual cooling
degree-days (19°C [65°F] base) (Schrock 1989).

3.1 BUILDING STRUCTURE OF COLLEGE STATION STORE

The first case study grocery store is located in a medium-sized shopping plaza.
Customer parking is available at the front of the store, while deliveries are made at the
rear of the store. Adjacent to the store is a video tape rental store, also run by the
grocery store management. Both stores share one interior wall, and are flanked by
other adjacent, air-conditioned buildings.

For the grocery store portion of the building, the exterior northwest and
southeast walls are constructed of 6-inch (0.15-m), poured concrete, and have 3.5
inches (0.09 m) of batt insulation behind interior dry-wall. The northeast and
southwest walls are 160 feet (50 m) and 250 feet (76 m) long, respectively, and 20 feet
(6.1 m) high. The northeast wall has a 60-ft by 16-ft (18-m by 5-m) glass section
which serves as the entrance to the store and includes a double-doored enclosure with
automatic doors. The roof is constructed of a metal deck which supports a 1.5-inch
(0.04-m) layer of styrofoam insulation, a 2-inch (0.05) concrete slab, and a built-up
roof covered with light-colored aggregate. A plan view of the store is shown in Figure
31

The building is a single-story structure with 16-foot (4.9-m) drop ceilings and a
total area of 46,000 ft2 (4,300 m2?). The front 35,000 ft2 (3,300 m?) of floor area is used
for product display, and the rear 11,000 ft2 (1,000 m?) holds the space-conditioning
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equipment, walk-in coolers and freezers, and the meat preparation areas. The store
contains a 500-ft? (46-m?) office space located above the pharmacy and delicatessen,
and a 150-ft? (14-m?) mechanical room located above the rest rooms in the rear of the
store (Schrock and Claridge, 1989). Pictures of the inside and outside of the store, and

the components therein, can be found in Appendix F.

The video tape rental store is accessible from the northwestern wall of the
grocery store, and has 9,100 ft? (845 m?) of display space with 10-ft (3-m) ceilings.
The northeastern wall is a 21-m by 3-m (70-ft by 10-ft) glass and dry-wall section.

The entrances to the store are double swinging doors without vestibules.

3.2 MAJOR ELECTRICAL EQUIPMENT OF COLLEGE STATION STORE

This section describes the major energy-using equipment in the College Station |
store. The information was gathered during walk-through surveys, and consists of
nameplate readings and selected clamp-on power readings (where possible). All
equipment in the College Station store runs at 120 VAC (1-phase) and 208 VAC (3-
phase). A detailed listing of the loads can be found in Appendix B of this thesis.

3.2.1 Refrigeration Equipment

Twenty-three single-mounted compressors units are used to cool the
refrigeration/freezer cases and coolers in the facility. Fifteen use refrigerant R12, and
eight use refrigerant R502. The total compressor nameplate capacity is 166 hp, or 124
kW input. Condenser fans comprise an additional nameplate load of 8.5 kW. The

electric resistance defrost heaters have a total nameplate load of 71 kW.

Including the condenser fans, the measured, connected compressor system load
is roughly 138 kW during non-defrost operation. Some display cases use hot gas
defrost provided by the compressors.! Others use electric resistance heaters for this
purpose. A high load of 156 kW was measured during defrost cycles, implying an
electric resistance defrost cycle load of 18 kW. Time clocks control the compressor
defrost cycles. The defrost cycles last up to one hour or until the cooling coils reach

70°F (21°C). The compressors are summarized as follows in Table 3.1.

Ambient air is circulated through the compressor room by four 6-hp fans which

have a total nameplate load of 22 kW. These fans come on in stages

l During hot gas defrost, the compressors operate in a reverse cycle, acting as heat pumps. Hot refrigerant is pumped
through the display case evaporator coils. This melts any ice that may have accumulated on the coils.



TABLE 3.1

Refrigeration Compressor Summary for College Station

Rated Measured Measured
Load Served Refrigerant HP kw kW with defrost*
Meat W.I. COOLER R12 5 5.58 5.58
Meat Prep W.I. COOLER R12 5 2.22 5.22
Flrl/Deli/Beer W.I. COOLER R12 10 8.38 8.38
Bkry & Groc W.I. FRZR R502 9 8.29 8.29
Produce Prep W.I. COOLER R12 5 5.94 5.94
Nutrit/Seafd W.I. COOLER R502 al 2.25 2.25
28' 3-Deck Meat COOLER R12 7.6 5.67 5.67
20' LnchMeat Case COOLER R12 5 5.04 5.04
32' LnchMeat/Deli COOLER R12 7.65 6.85 6.85
End Cap FRZR R502 5 3.78 4.14
68' Coffin FRZR R502 7.6 5.85 10.72
68' Coffin FRZR R502 7.6 5.58 10.54
68' Coffin FRZR R502 7.6 576 10.72
68' Coffin FRZR R502 7.6 5.49 10.18
10' Glass Door Ice Crm FRZR R502 15 8.92 7.93
84' Produce COOLER R12 10 8.56 8.56
64' Island Produce COOLER R12 5 4.05 4.05
44' Chz & Butter COOLER R12 10 8.74 8.74
36' Dairy COOLER R12 7.6 7.48 7.48
Meat & Cheese COOLERS R12 7.6 6.57 6.57
Deli COOLER RI12 3.1 2.07 2.07
Dairy Case Top #1 RI2 7.6 558 5.58
Dairy Case Top #2 R12 7.6 5.94 5.94
Total: 166 hp 137.6 kW 156.5 kW

* Hot gas defrost. Some display cases use electric heaters for defrost. Electric heater loads, not included
here, are part of the Miscellaneous Utility loads (see below).
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beginning when the temperature difference across the condenser coils is about 8°F
(4°C), and stop when the compressor room ambient temperature is less than about
60°F (16°C)~

The peak connected load of the compressor and exhaust fan system, based on
measured loads, is 160 kW under normal operation, and 178 kW during coincident
defrost periods.? The peak load based on nameplate information is 155 kW during

non-defrost periods, and 226 kW during coincident defrost periods.

Sixteen groups of refrigeration/freezer cases (about 60 separate case units)
display the food, with one compressor dedicated to each group. Six walk-in storage
coolers and freezers are located in the store's back rooms, and are cooled by the
remaining seven compressors. The case fans, glass door anti-sweat heaters, and
lighting are connected to the utility and lighting circuits of the store. See Utility and

Lighting sections below for more information.

3.2.2 HVAC Equipment

The store has two 50-ton air-conditioning systems, which each have two 43-hp
compressors and one 15-hp fan which circulates air at 18,000 CFM (manufacturer's
data).# The maximum nameplate load of both air-conditioning units is 170 kW.
Based on this information, the nameplate EER rating of the combined system is 7.1
Btu/W-h. This implies a coefficient of performance (COP) of 2.08. On one of the
units, 290 CFM (measured) of outside air are brought into the store through a passive

ducting system.?

From clamp-on measurements, the blower fan in each air-handling unit draws
about 43 amps per phase. At a voltage of 208 VAC, this amounts to about 14 kW.
During second-stage cooling, the compressors on each air-handler draw as much as
184 amps per phase, amounting to 58 kW. Thus, the maximum load for both air-

2 This could be one of the reasons for the change-point behavior seen in the sub-metered refrigeration system energy use.
The change-point temperature is about 62°F (17°C}.

3 These values are consistent with those obtained through electrical sub-metering, which vary with ambient outdoor
temperature from about 70 to 170 kW.

4 An estimated power factor of 0.88 (ratio of kW to kVA) and mechanical efficiency of 0.90 were taken from tables
provided by Turner (1982) and used to determine the maximum load of each compressor and fan based on nameplate amps and
horsepower.

5 The store management is aware that this is an undesirably low fresh air ventilation rate. There is an unquantifiable
amount of outdoor air which enters the store through doors and the loading dock, and leaves through exhaust ducts,
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handlers observed during walk-through surveys is 144 kW. This is 85% of the

nameplate load.

Each air-handler unit has its own controller which controls the heating or
cooling stage based on indoor dry-bulb temperature and relative humidity sensors.
The store set point is 75°F (24°C) dry-bulb, and 55°F (13°C) wet-bulb. Figure 3.2
shows a schematic of the temperature conditions for which the various stages of

cooling and heating are controlled.

Occasional Dehumidification

_________________________________________

H1 Control point

Cl1 = Cooling Stage 1
C2 = Cooling Stage 2
H1 = Reclaim Heating Stage 1

H2

BHI H2 = Reclaim Heating Stage 2

BH1 = Gas Booster Heat Stage 1
BH2 = Gas Booster Heat Stage 2

BH2

Figure 3.2 Schematic of the indoor temperature conditions HVAC system
control. This figure shows the indoor temperatures for which
the various stages of cooling, heating, and dehumidification are
controlled. Dehumidification is handled by one stage of cooling
only. The control point may be varied by +2°F.

Cooling stage 1 uses one compressor; stage 2 uses both compressors. Heating stage 1
uses half of the heat reclaim capacity available to the air-handler unit; heating stage 2
uses all available heat reclaim capacity. Likewise, there are two stages of gas booster
heating from furnaces installed in the air ducts down stream of the heat reclaim coils.
Figure 3.3 shows the HVAC system control curves.® The two main HVAC units each
have their own temperature/relative humidity controller, and are set to operate at, or
below, curve B. The humidity controller activates one stage of cooling upon

6 These curves were transcribed from the specifications inside the thermostat box, model number H609A manufactured
by Honeywell, Minneapolis, MN, 55422.
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determining a rising dew-point temperature, thus reducing the moisture content of the
air. Return air conditions, monitored since November, 1992, reveal that the HVAC
system is keeping return air conditions at or below the control curve B, and between
15° and 24°C (58° and 74°F) dry-bulb, 25 and 55% relative humidity (which is
between -1° and 10°C [30° and 50°F] dew-point).

Figure 3.4 shows these data for four modes of HVAC system operation --
cooling only, heating only, dehumidification (heating and one stage of cooling), and
fans only. We determined from the sub-metered HVAC data when the fan and cooling
stages were operating. Duct air temperatures were monitored with battery-operated
temperature recorders for about three months. The cold-deck, hot-deck, and return air
temperatures were the three points which were monitored. This made it possible to
determine when the heating coils were being used. With this information, we

determined when any of the four modes of HVAC operation were in effect.

Heat recovery from the refrigeration system is used to provide heat during the
first two stages of heating. A third and fourth stage of booster heating is available
from natural gas duct heaters which have a capacity of 125 million Btu/hr (nameplate).
However, the gas booster heating has been used only 1% of the time the store has been
in operation. This is consistent with the findings of ORNL (DOE 1981 p. 1-16),
which state that "[in] 1979, 96 percent of new stores had installed heat reclaim units
. ... Even in northern climates, properly designed heat reclaim units can provide all

the necessary space heating requirements."

Three 7.5-ton, and two 5-ton roof-top HVAC units serve the video store which
is located next to the main store. Three of these units draw their power from the main
store's HVAC electricity circuit. The remaining two -- two of the 7.5-ton units -- are
connected to the main store's refrigeration circuit, and therefore are monitored
separately from the main store HVAC load. Each of the units are controlled by
standard dry-bulb thermostats which have on/off and temperature adjustment switches.
During a walk-through survey, the electricity load of these units was measured to be
21.7 kW. The load of the remaining three units was 15.4 kW, although not all were
running at full capacity. The total electricity load of the five units was measured to be
37 kW. The peak load based on nameplate data is 44 kW7,

7 One of the 5-ton units is disconnected due to maintenance problems. It is not included in the load count.
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The measured, combined load of the main and video store HVAC systems

during peak times is 181 kW, and the peak nameplate capacity is 214 kW.

3.2.3 Lighting

The main store's interior is primarily lit by fluorescent lamps which have
nameplate loads ranging from 40 to 100 watts per lamp. Of these, there are
approximately 900 overhead lamps in the main sales area (with a total nameplate load
of 65.5 kW8), 140 overhead lamps for non-sales areas (10.5 kW), 180 refrigerated case
lamps and 200 non-refrigerated case and rack lamps (21 kW). See Appendix B for a
detailed description of the lights.

About one-half of the sales and back room overhead lights, all bakery lights,
and lights on perimeter refrigeration cases are shut off at midnight by the store
management. They are turned back on around 8:00 a.m. This is currently done by
switching the power off at the electrical panel in the rear of the store. Consideration
has been given to controlling these lights with a timer switch. Timers already exist on
the lighting electrical panels. Some rewiring would be necessary to affect only the

desired lights.

The main store also has 58 metal halide lamps (175 W/lamp) and 17
incandescent lamps (100-W) at various locations. These amount to a connected load
of 14 kW. The total connected load of all the lights in the main store is 112 kW

including ballasts (nameplate).

The video store has 550 40-W and eight 75-W overhead fluorescent lamps
amounting to 30 kW. They are turned on at about 8:00 a.m., and turned off between

midnight and 2:00 a.m. when workers in the video store complete their tasks.

The exterior lights, used to illuminate the front and rear parking lots, consist of
twenty 1,000-watt high-pressure sodium vapor lamps which have a total connected
load of 25 kW (nameplate). The video store has four exterior 400-W high-pressure
sodium lamps which illuminate the front of the store. All outside lamps are controlled

8 This includes the ballast watts. The lighting ballast is a small voltage regulation device -- often a small transformer.
According to General Electric's Ballast Technical Guide (GE 1986), an average ballast for F40T12, standard and energy-
efficient fluorescent lamps increases the lamp circuit wattage by about 10% of the nominal lamp rating. That is, a lamp fixture
which houses two 40-watt lamps draws about 88 watts. Thus, a ballast factor of 1.1 is used for all fluorescent lamps in the case
study stores. Likewise, ballast factors of 1.2 and 1.25 are used for metal-halide and sodium vapor lamps, respectively.
Incandescent lamps do not have ballasts.
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by a time clock inside the store.” The timer pins are adjusted manually to account for
seasonal changes in the length of nights. They are switched on between 5:00 p.m. and
8:00 p.m., and switched off between 6:00 a.m. and 8:00 a.m.

The store has 13 point-of-sale registers throughout the store which have a total
connected load of 6.8 kW (nameplate). These are connected to its lighting circuit.

The peak nameplate lighting load for the entire store is 177 kW, including
ballasts. Figure 3.5 shows the lighting load profile throughout the day. The daily
average lighting load, adjusted for daily lighting schedules, is about 126 kW. The
average lighting load measured through sub-metering is 124.7 kW, and the yearly peak
is 175 kW, amounting to a diversity factor of 71%. A detailed table of the lighting
loads can be found in Appendix B. Three modes of lighting energy use can be seen in
Figure 3.5 -- one when half of the in-store lights are off and the parking lights are on,
one when all in-store lights are on but outside parking lights are off, and one when in-

store and parking lot lights are all on.

3.2.4 Miscellaneous Utility

The remaining electrical loads mentioned in this section are listed in detail in

Appendix B.

There are 37 pieces of food-processing equipment used for the preparation of
meat and deli goods. These items have a total connected load of 109 kW (nameplate)

and are used when needed.

One 10-hp trash baler is located in the loading dock room. At an efficiency of
0.87, its connected load is 8.6 kW.

There are approximately 60 refrigerated display case units. The evaporator
fans and anti-sweat heaters!? of these cases contribute about 27 kW to the
miscellaneous utility circuit. Six walk-in coolers and freezers are located in the store's
back rooms, which have a total evaporator fan load of 3 kW. Thus, the peak
connected nameplate load of the refrigeration case fans and anti-sweat heaters is 30
kW.

9 This timer had malfunctioned occasionally during the summer and fall months of 1991. The operating costs associated
with this problem are discussed further in Appendix C.

10 The anti-sweat heaters prevent condensation from forming on the glass doors and edges of the display cases. They
should not be confused with case defrost heaters.
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The total, peak utility load is 148 kW, though this never occurs since all utility
loads rarely run at the same time. The average sub-metered utility load is about 76

kW. This amounts to a diversity/load factor of 51%.

3.2.5 Natural Gas

The store uses natural gas primarily for cooking. There are two two-stage gas
duct heaters for space heating for the main store, though, as mentioned above, these
are rarely used. These have a combined, rated capacity of 840,000 Btu per hour. The
roof-top HVAC units on the video store have a combined, rated capacity of 658,000
Btu per hour. The delicatessen has one large natural gas oven which comprises most
of the 50 million to 75 million Btu per month base level gas consumption. In the two
years since the annexation of the video store, the College Station store used an average
of 851 million Btu/yr of natural gas, which amounts to 18,400 Btu/ft?-yr.

3.3 ELECTRICAL SUB-METERING OF COLLEGE STATION STORE

The first case-study store had been examined previously by Schrock (1989),
who used 15-minute whole-building electricity data transcribed from local utility
readings, and Chen (1991), who also used daily whole-building data which had been
summed from 15-minute data. For this thesis, a year's worth of hourly sub-metered
electricity data and coincident weather data from a nearby weather station (Ruch et al.
1991) were recorded and converted it into an averaged daily format for use with the

modeling procedures to be tested.

Four component loads of interest for the combined grocery and video stores

were sub-metered. These were:

1) refrigeration compressor system loads (compressors, condenser fans,
exhaust fans, and defrost heaters)

2) lighting loads (exterior, interior, and miscellaneous refrigeration case
lighting loads)

3) combined store HVAC loads

4) miscellaneous utility loads (food preparation equipment, refrigeration
case fans and anti-sweat heaters).

Loads were monitored with current and potential transducers, and recorded

with a commercially available data-acquisition system.!! Hourly data were polled on a

11 The data acquisition procedure is described in detail in Appendix A.
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weekly basis, processed into a format readily usable by a statistical computer software
package. This procedure is shown graphically in Figure 3.6, and is described in
greater detail in Appendix A. The processed data was displayed graphically and
reviewed by the project staff on a weekly basis, and by store management, to monitor
data quality and to observe and document any anomalies in store operation. Figure 3.7
shows the electrical end-use distribution for the College Station store. The four
component loads are divided conveniently into the four main electrical distribution
panels of the store. This allowed for ease in monitoring. The only exceptions were
two of the video store's 7.5-ton roof-top HVAC units which were connected to the
store's refrigeration compressor circuit, and two new 7.6-horsepower dairy cooler

compressors which were connected to the store's HVAC circuit.12

In the two years since the annexation of the video store, monthly electricity use
increased during the summer by about 50,000 kWh/month, and peak demand by about
100 kW. This is shown in Figure 3.8. This increase seems comparable to the sum of
the measured video store and new dairy compressor loads, which is 85 kW. The 15-
kW difference is most likely due to the photo developing machines and soda display
cases in the video store. These loads could not be measured in the walk-through
survey. For the past two years since the annexation of the video store, 1991 and 1992,
the combined College Station store used an average of 3,610,800 kWh/yr of electricity,
amounting to a energy use intensity (EUI) of 7.5 W/ft? (81 W/m?2). This represents a
greater energy use than was reported in the 1990 multi-store survey in Chapter 2,
because it includes the load of the video store.!* However, the EUI is less than it was
in 1990 since the total store floor area has increased by about 9,100 ft2. The store has
used an average of 851 million Btu/yr of natural gas, amounting to a gas EUI of 15,400
Btu/ft?-yr (166,000 Btu/m?-yr). Like the electricity use, the gas use has increased since
the annexation of the video store, but the gas EUI has decreased. Figure 3.9 shows the
monthly gas use for the store. Natural gas is used by the delicatessen for cooking and
by the video store's roof-top HVAC units for heating. The gas use is relatively

constant throughout the year except during the months of December to January.

12 The video store HVAC units were sub-metered separately, so that their load could be subtracted off the store's
refrigeration load. But, the new dairy compressors were added after the sub-metering was installed; as a result, their load appears
as part of the store's HVAC load. However, they amount to less than 10% of the true HVAC load.

13 The electricity use and EUT in 1990 were 3,215,000 kWh/yr and 8 W/ft2 (86 W/m?), respectively. The natural gas use
and EUI were 819 million Btu/yr and 17,700 Btu/ftz-yr (191,000 Btu/m?-yr).
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Since there is no heating requirement in the remaining months, we assume that natural

gas is used primarily for cooking in this store.

Prior to the annexation of the video store, in an attempt to estimate component
loads, Schrock and Claridge (1989) performed an energy load survey based on
nameplate ratings of store equipment. Their work was repeated and refined in a new
walk-through energy use survey for this thesis. Figure 3.10a and Figure 3.10b show
the breakdown of electricity use in the case study store. Figure 3.10a shows the
estimated contribution to peak loads based on nameplate power ratings for various end
uses. Figure 3.10b shows the contribution of the four main end-use loads as
determined from the 1992 survey as well the sub-metered data and from Schrock
(1989). The percentages given in DOE (1981) are also included for comparison.
Basing the percentages on the nameplate data tends to overestimate the contribution
due to HVAC, and underestimate the contribution due to lighting. This is to be
expected since the HVAC load varies significantly throughout the year, while loads
such as lighting load remain fairly constant. Also, the fact that the HVAC load does
not run at full load constantly makes one-time estimation, such as nameplate readings,
unreliable. Because of this, peak load estimations cannot represent the true
distribution of electricity end use. Both Schrock's thesis and the DOE report estimate
a higher contribution due to refrigeration than is seen in either the 1992 nameplate
survey data or the sub-metering data. But Schrock's study was performed on the store
before the video store was annexed. And, it is assumed that the DOE study also did
not include a video store. Because the video store energy use is comprised of only
HVAC and lighting, we should not expect the percent contribution due to refrigeration
to remain the same after these video store loads were added. Table 3.2 shows a

description of the loads included in each breakdown as well as the DOE's percentages.

3.4 ENERGY CONSUMPTION DATA FOR COLLEGE STATION STORE

The usefulness of providing plots energy consumption data on a daily and
hourly basis was informally tested by establishing an information loop with the store
management. Recorded data were presented in two formats -- weekly summary plots
and 3D inspection plots. Ambient hourly weather conditions were provided by a
weather station located approximately two miles away. These data were plotted along
the top of the summary plot page. This approach gave the store management a chance
to keep record of the store processes, and provided the researcher with the kind of data

necessary to develop statistical models for predicting the future energy use in the store.
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Figure 3.10 a,b Percentages of Nameplate Contribution to Peak and Measured

Contribution to Electricity Use for the College Station store.
(a) contribution based on nameplate data; (b) Contribution
based on Schrock (1989), 1992 nameplate survey, 1992 sub-
metered data, and DOE (1981) survey.



TABLE 3.2
Description of End-use Loads Included in Group Breakdown

for the College Station Store
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(b) 1992 Survey

(a) Schrock (1989) Nameplate Peak (c) 1992 Sub-metered (d) DOE (1981)
Compressors Compressors Compressors Compressors
(33.3%) (29.5%) (28.6%) (39.0%)
Refrigeration Refrigeration Refrigeration compressors,

compressors, condenser
fans.

HVAC

(27.0%)
Air-conditioning loads
from the two main
units.

Lighting

(17.8%)

sales area lighting,
office, outdoor lights,
cash registers, display
case lighting.

Miscellaneous
Utility

(22.0%)

Food preparation and
other misc. loads, case
fans and anti-sweat
heaters.

compressor, condenser
and exhaust fans.

HVAC

(28.0%)
Air-conditioning loads
from the two main units

plus video store HVAC.

Lighting

(23.1)

sales area lighting,
office, outdoor lights,
cash registers, display
case lighting.

Miscellaneous

Utility

(19.3)

Food preparation and
other misc. loads, case
fans and anti-sweat
heaters.

compressor, condenser
and exhaust fans.

HVAC

(21.0%)
Air-conditioning loads
from the two main units

plus video store HVAC.

Lighting

(31.2%)

sales area lighting,
office, outdoor lights,
cash registers, display
case lighting, and some
receptacle.

Miscellaneous

Utility

(19.1%)

Food preparation, misc.
receptacle loads, case
fans and anti-sweat
heaters.

condensers, case fans.

HVAC

(17.0%)
air-conditioning, fans,
electric heat.

Lighting

(25.0%)

sales area, office, and
outdoor sign lights.

Miscellaneous
Utility
(19.0%)
Unknown
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3.4.1 Summary Plots and 3D Inspection Plots

An example of the summary plots is shown in Figure 3.11. The four main
loads are plotted with respect to both time and temperature. Ambient hourly weather
conditions were provided by a weather station located approximately two miles away,
and are plotted along the left edge of the summary page.

The 3D plots show loads for the College Station store individually plotted with
respect to hour of the day on one axis, and day of the year on the other. This allows
the viewer to see not only day-to-day variations in energy use, but also hourly
variations. The plots are shown in Figures 3.12 to 3.17 for 1992 data. The hour of day

is given in 24-hour time, with midnight corresponding to hour "0".

In the 3D plots, temperature-dependent effects can only be perceived as a
month-to-month change. Figures 3.12 (a), 3.13 (a), and 3.15 (a) clearly show a
seasonal behavior in the whole-building, refrigeration, and HVAC data. Each load has
a minimum during winter months and a maximum during summer months. In Figure
3.13 (b), a series of "rolling waves" appear in the refrigeration system data from hour
to hour. Schrock and Claridge (1989) also noticed this effect, and hypothesized that it
may be due to defrost timer controls being out of synchronization. They suggested
that this might cause several defrost heaters to run at the same time, creating
unnecessarily high levels of electric demand. The fact that the waves tend to occur at
the same time each day lends support to this hypothesis. Schrock and Claridge,
however, did not have sub-metered data, but only whole-building data. The use of

sub-metered data clearly revealed the general source of the wave behavior.

A seasonal effect, the variation in day length, can be seen in the lighting load in
Figure 3.14 (b). The step in electricity use during the latter portion of the day
(between 4 p.m. and 10 p.m.) corresponds to the time at which the parking lot lights
are turned on. What is interesting to note is the fact that this step occurs earliest
during December and January, when longer nights prevail. The lights are controlled
by a timer which is adjusted to account for the change in daylight hours. However, as
can be seen near the beginning of July, the timer occasionally malfunctions or is

manually overridden. The 3D plot easily reveals when there is any deviation from the
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3D plot of sub-metered refrigeration compressors for College
Station store. A series of "rolling waves" appear in the data
Jrom hour to hour. Schrock and Claridge (1989) noticed this in
the whole-building data, and hypothesized that it may be due to
defrost timer controls being out of synchronization. They
suggested that this might cause several defrost heaters to run at
the same time, creating unnecessarily high levels of electric
demand. The fact that the waves tend to occur at the same time
each day lends support to this hypothesis.
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Figure 3.14 a,b 3D plot of sub-metered lighting for College Station store. The

step in eleciricity use between 4 p.m. and 10 p.m. corresponds

to the time at which the parking lot lights are turned on. The

lights are controlled by a timer which is adjusted to account for

the change in daylight hours, and shut off around 8 a.m. The

times when the outdoor lights are left on after 8 a.m. are easily

seen, most noticeably near the beginning of July. Between

midnight and 7 a.m., half of the overhead, indoor sales lighting
are scheduled to be turned off. At these times, the lighting load
is about 100 kW. It is quite clear from the plots when the lights

are left on.
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Figure 3.16 a,b 3D plot of sub-metered utility for College Station store. The

utility load includes food-preparation equipment, various
receptacles, and refrigeration display case fans and anti-sweat
heaters. The load is fairly constant throughout the year, but is
slightly higher during the daytime than during the night. This
makes sense since the food-preparation equipment is only run
during the day.
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Figure 3.17 a,b 3D plot of sub-metered video store HVAC for College Station
store. This is the sub-metered load of two of the video store's
7.5-ton roof-top HVAC units. Most of the electricity use occurs
during the summer months, when cooling is required. A period
of maintenance problems can be seen between the middle of
July and the beginning of September. Natural gas is used for
heating in the winter. A 2- to 5-kW fan load can be seen
between November and February. The heating provided by
these two units is turned off when the video store closes at about
1 a.m., and comes back on when it opens around 8 a.m.
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usual lighting schedule when that schedule is very regular.!* During the early morning
hours, between midnight and 7 a.m., half of the overhead, indoor sales lighting are
scheduled to be turned off except when required by stocking personnel. From Figure
3.14 (b), it is quite clear when the lights are left on. These occurrences are also visible
in the whole-building plots (Figure 3.12), although less pronounced. When off, the
lighting load is about 100 kW. When the indoor lights are kept on, there in an increase
of roughly 50 kW. Visual inspection of the 3D lighting plot reveals that this occurs

about twenty times per year, which is about once every two-and-a-half weeks.

Figure 3.16 shows the store's miscellaneous utility load. This includes such
electrical end-uses as food-preparation equipment, and refrigeration display case fans
and anti-sweat heaters. The load is fairly constant throughout the year, but is slightly
higher during the daytime than during the night. This makes sense since the food-

preparation equipment is only run during the day.

Figure 3.17 shows the sub-metered load of two of the video store's 7.5-ton
roof-top HVAC units. Most of the electricity use occurs during the summer months,
when cooling is required. A period of maintenance problems can be seen between the
middle of July and the beginning of September.!> Natural gas is used for heating in
the winter. As can be seen in Figure 3.17 (a), only a 2- to 5-kW fan load can be seen
between November and February. The heating provided by these two units is turned
off when the video store closes at about 1 a.m. and comes back on when it opens

around 8 a.m.

3.4.2 Constant and Schedule-dependent Loads

In anticipation of the statistical modeling detailed in Chapters 4 and 5, scatter
plots of whole-building and component electricity loads were made. Figure 3.18
shows plots for daily electricity and weather data which were derived by averaging 24
hours of hourly data. From the plots, it is easy to see that some component loads are
sensitive to outdoor temperature, while others are not. For some loads, the
temperature dependency exhibits a strong change-point behavior. Some of these

change-point loads have a bimodal characteristic. These are described below.

14 A is the case during the afternoon hours.

15 A fan belt had broken and the evaporator coils had frozen over. One compressor was taken out of service temporarily
for repairs.
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Scatter Plots of Daily Loads vs. Qutdoor Dry-bulb Temperature

for the College Station store.
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Utility. The daily average miscellaneous utility load, shown in Figure 3.18 (d),
is quite constant. The hourly data in Figure 3.19 (d) appear to show a slightly lower
energy use at lower temperatures. But this is may not be a true effect of temperature,
but rather an effect of hourly scheduling. Food preparation equipment is not run at
night, when outdoor ambient temperatures are lower. This hypothesis is supported by
the fact that when daily data are considered, which are not subject to the effects of
hourly scheduling'®, we see that there is practically no temperature dependency at all.
The average value of the daily data is 76.4 kWh/h. When compared the maximum
nameplate load connected to the Utility circuit, 148 kW this amounts to a combined
diversity and load factor of 51%. This represents a significant difference; had we
relied only on a nameplate survey to estimate store energy use, the Utility load would

have been twice what it actually is.

Lighting. As discussed in Section 3.2.3, the lighting load is dependent on
hourly schedules. It is also dependent on changes in the length of the day. The daily
lighting load shows a decrease at higher temperatures (see Figure 3.18 (c)). This
diurnal pattern of energy use is expected since the hot summer days have shorter
nights, resulting in the parking lot lights being on less.!? This diurnal effect can only
be seen in the daily data. A band of about 15 outliers (about 15 to 20 kW higher than
the rest of the data) can be seen in the lighting-temperature plot above most of the
other points. During 1991, there were about 45 such outliers. These represent days
during which either the parking lot lights or some interior lights (or both) were left on
when they should have been off.

Comparing the daily and hourly plots, it is apparent that use of hourly data adds
scatter, and shows the extremes of the energy use. While for the purposes of
regression modeling, the general characteristics of the hourly loads can be predicted by
daily data, the hourly data reveal important facts about the lighting load which the
daily data cannot. In Figure 3.19 (c), three modes of usage may be seen in the hourly
lighting data -- one during the early morning when many of the interior lights are off
and the parking lot lights are on; one during the day, when only interior lights are on;
and one during the night, when the parking lot lights and all interior lights are on. This

I6 This is true provided that the hourly scheduling is the same from day to day.

17 Parking lot lights represent about 20 kW, almost 12% of the peak connected lighting load. They are controlled by a
timer which is adjusted monthly for the changing periods of daylight throughout the year. Their operation can be seen in Figure
3.14 as well as Figure 3.19.
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reveals the daily lighting schedule which was shown earlier in Figure 3.5. The daily
average data are closer to the upper two modes of energy use, indicating that there are
more hours of the day when most the lights are on. This is not surprising since the

middle and upper mode occur from 8 a.m. to 12 p.m. -- 16 hours of the day.

The length-of-day characteristic of the lighting load cannot be seen by viewing
only the daily lighting data. When operational problems occur, such as lights
remaining on when they should not be, these may only show up in daily data as an
electricity consumption which is slightly greater than usual. Only in hourly data is

such a problem easily noticed.

3.4.3 Temperature-dependent Loads

As mentioned above, some electricity load components are dependent on
temperature rather than daily scheduling. For the College Station store, these loads are
the HVAC and refrigeration systems. The whole-building data, shown in Figure 3.18
(a) have a strong temperature change-point characteristic. There is a noticeable bend
in the curve at about 64°F (18°C). This is a result of the behavior of the temperature-

dependent component loads.

Refrigeration. From Figure 3.18 (b), refrigeration compressor loads seem to
be linearly related to outdoor air temperature. Below temperatures of 60°F to 65°F,
two modes of electricity use are seen. It is clear that there is a change-point operation.
This is discussed in the sub-section on bimodality which follows. The slope in the
refrigeration curve is due to the fact that when the outdoor air is warmer, the
condensers run hotter which requires the refrigeration compressors to run longer to
realize the desired cooling effect. Essentially, this makes the refrigeration cycle less
efficient. Both daily and hourly data reflect this trend. But as seen in Figure 3.19 (b),
hourly data have so much scatter that the temperature change-point seen in the daily

data is obscured.

HVAC. The main store HVAC load is due to two air-handling systems and
three of the smaller video store HVAC units. Both systems in the main store have a
set-point of 75°F (24°C) and 55% RH. The video store systems are set at 75°F.
Below the set-point, in the main store air-handlers, only the fans run. Above the set-

point, fans and compressors run.'® In Figure 3.18 (e), the outdoor air change-point

18 The two fans comprise 13.6 kW each. The four compressors draw between 17.1 and 29.3 kW each (measured on
different occasions).
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temperature for the combined HVAC load can be visually estimated at about 65°F
(18.7°C). The HVAC load appears to have a linear relationship with temperature
above the change-point. The data below the change-point are thought to involve
mostly fan loads and dehumidification (one compressor) loads. Two modes of data are
clearly present below the change-point in both the hourly and daily data. The lower,
about 20 kW, is the fan load; the upper, at about 50 kW, is the fan load plus one
compressor which is being used during the heating season (when temperatures are
below about 75°F (24°C)) for dehumidification. This is a reheating process. This

bimodality shows up in the refrigeration compressor data as well.

Bimodality. The HVAC system is equipped with heat reclaim coils through
which hot refrigerant from the refrigeration compressors flows when space heating is
needed. These coils function as the refrigeration system condensers, and yield their
heat to the HVAC air stream. When reheat or dehumidification is occurring, chilled
air is blown across the heat-reclamation coils in the air duct. Since the air being blown
across them is often cooler than the outdoor ambient air, which otherwise is used to
cool the condensers, the refrigeration system operates more efficiently. The
bimodality in HVAC operation has the effect of producing a bimodality in the
refrigeration system energy use. These two modes may be seen in the refrigeration
data below about 65°F (18.7°C) (see Figure 3.18 (b)).

Below 65°F, there is less dependency on outdoor ambient temperature. This is
because when dehumidification is occurring, the condensers are by-passed so that heat
reclaim is possible, and the refrigeration system yields its waste heat to the HVAC air
stream. The temperature of this air stream does not change when outdoor air

temperature changes.

While the use of reheat with heat reclamation may help to explain the 65°F
(18.7°C) change-point, there is another factor involved. In the compressor room, when
heat reclamation is not in use, the condenser coils are exposed to ambient air which is
drawn into the room and exhausted through the roof by four large fans. As described
in Section 3.2.1, these fans control the room air temperature, but do not let it drop
below 60°F (16°C). As outdoor temperature drops, the refrigeration system energy
consumption also decreases. However, during periods when outdoor temperatures fall
below about 60°F, compressor room temperature remains at or above 60°F, thus
eliminating the further effects of falling outdoor ambient temperature on the

refrigeration system energy use.
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When heat reclaim is used, and when one stage of cooling is necessary for
dehumidification purposes, energy is saved in two ways. First, the refrigeration
system provides the necessary space heating. Second, the heat reclaim coils serve as
the refrigeration system condenser coils; since these coils are exposed to air which is
cooler than the minimum compressor room temperature (60°F [16°C]), the
refrigeration system operates more efficiently. In Figure 3.20b, we see that in both
modes of refrigeration system energy use, below about 60°F, the curve is fairly flat.
This is to be expected since, whether the heat reclaim coils are being used or the
compressor room condenser coils are used to reject heat, the temperature at which the

system rejects its heat is fairly constant.

Since the fan load of the main HVAC units is between 25 and 30 kW, we were
able to determine from the sub-metered HVAC load when there was no cooling coil
load by looking for an HVAC energy consumption less than 30 kW. Thus, the sub-
metered refrigeration compressor load data were sorted into times when the heat
reclaim coils were or were not exposed to chilled, conditioned air. Figure 3.20a shows
the hourly refrigerator compressor data sorted according to when the HVAC cooling
system is on (designated by a filled symbol) and when it is not (unfilled symbol). In
the hourly data, it is difficult to determine if there is any difference in the refrigeration

load as a result of the HVAC cooling system. There is too much scatter in the data.

However, when daily averaged data are used, the difference in the two modes
is quite clear. The daily data in Figure 3.20b clearly show the two modes in the
refrigeration energy use which correspond to the two modes of HVAC system
operation below the change-point temperature, that is: 1) when one or more stages of
cooling are running (filled symbol), and 2) when only the air-handler fans are running
(unfilled symbol). This difference is only apparent when the outdoor temperature is
below the 65°F (18.7°C) change-point. This is to be expected since waste heat from
the refrigeration system is no longer used when the building is in the cooling-only

mode of operation.
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Bimodality of refrigeration load. a) Scatter in hourly data make
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are in use.
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The video store HVAC system is comprised of five small roof-top units, the
two largest of which are monitored on the video store HVAC load. These systems
have a history of maintenance problems. The 3D plot of those data showed a
relatively high base load profile for the summer of 1991. This was the result of control

malfunctions which persisted for several months.

In Figure 3.18 (f), daily data for the video store HVAC system seem to fall into
two clusters separated by a step change -- one cluster from 40 to 70°F (5 to 21°C), and
the other from 70 to 85°F (21 to 30°C). This is thought to be an effect of the

maintenance problems and staged operation of the air-conditioner compressors.

In the hourly video store HVAC data, shown in Figure 3.19 (f), a pattern of
eight modes, or "rays", can be seen. Each of the two air-conditioner units has two
compressors. Due to the staged operation of these compressors (each compressor may
either be on or off), there should be 2 x 2 x 2, or 8, modes of operation. This agrees
with the eight modes seen in the Figure 3.19 (f). The first mode is an almost flat
profile, as expected. This represents the fan-only operation of the two HVAC units!®.
The second distinct mode appears at about 7 kW. This is the load of the first
compressor on one unit plus the fans on both units. We leave the reader to identify the
remaining modes. The scatter in between modes is due to the operation of the other

components of each HVAC unit -- condenser fans, gas furnace blowers, and controls.

A zero base load appears in the video store HVAC profile for outdoor
temperatures less than about 65°F (19°C). This indicates that the two HVAC systems
on that channel are being completely shut off during periods when temperature falls
below 65°F (19°C). This can be seen in Figure 3.19 (f) as well. This should not be
too surprising since the video store has three other HVAC units (sub-metered along
with the main store HVAC) which may be operating when the first two are off. The
other three units are monitored along with the main store HVAC load. The base load
of the main store HVAC system is about 25 kW. There are times when only this load
occurs in the combined-store HVAC data. This occurs for outdoor temperatures
between -5° and 0°C (22° and 32°F). Thus, there are times when all of the video store

HVAC units must be either off or running in fan-only mode.

19 The fans referred to here are the evaporator fans.
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3.5 BUILDING STRUCTURE OF BRYAN STORE

Like the first case study store, the second store is located in a medium-sized
business plaza. Customer parking is available at the front of the store, while deliveries
are made at the rear. One-third of the southeast wall is shared with an adjacent, air-

conditioned office building, not associated with the store.

The construction of the second store is similar to that of the first. The exterior
walls are constructed of 6-inch (0.15-m), poured concrete, and have 3.5 inches (0.09
m) of batt insulation behind interior dry-wall. The northeast and southwest walls are
about 160 feet (49 m) and 330 feet (101 m) long, respectively, and 24 feet (7.3 m)
high. The northeast wall has a 60-ft by 10-ft (18-m by 3-m) glass section which serves
as the entrance to the store and includes a double-doored enclosure with automatic,
sliding doors. The roof is constructed of a metal deck which supports a 1.5-inch (0.04-
m) layer of styrofoam insulation, a 2-inch (0.05) concrete slab, and a built-up roof
covered with light-colored aggregate. A plan view of the store is shown in Figure
321,

The building is a single-story structure with 16-foot (4.9-m) drop ceilings and a
total area of 48,800 ft? (4,540 m?). The front floor area is used for product display, and
the rear walk-in coolers and freezers, and the meat and produce preparation areas. The
store contains about 500-ft? (46-m?) office space located above the produce area, and a
150-ft2 (14-m?) mechanical room located above the loading dock in the rear of the

store.

3.6 MAJOR ELECTRICAL EQUIPMENT OF BRYAN STORE

This section describes the major energy-using equipment in the Bryan store.
The information was gathered in walk-through surveys consisting of nameplate
readings and actual clamp-on power readings (where possible). Lighting and
miscellaneous utility equipment in the Bryan store runs at 120 VAC and 208 VAC,
while air-conditioning and refrigeration compressors run at 480 VAC. A detailed
listing of the loads can be found in Appendix B of this thesis. The electrical end-use
distribution at the Bryan store is not as well organized as it is at the College Station
store. There are lighting loads on the miscellaneous utility circuit, and utility loads
and a few HVAC loads on the lighting circuit. Because of this, the four main end-use
categories listed below -- refrigeration, HVAC, lighting, and utility -- do not
necessarily coincide with the load categories measured through the electrical sub-

metering.
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3.6.1 Refrigeration Equipment.

Twenty-three single-mounted compressors are used to cool the
refrigeration/freezer cases and coolers in the facility. Thirteen use refrigerant R12, and
ten use refrigerant R502. The total compressor nameplate capacity is 196 hp, or 162
kW input. Condenser fans comprise 7.3 kW (nameplate). The electric resistance
defrost heaters have a total nameplate load of 40 kW.

Including condenser fans, the measured, connected compressor system load is
142 kW. Some display cases use hot gas defrost provided by the compressors to melt
the ice which forms on the evaporator coils. Others use the electric resistance heaters
for this purpose. A high load of 167 kW was measured during defrost cycles, implying
an electric defrost load of 25 kW. Time clocks control the compressor defrost cycles.
The defrost cycles last up to 1 hour or until the cooling coils reach 70°F (21°C). The

compressors are summarized as follows in Table 3.3.

Outdoor ambient air is circulated through the compressor room by five 6-hp
fans which have a total nameplate load of 28 kW. These fans come on in stages
beginning when the temperature difference across the condenser coils is about 8°F
(4°C), and ending when the compressor room ambient temperature is less than about
60°F (16°C).

The total connected load of the compressor system and exhaust fans, based on
measured loads, is 170 kW under normal operation, and 195 kW during coincident
defrost periods. The peak load based on nameplate information is 197 kW during non-

defrost periods, and 237 kW during coincident defrost periods.

Approximately seventy-six display case sections display the frozen goods.
There are seven walk-in coolers which are used to store meat and other frozen foods.
These loads -- case lighting, fans, and anti-sweat heaters -- are connected to what was
designated as the lighting circuit of the store.20 The peak connected nameplate load of
the refrigeration case fans and anti-sweat heaters is 36 kW during non-defrost periods.
Including defrost heaters, the peak load is 76 kW. See the section on lighting below

for more information.

20 This is different than the case loads for the College Station store.



TABLE 3.3

Refrigeration Compressor Summary for Bryan Store

Rated Measured Measured
Description Refrigerant HP kW kW with defrost*
Cheese Cases COOLER R12 5 3.96 3.96
Dairy Cases R12 10 8.47 8.47
36' Dairy Cases R12 7.6 7.39 7.39
28' 5-DK Lunch Meat R12 15 7.66 7.66
20' Lunch Meat COOLER RI12 7.65 5.49 5.49
Walk-in Groc FRZR R502 7.6 5.40 6.48
Glass DR N.E. Reach-in FRZR R502 7.65 5.94 5.94
4 Glass Door at Rear R502 15 7.93 11.98
Ice Cream & Bakery FRZRS R502 15 57 1171
Glass DR N.W. Reach-in FRZR R502 7.65 6.30 11.17
Prod., Beer, Dairy Reach-in R12 10 8.29 8.29
Meat Cooler/Holding Box RI12 7.6 6.30 4.95
Produce Case COOLER R12 15 9.01 9.01
Walk-in Produce & Meat Prep R12 10 8.92 8.92
44' 3-DK Red Meat Cases R12 15 9.28 9.28
32' 13-DR D5F R22 6 4.59 6.30
Food End Cap FRZR R502 5 3.60 7.30
Walk-in Deli FRZR R502 3.1 3.60 4.05
"Deli Cases Cooler Retarder” R502 3.1 2.88 2.88
12' Sausage Deli Case COOLER R502 5 3.78 3.78
40' Frozen Meat/Spot Cases R502 7.6 6.12 12.25
Coffin Meat and Floral Cases R12 31 393 333
Produce Islands R12 7.65 6.48 6.48
Total: 196 142.31 167.07

* Hot gas defrost. Some display cases use electric heaters for defrost. Electric heater loads are part of
the Miscellaneous Utility loads (see below).
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3.6.2 HVAC Equipment

Twelve roof-top HVAC units having a total cooling capacity of 114 tons heat
and cool the facility. The units are controlled in groups by four zone controls which
demand heating or cooling based on four indoor dry-bulb temperature sensors. The
store set point is 75°F (24°C) dry-bulb. There is no humidity control in the Bryan
store. The total peak cooling load of the air-conditioning units totals 183 kW
(nameplate), giving an overall EER of 7.47 Btu/hr-W.2! During the six months since
monitoring began, normal running load of the HVAC system has not exceeded about
00 kW. The systems are detailed in Table 3.4

Space heating is provided by means of natural gas-fired heaters installed in
seven of the HVAC units. These heaters have a total capacity of 1,215,000 Btu/hr
(356 kW, ). Unlike the College Station store, these units do not utilize heat
reclamation from the refrigeration compressors. For the years of 1990 to 1992, the
Bryan store used an average of 691 million Btu/yr of natural gas for heating. This is
14,200 Btu/ft2-yr -- about 4,200 Btu/ft2-yr less than the College Station store.

3.6.3 Lighting

The main store's interior is primarily lit by fluorescent lamps ranging from 40
to 100 W/lamp. Of these, there are approximately 1544 overhead lamps in the sales
area (with a total nameplate load of 91 kW), 289 overhead lamps for non-sales areas
(18 kW), and 414 refrigerated case and rack lamps (24 kW).

About one-half of the sales and back room overhead lights, all bakery lights,
and lights on perimeter refrigeration cases are shut off at 10:00 a.m. by the store

manager. They are turned back on around 8:00 a.m. This is currently done by

21 The total rated capacity of the units is 114 tons. At 12,000 Btu/h-ton, the bulk rated capacity of the HVAC units is
1.37(106) Buw/h. Dividing this by the peak rated electrical load of 183 kW gives an EER of 7.47 Btu/hr-W.



HVAC System Summary for Bryan Store

TABLE 3.4

76

Heating
Unit Cooling Tons Rated kW Measured kW EER Capacity (Btu/h)
Conference room** 7.2 10.13 7.80 8.53 none
Produce zone 14 20.74 20.49 8.10 none
Nutrition 10 1573 4.39 7.63 123,000
Grocery 10 16.63 off 7.22 none
Grocery 8 16.31 8.05 5.89 181,000*
Manager's office** 7.2 10.49 8.54 8.23 none
Grocery 10 16.83 off 713 131,000
Grocery 10 16.31 14.63 7.36 173,000
Dry goods 10 11.57 off 10.4 181,000
Dry goods 7.5 16.31 off 5.52 164,000
Beverages/beer 10 16.08 14.63 7.46 131,000
Beverages/beer 10 16.08 off 7.46 131,000
Total: 114 183.22 78.53 1,215,000

* converted to equivalent Btw/h
** These units are connected to the store's Utility circuit
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switching the power off at the electrical panel in the rear of the store. This pattern of
electricity use can be seen in Figure 3.22 which shows a day's worth of hourly data
from the sub-metered circuit which is primarily lighting.22

The main store also has 10 metal halide lamps (175-W). These amount to a
connected load of 2.1 kW including ballast loads.

The exterior lights, used to illuminate the front and rear parking lots, consist of
14 1,000-W and six 400-W high-pressure sodium lamps which have a total connected
load of 20.5 kW (nameplate). All outside lamps are controlled by a time-clock inside
the store. They are set to switch on at about 6 p.m., and switch off at 8 a.m. (see
Figure 3.23) The timer pins are adjusted twice a year to account for daylight savings
time. These lights are not on the designated lighting circuit, but are connected to the

utility circuit.

The peak connected load of all the lights in the store is 159 kW (nameplate),
though the average daily load adjusted for schedules is 113 kW. This amounts to a
71% diversity factor.

There are approximately 76 refrigerated display case units. The evaporator
fans and anti-sweat heaters of these cases contribute about 34 kW to the lighting
circuit load. Some cases use electric heaters for defrost cycles. As mentioned earlier,
these heaters have a total nameplate load of 40 kW. Seven walk-in coolers and
freezers are located in the store's back rooms, which have a total evaporator fan load of
2.1 kW during normal operation. Thus, the peak connected nameplate load of the
refrigeration case fans and anti-sweat heaters is 36 kW. This represents 18% of the
total nameplate load on the lighting circuit.

The total load on the lighting circuit, including lights and display case loads, is
195 kW.

22 There are some meat department equipment loads on this circuit as well.
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Figure 3.22 Lighting schedule profile for a typical day (01/01/93) at the

Bryan store. While this indoor lighting circuit contains
refrigeration case fan and anti-sweat heater loads, the effect of
the indoor store lighting system schedule is clear. About half of
the overhead sales area lights, and all perimeter case lights are
turned off at 10:00 p.m., and turned on at 8:00 a.m.
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3.6.4 Miscellaneous Utility

The remaining electrical loads mentioned in this section are listed in detail in

Appendix B.

There are 32 pieces of food-processing equipment used for the preparation of
meat and deli goods. These items have a total connected load of 114 kW (nameplate)

and are used when needed.

One 5-hp trash baler is located in the loading dock room. At an efficiency of
0.85, its connected load is 4.6 kW.

The store has 13 point-of-sale registers throughout the store which have a total

connected load of 6.8 kW (nameplate). These are connected to its Utility circuit.

The total, peak utility load is 125 kW, though this never occurs since all utility

loads rarely run at the same time.

There are two roof-top HVAC units which are connected to the store's
miscellaneous utility circuit. These units have a combined, measured load of 16 kW,
and a peak nameplate load of 21 kW. As mentioned above, the parking lot lights,

representing a nameplate load of 21 kW, are connected to the utility circuit.

3.6.5 Natural Gas

The store uses natural gas for heating purposes only. The HVAC gas use is
described in Section 3.8.

3.7 ELECTRICAL SUB-METERING OF BRYAN STORE

The Bryan store has only recently come under study (since the Fall of 1992).
An attempt was made to obtain the same information about the second store as about
the first. The monitoring scheme for the Bryan store is similar to that in the College
Station store, although the sub-metered electrical circuits do not divide the store's
electricity end-uses as distinctly as the sub-metering at the College Station store. Four

component end-use loads of interest for the store were sub-metered. These were:

1) refrigeration compressor, condenser, and defrost heater loads.
2) interior and refrigeration case lighting, fan, and anti-sweat heater loads;

some meat preparation equipment.
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3) ten of twelve roof-top HVAC unit loads.
4) miscellaneous utility loads, food preparation, exterior lights, two of
twelve HVAC unit loads.

Loads were monitored and data were polled in the same manner as for the first
case study store. Figure 3.24 shows the layout for the store monitoring. Because the
electrical layout does not group all lighting and utility loads separately, there was no
way to completely distinguish lighting loads from utility loads with the level of sub-
metering used. However, experience with the College Station store suggests that this
is not a problem since, for analysis purposes, the lighting and utility loads are treated at
one combined, constant load. Thus, the level of sub-metering at the Bryan store was
considered adequate for this study. Since the store has only been monitored for less
than a full year, much of the analyses performed on the first store cannot yet be done
on the second. This store will be useful material for future study, although it will be

considered in Chapter 5.

Figure 3.25 is a plot of the Bryan store's electricity use and demand from
January 1990 to January 1993. Unlike the College Station store, its electricity
consumption has remained fairly constant over the past three years. There have been
no major modifications to this store's electrical system in that period. The Bryan store
used an average of 3,884,000 kWh/yr in the two years (1991-1992) since the multi-
store energy use survey (in Chapter 2). This amounts to an electricity energy use
intensity (EUI) of 9.1 W/ft? (98 W/m?). These values do not differ significantly from
those reported in the multi-store survey. Figure 3.26 shows monthly natural gas
consumption from January 1990 to January 1993. The Bryan store used an average of
734 million Btu/yr of natural gas during 1991 and 1992. This is about 120 million Btu
more than the College Station store. This amounts to a gas EUI of 15,000 Btu/ft?yr --
only 400 Btu/ft2-yr less than the College Station store. However, the Bryan store's
peak gas use is significantly higher than that of the College Station store. High peak
consumption can be seen in January of each year. This is clearly a result of space
heating requirements during the very cold months. This occurs because the Bryan
store does not use reclaim heat from the refrigeration system. Significant space
heating is only used during one or two months per year for the past three years (1990
to 1992). The store's base-level consumption is about 35 million Btu/month. This is

attributed to the heater pilot lights. Based on utility bill information, the average
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Figure 3.26 Monthly natural gas consumption for the Bryan store.

Gas use for 1990 to 1993 is less than 50 million Btu per month
except in peak heating seasons. Heating is only needed for
about one month per year. In January, 1992, the gas use was
nearly 400 miilion Btu. Over the past three years, the over-base
amount of gas used for heating was an average of 245 million
Btu/yr. The use of heat reclaim from the refrigeration system

could eliminate the need for gas heating, and would save about
$1,090/yr.



85

annual amount of gas used for heating is 245 million Btu/yr. If heat reclaim were used
to supply this heating requirement, an estimated $1,090/yr in natural gas bills could be

saved.

Figure 3.27 (a) shows the breakdown of peak electricity end-uses in the Bryan
store based on nameplate power ratings. Figure 3.27 (b) shows a more general
breakdown based on four sources of information -- one half year's worth of sub-
metered energy use data from the Bryan store, the breakdown given by Schrock (1989)
for the College Station store, and the breakdown given by DOE (1981) for the store
studied in that reference. Because the descriptions for the loads in the lighting and
utility categories overlap to such an extent, they were treated as one category for
Figure 3.27 (a and b). Based on the nameplate data, the utility and lighting groups
account for 46% of the peak energy use for the Bryan store (compared to 51% for the
College Station store). As in the case of the College Station store, the percentage of
whole-building energy use attributed to the refrigeration system seems to be overstated
by DOE (1981). The nameplate data, sub-metered data, and Schrock's survey all
estimate the refrigeration system to use between 30% and 35% of the whole-building
electricity, compared to the nearly 40% given by DOE. For the HVAC and lighting
and utility categories, the percentages given by the nameplate data, Schrock, and DOE
are in fair agreement. However, the sub-metered data seem to understate the
contribution due to HVAC (6%), and overstate the contribution due to lighting and
utility loads (60%). This is due to the fact that a full year's worth of data was not
available; much summertime HVAC load was not included. Also, as discussed in
Section 3.6.4, some of the HVAC load is on the utility circuit. Table 3.5 lists the

component nameplate loads and their relative percentages of total store electricity use.

3.8 ENERGY CONSUMPTION DATA FOR BRYAN STORE

3.8.1 Summary Plots

The usefulness of energy consumption plots was informally tested by
establishing an information loop with the store management. Recorded data were

presented the format of weekly summary plots.

Examples of the summary plots are shown in Figure 3.28. The four main loads
are plotted with respect to both time and temperature. Ambient hourly weather
conditions were provided by a weather station located approximately two miles away,
and are plotted along the right edge of the summary page.
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Figure 3.27 a,b Percentages of Nameplate Contribution to Peak and Measured

Contribution to Electricity Use for the College Station store.
(a) End-use contribution based on nameplate data; (b)
Contribution based on Schrock (1989), 1992 nameplate survey,
1992 sub-metered data, and DOE (1981) survey.



TABLE 3.5
Description of Loads Included in Group Breakdown for the Bryan Store
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(b) 1992 Survey

(a) Schrock (1989) Nameplate Peak (c) 1992 Sub-metered (d) DOE (1981)
Compressors Compressors Compressors Compressors
(33%) (32%) (34%) (39.0%)
Refrigeration Refrigeration Refrigeration COMPressors,

compressors, condenser
fans.

HVAC

(27%)
Air-conditioning loads
from the two main
units.

Lighting and Utility
(40)

sales area lighting,
office, outdoor lights,
cash registers, display
case lighting, food
preparation equipment,
case evaporator fans
and anti-sweat heaters.

compressor, condenser
and exhaust fans.

HVAC

(22%)
Air-conditioning loads
from 10 of 12 units.

Lighting and Utility
(46)

sales area lighting,
office, display case
lighting, some
receptacles, meat dept.
equipment, food prepa-
ration, misc. receptacle
loads, case fans and
anti-sweat heaters,
outdoor lights, cash
registers, 2 of 12
HVAC units.

compressor, condenser
and exhaust fans.

HVAC

(6%)
Air-conditioning loads
from 10 of 12 units.

Lighting and Utility
(60)

sales area lighting,
office, display case
lighting, some
receptacles, meat dept.

equipment, food prepa-
ration, misc. receptacle

loads, case fans and
anti-sweat heaters,
outdoor lights, cash
registers, 2 of 12
HVAC units.

condensers, case fans.

HVAC

(17.0%)
air-conditioning, fans,
electric heat.

Lighting and Utility
(45)

sales area, office, and
outdoor sign lights.
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3.8.2 Constant and Schedule-dependent Loads

Following the format of the graphical presentation used in the College Station
store, scatter plots of the Bryan store whole-building and component electricity loads
were made. Figure 3.29 shows plots for daily data which were derived by averaging
hourly data. Figure 3.30 shows plots of the hourly data themselves. However, only a
half year's worth of data were available -- from 12/20/92 to 6/28/93. Nevertheless,
from the plots of half-year data, it is still easy to see which component loads are
sensitive to outdoor temperature and which are not. The whole-building data, shown
in Figure 3.29 (a) have a strong temperature change-point characteristic. Much the
same as for the College Station store, there is a noticeable bend in the curve at about
64°F (18°C). This is a result of the behavior of the temperature-dependent component
loads. Both stores have a whole-building load between 350 and 500 kW.

Lighting and Utility. The miscellaneous utility load, shown in Figure 3.29
(d), is rather constant below 20°C (67°F), and increases slightly for temperatures
above 20°C. This is in contrast to the College Station store, the utility load of which is
quite constant over all temperatures. The daily data predict close to the average of the
hourly data, shown in Figure 3.30 (d). There are two roof-top HVAC units on the
utility circuit. One of them serves a conference room, and is rarely used. The other,
representing a load of about 10 kW, serves the manager's office. The energy use of
these HVAC units can be seen in the daily utility circuit data when the outdoor
temperature is above 20°C (67°F). Apart from the effects of the HVAC units, the
daily and hourly Utility data do not vary with respect to outdoor temperature.

The average value of the daily miscellaneous utility data is 55.5 kWh/h. The
maximum nameplate load of utility equipment is 125 kW. But not all of this
equipment is connected to the utility circuit; some of it is connected to the lighting
circuit. Likewise, some of the loads on the utility circuit are lighting loads. For this
reason, for the purposes of further modeling, the lighting and utility loads might be
considered as one composite load. Experience with the College Station store suggests
that this is a reasonable approach since the lighting and utility loads are considered to

be constant base loads for purposes of change-point analyses.
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Scatter Plots of Daily Loads vs. Outdoor Dry-bulb Temperature
for the Bryan store.
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Temperature for the Bryan store.
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Unlike the College Station store, the lighting circuit does not include the
outdoor lights.23 However, half of the interior lights are turned off from 10:00 p.m.
until 8:00 a.m. Thus, in Figure 3.30 (c), two distinct modes of usage may be seen in
the hourly lighting data -- one during the early morning when many of the interior
lights are off; and one during the day, when only interior lights are on. Figure 3.22,
discussed previously, shows the lighting schedule profile for a typical day at the Bryan

store.

Because the indoor lighting schedule does not change from day to day, nor
does it vary with temperature, its variation should not show up in the daily data. For
the College Station store, it was the outdoor lights which cause the lighting load to
exhibit a slope. Yet, even though the outdoor lights at the Bryan store are not
connected lighting circuit, the daily lighting data do appear to have a slope. The daily
average energy use increases as outdoor temperature increases. One plausible
explanation comes when we consider the refrigeration case anti-sweat heaters which
are on the lighting circuit. The amount of moisture in the air tends to increase as the
days get warmer. This implies a proportional relationship between specific humidity
and dry-bulb temperature. Because the Bryan store has no dehumidification in its
HVAC system, an increase in outdoor temperature and humidity may be creating an
increase in indoor humidity. The case anti-sweat must run longer and more often in
order to counter the increased latent load on the case doors and cooling coils.?*
Compounding this effect is the fact that during the hotter and more humid seasons,
customers may be purchasing more frozen goods, thus increasing the duty factor on the
display cases, and thereby increasing the amount of moisture which collects on the
doors. Figure 3.31 shows the daily average lighting load plotted with respect to

outdoor specific humidity. A slight increase may be seen as humidity increases.

Refrigeration. Refrigeration compressor loads seem to be linearly related to
outdoor air temperature, with only a slight change-point at about 16°C (61°F). The
reasons for the temperature dependency have already been discussed in Section 3.4.3.

The refrigeration capacity for the Bryan store is similar to that for the College Station

23 They are connected to the store's miscellaneous utility circuit. Note the 20 kW step seen in Figure 3.NEW.23 caused
by the parking lot lights switching on and off.

24 Conversations with the chief facilities engineer indicated that it was likely that some of the anti-sweat case door
heaters were controlled by humidity sensors in the doors.
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stores. However, the Bryan HVAC system does not use heat reclaim; therefore, there
is no bimodal pattern in the refrigeration compressor load. There is, however, a slight
change-point in the compressor data. Regression analysis of the type used by Ruch
and Claridge (1991) determined this change-point to be 16°C (61°F). As described in
Section 3.6.1, the fans in the compressor room control the room air temperature, and
do not let it drop below 16°C (61°F). This means that outdoor air temperatures below
16°C do not have as much effect on compressor energy use by way of the condenser
coils which are inside the compressor room. The fact that we nevertheless see a slight
temperature-dependency for outdoor temperatures below 60°F means that the
compressor room is never completely shut off from the outdoor air. This could mean
either than the exhaust fan controls are not functioning properly, or that due to the
amount of heat generated in the compressor room, the room temperature is always
higher than 60°F, thus never allowing the fans to shut off.

HVAC. Ten of the twelve roof-top HVAC units are monitored as part of the
HVAC data. They represent 89% of the 183 kW of connected HVAC capacity. These
HVAC data are displayed in Figure 3.29 (e) and Figure 3.30 (e). We have
accumulated six months of hourly and daily data on these systems. While this is not a
full year's worth, it is enough to give some indication of a change-point characteristic
in the HVAC system. This can be seen in both the hourly and daily data. The
maximum load observed so far is about 90 kW. Because there is no dehumidification,
there is no cooling load during very low outdoor temperatures (below about 50°F
[10°C]). Below this temperature, only fan loads (5 to 10 kWh/h) exist. The store
management claims that the fact that there is no dehumidification results in
unsatisfactory indoor air quality conditions. The Bryan store HVAC system is
representative of systems in stores acquired by the retail company -- rather than those
constructed by it. Stores constructed by the company have central HVAC systems like

the one at the College Station store.

3.9 SUMMARY

The annual energy use for the College Station store in the years since 1990 is
significantly different than that reported in the multi-store survey in Chapter 2. The
energy use from 1991 onward include the loads of the video store. In general, energy
use has increased since the annexation of the video store, while energy use intensities

have decreased. Average values for each period are shown below:
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Before video store

After video store

College Station store Period of 1990 Period of 1991-1992
Electricity use 3,215,000 kWh/yr 3,611,000 kWh/yr
Electricity EUI 8 W/ft? (86 W/m?) 7.5 W/ft2 (81 W/m?)
Gas use 819 million Btu/yr 851 million Btu/yr
Gas EUI 17,700 Btu/ft2-yr 15,400 Btu/ft2-yr

(191,000 Btu/m?-yr) (166,000 Btu/m2-yr)

The annual energy use for the Bryan store has remained fairly constant over the

years. Average values for each period are a follows:

Period of 1991-1992

Bryan Store Period of 1990
Electricity use 3,751,000 kWh/yr
Electricity EUI 8.8 W/ft? (95 W/m?)
Gas use 712 million Btu/yr
Gas EUI 14,600 Btu/ft2-yr

(157,000 Btu/m?-yr)

3,884,000 kWh/yr
9.1 W/ft2 (98 W/m?)

734 million Btu/yr
15,000 Btu/ft2.yr
(161,000 Btu/m?-yr)

Due to time constraints, the Bryan store could not be studied as thoroughly as

the College Station store. This work may be left for future research. However, the

following are general conclusions about both case study grocery stores surveyed in this

report.

1) The sub-metering of component electricity loads in the College Station store

proved useful in making the store management aware of operational and

maintenance problems. In this study, the feedback was handled manually;

however, it is expected that automated methods could have easily provided

similar information. Problems such as lighting shut-off were spotted quickly

through the feedback process.

3) For this study, peak nameplate and survey readings for electricity loads were

moderately good proxies for sub-metered end-use loads insofaras relative

percentages of energy use are concerned, though they tended to over estimate the

contribution due to miscellaneous utility loads which do not run at all times.
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4) Simple scatter plots of electricity use versus outdoor temperature were useful in
gauging the temperature-dependency of certain component loads. They also
provided a visual means of comparing the component loads to each other and to

whole-building electricity use.

5) Daily data were found to be good indicators of the patterns of hourly electricity
use in the case study store for all loads except lighting which exhibits strong time-

of-day characteristics.
In specific, we note the following:

6) The lighting systems of both stores are comparable. The College Station store has
142 kW of indoor lighting, amounting to 2.6 W/ft? (28 W/m?). The Bryan store
has 138 kW of indoor lighting, amounting to 2.8 W/ft? (30 W/m?).

7) In both stores, refrigeration and HVAC loads were found to be dependent on

outdoor temperature, while lighting and miscellaneous utility loads were not.

8) Both the College Station and Bryan stores have refrigeration and HVAC loads

that are temperature-dependent.

9) Both stores have change-points in whole-building, HVAC, and refrigeration
loads. The refrigeration systems of both stores exhibit a change-point temperature
at about 60°F (16°C).

10) The College Station store employs heat reclaim from the refrigeration system. As
a result, the refrigeration energy use exhibits a bimodal characteristic below the

change-point temperature.

11) The most significant difference between he two stores is in their HVAC systems.
The Bryan store lacks heat reclaim and dehumidification, and uses natural gas for

heating.

12) The College Station store uses about 851 million Btu/yr, or 15,400 Btu/ft2-yr or
natural gas whereas the Bryan store uses about 690 million Btu/yr, or 14,200
Btu/ft2-yr. Nevertheless, the Bryan stores peak gas use is significantly higher than
that of the College Station store due to the fact that it uses gas for space heating.
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CHAPTER IV

CP/PCA AND CP/MLR MODELING

This chapter presents the results of the comparison of two modeling techniques
-- multiple linear regression (MLR) and principal component analyses (PCA) - for one
year's worth of whole-building data from the College Station grocery store. First, the
1989 MLR and PCA grocery store models developed by Ruch et al (1991) are
discussed. Pre-analysis adjustments to the 1992 data are then reviewed. Next, the
results of the MLR and PCA analysis of the 1992 energy data are presented and
compared to the 1989 models. Finally, the 1992 whole-building models are compared
with component refrigeration and HVAC models and with building energy use
predictions based on standard ASHRAE! diversified load calculation methods,
outlined in Knebel (1983), to determine whether MLR or PCA analysis gives

parameters which are more physically meaningful.

4.1 BACKGROUND

Ruch et al. (1991) developed a change-point/principal component (CP/PCA)
model for the electricity use for the case-study store prior to the annexation of the
video rental store (1989 data). They concluded that the CP/PCA model, with one
primary component removed, provided more stable parameter estimates than did the

corresponding MLR model.

In order to test the usefulness of the Ruch et al. MLR and PCA 1989 models,
they were used with 1992 weather and sales data to predict the 1992, total daily energy
consumption. Independent variables used were outdoor dry-bulb temperature (°C),
outdoor specific humidity (kg moisture/kg air), solar radiation (W/m?), and sales
($/day).

Unfortunately, the store's energy use has changed since 1989. This change
occurred with the addition of a video rental store (containing loads HVAC and
lighting) and two new dairy compressors which introduced loads that Ruch's 1989 data
set models could not predict. Therefore, before the analyses and comparisons could be

1 American Society of Heating, Refrigeration, and Air-conditioning Engineers
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performed, it was necessary to subtract estimates of the energy use of the video store

and dairy compressors from the 1992 whole-building data.

Two 7.5-ton video store HVAC units, described in Chapter 3, were sub-
metered separately, and their energy use could easily be subtracted from the whole-
building electricity use data. However, the energy use of the third 7.5-ton unit and the
two 5-ton units was included in the whole-building HVAC data. This required that an
estimation of their energy use be subtracted from the main store's electricity data.
According to store maintenance personnel, one 5-ton unit was disconnected during the
spring of 1992 due to mechanical problems, and is no longer used. With no other
information available, the EER ratings of the AC units were assumed to be the same.
Thus, the ratios of their electricity energy consumptions were assumed to be
proportional to the ratios of their rated cooling capacities (tons). Based on this
assumption, the total video store HVAC load was estimated to be 1.83 times the sub-

metered load of the two 7.5-ton units.

The lighting load was estimated in a lighting count to be 29.6 kW. Because the
lights are not on 24 hours per day, this value was modified to a constant 21.4 kW to
account for scheduling effects. The loads of the two new refrigeration compressors
were measured in a walk-through survey along with the other refrigeration
compressors. These accounted for about 9.1% of the remaining, sub-metered
refrigeration load. One assumption in this adjustment procedure was that the
variations in the new HVAC and refrigeration loads were proportional to those of the
corresponding systems in the main store which existed at the time of the Ruch et al.

study.

The estimations of the new loads were subtracted from the whole-building
consumption data set. From a simple linear regression of the adjusted 1992 data, a
simple 4-parameter change-point model was identified. The adjusted 1992 model, the
unadjusted 1992 model, and the 1989 model are as follows:

E,gjusted 1902 = 331.3 +2.87(T - 18.7°C)" + 7.6(T - 18.7°C)* (4.1a)
E nadiusted 1992 = 363.5 + 3.01(T - 18.01°C)- + 9.75(T - 18.01°C)+  (4.1b)
Euw = 310.8 + 1.49(T - 15.4°C)" + 7.22(T - 15.4°C)* (4.1c)
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where T is the outdoor ambient dry-bulb temperature, (°C). Energy use in is kilowatt-
hours per hour. The superscript ~ indicates that the term to which it is applied is only

applicable when it is negative, and zero at all other times. Similarly, the superscript +
indicates that the term to which it is applied is only applicable when it is positive, and

zero at all other times.

Figure 4.1 shows the three four-parameter whole-building electricity models
which predict consumption based on outdoor temperature. One model was developed
by Ruch and Claridge (1991) from 1989 daily data; the second is the model identified
from adjusted 1992 data; the third is the model identified from the unadjusted 1992
data. There is a noticeable difference between the 1989 and unadjusted 1992 models,
implying a difference in the data. The electricity use is higher in 1992 than in 1989,
and the change-point temperature has changed from 15.4°C (59°F) to 18.7°C (65°F).
However, adjusting the 1992 data yielded a model which agreed with the 1989 model
predictions to within 3.5%. It is difficult to accurately estimate the effect this has on
the change-point of the data themselves. The adjusted 1992 data have a change-point
of 18.7°C (65°F) rather than 15.4°C (59°F). It is worth noting that Ruch and Claridge
used only 191 data points, whereas 359 were available for the development of the
1992 models. This may also be contributing to the difference in change-points. There
were no other physical changes to the store between 1989 and 1992 other than those
already considered. But while the model change-points vary, the data-adjustment
approach sufficiently demonstrates that adding the estimated loads of the video store
lighting, HVAC, and the new dairy compressors to the 1989 data helps to explain the
difference between the 1989 and 1992 whole-building consumption data. Thus, these
new load estimates were subtracted from the whole-building consumption data before

multivariate MLR and PCA models were developed and compared to each other.

After the 1992 data were adjusted to 1989 building conditions, climate and
sales data for 1992 was compared to that of 1989. The correlations between the
variables of daily average temperature, specific humidity, solar radiation, and sales for
each of the two periods are shown in Figure 4.2. Correlations between independent
and dependent variables for the 1992 data are shown in Table 4.1a and Table 4.1b.
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Estimates of the video store HVAC and lighting loads, and new
dairy compressor loads were subtracted from the 1992 whole-
building data which were modeled to predict whole-building
electricity use within 5.1% of the 1989 model predictions. This
technique will be used in adjusting the 1992 data for PCA and
MLR modeling.



TABLE 4.1a
Correlation Matrix for Old 1989 Data Set (all data)
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temp SH solar sales elec

temp 1 0.816 0.443 -0.090 0.935
SH 1 0.0738 -0.198 0.807
solar 1 0.0122 0.443
sales 1 -0.0839
elec 1

TABLE 4.1b
Correlation Matrix for New 1992 Data Set (all data)

temp SH solar sales elec

temp 1 0.865 0.597 -0.0946 0.932
SH | 0.245 -0.129 0.855
solar 1 -0.115 0.575
sales 1 -0.104

elec
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Correlation Coefficients

1989 Data 1992 Data

M 1/sH & T/solar [ Sph/Solar Bl T/Sales Sph/Sales

Figure 4.2 Pearson Correlation Coefficients.
The relationships between the climate variables in 1989 and
1992 have remained similar.
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Reddy and Claridge (1993) concluded that PCA should do a better job at
identifying the true parameters of the model than MLR if either:

a) one or more pair of regressor variables has correlation coefficients of

0.5 or higher, and the model R? value is less than about 0.5.
or,

b) only one pair of regressor variables has correlation coefficients of 0.8 or

higher, regardless of the model R? value.

As can be seen in Table 4.1b, Reddy and Claridge's case (b) applies to the 1992
data when the whole year is considered. However, like MLR, PCA is a linear
modeling technique. Because the data exhibit a non-linear characteristic due to the
change-point operation of the HVAC and refrigeration systems, it was appropriate to
perform a piece-wise regression on the data as Ruch did. When this was done, the

correlations between the regressor variables changed (see Tables 4.2-4.5).

The largest correlation between regressor variables for the 1992 data above the
change-point was 0.759. This is close to Reddy's criterion of 0.8, though the R2 value
of the MLR and PCA models, above change-point, was high (above 0.8). This data set
fits Reddy and Claridge's case (b).

However, for the 1992 data below the change-point, the largest correlation
between regressor variables was about -0.580, followed closely by -0.489. The R2
values for the below change-point MLR and PCA models did not exceed 0.503. This

data set seems to fit case (a).

There was, therefore, some reason to believe that PCA methods would yield
more realistic models than MLR. But the physical significance of the parameter
coefficients would have to be tested.



104

TABLE 4.2
Correlation Matrix for 1989 Data set above CP of 15.4°C (59°F)

temp SH solar sales elec

temp 1 0.653 0.347 -0.0723 0.855

SH 1 -0.212 -0.245 0.626

solar 1 0.0358 0.320

sales 1 -0.0727

elec 1
TABLE 4.3

Correlation Matrix for New 1992 Data set above CP of 18.7°C (65°F)

temp SH solar sales glec*
temp 1 0.759 0.540 -0.184 0.923
SH 1 -0.00153 -0.206 0.723
solar 1 -0.121 0.459
sales 1 -0.156
elec 1

* electricity adjusted to remove effect video store and new dairy compressors



TABLE 4.4

Correlation Matrix for 1989 Data set below CP of 15.4°C (59°F)

temp SH solar sales elec

temp 1 0.581 0.0358 -0.181 0.657

SH | -0.376 -0.296 0.419

solar 1 0.225 0.191

sales 1 0.561

elec 1
TABLE 4.5

Correlation Matrix for New 1992 Data set below CP of 18.7°C (65°F)

temp SH solar sales elec
temp 1 0.580 0.244 0.0700 0.701
SH 1 -0.489 0.0614 0.492
solar 1 -0.0654 0.197
sales | 0.0960

elec

1
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4.2 MODEL IDENTIFICATION

4.2.1 Above-CP Region

The 1989 MLR and PCA models developed by Ruch et al., were tested by
seeing how well they could predict the electricity consumption for the adjusted 1992
data set. Tables 4.6 and 4.7 show the eigenvector matrices used to translate from the
original variables to principal components for the above-change-point region. Model

parameters are shown in Tables 4.8 and 4.9.

1989 Models. The 1989 MLR and 2-PC PCA models for whole-building
electricity use (kWh/day) above the change point of (15.4 °C [59°F]) were,

Eyir = 129.08 - (Temp °C)

+ 1.48 - (Solar W/m?)

+ 36001 - (Spec.Hum. kg w/kg a)

+ 5133.27 (4.22)
Epep = 98.82 - (Temp °C)

+ 2.55 - (Solar W/m?)
+ 59227 - (Spec.Hum. kg w/kg a)
+ 5423.48 (4.2b)

1992 Models. The new CP/PCA and CP/MLR models developed from the
1992 data above the change point (18.7°C [65°F]) were,

- 0.6352 - (Solar W/m?)

- 2950 - (Spec.Hum. kg w/kg a)

+ 4432 (4.3a)
Epca = 92.7 - (Temp °C)

+ 2.216 - (Solar W/m?)
+ 77587 - (Spec.Hum. kg w/kg a)
+ 5281 (4.3b)
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TABLE 4.6
Eigenvectors for 1989 PCA Model above CP of 15.4°C (59°F)

PC #1 PC #2 PC #3
Temp 0.731873 0.177551 -0.657903
SH 0.659932 -0.425325 0.619345
Solar 0.169857 0.887454 0.428456
R2 Contribution 0.7158 0.0245 0.0088
Eigenvalue 1.66896 1.17136 0.15967
Variance Rank 55.6% 39.1% 5.3%

TABLE 4.7

Eigenvectors for 1992 PCA Model above CP of 18.7°C (65°F)

PC #1 PC #2 PC #3
Temp 0.709840 0.005377 -0.704342
SH 0.575892 -0.580190 0.575958
Solar 0.405556 0.814463 0.414939
R2 Contribution 0.8217 0.001638 0.03151
Eigenvalue 1.92475 1.01450 0.06075

Variance Rank 64.2% 33.8% 2%
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TABLE 4.8
Regression Summary: 1989 Models as Used on 1992 Whole-building Data
Above CP of 15.4°C (59°F)

PCA Model 1 PCA Model 2 MLR Model

Model Parameters: PCs 1,23 PCs 1,2

Temp (°C) ————- 98.82 129.08
standard error 000000000 - ey, 16.74
SH (kgw/kga) - 59227 36001
standarderror 00 o———— e 13098
Solar (W/m?) - 2.55 1.48
standard error 0000 s e 0.71
Constant - 5423.48 5133.27
standard error 000000 o 525.05
PC#1 482.20 48220
standard error 27.86 2821 200 e
PC#2 106.41 10641
standard error 33.26 3368 000 wewss
PC#3 7259 0000 sesss e
standard error 9008 000 e mewes
PCA Constant 9349.12 9349.12 -
standard error 35.83 36.28 = eeee-
Model R? 0.7490 0.7403 0.7490
Model RMSE 374.08 378.76 374.08

% of variation explained 100 94.67 100




109

TABLE 4.9
Regression Summary: 1992 Models as Used on 1992 Whole-building Data
Above CP of 18.7°C (65°F)

Model 1 Model 2 MLR Model

Model Parameters: PCs 1,2,3 PCs12 e
Temp (°C) - 92.7 194.02
standard error 00000 - e 14.67
SH (kg w/kg a) — 77587 -2950.3
standard error e Sie 11993
Solar (W/m? - 2.216 -0.6352
standard error 00000 s=e== emeee 0.4562
Constant e 5281 4432.1
standard error 0000000 = e 161.3
PC#1 standard error 440.4 4404 00
12.29 13.53 -

PC#2 standard error -27.09 2709 e
16.93 1863

PC#3 standard error 48547 000 e emeee
69.17 = - e

PCA Constant 9042.97 904297
standard error 17.01 1873
Model R2 0.85 0.82 0.85
Model RMSE 258.55 284.61 258.55

% of variation explained 100 98 100




4.2.2 Below-CP Region
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Tables 4.10 and 4.11 show the eigenvector matrices used to translate from the

original variable to principal components for the below-change-point region.

TABLE 4.10
Eigenvectors for 1989 PCA Model below CP of 15.4°C (59°F)

PC #1 PC #2 PC #3
Temp 0.627589 -0.341589 0.699607
SH 0.633805 -0.297694 -0.713912
Solar 0.452133 0.891457 0.029671
R2 Contribution 0.4870 0.02830 0.07440
Eigenvalue 1.78128 0.79967 0.41905
Variance Rank 59.4% 26.7% 14.0%

TABLE 4.11

Eigenvectors for 1992 PCA Model below CP of 18.7°C (65°F)

PC #1 PC #2 PC #3
Temp 0.699205 -0.101588 -0.707667
SH 0.698077 -0.116589 0.706467
Sales 0.154274 0.987971 0.010603
R? Contribution 0.4508 0.001146 0.05171
Eigenvalue 1.59464 0.98557 0.41980
Variance Rank 58.0% 32.9% 14.0%
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1989 Models. Below the change-point of 15.4°C (59°F), Ruch had,

Evig = 33.93 - (Temp °C)
+ 0.00496 - (Sales $/day)
- 4182 - (Spec.Hum. kg w/kg a)
+ 6376 (4.4a)

Epca = 59.65 - (Temp °C)
+ 0.00296 - (Sales $/day)
+ 5348 - (Spec.Hum. kg w/kg a)
+ 6381 (4.4b)

1992 Models. The 1992 models below the change-point (18.7°C [65°F]) yielded:

EByup = 61.10 - (Temp °C)
+ 0.001804 - (Sales $/day)
+ 18744 - (Spec.Hum. kg w/kg a)
+ 6565 (4.5a)

Epca = 60.76 - (Temp °C)
+ 0.003166 - (Sales $/day)
+ 18157 - (Spec.Hum. kg w/kg a)
+ 6507 (4.5b)

Model parameters are shown in Tables 4.12 and 4.13. We note here that 1989 model
parameters and their corresponding 1992 model parameters agree much more closely
for the PCA models than for the MLR models.



Regression Summary: 1989 Models as Used on 1992 Whole-building Data

TABLE 4.12

Below CP of 15.4°C (59°F)

Model 1: Model 2: MLR Model:
Model Parameters: PCs 1,2,3 PCs 1,3
Temp (°C) 59.65 5393
standard error - 17.12
SH (kg w/kg a) 5347.85 -4182
standard error 0 emeee 29125
Sales ($/day) 0.00296 0.00496
standard ecror e 0.00180
Constant 6381.18 6375.56
standard ecror 440.61
PC#1 118.74 11874 e
standard error 24.37 2459 0 -
PC#2 1272, 0 mesmse (eEss
standard error 36.37 = e e
PC#3 95.74 95.74
standard error 50.24 5069 0 e
PCA Constant 7269.51 7269.51 e
standard error 31.84 3213 e
Model R2 0.5898 0.5615 0.5898
Model RMSE 155.97 157.38 155.97
% of variation explained 100 73.34 100
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TABLE 4.13
Regression Summary:1992 Models as Used on 1992 Whole-building Data
Below CP of 18.7°C (65°F)

Model 1 Model 2 MLR Model
Model Parameters: PCs 1,2,3 PCs 13
Temp (°C) - 60.76 61.10
standard error 000 @ emee= emeee 7.62
SH (kg wkga)y - 18158 18744
standard error e — 11450
Sales ($/day) - 0.003166 0.001804
standard error 0000000000 0.002565
Constant e 6564 6631.17
standard error 000000 166.75
PC#1 210.19 210.19
standard error 19.81 1973 = e
PC#2 -1348 e
standard error 2519 0 memee e
PC#3 -138.75 -138.75 -
standard error 38.6 385 e
PCA Constant 7677.08 767708 e
standard error 24.84 1949 e
Model R2 0.503 0.502 0.503
Model RMSE 281.9 281.0 281.9
% of variation explained 100 66 100
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4.3 MODEL COMPARISON: PCA VS. MLR

Figures 4.3-4.6 are scatter plots of the MLR and PCA models, 1992 adjusted
data, and residuals versus temperature. When used to predict 1992 daily electricity
consumption, the 1989 CP/PCA model has an R? value of 92%, and a CV of 4.1%, as
compared to the MLR model, which has an R? value of 91%, and a CV of 4.4% (see
Table 4.14). It is interesting to note that when Ruch evaluated his models by using the
1989 data from which they were derived, the PCA model had a lower R? value than the
MLR model, and a higher CV. However, when the models are used to predict data
from which they were not derived, the PCA model is the better predictor.

TABLE 4.14
Summary of Performance of Models over 1992 Data Set

Measured* 1989 MLR 1989 PCA 1992 MLR 1992 PCA

Avg kWh/day 8,507 8,479 8,543 8,496 8,504
kWh/yr 3,054,013 3,043,942 3,066,983 3,049,992 3,052,848
R2 (%) - 91 92 95 95

CV (%) —-en 4.4 4.1 3.2 33

* adjusted

When used to predict 1992 daily electricity consumption, the 1992 CP/PCA
model had an R? value of 95%, and a CV of 3.3%, as compared to the MLR model,
which had an R? value of 95%, and a CV of 3.2%. The new models have slightly
better R? values and CVs than the 1989 models. Part of this is to be expected since
they were developed from the 1992 data.

For data above and below the change-point, the 1989 and 1992 PCA model
parameters agreed much more closely than did the MLR model parameters. Table
4.15 shows the differences between the MLR parameters, for temperatures above the

change-point, from 1989 to 1992.
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TABLE 4.15
Percent Differences in Model Parameters for 1989 and 1992 Models*

Above CP Below CP
Parameter MLR PCA MLR PCA
Temperature 50% -6.2% 13% 1.9%
Specific Humidity  -110% 31% -550% 240%
Solar -140% -13% e e
Sales mmeem e -64% 7.0%
Constant -10% -2.6% 3.0% 2.0%

* The percentages are based on 1989 parameters. For example, for the MLR temperature parameters above the change-point, the
difference is calculated as (194.021992 - 129.08]989)!(129.081989) x 100%

For the temperature parameters, the difference between the 1989 and 1992 MLR
models was 50%. However, for the corresponding PCA temperature parameters, the
difference was only -6.2% -- eight times less for MLR. In every case, the 1989 and
1992 PCA parameters agree more closely with each other than do the MLR
parameters. That is, PCA seemed better than MLR at re-identifying the same

parameters when used to predict data from different time periods.

Figure 4.7 shows the four measured end-use loads -- HVAC, utility,
refrigeration compressors, and lighting -- plotted individually and added in succession.
All four loads added together comprise the whole-building load. It was initially
thought that the parameters of the PCA and MLR models had direct physical
significance with regards to these loads. For example, we considered whether the
temperature parameter of the whole-building model represented the sum of the two
temperature-dependent loads -- refrigeration and HVAC. From examining Figures 4.7
to 4.11, it is apparent that the temperature parameter of the models do not predict these
loads. Rather, it represents the sum of the variations of all temperature-dependent
loads with respect to temperature. Thus, a test for physical significance of the
parameters must involve gauging only the variations, or patterns, in end-use

component loads with respect to a variable. This topic is covered in Section 4.4.

Figures 4.8-4.11 show time-series plots of the predictions of the four models
along with the 1992 data. Figure 4.12 is a time series plot of model residuals -- the
difference between each model and the observed 1992 data. Perhaps the most
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noticeable difference between the MLR and PCA models is the greater effect of
temperature in the MLR models. In Figure 4.8 and Figure 4.10, we see that both the
1989 and 1992 MLR models place very little importance on the variables of specific
humidity, solar radiation, and sales. In Table 4.16, the percent differences between
PCA and MLR model parameters for 1989 and 1992 are shown. Above the change-
point, PCA predicts a temperature component which is 23% to 52% less than that of
MLR. In 1992, the specific humidity component is 27 times higher for PCA than for
MLR. In fact, the specific humidity parameter above the change-point for 1992 is
negative for the MLR model, suggesting that an increase in the moisture content of the
air decreases the building's energy use. Intuition suggests just the opposite. Increased
moisture translates to higher latent loads at the HVAC coils, and higher refrigeration
loads. Which set of parameters, then, is more realistic; and, can any physical
significance be attached to them? We must use more than intuition to evaluate the
performance of the PCA and MLR models. In the next section, the predictions of the
models are compared to building loads arrived at through the use of cooling load

temperature difference methods.

TABLE 4.16
Percent Differences in Model Parameters for PCA compared to MLR*

Above CP Below CP
Parameter 1989 1992 1989 1992
Temperature -23% -52% 11% -0.56%
Specific Humidity — 65% 2700% 230% -3.1%
Solar 72% 450% 0 e e
Sales - -40% 75%
Constant 5.7% 15% 0.078% -0.88%

* based on MLR parameters
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4.4 PHYSICAL SIGNIFICANCE OF MODEL PARAMETERS

The MLR and PCA models give comparable estimates for whole-building
electricity. However, they weight the effects of the variations imposed by the climate
variables differently. One way to determine which model gives more realistic
estimates is to model the climate-variant portions of the building's energy use by a
diversified load calculation method. In using this method we adopt the diversified

load estimation procedure outlined by Knebel (1983).

4.4.1 Variation Due to Solar Load

The diversified load calculation method using a cooling load temperature
difference for solar effects (CLTDS) accounts for solar gains as well as ambient
temperature gains for design load estimations. We use only the portion of this
procedure which account for solar loads. The calculation of the loads considered the
cooling load on the walls, on the roof, and through the glazing of the store. The
calculations are covered in detail in Appendix G. For a description of building

characteristics, see Chapter 3, Section 3.1.

The diversified load calculations give estimates for the building cooling load as
it affects the building envelope. It is a thermal load. To translate this to the load on
the building's HVAC equipment, we must consider the system's energy efficiency ratio
(EER). EER is a constant which relates the amount of electrical energy which must be
put into a cooling system in order to achieve a specified cooling effect. Thus, the EER
has units of thermal cooling effect (Btu/hr) per watt input, or Btu/h-W. In Chapter 3,
the EER for the College Station HVAC system was determined to be 7.1 Btu/h-W.
Since there are 3.413 Btu per watt-hour, this can be converted to a coefficient of
performance (COP) of 2.08 kW ;/kW_..2 What this means is that it takes only 1 kW of

electrical power to produce a thermal cooling load of 2.08 kW.

The diversified load calculations give a total possible variation in cooling load
due to solar effects of 29.1 kW ;. Dividing this by the COP gives the portion of the
load due to solar radiation as only 14 kW,.

The 1992 MLR model analysis predicts that there is no significant variation in
the whole-building load due to solar radiation or specific humidity. In fact, the values

it gives are near-zero, and often negative! However, the 1992 PCA model predicts

2 The subscript "th" is used to designate thermal energy. Likewise, a subscript of "e" will be used to refer to electrical
energy.
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that the average variable component of the whole-building electricity load due to solar
effects is 19.6 kW,_.3 This seems comparable to the 14 kW, variation estimated by the
diversified load calculations.

Next, MLR and PCA models were developed for the sub-metered HVAC load.
Tables 4.17 and 4.18 show the regression summaries. The models predict an average
load due to solar effects of —9.1 kW, for MLR, and 15.5 kW, for PCA. The fact that
the HVAC MLR model predicts a negative load suggests that it is wholly
inappropriate for estimating solar effects when other variables are also used in the
regression. Intuition tells us that increasing solar radiation should only add to the
HVAC load. The fact that the HVAC PCA model predicts a solar effect of 15.5 kW,
allows us to make two points. First, PCA does better at predicting the solar load since
the PCA prediction for HVAC is positive and almost equal to the diversified load
prediction of 14 kW. Second, since the PCA prediction is quite close to the 19.6 kW,
predicted by the whole-building data, we conclude that the solar load on the whole
building appears primarily in the HVAC load.

In both the 1989 and 1992 models, for both the whole-building data and the
HVAC data, it can be seen that MLR techniques understate the effects of solar
radiation, though this is most apparent from the 1992 models. It is reasonable to
assume that, as a result, MLR overstates the variation due to other variables -- such as

temperature, but this assumption is tested in the next section.

4.4.2 Variation Due to Temperature

The variation in building electricity load due to temperature can be divided into
two components -- that pertaining to the HVAC system, and that pertaining to the
refrigeration system. Since the HVAC system keeps the interior space conditions
fairly constant, at about 70°F (21°C) to 75°F (24°C) and 55% relative humidity, then
any effect of outdoor air temperature on the refrigeration system must be realized via
the refrigeration system's condenser coils, which are exposed to outdoor ambient air

brought into the compressor room.*

3 The 1989 MLR and PCA models predict average values of 12.5 and 21.6 kW, respectively.

4 The hypothesis that the outdoor conditions primarily affect the refrigeration system through its condenser coils can be
verified when we consider the bimodal behavior of the refrigeration system below the change-point temperature, as discussed in
Chapter 3. It is below this temperature that the condensers are shut off from outdoor air. The fact that the refrigeration data
cease to vary significantly when this occurs indicates that the variation in the refrigeration load due to outdoor temperature does
indeed come as a result of the condensers’ exposure to outdoor air.
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The coefficients of temperature in the whole-building PCA and MLR models
reflect the whole building's response to temperature, and thus reflect the combined
effect of outdoor temperature on both the HVAC system and the refrigeration system.
However, a simple energy balance equation, with respect to the temperature difference
across the store's walls, roof, and glazing should be useful in determining the effects of
outside temperature on the HVAC system alone. We again adopt a procedure outlined
by Knebel (1983). Calculations may be found in Appendix G. The sum of the U A
values for the building is 4.31 kW /°C. This should represent the variation in the
HVAC load due to temperature (and temperature only). Accounting for the COP of
the HVAC system, which is 2.08 kW, /kW, the temperature coefficient is 2.07
kW /°C. This may be compared to the temperature coefficient in the whole-building
and HVAC MLR and PCA models.

The 1992 MLR and PCA whole-building models predict the following

temperature coefficients:

Temperature Coefficients

Whole-building Model Below CP Above CP
PCA 60.76 kWh/day-°C ~ 92.7 kWh/day-°C
MLR : 61.10 kWh/day-°C  194.0 kWh/day-°C

On an hourly basis, this is:

Temperature Coefficients
Whole-building Model Below CP Above CP

PCA 2.53 kWh/h-°C 3.86 kWh/h-°C
MLR : 2.55 kWh/h-°C 8.08 kWh/h-°C




TABLE 4.17
Regression Summary: 1992 HVAC Models
Above CP of 18.7°C (65°F)

Model 1 Model 2 MLR Model

Model Parameters: PCs1.2.3 PCs12 -
Temp(°C) - 69.98 167.78
standard error =0 @ eemem e 14.66
SH (kg wkga) - 57763 -19938
standarderror =000 eeeem e 11983
Solar (W/m?  —— 1.732 -1.0193
standard error 0000000000 o 0.4558
Constant e -995.3 -1814.2
standard error 00000000 .- e 161.2
PC#1 standard error 332.66 332.66 ——
12.28 13.43 R

PC#2 standard error -15.45 -15.45 _—
16.91 18.50 ———

PC#3 standard error -468.37 @ - ————-
69.12 —

PCA Constant 1847.7 18477 -
standard error 17.00 1860 e
Model R? 0.77 0.73 0.77
Model RMSE 258.35 282.66 258.35
% of variation explained 100 98 100
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TABLE 4.18
Regression Summary: 1992 HVAC Models
Below CP of 18.7°C (65°F)

Model 1 Model 2 MLR Model
Model Parameters: PCs 1,2,3 PCs 1,3
Temp(°C) - 28.20 29.22
standard error 000 meeem 0 aeeee 8.35
SH (kg wkga) - 15652 17408
standard error 00000000000 —— - 12550
Sales ($/day) - 0.001704 -0.002380
standard error 0000000000 - e 0.002812
Constant  emee- 254.55 426.01
standard ecror 000000 - o 156.79
PC#1 111.4 1114 e
standard error 21.71 2181 e
PC#2 404100 s e
standard error 2761 0 e e
PC#3 -50.69 -50.69 0 -
standard error 42.31 4250 200 e
PCA Constant 784.43 78443
standard error 27.31 2743 e
Model R2 0.194 0.181 0.194
Model RMSE 309 310 309
% of variation explained 100 66 100
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Clearly, MLR and PCA give very different temperature coefficients for data
above the change-point. But these are parameters for the whole-building load, not
merely the HVAC component. What we know from the U A calculations is an HVAC
load variation characteristic -- 2.07 kW /°C. If we consider the HVAC models, we
find that both PCA and MLR give very different temperature coefficients for the

region above the change-point.5 The temperature parameters are as follows:

Temperature Coefficients

HVAC Below CP Above CP
PCA : 28.20 kWh/day-°C  69.98 kWh/day-°C
MLR : 29.22 kWh/day-°C 167.8 kWh/day-°C

On an hourly basis, these are:

Temperature Coefficients

HVAC Below CP Above CP Average*
PCA 1.18 kWh/h-°C 2.92 kWh/h-°C 2.30
MLR : 1.22 kWh/h-°C 6.99 kWh/h-°C 4.93

* weighted according to 231 data points above CP, 128 below CP.

The average temperature coefficient (above and below the change-point) for
the PCA model is 2.30 kWh/h-°C. This is close to the 2.07 kW/°C from the U-A
calculation, differing by 11%. The average MLR parameter of 4.93 kWh/h-°C, which
differs from the U-A estimation by 140%. If the U-A calculations are an accurate
representation of the effects of changes in outdoor temperature on the HVAC system,
then we can conclude that the MLR model grossly overstates the effects of changes in
temperature on the store's HVAC load as compared to the prediction of PCA.

What this means is that for a building with a simple HVAC system, some
model parameters obtained through PCA have more physical significance than those

5 This characteristic is also seen in the whole-building model. The principal component variables used in each segment
of the PCA model are the same as those used in the whole-building model.
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obtained through MLR analysis, and that these model parameters correspond to those
which are fairly easily measurable (such as building UA and solar load).

For some variables, such as specific humidity, identifying the physical
significance of the parameters predicted by PCA (or MLR) may be more difficult and
involved since alternative models which would be used to verify the PCA and MLR
predictions are likewise complex and involved. For this study, we were not able to

verify the significance of the specific humidity or sales parameters provided by either
PCA or MLR.

Nevertheless, for this case study, PCA was shown to be of benefit in providing
more realistic estimates of the effects of the predictor variables of dry-bulb

temperature and solar radiation when these variables are correlated.

4.5 SUMMARY

For the College Station case study, the following conclusions are drawn with

regards to principle component analysis.

1) The 1992 PCA model worked better than the 1992 MLR model at re-
identifying the same model parameters for the 1992 data set as predicted by the
1989 PCA and MLR models. Thus, PCA does better than MLR in terms of
parameter re-identification when used to predict data from a period which was

different than that used to construct the model.

2) PCA does slightly better than MLR in terms of R? and RMSE criteria when

used to predict data from a period which was not used to construct the model.

3) In both 1989 and 1992 whole-building models, MLR techniques
underestimated the effects of solar radiation. For this study, PCA was found to
be superior in estimating the effects of the variations in solar radiation on the
grocery store whole building electricity use and HVAC system electricity use.
The variation in the HVAC load due to solar radiation predicted by the HVAC
PCA model was 15.1 kW, which agreed closely with the variation predicted by
the diversified load calculation, 14 kW. MLR analysis predicted —5.6 kW.

4) In the 1992 models, MLR techniques over estimate the effects of outdoor
temperature. For this study, PCA was found to be of greater use than MLR in
estimating the effects of variations in temperature on the grocery store whole
building electricity use and HVAC system electricity use. The temperature
parameter predicted by the HVAC PCA model, 2.34 kWh/h-°C, agreed closely
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with the building U-A, 2.07 kWh/h-°C. MLR analysis predicted 4.96
kWh/h-°C.

One shortcoming of both PCA and MLR analyses is that they determine only
one base load. They attempt to account for energy use due to changes in
variables, but cannot estimate the total effect due to any one variable since the

base load cannot be separated into contributions due to each variable.

For some variables, such as specific humidity, identifying the physical
significance of the parameters predicted by PCA (or MLR) may be more
difficult and involved, since alternative models which must be used to verify
the PCA and MLR predictions are likewise complex and involved. For this
study, we did not attempt to verify the significance of the specific humidity or

sales parameters provided by either PCA or MLR.

In general, we conclude that for a building with a simple HVAC system, model

parameters obtained through PCA have more physical significance than those obtained

through MLR analysis®, and that these model parameters correspond to those which

are fairly easily measurable (such as building UA and solar load).

6 This applies to parameters for which physical significance could be tested.
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CHAPTER V

END-USE LOAD ESTIMATION

The energy use data analyzed in this thesis were obtained for both the College
Station and Bryan grocery stores using intensive sub-metering. In this chapter, simple
change-point models are used to determine the quality of information that could have
been obtained without the use of sub-metering which is capable of yielding similar
daily energy end-use data. First, the various forms of linear sub-meter models which
were considered for use are presented and compared. Then, the sub-meter models
which were selected are compared to proxy models developed from information which
could have been obtained from monthly utility billing data and one-day, walk-through

energy use surveys.

Energy end-use information obtained from such models could be useful in
assisting store owners in determining if the separate, energy-consuming sub-systems
are performing efficiently. Such information can also provide utilities with an

inexpensive alternative to end-use load monitoring.

5.1 MODEL OVERVIEW FOR THE COLLEGE STATION STORE

Energy use in grocery stores can be characterized by a mildly temperature-
dependent base level below a change-point between 16° and 21°C (60° and 70°F), and
a second, more strongly temperature-dependent slope above the change-point. Ruch
and Claridge (1992) developed a four-parameter change-point model for the

supermarket studied in this thesis. It takes the form:

Ewig = 8o+ aon(T - CP)™ + aygu(T -CP)* (5.1a)

where T is the outdoor ambient temperature, CP is the change-point temperature, ag, is
a base-level consumption, a; oy is the slope below the change-point temperature, and
ey 1S the slope above the change-point temperature. The superscripts, T and —,
designate that the terms to which they apply are only present in the equation when they
are positive or negative, respectively (see Figure 5.1). For example, point E,, which

occurs above the change-point, would be determined by,
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E, = 8+ agg(T-CP)* (3.1b)

WHB

CP
Temperature

Figure 5.1 Four-parameter change-point model.

Likewise, point E,, which occurs below the change-point, would be determined by,

E, = ag+ayo(T-CP) (3.1c)

Using the change-point selection methods outlined by Ruch and Claridge, a
four-parameter change-point model was developed for the whole-building electricity
use as well as for the HVAC and refrigeration systems' energy use at the College
Station grocery store. Constant linear models, which are simply mean of the data
being modeled, were chosen for the lighting and utility loads. All models were chosen
based on comparisons of mean (constant linear model), simple linear (non-zero slope),
and three- and four-parameter change-point models. The models with the best fit and
most physical significance were chosen to represent the various sub-metered loads.
They are summarized according to R? and coefficient of variation as follows (the

models which were chosen are underlined):
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Data Simple linear 3-PCP 4-P CP

Mean CV* R2 CcvV R? Cv R? Ccv
Refrigeration
Compressors: 114.2 12% 83% 5% 85% 5% 86% 5%
Lighting:

124.7 2 27 4 33 3 33 5
Combined-store
HVAC: 84.0 46 83 19 90 14 1 14
Miscellaneous
Utility: 76.4 3 6 3 7 3 10 3
Whole-building:

399.4 12 89 4 94 3 95 3

* CV = coefficient of variation (root mean squared error < data mean)

In addition, a sinusoidal lighting model, discussed later in this chapter, was
considered. The sinusoidal lighting model had an R? of 42% and a CV of 3%.

The parameters for the models chosen for the component and whole-building

loads are as follows:

Load ap a ow AHIGH Change-point
(kWh/h) (kWh/h-°C)  (kWh/h-°C) °C)

Ecomp 104.9 1.1421 2.4006 17.4

ELiGHTs 124.7

Byvac 49.65 1.3772 7.8043 17.4

Eitwie 76.41

Ewnp 363.5 3.0144 9.7477 18.0

The choice of which model to use for subsequent analyses was made by

selecting the model with the best R? and CV values, as well as intuitive knowledge of

the nature of some of the component loads in the store. For example, for loads which

had a visible and physically meaningful change-point, such as those known to have

on/off thermostatic controls, change-point models were chosen when appropriate. For

loads which were known to be independent of temperature, such as lighting and food-
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preparation equipment, constant data mean models were chosen even when change-
point models may have had the statistical upper hand. Model selection is described

below.

Whole-building and HVAC Loads. The selection of a change-point model for the
HVAC and whole-building loads seemed appropriate since the data had a visible
change-point. Furthermore, we knew that the HVAC system has a space condition set-
point of about 21° to 24°C (70° to 75°F) and a humidity control that was active in the
16° to 21°C (60° to 70°F) range. The four-parameter models had a slight advantage
over the three-parameter models for the combined-store HVAC and whole-building
data. R? was highest and CV lowest for the four-parameter models. The change-point
of the whole building model was found to be 18.0°C (63.8°F), and the change-point
for the HVAC system model was found to be 17.4°C (63.3°F).

Compressor Load. The refrigeration compressor load also seemed to display an
ambient temperature change-point characteristic. There are two physical explanations
for the change-point. First, the refrigeration condenser coils are housed in the
compressor room through which outdoor ambient air is drawn by four exhaust fans.
These fans shut off when the room temperature falls below 15.9°C (60°F). This
lessens the effect of outdoor temperature on the condenser coils, resulting in a different
slope below 15.9°C. Second, when the outdoor temperature falls below about 17.4°C
(63.3°F), the HVAC system uses reclaimed heat from the refrigeration condenser lines.
The air to which the reclaim condenser coils are exposed is at a different temperature
than the outdoor air, and thus the slope of the refrigeration compressor energy use
curve changes. It is interesting to note that the change-point temperature identified
with the four-parameter model is 17.4°C (63.3°F) -- which is the same as the change-
point for the HVAC system.

Since a change-point model was appropriate for the refrigeration system, the
three- and four-parameter models were compared. R2is 1 percentage point higher for
the four-parameter model than for the three-parameter model, and the CV (before

rounding) was 0.1% lower. Thus, the four-parameter model was chosen.

Lighting Load. There are no components to the store's lighting load which have a
temperature change-point characteristic. In fact, we had no reason not to choose a flat,
linear model. Upon initial inspection of the lighting data, there appeared to be a
temperature dependency. However, this was not truly a temperature effect, but rather a

seasonal effect that is the result of the change in the length of daylight throughout the
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year (which is indirectly related to temperature). If the lighting energy use is plotted
with respect to time, it is apparent that the load is sinusoidal. Such a sinusoidal load
appears as a slightly temperature-dependent curve when plotted against temperature.
An alternative model to a flat linear analysis was the use of a sinusoidal time
function.! But, while the sinusoidal model actually gave a better fit based on the
comparison of CV values, it was developed visually and therefore was considered
undesirable since its identification was not repeatable. Thus, a flat linear model,
which predicts the average of the data, was chosen for analysis of the lighting load.

Miscellaneous Utility Load. Like the lighting load, none of the end-use loads
identified on the utility circuit were significantly temperature-dependent. Thus a flat
linear model was deemed appropriate. The CV values are nearly the same for the flat
mean, simple linear, and three - and four-parameter models, which helped to justify the
selection of the constant mean model. For the sake of simplicity and physical

meaningfulness, the flat mean model was chosen for the utility load.

Figure 5.2 shows the refrigeration compressor model and data. Below the
change-point temperature, the slope is less pronounced. It is below this point that a
heat reclamation system is used to recover the waste heat from the refrigeration system
in order to provide space heating in the HVAC system. The heat reclamation coils
take the place of the refrigeration condenser coils when heat reclaim is in use.

Because of this, outdoor temperature has less of an effect on refrigeration system
energy use when the system is not exposed to outdoor conditions via the condenser
coils. The reader may notice two modes of energy use below the change-point. In this
bimodality, the higher mode represents occasions when the compressor room
temperature is kept at 15.9°C (60°F) by the operation of the exhaust fans but when
heat reclaim is not in use. The lower mode represents days when significant heat
reclaim is in use and there is reheating for dehumidification purposes. This occurs
during the heating season, when outdoor air is below the change-point. The exhaust
fans may shut the compressor room air supply off, but the chilled air being blown
across the heat reclaim coils is cooler than the compressor room air, and thus allows
the refrigeration system to reject its waste heat more efficiently -- resulting in a lower
load on the compressors. This effect is discussed further in Chapter 3, Section 3.4.3.

I Discussed later in this chapter.
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Figure 5.2 Refrigeration compressor data and temperature change-point
model for the period 01/01/92 to 01/01/93 for College Station.
The lower of the two modes of energy use below the change-
point corresponds to times when heat reclaim and reheat are in
use.
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Figure 5.3 is a plot of the lighting data and model. Because the parking lot
light timer is adjusted monthly to account for the seasonal variation in the length of the
day, the warmer, summer season has a slightly smaller load than the cooler, winter
season. This causes the plot in Figure 5.3 to appear as if the lighting load is
temperature-dependent when, in fact, the relationship is a seasonal dependency which
is caused by the operation of the parking lot lights. Because of this, the constant
lighting model slightly over-predicts energy use above about 20°C (67.4°F), and
under-predicts it for temperatures below 20°C. Nevertheless, the coefficient of
variation for the constant model is only 4.1%, which implies that the root-mean-
squared-error (RMSE) of the model is 4.1% of the mean value of the data. Thus, if
amp measurements of the lighting electrical panel were taken in the morning,
afternoon, and at night, a daily average load could be calculated from known operating

schedules. This average would differ from the yearly average by about 4% or less.

Figure 5.4 shows the combined-store HVAC model and data. In it may be seen
the bimodality of the energy consumption resulting from the use of reheating to
provide dehumidification. The higher mode represents days when significant
reheating was used. During the reheat stage, one compressor is turned on to remove
moisture from the air.? This air is then reheated by the heat reclaim system. The
higher mode in the HVAC data corresponds to the lower mode in the refrigeration
compressor data. This interrelationship is discussed further in Chapter 3, Section
3.4.3.

The miscellaneous utility data and model are shown in Figure 5.5. This energy
use is quite constant. The root mean square error for the model is only 2.7% of the
yearly of the data. This suggests that if the electric panels for the utility load were
measured with hand-held clamp meters at any time during the day, the average reading
for the day could be used to predict utility energy use for the entire year. to an

accuracy of about 97%.

From Figure 5.6 and Figure 5.7, it can be seen how the sub-metered load
models can be added together to obtain a whole-building load. Figure 5.6 shows the
whole-building model and data. The change-point of 18.0°C (63.8°F) is quite
noticeable. It is slightly higher than the 17.4°C (62.7°F) change-point associated with
the refrigeration and HVAC systems because the whole-building data include the

2 One compressor comprises a load of roughly 20 to 30 kW
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Figure 5.3 Lighting data and constant linear model for the period 01/01/92

to 01/01/93 for College Station. The slope in the data is due to
the seasonal change in outdoor lighting load requirements.
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Figure 5.6 Whole-building electricity data and temperature change-point
model for the period 01/01/92 to 01/01/93 for College Station.
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Figure 5.7 Addition of sub-metered electricity loads for College Station.

Curve A represents the utility load model. Curve B is the utility
model plus the lighting model. Curve C is the sum of the utility,
lighting, and refrigeration models. Curve D is the sum of the
utility, lighting, refrigeration, and HVAC models.
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lighting and utility loads which cause the regression procedure to weigh the data
differently, thus pulling the change-point up to 18.0°C. This results in a different
change-point temperature for the whole building. The bimodality seen in the HVAC
and refrigeration compressor data is not as easily seen in the whole-building data.

This is because of a trade-off effect -- when the HVAC system uses more energy in the
reheat/heat reclaim stage, the refrigeration system uses less, and vice-versa. Thus, the

bimodality is blended into one mode of daily whole-building energy use.

In Figure 5.7, curve A represents only the miscellaneous utility load. Curve B
is the sum of the utility load model and the lighting model. Curve C is the sum of the
utility, lighting, and refrigeration compressor models; and curve D is the sum of the
utility, lighting, refrigeration compressor, and HVAC models. Curve D coincides with
the whole-building model (i.e., the dashed line).

The models developed above were applied to degree-hour bins to predict
energy use for a period of time using binned temperature data. This is the subject of

the next section.

5.2 BIN MODEL APPLICATION FOR THE COLLEGE STATION STORE

With the models identified, binned weather data were applied to the models to
determine the energy load for any arbitrary period of time -- in this case, a full year.?
Since bin data were not available for the College Station area, a program was
developed to take hourly weather data and group them into bins.*

5.2.1 Binned Temperature Models

The models identified in Section 5.1 predict kilowatts per degree centigrade.
When they are multiplied by binned degree-hours, they predict energy use in kilowatt-
hours. The bin models were applied to the full year of 1992 binned temperature data,
and compared to the measured data for the same year. Results for the component load
and whole-building models are shown in Tables 5.1 to 5.5. These tables show the bin

hours used, the actual electrical consumption for each bin, and the model predictions

3 In this analysis, binned temperature data from 01/01/92 to 01/01/93 were used. Once the models have been established,
binned temperature data from any period and geographic location can be used.

4 The procedure is included in Appendix B.



Bin Simulation for 4-P Refrigeration Model for College Station Store

TABLE 5.1

Temperature (°C) Hours kWh Refr. Diff
low high avg (data) kW kWh

-10 -5 -1.5 0 0 76 0 0.00%
-5 0 -2.5 19 1605 82 1562 -2.69%
0 5 25 192 16834 88 16877 0.26%
5 10 7.5 762 68341 94 71332 4.38%
10 15 12.5 1137 106084 99 112929 6.45%
15 20 17.5 1651 174219 105 173650 -0.33%
20 25 22.5 2179 256499 117 255338 -0.45%
25 30 27.5 1708 219846 129 220647 0.36%
30 35 325 835 116116 141 117891 1.53%
35 40 37.5 8 1150 153 1226 6.56%
Total: 960693  kWh/yr 971452 1.12%

TABLE 5.2

Bin Simulation for Constant Linear Lighting Model for College Station Store

Temperature (°C) Hours kWh Lights Diff
low high avg (data) kW kWh

-10 -5 -1.5 0 0 124.7 0 0.00%
-5 0 -2.5 19 1791 124.7 2369 32.32%
0 5 2.5 192 20725 124.7 23942 15.52%
5 10 7 762 89671 124.7 95021 5.97%
10 15 12.5 1137 132959 124.7 141784 6.64%
15 20 17.5 1651 198963 1247 205880 3.48%
20 25 22.5 2179 266779 1247 271721 1.85%
25 30 275 1708 221175 1247 212988 -3.70%
30 35 325 835 115270 1247 104125 -9.67%
35 40 315 8 1124 124.7 998 -11.28%
Total: 1048457  kWh/yr 1058828 0.99%
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TABLE 5.3

Bin Simulation for 4-P HVAC Model for College Station Store

Temperature (°C) Hours kWh HVAC Diff
low high avg (data) kw kWh

-10 -5 -1.5 0 0 15 0 0.00%
=D 0 -25 19 473 22 423 -10.49%
0 5 %5 192 5533 29 5597 1.14%
3 10 75 762 26366 36 27459 4.15%
10 15 12.5 1137 44613 43 48803 9.3%9%
15 20 175 1651 98402 51 83465 -15.18%
20 25 225 2179 201504 90 195185 -3.14%
25 30 275 1708 210747 129 219644 4.22%
30 35 32.5 835 127973 168 139961 9.37%
35 40 375 8 1318 207 1653 25.46%
Total: 716929  kWh/yr 722189 0.73%

TABLE 5.4

Bin Simulation for Constant Linear Utility Model for College Station Store

Temperature (°C) Hours kWh Uulity Diff
low  high avg (data) kW kWh

-10 -5 -1.5 0 0 76.4 0 0.00%
-5 0 -2.5 19 1376 76.4 1452 551%
0 5 25 192 13459 76.4 14671 9.00%
5 10 7S 762 54690 76.4 58224 6.46%
10 15 12.5 1137 80707 76.4 86878 7.65%
15 20 17.5 1651 123855 76.4 126153 1.86%
20 25 225 2179 165969 76.4 166497 0.32%
25 30 215 1708 133117 76.4 130508 -1.96%
30 35 325 835 67493 76.4 63802 -5.47%
35 40 375 8 647 76.4 611 -5.52%
Total: 641312 kWh/yr 6487973 1.17%
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TABLE 5.5
Summary of Bin Simulation for Component Models for College Station Store

144

Total ~ Model  Model Model  Model

Temperature (°C) Hours Data Lighting Utility Refr.  HVAC Total Diff
low  high avg kWh kWh kWh kWh kWh kWh (%)
-10 -5 -1.5 0 0 0 0 0 0 0 0.00%
-5 0 -2.5 19 5244 2369 1452 1562 423 5806 10.72%
0 5 2.5 192 56551 23942 14671 16877 5597 61087 8.02%
5 10 7.9 762 239067 95021 58224 71332 27459 252038 5.43%
10 15 12.5 1137 364361 141784 86878 112929 48803 390394  7.14%
15 20 17.5 1651 595440 205880 126153 173650 83465 589147 -1.06%
20 25 22.5 2179 890751 271721 166497 255338 195185 888742 -0.23%
25 30 27.5 1708 784887 212988 130508 220647 219644 783786  -0.14%
30 35 325 835 426851 104125 63802 117891 139961 425780 -0.25%
35 40 7.5 8 4239 998 611 1226 1653 4488  5.86%
Data Sum: 3367392

Incomplete Data*: 99513

Model Sum: 1058828 648787 971452 722189 3401266 1.01%
Bill Sum: 3557200

* Represent consumption data for which corresponding temperature data were not available.

of consumption for each bin. Tables 5.1 to 5.4 also show the residual difference (as a

percent) between the bin predictions and the data. While the differences may be as

high as 33% for any individual bin, the annual totals of data and bin predictions differ

by no more than 1.2%. In Table 5.5, the component load bin predictions are

summarized. Three whole-building annual energy consumptions are compared. These

are the measured whole-building electricity, the sum of the predictions of the

component bin models, and the annual electricity consumption taken from twelve

months of 1992 utility bill data. There is a 3% difference between the sub-metered

consumption, 3,466,905 kWh/yr, and the utility bill consumption, 3,557,200 kWh/yr
(bill data and sub-meter whole-building data differ by about 3%). The bin model
prediction, 3,401,266 kWh/yr, falls below the other two values, and differs by no more
than 4% from either. Also listed in the table is the total for data which could not be
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processed by the binning routine. These were energy consumption data for which
corresponding hourly temperature data were not available. Their sum is 99,513 kWh.
This is a relatively small amount, and does not explain the 3 to 4% difference between
the sub-metered model and the utility bill data.’

Figure 5.8 and Figure 5.9 show time-series and bin model predictions for the
refrigeration compressors. The bin model predicts the refrigeration load fairly
consistently over the entire range of temperatures (-10°C to 40°C). The bin axis labels
represent the midpoints of each 5-degree bin. As is the case for all of the subsequent
bin plots, the consumption data are skewed towards the higher temperatures in the
range. This reflects the behavior of the temperature variable rather than that of the
energy consumption. The greatest percent difference for a refrigeration consumption
bin is 6.6%.6 However, if the sum of the binned predictions is compared to the annual

sum of the sub-metered refrigeration data, the difference is only 1.1%.

Figure 5.10 shows a time-series plot of the daily average of the lighting data.
The daily average of the lighting data depends only on the length of the day.
Specifically, the scheduling of the outdoor lights is adjusted monthly as the daylight
hours vary. This has the effect of producing a sinusoidal pattern in the data rather than
a constant energy use. The sinusoidal pattern is described in greater detail in Section
5.3.1. Figure 5.11 shows the binned hourly lighting load and predictions. Predictions
and data within each bin differ as much as 32%. However, this occurs in the extreme
bins which contain less than 0.2% of the energy consumption. Below 25°C,
predictions are consistently greater than the data. Likewise, above 25°C, predictions
are consistently less than the data. This is due to the fact that we are using a constant

model to predict consumptions which varies slightly with respect to temperature.”

Figure 5.12 and Figure 5.13 are plots of time-series energy use and binned

hourly electricity use for the combined-store HVAC system. Differences in binned

5 we speculate that the difference in the utility bill and the sub-metered data may be due to inaccuracies in the current and
potential transducers used to monitor the sub-metered energy use. In addition, there may be inaccuracies in the current
transducers used by the electric utility for billing purposes.

6 Based on sub-metered data for each respective bin,

7 However, by no means do we wish to imply by this that the lighting data are temperature-dependent. Recall the seasonal
dependency in the parking lot lights.
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Figure 5.8 Time series plot of daily average refrigeration compressor load
for 1992 for College Station.
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Figure 5.10 Time series plot of daily average lighting load for 1992 for
College Station.
300000
250000
< 200000
g 150000 g
£
5 100000 -
S|
50000
0 + |
7.5 -25 2.5 7.5 125 11.5 225 275 325 375
Average Outdoor Hourly Bin Temperature (°C)
(] Measured M Constant Linear Model
Figure 5.11 Binned hourly electricity consumption for constant linear

lighting model from 01/01/92 to 01/01/93 for College Station.
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Time series plot of daily average, combined-store HVAC load
Jor 1992 for College Station. The highly visible drop in energy

use near the beginning of June was caused by a shut-down

which was required for maintenance of an electrical line within

the store.
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energy use and predicted energy use are as high as 25% for a particular bin. However,
the actual and predicted annual energy consumptions differ only by 0.73%. As in the
case of the refrigeration system, there is no consistent trend in the differences between

the actual and predicted binned energy use.

Figure 5.14 and Figure 5.15 show the miscellaneous utility load as a time-
series and binned data plot. Because the utility data are so nearly constant, a drop in
food-preparation equipment energy use, which occurs over the Thanksgiving holiday
(11/27/92), can be easily seen. Similar, yet more pronounced, drops in store-wide
energy use over the Christmas holidays (12/24 to 12/26) were removed from the data
set. The binned energy predictions differ from the binned data by no more than 9%,
and tend to underestimate the energy use at higher temperatures, while overestimating

it at lower temperatures.

Finally, Figure 5.16 and Figure 5.17 show the time-series plot and binned data
and model plot for the whole-building. Individual bin predictions differ by no more
than 11% from their corresponding binned data, and tend to underestimate
consumption at higher temperatures. On the whole, the annual sum of the predictions
differs by only 1% from the annual whole-building energy use data.

5.2.2 Alternative Lighting Model

The largest day-to-day variations in the lighting load are due to lights being left
on at times when they should not be. Beyond this, there is a seasonal variation in the
lighting load which is due to the seasonal change in the duration of daylight. As
mentioned earlier, this produces a false appearance of temperature-dependency in the
data. While a temperature change-point model may fit the data fairly well, estimating
an effective change-point temperature is impossible without having the sub-metered
data. Furthermore, such a change-point temperature may be physically meaningless.
In an attempt to develop an alternative to the constant linear lighting model, the
lighting variation was fit by visual inspection of the sub-metered data to a sinusoidal

function of the form,

ELours = a + b-Sin(N + A)-27/365) (5.2)
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Figure 5.14 Time series plot of daily average miscellaneous utility load for
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where the variable, N, is the day of the year. The parameter, ®, is the day (or
horizontal) offset of the sine function, a is the vertical offset, and b is the amplitude of
seasonal variation. By visual inspection of the sub-metered data, these parameters

were estimated to be,

a = 124kW
= SKW
A = 70days.

Section 5.3.1 describes how this model could have been estimated without the
benefit of sub-metered data. Figure 5.18 shows the seasonal variation in the lighting
load as well as the sine model identified for it. The day offset, A, can be determined
by knowing that the longest day of the year occurs on June 21 (day172), the summer
solstice. If a sinusoid starts on January 1, that is to say it crosses the x-axis at this
point, its minimum occurs on October 1 (day 274). But, the sinusoidal pattern of the
Earth's solar equinoxes does not start on January 1. Its starts on day 102, April 12.
This implies an offset between June 21 and October 1 of 102 days. But, the data
indicate that as far as the store's lighting system is concerned, the longest day occurs
near July 23 (day 204). This implies an offset between July 23 and October 1 of 70
days.

One possible explanation for the 32-day difference between the day of the
minimum lighting load (July 23) and the summer solstice (June 21) is that the outdoor
lighting system depends on the store management adjusting the timer clock for the
length of day. This is routinely done about once a month. This lag of one month may

explain why the lighting system minimum lags the summer solstice by about a month.

Because the sine model is a function of the day of the year, and not of
temperature, it cannot be implemented using only binned degree-hours for the full
year. Instead, it must be evaluated for each month, and multiplied by the hours in each
monthly temperature bin in order to simulate a bin temperature model. This was done
for all twelve months in 1992. The predicted lighting energy consumption for each
temperature bin was summed over each month to get an annual bin energy

consumption. This binned consumption is shown in Table 5.6 and Figure 5.19, and is
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Figure 5.18 Diurnal pattern of lighting load and sine lighting model, 1992

for College Station. The periodic variation in the lighting load
has its minimum near July 23 (day 204) rather than at the
longest day of the year, June 21 (day 172). The management
adjusts parking lot light timer monthly, after noticing that the
lights fail to turn on at the appropriate hour. This explains the
32-day lag.
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TABLE 5.6
Annual Summary of Sine Model and Four-P Model for Lighting

Temperature (°C) Hours kWh Sine Model 4-P Model
low  high avg (data) kWh Diff kW kWh Diff
-10 -5 -1.5 0 0 0 125 0
-5 0 -2.5 19 1791 2436 36.05% 126 239  33.79%
0 5 25 188 20725 24096 16.27% 127 24347  17.48%
5 10 7.5 744 89671 95301 6.28% 128 97180  8.37%
10 15 12.5 1082 132959 138395  4.09% 128 145831 9.68%
15 20 17.5 1633 198963 206538  3.81% 127 210419  5.76%
20 25 22.5 2185 266779 270467 1.38% 124 270925 1.55%
25 30 27.5 1708 221175 208065 -5.93% 121 207043 -6.39%
30 35 325 835 115270 100737 -12.61% 118 98618 -14.45%
33 40 37.5 8 1124 958 -14.77% 115 920 -18.19%
Total: 1048457 1046993  -0.14% 1057678  0.88%

compared to the sub-metered lighting data for each bin. Also shown are the bin
predictions of the constant linear lighting model. On the whole, the annual sum of the
sine model differs from the annual sum of the measured data by only 0.14%. The
annual sum predicted by the linear model differs by 0.88%. The sine model fits the
lighting data with a CV g 0f 3.12%. The linear lighting model fits the lighting data
with a CVpygp of 4.1%. This sine model can be used in place of the linear model in
the bin application by multiplying its predictions (kW) by the hours in each
temperature bin. Because it is not a temperature model, it has the appeal of not
requiring the estimation of an effective change-point temperature. The sine model has
a shortcoming, though; its parameters could not be identified in an objective manner
without detailed information, such as sub-metering, about the lighting load schedules.
Thus, since its performance was only marginally better than that of the constant linear

lighting model, we decided that the linear model was adequate for the bin modeling.

5.3 ALTERNATIVES TO SUB-METERING FOR THE COLLEGE STATION
STORE

We have seen that sub-metering can be used to provide energy consumption
data for both specific component loads and well as whole-building loads. In addition,
sub-metered data provides a means of identifying statistical models for use in binned
load prediction. Unfortunately, sub-metering can be expensive. If there are other
means of identifying component electricity loads, then they are worth pursuing. This
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section investigates some of the possible approaches to estimating component loads

without the use of sub-metering.

5.3.1 Base Loads

The easiest electricity loads to estimate are those which do not vary, or those of
which the variation is periodic and predictable in some way. For the College Station
store, the lighting and miscellaneous utility loads have this quality. Therefore, we
decided that it was worthwhile to see if information from a few site visits could be
used to replace the expensive sub-metering which had been used to identify the

component load models.

From the time-series plots in Figures 5.3, 5.5, 5.10 and 5.14, we can see that
the lighting and utility loads are fairly constant from day to day over a wide range of
temperatures. To estimate these base component loads, an energy use survey was
performed.? Information in the survey was comprised of nameplate readings of
electrical equipment as well as actual clamp-on measurements of easily identifiable

electrical loads.

Walk-through Survey Procedure. In order to estimate energy use in the store, the

following simple walk-through energy use survey procedure was followed.

) The lighting load was estimated by a walk-through fixture count. Information
on lamp wattages was obtained from stored replacement lamps. Parking lot
lights exhibit a seasonal behavior since they are on a timer which is adjusted
monthly to account for the changing length of night-time hours throughout the
year. Daily interior and exterior lighting scheduling information, obtained in
conversations with the store manager, was taken into consideration when
determining the average daily lighting load. The information provided by the
fixture count could also have been obtained by clamping the various electrical
distribution panels which make up the lighting circuit; however, this might

have taken more time as a fixture count.

2) Miscellaneous utility loads were also gauged by a walk-through nameplate
survey. However, by comparing the nameplate totals to the sub-metered utility
energy use, we found that nameplate data did not accurately represent actual

energy use. Since the utility load is fairly constant throughout the year, clamp-

8 See Section 3.1 and Appendix B for detailed results of the survey.
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on watt-meter readings taken on the main utility circuit panel could have been
used to accurately gauge the daily energy use. See Appendix B for a detailed
listing of lighting and utility loads.

3) HVAC fan loads were determined by using clamp-on amp readings.? This
information was also available from nameplate data, however the amp readings
indicated that the HVAC components do not all run at full rated load. The fans
run at about 80% of their nameplate load, and were measured to have a total

power draw of about 25 kW.

Lighting. The lighting count can be used to estimate the peak lighting load. Indeed,
the peak nameplate lighting load is estimated to be 177 kW. In Figure 5.20, we can
see that the sub-metered, maximum hourly lighting load is about 175 kW. But, as
determined previously, the daily average lighting load is 124.7 kW. Thus, partial load
fractions were determined based on the daily lighting schedules as follows:

Load Description Hours on Load fraction
Overhead sales area lighting 6 am.to 12 am. 0.75
Overhead non-sales 7:30 am. to 12 a.m. 0.70
Display cases 6 am.to 12 a.m. 0.75
Misc. non-fluorescent sales 8 a.m. to 12 am. 0.67
Video store sales area 8 am. to 1 am. 0.70
Parking lot (on average) 6 p.m. to 6 a.m. 0.50

When multiplied by the peak lighting load, the result is an average daily lighting load
of 126.1 kW. This is close to the average 124.7 kW. Compared to the peak load, this
amounts to a diversity factor of about 71%. The walk-through survey seems to give
values of peak and average energy use which are in fair agreement with the sub-
metered data. As can be seen in Figure 5.20, which depicts statistical box plots of the
hourly lighting load profile (based on a full year of lighting data), there are three
primary schedules of hourly lighting energy use which depend on the time of day.
Clamp-on measurements of these loads could be obtained by measuring the main
lighting circuit panel at times when each lighting schedule is known to be in effect (see
Figure 5.21). In this case, the times to measure are 3 a.m., noon, and 10 p.m. The

9 Clamp-on readings are made using a hand-held amp meter which, when placed around an electrical conductor, determines the
amount of current flowing in that conductor.
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average daily load could then be calculated based on knowledge of the schedule time
periods. Alternatively, temporary sub-metering could be installed on the lighting
distribution panels for one week.

The parameters of the sinusoidal lighting model -- average base, amplitude of
variation, and day offset -- were found by visually examining the sub-metered data.
We have already seen that the offset of the sine function is 70 days. With knowledge
of the store's operating procedures, the 70-day offset might have been estimated
without sub-metered data, but this estimation would not have been repeatable, and
would have relied on subjective judgment. When daily light schedules are available,
the average daily load and amplitude of variation can be estimated as described above.
The average of the sub-metered data is 124 kW, and the load estimated from the walk-
through lighting count, accounting for lighting schedules, is 126 kW. So, an estimate
for the mean of the sinusoid may be found without sub-metering. The amplitude of
the sinusoid may be found by estimating the variation in the outdoor lights due to the
variation in their cut-on time. The store management claims that the outdoor lights are

needed as early
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Box plot of the hourly lighting load profile for the period
01/01/92 to 01/01/93 for College Station. This plot depicts the
average hourly load profile for the store. Box whiskers and
outliers indicate the extremes of the data. A peak load of about
175 kW can be seen at 11:00 a.m., when parking lot lights had
been left on during the day. The relatively long upper whisker
lines seen between the hours of 1:00 a.m. and 8:00 a.m. indicate
that some of the store's indoor lights are occasionally left on
during those hours. The band of lower outliers during the
afternoon hours represent the load on Christmas day, when the
store is closed.
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Figure 5.21 Hourly lighting schedule with preferred times for clamp-on load

measurements for College Station store. This plot shows times
at which the three schedules of the lighting load at the College
Station store could be measured to determine the average daily
lighting load.

as 5:00 p.m. and as late as 9:30 p.m. -- a range of 4.5 hours. They shut off as early as
6:00 a.m., and as late as 8:00 a.m. -- a range of two hours. The peak connected load of
the outdoor lighting system is 27.6 kW. Over a total of 6.5 hours, this amounts to a
range of 179 kWh/day, or an average range of 7.5 kWh/h. This is 75% of the range
estimated by visual inspection of the data (10 kW).

While the development of the sinusoidal lighting model is an admirable
exercise in deductive reasoning, the sinusoidal model is only marginally superior to a
constant linear lighting model. Due to the amount of work involved, we chose to use
the linear model for further analysis. Regardless of which model is used, long-term

electrical sub-metering is not necessary to estimate the lighting load.

Miscellaneous Utility. The peak miscellaneous utility load is 130 kW according to
nameplate data. However, different components of this load are never all on at the
same time. The sub-metered data serve as a better source of information, and were
used to represent what clamp-on measurements could have revealed. The average sub-
metered utility load is 76.4 kW, which amounts to a combined diversity and load
factor of 58%. Thus, at estimating the utility loads, the walk-through survey would
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not have been sufficient unless a diversity/load factor could be accurately assumed.
However, since these loads do not vary from day to day, simple clamp-on watt-meter
measurements of the utility circuit at various times during the day and night would

yield enough data to determine a daily average value.

5.3.2 Varying Loads

With the base loads determined, the next task is to identify the loads which do
not remain constant. Primarily, these are comprised of the HVAC and refrigeration
system loads. The two HVAC compressors running at the time of the survey were
measured to have a load of about 59 kW. The average outdoor ambient temperature
for the day was 28°C (82°F). HVAC compressor and refrigeration compressor loads
were measured with clamp-on amp meters. This was preferred to nameplate readings
since these systems do not operate at full rated load. But while one-time clamp-on
measurements may be valuable for checking assumptions about the HVAC and
refrigeration systems, these loads are not constant, and it was not possible to estimate
their loads based on a survey alone. A different means for estimating varying loads

was necessary.

Monthly whole-building electricity consumption data is readily available from
the electric utility. If the refrigeration system load can be estimated, then it is possible
to deduce the HVAC load by subtracting the refrigeration and base loads (lighting and
utility) from the whole-building consumption. Figure 5.22 shows a whole-building
electricity model identified from 12 months of monthly utility bill data as compared to
the whole-building electricity model identified from the sub-metered data.

One year's worth of monthly utility billing data was used to identify the whole-
building, four-parameter change-point model. The parameters for this model are as

follows:

Load ag a ow ayIGH Change-point
(kWh/h) (kWh/h-°C)  (kWh/h-°C) (°C)

- —— 373.87 3.7785 9.5085 17.8
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Figure 5.22 Change-point models identified from utility billing data and

sub-metered data for College Station.

The utility billing model does very well at predicting the data from which it was
identified -- the R2 value is 99% and CV is 1%. It predicts the 1992 sub-metered data
with an R? value of 87% and a CV of 4%. The average billing period temperature was
20°C (67°F). When a year's worth of sub-metered electricity data are used, the four

change-point model parameters are as follows

Load ag a; ow aHIGH Change-point
(kWh/h) (kWh/h-°C)  (kWh/h-°C) (°C)
EwHB.sub 363.5 3.0144 9.7477 18.0

The whole-building model constructed from a full year of sub-metered data
predicts the wutility billing data with an R? value of 96% and a CV of 3% (which,
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incidentally, are better values than the 95% and 3% obtained when predicting the sub-

metered data from which the sub-meter model was identified).

When compared to the utility billing model, the full-year model predictions
differ by no more than 2.0%, based on the utility billing prediction values. It should be
noted that, from comparing monthly utility bills to monthly sums of the sub-metered
data, the sub-metered data themselves differ from the public utility's data by about 3%.
Since the full-year sub-meter model was derived from the sub-metered data, the 2.0%
difference between the models is not surprising. The model constructed from the
billing data is almost the same model that could be constructed from sub-metered data.
Either whole-building model works well. Thus, expensive sub-metering might be

replaced with monthly billing data and information from several site visits.

5.3.3 Load Disaggregation

Once the lighting and utility load models were determined, all that was left to
determine was the refrigeration compressor load and the HVAC load. While a one-
time walk-through survey could not reveal these varying loads in detail, we found it
was possible to obtain them by deductive reasoning from information already

available.

The whole-building model represents the variation for all the loads combined.
This model can be known either from sub-metered, whole-building daily data, or by
monthly utility billing data. Using the utility billing model, the whole-building
electricity load at 5°C (40°F) is 325 kWh/h. Figure 5.7 showed that the component
electricity loads could be added together to form the whole-building load. At this
point, again referring to Figure 5.7, we already have curves A, B, and D without the
use of sub-metering.'® The task then is to estimate curve C from either name-plate or
clamp-on measurements. The difference between curves C and D is the store's HVAC
load, and between curves C and B is the stores refrigeration compressor load. If
estimates of the maximum and minimum HVAC loads can be made, they can be
subtracted from each end of the whole-building model curve (curve D) to obtain two
points which define a line that is a proxy for curve C.

10 Gurve 4 represents only the miscellaneous utility load. Curve B is the sum of the utility load model and the lighting model.
Curve C is the sum of the utility, lighting, and refrigeration models; and curve D is the sum of the utility, lighting, refrigeration,
and HVAC models. Curve D coincides with the whole-building model (i.e., the dashed line).
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From Figures 3.12 and 3.13 in Chapter 3, it can be seen that at temperatures of
5°C (40°F) or lower, the only HVAC load is that of the air-handler fans. Both sub-
metering and clamp-on measurements reveal the main store air-handler fan load to be
about 25 kW. Clamp-on readings on the video store HVAC load indicate a 3 kW base
fan load. There are two dairy refrigeration compressors on the HVAC circuit with a
peak load of 11.5 kW. At 5°C, they are estimated to be at about half load. If we
subtract these loads from the whole-building model at 5°C, we get 290 kW, which
should be curve C at 5°C. In Figure 5.23, this subtraction is shown. From curve C,
the sub-metered refrigeration compressor load is 291 kW at 5°C (40°F). The

agreement is impressive.

Clamp-on watt measurements for the HVAC system were taken on a day when
the average daily temperature was 28.1°C (82°F). Whole-building electricity use at
this point is 472 kW, based on the utility billing model. The load for the HVAC
channel consisted of about 25 kW of fans, 58 kW in two compressors, 11.5 kW of
dairy compressors, and about 40 kW in the video store HVAC systems, totaling 135
kW. If we subtract this from the whole-building model at 28.1°C, we get 337 kW. If
the estimation of the HVAC load is accurate, this should represent the sum of all loads
except HVAC. In Figure 5.24, curve C shows the sum of the sub-metered non-HVAC
loads (refrigeration load plus base loads) to be 332 kW at 28.1°C. This agrees with
the subtracted value of 337 kW to 1.5%. A proxy for the refrigeration curve C can
then be interpolated between the points at 5 and 28.1°C. This curve is given by,

Coroxy = 2802 + 2.036T (3.3)

where T is the outdoor temperature. Cproxy represents the proxy model for the sum of
the lighting, utility, and refrigeration loads. Proxies for the HVAC and refrigeration

models can then be determined by subtraction.

Eyvac = Whole-building utility billing model - C
(5.4)

proxy

Ecomp = Coxy - Lighting model - Utility model (3.5)

proxy
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Predictions for HVAC and refrigeration compressor energy use based on these
proxy models were compared to the HVAC and refrigeration models developed from

the sub-metered data. The results are as follows:

Data Proxy Model 4-P CP
Mean R? Ccv R? Cv
Refrigeration
Compressors: 114.2 63% 8% 86% 5%
Combined-store
HVAC: 84.0 90 14 91 14

There are several sources of data from which change-point models can be
identified. Sub-metering unquestionably gives the best data. But, for the case of
constant base loads, the data vary by less than 10% of the mean. Thus, one-time clamp
measurements can give base load data that are within 10% of the average which would
be provided by a year's worth of sub-metered data. And, when it is possible to
accurately model base loads of a grocery store, and when the whole-building load
model is known, it is possible to use one-time clamp-on readings to disaggregate the
data and determine models for the two remaining, temperature-dependent loads. Table
5.7 lists the loads of interest in the College Station grocery store and how the data and

models for them were obtained.

To further test the concept of an end-use model derived from monthly billing
data and information from several site visits, the basic temperature change-point and
bin analysis performed on the College Station store was also performed on the Bryan
store. Only the results and relevant differences will be presented here.
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Sources of Model Identification Data for College Station Store

Load

Where obtained

Comments

Whole-building electricity

Miscellaneous utility

Lighting

HVAC

Refrigeration compressors

monthly utility bills

site visit

site visit

site visit

site visit

full year's worth

clamp-on watt meter
readings or nameplate

clamp-on watt meter
readings or nameplate

use clamp-on watt meter
readings at various
temperatures

use disaggregation and
clamp-on watt measure-
ments at various temper-
atures
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5.4 MODEL OVERVIEW FOR THE BRYAN STORE

Using the change-point selection methods outlined for the College Station
store, four-parameter change-point and constant linear models were developed for the
whole-building electricity and the four sub-metered loads at the Bryan grocery store. It
should be noted that only six months of sub-metered data were available at the time of
this analysis, and that the energy end-uses in the Bryan store are not as cleanly divided
by the four sub-metering categories. But since this represents a very real situation
which may be encountered, the effort was made to model the Bryan store using the
same procedure as used for the College Station store. Based on the experience with
the College Station store, three-parameter and sinusoidal models were not considered.
The models identified are summarized according to R? values (where applicable) and

coefficient of variation as follows (the statistics for the models chosen are underlined):

Data Simple linear 3-PCP 4-P CP

Mean Cv R2? cv R? Ccv R2 CvV
Refrigeration
Compressors: 139.5 13%  94% 3% 95% 3% % 2%
Lighting:

190.2 4 50 3 50 3 54 3
Combined-store
HVAC: 24.9 80 76 40 86 30 88 28
Miscellaneous
Utility: 57.6 9 53 6 82 4 82 4
Whole-building: 412.2 11 86 4 91 3 94 3

The choice of which model to use for subsequent analyses was made by
selecting the model with the best R? and CV values, as well as intuitive knowledge of
the nature of some of the component loads in the store. Empirically, the models

chosen for the component and whole-building loads are as follows:



i

Load ag a yw axIGH Change-point
(kWh/h) (kWh/h-°C)  (kWh/h-°C) (°C)

Ecomp 131.0 1.7789 3.5140 16.1

Epicurs 190.2

Epvac 17.25 1.1186 5.3655 18.7

Eum 57.6

Evim 402.6 3.8508 12.3388 19.2

Figure 5.2 shows the refrigeration compressor model and data. Below the
change-point temperature (16.1°C [60.4°F]), the slope is less pronounced. There is no
heat reclamation in this store. Thus, this change-point was due to the effect of the
compressor room exhaust fans which keep the room temperature above 15.9°C
(60.1°F). This change-point characteristic is similar to that found in the College

Station store.

Figure 5.26 is a plot of the lighting data and the mean lighting load model. It is
apparent that the load on the lighting circuit exhibits some temperature dependency.
The variation in the lighting load is not easy to explain. All lighting loads in the store
run on a set schedule.!! As discussed in Chapter 3 (Section 3.7), there are some
refrigeration case heater loads on the lighting circuit. The energy use of some of these
heaters seems to be related to the amount of moisture in the air, which is in turn
proportional to the outdoor temperature (for the south Texas climate). This may
explain the slope seen in the data when plotted against outdoor temperature. It may
also be that there is some HVAC load on the lighting circuit.

Figure 5.27 shows the HVAC model and data. Unlike for the College Station
store, there is no heat reclaim and no dehumidification provided by the Bryan HVAC
units. Thus there is no bimodal characteristic on either side of the change-point
temperature (18.7°C [60.4°F]).

The miscellaneous utility data and model are shown in Figure 5.28. This

energy use is not as constant as it is in the College Station store. This is due to the fact

' This is in contrast to the College Station store, where the switch-on time for the outdoor lights changes from month to month,
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Figure 5.25 Refrigeration compressor data and temperature change-point
model for the period 12/20/92 to 06/28/93 for Bryan store.
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Figure 5.26 Lighting data and constant linear model for the period 12/20/92
to 06/28/93 for Bryan store.
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Figure 5.27 Combined store HVAC data and temperature change-point
model for the period 12/20/92 to 06/28/93 for Bryan store.
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Figure 5.28 Utility data and constant linear model for the period 12/20/92
to 06/28/93 for Bryan store.
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that there are two HVAC units connected to this circuit. One is rarely used, but
represents a potential load of 10 kW. The other, which cools the manager's office,
adds about 10 kW to the utility load during peak times, and seems to only run at
temperatures above about 20°C (67.4°F). If clamp-on measurements were to be used
to gauge the utility load, they would not be able to account for this load unless it was

known when it occurred.

From Figure 5.29 and Figure 5.30, it can be seen how the sub-metered load
models can be added together to obtain the whole-building model. Figure 5.29 shows
the whole-building model. The change-point of 19.2°C (66°F) is quite noticeable. It
is slightly higher than the 16.1°C and 18.7°C change-points associated with the
refrigeration and HVAC systems because the whole-building data include the lighting
and utility loads which cause the regression procedure to weigh the data differently.

This results in a different change-point temperature for the whole building.

In Figure 5.30, curve A represents only the miscellaneous utility load. Curve B
is the sum of the utility load model and the lighting model. Curve C is the sum of the
utility, lighting, and refrigeration compressor models; and curve D is the sum of the
utility, lighting, refrigeration compressor, and HVAC models. Curve D does not
coincide with the whole-building model as closely for the Bryan store as it did for the
College Station store. This is because the lighting and utility models under-predict the
data (possible HVAC loads) at higher temperatures. Yet, this shortcoming is a valid
test for whether simple clamp-on power measurements can be used to accurately gauge
energy use over a range of temperature conditions. In this case, it reveals a
shortcoming of the method when end-use loads are not separated on different circuits.
There are situations where one-time measurements may not accurately predict the base

loads because they are not always connected to dedicated electrical panels.

The models developed above were applied to degree-hour bins to predict
energy use for any period of time given binned temperature data. This is the subject of

the next section.

5.5 BIN MODEL APPLICATION FOR THE BRYAN STORE

With the models identified, all that remained was to apply binned weather data
to the models to determine the energy load for any arbitrary period of time. Since bin
data were not available for the Bryan area, a program was developed to take hourly
weather data, from 12/20/92 to 6/28/93, and group them into bins.
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The models identified in Section 5.4 predict kilowatts per degree centigrade.
When they are multiplied by binned degree-hours, they predict energy use in kilowatt-
hours. The bin models were applied to the half year of 1993 binned temperature data,
and compared to the measured data for the same period. Results for the component
load and whole-building models are shown in Tables 5.8 to 5.12. These tables show
the bin hours used, the actual electrical consumption for each bin, and the model
predictions of consumption for each bin. Tables 5.8 to 5.12 also show the residual
difference (as a percent) between the bin predictions and the data. Two whole-
building, semiannual energy consumptions are compared. These are the measured
whole-building electricity and the sum of the predictions of the component bin models.
There is less than 1% difference between the sub-metered consumption, 1,891,926
kWh, and the predicted consumption, 1,901,784 kWh. Also listed in the table is the
total for data which could not be processed by the binning routine. These were energy
consumption data for which corresponding hourly temperature data were not
available.!? Their sum is 4,769 kWh. This is a relatively small amount, and does not
explain the less than 1% difference between the sub-metered model and the utility

billing data.

Figure 5.31 and Figure 5.32 show time-series and bin model predictions for the
refrigeration compressors. The bin model predicts the refrigeration load fairly
consistently over the entire range of temperatures (-10°C to 40°C). The bin axis labels
represent the midpoints of each 5-degree bin. As is the case for all of the subsequent
bin plots, the consumption data are slightly skewed towards the higher temperatures in
the range. This reflects the behavior of the temperature variable rather than that of the
energy consumption. The greatest percent difference for a refrigeration consumption
bin is about 3%.13 However, if the sum of the binned predictions is compared to the

semiannual sum of the sub-metered refrigeration data, the difference is less than 1%.

Figure 5.33 shows a time-series plot of the daily average of the lighting data.
The daily average of the lighting data tends to increase at time moves from one month
to the next. It is difficult to tell if this is a cyclic trend from only six months of data.
Figure 5.34 shows the binned hourly lighting load and predictions. Predictions and
data within each bin differ as much as 12.5%. However, this occurs in the extreme
bins which contain less than 3% of the energy consumption. Above 20°C (67.4°F),

12 without temperature data, it is not possible to tell in which bin the energy consumption occurred.

13 Based on sub-metered data for cach respective bin.
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predictions are consistently greater than the data. Likewise, below 20°C, predictions
are consistently less than the data. This is opposite the trend seen in the College
Station lighting data. This is due to the fact that we are using a constant model to
predict consumption which is not a flat curve, but varies slightly with respect to

temperature.



Bin Simulation for 4-P Refrigeration Model for Bryan Store

TABLE 5.8

Temperature (°C) Hours kWh Refr. Diff
low _high avg (data) kW kWh

-10 -5 -7.5 0 0 89 0 -
-5 4} -2.5 0 0 98 0 -
0 5 25 192 20960 107 20507 -2.16%
5 10 1.5 583 67311 116 67454 0.21%
10 15 12.5 973 120554 125 121232 0.56%
15 20 17.5 1032 139992 136 140263 0.19%
20 25 225 1085 166265 153 166508 0.15%
25 30 27.5 609 103221 171 104148 0.90%
30 35 325 120 21877 189 22628 3.43%
35 40 315 0 0 206 0 s
Total: 640181  kWh/yr 642740 0.40%

TABLE 5.9
Bin Simulation for Constant Linear Lighting Model for Bryan Store

Temperature (°C) Hours kWh Lights Diff
low _high avg (data) kW kWh

-10 -5 -1.5 0 0 190.2 0 -
-5 0 -2.5 Q0 0 190.2 0 -
0 5 5 192 32725 190.2 36518 11.59%
5 10 1.5 583 104209 190.2 110887 6.41%
10 15 125 973 178756 190.2 185065 3.53%
15 20 17.5 1032 195053 190.2 196286 0.63%
20 25 22.5 1085 209982 190.2 206367 -1.72%
25 30 27:5 609 126255 190.2 115832 -8.26%
30 35 32.5 120 26072 190.2 22824 -12.46%
35 40 375 0 0 190.2 0 -
Total: 873052  kWh/yr 873778.8 0.08%
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TABLE 5.10
Bin Simulation for 4-P HVAC Model for Bryan Store

Temperature (°C) Hours kWh HVAC Diff
low high avg (data) kw kWh

-10 -5 -1.5 [} 0 15 0 0.00%
-5 0 -2.5 19 473 22 423 -10.49%
0 5 25 192 5533 29 5597 1.14%
5 10 7.5 762 26366 36 27459 4.15%
10 15 12.5 1137 44613 43 48803 9.39%
15 20 17.5 1651 98402 51 83465 -15.18%
20 25 22.5 2179 201504 90 195185 -3.14%
25 30 27.5 1708 210747 129 219644 4.22%
30 35 325 835 127973 168 139961 9.37%
35 40 375 8 1318 207 1653 25.46%
Total: 716929  kWh/yr 722189 0.73%

TABLE 5.11

Bin Simulation for Constant Linear Utility Model for Bryan Store

Temperature (°C) Hours kWh Utility Diff
low high avg (data) kW kWh

-10 -5 -1.5 0 0 -12 0 e
-5 0 -2.5 0 0 -6 0 =
0 5 2.5 192 1087 -1 -159 -114.60%
5 10 1.5 583 3279 5 2779 -15.25%
10 15 125 973 8599 10 10080 17.22%
15 20 17.5 1032 20578 16 16463 -20.00%
20 25 225 1085 40264 38 41071 2.00%
25 30 215 609 32194 65 39391 22.35%
30 35 325 120 8566 92 10981 28.19%
35 40 37.5 0 0 118 0 o
Total: 114568  kWhiyr 120606 5.27%
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TABLE 5.12
Summary of Bin Simulation for Component Models for Bryan Store

Total Model Model Model Model

Temperature (°C) Hours Data Lighting Utility Refr. HVAC Total Diff
low high avg kWh kWh kWh kWh kWh kWh (%)
-10 -5 -1.5 0 0 0 0 0 0 0 --
-5 0 -2.5 0 0 0 0 0 0 0 -
0 5 25 192 65586 36516 11063 20507 -159 67928 3.57%
5 10 75 583 207144 110881 33592 67454 2779 214706 3.65%
10 15 12.5 973 360948 185055 56064 121232 10080 372431 3.18%
15 20 17.5 1032 413209 196276 59464 140263 16463 412466 -0.18%
20 25 22.5 1085 482327 206356 62518 166508 41071 476453 -1.22%
25 30 27.5 609 298798 115826 35091 104148 39391 294455 -1.45%
30 35 325 120 63913 22823 6914 22628 10981 63346 -0.89%
35 40 1.5 0 0 0 0 0 0 0 —
Data Sum: 1891926

Incomplete Data*: 4769

Model Sum: 873733 264706 642740 120606 1901784 0.52%

* Represent consumption data for which corresponding temperature data were not available.
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Figure 5.31 Time series plot of daily average refrigeration compressor load
for 1992 for Bryan store.
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Figure 5.35 and Figure 5.36 are plots of time-series energy use and binned
hourly electricity use for the combined-store HVAC system. Differences in binned
energy use and predicted energy use are as high as 28% for a particular bin.!4
However, the actual and predicted semiannual energy consumptions differ only by
5.3%. As in the case of the refrigeration system, there is no consistent trend in the

differences between the actual and predicted binned energy use.

Figure 5.37 and Figure 5.38 show the miscellaneous utility load as a time-
series and binned data plot. The binned energy predictions differ from the binned data
by no more than 6.5%, and tend to underestimate the energy use at higher
temperatures, while overestimating it at lower temperatures. Semiannual totals differ
by only 0.10%

Finally, Figure 5.39 and Figure 5.40 show the time-series plot and binned data
and model plot for the whole-building. Bin predictions differ by no more than 6.5%
from their corresponding binned data. On the whole, the semiannual sum of the

predictions differs by only 0.78% from the whole-building energy use data.

5.6 ALTERNATIVES TO SUB-METERING FOR THE BRYAN STORE

We have seen that sub-metering can be used to provide energy consumption
data for both specific component loads and well as whole-building loads. In addition,
clamp-on energy use measurements can provide the same information as expensive
sub-metering. But, there are limitations to the usefulness of clamp-on readings. This
arise primarily when constant component loads cannot be 1solated. In the case of the
Bryan store, the fact that the lighting and utility loads have some non-constant
components makes clamp-on measurements and constant linear models less reliable.
Nevertheless, the loads predicted by constant linear models can still be accurate to
within 10% of the true average value of the load being studied. The accuracy increases
further when long-term energy use is considered (such as semiannual or annual use).
To fully evaluate the performance of these models, the sections which follow attempt
to disaggregate the whole-building load at the Bryan store using the same methods

used in the College Station store.

14 Excluding one bin in which the actual consumption is so small as to make the percent difference 115%. This bin contains
only 0.9% if the semiannual energy consumption.
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5.6.1 Varying Loads

Using the lighting and utility constant linear models identified above for the
Bryan store through sub-metering!3, we proceeded to identify the loads which do not
remain constant -- the HVAC and refrigeration system loads. The most previous
year's worth of monthly whole-building electricity consumption data was obtained
from the electric utility company.'® This was used to identify the whole-building
model as was done for the College Station store. Figure 5.41 shows the whole-
building electricity models identified from 12 months of monthly utility billing data as
compared to the whole-building electricity model identified from the sub-metered
data.

When a year's worth of monthly utility billing data is used to identify the

whole-building model, we get,

Load ag a ow aAHIGH Change-point
(kWh/h) (kWh/h-°C)  (kWh/h-°C) (*C)
EwHB bills 388.74 2.9951 1313 17.2

This utility billing data model does very well at predicting the data from which it was
identified -- the R? value is 91% and CV is 5%. When used to predict the hourly data,
the 12-month billing model had an R2 of 89% and a CV of 4%. When a half-year's

worth of sub-metered electricity data are used, the model is,

Load ag a ow agIGH Change-point
(kWh/h) (kWh/h-°C)  (kWh/h-°C) (°C)
EwHB.sub 402.6 3.8508 12.3388 19.2

15 Sub-metering is taken to be equivalent to clamp-on energy use measurements for base loads. Since the lighting and utility
loads are not completely constant at the Bryan store, there are limitations to the usefulness of one-time clamp-on measurements.
These are discussed in the sections which follow.

16 The period covered was May 1992 to April 1993.
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Figure 5.41 Change-point models identified from utility billing data and

sub-metered data for the Bryan store.

This sub-metered data model predicts the hourly data with an R? value of 94% and a
CV of 2%. Either whole-building model works well. Thus, the utility billing model

was used for load disaggregation.

5.6.2 Load Disaggregation

All that was left to determine was either the refrigeration compressor load or
the HVAC load. The whole-building model represents the variation for all the loads
combined. Using the utility billing model, the whole-building electricity load at 0°C
(32°F) is 337 kWh/h. Figure 5.30 showed that the component electricity loads could
be added together to total the whole-building load. At this point, again referring to
Figure 5.30, we already have curves A, B, and D without the use of sub-metering. The
task then is to estimate curve C from either name-plate or clamp-on measurements.
The difference between curves C and D is the store's HVAC load. If estimates of the
maximum and minimum HVAC loads can be made, they can be subtracted from each

end of the whole-building model curve (curve D) to obtain two points which define a

line that is a proxy for curve C.
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From Figures 3.28 and 3.29 in Chapter 3, it can be seen that at temperature of
0°C or lower, the only HVAC load is that of the air-handler fans. Both sub-metering
and clamp-on measurements reveal the store's HVAC fan load to be about 5 kW. If
we subtract this load from the whole-building model at 0°C, we get 332 kW, which
should be curve C at 0°C. In Figure 5.42, this subtraction is shown. From curve C,
the sub-metered refrigeration compressor load is 350 kW at 0°C (32°F). The
agreement is not as remarkable as it is for the College Station store, but it the proxy

value is within 5.1% of the value of curve C at 0°C.

Clamp-on measurements of the HVAC system were taken at an outdoor
ambient temperature of 24.8°C (76°F). At this temperature, the HVAC load was 78.5
kW. Whole-building electricity use at this point is 488 kW. If we subtract the HVAC
load from the whole-building model at 24.8°C, we get 409.3 kW. If the estimation of
the HVAC load is accurate, this should represent the sum of all loads except HVAC.
In Figure 5.43, curve C shows the sum of the sub-metered non-HVAC loads
(refrigeration load plus base loads) to be 409.8 kW at 24.8°C. This agrees with the
subtracted value of 409.3 kW to 0.1%. A proxy for the refrigeration curve C can then
be interpolated between the points at 0 and 24.8°C. This curve is given by,

Cproxy = 332164 + 3.13T (5.6)

where T is the outdoor temperature. C,,, represents the proxy model for the sum of

proxy
the lighting, utility, and refrigeration loads. Proxies for the HVAC and refrigeration

models can then be determined by subtraction.

Eyvac = Whole-building utility billing model - C (&T)

proxy

Ecomp = Cproxy - Lighting model - Utility model (5.8)
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Predictions for HVAC and refrigeration compressor energy use based on these
proxy models were compared to the HVAC and refrigeration models developed from

the sub-metered data. The results are as follows:

Data Proxy Model 4-P CP
Mean R? CvV R2 Ccv
Refrigeration
Compressors: 139.5 92% 4% 97% 2%
HVAC: 249 11 79 88 28

There are several sources of data from which change-point models can be
identified. Sub-metering unquestionably gives the best data. For the case of lighting
load, the data vary by less than 10% of the mean. But, unlike the College Station
store, the variation in the Bryan store's utility load is more significant -- data may vary
to £17% of the average. Thus, one-time clamp measurements can give base load data
that are within 17% of the average which would be provided by a year's worth of sub-
metered data. The effect that this has on the development of the proxy models is seen
in the poor R2 and CV values associated with the proxy HVAC model. Its coefficient
of variation is 75% as compared to the 28% of the model identified from sub-metered
data. TABLE 5.13 lists the loads of interest in the Bryan grocery store and how the

data and models for them were obtained.

Using constant linear models in a load disaggregation procedure works well
only when those models accurately represent the data from which they are identified.
Because the use of constant base-load models leads to unsatisfactory results when
attempting to disaggregate the remaining models, we conclude that there are situations
where it is not possible to accurately model component electricity loads without the
use of sub-metering. At the very least, multiple clamp-on measurements would be
necessary throughout the year to accurately gauge base loads which have significant

variation.
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Sources of Model Identification Data for Bryan Store

Load Where obtained Comments
Whole-building electricity  monthly utility bills full year's worth
Miscellaneous utility site visit sub-metering, clamp-on
watt meter readings,
or nameplate data
Lighting site visit clamp-on watt meter
readings or nameplate
HVAC site visit use clamp-on watt meter
readings at various
temperatures
Refrigeration compressors  site visit use disaggregation and

clamp-on watt measure-
ments at various temper-
atures
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5.7 SUMMARY

Some general conclusions about the relative merits of end-use load estimation

and sub-metering can be made here:

1)

2)

3)

4)

5)

Four-parameter change-point models work better than three-parameter or
simple linear models when there is a clear change-point in the data, when such
a change-point is physically meaningful, and when slopes exist on both sides of
the change-point. In general, change-point models are not capable of
determining the source of an apparent change-point behavior. As in the case of
the College Station store lighting load, some data sets display false change-
point behavior. However, they can accurately predict the data when the
change-point is present. While change-point models can be used to fit these
data sets, they do not represent the data in quality since they use a temperature
dependency to describe another relationship such as seasonality. Thus, we
must rely on intuition to tell when such cases arise, and may elect to use

constant linear models to predict these loads.

The component energy load models, identified from sub-metered data, were
used to predict energy loads from binned degree-hour data. The whole-
building bin model annual prediction differed by no more than 4% from either

the sub-metered whole-building annual sum or the store's utility billing data.

A sinusoidal model was found to fit the store's lighting data better than the
constant linear model. The sinusoidal model was physically meaningful since
the variation in the College Station store's outdoor lighting load was due to the
changing length of the day which follows a sinusoidal pattern. The procedure
necessary to identify this model was not simple, and were not warranted by the

marginal superiority to the constant linear model.

Utility billing data were found to be good proxies for the whole-building sub-
metered models. This implies that bin methods can be employed with change-
point temperature models developed from utility billing data.

In the College Station store, base loads were easily discernible through walk-
through energy use surveys. This was also true for the Bryan store; however,
the sub-metered data (which were used as proxies for clamp-on measurements)
were not at cleanly divided according to end-use as in the College Station store.
For some loads, it was necessary to know hourly scheduling information. By

comparing the nameplate totals to the sub-metered utility energy use, we found
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that nameplate data did not accurately represent actual energy use. Since the
daily utility and lighting load schedules are fairly constant throughout the year,
clamp-on watt-meter readings taken on the distribution panels could have been
used to accurately gauge the daily energy use for these end-uses. Some form of
sub-metering or multiple clamp-on measurements was required to gauge these
loads since lighting and equipment counts only provide peak loads. In the
Bryan store, the presence of some temperature- or humidity-dependent loads on
the lighting and utility circuits proved to be hindrances in modeling the base
loads with only one-time clamp-on measurements and constant linear
techniques. A remedy for this would be to actually follow through with the
clamp-measurement method to attempt to isolate the HVAC and other

temperature-dependent loads which might be on these circuits.

Attempts at disaggregating whole-building loads have value and limitations.
Even monthly whole-building data provide enough information to determine a
building change-point model. Without sub-metering, this is the only change-
point model available. Component loads which have strong change-point
behavior are only discernible through some sort of metering. However, if there
is only one such load, then the change-point may be estimated as the change-
point of the whole-building load. If there are two such change-point loads, but
the variation of one is approximated as linear!7, then it may be possible to
identify models for both loads based on measurements of the minimum and
maximum of one. This was how the HVAC and refrigeration loads were

disaggregated from the whole-building load at each case-study store.

Finally, the disaggregation procedure used to determine the HVAC and
refrigeration loads without sub-metering depends on all other component loads
being fairly constant. This was the case for the College Station store, where
one-time clamp-on measurements were fair estimates of the lighting and utility
loads. However, these loads at the Bryan store varied much more significantly
with temperature, and consequently, the constant linear models identified from
one-time measurements made the disaggregation procedure less accurate. The
only way to avoid this problem is to make extensive clamp-on measurements
in order to aggregate each individual loads into its proper end-use category

(refrigeration, HVAC, lighting, or utility). This effort borders on sub-metering,

17

without a change-point. Such is the case for the refrigeration systems of both stores studied here.
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since it would have to be done at several times throughout the year for varying
loads, and would be quite involved. But even with these limitations, the

disaggregation procedure is moderately successful.

The models identified with sub-metered data for the College Station and Bryan
stores were tested with binned degree-hour data. The resulting bin models
predicted annual and semiannual energy consumptions to within 5% difference.

In most instances, the difference was less than 2%.
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CHAPTER VI

DISCUSSION AND CONCLUSIONS

6.1 REVIEW OF OBJECTIVES

The literature review of grocery store studies has revealed that identifying
potentials for energy savings in food sales facilities is a worth-while pursuit. Because of
this, there is a need for further study and modeling of store energy use, and for the
evaluation of such models with actual, measured data. The objectives of this thesis were

to:

1) Conduct a survey of the energy characteristics of grocery stores in the south-Texas
area using corporate utility data and information from a mail-in survey.

2) Sub-meter hourly component electricity loads at two local case study grocery store
along with coincident climatic conditions.

3) Develop and test an effective and readily understandable graphical means of
presenting the monitored hourly data to store management.

3) Test change-point, principle component analysis and multiple linear regression

methods to model the daily whole-building and component electricity load data
and to evaluate the physical significance and relative merits of PCA and MLR

models.

4) Compare daily models from the metered data to a model of the monthly utility bill
data, and determine the usefulness of the information in the monthly data in

predicting component loads.

6) Develop and test a new disaggregation technique for determining component-level
electricity use based on readily available whole-building electricity use data and
survey data, and thereby develop means of gauging energy use that are less-

expensive than sub-metering.



198

6.2 CONCLUSIONS
6.2.1 93-Grocery Store Survey

The survey of the 93 grocery stores in south-Texas showed that there is much that
can be learned about energy use in grocery stores from utility billing data and from
simple, mail-in survey that include annual energy use statistics. The survey determined

the following:

1) Total electricity EUI is as average of about 9 W/ft? (96.9 W/m?), and varies to
extremes by + 2 W/ft? (£ 21.5 W/m?). Stores smaller than 40,000 ft2 had an
average overall EUI of 9.5 + 1.7 W/ft2, while stores larger than 50,000 ft2 had an
average EUI of 7.7 + 1.1 W/ft2. Stores between 40,000 and 50,000 ft2 had an
average EUI of 8.2 + 1.4 W/ft2.

2) With most of the stores in the same geographic area, it seems unlikely that
variations in climate-dependent loads explain the trend in EUIL. Rather, this seems
to be due to component loads which do not increase as store size increases. The

largest such load is refrigeration.

3) Stores built after 1979 have roughly 9% less energy consumption per square foot
than those built before 1979. This is due to at least two reasons.

a) Stores built after 1979 were larger. These stores used their additional
space to stock merchandise that did not require refrigeration.

b) Stores built after 1979 included a significant number of energy-saving
measures.
4) In the south-Texas region, heat reclamation from the refrigeration systems

provides an adequate means of space heating for almost all winter-time

conditions.

5) In general, grocery store energy use is divisible into components. Because only
some of these components are dependent upon store size and/or climate, a more
detailed analysis, such as the case study section of this project, is required in order
to determine key predictors of energy use for a particular store. Nevertheless, the
database section of the project provides a good foundation on which to apply the
results of the findings in the case study.
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6.2.2 Sub-metering of Local Case Study Stores

Hourly component electricity loads were sub-metered at two local case study

grocery stores along with coincident climatic conditions. The end-uses of energy were

evaluated by means of walk-through surveys as well as intensive sub-metering. The

following general conclusions were made:

1)

2)

3)

4)

5)

The sub-metering of component electricity loads in the case study store proved
useful in making the store management aware of operational and maintenance
problems. In this study, the feedback was handled manually; however, it is
expected that automated methods could have easily provided similar information.
Such systems could pay for themselves in just a few years. Problems such as
lighting shut-off were spotted quickly through the feedback process.

Sub-metering also provides good data with which to construct and verify
statistical energy end-use models.

For this study, peak nameplate and survey readings for electricity loads were
moderately good proxies for annual sub-metered end-use loads insofaras relative
percentages of energy use are concerned, though they tend to overstate the effects
of food-preparation equipment and other equipment which is used only

occasionally or only for a few hours of the day.

Simple scatter plots of electricity use versus outdoor temperature were useful in
gauging the temperature-dependency of certain component loads, and presenting
these facts to the store management. They also provided a visual means of
comparing the component loads to each other and to whole-building electricity
use. Such graphs can be produced each week automatically, and used by store

management to spot operations and maintenance problems.

Daily data were found to be good indicators of the patterns of hourly electricity
use in the case study store for all loads except lighting which exhibits strong time-

of-day characteristics.

In specific, we note the following:

6)

7)

The lighting systems of both stores are comparable. The College Station store has
142 kW of indoor lighting, amounting to 2.6 W/ft? (28 W/m?). The Bryan store has
138 kW of indoor lighting, amounting to 2.8 W/ft? (30 W/m?2).

In both stores, refrigeration and HVAC loads were found to be dependent on outdoor
temperature, while lighting and miscellaneous utility loads were not.
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8) Both the College Station and Bryan stores have refrigeration and HVAC loads that
are temperature-dependent.

9) Both stores have change-points in whole-building, HVAC, and refrigeration loads.
The refrigeration systems of both stores exhibit a change-point temperature at about
60°F (16°C).

10) The College Station store employs heat reclaim from the refrigeration system. As a
result, the refrigeration energy use exhibits a bimodal characteristic below the

change-point temperature.

11) The most significant difference between he two stores is in their HVAC systems.
The Bryan store lacks heat reclaim and dehumidification, and uses natural gas for

heating.

12) The College Station store uses about 851 million Btu/yr, or 15,400 Btu/ft?-yr or
natural gas whereas the Bryan store uses about 690 million Btu/yr, or 14,200
Btu/ft2-yr. Nevertheless, the Bryan stores peak gas use is significantly higher than

that of the College Station store due to the fact that it uses gas for space heating.
6.2.3 Test of Regression Methods

For this case study, the following conclusions regarding the performance and

relative merits of PCA and MLR modeling techniques were drawn:

1) The 1992 PCA model worked better than the 1992 MLR model at re-identifying
the same model parameters for the 1992 data set as predicted by the 1989 PCA
and MLR models. Thus, PCA does better than MLR in terms of parameter re-
identification when used to predict data from a period which was different than
that used to construct the model.

2) PCA does slightly better than MLR in terms of R? and RMSE criteria when used

to predict data from a period which was not used to construct the model.

3) In both 1989 and 1992 whole-building models, MLR techniques underestimated
the effects of solar radiation. For this study, PCA was found to be superior in
estimating the effects of the variations in solar radiation on the grocery store
whole building electricity use and HVAC system electricity use. The variation in
the HVAC load due to solar radiation predicted by the HVAC PCA model was
15.1 kW, which agreed closely with the variation predicted by the diversified load
calculation, 14 kW. MLR analysis predicted —5.6 kW.
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In the 1992 models, MLR techniques over estimate the effects of outdoor
temperature. For this study, PCA was found to be of greater use than MLR in
estimating the effects of variations in temperature on the grocery store whole
building electricity use and HVAC system electricity use. The temperature
parameter predicted by the HVAC PCA model, 2.34 kWh/h-°C, agreed closely
with the building U-A, 2.07 kWh/h-°C. MLR analysis predicted 4.96 kWh/h-°C.

One shortcoming of both PCA and MLR analyses is that they determine only one
base load. They attempt to account for energy use due to changes in variables, but
cannot estimate the total effect due to any one variable since the base load cannot

be separated into contributions due to each variable.

For some variables, such as specific humidity, identifying the physical
significance of the parameters predicted by PCA (or MLR) may be more difficult
and involved, since alternative models which must be used to verify the PCA and
MLR predictions are likewise complex and involved. For this study, we did not
attempt to verify the significance of the specific humidity or sales parameters
provided by either PCA or MLR.

In general, we conclude that for a building with a simple HVAC system, model

parameters obtained through PCA have more physical significance than those obtained

through MLR analysis!, and that these model parameters correspond to those which are

fairly easily measurable (such as building UA and solar load).

6.2.4 End-use Load Estimation

Some general conclusions about the relative merits of end-use load estimation and

sub-metering were made:

1)

Four-parameter change-point models work better than three-parameter or simple
linear models when there is a clear change-point in the data, when such a change-
point is physically meaningful, and when slopes exist on both sides of the change-
point. In general, change-point models are not capable of determining the source
of an apparent change-point behavior. As in the case of the College Station store
lighting load, some data sets display false change-point behavior. However, they
can accurately predict the data when the change-point is present. While change-
point models can be used to fit these data sets, they do not represent the data in

I This applies to parameters for which physical significance could be tested.
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quality since they use a temperature dependency to describe another relationship
such as seasonality. Thus, we must rely on intuition to tell when such cases arise,

and may elect to use constant linear models to predict these loads.

The component energy load models, identified from sub-metered data, were used
to predict energy loads from binned degree-hour data. The whole-building bin
model annual prediction differed by no more than 4% from either the sub-metered
whole-building annual sum or the store's utility billing data.

A sinusoidal model was found to fit the store's lighting data better than the
constant linear model. The sinusoidal model was physically meaningful since the
variation in the College Station store's outdoor lighting load was due to the
changing length of the day which follows a sinusoidal pattern. The procedure
necessary to identify this model was not simple, and were not warranted by the

marginal superiority to the constant linear model.

Utility billing data were found to be good proxies for the whole-building sub-
metered models. This implies that bin methods can be employed with change-

point temperature models developed from utility billing data.

In the College Station store, base loads were easily discernible through walk-
through energy use surveys. This was also true for the Bryan store; however, the
sub-metered data (which were used as proxies for clamp-on measurements) were
not at cleanly divided according to end-use as in the College Station store. For
some loads, it was necessary to know hourly scheduling information. By
comparing the nameplate totals to the sub-metered utility energy use, we found
that nameplate data did not accurately represent actual energy use. Since the daily
utility and lighting load schedules are fairly constant throughout the year, clamp-
on watt-meter readings taken on the distribution panels could have been used to
accurately gauge the daily energy use for these end-uses. Some form of sub-
metering or multiple clamp-on measurements was required to gauge these loads
since lighting and equipment counts only provide peak loads. In the Bryan store,
the presence of some temperature- or humidity-dependent loads on the lighting
and utility circuits proved to be hindrances in modeling the base loads with only
one-time clamp-on measurements and constant linear techniques. A remedy for
this would be to actually follow through with the clamp-measurement method to
attempt to isolate the HVAC and other temperature-dependent loads which might

be on these circuits.
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Attempts at disaggregating whole-building loads have value and limitations.

Even monthly whole-building data provide enough information to determine a
building change-point model. Without sub-metering, this is the only change-point
model available. Component loads which have strong change-point behavior are
only discernible through some sort of metering. However, if there is only one
such load, then the change-point may be estimated as the change-point of the
whole-building load. If there are two such change-point loads, but the variation of
one is approximated as linear?, then it may be possible to identify models for both
loads based on measurements of the minimum and maximum of one. This was
how the HVAC and refrigeration loads were disaggregated from the whole-

building load at each case-study store.

Finally, the disaggregation procedure used to determine the HVAC and
refrigeration loads without sub-metering depends on all other component loads
being fairly constant. This was the case for the College Station store, where one-
time clamp-on measurements were fair estimates of the lighting and utility loads.
However, these loads at the Bryan store varied much more significantly with
temperature, and consequently, the constant linear models identified from one-
time measurements made the disaggregation procedure less accurate. The only
way to avoid this problem is to make extensive clamp-on measurements in order
to aggregate each individual loads into its proper end-use category (refrigeration,
HVAC, lighting, or utility). This effort borders on sub-metering, since it would
have to be done at several times throughout the year for varying loads, and would
be quite involved. But even with these limitations, the disaggregation procedure
is moderately successful.

The models identified with sub-metered data for the College Station and Bryan
stores were tested with binned degree-hour data. The resulting bin models
predicted annual and semiannual energy consumptions to within 5% difference.

In most instances, the difference was less than 2%.

without a change-point. Such is the case for the refrigeration systems of both stores studied here.
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APPENDIX A

DATA PROCESSING

This appendix describes the basic procedures used to poll and archive data
from the College Station and Bryan grocery stores. Portions of this work are
adapted from Haberl, et al. (1992) which contains a wealth of background

information about building sub-metering projects in general.

A.1 REVIEW OF MEASUREMENT TECHNIQUES

This section provides a review of measurement techniques used at the case
study stores, including how electricity measurements, temperature measurements,
and humidity measurements were taken. Component electricity loads for both the
Bryan and College Station stores were measured with voltage (potential) and
current transducers and recorded on separate data acquisition systems. Indoor
temperature and relative humidity measurements for the College Station store were
measured with sensors located near the air-handler units' return air grille and were
also recorded with the data acquisition systems. Outdoor climate data -- dry-bulb
temperature, relative humidity, solar radiation, and wind speed -- were measured
with sensors located atop the Zachry Engineering Center located in between the
two stores approximately two miles from each, and were provided by the Texas

LoanSTAR monitoring program.

A.1.1 Basics of Electricity Monitoring.

In the case study stores, hourly electricity use was recorded using digital
watt transducers. These make use of the Watt/Watt-hour transducer. This solid
state device provides a direct analog or digital output signal that is proportional to
the energy being consumed. Watts are calculated electronically and output as
either an analog DC signal or pulsed output that uses a basic time-division-
multiplier principle. Almost all of the kW channels at both stores receive analog
output. The only exception is the digital whole-building signal at the Bryan store.
Conversion of the energy consumption to analog or pulsed output utilizes two
different processes. In brief, an input reference voltage from a potential
transformer (PT) is supplied that provides a signal that is proportional to the

voltages of each of the phases being monitored. This is combined within the data
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acquisition hardware with input current signals -- from current transducers (CTs)
attached to the wires of each monitored circuit-- to produce digital output signals
that are proportional to the energy used by each circuit being monitored. These

signals are then stored by the data acquisition system for later retrieval.

A.1.2 Measuring Temperature

The measurement of temperature by a computer is a rather mature
technology. In fact, the computerized measurement of temperature has become so
reliable that it is quite often used as and indirect method for measuring other
quantities such as flow and humidity. The temperature sensor used at the College
Station store is a 2-wire, 1000-Ohm, Platinum resistance temperature detector
(RTD).

An RTD is an electrical device which has a resistance that varies linearly
with temperature. It can be used, therefore, to measure temperature. Electrical
resistance in many materials changes with temperature. In some materials this
change is very reproducible and therefore can be used as an accurate measure of

the temperature.

A.1.3 Measuring Humidity

This section describes the humidity-sensing devices in the College Station

store (there are none in the Bryan store).

Resistance-type Humidity Measurements. The remote humidity sensor
used by its HVAC system is known as a resistance-type humidity sensor. The
electrical conductivity of certain hygroscopic materials varies in proportion to the
amount of moisture absorbed by the material. In certain materials this occurs in a
repeatable fashion and can be used to measure the relative humidity of the
surrounding air. One of these sensors, known as a Pope cell-type sensor, utilizes a
thin layer of sulfonated polystyrene which has been placed on an insoluble surface.
An electrically conductive layer is then bonded to the resin and electrodes are
attached to facilitate the measurement of the difference in electrical resistance.
Such a device exhibits a non-linear change in resistance as moisture is absorbed by
the hygroscopic resin, varying from a few megohms to about 1,000 ohms at 100%

saturation.



Thin-film Capacitance-type Humidity Measurements. Humidity
measurements were taken at the College Station store to help determine how well
the store's humidity was controlled by the HVAC system. Figure A.1 shows the
return air temperature and humidity sensors used at the College Station store. The
return air humidity sensor installed at the College Station store is a thin-film
polymer humidity sensor manufactured by Vaisala Sensor Systems (Vaisala 1988).
It uses a polymer to absorb and desorb moisture. The polymer is usually mounted
between a rigid aluminum base and another electrode (usually a thin gold film).
The polymer exhibits a change in capacitance with a change in absorbed moisture.
In one type of sensor, this changing capacitance changes the frequency of an
oscillating circuit which in turn is changed into a varying voltage or current that is
proportional to the moisture present. The return air humidity sensor was tested
with a two-salt solution calibratation and found to agree with theoretical RH values
to 6.3%. The RH calibration results are listed in Table A.1 The salt solutions used
in the calibration were NaCl (for 75%RH) and LiCl (for 11%RH). The theoretical
equations for the relative humidity of the air above the surface of these solutions

are as follows (Greenspan 1977).

Lithium Chloride:
RH = 11.2323 - 0.00824245 T - 0.000214890 T?
Sodium Chloride:
RH = 75.5164 + 0.0398321 T - 0.00265495 TZ + 0.000284800 T3

where T is the temperature of the air and solution at thermal equilibrium.

The RTD sensor was tested against a transfer reference RTD sensor which
agrees with ASTM thermometers to 1%. The test RTD agreed with the transfer
standard RTD to 6% accuracy.

210
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Figure A.1 Photograph of the temperature/humidity sensor installed at

the College Station store.

TABLE A.1
Results of the Calibration of Vaisala Humidity Sensor

Steady State Conditions
Salt Used Ave. T Avg. Test RH  Avg. Theoretical RH Difference
NaCl 62.1°F 75.25%RH 76.13%RH 0.84%RH
NaCl 725°F 73.09%RH 76.3%RH 3.2%RH
NaCl 82.4°F 71.73%RH 76.56%RH 4.8%RH
LiCl 61.1°F 10.39%RH 11.09%RH 0.70%RH
LiCl 70.3°F 10.54%RH 11.04%RH 0.50%RH
LiCl 80.7°F 10.54%RH 10.99%RH 0.45%RH
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A.2 MONITORING EXPERIMENTS USED IN THE CASE STUDY
STORES

Two sites were used in the case study -- the College Station and Bryan
grocery stores. Weather data was obtained from a nearby weather station located
on top of the Zachry Engineering Center on the campus of Texas A&M University,
approximately half-way between the two stores. FigureA.2 shows a map of the
cities of College Station and Bryan including the locations of the case study stores

and weather station.

The level of monitoring used in the case study stores enabled a more
detailed analysis for identifying the building energy use characteristics and for pin-
pointing building operational problems. Figure A.3 shows the weather station
monitoring diagram. The weather station was located approximately two miles
from either grocery store, atop the Zachry Engineering Center at Texas A&M
University. The weather station provided data which include outdoor ambient dry-
bulb temperature, outdoor relative humidity, horizontal solar radiation, and wind
speed. Other psychrometric propertied of outdoor air were derived using

psychrometric relationships coded in to a computer processing routine developed

N

Business Route‘®\

Bryan Store

Texas A&M University Campus
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National Weather
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FigureA.2 Map of Bryan-College Station area showing store locations.
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Figure A.6  Photograph of the front of the College Station store

Figure A.7  Photograph of the front of the Bryan store.
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by the staff of the Energy Systems Laboratory at Texas A&M University (AIR
1992). Figure A.4 and Figure A.5 show the monitoring experiment plans as
installed in the College Station and Bryan case-study stores, respectively. Figure
A.6 and Figure A.7 are photographs of the fronts of the College Station and Bryan
stores. The electrical connections to the loggers are illustrated in Figure A.8 and

Figure A.9. The loggers have been configured to record the following:
College Station Logger.
« fifteen channels of electrical power, kW (CT Channel 0, 1, 2 ... 14),
« one channel of temperature, 1000 Ohm RTD (AN Channel 10),
« one channel of relative humidity, 4-20 mA (AN Channel 11)
Bryan Logger.
« twelve channels of electrical power, kW (CT Channel 0, 1,2 ... 11),
e one channel of whole-building electrical power, kW (D Channel 0)

Fifteen separate channels are recorded for the College Station site. When the
monitoring was installed, an attempt was made to isolate each of the four major
electrical loads -- refrigeration compressors, lighting, HVAC, and miscellaneous
loads. Three channels were designated for each load (for each electrical phase).
However, because part! of the video store's HVAC system was installed on the
whole-building refrigeration circuit, three additional sub-metering channels were
added to monitor the video store HVAC load so that it could be subtracted from
the main store refrigeration load. In late 1991, it was discovered that the store
management had subsequently installed two additional 7.5-horsepower dairy
refrigeration compressors on the main store's HVAC circuit. These were
discovered too late to install more sub-metering. Walk-through survey
measurements revealed that the two new dairy compressors amount to about 9% of
the remaining refrigeration compressor load. Thus, during subsequent statistical
analysis, this fraction was used to adjust the data when necessary to accurately
gauge the refrigeration and HVAC loads. For the College Station store, whole-
building electricity data are not monitored directly, but assembled by adding the

data from the first twelve sub-metered channels.

I' Two 7.5-ton roof-top units.
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Diagram of College Station logger set-up.
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Figure A.10 Pulse Detector Circuit.

This optical isolation circuit was added between the utility
meter and the logger to provide a clear pulse signal. The
logger digital channel 1 is used as a bias for the input
signal conditioning, but does not record any data. Digital
channel 0 is used to record the pulse output.
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Figure A.5 shows the monitoring experiment plan as installed in the Bryan
case study store. The Bryan monitoring scheme is made up of thirteen separate
data channels. While the ultimate goal was to monitor the four major components
of the whole-building load, these loads could not be gauged directly. Instead, a
cascading scheme of sub-metering was used. The first three data channels measure
the three phases of the refrigeration compressor load. The next three measure the
three phases comprising lighting and HVAC. The next three channels measure the
HVAC and some lighting loads. The next three channels measure the lighting load
contained in the previous three channels. Subtraction is then used in the data
processing routines to isolate the total lighting load from the HVAC load. The last
data channel monitors whole-building electricity use. This is in the form of a
digital pulse signal provided by the electric utility. Figure A.10 shows a pulse
detector circuit which was installed between the logger terminals and the electric
meter output terminals. This was done to ensure that the voltage pulse generated
by the utility meter was detected and electrically isolated from the logger. The
remaining miscellaneous store loads are identified by subtracting the sum of all the

sub-metered loads from the whole-building energy consumption.

The whole-building data recorded for both stores compares to that given by
the monthly utility bills as follows in Table A.2. Values of monthly electricity
consumption for the College Station store differ by less than 3%, and those for the
Bryan store by less than 1%. The strong agreement for the Bryan store data is not
surprising since it represents the same signal that the utility company uses for

billing.

A.3 USING A DATA LOGGER

This section that follows is intended to document how the energy and space
condition data for both grocery stores were collected, stored, and retrieved. The
loggers used at the grocery stores are of the same model and were developed by
Battelle/PNL for the USDOE. This model is commercially available (Synergistics
1990). The reader is referred to the manufacturer's manual for additional details.
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TABLE A.2
Monthly Utility Bills and Sub-metered Whole-building Data

Date Store Sub-metering  Utility bills Difference
(kWh/month) (kWh/month) (%)

1/9/92-2/7/92 G5 236376 240400 1.7
2/7/92-3/11/92 C.5. 286223 292800 2.2
3/11/92-4/8/92 C:S. 243524 247600 1.6
4/8/92-5/12/92 .S 328130 334000 1.8
5/12/92-6/10/92 CS. 288210 294000 2.0
6/10/92-7/12/92 C.S. 333525 339200 1.8
7/12/92-8/11/92 CS. 357072 363600 1.8
8/11/92-9/11/92 CS. 341525 347200 1.6
9/11/92-10/9/92 b 285100 292400 2.5
10/9/92-11/9/92 C.S. 291172 296400 1.8
12/3/92-1/28/93 Bryan 256874 257680 0.3
1/28/93-2/25/93 Bryan 251759 250400 -0.5
2/25/93-3/29/93 Bryan 299630 299520 -0.03
3/29/93-4/30/93 Bryan 316664 314320 -0.7

A.3.1 Connecting the Sensors to the Logger

Figure A.11 is a photograph of the data logger installed at the College
Station store. Figure A.8 and Figure A.9 are diagrams of the logger setups at both
stores. The following sections detail the connections made to each logger from the

electricity and thermal loads being monitored.

Connecting a Digital Pulse Signal. A digital pulse signal is used at the
Bryan store in order to monitor whole-building electricity. The on/off pulse signal
was provided by a 2-wire KYZ pulse. Only the KY terminals were monitored by
the data logger. For every pulse counted, 0.288 kiloWatt-hours were recorded.
This constant was provided by Bryan Ultilities which provided the signal from the
meter. This figure was verified by comparing recorded monthly whole-building
data to the monthly utility bills; monthly totals differed by less than 1%.
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Connecting a 2-Wire Resistive RTD Signal. A resistive RTD is used at
the College Station store to monitor return air temperature from a temperature
sensor. The RTD was connected directly to the logger without the need of a
header module by approximately 50 feet of 2-conductor, 22 AWG shielded cable.
The shield wire was grounded to the logger to avoid a ground loop.

Connecting a 2-Wire, 4-20 mA Signal with the Use of a 200-Ohm
Resistive Header. At the College Station store, a 4 to 20 mA signal is used to
monitor return air relative humidity. Connecting a 4-20 mA current loop to the
logger required that a resistive header be inserted into the logger circuit board for
this channel. The header module provides a 200-Ohm resistor across the Al to
GND terminals. This converted the 4 to 20 mA signal to a 0.8 to 4 V signal.
Software options in the polling procedure are used to calculate relative humidity
from the signal provided to the logger. The relative humidity was found by
multiplying the signal voltage by 31.25, and subtracting 25 (calibration constants
provided by the manufacturer). Thus, a sensor signal of 2.4 V translates to a

reading of 50% relative humidity.

Connecting Multiple CTs Using a Summing Module to One Power
Channel. Electrical power, voltage, current, and power factor were measured at
both case study stores by the on-board solid state Watt/Watt-hour transducers. The
primary input(s) that were needed were properly sized, shunted current
transformers (CTs) and a potential (voltage) transformer (PT). CTs were field-
checked with hand-held "clamp-on" ammeter. All CTs were installed with the
same polarity. This was accomplished by aligning the arrows marked on the CTs

themselves toward the electrical source.

Connecting the PT to Provide a Voltage Signal. In order to provide the
power measurements, one potential transducer per store was connected to each 3-
phase feed being monitored. The loggers used in both case study stores provided
PT inputs for two 3-phase feeds -- only one input was used. Care was taken to
align the A, B, and C phases with their respective CTs both on the termination
board and in software (this is the single most common mistake that is made with
any logger -- incorrect configuration of power monitoring). At the College Station
store, when the video store HVAC monitoring was installed, an error in the
labeling of electrical wiring was discovered. The phases were labeled incorrectly
by the electrician who installed them. As a result, phasing of the monitoring was

changed to match the wiring.
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A.3.2 Survival Commands for Programming the College Station and Bryan
Loggers.

Data from the stores were originally collected with SYNERNET software
provided by the logger manufacturer. Eventually, these stores were polled with an
automatic procedure to facilitate uniform data storage for data used by the

LoanSTAR program.

The SYNERNET software that was provided by the manufacturer with
each logger is a reasonably powerful polling software package. The section that
follows provides a a summary of the commands used to poll the loggers used in the
case study stores. In each example, enough details are provided to illustrate the
basic steps that are necessary for polling a site. As such, only those SYNERNET

commands that are necessary to accomplish this are discussed.

SYNERNET. SYNERNET is the menu-driven software that was provided
by the manufacturer to schedule and poll a logger. It contains five sub-programs
that can be used to perform the different functions. Each of the sub-programs can
be executed separately by typing the executable name (i.e., PARSET <enter>) to
execute directly or by beginning a session with SYNERNET and working ones
way down the menu tree. SYNERNET always begins a session by checking the
PC's time and date. |

PARSET. PARSET is the workhorse of the SYNERNET software system
and was the only interface used for accessing the data acquisition systems for the
Bryan and College Station stores. PARSET was used to add a logger to the
network, configure channels in the logger, manually poll the logger, view real-time

data, and download data to a PC. Figure A.12 illustrates the menu arrangement



PARSET
[ | | |
Loggers | Ediit | Connect [ Terminal | [ Other |
Pick from existing ) .
Type serial no. El:z:;s;l?;r Read status data 20? shel
Input site no. Read real time data -

File redirection
Add new loggers
Erase work list

Select single logger

FIGURE A.12

Close port/hangup

Integration periods
Watt meter channels
Analog channels
Digital channels

TSR measurements
Print parameter set
Save parameter set

Read TSR data

Read parameter block
Read display table
Write parameter block
Write display table

Set date/time

Synch to PC time
Clear status flags

Diagram for the PARSET program.
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within PARSET. For the most part, one must always choose a logger, then either
edit the channels, or (if this has not already been accomplished) connect to a site,

and use the terminal command to communicate to the logger after connecting.

A.3.3 Setting Up and Polling a Logger.

This section discusses how the data acquisition systems were set up,
accessed, and how data were downloaded. The College Station store logger is
used as an example to illustrate the steps. This next section walks the reader
through how the loggers used in the case studies were set up and configured, and
what the data look like coming from the logger. Except where distinction is
necessary, the examples will pertain to the College Station logger only.

Any new logger that is added to a SYNERNET network needs to be set up
with the PARSET program. In the case study stores, C-180 loggers connected to
the PC via a modem were used. These College Station logger was set up with the

following menu commands:
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SYNERNET
PARSET
LOGGER(S)
ADD NEW LOGGERS

HOW MANY NEW LOGGERS TO ADD TO THE NETWORK: (1)
INPUT SITE NUMBER: (901)
INPUT LOGGER LETTER:(A)
INPUT LOGGER SERIAL NUMBER: (####)
INPUT PARAMETER SET CODE:(A)

This results in the following logger "901/A/####/A" being added. This logger can

be reselected anytime by calling-up:

PICK FROM EXISTING LOGGERS
901/ AlHHAH A




Next, the logger needs to be configured so that it is recording the necessary
information. This is accomplished with PARSET as follows:
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SYNERNET
PARSET
LOGGER(S)
PICK FROM EXISTING LOGGERS
Q01/A/RRRHA
EDIT
INTEGRATION PERIODS
UNIFORM INTEGRATION PERIOD EDITOR

Table A.3 is shows the integration periods for logger 90 1/A/###H#/ A
(College Station store). In general we see that hourly data are being sampled and
captured to memory. Table A.4 is shows the integration periods for logger
913/A/###/F (Bryan store).

Next, the Watt meter channels are set up with

EDIT
WATT METER CHANNELS

The results of the session are shown in Table A.5 and Table A.6. It should be
noted that in Table A.5, the Hi/Lo polarity of the CT channels 4, 5, and 14 have
been reversed. This was done to compensate for improperly installed polarity on
the CTs. Alternatively, the CT wire terminations in the logger box could have
been switched pair-by-pair. One may also notice that the channel labeled "Video
AC



TABLE A.3
Configuration Table For College Station Logger Showing Integration Periods.
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% odekok ok ok ok kK

Configuration for Logger: ####

INTEGRATION PERIODS

Parameter Set Code:

ko ek ok ok ok ok ok

AM PM
From: 12 4 5 & 7 8 91011 12 2 g8 9 10 11
To: 1 5 6 8 9101112 1 2 5 9 10 11 12
Flag: 1 11 1 1 1 1 1 1
Mins: 0 0 0 0 0 0 0 0 0 0
TABLE A4

Configuration Table For Bryan Logger Showing Integration Periods.

kokk kK Kk ok kk

Configuration for Logger:

HHi

PM
3 4 5 6 7 8 910 11 12
4 5 6 7 8 910 11 12 1

INTEGRATION PERIODS

Parameter Set Code: F

LE S S & 8 8 &

9 10 11
9 10 11 12




TABLE A.5
Configuration Table for College Station Logger Showing Watt Channels.
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————— WATT CHANNELS -----

Chan Description Search String STA Hi Lo VMult Amps V C PR P A
CT 0 COMPS-PHASE A ON Al N1 1 600 Qg *
CT 1 COMPS-PHASE B ON Bl N1 1 600 1 =»
CT 2 COMPS-PHASE C ON ClL N1 1 600 2 %
CT 3 PNL DPA-PHASE A ON Al N1 1 1200 3 *
CT 4 PNL DPA-PHASE B ON N1 Bl 1 1200 T
CT 5 PNL DPA-PHASE C ON N1 Cl1 1 1200 5 &
CT 6 PNL DPC-PHASE A ON Al N1 1 1200 6 *
CT 7 PNL DPC-PHASE B ON Bl N1 1 1200 Fow
CT 8 PNL DPC-PHASE C ON Cl1 N1 1 1200 8
CT 9 PNL DPE-PHASE A ON Al N1 1 600 9 =
CT10 PNL DPE-PHASE B ON Bl N1 1 600 L0 *
CT1ll PNL DPE-PHASE C ON Cl1 N1 1 600 11, =
CT12 VIDEO AC PHASE A ON Cl1 N1 1 100 b
CT13 VIDEO AC PHASE B ON Bl N1 1 100 13
CT14 VIDEO AC PHASE C ON N1 Al 1 100 14 *
CT15 NOT USED OFF Al N1 1 100 15
TABLE A.6

Configuration Table for Bryan Logger Showing Watt Channels.

————— WATT CHANNELS -----

Chan Description Search String STA Hi Lo VMult Amps V C PR P A
CT 0 COMPRESSORS PH 1 ON Al N1 1 600 a >
CT 1 COMPRESSORS PH 2 ON Bl N1 1 600 1 >
CT 2 COMPRESSORS PH 3 ON C1 N1 1 600 F W
Cc? 3 MAIN BRANCH PH 1 ON Al N1 1 1500 & *
CT 4 MAIN BRANCH PH 2 ON Bl N1 1 1500 4 *
CT 5 MAIN BRANCH PH 3 ON Cl1 N1 1 1500 5 *
CT 6 AC & LPA PH 1 ON Al N1 1 1000 (.
CT 7 AC & LPA PH 2 ON Bl N1 1 1000 T
CT 8 AC & LPA PH 3 ON Cl N1 1 1000 i
CT 2 LPA PH 1 ON Al N1 1 100 o W
CT10 LPA PH 2 ON Bl N1 1 100 10 =
CT11 LPA PH 3 ON Cl1 N1 1 100 11 *
CT12 OFF Al N1 1 100 12
CT13 OFF B1 N1 1 100 13
CT14 OFF C1 N1 1 100 14
CT15 OFF Al N1 1 100 15




Phase A" is designated as corresponding to the PT voltage C1/N1. This was done
to correct an electrician's error made in labeling the wiring on the two main video
store HVAC units. What had been labeled as the A-phase of two of the video
store's HVAC units was connected to the C-phase of the building circuit.
Likewise, what was labeled as the C-phase of these units was connected to the A-
phase of the building circuit. As long as the appropriate phases were referenced in

the configuration table for the logger, the data would be monitored correctly.

The analog channels are set up next by selecting
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EDIT
ANALOG CHANNELS

The analog configuration is shown in Table A.7 for the College Station
store (there were no analog channels used in the Bryan store). For logger
90 1/A/####/ A we can see that temperature is being recorded on analog channel 10,
using a scale of 1, and an offset of O (this is the default scaling for a 1000-Ohm,
two-wire RTD connected directly to the logger). This setting automatically

produces output in degrees-Farenheit for short lengths of wire leads.

Analog channel 11 is recording humidity using a 4-20 mA signal. In order
to accomplish this we placed a Synergistics 25A118-2 resistive header module into
the logger (this amounts to a 200-Ohm precision resistor placed across the Al to
GND terminals). This then allows the recorder to see 0 to 5 DC volts which are
then converted to relative humidity values using a scale of 31.25, and an offset of
-25.

Next, the digital channels are configured as shown in Table A.8. Digital

channels are only used in the Bryan store.

EDIT

DIGITAL CHANNELS
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TABLE A.7
Configuration Table For College Station Logger Showing Analog Channels.

*xxkkkxk*x  cConfiguration for Logger: #### Parameter Set Code; A | F¥**dkkin
————— ANALOG CHANNELS -----

Chan Description Search String STA Scale Offset Units TS G
A0 OFF 100 0 Deg F

Al OFF 100 0 Deg F

A 2 OFF 100 0 Deg F

A3 OFF 100 0 Deg F

A4 OFF 100 0 Deg F

A S OFF 100 0 Deg F

A6 OFF 1 0

a7 OFF 1 0

A8 OFF 1 0

A9 OFF 1 0

Al0 RET AIR TEMP ON 1 0 Deg F ®

All RET AIR RH ON 31.25 -25 % RH *

Al12 OFF 1 0

Al3 OFF 1 0

Al4 OFF 1 0

Al5 NOT USED! OFF 999 -999

TABLE A.8
Configuration Table For Bryan Logger Showing Digital Channels.
x*kwksxxx  Configuration for Logger: ####  Parameter Set Code: F  *****&xxx
77777 DIGITAL CHANNELS -----

Chan Description Search String STA Scale Units TSR AVG RTS
D 0 WHOLE BLDG PULSE ON .288 kWh %

D1 OFF 0 Counts

D2 OFF O Counts

D3 OFF 0 Counts

D 4 OFF O Counts

B.5 OFF 0 Counts

D6 OFF 0

D 7 OFF O

D 8 QFF 0

D9 OFF 0

D10 OFF 0

D11 OFF 0

D12 OFF 0

D13 OFF 0

D14 OFF 0

D15 OFF 0
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In the case of the Bryan store logger, whole-building electricity
consumption is being recorded on digital channel 0. Units of one pulse equal to
0.288 kWh have been already assigned to the electric meter by the utility company
which provided the signal.

Finally, the ordering of the configuration table is accomplished by using

EDIT

TSR MEASUREMENT NUMBERS

The TSR configuration of the College Station logger is now complete and is shown
in Table A.9 (Table A.10 for Bryan logger). This information is what is written to
disk at each recording interval or Time Series Record (TSR). Table A.7 through

Table A.10 are the result of printing the configuration tables to a file.

The next step is to connect PARSET to the logger using

CONNECT
PHONE DIALER

-

PARSET will then respond with the appropriate message to tell us that the modem

connection has been established at the appropriate baud rate.

Actual communications with the logger is established with the TERMINAL
command. At this point we have various different options. If we choose

TERMINAL

READ REAL TIME DATA




Configuration Table for College Station Logger Showing TSR Channels.

TABLE A.9
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Description

COMPS-PHASE A

COMPS-PHASE
COMPS-PHASE
PNL DPA-PHAS
PNL DPA-PHAS
PNL DPA-PHAS
PNL DPC-PHAS
PNL DPC-PHAS
PNL DPC-PHAS
PNL. DPE-PHAS
PNL DPE-PHAS
PNL DPE-PHAS

VIDEO AC PHASE A
VIDEO AC PHASE B
VIDEO AC PHASE C

RET AIR TEMP
RET AIR RH

B
%
E
E
E
E
E
E
E
E
E

0w P owr 0o p

Variable Meas#

KW 0 1
KW 1 2
KW 2 3
KW 3 4
KW 4 5
KW 5 6
KW 6 7
KW 7 8
KW 8 9
KW 9 10
KW 10 11
KW 11 12
KW 12 13
KW 13 14
KW 14 15
AN 10 0
AN 11 0

TABLE A.10
Configuration table for Bryan logger showing TSR channels.

Description
COMPRESSORS
COMPRESSORS
COMPRESSORS
MAIN BRANCH
MAIN BRANCH
MAIN BRANCH
AC & LPA PH
AC & LPA PH
AC & LPA PH
LPA PH 1

LPA PH 2

LPA PH 3

WHOLE BLDG PULSE DIG 0

PH
PH
PH
PH
PH
PH
1
2
3

U N TS VI =Y

Variable Meas#

Kw 0 1
Kw 1 2
Kw 2 3
KW 3 4
Kw 4 5
KW 5 6
KW 6 7
Kw 7 8
KW 8 9
Kw 9 10
Kw 10 13
KW 11 12
AN 0 13
AN 1 14
19
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we obtain the screen that is shown in Table A.11 or Table A.12 depending on
which logger we are calling. To download and/or view TSR data we return to the
TERMINAL menu. This is accomplished by pressing the ESC key. By choosing

TERMINAL

READ TSR DATA

we can view and/or download Time Series Records (TSR) to the local PC for
further processing. After selecting "READ TSR DATA", we see that we need to
choose which TSRs to display. If we chose TSRs 284 through 309 we would have

entered:

ENTER STARTING TSR INDEX: 284 LAST TSR INDEX IS 1152
ENTER ENDING TSR INDEX: 309 PRESENTLY WORKING ON 310
(S)CREEN OR (F)ILE OUTPUT: F

OUTPUT FILE NAME: 90193005.RAW

FILE TYPE: ASCII (R)EAL/(E)XPON, (W)K1 SPREADSHEET, (T)SR: R

HEADER TITLES? (N)ONE (A)SCII, (L)OTUS-IMPORT: N

This selects records 284 to 309 to be recorded to disk on the PC in file
90193005.RAW without headers and in floating point, ASCII format. Table A.13
is an example of what was recorded, from left to right the channels are

¢ Date . Time

e TSR# ° Status

« KWH . VOLTS
+ AMPS s TEMP

« HUMIDITY



TABLE A.11
Example of the TERMINAL, READ REAL TIME DATA
screen for College Station Store.
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Logger (s) Edit Connect Terminal Other Quit
Chan AMPS VOLTS POWER PF ANALOG COUNT

0 456.9 116.9 41.6 D78 o PC 0

1 504.3 116.9 47.6 0.845 PC 0

2 450.7 116.9 43.8 0.831 PC 0

3 397 .2 116.8 45.8 0.991 PC 0

4 405.7 116.9 46.6 0.991 Pc 0

5 352.8 116.7 40.5 0.986 PC 0

6 291.2 116.8 27.1 0.803 PC 0

7 275.9 115.9 25.¢9 0.819 PC 0

8 272.5 116.9 24.6 0.779 PC 0

9 279.0 116.0 29.8 0.908 BE 0
10 258.9 116.9 2%.0 0.963 oF 70.7 PC 0
11 278.6 116.9 29.4 0.909 Vv 1.914 PC 0
12 26.67 115.9 2.46 QgL PC 0
13 31.21 116.8 2.66 0.740 BC 0
14 31.83 116.9 3.08 0.831 PC 0
1k - - - 0.00 R 998.4 PC 0

TABLE A.12
Example of the TERMINAL, READ REAL TIME DATA
screen for Bryan Store.

Logger(s) Edit Connect Terminal Other Quit
Chan AMPS VOLTS POWER PF ANALOG COUNT

0 284.2 279.% 62.7 0,780 == PC 6654
1 282.8 249.8 60.5 0.766 PC 0
2 293 .0 278.4 64.7 0.794 PC 0
3 3159 280.1 85.0 0.963 PC 0
4 296.2 279.8 80.1 0.967 PC 0
5 298.5 278.3 78.1 0.942 PC 0
6 61.3 280.0 14.1 0.823 PC 0
7 54.2 279.4 12.0 0.799 B 0
8 585 278.1 12.2 0.741 PC 0
9 5.87 279.7 g E 0.792 BC 0
10 3.89 2995 0.45 0.422 PC 0
11 6.97 278.4 0.89 0.461 pPC 0
12 0.0 PC 0
13 0.0 PE 0
14 0.0 PC 0
15 -0 - - 0.00 R 998.4 PC 0




90193005.RAW File Recorded for Sample Session with College Station Logger.

TABLE A.13
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12/29/92 0: 0: 0 284 "V

16,701 18.836 19.872

12/29/92 1:0:0 285 "V

17.973 18459 21.222

12/29/92 2:0:0 286 "V
19.888 19.825 23.561
12/29/92 3:0:0 287 "V

19.370 19.433 24.408

12/29/92 4:0:0 288 "V

20.045 18977 22.792

12/29/92 5:0: 0 289 "V

21.253 19.589 24644

12/29/92 6:0:0 290 "V
21.897 20.531 25.005
12/29/92 7:0:0 291 "V

22,870 23.263 26.622

12/29/92 8:0: 0 292 "V
27.877 26,104 26873

12/29/92 9:0:0 293 "V
29.369 26.904 26.841

12/29/92 18:0:0 304 "V
23.937 26.543 24377
12/29/92 19:0: 0 305 "V
22179 23372 25052
12/29/92 20:0: 0 306 "V
20.657 22211 24.675
12/29/92 21: 0: 0 307 "V
19.809 21.991 23.671
12/29/92 22: 0: 0 308 "V
19.574 20.908 21316
12/29/92 23:0: 0 309 "V
18365 19.699 21.646

"

"

"

"

"

"

"

31.629 36.542 33.120 54.248 50.732
0978 1.136 1.479 66.443 49.216
33.779 38520 36.134 47.687 43511
0710 0.833  1.090 66.330 49.266
34878 40.246 36.448 46,525 42.224
0323 0.385 0.516 66.386 48.815
32869 38.363 33.622 46.839 42.287
0.304 0369 0498 066.162 48.865
32.743 37.170 34.093 47.027 42.350
0.305 0370 0499 066.330 48915
29.369 34219 30750 46.870 42413
0306 0364 0485 66.218 49.166
32.838 37986 33.434 46.399 42.256
0303 0366 0492 66.555 49.116
32.492 37986 33.528 44.076 40.968
0.304 0370 0.506 66.836 48.815
31.095 36.668 32.869 40.278 38.200
0306 0359 0491 66.836 48.465
33.340 39.148 34.658 43417 40.560
0311 0394 0.544 066.499 49.066

36.699 41.628 37.578 55.723 51.517
1.319  1.529 1982 67.904 49.667
35.035 39.210 35.380 56.414 51.548
1306 1.512 1954 68.185 49316
36.887 41.690 38.017 56.759 '51.956
1.300  1.510 1.956 67.960 49.416
33.622 37766 34344 55001 51.548
1.305 1.504 1.958 67.623 49.366
33.936 38.583 34.627 54373 50.700
1309 1490 1939 67.848 49316
34501 39.179 35035 53.840 50.543
1.297 1495 1.952 67.679 49.116

48.189

42318

41.188

41.220

41.408

41.722

41.565

37.923

32,272

34.690

51.988

52.082

51.642

49.570

48.283

48.314

23.781

23.043

22.493

21.724

20,798

21.881

22.321

21.489

21.081

22.258

24.157

24.644

24,377

24.534

23.278

24.063

22.807

22.211

21.740

21.143

20.123

21.253

21.677

20.877

20.625

21.756

23.121

23.545

23.294

23.372

22,179

22.996

22.399

21.646

21.096

20.374

19.354

20.469

20.955

20.280

20.249

21.504

22.682

23.106

22.902

23.058

21.944

22745
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A.4 PROCESSING THE COLLEGE STATION AND BRYAN DATA

This section provides the reader with instructions on what was done with
the data once they were collected from the loggers. Examples will focus on the
data stream for the College Station Store. Instructions and sample code are
provided for developing summary inspection plots and 3-D plots using a
combination of public-domain data processing tool kits and inexpensive,

commercially-available plotting software.

A.4.1 Processing/Plotting Synergistics Data

Process Overview. This section describes a collection of routines that
were used to process and plot data collected from data loggers. These routines
have been used in the case-study on a weekly basis to create a set of inspection

plots which were used as the primary data quality-control measure.

Controller batch files are used to call the routines in sequence; once a
production mode is established for creating the plots for a particular building, only
a few keystrokes are required to actually create the graphic report. The routines
used to process the data include:

1) Automated quality-control checks of all data channels against static lower
and upper bounds.

2) Insertion of missing records with bad data markers (-99).

3) Creation of summary inspection plots for each data stream of interest.

The processing stream makes these assumptions:

1) Data are being collected on an hourly basis.

2) Each data file to be processed contains exactly one week worth of hourly
records.

3) Each site (data logger) has an associated three-digit code. The example

used herein is site 901 - the College Station grocery store.

4) The raw data recorded from the Synergistics logger have been stored into a
file (90193005.RAW) using real numbers without headers from the
Synergistics software.



5)

6)

7

8)

9)
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The file name used to record the raw data follows the strict format of
XXXYYDDD.RAW where XXX is the three-digit site code, YY is the
year, and DDD is the number of the day during which the data were
collected (which is the day after the last day in the data file). Collectively,
YYDDD is known as the Julian date. As an example, the raw data file
included on the distribution diskette is 90193005.RAW (TABLE A.14).
This is data for site 901. Because it was collected on 93005 (the 005th day
of 1993 or January 5, 1993), this file contains data for the period beginning
92364 (Dec. 29, 1992 at midnight) and ending 93004 (Jan. 4, 1993 at 11:00
p.m.).

To print summary plots, a weekly weather file containing hourly data for
the region is present (00193005.WEA). The weather data were taken from
the weather station at Zachry Engineering Center, on the campus of Texas
A&M University, located approximately two miles from either the College

Station or Bryan grocery store.

The commercially-available graphing program GRAPHER (Golden 1990)

is used to create the plots.

The public domain programs ARCHIVE and COLS (Feuermann and
Kempton 1987), and GAWK(FSF 1989) are used for quality-control and
data manipulation.

The subdirectory \TEMP has been created prior to running the routines.
This directory is used to store all work files during the processing of the

data and graphs.

The following sections discuss the methodology of these routines as well as

possible modifications for plotting other metered data.



TABLE A.14

Example Synergistics Raw Data Format 90193005.RAW.
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12/29/92
16.701
12/29/92
17.973
12/29/92
19.888
12/29/92
19.370
12/29/92
20.045
12/29/92
21.253
12/29/92
21.897
12/29/92
22.870
12/29/92
27.877
12/29/92
29.369

12/29/92
23.937

12/29/92
22,179

0:0:0 284 "V

31.629 36.542 33.120 54.248 50.732

18.836 19.872 0978 1.136 1479 66.443 49216

1:0: 0 285 "V

18.459 21.222

2:0:0 286 "V
19.825 23.561
3:0:0 287 "V

19.433  24.408

4:0:0 288 "V

18.977 22.792

5:0:0 289 "V

19.580 24.644

6:0: 0 290 "V

20.531 25.005

7:0:0 291 "V

23.263 26.622

8:0:0 292 "V

26.104 26.873

9:0:0 293 "V
26,904 26.841

18:0:0 304 "V
26.543 24377
19:0:0 305 "V
23372 25.052

12/29/92 20:0: 0 306 "V

20.657

22211 24.675

12/29/92 21:0: 0 307 "V

19.809

21.991 23.671

12/29/92 22:0:0 308 "V

19.574

20908 21.316

12/29/92 23:0: 0 309 "V

18.365

19.699 21.646

"

33.779 38.520 36.134 47.687 43.511
0.710 0.833 1.090 66.330 49.266
34.878 40246 36.448 46.525 42.224
0323 0385 0.516 66.386 48.815
32.869 38363 33.622 46.839 42287
0304 0369 0498 66.162 48.865
32.743 37170 34.093 47.027 42.350
0305 0370 0499 66330 48915
29.369 34.219 30.750 46.870 42413
0306 0364 0485 66218 49.166
32.838 37.986 33.434 46399 42.256
0303 0366 0492 66.555 49.116
32492 37986 33.528 44.076 40.968
0304 0370 0.506 66.836 48.815
31.095 36.668 32.869 40.278 38.206
0306 0359 0.491 66.836 48.465
33340 39.148 34.658 43.417 40.560
0311 0394 0.544 66.499 49.066

36.699 41.628 37.578 55.723 51.517
1.319 1.529 1982 67.904 49.667
35.035 39.210 35380 56.414 51.548
1.306 1512 1954 68.185 49.316
36.887 41.690 38.017 56.759 51.956
1.300 1.510 1.956 67.960 49.416
33.622 37.766 34344 55.001 51.548
1.305 1.504 1958 67.623 49.366
33.936 38.583 34.627 54.373 50.700
1.309 1.490 1939 67.848 49.316
34501 39.179 35.035 53.840 50.543
1.297 1495 1952 67.679 49.116

48.189

42318

41.188

41.220

41.408

41.722

41.565

37.923

32.272

34.690

51.988

52.082

51.642

49.570

48.283

48.314

23.781

23.043

22.493

21.724

20.798

21.881

22.321

21.489

21.081

22258

24.157

24.644

24.377

24.534

23.278

24.063

22.807

22.211

21.740

21.143

20.123

21.353

21.677

20.877

20.625

21.756

23.121

23.545

23.294

23372

22.179

22.996

22.399

21.646

21.096

20.374

19.354

20.469

20.955

20.280

20.249

21.504

22,682

23.106

22,902

23.058

21.944

22,745
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Preparing Data from Time Series Channels from Raw Synergistics
Data with R2ZA.BAT. Given this set of filters and programs, a rudimentary
quality-control range check can be performed and a full set of time series plots can
be created with a simple command line operation. To perform the quality-control

and produce plots, type:

CATEMP>  R2ZA.BAT 901 93005 90001 <enter>

This command calls the controlling batch file R2ZA.BAT to begin the
process as shown in Figure A.13. The parameters passed to R2ZA.BAT include the
three-digit logger code (901), a Julian polling date (93005), and a channel table
descriptor (90001). R2ZA.BAT uses the logger code and Julian date to understand
which file to process.

R2A utilizes an ARCHIVE channel table which is a data dictionary that
attaches static high/low bounds, English language descriptions, and scaling factors
to each data column. The channel table descriptor tells RZA.BAT which channel

table is to be used for the data being processed.

The output of this scheme includes the "flat" file, 90193005.ACH, which is
incorporated into a database. A flowchart for R2ZA.BAT is given as Figure A.19.

Briefly, these steps are performed by R2ZA.BAT:

Step 1) The GAWK script RAW2DAT.AWK is called to preprocess the raw data
90193005.RAW for quality-control checks. Quality-control is performed by the



90195005.RAW

Z RAW LOGGER DATA /

RAW2DAT. AWK

/ 0193005.DAT /

CHANNEL TABLE:
90190001.CHT

f—

ARCHIVE

f 90193005.ACH /

MISSING.EXE

Z ?0193005.ACS /

FIGURE A.13 Flow chart for R2A.BAT data processing procedure.
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public domain program ARCHIVE (Feuerman and Kempton, 1989) which is
unable to understand some of the characters that the Synergistics software leaves in
the 90193005.RAW file. An example of Synergistics data are given as Table
A.14. The output of RAW2DAT. AWK is given as Table A.15. Notice date/time
columns have been adjusted, and that certain characters have been stripped-out of
the file (e.g; "' ", tea)

Step 2) The output of RAW2DAT and the site's ARCHIVE channel table are fed
into ARCHIVE for static high/low range checking. The ARCHIVE channel table
90190001.CHT for the College Station store, site 901, is given as Table A.16 (and
for the Bryan store, site 913, as Table A.17). Example output from ARCHIVE is
given as Table A.18. ARCHIVE will report any offending data readings in a log
file and will replace such readings in the data with a "bad data" marker (Table
A.19). Currently, this marker is the value, -99. ARCHIVE automatically appends
the DOS file extension ".ACH" to the filename. For the example data set
provided, this step will have created the file 90193005.ACH.

An ARCHIVE channel table must be created manually for each site and
contains the instructions that ARCHIVE uses to process the data from each site. In
Table A.16, the ARCHIVE channel table 90190001.CHT is shown which
processes the data from site 901. The first four lines of the channel table are labels
for the columns below. The line beginning with "#" contains special characters
that tell ARCHIVE what kind of data it is processing, and what to use as a missing
variable (the default is -99).

The first eight characters are the date that the parameters are to be applied.
Excluding the last line, this is "07/03/90" for site 901 which is the most recent date
for this parameter set. It does not need to coincide with the first date in the data to

be processed, but must be prior to it.

The next variable is the time, in this case "00:00". This is instructing
ARCHIVE to begin processing on July 3, 1990 at midnight.



TABLE A.15

Example output 90193005.DAT from RAW2DAT program.
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122992 00 31.629 36.542 33.120 54.248 50.732 48.189
18.836 19.872 0978 1.136 1.479 66443 49216
122992 10 33.779 38520 36.134 47.687 43.511 42318
18.459 21.222 0.710 0.833 1.090 66.330 49.266
122992 20 34878 40.246 306.448 46.525 42.224 41.188
19.825 23.561 0323 0385 0516 66386 48.815
122992 30 32.869 38363 33.622 46.839 42287 41.220
19.433 24408 0304 0369 0498 66.162 48.865
122992 40 32743 37.170 34.093 47.027 42350 41.408
18.977 22792 0305 0370 0499 66.330 48915
122992 50 29369 34219 30.750 46.870 42.413 41.722
19.589 24,644 0306 0364 0485 66.218 49.166
122992 60 32.838 37986 33434 46399 42256 41.565
20.531 25.005 0303 0366 0492 66.555 49.116
122992 70 32492 37986 33528 44.076 40.968 37.923
23263 26.622 0304 0370 0.506 66.836 48.815
122992 80 31.095 36.668 32.869 40278 38206 32.272
26.104 26.873 0306 0359 0491 66.836 48.465
122992 90 33340 39.148 34.658 43417 40.560 34.690
26904 26.841 0311 0394 0.544 66.499 49.066

122992 180 36.699 41.628 37.578 55.723 51.517 51.988
26.543 24377 1319 1529 1982 67904 49.667
122992 190 35035 39.210 35380 56.414 51.548 52.082
23372 25.052 1306 1.512 1954 68.185 49.316
122992 200 36.887 41.690 38.017 56.759 51956 51.642
22211 24675 1300 1.510 1.956 67.960 49.416
122092 210 33.622 37.766 34344 55.001 51.548 49570
21,991 23.671 1305 1504 1958 67.623 49.366
122992 220 33.936 38583 34.627 54373 50.700 48.283
20908 21.316 1309 1490 1939 67.848 49.316
122992 230 34501 39.179 35035 53.840 50.543 48314
19.699 21.646 1.297 1495 1.952 67.679 49.116

23.781

23.043

22.493

21.724

20.798

21.881

22521

21.489

21.081

22.258

24,157

24.644

24.377

24.534

23.278

24.063

22.807

22211

21.740

21.143

20.123

21.253

21.677

20.877

20.625

21.756

23.121

23.545

23.294

23.372

22.179

22.996

22.399

21.646

21.096

20.374

19.354

20.469

20.955

20.280

20.249

21.504

22,682

23.106

22902

23.058

21.944

22.745

16.701

17.973

19.888

19.370

20.045

21.253

21.897

22.870

27.877

29.369

23.937

22,179

20.657

19.809

19.574

18.365




TABLE A.16
Example Channel Table for the 90190001.CHT Archive Program.
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Date Time Raw-Data Arch Name of Archive Arch Conv'n Conv'n Error Error Channel
MM/DD/YY HH:mm lin coln coln Channel Units Format Code Consts Code Constants Description
{¥YY DDD) pos pos pos
*
07/03/90 00:00 i 0 0 Begin Store-S Beginning date
07/03/90 00:00 1 i 1 Bldg. # =xx I3 2 0 901 0 Building Number
07/03/90 00:00 1 1 2 Mon-Raw MM 13 1 0 Month
07/03/90 00:00 13 2 3 Mon-Raw DD 13 1 0 Day
07/03/90 00:00 1 3 4 Mon-Raw YY T4 1 0 Year
07/03/90 00:00 1 3 5 Greg-Jul MMDDYY 15 24 12 0 Gregorian Date to Julian
07/03/90 00:00 1 4 7 Time HH mm I5 16 5 0 Time
07/03/90 00:00 1 3 6 Greg-Dec DDD.frac F10.4 28 0 Gregorian Date to
Jul ,Dec
07/03/90 00:00 1 6 8 Comps A F9.3 F9.3 L 1 -5 99999 Cmprssrs Ph A (kWh/h)
07/03/90 00:00 i 7 9 Comps B F9.3 F3.3 1 1 -5 99999 Cmprssrs Ph B (kWh/h)
07/03/90 00:00 1 8 10 Comps C F9.3 F9.3 1 1 -5 99999 Cmprssrs Ph C (kWh/h)
07/03/90 00:00 1 92 11 PnlDPA A F9.3 F9.3 1 i -5 99999 Panel DPA Ph A (kWh/h)
07/03/90 00:00 i 10 12 PnlDPA B F9.3 F9.3 1 1 -5 99999 Panel DPA Fh B (kWh/h)
07/03/90 00:00 1 11 13 PnlDPA C F9.3 F9.3 1 1 -5 99999 Panel DPA Ph C (kWh/h)
07/03/90 00:00 1 12 14 PnlDPC A F9.3 F9.3 1 1 -5 99999 Panel DPC Ph A (kWh/h)
07/03/90 00:00 1 13 15 PnlDFC B F9.3 F9.3 1 1 -5 99999 Panel DPC Ph B (kWh/h)
07/03/90 00:00 1 14 16 PnlDPC C F9.3 ¥9.3 1 1 -5 99999 Panel DPC Ph C (kWh/h)
07/03/90 00:00 1 15 17 PnlDPE A F9.3 F9.3 1 1 -5 99999 Panel DPE Ph A (kWh/h)
07/03/90 00:00 1 16 18 PnlDPE B F9.3 F9.3 i 1 -5 99999 Panel DPE Ph B (kWh/h)
07/03/90 00:00 1 17 19 PnlDPE C F2.3 ¥9.3 1 1 =5 99999 Panel DPE Ph C (kWh/h)
07/03/90 00:00 1 18 20 VideoS A F9.3 F9.3 1 1 -5 99999 vVideo Store Ph A (kWh/h)
07/03/90 00:00 S 19 21 videoS B F9.3 F9.3 1 1 -5 99999 Video Store Ph B (kWh/h)
07/03/90 00:00 1 20 22 VideoS C F9.3 F9.3 1 1 -5 99999 Video Store Ph C (kWh/h)
11/20/92 00:00 1 21 23 RetAir T F9.3 F9.3 1 1 -5 150 AHU Return Air Temp (F)
11/20/92 00:00 1 22 24 RetAirRH F9.3 F9.3 1 1 0 105 AHU Return Air RH
03/11/99 23:00 1 0 0 End Store-8
TABLE A.17

Example channel table for the 91390001.CHT ARCHIVE program.
Date Time Raw-Data Arch Name of Archive Arch Conv'n Conv'n Error Error Channel
MM/DD/YY HH:mm lin coln coln Channel Units Format Code Consts Code Constants Description
(YY DDD) pos pos pos
*
10/06/92 00:00 1 0 0 Begin Store-Bry Beginning date
10/06/92 00:00 1 1 1 Bldg. # =xx I3 2 0 913 0 Building Number
10/06/92 00:00 1 L 2 Mon-Raw MM I3 1 0 Month
10/06/92 00:00 1 2 3 Mon-Raw DD 13 1 0 Day
10/06/92 00:00 1 = 4 Mon-Raw YY I3 1 o] Year
10/06/92 00:00 1 3 5 Greg-Jul MMDDYY I5 24 12 0 Gregorian Date to
Julian
10/06/92 00:00 1 4 7 Time HH mm I5 16 B o Time
10/06/92 00:00 1 3 6 Greg-Dec DDD.frac F10.4 28 0 Gregorian Date to
Jul.Dec
10/06/92 00:00 1 6 8 Comps A F9.3 F9.3 i i -5 1000 Cmprssrs Ph A (kWh/h)
10/06/92 00:00 1 7 9 Comps B F9.3 F9.3 1 1 -5 1000 Cmprssrs Ph B (kWh/h)
10/06/92 00:00 1 8 10 Comps C F9.3 P9.3 1 1 -5 1000 Cmprssrs Ph C (kWh/h)
10/06/92 00:00 1 ) 11 MainBr A F9.3 F9.3 1 1 -5 1000 Main Branch Ph A
(kwh/h)
10/06/92 00:00 1 10 12 MainBr B F9.3 F9.3 1 1 -5 1000 Main Branch Fh B
(kwh/h)
10/06/92 00:00 1 11 13 MainBr C F9.3 F9.3 1 3 -5 1000 Main Branch Ph C
{kwh/h)
10/06/92 00:00 1 12 14 AC LPA A F9.3 F9.3 1 1 -5 1000 AC LPA Ph A (kWh/h)
10/06/92 00:00 1 13 15 AC LPA B F9.3 F9.3 1 1 -5 1000 AC LPA Ph B (kWh/h)
10/06/92 00:00 1 14 16 AC LPA C FD3.3 F9.3 1. 1 -5 1000 AC LPA Ph C (kWh/h)
10/06/92 00:00 1 15 17 LPA A F9.3 F9.3 1 1 -5 1000 LPA Ph A (kWh/h)
10/06/9%2 00:00 AE 18 18 LPA B F9.3 F9.3 1 1 -5 1000 LPA Ph B (kWh/h)
10/06/92 00:00 1 17 19 LPA C F9.3 F9.3 1 1 -5 1000 LPE Ph C (kWh/h)
10/06/92 00:00 1 18 20 FutureAn F9.3 F9.3 1 1 -5 99999 Future Rnalog
10/06/92 00:00 1 19 21 FutureAn F9.3 F9.3 1 1 -5 99999 Future Analog
10/06/92 00:00 1 20 22 WBE F9.3 F9.3 1 1 0 999999 Whole Building (kWh/h)
03/11/9% 23:00 1 0 0 End Store-Bry




TABLE A.18

Output From The Archive Program, File 90193005.ACH.

246

901 12 29 9292364 4746.0000 0 31.629 36.542 33.120 54.248 50.732 48.189 23.781

22.807

22.399 16.701 18.836 19.872
901 12 29 92 92364 4746.0417 100
22.211

21.646 17.973 18.459 21.222
901 12 29 92 92364 4746.0833 200
21.740

21.096 19.888 19.825 23.561
901 12 29 9292364 4746.1250 300
21.143

20.374 19.370 19.433 24.408
901 12 29 9292364 4746.1667 400
20.123

19.354 20.045 18.977 22.792
901 12 29 92 92364 4746.2083 500
21.253

20.469 21.253 19.589 24.644
901 12 29 9292364 4746.2500 600
21.677

20,955 21.897 20.531 25.005
901 12 29 92 92364 4746.2917 700
20.877

20.280 22.870 23.263 26.622
901 12 29 9292364 4746.3333 800
20.625

20.249 27.877 26.104 26.873
901 12 29 92 92364 4746.3750 900
21.756

21.504 29.369 26.904 26.841

0978 1.136 1479 66.443 49.216
33.779 38.520 36.134 47.687 43.511

0.710 0.833 1.090 66.330 49.266
34.878 40.246 36.448 46.525 42.224

0323 0.385 0516 66.386 48.815
32.869 38.363 33.622 46.839 42.287

0.304 0.369 0.498 66.162 48.865
32.743 37.170 34.093 47.027 42.350

0.305 0.370 0.499 66.330 48.915
29.369 34.219 30.750 46.870 42.413

0.306 0.364 0485 66.218 49.166
32.838 37.986 33.434 46.399 42.256

0.303 0.366 0.492 66.555 49.116
32.492 37.986 33.528 44.076 40.968

0.304 0370 0.506 66.836 48.815
31.095 36.668 32.869 40.278 38.206

0.306 0.359 0.491 66.836 48.465
33.340 39.148 34.658 43.417 40.560
0.311

0.394 0544 66.499 49.066

901 12 29 92 92364 4746.7500 1800 36.699 41.é28 37.578 55.723 51.517

23.121
22.682 23.837 26.543 24.377

1.319 1.529 1.982 67.904 49.667

901 12 29 92 92364 4746.7917 1900 35.035 39.210 35.380 56.414 51.548

23.545
23.106 22179 23.372 25.052

1.306 1512 1.954 68.185 49.316

901 12 29 92 92364 4746.8333 2000 36.887 41.690 38.017 56.759 51.956

23.294

22.902 20.657 22211 24.675

901 12 29 9292364 4746.8750 2100 33.622 37.766 34.344 55.001

1.300 1510 1.956 67.960 49.416

51.548
1.305

1.504 1.958 67.623 49.366

901 12 29 9292364 4746.9167 2200 33.936 38.583 34.627 54.373 50.700

23.372
23.058 19.809 21.991 23.671
22.179
21.944 19.574 20.908 21.316
901 12 29 9292364 4746.9583 2300 34.501
22.996
22.745 18.365 19.699 21.646

1.309 1.490 1.939 67.848 49.316

39.179 35.035 53.840 50.543
1.297

1.495 1952 67.679 49.116

42.318

41.188

41.220

41.408

41.722

41.565

37.923

32.272

34.690

51.988

52.082

51.642

49.570

48.283

48.314

23.043

22.493

21.724

20.798

21.881

22.321

21.489

21.081

22.258

24157

24.644

24.377

24,534

23.278

24.063




TABLE A.19
Example .LOG file from the ARCHIVE program.
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Log of Archive, version: 1.41 of 15 June 1987, processed on 5 Jan 1993
Files:

RAW DATA 90193500.dat
CHANNEL TABLE 901%0001.cht
ARCHIVE 90193005.ACS
LOG 90193005.1log

Archive delimiter is "
Missing or bad data values are replaced by the value -99.000

Line errors: are identified by their line number in the raw data file.

Data errors: are identified by the channels name, line and position
within the case: "name "(line in case/position in line).

Line numbers in raw data file are shown as |number| or as *number*

[numbers| indicates a line of data, *numbers* is a comment line.

First case on raw data: 92 364 00:00

BeginDate: 92 114 00:00 First output case: 92 364 00:00
EndDate: 99 901 23:00 Last output case: 93 004 23:00
STATISTICS:

168 lines read from beginning of raw data file.
168 lines processed between Begin and End dates.
(including 0 comments and 0 all-blank lines)
0 line errors detected.

0 data errors, and 0 missing data detected
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Next are the line number and column number of the input channel. These
are followed by the ARCHIVE output column number. A "0" value is essentially a

comment line and does not appear in the .ACH file.

Following the ARCHIVE column position indicator is an eight character
descriptor of the channel. This is followed by another twelve character descriptor
of the ARCHIVE units and a six character code word for the ARCHIVE output

format.

The next two variables contain the conversion code word and conversion
constants. The conversion code word is an integer from 1 to 31 and instructs
ARCHIVE whether or not to perform conversions on the incoming data.
Conversion code "0" will place a missing variable into this column, code "1" is an
identity code that allows the value to pass through ARCHIVE untouched, code "2"
is a linear transformation that requires two constants (i.e., slope and intercept), and

so forth.

The last three columns contain the error code, error constants, and channel
description. The error checking code is an 1=on, O=off code that initiates the
high/low limit checking which makes use of the high/low limit values that

immediately follow.

In the 90190001.CHT channel table in Table A.16, there are 24 lines of
input. The first line,

07/03/90 00:00 1 O O Begin Store-S Beginning Date

is basically a comment line that does not appear in the output. The next line

07/03/90 00:00 1 1 1 Bldg# XX I3 2 0 901 O Building Number

places the site number "901"in the first column of the ARCHIVE output. This is

done by using a linear transformation of slope = 0 and intercept = 901.
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07/03/90 2
U |
07/03/90 7

create the second through seventh columns in the output file, 90193005.ACH. The
second, third, and fourth columns in 90193005.ACH are the month, day and year
that are simply passed through ARCHIVE without change. The fifth output
column is the Julian date (92364), that is calculated by ARCHIVE using the first,
second, and third input columns. The sixth column is the decimal date (4746.000)
that is calculated by ARCHIVE. The decimal date is a combined date and time
stamp that is an offset number of days and hours from January 1, 1980. It is
similar to the @ DATE(YR,MO,DAY) function that is used in many spreadsheets.
The seventh column is the hour of the day using military notation (i.e., O to 23
hours). Columns eight through twenty-four in 90193005.ACH all contain

monitored data, in this case from the College Station grocery store building.

Step 3) For the processing of the grocery store data, the final step of R2A is to
feed the .ACH file to the program MISSING. This program scans the time stamps
and inserts records and appropriate bad data markers in place of any missing
records. When a logger loses power in the field, it stops recording TSRs, and
begins recording TSRs when the power is restored. However, a hole will exist in
the data for those periods when the power was off. This hole is filled with -99
values to aid in file merging and in graph readability. The output of MISSING
uses the file extension ".ACS". This is the ASCII flat file from which all
subsequent plots are made. When there are no missing data there is no difference

between an .ACH and .ACS file except the filename extension.

Using GRAPHER to Create an Individual Graph. GRAPHER is one of
many commercially available general purpose graphics software packages.
GRAPHER is very useful for rapidly plotting data because of its flexibility,
overlay, and programmable batch mode operation. GRAPHER is actually
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composed of several sub-programs as shown in Figure A.14. The most important
of these (once configured) are the VIEW and PLOT programs. VIEW allows one
to quickly preview a graph that has been created. PLOT translates GRAPHER's

PLT file into device-specific plot instructions for printer output.

In general, to produce a plot with GRAPHER, one needs data files ((DAT)
and plotting instruction files (.GRF). GRAPHER also allows for additional
customization with axis (.AXS), grid (.GRD), dividing line (.DIV) and text (.TXT)
files, although custom information can be stored in the general .GREF files.

Figure A.15 shows the result of processing the "T901_03.GRF"
GRAPHER instruction file. Table A.30 contains a summary of the graphic
instructions contained in the T901 03.GREF file. Table A.31 is the T901 03.GRF
file that GRAPHER produces. From Table A.30, one can see that input file,
901week.DAT, is being used and that a linear X-Y plot is being produced using
the sixth column (F) for X and the eleventh column (J) for the Y variable.
GRAPHER produces a time series graph since the X variable is actually the
decimal date and a solid line without symbols is being used to plot the data. Each
graph that is to be plotted requires a .GRF file. The use of GRAPHER to produce
weekly inspection plots is reasonably efficient because the same .GRF file

(modified slightly) can be used with each week's data.

A.4.2 Description of the Summary Inspection Plots from Raw Synergistics Data
and Area Weather Data

The Need for Summary Plots. Because each building usually has a
unique parameter set, summary inspection plot pages have been created to produce
a generalized scheme for quickly inspecting data collected from multiple buildings.
A summary plot page contains whole-building and sub-metered information

presented in a standard orientation.

The motivation for creating such a page is two-fold. First, in both grocery
stores, electricity load readings are recorded on multiple channels (e.g. A, B, and C
phases). It is the sum of these phases that is of interest. Second, summary plot
pages decrease the time required during plot inspection because they present
combined-phase data. It was found early on in the study that pages such as these
are tremendously helpful for visual quality-control.
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Summary of GRAPHER instructions for graph T901_03.GRF.
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AXIS DATA COLUMNS CENTERED BEST
X ¥ FILENMS X Y LINE SYM. FIT
TYPE: LINEAR LINEAR 901week F J SOLID NO NO

TITLE: Site 901 Building Meter
START: 1.5,1.0 1.5,1.0

LENGTH: 6.0 6.0
START: 4543.0 0.0

END: 4550.0 AUTOMATIC
TICS: YES YES

TIC LABEL: YES YES
AXIS FILE:X-AXIS Y-AXIS
GRID FILE: none none
TEXT FILE: none none
DIV.FILE: none none

TABLE A.31
T901_03.GRF GRAPHER file.

1243

12000

901week

78 75 48 14"NO " 48

"NO" "SOLID" 1.500e-001 1

"YES" 41 1.000e-001 1 1

48 9.900e+028 9.900e+028 0.000e+000 "DEFAULT" 1.000e-001 1
"SOLID" 0 1.500e-001 9.9000000e+029 9.9000000e+029 200 2.000e+000
1

0.0000000e+000 9.9000000e+029 0.0000000e+000 9.9000000e+029
1.500e-001

X-AXIS

1.5000000e+000 1.0000000e+000 6.0000000e+000 88
0.0000000e+000 1.2000000e+002 9.9000000e+028 1 1
0.0000000e+000 9.9000000e+028 1.5000000e-001 1 1

1o 9 1

1 9.9000000e+028 0.0000000e+000 9.9000000e+028 1.8000000e-001
"DEFAULT" "DEFAULT" "Dry Bulb Temperature"

4.0000000e-002

Y-AXIS

1.5000000e+000 1.0000000e+000 6.0000000e+000 89
0.0000000e+000 2.0000000e+002 9.9000000e+028 1 1
2.7000000e+002 9.9000000e+028 1.5000000e-001 1 1

10 0 1

1 9.9000000e+028 0.0000000e+000 9.9000000e+028 1.8000000e-001
"DEFAULT" "DEFAULT" "Utility (kwh/h)"

4.0000000e-002




/ .GRF Graph Attribute File /

INSTALL.EXE

GRAPHER.EXE

/ PLT Plotting Instruction File /

VIEW.

EXE

PLOT.

EXE

VI
DIS

DEO
PLAY

SCREEN

Figure A.14

POSTSCRIPT
OUTPUT

Flow chart for the GRAPHER program.
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Figure A.15 Graph created with T901_03.GRF and 901week.DAT data

file.

Examples summary pages are shown in Figure A.16 and Figure A.17 for
the College Station and Bryan stores, respectively. The first column of the
summary pages contains a time series plot of whole building electric for the site, as
well as weather time series data (outdoor dry-bulb temperature, relative humidity,
and solar radiation) for the region. In this case, the loggers used in the College
Station and Bryan stores do not have their own weather stations. Therefore
weather data from a nearby site at Texas A&M University must be merged in from
an outside file, 001* WEA. The second column contains time series graphs of
building sub-metered electricity loads. The third and final column contains scatter
plots of the same data points in the second column plotted against outdoor dry-bulb

temperature for the region.
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Creating Graphs Using 901SUML.BAT. 901SUM.BAT is another
controlling batch file. Its function is to automatically produce a set of time series
plots (Figure A.16) -- one per sub-metered load (refrigeration compressors,
lighting, HVAC, and miscellaneous utility). A flowchart for 901SUM.BAT is
given as Figure A.18. Briefly, these steps are performed by 901SUM.BAT:

1) Copy temporary versions of the 90193005.ACS and 00193005.WEA files into
the \TEMP directory.

2) Merge the data from these two files into one file (without duplicating time-
stamp information) with the program COLS.COM and 901JOIN.AWK.
COLS.COM is one of the helpful tool kits that comes with ARCHIVE.
COLS.COM is used to copy the lines in the .ACS and .WEA files together
(juxtaposition). It produces a temporary output file called .JUX.

CATEMP\> COLS ~90193005.ACS 700193005 WEA A B WIEMP\90193005.JUX

<enter>

This calls COLS.COM with the input files 90193005.ACS and 00193005.WEA.
All columns in each file are merged together to form 90193005.JUX in the sub-
directory \TEMP. 901JOIN.AWK then takes the .JUX file and removes redundant
time-stamp information and performs calculations to reduce 3-phase electric power
data into combined-phase data for each sub-metered load. The output of
901JOIN.AWK is a compact data file called .DAT.
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/ 90193005.ACS / / 00193005.WEA /

—>| colscom K<
\/

/ 20193005.JUX /

MAKESPAC.BAT
COLS.COM 901JOIN.AWK \

AIR.EXE Q—J ‘—‘K‘/

/ 90193005.DAT / / SPCQ3005.DAT /

|

TEMPLATE
.GRF (.SRC) FILES [ UIDATEAWK |

| 901CHGRF.AWK Jﬁ/ 901CHGRF.BAT /

/WEEKLY .GRF FILES /
-] GRAPHEREXE |~
/ PLTFILES /
| PRINTER / / POSTSCRIPT OUTPUT /

FIGURE A.18 Flow chart for 901SUM.BAT.




3) The .DAT extension is required because GRAPHER only takes files with the
DAT extension as input. For the input file, 90193005.ACS, the output file
90193005.DAT is created. Another batch file, MAKESPAC.BAT can be used to
generate a second data file, SPCYYDDD.DAT, containing indoor ambient space
conditions. This calls on AIR.EXE (AIR 1992) which takes indoor temperature
and relative humidity data (found in the .ACS file) and derives several other
psychrometric properties. This can only be done for the College Station store,

where indoor ambient air conditions are monitored, and is not detailed here.

4) Call the GAWK script 901DATE.AWK to determine the beginning dates in the
data set. This script automatically writes the batch file 901CHGRF.BAT.

5) Call 901CHGRF.BAT. This uses the GAWK script 901CHGRF.AWK and the
dates found in 901DATE.AWK to change the .GREF files for each plot. These files
need to be changed to start the time line (the X axis) at the correct spot for each
week. As each GRAPHER file is modified, it is written into \TEMP.

6) For each .GRF file in \TEMP, call GRAPHER. The output is a device
independent .PLT file.

7) Format each page. To print twelve graphs per page, the .PLT files need to be
shrunk and "pasted" together. This is accomplished electronically with the
insertion of a simple set of scale/translate files and the DOS copy command. The

scale/translate files work as follows:

e« SCALE.PLT: Shrink to about 30% of default GRAPHER output dimensions.
« A.PLT: Move to the lower left corner of page.
« B.PLT: Move up one row, the height of one plot.

¢ C.PLT: Move to the right X column (usually 1) and down three rows (usually)
back to the bottom of the page.

The dimensions of translation may be changed to fit the number of plots desired
and to fit the page orientation. A full page of plots (twelve for example, i.e., #1,
#2, ..#12) is created by appending all of these together:
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C:\TEMP> COPY SCALEPLT+APLT+#1+BPLT+#2 +BPLT+#3+B.PLT+#4 +
CPLT+#5+B.PLT+#6+ B PLT + #7 +B.PLT +#8 + CPLT +#9 + B.PLT
+#10+ B.PLT + #11 + B.PLT + #12. FULLPAGE.PLT <enter>

6) For each page of twelve graphs, use the GRAPHER PLOT program to create a
Postscript .OUT file.

CATEMP> PLOT FULLPAGE.PLT <enter>

7) Clean out all the temporary files by deleting them.

A.4.3 Creating a 3-D Graph Using Lotus 123 and Intex Solutions 3D Graph

3-D graphs have been shown to be useful in displaying schedule-related
whole-building and end-use energy profiles. However, it is not always easy to
create useful 3-D plots on a PC because certain software packages require that data
be placed in a special format prior to processing. The combination of software
packages used to generate 3D plots for the College Station store is shown in Figure
A.19. Columnar data are plotted with the Intex Solutions 3-D plot package that
can be attached to Lotus 123 on a PC.

To facilitate the creation of 3-D plots a special routine was created to
convert COLumnar data into ROW format to produce a 3D plot -- COLROW3D
(1991). With this routine, two columns of ASCII data are fed to COLROW3D by
which they are reformatted into a row-wise matrix to allow for importing into 123
for plotting with the 3-D graphics add-on package. To facilitate this easily in a
batch mode previously compiled 3-D plot instructions can be used in a 123 macro
file as shown in Figure A.19. Output from 123 consists of .PIC files that can be
plotted or passed on to additional programs for further processing. This next
section describes how to use the software to produce 3-D surface plots with the
Lotus 123 add-on package that is available from Intex Solutions. The reader is
referred to the Lotus 123 manual or the Intex Solutions 3-D graphics manual for
further information about plotting the 3-D graphs.
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Using the COLROW3D Column-to-Row Data Processing Routine.
COLROW3D is a columnar data manipulation program which processes hourly
energy consumption data to produce a "new" file containing a spread sheet
compatible data matrix. COLROW?3D compresses each day's worth of data into
one row in the matrix. For example, a leap year's worth of hourly data (8784 lines)

will be compressed down to just 367 lines!

The output file generated by COLROW3D can be used in conjunction with
Lotus 123 and Intex Solution's 3D-Graphics add-on package to produce a three
dimensional (3D) picture of energy consumption versus day of year and time of
day. COLROW3D also creates a .LOG file containing information about the run

and any erroneous data found.

Input file(s). The original energy consumption file contains two columns
of data: Date (day of year and time of day expressed as a single decimal date
string), and consumption (expressed in units between -999.9 and +9999.9). The
data should be separated by a space from the decimal date and can be of real or
integer type. The input file may contain up to 366 days of hourly data with each
day containing 24 hours. All dates must be in chronological order. Table A.32 is a

sample input file. When preparing the input file, keep in mind the following rules:

o The input file may only contain numeric data of the integer and real type. No
characters other than the numerals 0 through 9, decimal points, minus signs,

and spaces are allowed.

» Each line row or record should contain only two data fields. If more than two
values are included, data beyond the second value are ignored. If only one
datum is given on a line, the program will assume a missing value for the

second field. A value of O is used as the missing code.

o The maximum data that will be read are 366 days worth of hourly data. Each
day may contain from 1 to 24 hours of data--one record per hour. Only hourly
data should be used as input to COLROW3D. Data in sub-hourly format must

be converted to hourly format prior to processing.
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TABLE A.32
Example Input Data File For Colrow3d.

4704.0000 85.526
4704.0417 106.428
4704.0833 88.577
4704.1250 88.342
4704.1667 85.120
4704.2083 95.323
4704.2500 100.612
4704.2917 93.639
4704.3333 92.664
4704.3750 99.636
4704.4167 92.241
4704.4583 108.371

e The second data column in the input file can be any consumption
environmental data. Acceptable values are between -999.9 and 9999.9. A
value of 0 will be used for missing data. If the value lies outside the acceptable
range, the program records an error message to the .LOG file, and sets the
hourly consumption to O for missing data. Data are recorded to the output file

by rounding off to the first decimal place.

Time stamp. COLROW3D requires a decimal time stamp. Arbitrarily,
January 1, 1980 00:00:00 hours is considered to be "day 0" and has the decimal
date representation 0000.0000. The number on the left hand side of the decimal
point represents the number of days since January 1, 1980. The number on the
right hand side of the decimal point represents the hour as a fraction of the day.
Hours range from 0 through 23 and are calculated as the decimal portion
multiplied by 24 and rounded to the nearest integer. Hour 24 becomes Hour 0 of
the following day. Note, the day of the year must be in chronological order. No
such requirement is imposed on the hour of the day.

Valid dates are from January 1, 1980 (day 0) through December 31, 2009
(day 10957). Leap years and century leap years are taken into consideration. The
program will need to be updated for decimal dates beyond the year 2009. Table
A.33 gives decimal dates for January 1 from 1980 through 2009. The following
are examples of decimal date conversion,



Date Time Decimal date

January 21, 1988 11 p.m. 2942.9583

May 1, 1990 1 a.m. 3773.0417

December 31, 1991 5 p.m. 4382.7083
TABLE A.33

Decimal Date Reference Table for COLROW3D.

January 1 Year Dec.Date # Days
January 1 1981 e s 300 ssivimns 365
January 1 1982 cnvesns T8 Linwmmns 365
January 1 1983 s 1096 v 365
January 1 1984............ 1461 ............ 366
January 1 1985............ 1827 e 365
January 1 1986............ 2192 ... 365
January 1 5.7 MR 7.5 365
January 1 ;] E—— 2922 o 366
January 1 JL2].32 SA—— Ci7.). ] AR— 365
January 1 1990000 3653 s 365
January 1 199 cormocnd AOT8esvvans 365
January | 199200000 AIB3 i 366
January 1 1993500 4749 ............ 365
January | 1994............ 5114 ... 365
January 1 1995............ 5479 ..o 365
January 1 1996............ L 366
January | 1997:.cvinsinvd {520 | ) F— 365
January 1 JOOR..covuivivns (7 Lo J— 365
January 1 L2 — L4127 E— 365
January 1 2008z wcamsasd L 366
January 1 200 s snen T 365
January 1 2002 ssiswvisss 80360 365
January 1 ) § )2 R— B0 s 365
January 1 2008 e 8700 e 366
January 1 10§ 2 s —— 365
January 1 2006............ 9497 ............ 365
January | 2007....coues 9862 ............ 365
January 1 2008........... 10227............ 366
January 1 2009........... 10593............. 365
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Examples of Energy use data.

2901.0417 100 record indicates that on December 11, 1987 at 1:00 am the
building used 100 kW of energy.

4020.0000 99999  ERROR! data value is out of bounds. A message will be
written to the .LOG file, and the consumption will be set to
0.

Output file(s). The output data file contains the original energy use data
which have been rearranged in a matrix format for use with Lotus 123. This file
must have a .3D extension. The .LOG file contains information written by
COLROW?3D while the program is executed. Information regarding date and time
of run, and any errors encountered during processing are included. The date of the

first and last string of processed data are shown.

The output file is a N by 24 matrix containing only the valid input data.
Here N stands for number of days between the first and last valid date stamp read

from the input data file. For example, for one year's worth of data N is 366.

Both sample output files are shown in Table A.34. The first row is a
header that contains the hour of the day (ranging from 0 to 23), the first column is
the day of the year (for example, day 121 is May 1st), and the remaining fields are
hourly consumption data (in units of kWh/h). Missing data are represented by the
value -99. The very first value in the first row shows the day of year for the last
date read. This makes it convenient to use the output file in a spreadsheet since it

can be used to compute the number of rows in the table.

264



TABLE A.34
An Example Output Data File For COLROW3D.

Method "0"

0 0 1 2 B ks 22 23

1 0.0 98.3 84.9 92.9  ...... 100.4  99.9

2 94.6 101.9 86.5 95.5  ...... 93.2  93.3

3 81.0 96.5 84.6 94.3  ...... 99.1 100.7

4 99.9 103.7 85.0 95.0  ...... 102.7  96.9
365 106.0 115.6 116.8 107.4  ...... 106.3 105.0
366 97+4 107:3 111.5 1033 e 84.0 85.0

Method "1"

3 0 1 2 ¥ e 22 23
322 85.5 106.4 88.6 88.3  ...... 102.0 104.6
323 98.7 118.7 99.5 102.6  ...... 102.4 104.0
365 106.0 115.6 116.8 107.4  ...... 106.3 105.0

1 Bl.5 868 H2.6 B2.B s wwss 77.4  79.8

2 79:0, 895 930  BIB  wuewas 86.3  82.7

3 83.7 93.8 98.5 89.6  ...... 99.2  95.3

4 96.6 104.6 113.0 104.6  ...... 784  95.4

LOG file. COLROW3D keeps a record of what happened during each run
of the program. This information is written to disk in a .LOG file. The .LOG file
has the same name as the input data file, but with a .LOG extension. Existing
.LOG files with the same name will be overwritten. Any errors encountered during
execution are written to the .LOG file. An example of a .LOG file is shown in
Table A.35.

The header specifies the name of the program and the date and time the run
was made. The next line gives the name of the input file, the output file, the .LOG
file, and the option selected. The following line gives the time the first record was

read and the beginning date associated with that record.

The error table follows, and lists the location of the erroneous record, the
data in the record, and the invalid datum. Since COLROW3D can deal with very
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TABLE A.35
An example .LOG file for COLROW3D.

Log of Colrow3D run Wed Apr 28 20:54:54 1993

Raw data file : comp.dat

Colrow3D matrix file : COMP.3D

Log file : COMP.LOG

Method used : 0

First record read at 20:54:54 Begin Date : 4383.0415
The following records were skipped

Record Decimal Date kwh/h data Incorrect Value

Last record read at 20:55:13 End Date : 4749.0000

Statistics :

No errors were found
Total number of records read and processed : 8784
Notice : Time values within a day are NOT checked for chronological order.

*** Error report completed. ***

large data files, a maximum of 50 date stamp errors and 20 data errors will be
recorded in the .LOG file. This is to prevent a single bad datum from causing the
entire data file to be written to the .LOG file. At the end of the error table is the

time the last record was read and the ending date associated with that record.

The last part of the .LOG file consists of statistics about the input records.
The .LOG file ends with a note, which states that the time portion of the date
stamp is not checked for chronological order, and a message that the .LOG file is
complete.

Execution.
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CATEMP>  COLROW3D Input Output Option <enter>

Input is the input file name (with complete path and extension specified.)
Output is the processed data file (with .3D extension).

Option is the integer 0 or 1. Choose 0 to create a file beginning with days = 1 and
ending with day = 366, each day containing 24 hours of data. If the original file
has fewer than 366 days of data, missing data are set to 0. Select a value of 1 to
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output fewer than one year's worth of data in contiguous order. Option 1 preserves
the chronological order of input file. Figure A.20 illustrates the difference in 3-D
graphs between a "0" and "1" option. Table A.34 shows the difference in the
output files.

Example.

CA\TEMP> COLROW3D UTIL.DAT UTIL.3D 1 <enter>

Action: COLROW3D will read data from the input file called UTIL.DAT, output
data to UTIL.3D, and create the .LOG file UTIL.LOG. Since the UTIL.DAT
input file contains less than one year's worth of data, missing data are given the
value of 0.

Example.

CATEMP> COLROW3D UTIL.DAT UTIL.3D 0 <enter>

Action: COLROW3D will read the file UTIL.DAT, output to the file UTIL.3D,
and create the .LOG file UTIL.LOG. The output file is a 366 by 24 matrix with

missing data set to 0.

Example.

CATEMP> COLROW3D ? <enter>

Action: COLROW3D displays the on-line help screen. For additional help, check

the manual.

Using Intex Solutions 3DGRAPH. Table A.36 contains the 3DGRAPH
plotting instructions that were used to produce the lower half at Figure A.20. This
is a plot of the miscellaneous utility channel from the College Station grocery
store. After installing, configuring, and initiating the Intex 3DGRAPH Lotus add-
on, the UTTL.3D data matrix can be loaded with a FILE IMPORT command (with
the pointer in cell Al). The graphing instructions can then be loaded after 3D
Graph has been initiated with a GRAPH NAME USE command.



TABLE A.36
Intex Solutions 3DGRAPH Graphing Instructions for 3D Surface Plot
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TYPE: SURFACE: HIDDEN

X BL.Y1
Y A2.A367
A B2.Y367
OPTIONS TITLE FIRST: ""
SECOND: ""
X AXIS: "HOUR OF DAY"
Y AXIS: "DAY OF YEAR"
Z AXIS: "UTILITY (kWh/h)"
OPTIONS SCALE: Z-SCALE: MANUAL: LOWER=0 UPPER=300
X-SKIP: 2
Y-SKIP: 60
OPTIONS: B&W
DISPLAY: ROTATION? 270
VIEWPOINT? MEDIUM
AXIS? YES
_ G e o Sl : T
g 300 ﬁ%y’w ,ft;ﬁ%%’??}'%gé’iﬁa «tm- e .- -t,:. n =
z V /Jﬁﬁ"”"“ S Wr i 2
5 G iﬁ%‘:’%’rﬁ ﬁf?ﬁ )& ‘fy@}‘;ﬂ@qﬁgﬁ;ﬁgﬁﬁ lﬁf "f::za%'gﬂ 1 l?fﬁ? 5 F
T e, BT s
Y S, '#%‘f’éc ‘mﬁf ehﬁf';g: / t’%l{,, , :
4
Q = r g - - Lo
06-Jan 06-Mar 05-May 04-Jul 02-Sep 01-Nov 31-Dec
Day of Year
Figure A.20 Example .PIC plots using the COLROW3D software

package.
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A.5 DATA-PROCESSING ROUTINES

This section lists the batch files, AWK scripts, and other miscellaneous

instruction files mentioned in the previous sections and used to process the data.

A5.1 901SUMLBAT

rem /* 901lsum.bat version 1.0 1 Jan. 1993 */

rem l,'*****"r*'*'Ir*'k'lr*‘k'k************\'**********‘k**‘k*******************************

rem * Copyright (c) 1993, Texas Engineering Experiment Station

rem *

rem * Program: 90lsum.bat

rem * Version: 1.0

rem * Last Update: 1/1/93

rem *

rem * DESCRIPTION: This batch script produces the summary plots for the

rem * College Station grocery store, site 901.

rem *

rem * HISTORY:

rem * Design: R.L. Cox

rem * Code: R.L. Cox

rem *

rem * MODIFICATIONS:

rem * NAME : DATE: VERSION: DESCRIPTION:

rem *

rem * HISTORY AND DISTRIBUTION RIGHTS

rem * DEVELOPED BY: Energy Systems Laboratory, Mechanical Engr. Dept.,

rem * Texas A & M Univ., College Station, Texas 77843-3123,

rem * (409) 845-1560

rem * SUPPORTED BY: State of Texas Governor's Energy Management Center

rem *

rem * COPYRIGHT NOTICE: This program bears a copyright notice to prevent rights
rem ¥ from being claimed by any other party. Texas A & M University intends
rem * that the program be placed in the public domain and grants permission
rem * for it to be used and redistributed, provided that:

rem * 1) the source code is distributed,

rem * 2) this notice is retained in all copies of the source code, and
rem ¥ 3) the program is not sold for profit without written approval
rem * from TEES.

rem * The program is distributed "as is". TEES provides no warranty or
rem * support service unless special arrangements have been made to do so.
rem * Certain manufacturers and trade names are mentioned in this code for
rem * the purpose of describing their communications protocol. This does
rem * not constitute an endorsement or recommendation of such equipment,
rem * but is provided for informational purposes only.

rem *

rem **********w*********‘k*******************i**i**t*ii*itt**********************/
@rem 901SUM.BAT

@echo off

echo Processing submetered data for Kroger (Site 901)

if "%2"=="" goto error

echo I expect the original 901%1%2.dat file to be in the \work\dat\ directory!




270

copy ‘\work\dat\901%1%2.dat \temp\90lweek.dat > nul
copy \work\dat\spc%1%2.dat \temp\90lspace.dat > nul
copy \work\bud\t901l*.src \temp\*.grf > nul

gawk -f \work\util\90ldate.awk \work\dat\901%1%2.dat > \work\util\90lchgrf.bat
gawk -f \work\util\90ldate8.awk \work\dat\901%1%2.dat > \work\util\90lcgrf8.bat

cd \work\bud

rem These lines work on .src files in \work\bud.
rem Specialised .grf files are written to the \temp\ directory

call \work\util\90lchgrf t901_02 src
call \work\util\90lchgrf t901_03 src
call \work\util\90lchgrf t901_05 src
call \work\util\90lchgrf t901_06 src
call ‘\work\util\90lcgrf8 t901_08 src
call \work\util\90lchgrf t901_09 src
call \work\util\90lchgrf t901_11 src
call \work\util\90lchgrf t901_12 src
call \work\util\90lchgrf t901_13 src
call \work\util\90lchgrf t901_14 src
call \work\util\901lchgrf t901_15 src
call \work\util\90lchgrf t901_16 src
call \work\util\90lchgrf t901_17 src
call \work\util\90lchgrf t901_22 src

cd\temp
UG mm e T R T T R S e i s ey e sy e S S S S S S s e s e
echo Generating .plt files

grapher t901_01.grf
echo.
grapher t901_02.grf
echo.
grapher t901_03.grf
echo.
grapher t901_04.grf
echo.
grapher t901_05.grf
echo.
grapher t901_06.grf
echo.
grapher t901_07.grf
echo.
grapher t901_08.grf
echo.
grapher t901_09.grf
echo.
grapher t901_10.grf
echo.
grapher t901_11.grf
echo.
grapher t901_12.grf
echo.
grapher t£901_13.grf
echo.
grapher t£901_14.grf
echo.
grapher t901_15.grf
echo.
grapher t901_16.grf
echo.
grapher t901_17.grf
echo.
grapher t901_18.grf
echo.
grapher t901_19.grf
echo.
grapher t901_20.grf
echo.
grapher t901_21.grf
echo.
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grapher t901_22.grf

echo.

@echo off

copy ‘\work\util\a.plt + t901_12.plt + \work\util\b.plt + t901_09.plt partl.plt > nul
copy \work\util\b.plt + t901_06.plt + \work\util\b.plt + t901_03.plt part2.plt > nul
copy \work\utilid.plt + t£901_02.plt + \work\util\b.plt + t901_05.plt part3.plt > nul
copy \work\util\b.plt + t901_08.plt + \work\util\b.plt + t901_11.plt partd4.plt > nul
copy \work\util\d.plt + t901_01.plt + \work\util\b.plt + t901_04.plt part5.plt > nul
copy \work\util\b.plt + t901_07.plt + \work\util\b.plt + t%01_10.plt part6.plt > nul
copy partl.plt + part2.plt + part3.plt + partd4d.plt teml.tem > nul

copy part5.plt + part6.plt tem2.tem > nul

copy \work\util\scale.plt + teml.tem + tem2.tem 90lsuml.plt > nul

copy \work\utilla.plt + t901_16.plt + \work\util\b.plt + t901_15.plt part7.plt > nul
copy \work\util\b.plt + t901_14.plt + \work\util\b.plt + t901_13.plt part8.plt > nul
copy \work\util\d.plt + \work\util\b.plt part9.plt > nul
copy \work\util\b.plt + t901_22.plt + \work\util\b.plt + t901_17.plt parta.plt > nul
copy \work\util\d.plt + t901_21.plt + \work\util\b.plt + t901_20.plt partb.plt > nul
copy \work\util\b.plt + t901_19.plt + \work\util\b.plt + t901_18.plt partc.plt > nul

copy part7.plt + part8.plt + part9.plt + parta.plt teml.tem > nul
copy partb.plt + partc.plt tem2.tem > nul

copy \work\util\scale.plt + teml.tem + tem2.tem 90lsum2.plt > nul

echo Complete
Sohp, Ce RS SR R e R S L L L b el e S S s e e S A e i

rem goto skip

view \temp\90lsuml.plt
view \temp\90lsum2.plt

echo If these plots are satisfactory, press any key to continue with plotting...
pause > nul

:skip

echo Creating Postscript file #1
plot 901lsuml.plt /b

echo Creating Postscript file #2
plot 901sumZ.plt /b

@echo off

echo Cleaning

cd \temp

del *.tem > nul

del part?.plt > nul
goto done

error
echo Usage: 90lsum YY DDD

:done

rem Print the output files to the printer
copy 901lsuml.out 1lptl

copy 901sum2.out 1ptl

echo Processing completed for Kroger-CS (Site 901)

cd \work\bud
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A.5.2 901JOIN.BAT

rem /* 901join.bat version 1.0 1 Jan. 1993 */

rem l*********************1{*'k1r****'k**i’*************'k'irl’*i’**Y**t******t*********
rem * Copyright (c) 1993, Texas Engineering Experiment Station

rem *

rem * Program: 90ljoin.bat

rem * Version: 1.0

rem * Last Update: 1/1/93

rem *

rem * DESCRIPTION: This batch script produces the data files 901yyddd.dat

rem * for the College Station grocery store, site 901.

rem *

rem *

rem * HISTORY:

rem * Design: R.L. Cox

rem * Code: R.L. Cox

rem *

rem * MODIFICATIONS:

rem * NAME : DATE: VERSION: DESCRIPTION:

rem *

rem * HISTORY AND DISTRIBUTION RIGHTS

rem * DEVELOPED BY: Energy Systems Laboratory, Mechanical Engr. Dept.,
rem * Texas A & M Univ., College Station, Texas 77843-3123,

rem * (409) 845-1560

rem * SUPPORTED BY: State of Texas Governor's Energy Management Center
rem *

rem * COPYRIGHT NOTICE: This program bears a copyright notice to prevent rights

rem * from being claimed by any other party. Texas A & M University intends
rem * that the program be placed in the public domain and grants permission
rem * for it to be used and redistributed, provided that:

rem * 1) the source code is distributed,

rem * 2) this notice is retained in all copies of the source code, and
rem * 3) the program is not sold for profit without written approval
rem * from TEES.

rem * The program is distributed "as is". TEES provides no warranty or

rem * support service unless special arrangements have been made to do so.
rem * Certain manufacturers and trade names are mentioned in this code for
rem * the purpose of describing their communications protocel. This does
rem * not constitute an endorsement or recommendation of such equipment,
rem * but is provided for informational purposes only.

rem *

rem ***’(**t**t***t**t**t********************************#*********************t*/

@rem 901J0IN.BAT

@echo off

echo usage: 901join YY DDD

echo where, YY is the year and DDD is the julian date

if "%1"=="" goto done

echo Working on week polled on date %1%2

echo I expect to find the .acs and .wea files in the \work\acs\ directory
GOHO, —mrm m im m mim c  f i —  m m
echo Joining "901%1%2.acs" and "001%1%2.wea" into "\work\dat\901%1%2.jux"

@echo The T and RH signals at 901 are now included as columns 23 and 24 in the
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@echo 901yyddd.acs file. They are placed as the last two columns in the JUX file.

cols “\work\acs\901%1%2.acs "“\work\acs\001%1%2.wea al:22 bl:12 a23:24
viwork\dat\901%1%2. jux

echo Gawking file \work\dat\901%1%2.jux

cd ‘\work\dat

gawk -f \work\util\90ljoin.awk \work\dat\901%1%2.jux > output.dat
copy output.dat \work\dat\901%1%2.dat

del output.dat

call makespac.bat %1 %2

cd \work\acs

:done

echo Done

A.5.3 901JOIN.AWK

# /* 90lsum.awk version 1.0 1 Jan. 1993 */

# /***************‘k*********************************************************

I+

*  Copyright (c) 1993, Texas Engineering Experiment Station
*

*  Program: 90lsum.awk

* Version: 1.0

* Last Update: 1/1/93

* DESCRIPTION: This AWK script produces the *.DAT data file for the
* College Station grocery store, site 901.

* HISTORY:
* Design: R.L. Cox
¥ Code: R.L. Cox

* MODIFICATIONS:
® NAME : DATE: VERSION: DESCRIPTION:

HISTORY AND DISTRIBUTION RIGHTS

* DEVELOPED BY: Energy Systems Laboratory, Mechanical Engr. Dept.,
* Texas A & M Univ., College Station, Texas 77843-3123,

¥ (409) 845-1560

* SUPPORTED BY: State of Texas Governor's Energy Management Center

* COPYRIGHT NOTICE: This program bears a copyright notice to prevent rights

¥ from being claimed by any other party. Texas A & M University intends
*® that the program be placed in the public domain and grants permission
* for it to be used and redistributed, provided that:

* 1) the source code is distributed,

* 2) this notice is retained in all copies of the source code, and

* 3) the program is not sold for profit without written approval

i from TEES.

* The program is distributed "as is". TEES provides no warranty or

* support service unless special arrangements have been made to do so.

H= HF F= A A I = = o FH O HF O H O HF O F H F HF O HF O H F O F F FH H HF F HFE OH F O K
*

¥ Certain manufacturers and trade names are mentioned in this code for
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*# ¢ the purpose of describing their communications protocel. This does
# * not constitute an endorsement or recommendation of such equipment,
# * but is provided for informational purposes only.

* *

# ***********************w***************-A-**w********1-***********w*******w****/
# This is 901J0IN.AWK,

# a script which takes an ACS file prepared with

# 901J0IN.BAT and adds appropriate columns to produce 90lyyddd.DAT

{

tempdb = $29;

¥h = 5307

sol = $33;

enth = $31;

w = $32;

wind = $34;

temp_RA = $35;

rh_RA = $36;

# COMPressor channel. Must subtract video store HVAC
# from the raw COMP channels.

1f(($8>=0)&&($9>=0)&& (510>=0) &&($20>=0) &&($21>=0) &&(5$22>=0))
{compr = 0 + (%8 + $9 + $10) - (%20 + $21 + $22);}
else
1if(($8>=0)&&($9>=0)&& (510>=0))
{compr = 0 + (58 + $9 + $10);}
else
{compr = -99;}

# Combined LGHTing channel.
if (($11>=0)&&($12>=0)&& ($13>=0))
{lght = 0 + $11 + $12 + $13;}
else
{lght = -99;}

# Combined HVAC channel.
if (($14>=0)&& ($15>=0) && ($16>=0) &&($20>=0) && ($21>=0) && ($22>=0) )
{hvac = 0 + $14 + $15 + $16 + 3520 + $21 + $22;)
else
1f(($14>=0) &&($15>=0)&&(516>=0))
{hvac = 0 + $14 + $15 + $16;}
else
{hvac = -99;}

# Combined miscellaneous utility.
1if(($17>=0)&&(518>=0)&&(519>=0))
{util = 0 + $17 + $18 + $19;}

else
{util = -99;}

# Combined video HVAC.
if (($20>=0)&&($21>=0)&& ($22>=0))
{vid = 0 + $20 + $21 + $22;}
else
{vid = -99;}

# Whole building energy use (kwh/h)

if{ (compr>=0)&& (lght>=0) && (hvac>=0)&& (util>=0))
{whole = 0 + compr + lght + hvac + util;}
else
{whole = -99;}

print $1,%2,%3,5%4,65,%6,%7,compr, lght, hvac,
util,vid,whole, tempdb, rh, sol,enth,w,wind, temp_RA,rh_RA;
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A.5.4 901CHGRF.AWK

# /* 901CHGRF.AWK version 1.0 1 Jan. 1993 */

* /******i*********&it*t***i**t****ti*titt**t***t**t************************

# * Copyright (c) 1993, Texas Engineering Experiment Station
*

* Program: 901CHGRF.AWK

* Version: 1.0

* Last Update: 1/1/93

* DESCRIPTION: This AWK script alters the .GRF file to include the correct
" date of the week being processed for the
* College Station grocery store, site 901.

* HISTORY.:
i Design: R.L. Cox

x Code: R.L. Cox

* MODIFICATIONS:
# NAME : DATE: VERSION: DESCRIPTION:

*  HISTORY AND DISTRIBUTION RIGHTS

* DEVELOPED BY: Energy Systems Laboratory, Mechanical Engr. Dept.,
Texas A & M Univ., College Station, Texas 77843-3123,

= (409) 845-1560

* SUPPORTED BY: State of Texas Governor's Energy Management Center

*  COPYRIGHT NOTICE: This program bears a copyright notice to prevent rights
* from being claimed by any other party. Texas A & M University intends
e that the program be placed in the public domain and grants permission
* for it to be used and redistributed, provided that:

% 1) the source code is distributed,

* 2) this notice is retained in all copies of the source code, and
* 3) the program is not sold for profit without written approval

* from TEES.

i The program is distributed "as is". TEES provides no warranty or

* support service unless special arrangements have been made to do so.
* Certain manufacturers and trade names are mentioned in this code for
* the purpose of describing their communications protocol. This does

* not constitute an endorsement or recommendation of such equipment,

" but is provided for informational purposes only.

*

#= H = FH H H F H = H F o o S o = o FH o o #H F FH H FH o H H FH H o H H H H I
*

********t****t*t+*‘*ii***************t******************************&**t****/

{
gsub(/Site 901 Beginning/,"Site 901 Beginning " varl);
if (NR == 12) printf("$f %f %s %s %s \n",var2,var2+7,53,54,55);
else prints0;

}

A.5.5 901CGRFS8.AWK

# /* 901CGRF8.AWK version 1.0 1 Jan. 1993 */

# f*****************************t*i*t*iﬁ**ﬁ*****************i*i*************




276

3 3 H H I FHF = H F H o F FH F H F o FHF F H F O F FH H FH I o FH I o I o = I FE o FH FHE o

* Copyright (c) 1993, Texas Engineering Experiment Station
* Program: 901CGRF8.AWK
* Version: 1.0

* Last Update: 1/1/93

*  DESCRIPTION: This AWK script alters the .GRF file to include the correct

* date of the week being processed for the

* College Station grocery store, site 901. It is a variation
* of 901CHGRF.AWK, handleing a .GRF file which has two input
* .DAT files.

* HISTORY:

* Design: R.L. Cox

* Code: R.L. Cox

* MODIFICATIONS:
% NAME: DATE: VERSION: DESCRIPTION:

* HISTORY AND DISTRIBUTION RIGHTS

* DEVELOPED BY: Energy Systems Laboratory, Mechanical Engr. Dept.,
i Texas A & M Univ., College Station, Texas 77843-3123,

® (409) 845-1560

% SUPPORTED BY: State of Texas Governor's Energy Management Center

* COPYRIGHT NOTICE: This program bears a copyright notice to prevent rights

* from being claimed by any other party. Texas A & M University intends
* that the program be placed in the public domain and grants permission
* for it to be used and redistributed, provided that:

* 1) the source code is distributed,

* 2) this notice is retained in all copies of the source code, and
* 3) the program is not sold for profit without written approval

i from TEES.

* The program is distributed "as is". TEES provides no warranty or

* support service unless special arrangements have been made to do so.
L Certain manufacturers and trade names are mentioned in this code for
* the purpose of describing their communications protocol. This does

* not constitute an endorsement or recommendation of such eguipment,

. but is provided for informational purposes only.

*

****i'*************i’****i**ii’************************************************/

gsub(/Site 901 Beginning/, "Site 901 Beginning " wvarl);
if (NR == 19) printf("%f %f %s %s %s \n",var2,var2+7,%3,%4,%5);
else print$0;
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# /* 901DATE.AWK version 1.0 1 Jan. 1993 */

# /**********'k******************************t*******************************

# * Copyright (c) 1993, Texas Engineering Experiment Station
*

* Program: 901DATE.AWK

* Version: 1.0

* Last Update: 1/1/93

* DESCRIPTION:

/* This AWK script gets the date string (mm-dd-yyyy) and decimal date (xxxx) */
/* from the *.acs file being processed. */

/* The output from this file is a command string which will change the date */
/* in X-Axis label and also change the starting wvalue */

* HISTORY:
* Design: R.L. Cox
® Code: R.L. Cox

*  MODIFICATIONS:
® NAME : DATE: VERSION: DESCRIPTION:

* HISTORY AND DISTRIBUTION RIGHTS

DEVELOPED BY: Energy Systems Laboratory, Mechanical Engr. Dept.,
* Texas A & M Univ., College Station, Texas 77843-3123,

* (409) 845-1560

*® SUPPORTED BY: State of Texas Governor's Energy Management Center

* COPYRIGHT NOTICE: This program bears a copyright notice to prevent rights
* from being claimed by any other party. Texas A & M University intends
* that the program be placed in the public domain and grants permission
* for it to be used and redistributed, provided that:

¥ 1) the source code is distributed,

% 2) this notice is retained in all copies of the source code, and
x 3) the program is not sold for profit without written approval

* from TEES.

* The program is distributed "as is". TEES provides no warranty or

* support service unless special arrangements have been made to do so.
* Certain manufacturers and trade names are mentioned in this code for
L the purpose of describing their communications protocol. This does

L not constitute an endorsement or recommendation of such equipment,

. but is provided for informational purposes only.

*

S o# H= FH FH FH OFHF F O FHF F o F F H o HFH HF F F OF HF H H O H O H HF H H HF HHFHHFE OF O HFE H
*

******‘k*********************************************************************/

NR == 1 {
varl = $2"-"$3"-19"54;
var2 = " \\work\\util\\90lchgrf.awk ";
var3 = " %l.src ";
vard = " >\\temp\\%l.grf ";

printf ("gawk -v varl=%s -v var2=%d -f %s %s %s \n",varl, $6,var2,var3,vard);

A.5.7 901DATES. AWK
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# /* 901DATES.AWK version 1.0 1 Jan. 1993 */

# /*****************************************t**************t*********t******

# * Copyright (c) 1993, Texas Engineering Experiment Station
*

*  Program: 901DATES.AWK

* Version: 1.0

* Last Update: 1/1/93

* DESCRIPTION:

/* This AWK script gets the date string (mm-dd-yyyy) and decimal date (xxxx) */
/* from the *.,acs file being processed. */

/* The output from this file is a command string which will change the date */
/* in X-Axis label and also change the starting value */

* HISTORY:
* Design: R.L. Cox
* Code: R.L. Cox

* MODIFICATIONS:
= NAME : DATE: VERSION: DESCRIPTION:

* HISTORY AND DISTRIBUTION RIGHTS

DEVELOPED BY: Energy Systems Laboratory, Mechanical Engr. Dept.,
w Texas A & M Univ., College Station, Texas 77843-3123,

* (409) 845-1560

* SUPPORTED BY: State of Texas Governor's Energy Management Center

* COPYRIGHT NOTICE: This program bears a copyright notice to prevent rights
* from being claimed by any other party. Texas A & M University intends
* that the program be placed in the public domain and grants permission
* for it to be used and redistributed, provided that:

% 1) the source code is distributed,

* 2) this notice is retained in all copies of the source code, and
% 3) the program is not sold for profit without written approval

* from TEES.

* The program is distributed "as is". TEES provides no warranty or

o support service unless special arrangements have been made to do so.
i Certain manufacturers and trade names are mentioned in this code for
* the purpose of describing their communications protocol. This does

* not constitute an endorsement or recommendation of such equipment,

* but is provided for informational purposes only.
*

= S 3 3 S = S #H I o o o e H I o = H o I 4 S oS = = = S S F A SESEA HOF H H %
*

****************************************************************************/

NR == 1 {
varl = $2"-"$3"-19"54;
var2 = " \\work\\util\\90lcgrf8.awk ";
vari = " %l.src ";
vard = " >\\temp\\%1l.grf ";
printf ("gawk -v varl=%s -v var2=%d -f %s %s %s \n",varl, $6,var2,var3,var4);

A.5.8 MAKESPAC.BAT

|rem /* MAKESPAC,BAT version 1.0 1 Jan. 1993 */
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rem /*‘!****t**1(***t********k*****t*'it*****t**'k**t****!***ﬁ******************t**
rem * Copyright (c) 1993, Texas Engineering Experiment Station

rem *

rem * Program: MAKESPAC.BAT

rem * Version: 1.0

rem * Last Update: 1/1/93

rem *

rem * DESCRIPTION: This batch script produces the space condition data file

rem SPCyydddd.DAT for the College Station grocery store, site 901.
rem *

rem * HISTORY:

rem * Design: R.L. Cox

rem * Code: R.L. Cox

rem *

rem * MODIFICATIONS:

rem * NAME: DATE: VERSION: DESCRIPTION:

rem *

rem * HISTORY AND DISTRIBUTION RIGHTS

rem * DEVELOPED BY: Energy Systems Laboratory, Mechanical Engr. Dept.,
rem * Texas A & M Univ., College Station, Texas 77843-3123,

rem * (409) 845-1560

rem * SUPPORTED BY: State of Texas Governor's Energy Management Center
rem *

rem * COPYRIGHT NOTICE: This program bears a copyright notice to prevent rights

rem * from being claimed by any other party. Texas A & M University intends
rem ¥ that the program be placed in the public domain and grants permission
rem ¥ for it to be used and redistributed, provided that:

rem * 1) the source code is distributed,

rem * 2) this notice is retained in all copies of the source code, and
rem * 3) the program is not sold for profit without written approval
rem ¥ from TEES.

rem * The program is distributed "as is". TEES provides no warranty or

rem * support service unless special arrangements have been made to do so.
rem * Certain manufacturers and trade names are mentiocned in this code for
rem * the purpose of describing their communications protocol. This does
rem * not constitute an endorsement or recommendation of such equipment,
rem * but is provided for informational purposes only.

rem *

rem ***t**‘k*i*#********"r**'ﬁ'**1(**'ir**********************‘k***‘k*******i********t**t/

@echo off

if "s2" "' gotc usage
if "$3"=="-SI" goto SI
:english

echo English units chosen...

echo { > tem.awk

echo printf("%%7.2f %%7.2f\n", $20, $21 ); >> tem.awk
echo } >> tem.awk

goto skip

5T

echo SI units chosen...

echo { > tem.awk

echo printf ("%%7.2f %%7.2f\n", (($20+460.0)*5/9-273.0), $21 ); >> tem.awk
echo } >> tem.awk

:skip
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echo Gawking
gawk -f tem.,awk 901%1%2.dat > tem.out

echo Running air %3
air %3 tem.out air.out 3

cols "901%1%2.dat “air.out al:7 all al4:21 b > spc%1%2.dat
del tem.out > nul
del air.out > nul

del tem.awk > nul

rusage
echo Usage: makespac yy ddd [-SI]

A.5.9 .PLT FILES

SCALE.PLT
B 25 25
A.PLT

TR 2. 2.
B.PLT

TR 0 8.5
C.PLT

TR 8.3 —~17.0

D.PLT

TR 8.8 —25.5
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TABLE B.1
College Station Store Miscellaneous Utilities
Nameplate Rating Loads
Amps
Deli/Bakery: Qty /ph Volts kW in phase hp  Notes
Bake King Fryer 1 27 208 8.50 3
Bake King Filter 1 3.4 208 0.80 1
BBQ King Fryer 1 48 208 12.10 3
BBQ King Filter 1 34 208 0.80 1
Hobart Oven 1 15.60 3
Hobart Oven 1 15.60 3
Bread Retarder 1 0.63
Ice Machine 1 13.43 120 1.21 1 pf=0.75
Bread Proofer 1 208 13.40 Baker's Aid Inc.
BAPIS-1D-S5
Bread Proofer 1 208 13.40 Baker's Aid Inc.
BAPIS-1D-S5

Meat Saw 1 55 120 0.50 0.33 pf=0.75
Meat Saw 1 5.5 120 050 033 pf=0.75
Cheese Island Slicer 1 52 120 0.47 0.33 pf=0.75
Steam Warmer 7 10 120 8.40 1
Saran Wrapper 1 120 1.30
Fry Plate Stove 1 325 208 3.90 1
Small Condiments Refr. | 8.8 208 0.79 1 pf=0.75
Coffee Brewer 1 2 120 2.20
Microwave 1 1 1.10
Blender 1 1 8.2 120 0.74 pf=0.75
Bread Slicer 1 1 6.2 120 0.56 0.33 pf=0.75
Hobart Scale 1 1 1.3 120 0:15
Hobart Scale 1 1 1.3 120 0.15
Hobart Scale 1 1 1.3 120 0.15

Total:

102.9



Meat Preparation:

TABLE B.1

College Station Store Miscellaneous Ultilities

Nameplate Rating Loads (continued)
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Amps
Qty /ph Volts kW in phase hp Notes

Band Saw 1 14.6 120 132 1 1.50 pf=0.75
Band Saw 1 14.6 120 1.32 1 1.50 pf=0.75
Meat Mill 1 19.5 120 1.76 1 2.00 pf=0.75
Packager 1 12.0 120 1.08 1 1:23
Hobart Scale I 1.3 120 0.15 1
Hobart Scale 1 1.3 120 0.15 1
Meat Slicer 1 52 120 0.47 1 0.33
Total: 6.24
Cash Registers (on Lighitng Circuit)

Amps

Qty  /ph Volts kWin phase hp  Notes

Check Stand 1 5 115 0.58 1
Check Stand 1 5 115 0.58 1
Check Stand | 5 115 0.58 1
Check Stand 1 5 115 0.58 1
Check Stand i 5 115 0.58 1
Check Stand 1 5 115 0.58 1
Check Stand 1 5 115 0.58 1
Check Stand 1 5 115 0.58 1
Check Stand 1 5 115 0.58 1
Check Stand 1 5 115 058 1
Check Stand 1 5 115 0.58 1
Camera Bar Register | 2 115 0.23 1
Deli Register 1 2 115 0.23 1
Total: 6.79
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TABLE B.1
College Station Store Miscellaneous Utilities
Nameplate Rating Loads (continued)

Other:
Amps
Qty /ph Volts kW in phase hp  Notes
Trash Baler 1 8.57 3 10 pf=0.76,
eff = 0.87 known
Case & Cooler Fans - - 115 29.9 1 pf = 0.66,
100 kW peak defrost
Total for Utility Loads
(not inc. Cash Registers): 147.6

Compressor Room Fans (on compressor circuit):

Amps
Qty /ph Volts kWin phase hp  Notes

Exhaust Fan 1 18 208 3.51 3 6 pf=0.85
Exhaust Fan 1 18 208 9:.51 3 6
Exhaust Fan 1 18 208 3.3 3 6
Exhaust Fan 1 18 208 5.51 3 6

Total: 22.05
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TABLE B.2
College Station Store Lighting Count

Use Lamps/ Watts/ Ballast Total

CodeLuminaires Lumin. lamp Factor Waltts Location

c 4 2 60 1.1 528 Butcher Case

c 8 1 40 1.1 352 Floral

C 4 1 60 1.1 264 Floral Mum Case

c 2 1 40 1.1 88 Fresh Chilled Juice Case
o 2 1 85 1.1 187 Health & Floral Case

& 2 1 40 1.1 88 Ice Bunker

c 6 2 100 Il 1320 Ice Cream Cases

c 4 1 85 11 374 Milk Case

c 12 1 100 1.1 1320 0OJ & Egg Cases

c 7 2 75 1:1 1155 Poultry Case (drop ceil)
c 12 1 40 14 528 Produce Wall

c 9 1 40 1.1 396 Produce Wall

c 12 it 85 1.1 1122 3 DK Red Meat Case

c 12 2 40 1.1 1056 Salad Bar

[ 8 1 100 1.1 880 Sausage & Meats Decks
c 30 1 60 i1 1980 Sausage & Meats Decks
c 6 1 60 1.1 396 Sausage & Meats Decks
c 4 2 60 1.1 528 Seafood Case

c 2 1 40 1.1 88 Wine Cooler Case

(o 2 1 40 1.1 88 Yogurt Case

NL 2 1 230 460 Deli & Cosm. Registers
NL I 1 1200 1200 Ice Machine

NL 11 1 580 6380 POS Cash Registers

NL 1 1 172 172 Yogurt Machine

og 14 2 75 1.1 2310 Back Room

og 3 2 40 1.1 440 Back Room

og 3 2 40 1.1 264 Break Room Mezzanine
og 4 2 40 | | 264 Compressor Mezzanine
og 1 2 40 1.1 88 Computer Room

og 4 2 85 I 748 Dairy Cooler Room

og 2 1 85 1:1 187 Floral Cooler

og 3 2 75 1:1 495 General Offices

og 5 1 75 1.1 412.5 Loading Dock

og | 2 40 1.1 88 Loading Dock

og 2 2 40 1.1 176 Mail and Timer Rooms
og 2 2 75 1.1 330 Manager's Office

og 2 1 85 1.1 187 Meat Freezer 1

og 1 2 60 1.1 132 Meat Freezer 1

og 1 1 85 1.1 93.5 Meat Freezer 2

og <] 1 85 1.1 467.5 Meat Prep

og 6 2 85 1l 1122 Meat Prep Back Room
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TABLE B.2a

Store Lighting Count (continued)
Use Lamps/ Watts/ Ballast Total
CodeLuminaires Lumin. lamp Factor Watts Location
og 2 2 60 1.1 264 Meat Prep Back Room
og 2 2 40 1.1 176 Men's Room
og 9 1 75 1.1 742.5 Outside Porch Lights
og 6 2 75 1.1 990 Produce Prep
og 1 2 73 1.1 165 Restroom Hallway
og 1 2 75 1.1 165 Stairwell
og 2 2 40 1.1 176 Women's Room
og* 11 1 100 i 1100 Check Stand Sign Lamps
og* 26 1 K15 1.2 5460 Checkstands
og* 8 1 175 1.2 1680 Cheese Island
og* 1 2 40 1.1 88 Deli Black Light Traps
og* 6 1 100 1 600 Snack Bar
og* 1 2 40 1.1 88 Vestibule Light Traps
0s 10 4 40 1.1 1760 Pharmacy
0s 2 2 40 1.1 176 Deli
0s 6 4 40 1.1 1056 Drugs
0s 4 2 40 1.1 352 Drugs
0s 9 2 40 1.1 792 Bakery
0s 19 2 40 1.1 1672 Bakery/Deli Drop Ceil
08 3 2 75 1.1 495 Butcher Area
08 12 2 75 1.1 1980 Cheese Overhead
0s 6 2 40 1.1 528 Cheese Overhead
08 25 2 75 1:1 4125 Beer/Wine Overhead
08 7] 2 40 1.1 440 Beer/Wine Overhead
0s 16 2 75 (8 2640 Dairy Overhead
08 3 2 40 1.1 264 Dairy Overhead
08 230 2 75 1.1 37950 Main Rect Sect
0s 34 2 73 1.1 5610 Produce Overhead
0s 3 2 40 1.1 264 Produce Overhead
08 17 2 5 1.1 2805 Check-out Overhead
0s 2 2 40 1.1 176 Check-out Overhead
0s 10 4 40 I:1 1760 Customer Service Ovrhd
0s 7 2 40 1.1 616 Ice Bunker Overhead
os* 24 1 i W4 1.2 5040 Produce Islands
P 20 1 110 1:1 2420 Cube Sign
p 8 3 8 1.1 2112 Wall Signs (non-"curly")
p 8 2 1000 1.25 20000 Parking Lot
P 4 1 1000 1.25 5000 Rear Parking Lot




TABLE B.2a
Store Lighting Count (continued)
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Use Lamps/ Watts/ Ballast Total

CodeLuminaires Lumin. lamp Factor Watts Location

r 1 1 40 1.1 44 Bakery End Cap

r 8 1 40 1.1 352 Bakery Racks

T 1 1 40 1.1 44 Bakery Racks

r 4 1 75 1.1 330 Bakery Racks

r 8 2 75 1.1 1320 Bread Racks

r 1 2 40 1:1 88 Bread Racks

T 8 2 75 0.1 120 Bread Racks (OFF)

T 1 2 40 1.1 88 Coffee Station Rack

r 12 2 40 1.1 1056 Cosmetics Rack

r 5 2 40 1.1 440 Cosmetics Rack

I 6 1 40 1.1 264 Doughnut Case

r 34 1 40 1.1 1496 Greeting Cards Racks

T 3 2 40 1.1 264 Health Foods Racks

r 1 1 40 1.1 44 Magazine Rack (end cap)
r 9 1 40 1.1 396 Magazine Racks

r 10 1 40 1.1 440 Magazine Racks

r 9 1 40 L 396 Photo Bar

r 19 2 40 1 1672 Soda Racks (Drop Ceil)
4 4 2 75 1 660 Video Store Back Rooms
v 1 2 40 1.1 88 Video Store Beer Case
v 138 4 40 1.1 24288 Video Store Ceiling

v 4 1 400 1:25 2000 Video Store Porch

v 320 1 i 1.1 2464 Video Poster Marquees
v 3 1 40 1.1 132 Video Store Soda Case
Total 177.1 kW

Code  os = overhead sales

Key:  og=overhead general

c = refrigerated case lighting

r = rack lighting
p = parking lot lighting

* = non-fluorescent

v = video store

NL = non-lighting (nevertheless on circuit)



TABLE B.2b
Summary of College Station Store Lighting Count

kW kW
Summary Peak
Adj. for Schedule.
Flour. Ovrhd (Main Sales) 65.5 50.2 Inside Light PLF: 0.67
Fluor. Ovrhd (Main Non-sales) 10.5 7.3 Outside Light PLF: 0.50
Fluor. Case/rack 21.6 15.8 Video Insode PLF: 0.71
Non-fluor. (Main) 14.1 9.4
Main Total Fluor. 97.5 73.4
Main Total 111.6 827
Fluor. Ovrhd (Video Sales) 249 17.7
Video Total 29.6 214
Non-Lighting on Circuit 8.2 82
Parking Lot/Outdoor 27.6 13.8
Total: 177.1 126.1
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TABLE B.3a
Summary of Amp Readings for the College Station Store
Refrigeration Compressors System
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it Description Amps Defrost LRA Defrost
3-ph Amps cyc min

A Meat WLKN COOLER 20 20 22 115 2 30
B Meat Prep WLKN COOLER 19 19 20 115 2 60
C Flrl/Deli/Beer WLKN COOLER 32 31 30 240 2 50
D Bkry & Groc WLKN FRZR 22 35 35 27 30 35 115 6 30
E Produce Prep WLKN COOLER 22 22 22 115

E Nutsit/Seafd WLKN COOLER 9 9 7 82 1 60
2 28' 3-Deck Meat COOLER 21 21 21 164 4 40
3 20" LnchMeat Case COOLER 19 19 18 115 3 60
4 32' LnchMeat/Deli COOLER 265 25 25 164 3 60
5 End Cap FRZR 14 14 14 14 14 18 115 | 60
6 68' Coffin FRZR 22 21 22 39 41 39 164 1 60
i 68" Coffin FRZR 21 20 21 39 38 40 164 1 60
8 68' Coffin FRZR 21 22 71 40 39 40 164 1 60
9 68" Coffin FRZR 21 20 20 36 41 36 164 1 60
10 10" Glass Door Ice Crm FRZR 23, 33 33 28 29 31 273 2 70
11 84' Produce COOLER 32 31 32 240 2 60
12 64' Island Produce COOLER 15 15 15 115 1 60
13 44" Chz & Butter COOLER 32 32 33 240 3 50
14 36' Dairy COOLER 29 26 28 164 3 60
115 Meat & Cheese COOLERS 24 24 25 164 2 60
16 Deli COOLER 8 7 8 82 3 60
U2  Dairy Case Roof #1 19 21 22 164 4 40
U3 Dairy Case Roof #2 22 22 22 164 4 40




TABLE B.3b
Summary of Refrigeration Schedules for
College Station Refrigeration Compressors
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Evaporator
COMP# Description Cut Cut Head Suct
Refr. ON OFF (PSI) (PSI)

A Meat WLKN COOLER R12 30 5 150 22
B Meat Prep WLKN COOLER R12 32 7 140 32
C Flrl/Deli/Beer WLKN COOLER R12 30 5 140 17
D Bkry & Groc WLKN FRZR R502 ? ? 220 8
E Produce Prep WLKN COOLER R12 35 5 170 34
F Nutrit/Seafd WLKN COOLER R502 33 6 165 11
2 28' 3-Deck Meat COOLER R12 28 5 115 11
3 20' LnchMeat Case COOLER RI12 30 10 175 21
4 32' LnchMeat/Deli COOLER R12 30 5 140 15
5 End Cap FRZR R502 24 5 200 6
6 68' Coffin FRZR R502 25 10 220 16
7 68' Coffin FRZR R502 24 10 165 14
8 68' Coffin FRZR R502 28 8 235 16
9 68' Coffin FRZR R502 24 5 240 13
10 10" Glass Door Iece Crm FRZR R502 22 5 195 6
11 84' Produce COOLER RI12 34 16 150 19
12 64' Island Produce COOLER R12 34 16 145 18
13 44' Chz & Butter COOLER R12 31 11 130 17
14 36' Dairy COOLER RI12 32 14 150 15
115 Meat & Cheese COOLERS R12 25 5 130 15
16 Deli COOLER R12 30 5 140 22
u2 Dairy Case Roof #1 R12 28 7 100 8
u3 Dairy Case Roof #2 R12 28 7 100 8




Summary of Rated Condenser Fan Loads
for College Station Refrigeration Compressors

TABLE B.3c
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Fan
COMP# Description Qty. HP Amps Adj. Amps  Adj. kW in
(@230v) (@208v)
A Meat WLKN COOLER 2 0.3 1.7 1.54 0.28
B Meat Prep WLKN COOLER 2 0.3 17 1.54 0.28
& Flrl/Deli/Beer WLKN COOLER 4 0.3 13 1.54 0.55
D Bkry & Groc WLKN FRZR 4 0.3 1.7 1.54 0.55
E Produce Prep WLKN COOLER 2 0.3 1.7 1.54 0.28
F Nutrit/Seafd WLKN COOLER 1 0.5 2.7 2.44 0.22
2 28' 3-Deck Meat COOLER 4 0.3 1.7 1.54 0.55
3 20' LnchMeat Case COOLER 2 0.3 1.7 1.54 0.28
4 32' LnchMeat/Deli COOLER 4 0.3 1.7 1.54 0.55
5 End Cap FRZR 2 0.3 1.7 1.54 0.28
6 68' Coffin FRZR 2 0.3 1.7 1.54 0.28
7 68' Coffin FRZR 2 0.3 1.7 1.54 0.28
8 68' Coffin FRZR 2 0.3 13 1.54 0.28
9 68' Coffin FRZR 2 0.3 13 1.54 0.28
10 10" Glass Door Ice Crm FRZR 4 0.3 1.5 1.54 0.55
11 84' Produce COOLER 4 03 1.7 1.54 0.55
12 64' Island Produce COOLER 2 0.3 1.7 1.54 0.28
13 44' Chz & Butter COOLER 4 0.3 1.7 1.54 0.55
14 36' Dairy COOLER <4 0.3 1.7 1.54 0.55
115 Meat & Cheese COOLERS 4 0.3 19 1.54 0.55
16 Deli COOLER 2 0.3 1.7 1.54 0.28
u2 Dairy Case Roof #1 1 0.3 j e 1.54 0.14
U3 Dairy Case Roof #2 | 0.3 1.7 1.54 0.14
Fan Load (pf = 0.75): 853




TABLE B.3d
Load Summary of Compressors at College Station Store
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Rated Meas. Meas.
#  Description Refrgt HP kW Defr.
kW
A Meat WLKN COOLER R12 5 5.58 5.58
B Meat Prep WLKN COOLER R12 5 5.22 5.22
C  Flrl/Deli/Beer WLKN COOLER R12 10 8.38 8.38
D  Bkry & Groc WLKN FRZR R502 8 8.29 8.29
E  Produce Prep WLKN COOLER R12 5 5.94 5.94
F  Nutrit/Seafd WLKN COOLER R502 3.1 225 225
2 28 3-Deck Meat COOLER R12 7.6 5.67 5.67
3 20' LnchMeat Case COOLER R12 5 5.04 5.04
4 32' LnchMeat/Deli COOLER R12 7.7 6.85 6.85
5  End Cap FRZR R502 5 3.78 4.14
6 68 Coffin FRZR R502 7.6 5.85 10.72
7 68 Coffin FRZR R502 7.6 5.58 10.54
8 68 Coffin FRZR R502 7.6 5.76 10.72
9 68 Coffin FRZR R502 7.6 5.49 10.18
10 10" Glass Door Ice Crm FRZR R502 15 3.92 793
11 84' Produce COOLER R12 10 8.56 8.56
12 64 Island Produce COOLER R12 5 4.05 4.05
13 44' Chz & Butter COOLER R12 10 8.74 8.74
14 36" Dairy COOLER R12 7.6 7.48 7.48
1 15 Meat & Cheese COOLERS R12 7.6 6.57 6.57
16 Deli COOLER RI12 3.1 2.07 2.07
U2 Dairy Case Top #1 R12 7.6 5.58 5.58
U3 Dairy Case Top #2 R12 7.6 5.94 5.94
Sum: 166 137.6 156.5
Compressors:
Running Load (supply) = 137.6 kW pi=0.75
Maximum Load with Defrost = 156.5 kW eff = 0.82 (not used in calculating input power)
Rated horsepower = 166 HP Corporate records list 148 HP
(discluding 2 dairy comps)
Fans:
Running Load = 8.53
0.0914  fraction of dairy compressor HPs to remaining compressors



TABLE B.4

Bryan Store Miscellaneous Utilities Nameplate Rating Loads
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Item Amps/ph Volts kW in phase hp Notes

Deli/Bakery

Bake King Fryer 27 208 8.50 3

Bake King Filter 34 208 0.80 1

Main Walk-in Oven 208 20.00 3 Baker's Aid Inc. 1-DR

Bread Riser/Proofer 208 15.42 Baker's Aid Inc.
BAPIS-2D-S5

Ice Machine 13.43 120 1.21 1 pf=0.75

Bread Riser/Proofer 208 13.40 Baker's Aid Inc.
BAPIS-1D-S5

Meat Saw 55 120 0.50 0.33 pf=0.75

Steam Warmer 10 120 1.20 1

Steam Warmer 10 120 1.20 1

Steam Warmer 10 120 1.20 1

Steam Warmer 10 120 1.20 1

Steam Warmer 10 120 1.20 |

Steam Warmer 10 120 1.20 1

Steam Warmer 10 120 1.20 |

Steam Warmer 10 120 1.20 1

Saran Wrapper 120 1.30

Stove 6.90 2 elements + chamber

Broaster Deep Fryer 28 9.90

Small Oven 2.70

Coffee Brewer 2 120 2.20

Microwave 1.10

Bread Riser/Proofer 208 13.40 Baker's Aid Inc.
BAPIS-1D-85

Bread Slicer 6.2 120 0.56 0.33 pf=1075

Cheese Slicer 52 120 0.47 0.33 pf=0.75

Pizza Cooker 13.75 120 1.65

Hobart Scale 13 120 0.15

Hobart Scale 13 120 0.15

Total: 109.90

Meat Preparation:

Band Saw 14.6 120 1.32 1’5 pf=0.75

Band Saw 14.6 120 1.32 1.5 pf=0.75

Packager 12 120 1.08 12

Hobart Scale 128 120 0.15

Meat Slicer 52 120 0.47 0.33

Total: 433

Point-of Sale (on utility circuit)

Check Stand 5 115 0.58 1

Check Stand 5 115 0.58 1

Check Stand 5 115 0.58 |

Check Stand 5 115 0.58 1

Check Stand 5 115 0.58 1

Check Stand 5 115 0.58 1

Check Stand 5 115 0.58 1



Bryan Store Miscellaneous Utilities Nameplate Rating Loads (continued)

TABLE B.4

293

Item Amps/ph Volts kW in phase hp Notes

Check Stand 5 115 0.58 1

Check Stand 5 115 0.58 1

Check Stand 5 115 0.58 1

Check Stand 5 115 0.58 1

Camera Bar Register 2 115 0.23 1

Deli Register 2 115 0.23 1

Total: 6.79

Other:

Trash Baler 29 208 4.58 5.22 eff = 0.85 est.
Case and Cooler Fans - - 35.68 1 75 kW peak def.
Total for Utility Loads (inc. cash reg.): 161.3

Two A.C. Units on Utility circuit:

AC. 3.40 conference room
ALC. 3.80 manager's office
Total 7.20

Total inc. A.C. 168.48

Compressor Room (on compressor circuit)

Exhaust Fan 18 208 951 3 6 pf=0.85
Exhaust Fan 18 208 5:51 3 6

Exhaust Fan 18 208 5.51 3 6

Exhaust Fan 18 208 5.51 3 6

Exhaust Fan 18 208 551 3 6

Total: 276




TABLE B.5a
Bryan Store Lighting Count
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Use Lamps/ Watts/ Ballast Total

Code Luminaires Lumin. lamp Factor Waitts Location

¢ 2 1 20 1.1 44 Deli Case

c 6 2 40 1.1 528 Deli Case

(v 4 3 30 1.1 396 Deli 3-DK Case

c 10 1 40 1.1 440 Cake Case

c 1 2 40 1.1 88 Pizza Case

c 2 1 100 220 Cake Freezer

c 4 1 85 1.1 374 Beer Cases

c 10 1 70 1.1 770 Ceiling Over Soda

c 5 1 40 1.1 220 Egg & Pudding Case

c 60 1 40 11 2640 5-DK Dairy Case

& 6 2 85 1.1 1122 Milk & Yogurt Cases

é 8 1 40 1.1 352 Milk & Yogurt Cases

c 12 2 40 1.1 1056 Sausage & Lunch Meats Decks
¢ 20 1 40 1.1 880 4-DK Sausage Case

¢ 33 1 40 1.1 1452 Poultry Deck Cases

¢ 4 1 40 11 176 Butcher's Case

c 4 1 40 1.1 176 Seafood Case

C 1 8 TS 1.1 660 Juice Case

c 25 1 40 1 1100 Produce Cases

c 12 1 75 1:1 990 Indirect Above Prod Cases
c 24 1 40 1.1 1056 Floral Cases

c 5 1 85 1 467.5 FRZN Food Reach-in

c 18 1 60 1.1 1188 FRZN Food Reach-in

¢ 4 1 85 1.1 374 FRZN Food Reach-in

c 1 1 60 1.1 66 FRZN Food Reach-in
c* 2 1 60 1.1 132 Ice Machine Sign

og 1 E 40 1.1 176 General Ceiling

og 24 2 40 1.1 2112 General Ceiling

og 7 2 100 1.1 1540 Back Room Meat FRZR
og 3 1 100 1.1 330 Back Room Meat FRZR
og 6 2 i 1.1 990 Loading Dock

og 4 2 75 11 660 Meat Cutting Room

og 4 2 40 1.1 352 Meat Cutting Room

og 3 4 40 1.1 528 Front Stairwell/Breakroom
og 2 2 75 1.1 330 Front Stairwell/Breakroom
og 6 2 75 1.1 990 Produce Back Room

og 1 2 40 1.1 88 Hallway to restroom

og 2 2 75 1.1 330 restrooms

og 11 2 75 1.1 1815 Main Back Room

og 4 2 75 1.1 660 Main Dock (Prod.)

og 11 4 40 1.1 1936 Pharmacy

og 1 2 40 1.1 88 Pharmacy

og 7 4 40 1.1 1232 Mgr's Office/Halls

og 2 2 75 L1 330 Mgr's Office/Halls

og 4 2 40 1.1 352 Entrance Vestibules

og 21 2 5 1.1 3465 Outdoor Porch

og* 8 1 120 1 960 Deli Heat lamps

og* 2 1 40 L1 88 Deli Black Light Trap
og* 10 1 75 1.1 825 Snack Bar

og* 1 2 40 1.1 88 Dock Black Light Trap
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TABLE B.5a
Bryan Store Lighting Count (continued)

Use Lamps/ Watts/ Ballast Total

Code Luminaires Lumin. lamp Factor Watts Location

og* 11 1 60 1.1 726 Check Stand Sign Lamps
og* 10 1 175 1.2 2100 Over Checkstands

o0s 200 2 75 i 33000 General Ceiling

08 4 2 40 A} 352 General Ceiling

0s 3 2 75 i | 495 General Ceiling

08 32 2 40 1.1 2816 Deli Drop-ceiling

08 17 2 40 1.1 1496 Donut Drop-Ceiling

0s 11 2 75 1.1 1815 Ceiling Over Soda

os 4 2 40 1.1 352 Ceiling Over Soda

o0s§ 10 2 75 1.1 1650 Ceiling Over Beer

08 1 2 40 1.1 88 Ceiling Over Beer

0s 6 4 40 1.1 1056 Drop-ceiling over Milk

0s 24 2 75 Ll 3960 Ceiling over Dairy & G.M.
08 5 2 40 11 440 Ceiling over Dairy & G.M.
0s 11 4 40 1.1 1936 Drop Ceil. over Meat Cases
08 8 4 40 1.1 1408 Drop-ceil over Pork Cases
0s 9 2 75 1:1 1485 Ceil over Canned Juice

08 21 2 40 i 1848 Drop Septum Bordering Prod.
08 4 4 40 1.1 704 Drop Over Butcher's Booth
0s 4 2 40 1.1 352 Drop Over Butcher's Booth
0s 6 2 75 1.1 990 Seafood Booth

08 111 4 40 1.1 19536 Ceiling over Produce

o8 26 1 75 T:1 2145 Ceiling Accent Ledge Lights
0s 2 1 40 171 88 Ceiling Accent Ledge Lights
08 16 1 20 1.1 352 Ceiling Accent Ledge Lights
08 27 4 40 1 4752 Below Mgr's Mezzanine

o0s 22 2 75 1.1 3630 Above Checkstands

0s 3 2 40 1.1 264 Above Checkstands

08 21 2 40 1.1 1848 Customer Service

08 19 2 40 11 1672 Over Drug Displays

p 14 1 1000 1.25 17500 Parking Lot Lamps

p 8 3 8 1.1 211.2 Outer Signs (non-"curly")
p 6 1 400 1.25 3000 Outdoor Wall

T 2 { 60 | 120 Deli Case

r 5 2 25 1.1 275 Pastry Rack

r 6 4 110 1.1 2904 Over Bread Racks

r 2 2 40 Wi 176 Spice Rack

r 22 2 40 1.1 1936 Greeting Card Racks

r 16 1 40 1.1 704 Magazine Racks

r 13 1 40 Tl 572 Perfume Cases

r 12 1 40 1l 528 Cosmetic Racks

Total: 158.5 kW

Code Key: os = overhead sales

og = overhead general

c = refrigerated case lighting
7 = rack lighting

p = parking lot lighting

* = non-fluorescent
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TABLE B.5b
Summary of Bryan Store Lighting Count

Peak Adjusted
Flour. Ovrhd (Sales) 90530 71670 Inside Light PLF 0.58
Fluor. Ovrhd (Non-sales) 18304 14491 Outside Light PLF 0.5
Fluor. Case/rack 24183 14106
Non-fluor, 4787 2792
Total Fluor. 133017 100267
Parking Lot/Outdoor 20711 10356

Total: 158515 113415




TABLE B.6a
Summary of Amp Readings for the Bryan Store

Refrigeration Compressors System
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COMP# Description Amps Defrost RLA Defrost

3-ph Amps cyc min
| Cheese Cases COOLER 15 17 12 21 1 70
1A Dairy Cases 30 31 33 4 45
1B 36' Dairy Cases 27 27 28 31.1 4 60
2A 28' 5-DK Lunch Meat 32 24 29 294 3 70
2B 20" Lunch Meat COOLER 20 21 20 29.9 3 70
2C Walk-in Groc FRZR 20 20 20 25 25 22 31.1 4 40
2D Glass DR N.E. Reach-in FRZR 23 21 22 29.9 2 80
2E 4 Glass Door at Rear 30 29 29 52 33 48 29.9 1 80
2G Ice Cream & Bakery FRZRS 30 24 30 43 40 47 313 2 40
2H Glass DR N.W. Reach-in FRZR 24 22 24 32 48 44 29.9 1 60
3B Prod., Beer, Dairy Reach-in 30 29 33 2 60
3C Meat Cooler/Holding Box 23 23 24 18 18 19 31.1 3 38
4A Produce Case COOLER 34 33 33 2 60
4R Walk-in Produce & Meat Prep 35 30 34
M-IC 44' 3-DK Red Meat Cases 34 34 35 4 58
uo 32' 13-DR D5F 17 47 A7 23 25 22 23 1 60
u1 Food End Cap FRZR 13 13 14 33 30 18 22 1 60
U2 Walk-in Deli FRZR 14 14 12 15 15 15§ 10 4 30
u3 Deli Cases Cooler, Retarder 12 10 10 10 2 60
U4 12' Sausage Deli Case COOLER 14 14 14 22 4 40
us 40" Frozen Meat/Spot Cases 23 230 22 52 42 42 29.9 1 62
ue Coffin Meat and Floral Cases 12 12 13 2 70
u7 Produce Islands 24 24 24 2 50




TABLE B.6b

Summary of Refrigeration Schedules for
Bryan Refrigeration Compressors

Evaporator

# Description Cut Cut Head Suct

ON OFF (PSI) (PSI)
1 Cheese Cases COOLER R12 29 9 100 11
1A Dairy Cases R12 28 10 130 20
1B 36' Dairy Cases R12 29 10 116 16
2A 28' 5-DK Lunch Meat R502? 28 6 110 10
2B 20' Lunch Meat COOLER R12 27 6 115 9
2C Walk-in Groc FRZR R502 20 5 200 10
2D Glass DR N.E. Reach-in FRZR R502 28 5 160 10
2E 4 Glass Door at Rear R502 24 5 200 15
2G Ice Cream & Bakery FRZRS R5027 19 1 190 5
2H Glass DR N.W. Reach-in FRZR R502 28 7 145 9
3B Prod., Beer, Dairy Reach-in R12 29 5 130 4
oo Meat Cooler/Holding Box R12 30 10 205 11
4A Produce Case COOLER R12 36 12 105 17
4R Walk-in Produce & Meat Prep R12 40 5 105 16
M-IC 44'3-DK Red Meat Cases R12 28 8 115 10
uo 32' 13-DR D5F R22 24 13 225 13
Ul Food End Cap FRZR R502 24 ) 215 9
U2 Walk-in Deli FRZR R502 24 5 160 14
u3 Deli Cases Cooler Retarder R502 26 5 90 12
U4 12' Sausage Deli Case COOLER R502 35 12 120 15
uUs 40' Frozen Meat/Spot Cases R502 26 3 10
U6 Coffin Meat and Floral Cases R12 29 7 115 8
u7 Produce Islands RI12 35 15 125 16

298



TABLE B.6c

Summary of Rated Condenser Fan Loads

for Bryan Refrigeration Compressors
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Fans

Qty. HP Amps Adj. Amps Adj. kW in
COMP# (@230v) (@208v)
1 Cheese Cases COOLER 2 0.3 2.4 2.17 0.39
1A Dairy Cases 3 0.3 1.7 1.54 0.42
IB 36' Dairy Cases 3 0.3 1.7 1.54 0.42
2A 28' 5-DK Lunch Meat 3 0.3 1.7 1.54 0.42
2B 20" Lunch Meat COOLER 2 0.3 1.7 1.54 0.28
2C Walk-in Groc FRZR 2 03 j 5 1.54 0.28
2D Glass DR N.E. Reach-in FRZR 2 0.3 1.7 1.54 0.28
2E 4 Glass Door at Rear 2 0.3 1.7 1.54 0.28
2G Ice Cream & Bakery FRZRS 3 0.3 L3 1.54 0.42
2H Glass DR N.W, Reach-in FRZR 2 0.3 1.7 1.54 0.28
3B Prod., Beer, Dairy Reach-in 3 0.3 1.7 1.54 0.42
ac Meat Cooler/Holding Box 2 0.3 LT 1.54 0.28
4A Produce Case COOLER 3 0.3 1.7 1.54 0.42
4R Walk-in Produce & Meat Prep 3 0.3 1.7 1.54 0.42
M-IC 44' 3-DK Red Meat Cases 3 03 157 1.54 0.42
uo 32' 13-DR D5F 2 0.5 2.5 2.26 0.41
Ul Food End Cap FRZR 1 03 24 217 0.20
u2 Walk-in Deli FRZR 1 0.3 24 217 0.20
u3 Deli Cases Cooler Retarder 1 0.3 2.4 217 0.20
U4 12' Sausage Deli Case COOLER 1 0.3 24 217 0.20
us 40" Frozen Meat/Spot Cases 3 0.3 1.7 1.54 0.42
U6 Coffin Meat and Floral Cases 1 0.3 74 1.54 0.14
u7 Produce Islands 1 0.3 1.7 1.54 0.14
Total Fan Power 7.26




TABLE B.3d

Load Summary of Compressors at Bryan Store
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Rated Measured Measured
Refr HP kW Defrost
kW
1 Cheese Cases COOLER R12 5 3.96 3.96
1A Dairy Cases R12 10 8.47 8.47
1B 36' Dairy Cases R12 7.6 7.39 7.39
2A 28' 5-DK Lunch Meat R502? 15 7.66 7.66
2B 20' Lunch Meat COOLER R12 T 5.49 5.49
2C Walk-in Groc FRZR R502 7.6 5.40 6.48
2D Glass DR N.E. Reach-in FRZR R502 7.7 5.94 5.94
2E 4 Glass Door at Rear R502 15 7.93 11.98
2G Ice Cream & Bakery FRZRS R502? 15 157 11.71
2H Glass DR N.W. Reach-in FRZR R502 73 6.30 11.17
3B Prod., Beer, Dairy Reach-in R12 10 8.29 8.29
3C Meat Cooler/Holding Box R12 7.6 6.30 4.95
4A Produce Case COOLER R12 15 9.01 9.01
4R Walk-in Produce & Meat Prep R12 10 8.92 8.92
M-IC 44" 3-DK Red Meat Cases R12 15 9.28 9.28
uo 32' 13-DR D5F R22 6 4.59 6.30
Ul Food End Cap FRZR R502 5 3.60 7.30
u2 Walk-in Deli FRZR R502 31 3.60 4.05
u3 Deli Cases Cooler Retarder R502 3.1 2.88 2.88
U4 12' Sausage Deli Case COOLER R502 5 378 378
us 40" Frozen Meat/Spot Cases R502 7.6 6.12 12.25
ue Coffin Meat and Floral Cases R12 31 233 3.33
u7 Produce Islands R12 iF 6.48 6.48
Total: 196 142.3 167.1
Compressors:
Running Load = 142.3 kW pf=0.75
Maximum Load with Defrost = 167.1 kW eff = 0.82 (not used to calculate input power)
Rated horsepower = 196 HP Corporate records list 163 HP
Fans:

Running Load = 7.26

kW
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APPENDIX C

INTERESTING FACTS NOTED DURING THE CASE STUDY

This appendix contains various facts which should be of interest to the store

management which were noticed during the course of this study.

C.1 OPERATIONAL PROBLEMS SPOTTED THROUGH SUMMARY
PLOTS

The store management readily understood the summary inspection plots, and
preferred using them to spot maintenance and operational problems. Scheduling
effects could easily be seen. For instance, it was found that the parking lot lights,
which are controlled by a mechanical timer, remained on during daylight hours
because the timer was malfunctioning. Prior to the monitoring, this problem was
spotted only when the store manager ventured out into the parking lot when the lights
were on when they should not have been. The problem could be seen easily in the
inspection plots. Similarly, about half of the store's interior lights were scheduled to
be turned off manually from 11 p.m. until about 7 a.m. However, they frequently were
left on -- about once a week. The inspection plots revealed the matter immediately and
without question. The interior lights in question comprise about 90 kW which, if half
are left on for 8 hours/day, cost about $9.00/day. In 1991, this occurred about 45
days/yr, amounting to an avoidable cost associated with this problem is $405/yr. The
management has made an increased effort to turn lights off since being made aware of

this problem.

C.2 DELAY IN ADJUSTMENT OF PARKING LOT TIMER

The minimum lighting load for the College Station store occurs on about July
23, rather than the expected June 21. June 21 is the summer solstice, when daylight
hours are the longest and nighttime hours are the shortest. Since the management
resets the timer clock on the parking lot lights on a monthly basis, the seasonal
lighting schedule should lag the solstice by about 30 days, as is the case.

C.3 BIMODALITY IN REFRIGERATION AND HVAC ENERGY USE

The College Station main store HVAC load is comprised of two air-handling
systems and three of the smaller video store HVAC units. As was seen in Chapter 3,
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Figure 3.18 (e), the outdoor air change-point temperature for the combined HVAC
load can be visually estimated at about 18.7°C (65°F). The HVAC load appears to
have a linear relationship with temperature above the change-point. The data below
the change-point are thought to involve mostly fan loads and dehumidification (one
compressor) loads. Two modes of data are clearly present below the change-point.
The lower, about 20 kW, is the fan load; the upper, at about 50 kW, is the fan load
plus one compressor which is being used during the heating season for
dehumidification. This is a reheating process. This bimodality shows up in the

refrigeration compressor data as well.

The HVAC system is equipped with heat reclaim coils through which hot
refrigerant from the refrigeration compressors can flow. These coils function as part
of the refrigeration system condensers. When reheat or dehumidification is occurring,
chilled air is blown across the heat-reclamation coils in the air duct. Since the air
being blown across them is often cooler than the outdoor ambient air, which otherwise
is used to cool the condensers, the refrigeration system operates more efficiently. The
bimodality in HVAC operation has the effect of producing a bimodality in the
refrigeration system energy use. These two modes may be seen in the refrigeration
data below 65°F (18.7°C) (see Figure 3.18 (b)). When the refrigeration system's
condenser lines are no longer exposed to outdoor ambient conditions, the effect which
outdoor temperature has on the refrigeration system diminishes. The daily data in
Figure 3.20b show that the two modes in the refrigeration energy use correspond to the
two modes of HVAC system operation, that is, 1) when one or more stages of cooling
are running, and 2) when only the air-handler fans are running. This difference is only
apparent when the outdoor temperature is below the 65°F change-point. This is to be
expected since waste heat from the refrigeration system is not used when there is no

space heating requirement.

While the use of reheat with heat reclamation may help to explain the 65°F
change-point, there is another factor involved. The condenser coils are exposed to
ambient air which is drawn into the compressor room and exhausted through the roof
by four large fans. As described in Chapter 3, Section 3.2.1, these fans control the
room air temperature, but do not let it drop below 60°F (16°C). This means that
outdoor temperatures below 60°F to 65°F should not have an effect on compressor
energy use by way of the condenser coils. When heat reclaim is used, and when one
stage of cooling is necessary for dehumidification purposes, energy is saved in two
ways. First, the refrigeration system provides the necessary space heating. Second,
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the heat reclaim coils serve as the refrigeration system condenser coils; since these
coils are exposed to air which is cooler than the minimum compressor room
temperature (60°F [16°C]), the refrigeration system operates more efficiently. In
Figure C.1b, we see that in both modes of refrigeration system energy use, below
about 60°F, the curve is fairly flat. This is to be expected since, whether the heat
reclaim coils are being used or the compressor room condenser coils are used to reject

heat, the temperature at which the system rejects its heat is fairly constant.

C.4 HOLE IN AIR-HANDLER UNIT DUCT SPOTTED

During the walk-through survey of the College Station store, a 1-foot hole was
spotted in the duct-work leaving the air-handler unit #1. Air coming off the cooling
coils was being dumped into the store's unconditioned back room. This problem was
reported to the maintenance manager and corrected within a week. Store personnel did

not know how long the leak had been present.

C.5 GAS USE AT THE BRYAN STORE

The Bryan store has a gas EUI of 14,200 Btu/ft2-yr -- about 4,200 Btu/ft?-yr less
than the College Station store. And its overall annual gas use is less than that for the
College Station store. However, the Bryan store's peak gas use is significantly higher
than that of the College Station store. High peak uses can be seen in January of each
year. This is clearly a result of space heating requirements during the very cold
months. This occurs because the Bryan store does not use reclaim heat from the
refrigeration system. Significant space heating is only used during one or two months
per year for the past three years (1990 to 1992). The store's base-level consumption is
about 35 million Btu/month. This is attributed to the heater pilot lights. Based on
utility bill information, the average annual amount of gas used for heating is 245
million Btu/yr. If heat reclaim were used to supply this heating requirement, an
estimated $1,090/yr in natural gas bills could be saved.
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Figure C.1 a,b Bimodality of refrigeration load. a) Scatter in hourly data make
the two modes of energy use below 65°F (16°C) difficult to see.
b) Daily data reveal the two modes of energy use. The lower
mode corresponds to times when the HVAC cooling stage is
running. The higher mode corresponds to times when only the
fans of the HVAC system are in use.
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APPENDIX D

TRANSLATION OF PCA PARAMETERS INTO MLR
PARAMETERS

This discussion assumes that the reader is familiar with principal component
analysis in general, and is a discussion on how the SAS (1989) program implements PCA.
For an in-depth explanation of the PCA technique, the reader is referred to Chen (1991),
Jolliffe (1986), Rao (1964), Daultry (1976), and Draper and Smith (1981).

D.1 TRANSLATION RETAINING ALL PRINCIPAL COMPONENTS

PCA can be a useful tool in data analysis. But, the models which SAS predicts are
in terms of the principal component variables (PCs) which it generates. They are not
useful in this form, and must be converted into terms which relate to the original variables
of interest. How, then, are the original variables, X;, and the PCs related? In order to
perform a PCA analysis, SAS first normalizes all variables, Xj, into variables, Z;, which

vary over a similar range. The conversion is made according to the relationship:

Xi - Xi

Zi = (D.1)

where X is the sample mean, and S; is the sample standard deviation for the variable X;.

SAS provides the eigenvector matrix, [q] or [EIG], which defines the relationship
between the principal components (PCs) and the normalized variables. Consider a model

with three variables:

Zi qu qiz qi PCi
Z:| = |qu q2 qun|x|PC: (D.2)
Zs qst g3 33 PCs
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or, rearranging,

PCs qu  qiz  qi3 |INvV Z
PC2| = [qa g2 q= x| Za (D.3)
PCs q3 g3 g»n 23

A special quality of the eigenvector matrix is that its inverse is the same as its transpose.
The PCA and MLR models must be equivalent when all PCs are used. Thus,

Energy Modely;; g = Energy Modelp-,

Zi PCi
Cmr + {B1 B2 Ps}mr X | Z2 | = Crea + {P1 B2 B3}rca X | PC2 (D.4a)
Z3 PCs

where Cyy; p and Cp, are model constants for the MLR and PCA models respectively.
The B are the parameter estimates for the MLR and PCA models. Substituting for the

[PC] matrix, we obtain,

Z Z
CMLR 4 {Bl BZ BS}MLR X Z = CPCA e {Bl B2 B:’}PCAX[EIGINVX ZZ (D4b)
Zs Zs

Thus, it is apparent that the MLR parameter estimates are,

{Bi B2 Ba}, . = (B B2 Bo},., X [EIGI™ (D.5)

a[ld CMLR = CPCA'

One final transformation is necessary. That is, switching from the parameter
estimates for the normalized variables, Z;, to parameter estimates for the original

variables, X;.
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The normalized MLR model is,

Energy = Cyg + {B1 B2 B3} {Z1 Zp Z3} ™™ (D.6)

But, Z; = (Xj - Xj mean)/Si. Therefore, in terms of the original variables, the parameter
estimates must be divided by the sample standard deviation for each variable. This
transformation also changes the model constant. Defining f'; and C'pqR as the parameter
estimates in terms of the original variables,

Bi = Bi/S; (D.7)

1 _ 1 1 1
C MLR — CMLR - B 1'Xl,mean - BZ'XZ,mean - B3'X3,mean

CMLR - Z Bli'xi,mcan (DS)

Q.E.D.

D.2 TRANSLATION DROPPING ONE PRINCIPAL COMPONENT

When a PC variable is to be dropped, the PCA model is transformed back into an
MLR model in a way similar to that described above. However, the values in the column
corresponding to the omitted PC in the eigenvector matrix are replaced by zeros. Let's
consider again the 3-PC model, but with PC3 dropped.

SAS provides the same eigenvector matrix, [q], but we make a modification.

Zi qu qiz 0 PCi
Z2| =|qz2 qu 0|x|PC (D.9)
73 qs q2 0 0

or, rearranging,
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PCi qi qiz 0 |mwv Z
PCa| = |qz q2 O X | Za2 (D.10)
0 qs q32 0 Z3
As before,
Energy Modely;, = Energy Modelpq,
Za
PCi
Coan * {1 B2 63}MLR R | 22| =Gy + {Br BZ}PCA = PC, (D.11a)
Z3

where Cyy, g and Cp, are model constants for the MLLR and PCA models respectively.
The P are the parameter estimates for the MLR and PCA models. Substituting for the
[PC] matrix:

Z Zi
C.. * {Br B2 B3}MLR ® | Zo| = CPCA + {P BZ}PCA X [EIGI™Y x| Z2 (D.11b)
Zs Zs

Thus, it is apparent that the MLR parameter estimates are,

{B1 B2 B3}, = {B1 B2}, X[EIGI™ (D.12a)

That is,
qun qz21 g3
{B1 B2 [33}MLR = {B Bz}PCA X [qiz gz g (D.12b)
0O 0 0

And, as before,
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Bi = Bi/Si (D.13)

CrMLR = CMLR - ﬁ‘l'xi,mean - BI?_'X?_,mean - B'S'XS,me:m
=Cr - X, B X mean (D.14)

Q.E.D.

This matrix relationship can be easily incorporated into an algorithm in a
spreadsheet. This is the method used to convert the PCA parameters for the building
energy use models which SAS provides into those which can be used in models which are
in terms of the original climate and sales variables.



output used in the PCA and MLR statistical analyses in Chapter 4.

E.1 DATA USED IN ANALYSIS

of this display, they are divided into two groups. The first lists the date and the daily
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The three sections which follow present the data, software routine, and analyses

The data used for the PCA and MLR analyses are listed below. For the purposes

electricity component loads. The second lists the climate variables, some of which were

used as predictor variables.

E.1.1 Building Electricity Load Data

The loads listed are: refrigeration compressors, lighting, HVAC, utility, partial

video store HVAC, whole-building electricity. The colums adjacent to each load

represent the number of hours recorded in each daily sum.

MO DA YR COMP. LIGHTS HVAC UTIL. VID. W.B.E

01 02 92 2365.3 24 3018.6 24 422.8 24 1853.3 24 35.7 24 7127.1 24
01 03 92 2325.6 24 3109.0 24 397.6 24 1851.3 24 30.9 24 7150.7 24
01 04 92 2360.2 24 3163.0 24 475.3 24 1876.3 24 34.4 24 7342.0 24
01 05 92 2342.7 24 3061.9 24 455.5 24 1895.8 24 33.3 24 7223.1 24
01 06 92 2369.8 24 3144.9 24 390.0 24 1894.4 24 26.6 24 7266.2 24
01 07 92 2420.8 24 3232.2 24 386.3 24 1912.5 24 25.0 24 7419.1 24
01 08 92 2522.0 24 3209.2 24 581.0 24 1904.5 24 47.3 24 7683.8 24
01 09 92 2519.4 24 3238.0 24 446.3 24 1872.3 24 34.3 24 7543.3 24
01 10 92 2322.0 24 3485.4 24 376.9 24 1892.1 24 21.2 24 7543.7 24
01 11 92 2356.6 24 3077.9 24 400.1 24 1867.3 24 22.4 24 7169.0 24
01 12 92 2350.6 24 3169.0 24 347.6 24 1922.3 24 14.3 24 7256.8 24
01 13 92 2425.6 24 3129.8 24 360.6 24 1884.7 24 18.7 24 7267.8 24
01 14 92 2388.7 24 3080.1 24 307.2 24 1880.5 24 6.3 24 7123.7 24
01 15 92 2374.7 24 3124.2 24 364.5 24 1868.6 24 7.3 24 7199.1 24
01 16 92 2324.7 24 3078.6 24 368.8 24 1825.9 24 3.5 24 7065.3 24
01 17 92 2283.4 24 3028.9 24 365.7 24 1833.6 24 1.8 24 6978.8 24
01 18 92 2332.7 24 3095.5 24 389.5 24 1883.1 24 1.8 24 7167.9 24
01 19 92 2381.0 24 3112.0 24 381.6 24 1914.3 24 1.8 24 7256.1 24
01 20 92 2329.0 24 3088.5 24 389.3 24 1852.8 24 3.9 24 7126.7 24
01 21 92 2347.3 24 3123.6 24 407.6 24 1868.5 24 9.8 24 7214.2 24
01 22 92 2414.9 24 3155.3 24 372.7 24 1870.2 24 1.8 24 7280.4 24
01 23 92 2530.9 24 3237.0 24 516.6 24 1894.5 24 36.7 24 7646.2 24
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MO DA YR COMP. LIGHTS HVAC UTIL. VID. W.B.E:

01 24 92 2384.3 24 3141.0 24 355.1 24 1870.2 24 13.4 24 7217.9 24
01 25 92 2425.8 24 3069.4 24 491.9 24 1877.7 24 23.1 24 7332.1 24
01 26 92 2473.6 24 3070.9 24 566.0 24 1891.0 24 38.0 24 7468.6 24
01 27 92 2530.1 24 3092.0 24 530.3 24 1881.8 24 20.6 24 7501.3 24
01 28 92 2502.6 24 3131.9 24 443.5 24 1844.4 24 13.5 24 7389.8 24
01 29 92 2467.5 24 3061.8 24 420.3 24 1820.6 24 10.9 24 7237.4 24
01 30 92 2574.6 24 3126.5 24 455.8 24 1862.2 24 12.2 24 7526.3 24
01 31 92 2618.1 24 2979.2 24 611.3 24 1860.6 24 30.6 24 7536.3 24
02 01 92 2631.5 24 3132.1 24 764.1 24 1853.3 24 49.6 24 7848.1 24
02 02 92 2616.3 24 3103.3 24 779.5 24 1841.6 24 50.5 24 7808.0 24
02 03 92 2616.9 24 3052.2 24 595.9 24 1820.3 24 36.2 24 7552.6 24
02 04 92 2587.9 24 3185.3 24 497.0 24 1828.3 24 27.7 24 7565.8 24
02 05 92 2512.9 24 3125.1 24 477.2 24 1822.2 24 11.6 24 7404.5 24
02 06 92 2500.9 24 3404.6 24 412.2 24 1840.2 24 2.2 24 7625.2 24
02 07 92 2463.0 24 3036.6 24 530.8 24 1827.9 24 19.9 24 7325.5 24
02 08 92 2497.4 24 3068.7 24 542.2 24 1821.4 24 25.6 24 7397.0 24
02 09 92 2461.5 24 3076.8 24 596.6 24 1811.2 24 29.7 24 7413.2 24
02 10 92 2421.9 24 3161.8 24 415.5 24 1821.9 24 15.5 24 7288.2 24
02 11 92 2503.4 24 3195.8 24 643.8 24 1819.1 24 43.3 24 7629.4 24
02 12 92 2682.1 24 3432.4 24 589.2 24 1849.9 24 43.5 24 8020.9 24
02 13 92 2746.4 24 3117.9 24 754.3 24 1868.7 24 56.6 24 7954.5 24
02 14 92 2758.8 24 3097.0 24 934.6 24 1881.6 24 74.3 24 8139.2 24
02 15 92 2859.8 24 3187.1 24 1011.4 24 1905.4 24 85.4 24 8430.9 24
02 16 92 2829.2 24 3113.5 24 B816.6 24 1910.4 24 94.4 24 B8136.9 24
02 17 92 2698.0 24 3068.5 24 631.8 24 1853.2 24 65.9 24 7718.7 24
02 18 92 2620.0 24 3057.7 24 777.6 24 1854.2 24 61.6 24 7776.7 24
02 19 92 2405.2 24 3024.1 24 867.4 24 1797.7 24 51.5 24 7561.6 24
02 20 92 2443.9 24 3082.4 24 756.6 24 1817.0 24 47.6 24 7567.1 24
02 21 92 2430.9 24 3110.1 24 794.3 24 1820.2 24 53.1 24 7622.8 24
02 22 92 2529.1 24 3095.5 24 830.3 24 1841.9 24 63.1 24 7764.0 24
02 23 92 2654.0 24 3039.5 24 849.8 24 1840.8 24 76.7 24 7851.3 24
02 24 92 2681.7 24 3045.4 24 820.2 24 1856.4 24 83.3 24 7870.9 24
02 25 92 2678.3 24 3192.2 24 712.2 24 1889.6 24 54.4 24 7939.6 24
02 26 92 2499.0 24 3187.6 24 682.1 24 1882.3 24 8.2 24 7718.3 24
02 27 92 2433.1 24 3121.2 24 483.2 24 1833.9 24 21.9 24 7338.5 24
02 28 92 2472.7 24 3038.0 24 683.2 24 1848.4 24 44.4 24 7509.5 24
02 29 92 2548.1 24 3055.3 24 791.3 24 1830.2 24 66.7 24 7692.0 24
03 01 92 2599.1 24 3009.8 24 947.4 24 1918.8 24 90.6 24 7942.3 24
03 02 92 2582.8 24 2948.9 24 924.2 24 1812.0 24 65.3 24 7735.1 24
03 03 92 2688.6 24 3006.9 24 864.9 24 1774.4 24 55.5 24 7802.0 24
03 04 92 2789.9 24 2975.1 24 771.9 24 1844.0 24 60.6 24 7848.1 24
03 05 92 2777.2 24 3103.8 24 500.8 24 1842.5 24 40.9 24 7691.5 24
03 06 92 2866.4 24 3030.3 24 814.0 24 1881.8 24 76.1 24 8059.6 24
03 07 92 2920.4 24 3022.4 24 912.5 24 1894.1 24 91.2 24 8216.6 24
03 08 92 2828.9 24 3079.8 24 859.5 24 1886.0 24 90.5 24 8121.5 24
03 09 92 2809.2 24 3102.3 24 867.4 24 1835.1 24 81.0 24 8081.2 24
03 10 92 2923.8 24 3368.3 24 B895.7 24 1813.3 24 65.0 24 8468.4 24
03 11 92 2477.2 24 3112.9 24 299.4 24 1781.5 24 8.8 24 7138.2 24
03 12 92 2473.0 24 3155.0 24 328.6 24 1760.9 24 10.4 24 7184.6 24
03 13 92 2517.6 24 3066.2 24 543.6 24 1795.3 24 37.4 24 7393.9 24
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03 14 92 2654.1 24 3139.5 24 622.6 24 1860.9 24 53.1 24 7744.3 24
03 15 92 2726.0 24 3057.7 24 754.8 24 1849.0 24 72.6 24 7854.6 24
03 16 92 2770.9 24 3059.3 24 824.5 24 1824.9 24 80.3 24 7946.9 24
03 17 92 2837.2 24 2991.8 24 842.1 24 1833.5 24 78.2 24 7971.9 24
03 18 92 2804.3 24 3059.8 24 849.7 24 1887.2 24 78.5 24 8068.1 24
03 19 92 2909.7 24 3088.9 24 968.0 24 1869.1 24 91.8 24 8302.9 24
03 20 92 2516.9 24 3358.5 24 1004.4 24 1835.1 24 56.9 24 8182.2 24
03 21 92 2477.8 24 3003.4 24 804.0 24 1823.9 24 51.5 24 7576.3 24
03 22 92 2634.0 24 2982.0 24 719.4 24 1820.1 24 50.7 24 7622.6 24
03 23 92 2666.0 24 3044.4 24 720.3 24 1835.3 24 49.0 24 7733.2 24
03 24 92 2483.9 24 3097.1 24 574.6 24 1847.6 24 33.7 24 7470.3 24
03 25 92 2606.5 24 3382.7 24 713.8 24 1845.4 24 50.9 24 8015.6 24
03 26 92 2708.3 24 3085.4 24 910.4 24 1842.8 24 78.8 24 8014.2 24
03 27 92 2665.3 24 2957.4 24 1031.5 24 1836.1 24 78.9 24 7957.5 24
03 28 92 2734.7 24 3145.4 24 1070.4 24 1840.2 24 B84.8 24 8257.9 24
03 29 92 2696.8 24 32259.4 24 786.9 24 1845.5 24 83.1 24 8025.8 24
03 30 92 2767.2 24 2976.8 24 962.4 24 1866.0 24 75.0 24 8039.6 24
03 31 92 2582.1 24 3015.4 24 B862.6 24 1847.9 24 51.1 24 7775.2 24
04 01 92 2533.1 24 3013.9 24 861l.6 24 1819.3 24 66.7 24 7695.2 24
04 02 92 2516.0 24 3083.9 24 878.5 24 1820.6 24 50.2 24 7766.2 24
04 03 92 2243.3 24 3056.7 24 512.9 24 1796.7 24 14.6 24 7076.7 24
04 04 92 2361.0 24 3052.4 24 787.3 24 1816.3 24 47.6 24 7484.2 24
04 05 92 2488.2 24 2944.4 24 876.1 24 1848.9 24 69.2 24 7624.8 24
04 06 92 2397.3 24 2925.0 24 834.1 24 1817.7 24 32.3 24 7441.2 24
04 07 92 2566.8 24 2891.8 24 957.2 24 1838.8 24 55.9 24 7721.7 24
04 08 92 2593.6 23 2894.7 23 997.6 23 1780.4 23 82.6 23 7733.5 23
04 09 92 2849.6 24 3072.1 24 964.8 24 1811.1 24 193.0 24 8164.7 24
04 10 92 2796.4 24 2942.3 24 849.2 24 1794.3 24 215.1 24 7849.4 24
04 11 92 2842.0 24 3008.4 24 1042.4 24 1891.7 24 225.1 24 8251.7 24
04 12 92 2939.4 24 29895.3 24 1063.9 24 1902.9 24 241.0 24 8362.7 24
04 13 92 2983.3 24 2954.9 24 1205.5 24 1927.2 24 196.5 24 8538.1 24
04 14 92 3021.8 24 2943.7 24 992.3 24 13%09.5 24 139.1 24 8334.5 24
04 15 92 3059.2 24 3026.1 24 1018.9 24 1966.5 24 153.0 24 8538.0 24
04 16 92 3058.9 24 3093.8 24 1056.5 24 1960.6 24 141.7 24 8636.9 24
04 17 92 2989.3 24 2976.2 24 1352.5 24 1886.9 24 142.9 24 8672.1 24
04 18 92 2816.1 24 3083.3 24 1391.5 24 1906.8 24 119.5 24 8665.0 24
04 19 92 2836.6 24 2987.5 24 1150.7 24 1923.0 24 110.6 24 8365.0 24
04 20 92 2810.6 24 2921.5 24 1299.0 24 1829.4 24 113.0 24 B8327.7 24
04 21 92 2701.5 24 2949.4 24 1004.8 24 1872.9 24 90.5 24 7995.8 24
04 22 92 2710.5 24 2948.5 24 1081.4 24 1866.3 24 118.0 24 8073.9 24
04 23 92 28B64.3 24 3026.0 24 1403.3 24 1851.1 24 163.2 24 8612.0 24
04 24 92 2950.0 24 3010.3 24 1399.6 24 1869.1 24 205.8 24 8696.3 24
04 25 92 2998.7 24 2907.1 24 1847.8 24 1872.2 24 222.5 24 9093.1 24
04 26 92 2735.5 24 3222.5 24 1468.7 24 1906.0 24 176.7 24 8799.9 24
04 27 92 2707.3 24 2890.5 24 1214.0 24 1861.2 24 178.1 24 8140.2 24
04 28 92 2755.8 24 3010.7 24 1330.3 24 1854.0 24 182.8 24 8418.0 24
04 29 92 2775.6 24 2953.3 24 1443.9 24 1846.5 24 194.6 24 8486.5 24
04 30 92 2891.5 24 2938.8 24 1515.9 24 1871.4 24 194.8 24 8684.8 24
05 01 92 2724.7 24 2978.3 24 1180.2 24 1900.1 24 193.0 24 8250.5 24
05 02 92 2874.3 24 2959.6 24 1326.4 24 1886.8 24 238.3 24 8514.3 24
05 03 92 2988.1 24 2933.0 24 1429.8 24 1878.6 24 252.4 24 B8696.8 24
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05 04 92 2986.8 24 2936.6 24 1549.0 24 1891.8 24 257.8 24 8831.4 24
05 05 92 2914.7 24 2898.7 24 1656.4 24 1910.8 24 225.8 24 8847.8 24
05 06 92 2870.8 24 2913.7 24 1627.8 24 1874.7 24 244.5 24 8754.2 24
05 07 92 2724.5 24 3011.4 24 1527.8 24 1859.5 24 197.5 24 8590.5 24
05 08 92 2542.3 24 2978.0 24 1304.5 24 1861.3 24 177.1 24 8153.3 24
05 09 92 2616.2 24 2988.5 24 1371.1 24 1881.4 24 201.7 24 8324.4 24
05 10 92 2707.8 24 2955.9 24 1400.1 24 1842.8 24 212.8 24 8373.7 24
05 11 92 2820.6 24 2965.7 24 1553.9 24 1822.3 24 202.1 24 8629.7 24
05 12 92 2968.3 24 3018.2 24 1478.6 24 1860.3 24 241.5 24 8792.7 24
05 13 92 2902.2 24 2921.5 24 1959.5 24 1839.2 24 282.5 24 9089.7 24
05 14 92 2886.0 24 2959.6 24 1948.0 24 1841.6 24 250.3 24 9102.5 24
05 15 92 3018.7 24 2821.7 24 2038.3 24 1847.7 24 274.9 24 8193.7 24
05 16 92 2875.8 24 2871.0 24 1639.3 24 1920.2 24 214.6 24 8773.4 24
05 17 92 2876.1 24 2900.2 24 1494.9 24 1904.3 24 217.2 24 8642.7 24
05 18 92 2793.1 24 2840.4 24 1541.7 24 1882.4 24 207.7 24 8524.8 24
05 19 92 2842.3 24 3017.2 24 1459.2 24 1862.2 24 200.2 24 8648.2 24
05 20 92 2906.3 24 2912.2 24 1637.7 24 1837.5 24 231.1 24 8760.8 24
05 21 92 2895.2 24 2939.9 24 1560.2 24 1839.5 24 227.4 24 8701.9 24
05 22 92 2838.5 24 2916.2 24 1558.5 24 1826.5 24 213.0 24 8606.9 24
05 23 92 2907.8 24 2860.8 24 1651.2 24 1855.3 24 226.8 24 8742.3 24
05 24 92 2950.1 24 2842.3 24 1676.7 24 1835.6 24 254.2 24 8772.0 24
05 25 92 2982.2 24 2847.9 24 1942.1 24 1816.9 24 261.2 24 9056.2 24
05 26 92 2988.2 24 2887.7 24 1866.1 24 1838.9 24 268.7 24 9048.1 24
05 27 92 2895.2 24 2925.1 24 1793.1 24 1825.5 24 253.3 24 8906.2 24
05 28 92 2885.4 24 3218.5 24 1879.0 24 1840.8 24 240.9 24 9290.9 24
05 29 92 2685.7 23 2758.4 23 1111.4 23 1718.5 23 21.6.6 23 ‘7741l.1 23
05 30 92 2513.8 24 2941.3 24 349.5 24 1784.0 24 164.2 24 7055.8 24
05 31 92 2613.6 24 2895.5 24 434.7 24 1803.6 24 191.8 24 7214.7 24
06 01 92 2690.6 24 2865.3 24 441.4 24 1820.5 24 198.7 24 7284.9 24
06 02 92 2839.0 24 2927.9 24 450.7 24 1871.4 24 233.0 24 7596.2 24
06 03 92 2814.0 24 2963.5 24 1376.6 24 1803.5 24 225.3 24 8424.8 24
06 04 92 3030.9 24 2962.3 24 1786.5 24 1848.6 24 251.3 24 9095.5 24
06 05 92 3031.1 24 2803.7 24 2023.5 24 1819.0 24 267.5 24 9144.4 24
06 06 92 3085.8 24 2888.5 24 2209.6 24 1810.7 24 290.1 24 9461.8 24
06 07 92 3034.6 24 2893.0 24 2002.8 24 1838.3 24 240.6 24 9235.9 24
06 08 92 2931.8 24 2816.6 24 1842.0 24 1733.9 24 243.1 24 8791.6 24
06 09 92 3066.5 24 3001.7 24 2280.1 24 1800.5 24 280.5 24 9616.0 24
06 10 92 3052.5 24 2957.5 24 2116.8 24 1859.2 24 284.4 24 9453.3 24
06 11 92 3109.2 24 2938.8 24 2274.5 24 1849.0 24 297.6 24 9638.7 24
06 12 92 3137.2 24 2881.3 24 2290.5 24 1826.3 24 306.8 24 9602.6 24
06 13 92 3158.0 24 2884.4 24 2353.6 24 1852.4 24 318.6 24 9715.6 24
06 14 92 3130.1 24 2909.5 24 2230.3 24 1852.2 24 316.7 24 9589.4 24
06 15 92 3131.8 24 2907.6 24 2283.1 24 1809.0 24 330.2 24 9598.8 24
06 16 92 3175.5 24 2917.8 24 2430.9 24 1840.4 24 327.0 24 9831.8 24
06 17 92 3201.3 24 2918.2 24 2438.3 24 1842.9 24 333.2 24 9867.9 24
06 18 92 3200.7 24 2917.4 24 2410.0 24 1835.0 24 348.9 24 9830.2 24
06 19 92 3161.4 24 2896.8 24 2400.0 24 1795.1 24 328.6 24 9720.5 24
06 20 92 3220.8 24 2935.6 24 2361.5 24 1845.9 24 336.5 24 9831.0 24
06 21 92 3256.1 24 2882.5 24 2308.6 24 1831.5 24 337.7 24 9745.9 24
06 22 92 3233.8 24 2868.2 24 2296.8 24 1819.0 24 332.5 24 9685.0 24
06 23 92 3121.9 24 3004.6 24 2067.8 24 1821.7 24 292.4 24 9483.3 24
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06 24 92 3156.4 24 2915.1 24 2204.9 24 1833.4 24 320.7 24 9577.0 24
06 25 92 3220.9 24 2916.3 24 2252.9 24 1774.8 24 340.5 24 9632.1 24
06 26 92 3230.3 24 2906.1 24 2271.9 24 1802.4 24 282.3 24 9677.9 24
06 27 92 3243.4 24 3271.1 24 1996.4 24 1813.4 24 419.7 24 9791.5 24
06 28 92 3172.6 24 3071.0 24 1694.0 24 1825.9 24 415.8 24 9230.8 24
06 29 92 3171.7 24 2867.8 24 1760.8 24 1794.0 24 420.0 24 9061.6 24
06 30 92 3206.1 24 2907.7 24 2133.4 24 1785.2 24 417.7 24 9499.7 24
07 01 92 3106.7 24 2915.7 24 2211.6 24 1804.2 24 399.0 24 9505.4 24
07 02 92 3113.9 24 2890.0 24 2328.4 24 1854.6 24 397.5 24 9654.1 24
07 03 92 3273.8 24 2896.4 24 2574.7 24 1846.4 24 418.3 24 10058.5 24
07 04 92 3158.7 24 2877.4 24 2397.4 24 1868.2 24 396.4 24 9768.9 24
07 05 92 3126.4 24 2945.5 24 2175.3 24 1811.3 24 316.3 24 9525.7 24
07 06 92 3108.3 24 2897.3 24 2383.1 24 1798.2 24 339.0 24 9654.1 24
07 07 92 3044.8 24 2875.6 24 2392.7 24 1802.1 24 336.3 24 9582.5 24
07 08 92 3142.0 24 2927.6 24 2402.9 24 1821.3 24 342.9 24 9761.0 24
07 09 92 3167.2 24 2843.7 24 2308.4 24 1820.1 24 351.7 24 9606.6 24
07 10 92 3159.8 24 2977.0 24 2533.7 24 1796.7 24 349.3 24 9934.4 24
07 11 92 3168.7 24 2813.5 24 2387.9 24 1798.4 24 344.4 24 9635.6 24
07 12 92 3144.3 24 2811.4 24 2390.9 24 1811.8 24 344.8 24 9625.7 24
07 13 92 3145.8 24 2860.4 24 2459.5 24 1804.7 24 341.4 24 9737.6 24
07 14 92 3178.0 24 3052.6 24 2521.1 24 1832.0 24 339.1 24 10050.9 24
07 15 92 3165.0 24 2806.7 24 2506.3 24 1842.7 24 348.6 24 9787.9 24
07 16 92 3183.3 24 2822.9 24 2595.7 24 1844.1 24 351.8 24 9917.3 24
07 17 92 3200.0 24 2817.5 24 2578.6 24 1812.9 24 356.3 24 9876.2 24
07 18 92 3170.5 24 2863.1 24 2516.5 24 1816.3 24 352.3 24 9833.5 24
07 19 92 3098.1 24 3211.2 24 2350.6 24 1838.9 24 334.2 24 9965.9 24
07 20 92 2914.5 24 2856.6 24 1886.1 24 1748.7 24 319.8 24 8873.1 24
07 21 92 2861.5 24 2958.8 24 1816.8 24 1778.1 24 322.5 24 8882.4 24
07 22 92 2934.7 24 2795.2 24 1938.9 24 1818.1 24 318.2 24 8954.1 24
07 23 92 3002.7 24 2819.2 24 2177.7 24 1808.9 24 328.8 24 9275.6 24
07 24 92 3061.8 24 2825.6 24 2278.7 24 1796.1 24 334.7 24 9429.4 24
07 25 92 3134.5 24 2840.5 24 2369.7 24 1812.2 24 344.7 24 9624.1 24
07 26 92 3175.4 24 2850.3 24 2533.8 24 1808.5 24 349.8 24 9835.1 24
07 27 92 3137.0 24 2849.7 24 2505.5 24 1808.6 24 352.9 24 9768.0 24
07 28 92 3164.7 24 2783.6 24 2556.9 24 1831.9 24 352.6 24 9804.3 24
07 29 92 3138.1 24 2929.6 24 2568.2 24 1851.6 24 356.3 24 9954.7 24
07 30 92 3108.2 24 2829.7 24 2477.3 24 1853.3 24 353.9 24 9735.8 24
07 31 92 3141.0 24 2752.3 24 2576.4 24 1842.3 24 355.6 24 9779.1 24
08 01 92 3172.9 24 2842.1 24 2575.7 24 1863.5 24 354.7 24 9921.4 24
08 02 92 3143.2 24 2835.1 24 2551.2 24 1827.7 24 351.9 24 9824.4 24
08 03 92 3013.9 24 2889.2 24 2419.3 24 1845.6 24 351.2 24 9635.2 24
08 04 92 2990.9 24 2838.8 24 2257.3 24 1843.2 24 331.5 24 9397.4 24
08 05 92 3168.4 24 2799.1 24 2431.1 24 1863.3 24 343.5 24 9729.1 24
08 06 92 3202.9 24 2736.8 24 2456.0 24 1848.9 24 357.7 24 9711.9 24
08 07 92 3240.7 24 2862.6 24 2482.9 24 1815.4 24 351.6 24 9868.7 24
08 08 92 3273.9 24 2925.7 24 2508.5 24 1864.2 24 357.6 24 10039.5 24
08 09 92 3301.8 24 2844.7 24 2511.3 24 1858.3 24 357.0 24 9983.3 24
08 10 92 3262.8 24 2892.6 24 2559.0 24 1821.4 24 355.4 24 10003.0 24
08 11 92 3284.3 24 2888.1 24 2612.8 24 1823.5 24 318.6 24 10075.9 24
08 12 92 3087.0 24 2864.6 24 2650.2 24 1811.7 24 258.2 24 9880.7 24
08 13 92 3101.4 24 2843.4 24 2423.5 24 1829.3 24 255.7 24 9664.8 24
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08 14 92 3132.2 24 2886.3 24 2487.2 24 1839.2 24 257.2 24 9812.1 24
08 15 92 3157.7 24 2957.9 24 2511.5 24 1858.5 24 259.0 24 9952.8 24
08 16 92 3042.1 24 2922.8 24 2400.2 24 1876.4 24 255.0 24 9708.7 24
08 17 92 2892.9 24 2900.2 24 2061.8 24 1828.4 24 249.3 24 9150.5 24
08 18 92 2916.8 24 2876.9 24 2067.7 24 1838.7 24 247.9 24 9167.3 24
08 19 92 2963.2 24 2838.0 24 2159.6 24 1855.8 24 254.1 24 9283.9 24
08 20 92 2922.4 24 2890.3 24 2122.6 24 1853.8 24 250.8 24 9256.4 24
08 21 92 3010.2 24 3121.9 24 2196.9 24 1803.7 24 250.1 24 95959.8 24
08 22 92 3076.3 24 2849.1 24 2230.3 24 1850.2 24 252.5 24 9473.1 24
08 23 92 3119.1 24 2840.0 24 2329.9 24 1882.4 24 257.7 24 9638.5 24
08 24 92 3102.1 24 2894.4 24 2326.9 24 1849.7 24 259.5 24 9640.3 24
08 25 92 3150.6 24 2803.6 24 2350.6 24 1839.7 24 261.6 24 9611.6 24
08 26 92 3182.4 24 2852.2 24 2521.4 24 1882.6 24 264.7 24 9905.9 24
08 27 92 3262.5 24 2872.9 24 2648.6 24 1847.5 24 268.4 24 10098.6 24
08 28 92 3087.5 24 2767.4 24 2442.1 24 1830.1 24 260.2 24 9594.3 24
08 29 92 3010.8 24 2912.7 24 2265.9 24 1840.8 24 257.2 24 9497.4 24
08 30 92 3074.4 24 3028.8 24 2321.6 24 1880.8 24 258.4 24 9772.8 24
08 31 92 3030.2 24 2864.7 24 2311.1 24 1860.8 24 260.6 24 9534.0 24
09 01 92 3051.7 24 2934.1 24 2255.9 24 1870.8 24 259.5 24 9579.7 24
09 02 92 3103.2 24 2911.6 24 2387.3 24 1867.4 24 263.1 24 9736.7 24
09 03 92 3200.1 24 2933.6 24 2462.2 24 1872.0 24 268.4 24 9935.1 24
09 04 92 3131.4 24 2879.7 24 2228.5 24 1870.6 24 335.6 24 9577.5 24
09 05 92 3118.6 24 2978.7 24 2081.9 24 1888.6 24 415.8 24 9535.1 24
09 06 92 3259.0 24 3216.8 24 2274.1 24 1879.3 24 428.4 24 10096.3 24
09 07 92 3305.5 24 2984.5 24 2332.4 24 1893.0 24 444.8 24 9982.6 24
09 08 92 3263.7 24 2917.4 24 2440.3 24 1880.2 24 364.1 24 9968.7 24
09 09 92 3251.2 24 2976.4 24 2450.5 24 1879.5 24 349.9 24 10024.8 24
09 10 92 3144.8 24 2946.6 24 2160.3 24 1876.5 24 347.9 24 9595.4 24
09 11 92 3275.2 24 2952.4 24 2145.0 24 1870.3 24 346.8 24 9710.1 24
09 12 92 3241.4 24 2962.2 24 2030.9 24 1891.5 24 324.3 24 9593.2 24
09 13 92 3291.7 24 3022.1 24 2137.0 24 1875.3 24 344.9 24 9793.3 24
09 14 92 3206.8 24 2980.5 24 2122.1 24 1878.0 24 338.4 24 9654.7 24
09 15 92 3168.7 24 2938.7 24 2030.5 24 1880.2 24 315.7 24 95485.3 24
09 16 92 3167.9 24 3033.0 24 1874.1 24 1857.8 24 324.6 24 9400.0 24
09 17 92 2925.1 24 3046.8 24 1942.1 24 1844.8 24 312.1 24 9226.0 24
09 18 92 3077.7 24 2950.5 24 2269.5 24 1812.8 24 282.6 24 9577.7 24
09 19 92 3090.7 24 3017.3 24 2403.4 24 1834.4 24 278.2 24 9813.1 24
09 20 92 3124.1 24 2914.0 24 2481.8 24 1890.8 24 285.2 24 9877.9 24
09 21 92 3037.9 24 2979.9 24 2459.8 24 1893.6 24 298.9 24 9878.5 24
09 22 92 3064.8 24 2920.4 24 2436.6 24 1898.6 24 297.8 24 9787.6 24
09 23 92 2912.5 24 2892.8 24 2126.1 24 1839.0 24 260.1 24 9237.6 24
09 24 92 2773.3 24 2983.6 24 1947.3 24 1846.5 24 223.3 24 9017.9 24
09 25 92 2634.2 24 2933.3 24 1664.8 24 1818.6 24 181.4 24 8518.1 24
09 26 92 2797.2 24 2929.4 24 1811.1 24 1838.0 24 204.5 24 8842.9 24
09 27 92 2878.1 24 2892.6 24 2007.5 24 1865.6 24 224.1 24 9111.0 24
09 28 92 2833.7 24 2882.3 24 2143.2 24 1869.2 24 227.6 24 9195.6 24
09 29 92 2709.8 24 2931.0 24 1813.9 24 1854.0 24 213.5 24 8775.9 24
09 30 92 2647.3 24 2969.4 24 1677.8 24 1836.2 24 199.7 24 8597.9 24
10 01 92 2431.9 24 3015.6 24 1494.3 24 1758.9 24 184.9 24 8167.9 24
10 02 92 2503.1 24 2988.6 24 1570.1 24 1787.1 24 60.6 24 8316.1 24
10 03 92 2558.2 24 3010.5 24 1684.9 24 1807.3 24 47.4 24 8528.1 24
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10 04 92 2608.0 24 3112.8 24 1682.7 24 1831.1 24 103.1 24 8701.8 24
10 05 92 2604.2 24 3004.2 24 1737.9 24 1856.2 24 112.9 24 8669.6 24
10 06 92 2703.2 24 3017.1 24 1791.7 24 1851.9 24 110.9 24 8831.1 24
10 07 92 2645.1 24 2931.3 24 1778.5 24 1842.7 24 111.2 24 8664.8 24
10 08 92 2676.1 24 3026.2 24 1751.7 24 1862.1 24 119.8 24 8783.2 24
10 09 92 2346.3 24 2957.9 24 1305.5 24 1801.7 24 76.8 24 7878.7 24
10 10 92 2503.1 24 3010.8 24 1467.3 24 1835.1 24 108.2 24 8283.4 24
10 11 92 2814.9 24 2972.6 24 1899.0 24 1870.5 24 142.4 24 9024.2 24
10 12 92 2586.2 24 2974.7 24 1688.6 24 1849.2 24 122.8 24 8565.8 24
10 13 92 2579.3 24 2956.1 24 1627.5 24 1822.6 24 112.2 24 8452.7 24
10 14 92 2627.7 24 2942.9 24 1662.3 24 1824.1 24 126.2 24 8524.4 24
10 15 92 2734.1 24 3062.8 24 1828.1 24 1825.4 24 132.2 24 8917.6 24
10 16 92 2789.2 24 2999.9 24 1994.8 24 1817.9 24 135.6 24 9069.0 24
10 17 92 2712.2 24 3006.5 24 1803.0 24 1831.0 24 140.9 24 8820.0 24
10 18 92 2534.9 24 3033.6 24 1385.9 24 1806.1 24 140.7 24 B8227.7 24
10 19 92 2475.1 24 2981.0 24 1468.3 24 1818.5 24 137.0 24 8210.1 24
10 20 92 '2313.9 23 2830.1 23 1341.8 23 1737.5 .23 95.1 23 76590.5 23
10 21 92 2530.2 24 2990.8 24 15%92.9 24 1827.2 24 83.9 24 8408.3 24
10 22 92 2596.5 24 2977.8 24 1725.5 24 1807.9 24 104.8 24 8574.9 24
10 23 92 2629.3 24 2899.5 24 1721.7 24 1853.9 24 105.6 24 8571.6 24
10 24 92 2650.1 24 2985.7 24 1785.3 24 1851.3 24 113.7 24 8739.7 24
10 25 92 2664.8 24 2973.1 24 1754.1 24 1863.1 24 123.9 24 8722.3 24
10 26 92 2687.1 24 2858.1 24 1796.9 24 1897.4 24 133.9 24 8706.7 24
10 27 92 2718.6 24 2946.7 24 1877.7 24 1871.5 24 135.6 24 8881.7 24
10 28 92 2648.7 24 3104.4 24 1778.5 24 1844.2 24 109.7 24 8843.0 24
10 29 92 2607.3 24 3016.4 24 1712.0 24 1826.0 24 111.8 24 8628.9 24
10 30 92 2709.6 24 2946.0 24 1871.5 24 1805.7 24 122.9 24 8800.0 24
10 31 92 2665.7 24 2965.3 24 1776.9 24 1810.3 24 103.3 24 8685.4 24
11 01 92 2880.7 24 2930.5 24 2025.1 24 1828B.5 24 118.1 24 9131.9 24
11 02 92 2584.5 24 2957.0 24 1702.6 24 1809.3 24 74.5 24 8520.5 24
11 03 92 2449.9 24 3216.6 24 1457.4 24 1808.5 24 59.7 24 8399.6 24
11 04 92 2481.4 24 3006.4 24 1593.0 24 1770.9 24 59.3 24 8318.9 24
11 05 92 2161.2 24 3105.7 24 918.1 24 1750.2 24 29.2 24 7402.4 24
11 06 92 2105.1 24 3025.8 24 906.95 24 1765.8 24 30.2 24 7270.7 24
11 07 92 2131.1 24 3009.5 24 878.4 24 1787.9 24 29.8 24 7274.1 24
11 08 92 2205.6 24 2992.1 24 868.6 24 1790.2 24 29.5 24 7323.7 24
11 09 92 2313.2 24 2989.8 24 1113.1 24 1825.9 24 29.2 24 7709:2 24
11 10 92 2579.0 24 3109.0 24 1600.5 24 1827.9 24 108.4 24 8583.7 24
11 11 92 2588.4 24 2980.3 24 1608.4 24 1762.6 24 134.1 24 8406.9 24
11 12 92 2670.3 24 3056.0 24 1629.7 24 1799.1 24 85.1 24 8622.3 24
11 13 92 2167.0 24 3083.3 24 1128.9 24 1753.2 24 57.9 24 7599.6 24
11 14 92 2420.3 24 3105.5 24 1107.4 24 1871.3 24 48.0 24 7971.7 24
11 15 92 2239.9 24 2988.7 24 1060.6 24 1845.8 24 47.9 24 7602.3 24
11 16 92 2237.6 24 3023.7 24 1003.0 24 1823.4 24 51.8 24 7554.9 24
11 17 92 2333.1 24 3096.3 24 1202.1 24 1813.6 24 58.6 24 7912.2 24
11 18 92 2464.4 24 2974.9 24 1304.6 24 1802.6 24 73.1 24 8013.7 24
11 19 92 2508.0 24 3011.1 24 1514.4 24 1862.1 24 71.6 24 8362.8 24
11 20 92 2468.2 24 3046.3 24 1470.8 24 1818.8 24 73.8 24 8271.2 24
11 25 92 2270.0 24 2989.7 24 1166.5 24 1848.0 24 44.3 24 7741.5 24
11 26 92 2050.7 24 2909.3 24 1010.3 24 1697.6 24 32.7 24 7135.1 24
11 27 92 1820.7 24 2639.6 24 662.9 24 1499.3 24 29.6 24 6089.6 24
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11 28 92 1869.6 24 2849.7 24 656.7 24 1697.0 24 29.3 24 6540.2 24

11 29 92 2034.1 24 2941.4 24 809.6 24 1743.4 24 36.1 24 6995.7 24

11 30 92 2128.7 24 2906.3 24 1027.0 24 1740.4 24 40.1 24 7269.6 24
12 01 92 2119.4 24 3186.2 24 1007.3 24 1727.2 24 38.3 24 7507.4 24
12 02 92 2180.1 24 3035.7 24 1033.0 24 1711.0 24 46.5 24 7427.1 24
12 03 92 2123.9 24 2969.8 24 1022.6 24 1725.3 24 38.0 24 7308.9 24
12 04 92 2160.5 24 2912.6 24 1083.9 24 1738.6 24 42.9 24 7362.7 24
12 05 92 2265.6 24 3084.9 24 1252.5 24 1752.2 24 41.1 24 7822.5 24
12 06 92 2064.2 24 3051.2 24 1064.6 24 1750.9 24 29.1 24 7398.1 24
12 07 92 2025.7 24 2941.6 24 945.3 24 1707.9 24 29.4 24 7087.7 24

12 08 92 2100.5 24 2907.3 24 1084.4 24 1741.1 24 34.4 24 7300.5 24
12 09 92 2105.9 24 2917.9 24 1238.8 24 1751.8 24 33.7 24 7481.5 24
12 10 92 2220.0 24 2944.5 24 1295.7 24 1792.6 24 41.7 24 7720.0 24
12 11 92 2160.0 24 2949.2 24 1245.2 24 1821.5 24 42.7 24 7643.1 24
12 12 92 2148.3 24 3020.5 24 1289.2 24 1730.2 24 47.0 24 7655.5 24
12 13 92 2228.5 24 2989.7 24 1390.7 24 1759.9 24 59.1 24 7836.0 24
12 14 92 2403.3 24 2928.9 24 1438.5 24 1785.3 24 64.9 24 8023.3 24
12 15 92 2194.5 24 3023.5 24 1168.2 24 1800.6 24 32.1 24 7654.1 24
12 16 92 2045.6 24 2982.1 24 884.2 24 1775.1 24 31.8 24 7154.1 24

12 17 92 2095.6 24 3029.4 24 911.3 24 1765.1 24 32.7 24 7268.6 24

12 18 92 2060.2 24 2993.9 24 926.5 24 1786.2 24 33.5 24 7234.0 24

12 19 92 2144.1 24 3097.4 24 903.4 24 1754.0 24 40.2 24 7366.1 24

12 20 92 2412.8 24 3028.1 24 1228.2 24 1757.0 24 62.8 24 7893.3 24
12 21 92 2122.9 24 3355.1 24 954.1 24 1749.9 24 31.0 24 7649.2 24

12 22 92 2163.8 24 2993.4 24 856.4 24 1775.6 24 36.5 24 7256.4 24

12 23 92 2384.1 24 2980.1 24 1021.6 24 1787.5 24 54.7 24 7640.5 24
12 24 92 2426.1 24 2956.8 24 1231.8 24 1786.8 24 60.7 24 7868.7 24
12 28 92 2140.7 24 3014.7 24 692.5 24 1724.3 24 38.8 24 7039.4 24

12 29 92 2384.3 24 3382.7 24 1055.8 24 1678.3 24 57.1 24 7968.4 24
12 30 92 2553.2 24 3321.5 24 1290.6 24 1690.1 24 73.3 24 8322.7 24
12 31 92 2580.3 24 3307.0 24 1332.3 24 1713.1 24 82.5 24 8399.8 24
01 01 93 2359.6 24 2982.2 24 869.6 24 1716.4 24 53.9 24 7395.0 24

E.1.2 Predictor Variable Data

The values listed are: outdoor dry-bulb temperature (°C), relative humidity (%),

solar radiation (W/m?), enthalpy (Btu/lbm air), specific humidity (kg moisture/kg dry air),

store sales ($/day). Of these, only temperature, specific humidity, solar radiation, and

sales data are used as predictor variables. The colums adjacent to each load represent the

number of hours of data used in each daily average calculation.

MO DA YR TEMP. R.H. SOLAR ENTH. SP.HUM. SALES

01 02 92 12.44 24 71.4 24 143.2 24 19.5 24 0.006054 24 52269 24
01 03 92 13.47 17 56.0 17 203.1 19 18.8 17 0.005053 17 27658 24
01 04 92 13.84 24 44.8 24 165.9 24 17.8 24 0.003929 24 34465 24




318

MO DA YR TEMP. R.H. SOLAR ENTH. SP.HUM. SALES

01 05 92 13.44 24 54.9 24 95.8 21 18.8 24 0.005058 24 45183 24
01 06 92 11.13 6 100.0 6 17.2 23 21.1 6 0.008067 6 47932 24
01 07 92 13.41 7 98.7 7 17.8 24 23.4 7 0.009257 7 44254 24
01 08 92 17.02 7 100.0 7 34.6 21 27.8 7 0.011886 7 42443 24
01 09 92 13.41 14 63.2 14 27.5 24 19.8 14 0.005950 14 37499 24
01 10 92 10.66 24 40.4 24 139.6 24 15.4 24 0.003000 24 33802 24
01 11 92 10.60 24 33.1 24 143.9 24 14.8 24 0.002463 24 38556 24
01 12 92 9.11 22 54.1 22 35.8 23 15.5 22 0.003768 22 38582 24
01 13 92 12.02 11 96.5 11 56.6 22 21.7 11 0.008264 11 58925 24
01 14 92 10.00 24 63.8 24 95.6 24 17.2 24 0.004900 24 40843 24
01 15 92 5.96 24 47.6 24 179.5 24 12.8 24 0.002521 24 58413 24
01 16 92 5.54 24 46.3 24 156.9 24 12.5 24 0.002417 24 36462 24
01 17 92 -0.17 24 38.9 24 90.5 24 8.9 24 0.001313 24 40259 24
01 18 92 4.16 22 73.3 22 19.4 24 13.4 22 0.003727 22 41671 24
01 19 92 3.31 5 95.6 5 16.0 24 13.8 5 0.004480 5 46977 24
01 20 92 5.00 24 59.9 24 183.4 24 12.9 24 0.002996 24 71531 24
01 21 92 7.78 24 49.7 24 177.5 24 14.1 24 0.002992 24 62412 24
01 22 92 8.35 18 66.1 18 21.4 24 16.0 18 0.004456 18 60920 24
01 23 92 17.01 14 43.5 14 171.8 24 20.3 14 0.004943 14 62156 24
01 24 92 10.21 24 34.7 24 193.9 24 14.7 24 0.002513 24 55119 24
01 25 92 11.77 24 35.6 24 191.7 24 15.6 24 0.002742 24 49353 24
01 26 92 13.79 24 55.8 24 151.7 24 19.2 24 0.005225 24 49962 24
01 27 92 212.53 21 93.3 21 23.3 23 21.9 21 0.008229 21 66100 24
01 28 92 11.63 10 100.0 10 25.7 21 21.6 10 0.008310 10 59130 24
01 29 92 10.46 21 99.6 21 20.8 24 20.4 21 0.007657 21 42410 24
01 30 92 10.63 20 99.3 20 22.2 24 20.5 20 0.007730 20 37637 24
01 31 92 15.49 17 58.9 17 173 .4. 24 20.8 17 0.008065 17 38596 24
02 01 92 16.02 24 48.9 24 199.7 24 19.7 24 0.004867 24 48345 24
02 02 92 16.58 24 39.9 24 151.7 24 19.4 24 0.004321 24 62038 24
02 03 92 14.78 24 58.8 24 55.9 24 20.4 24 0.005938 24 70772 24
02 04 92 12.90 11 95.0 11 9.3 24 22.5 11 0.008609 11 57757 24
02 05 92 10.30 17 99.9 17 9.4 24 20.3 17 0.007641 17 50132 24
02 06 92 7.15 24 78.6 24 74.9 24 15.8 24 0.004763 24 43763 24
02 07 92 8.82 24 51.7 24 202.8 24 14.9 24 0.003242 24 43452 24
02 08 92 9.59 24 52.7 24 201.9 24 15.6 24 0.003650 24 46598 24
02 09 92 9.80 24 40.2 24 201.5 24 14.7 24 0.002721 24 52333 24
02 10 92 9.80 24 60.4 24 37.5 24 16.5 24 0.004367 24 66768 24
02 11 92 13.91 24 71.8 24 125.2 24 21.3 24 0.007142 24 52497 24
02 12 92 15.07 22 98.2 22 35.3 24 25.2 22 0.010264 22 44224 24
02 13 92 18.45 18 90.9 18 73.4 24 28.3 18 0.011772 18 41376 24
02 14 92 20.00 22 86.4 22 101.7 24 29.5 22 0.012223 22 36843 24
02 15 92 20.61 24 90.5 24 74.3 24 31.1 24 0.013404 24 51440 24
02 16 92 19.71 20 53.9 20 211.7 24 24.0 20 0.007335 20 72941 24
02 17 92 16.35 24 63.9 24 144.5 24 22.0 24 0.006808 24 63136 24
02 18 92 17.84 24 52.4 24 201.9 24 21.5 24 0.005742 24 53287 24
02 19 92 16.63 24 22.6 24 224.1 24 17.4 24 0.002475 24 46852 24
02 20 92 15.94 24 22.3 24 235.1 24 16.9 24 0.002271 24 41083 24
02 21 92 15.31 24 29.3 24 230.9 24 17.3 24 0.002888 24 37767 24
02 22 92 15.34 24 76.0 24 127.4 24 22.8 24 0.007975 24 41908 24
02 23 92 18.10 21 68.4 21 181.4 24 24.5 21 0.008424 21 51263 24
02 24 92 17.75 24 73.4 24 225.4 24 24.8 24 0.008792 24 64319 24
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MO DA YR TEMP. R. SOLAR ENTH. SP.HUM. SALES

02 25 92 15.44 13 98.5 13 32.0 24 25.7 13 0.010569 13 54423 24
02 26 92 8.52 24 84.5 24 30.4 24 17.6 24 0.005867 24 38510 24
02 27 92 8.74 24 45.9 24 233.9 24 14.5 24 0.002908 24 45092 24
02 28 92 14.59 24 40.6 24 233.9 24 18.0 24 0.003804 24 43855 24
02 29 92 17.13 24 39.1 24 241.6 24 19.3 24 0.003996 24 40609 24
03 01 92 20.48 24 26.8 24 244.9 24 20.1 24 0.003404 24 50371 24
03 02 92 19.44 24 42.0 24 212.4 24 22.0 24 0.005558 24 65532 24
03 03 92 18.75 24 86.5 24 75.9 24 28.0 24 0.011342 24 56897 24
03 04 92 19.57 23 91.7 23 34.9 24 29.9 23 0.012778 23 51111 24
03 05 92 16.89 16 93.0 16 80.0 24 26.7 16 0.010919 16 45414 24
03 06 92 21.60 19 67.9 19 202.4 24 28.1 19 0.010326 19 42669 24
03 07 92 23.42 20 42.1 20 252.4 24 24.6 20 0.006355 20 44937 24
03 08 92 21.28 24 59.7 24 219.6 24 26.4 24 0.008871 24 49583 24
03 09 92 20.29 24 87.6 24 53.8 24 30.2 24 0.012758 24 65122 24
03 10 92 20.22 24 75.5 24 79.1 24 28.5 24 0.011229 24 55794 24
03 11 92 7.87 24 32.4 24 170.3 24 13.1 24 0.002025 24 41433 24
03 12 92 7.38 24 36.9 24 113.6 24 13.1 24 0.002213 24 42030 24
03 13 92 12.84 24 37.2 24 233.6 24 16.3 24 0.003008 24 41883 24
03 14 92 14.62 24 40.0 24 256.0 24 18.0 24 0.003825 24 43540 24
03 15 92 18.21 24 49.1 24 260.9 24 21.0 24 0.005154 24 52695 24
03 16 92 19.62 24 60.1 24 252.3 24 24.4 24 0.007721 24 54699 24
03 17 92 19.35 24 69.1 24 196.5 24 25.8 24 0.009063 24 37271 24
03 18 92 20.03 24 87.0 24 69.0 23 29.7 24 0.012400 24 36194 24
03 19 92 22.72 24 53.0 24 256.9 24 26.2 24 0.008125 24 35736 24
03 20 92 15.69 24 43.4 24 269.2 24 19.2 24 0.004529 24 35581 24
03 21 92 14.73 24 46.5 24 230.8 24 18.6 24 0.004363 24 39023 24
03 22 92 15.96 24 78.7 24 67.0 24 24.0 24 0.008771 24 41892 24
03 23 92 14.72 16 60.9 16 179.5 24 20.9 16 0.006456 16 53614 24
03 24 92 10.63 24 46.9 24 273.4 24 15.6 24 0.003238 24 58294 24
03 25 92 15.29 24 57.6 24 192.3 24 20.6 24 0.005967 24 55830 24
03 26 92 19.94 24 53.4 24 274.7 24 23.5 24 0.006767 24 45762 24
03 27 92 19.49 24 47.2 24 257.8 24 22.6 24 0.006083 24 43797 24
03 28 92 19.49 22 61.5 22 165.3 24 24.7 22 0.008018 22 43336 24
03 29 92 16.80 21 92.5 21 39.7 23 26.6 21 0.010805 21 56428 24
03 30 92 21.66 14 67.4 14 161.3 24 28.5 14 0.010607 14 73378 24
03 31 92 15.30 24 56.6 24 246.8 24 20.4 24 0.005792 24 55143 24
04 01 92 16.16 24 56.1 24 315.7 19 20.9 24 0.005917 24 43595 24
04 02 92 15.52 24 57.4 24 158.8 24 21.0 24 0.006213 24 46705 24
04 03 92 9.11 24 50.5 24 51.4 24 15.2 24 0.003479 24 50487 24
04 04 92 12.68 24 44.9 24 290.8 24 16.6 24 0.003354 24 47221 24
04 05 92 16.14 24 50.9 24 254.2 24 20.1 24 0.005146 24 55366 24
04 06 92 13.77 24 93.2 24 38.1 24 23.2 24 0.008954 24 66183 24
04 07 92 18.10 19 71.2 19 166.1 24 24.8 19 0.008716 19 59743 24
04 08 92 19.71 22 70.0 22 276.8 22 26.3 22 0.009359 22 51166 24
04 05 92 21.41 23 74.3 23 220.9 24 29.0 23 0.0112213 23 42373 24
04 10 92 20.38 24 70.3 24 232.4 24 27.1 24 0.009888 24 43863 24
04 11 92 21.20 24 70.6 24 221.7 24 28.0 24 0.010379 24 45802 24
04 12 92 22.43 24 73.2 24 223.9%9 24 30.1 24 0.011746 24 57812 24
04 13 92 23.95 24 66.0 24 185.0 24 30.4 24 0.011488 24 72263 24
04 14 92 24.16 23 64.5 23 227.8 24 30.3 23 0.011304 23 58135 24
04 15 92 23.70 24 61.7 24 250.6 24 29.5 24 0.010729 24 46424 24
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MO DA YR TEMP. R.H. SOLAR ENTH. SP.HUM. SALES

04 16 92 22.44 24 72.6 24 165.1 24 30.1 24 0.011750 24 45769 24
04 17 92 22.46 24 72.6 24 224.7 24 29.8 24 0.011525 24 43568 24
04 18 92 19.47 24 95.0 24 31.2 24 30.3 24 0.013188 24 48080 24
04 19 92 20.01 24 83.8 24 159.6 24 29.0 24 0.011796 24 59401 24
04 20 92 20.42 24 88.0 24 82.8 24 30.4 24 0.012879 24 74431 24
04 21 92 18.35 23 57.1 23 276.2 24 22.8 23 0.006770 23 48574 24
04 22 92 19.63 24 43.5 24 280.6 24 22.4 24 0.005854 24 49824 24
04 23 92 21.24 24 54.2 24 304.2 24 25.1 24 0.007700 24 40793 24
04 24 92 22.70 24 78.3 24 193.4 24 31.3 24 0.012804 24 40374 24
04 25 92 25.10 24 77.9 24 184.8 24 34.8 24 0.014954 24 41631 24
04 26 92 20.36 24 49.5 24 184.8 24 24.1 24 0.007100 24 52156 24
04 27 92 19.88 24 33.5 24 302.0 24 20.9 24 0.004400 24 66003 24
04 28 92 19.89 24 46.0 24 284.9 24 22.9 24 0.006204 24 51858 24
04 29 92 21.40 24 54.8 24 296.2 24 25.3 24 0.007808 24 44616 24
04 30 92 21.83 24 69.2 24 173.0 24 28.7 24 0.010771 24 43656 24
05 01 92 18.70 24 79.0 24 101.1 24 26.8 24 0.010283 24 39765 24
05 02 92 22.23 24 70.3 24 220.5 24 29.1 24 0.010917 24 44178 24
05 03 92 23.32 24 71.0 24 214.6 24 30.7 24 0.011967 24 53980 24
05 04 92 23.9%1 24 71.8 24 207.4 24 31.5 24 0.012483 24 67225 24
05 05 92 22.54 24 75.4 24 135.4 24 30.8 24 0.012429 24 56160 24
05 06 92 24.10 24 50.3 24 301.8 24 26.7 24 0.007992 24 42034 24
05 07 92 20.20 24 37.7 24 297.6 24 22.1 24 0.005325 24 40809 24
05 08 92 17.12 24 32.5 24 311.0 24 18.6 24 0.003392 24 40341 24
05 09 92 19.18 24 34.2 24 303.5 24 20.6 24 0.004354 24 40684 24
05 10 92 19.77 24 56.8 24 219.9 24 24.4 24 0.007642 24 48262 24
05 11 92 21.44 24 76.3 24 120.2 24 29.9 24 0.011946 24 45175 24
05 12 92 24.27 24 77.6 24 151.5 24 33.6 24 0.014233 24 44819 24
05 13 92 25.98 24 71.2 24 216.3 24 34.5 24 0.014317 24 36189 24
05 14 92 25.02 24 70.7 24 170.4 24 33.3 24 0.013613 24 34348 24
05 15 92 25.48 24 71.0 24 252.9 24 33.6 24 0.013763 24 48965 24
05 16 92 21.83 24 85.7 24 51.3 24 32.0 24 0.013808 24 41857 24
05 17 92 21.68 24 94.3 24 75.3 24 33.3 24 0.015033 24 50204 24
05 18 92 21.66 24 93.5 24 85.7 24 33.2 24 0.014896 24 57443 24
05 19 .92 22.16 19 89.3 19 147.0 24 33.0 19 0.014558 19 43706 24
05 20 92 22.80 24 81.9 24 221.1 24 32.1 24 0.013492 24 37987 24
05 21 92 22.66 24 84.7 24 214.7 24 32.5 24 0.013900 24 32731 24
05 22 92 22.37 21 85.6 21 171.8 24 32.4.'21 0.013886 21 33194 24
05 23 92 23.20 24 71.8 24 229.7 24 30.5 24 0.011850 24 34790 24
05 24 92 25.26 22 61.0 22 271.9 24 30.8 22 0.011327 22 44959 24
05 25 92 25.42 24 65.5 24 235.4 24 32.3 24 0.012625 24 50769 24
05 26 92 24.32 24 68.2 24 264.9 24 31.4 24 0.012183 24 41147 24
05 27 92 22.87 24 75.9 24 205.1 24 31.3 24 0.012704 24 35637 24
05 28 92 22.89 24 69.5 24 190.2 24 30.1 24 0.011563 24 36912 24
05 29 92 21.29 24 85.3 24 155.3 24 31.0 24 0.013100 24 34181 24
05 30 92 16.48 24 71.2 24 88.7 24 23.4 24 0.008046 24 37340 24
05 31 92 18.99 24 67.4 24 199.7 24 25.3 24 0.008738 24 46956 24
06 01 92 19.57 24 89.1 24 71.4 24 29.6 24 0.012442 24 59234 24
06 02 92 23.43 16 81.2 16 178.7 24 33.1 16 0.014119 16 56838 24
06 03 92 22.86 24 73.4 24 215.6 24 30.6 24 0.012050 24 50567 24
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06 04 92 25.89 24 54.7 24 299.5 24 30.3 24 0.010588 24 41431 24
06 05 92 26.50 24 43.1 24 321.3 24 28.4 24 0.008588 24 41537 24
06 06 92 26.75 24 59.0 24 274.7 24 32.8 24 0.012508 24 39747 24
06 07 92 24.24 24 80.3 24 116.8 24 34.3 24 0.014913 24 43190 24
06 08 92 24.90 24 70.6 24 192.0 24 32.8 24 0.013258 24 58715 24
06 09 92 27.27 24 64.3 24 270.6 24 34.3 24 0.013642 24 44566 24
06 10 92 26.91 24 59.4 24 225.3 24 32.8 24 0.012492 24 40671 24
06 11 92 27.63 24 59.7 24 298.4 24 33.7 24 0.012946 24 38544 24
06 12 92 28.06 24 53.7 24 305.3 24 32.6 24 0.011779 24 38613 24
06 13 92 28.47 24 53.6 24 248.9 24 33.3 24 0.012317 24 35292 24
06 14 92 28.03 24 66.6 24 209.0 24 36.1 24 0.015008 24 42795 24
06 15 92 28.42 24 67.1 24 259.3 24 36.7 24 0.015367 24 50125 24
06 16 92 28.34 24 65.6 24 263.6 24 36.2 24 0.014979 24 42598 24
06 17 92 17.31 14 72.8 14 317.5 24 24.4 14 0.008643 14 38018 24
06 18 92 31.22 14 56.6 14 296.5 24 38.3 14 0.015743 14 40523 24
06 19 92 28.83 24 68.5 24 314.4 24 38.0 24 0.016350 24 37135 24
06 20 92 29.19 24 68.8 24 303.1 24 38.6 24 0.016813 24 41201 24
06 21 92 29.62 24 64.4 24 298.4 24 37.9 24 0.015975 24 49635 24
06 22 92 29.03 24 68.2 24 224.3 24 38.5 24 0.016750 24 41362 24
06 23 92 25.84 24 79.1 24 127.7 24 36.4 24 0.016152 24 37567 24
06 24 92 27.93 24 70.3 24 273.4 24 37.2 24 0.016038 24 37587 24
06 25 92 28.86 24 67.4 24 303.1 24 37.8 24 0.016242 24 35915 24
06 26 92 29.24 24 67.5 24 304.4 24 38.4 24 0.016583 24 35242 24
06 27 92 29.04 24 69.0 24 251.1 24 38.4 24 0.016713 24 41973 24
06 28 92 28.17 24 70.8 24 235.3 24 37.7 24 0.016408 24 48914 24
06 29 92 28.40 24 71.5 24 264.1 24 38.2 24 0.016779 24 41612 24
06 30 92 29.34 24 58.9 24 302.0 24 36.4 24 0.014758 24 38988 24
07 01 92 26.18 24 78.4 24 78.3 24 36.9 24 0.016458 24 39143 24

07 02 92 29.48 24 74.8 24 297.9 24 40.9 24 0.018788 24 44636 24
07 03 92 30.11 24 71.7 24 286.0 24 41.1 24 0.018733 24 51491 24
07 04 92 27.01 24 79.9 24 182.5 24 38.4 24 0.017521 24 58665 24
07 05 92 27.69 24 73.5 24 268.7 24 37.7 24 0.016538 24 48189 24
07 06 92 28.88 24 65.1 24 312.1 24 36.9 24 0.015379 24 38661 24
07 07 92 28.62 24 67.9 24 309.0 24 37.2 24 0.015775 24 41623 24
07 08 92 28.66 24 69.6 24 304.5 24 37.9 24 0.016388 24 42114 24
07 09 92 28.84 24 69.0 24 288.7 24 38.0 24 0.016367 24 40214 24
07 10 92 28.74 24 69.2 24 297.9 24 37.9 24 0.016350 24 44812 24
07 11 92 28.93 24 69.1 24 292.3 24 38.2 24 0.016554 24 43211 24
07 12 92 28.72 24 71.4 24 270.3 24 38.5 24 0.016950 24 56078 24
07 13 92 29.11 24 69.0 24 290.8 24 38.4 24 0.016671 24 41485 24
07 14 92 28.36 24 70.6 24 286.5 24 37.8 24 0.016417 24 39989 24
07 15 92 29.10 24 69.7 24 270.5 24 38.7 24 0.016933 24 38304 24
07 16 92 29.30 24 71.5 24 268.9 24 39.6 24 0.017663 24 38075 24
07 17 92 29.55 24 65.7 24 287.3 24 38.3 24 0.016363 24 38666 24
07 18 92 28.17 24 72.4 24 233.8 24 38.0 24 0.016667 24 39708 24
07 19 92 25.54 24 77.0 24 212.1 24 35.4 24 0.015379 24 54431 24
07 20 92 24.72 24 85.1 24 145.6 24 36.0 24 0.016288 24 45730 24
07 21 92 24.02 24 88.0 24 100.4 24 35.6 24 0.016188 24 37589 24
07 22 92 25.77 24 80.8 24 167.5 24 36.6 24 0.016333 24 39360 24
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07 23 92 26.96 24 78.5 24 176.4 24 37.9 24 0.017063 24 35659 24
07 24 92 28.01 24 77.2 24 239.6 24 359.2 24 0.017792 24 36498 24
07 25 92 28.52 24 74.9 24 229.9 24 39.3 24 0.017671 24 40353 24
07 26 92 28.51 24 75.5 24 226.8 24 39.5 24 0.017854 24 49018 24
07 27 92 29.00 24 72.7 24 279.9 24 39.4 24 0.017567 24 40168 24
07 28 92 29.15 24 70.5 24 290.1 24 38.9 24 0.017146 24 38869 24
07 29 92 29.06 24 68.1 24 279.3 24 38.2 24 0.016508 24 34323 24
07 30 92 28.85 24 68.4 24 283.7 24 37.8 24 0.016229 24 33375 24
07 31 92 29.26 24 69.4 24 271.4 24 38.8 24 0.016942 24 35801 24
08 01 92 29.14 24 68.2 24 233.2 24 38.3 24 0.016525 24 44904 24
08 02 92 29.63 24 64.2 24 299.6 24 37.8 24 0.015858 24 50498 24
08 03 92 27.20 24 72.8 24 247.0 24 36.6 24 0.015771 24 40437 24
08 04 92 26.20 24 75.3 24 252.9 24 35.9 24 0.015579 24 38520 24
08 05 92 28.26 24 71.0 24 267.2 24 37.6 24 0.016271 24 37345 24
08 06 92 28.81 24 69.4 24 281.7 24 38.0 24 0.016446 24 37026 24
08 07 92 29.15 23 69.0 23 264.6 23 38.4 23 0.016683 23 37906 24
08 08 92 29.31 24 70.2 24 284.9 24 39.1 24 0.017171 24 37023 24
08 09 92 29.43 24 69.5 24 274.6 24 39.0 24 0.017113 24 53798 24
08 10 92 29.45 24 69.5 24 282.9 24 39.1 24 0.017163 24 38378 24
08 11 92 29.89 24 68.2 24 285.7 24 39.4 24 0.017217 24 33591 24
08 12 92 27.64 24 74.8 24 182.8 24 37.9 24 0.016825 24 33516 24
08 13 92 26.62 24 77.8 24 179.3 24 37.1 24 0.016513 24 44120 24
08 14 92 27.48 23 72.3 23 232.4 23 36.9 23 0.015974 23 40049 24
08 15 92 27.98 24 61.5 24 251.4 24 34.9 24 0.013917 24 46648 24
08 16 92 25.79 24 63.9 24 204.7 24 32.7 24 0.012788 24 56372 24
08 17 92 23.98 24 54.1 24 294.2 24 28.2 24 0.009438 24 45452 24
08 18 92 23.93 24 55.3 24 278.6 24 28.4 24 0.009642 24 37492 24
08 19 92 24.93 24 54.7 24 289.1 24 29.4 24 0.010150 24 36651 24
08 20 92 23.63 24 68.3 24 158.0 24 31.1 24 0.012175 24 35180 24
08 21 92 25.24 24 64.5 24 246.9 24 31.8 24 0.012225 24 38076 24
08 22 92 27.05 24 57.7 24 262.0 24 32.5 24 0.012092 24 42451 24
08 23 92 27.55 24 59.1 24 264.3 24 33.5 24 0.012863 24 60588 24
08 24 92 26.36 24 73.2 24 238.8 24 35.5 24 0.015129 24 52830 24
08 25 92 27.39 24 68.7 24 260.6 24 35.8 24 0.014967 24 45834 24
08 26 92 28.45 24 67.0 24 257.3 24 36.6 24 0.015238 24 47476 24
08 27 92 29.92 24 58.4 24 254.0 24 36.6 24 0.014692 24 48432 24
08 28 92 25.95 24 68.1 24 204.6 24 33.9 24 0.013808 24 47952 24
08 29 92 25.20 24 53.8 24 296.0 24 29.1 24 0.009763 24 56090 24
08 30 92 26.66 24 48.2 24 289.9 24 30.1 24 0.010046 24 80680 24
08 31 92 26.18 24 57.7 24 288.1 24 31.4 24 0.011429 24 78127 24
09 01 92 25.16 24 78.5 24 141.4 24 35.3 24 0.015392 24 66074 24
09 02 92 26.63 24 76.4 24 212.7 24 36.7 24 0.016079 24 48114 24
05 03 92 28.69 24 71.2 24 262.1 24 38.3 24 0.016729 24 47895 24
09 04 92 25.87 24 83.6 24 146.5 24 37.5 24 0.017154 24 43742 24
09 05 92 25.64 24 82.1 24 188.4 24 36.7 24 0.016463 24 54310 24
09 06 92 27.20 24 77.5 24 229.3 24 37.7 24 0.016779 24 72476 24
09 07 92 27.89 24 76.1 24 151.0 24 38.5 24 0.017213 24 53159 24
09 08 92 28.08 24 74.7 24 234.1 24 38.3 24 0.016950 24 49219 24
09 09 92 28.40 24 72.1 24 213.1 24 38.1 24 0.016688 24 42849 24
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09 10 92 27.97 24 74.9 24 222.9 24 38.2 24 0.016979 24 41448 24
09 11 92 27.46 24 72.6 24 223.8 24 36.8 24 0.015896 24 43223 24
09 12 92 26.50 24 71.0 24 247.6 24 35.1 24 0.014713 24 55468 24
09 13 92 27.38 24 66.3 24 239.7 24 35.2 24 0.014471 24 66193 24
09 14 92 26.06 24 78.5 24 151.5 24 36.4 24 0.016104 24 61835 24
09 15 92 26.08 24 79.0 24 193.4 24 36.5 24 0.016192 24 46402 24
09 16 92 26.58 24 68.1 24 222.3 24 34.4 24 0.014050 24 46575 24
09 17 92 26.74 24 63.7 24 227.4 24 33.9 24 0.013508 24 40672 24
09 18 92 27.27 24 71.0 24 208.8 24 36.3 24 0.015488 24 38694 24
09 19 92 28.25 24 70.6 24 225.4 24 37.4 24 0.016071 24 53301 24
09 20 92 28.65 24 69.1 24 232.6 24 37.5 24 0.016058 24 62797 24
09 21 92 28.45 24 72.2 24 221.8 24 38.2 24 0.016733 24 56851 24
09 22 92 28.04 24 74.5 24 177.1 24 38.4 24 0.017108 24 43350 24
09 23 92 25.95 24 70.8 24 228.4 24 34.4 24 0.014317 24 38433 24
09 24 92 23.37 24 57.5 24 216.0 24 28.3 24 0.009788 24 37375 24
09 25 92 21.41 24 42.3 24 219.1 24 23.5 24 0.006163 24 40924 24
09 26 92 24.06 24 59.2 24 219.3 24 29.9 24 0.010904 24 51364 24
09 27 92 25.23 24 77.7 24 155.8 24 34.9 24 0.01499%6 24 63716 24
09 28 92 25.21 24 72.0 24 216.7 21 33.7 24 0.013963 24 52089 24
09 29 92 22.63 24 59.5 24 243.1 24 27.6 24 0.009388 24 44666 24
09 30 92 22.18 24 49.0 24 255.1 24 25.4 24 0.007583 24 42244 24
10 01 92 19.49 24 38.0 24 262.9 24 21.1 24 0.004750 24 41562 24
10 02 92 20.21 24 43.0 24 254.9 24 22.6 24 0.005833 24 49937 24
10 03 92 21.08 24 46.8 24 249.4 24 24.0 24 0.006696 24 64584 24
10 04 92 21.85 24 45.8 24 247.0 24 24.4 24 0.006833 24 71837 24
10 05 92 23.45 24 41.0 24 248.4 24 24.9 24 0.006604 24 59100 24
10 06 92 24.09 24 56.5 24 233.5 24 28.4 24 0.009592 24 46279 24
10 07 92 23.03 24 62.1 24 198.3 24 28.7 24 0.010288 24 39588 24
10 08 92 22.39 24 72.6 24 191.2 23 29.9 24 0.011654 24 37150 24
10 09 92 16.72 24 45.1 24 236.4 24 20.0 24 0.004850 24 40707 24
10 10 92 20.58 24 52.7 24 185.9 24 25.1 24 0.007971 24 49473 24
10 11 S2 24.76 24 74.8 24 160.7 24 33.4 24 0.013817 24 61461 24
10 12 92 21.97 24 41.1 24 236.0 24 23.8 24 0.006242 24 53179 24
10 13 92 22.72 24 50.7 24 230.0 24 26.2 24 0.008117 24 45195 24
10 14 92 22.89 24 61.1 24 233.8 24 28.2 24 0.009867 24 39051 24
10 15 92 24.16 24 70.0 24 188.8 24 31.7 24 0.012517 24 38632 24
10 16 92 25.37 24 78.0 24 110.9 24 35.4 24 0.015413 24 40963 24
10 17 92 22.23 24 84.9 24 75.9 24 32.6 24 0.014129 24 53346 24
10 18 92 18.62 24 84.9 24 55.1 24 27.8 24 0.011163 24 59250 24
10 19 92 19.07 24 78.8 24 111.2 24 27.2 24 0.010458 24 50938 24
10 20 92 18.63 23 60.4 23 213.8 23 23.8 23 0.007574 23 43268 24
10 21 92 21.09 24 67.9 24 152.5 24 27.7 24 0.010096 24 38081 24
10 22 92 21.94 24 74.7 24 177.4 24 29.8 24 0.011700 24 36423 24
10 23 92 22.22 24 76.9 24 158.7 20 30.6 24 0.012338 24 42615 24
10 24 92 23.17 24 61.3 24 194.2 24 28.4 24 0.009904 24 56413 24
10 25 92 23.85 24 56.7 24 168.6 24 28.6 24 0.009854 24 63133 24
10 26 92 25.59 24 48.6 24 186.9 24 28.9 24 0.009400 24 57131 24
10 27 92 24.%0 24 57.1 24 183.7 24 30.1 24 0.010767 24 48289 24
10 28 92 21.92 24 67.0 24 186.6 24 28.5 24 0.010504 24 40590 24
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10 29 92 21.35 24 72.3 24 166.7 24 28.6 24 0.010858 24 38700 24
10 30 92 24.18 24 77.0 24 130.4 24 33.2 24 0.013908 24 39742 24
10 31 92 21.92 24 86.2 24 108.2 24 32.2 24 0.013883 24 48077 24
11 01 92 26.08 24 78.4 24 149.2 24 36.3 24 0.016021 24 61473 24
11 02 92 20.53 23 71.0 23 136.4 23 27.9 23 0.010530 23 54009 24
11 03 92 19.26 24 50.5 24 186.8 24 22.9 24 0.006479 24 47988 24
11 04 92 18.93 24 70.6 24 84.8 24 26.4 24 0.009767 24 48614 24
11 05 92 8.61 24 61.2 24 46.5 24 15.7 24 0.004121 24 45789 24
11 06 92 8.07 24 54.6 24 131.7 24 14.7 24 0.003446 24 45998 24
11 07 92 9.72 24 51.6 24 126.8 24 15.7 24 0.003629 24 59680 24
11 08 92 11.86 24 50.9 24 176.9 24 17.1 24 0.004058 24 62486 24
11 09 92 15.58 24 71.0 24 49.4 24 22.9 24 0.007908 24 54927 24
11 10 92 20.92 24 78.0 24 97.5 24 29.3 24 0.011679 24 40104 24
11 11 92 20.45 24 93.2 24 16.2 24 31.4 24 0.013796 24 41942 24
11 12 92 21.76 24 93.6 24 33.6 24 33.4 24 0.015054 24 39538 24
11 13 92 14.22 24 65.8 24 172.7 24 20.7 24 0.006508 24 44255 24
11 14 92 11.83 24 55.9 24 171.0 24 17.5 24 0.004471 24 47144 24
11 15 92 13.64 24 51.4 24 163.9 24 18.5 24 0.004696 24 58488 24
11 16 92 14.07 24 61.5 24 128.1 24 20.0 24 0.005883 24 52322 24
11 17 92 16.01 24 63.4 24 157.0 24 21.9 24 0.006817 24 44243 24
11 18 92 17.43 24 83.7 24 131.0 24 26.1 24 0.010121 24 40141 24
11 19 92 18.44 24 92.2 24 24.2 24 28.6 24 0.011988 24 36926 24
11 20 92 18.56 24 93.9 24 12.4 24 28.9 24 0.012296 24 41905 24
11 25 92 13.45 24 70.7 24 96.3 24 20.4 24 0.006492 24 60662 24
11 26 92 7.69 24 54.9 24 120.8 24 14.6 24 0.003438 24 60520 24
11 27 92 3.88 24 67.7 24 94.4 24 12.7 24 0.003263 24 19315 24
11 28 92 3.93 24 62.8 24 155.1 24 12.4 24 0.002917 24 29577 24
11 29 92 7.64 24 53.8 24 157.6 24 14.3 24 0.003229 24 42327 24
11 30 %92 11.02 24 71.3 24 130.6 24 18.5 24 0.005704 24 45851 24
12 01 92 10.52 24 59.6 24 122.3 24 17.0 24 0.004533 24 50655 24
12 02 92 13.68 24 52.5 24 150.6 24 18.8 24 0.004913 24 47621 24
12 03 92 11.58 24 42.6 24 155.1 24 16.1 24 0.003317 24 40704 24
12 04 92 13.86 24 63.7 24 75.5 24 20.7 24 0.006629 24 44778 24
12 05 92 13.49 24 79.0 24 21.0 24 22.1 24 0.007992 24 55907 24
12 06 92 6.05 24 72.0 24 14.2 24 14.5 24 0.004000 24 67297 24
12 07 92 5.90 24 88.0 24 41.9 24 15.4 24 0.004942 24 54821 24
12 08 92 8.82 24 83.3 24 137.9 24 17.4 24 0.005621 24 43871 24
12 09 92 9.00 24 83.3 24 58.6 24 17.6 24 0.005729 24 40723 24
12 10 92 14.77 24 68.7 24 146.9 24 21.1 24 0.006613 24 40936 24
12 11 92 14.70 24 46.1 24 146.9 24 18.8 24 0.004529 24 41013 24
12 12 92 12.59 24 43.8 24 132.9 24 17.0 24 0.003729 24 47500 24
12 13 92 15.52 24 78.1 24 69.4 24 23.6 24 0.008575 24 62283 24
12 14 92 19.84 24 84.5 24 16.7 24 29.2 24 0.011992 24 44042 24
12 15 %2 9.83 24 95.3 24 8.1 24 19.9 24 0.007479 24 38146 24
12 16 92 7.68 24 83.5 24 102.7 24 16.4 24 0.005175 24 39142 24
12 17 92 9.37 24 82.7 24 67.7 24 17.9 24 0.005821 24 45519 24
12 18 92 8.82 24 73.8 24 126.8 24 16.7 24 0.004908 24 46625 24
12 19 92 11.00 24 82.3 24 959.4 24 19.6 24 0.006742 24 44230 24
12 20 92 18.70 24 97.1 24 16.3 24 29.9 24 0.013083 24 52712 24
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12 21 92 7.85 24 97.4 24 13.3 24 17.8 24 0.006354 24 44942 24
12 22 92 9.94 24 94.6 24 61.1 24 19.5 24 0.007096 24 42128 24
12 23 92 16.59 24 99.6 24 31.5 24 27.3 24 0.011592 24 44006 24
12 24 92 18.25 24 97.8 24 21.9 24 29.3 24 0.012692 24 52482 24
12 28 92 11.97 24 90.7 24 47.9 24 21.1 24 0.007750 24 22294 24
12 29 92 17.66 24 98.9 24 17.6 24 28.7 24 0.012396 24 30526 24
12 30 92 21.26 24 93.7 24 51.3 24 32.6 24 0.014533 24 28453 24
12 31 92 21.54 24 94.0 24 73.5 24 33.1 24 0.014854 24 36527 24
01 01 93 14.35 24 93.5 24 37.1 24 25.0 24 0.010333 24 59269 24
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E.2 STATISTICAL ANALYSIS ROUTINE

data one;

infile '90lsiadj.day’;

input site mo da yr greg julian hr
comp hrs9 lght hrsll hvac hrsl3 util hrsl5 wvid hrsl7 whb hrsl9
temp hrs2l1 RH hrs23 sol hrs25 enth hrs27 SH hrs29 wind hrs3l
tin hrs33 RHin hrs35 sales hrs37;

if SH<=0 then delete;

if temp<=-20 then delete;

1f sol<=0 then delete;

if temp<=18.66 then delete;

Run;

Proc corr;
var whb temp SH sol sales;
with whb temp SH sol sales;
run;

proc princomp out=prin;

var temp SH sol;

Faii;
data two;

merge one prin;

run;

proc reg;

model whb=prinl prin2 prin3 / selection = rsquare RMSE;
run;

proc reqg;

model whb=prinl prin2 prin3;

run;

proc reg;
model whb=prinl prin3;

run;
proc reg;

model whb=prinl prin2;
run;

proc regq;
model whb=temp SH sol;
run;

Proc ¢orr;
var comp temp SH sol sales;

with comp temp SH sol sales;

run;

proc reg;

model comp=prinl prin2 prin3 / selection = rsquare RMSE;
Fun;

proc reg;

model comp=prinl prin2 prin3;

run;

proc reg;

model comp=prinl prin3;

run;

proc reg;

model comp=prinl prin2;

run;



proc reg;
model comp=temp SH sol;
bk ¢ 41

BroE corts;
var hvac temp SH sol sales;

with hvac temp SH sol sales;

run;

proc reg;

model hvac=prinl prin2 prin3 / selection
run;

proc reg;
model hvac=prinl prin2 prin3;
run;

proc reg;

model hvac=prinl prin3;

run;

proc reg;

model hvac=prinl prin2;

run;

proc reg;
model hvac=temp SH sol;
run;

data three;
infile '901lsiadj.day';

= rsquare RMSE;
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input site mo da yr greg julian hr comp hrs9 lght hrsll hvac hrsl3 util
hrsl5 vid hrsl7 whb hrsl9 temp hrs2l RH hrs23 sol hrs25 enth hrs27 SH

hrs29 wind hrs31 tin hrs33 RHin hrs35 sa
if SH<=0 then delete;

if temp<=-20 then delete;

if sales<=0 then delete;

if temp>18.66 then delete;

run;

proc corr;
var whb temp SH sol sales;

with whb temp SH sol sales;

run;

proc princomp out=prin;

var temp SH sales;

run;

data four;

merge three prin;

run;

proc reg;

model whb=prinl prin2 prin3 / selection
run;

proc reg;

model whb=prinl prin2 prin3;

run;

proc req;

model whb=prinl prin3;
run;

proc reg;

les hrs37;

= rsquare RMSE;
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model whb=prinl prin2;

run;

proc reg;

model whb=temp SH sales;
run;

proc corr;
var comp temp SH sol sales;

with comp temp SH sol sales;

run;

proc reg;

model comp=prinl prin2 prin3 / selection = rsquare RMSE;
run;

proc reg;
model comp=prinl prin2 prin3;
run;

proc reg;
model comp=prinl prin3;

run;
proc reg;

model comp=prinl prin2;
run;

proc corr;
var hvac temp SH sol sales;

with hvac temp SH sol sales;

run;

proc reg;

model hvac=prinl prin2 prin3 / selection = rsquare RMSE;
run;

proc reg;
model hvac=prinl prin2 prin3;
run;

proc reg;

model hvac=prinl prin3;
run;

proc reg;

model hvac=prinl prin2;
run;



E.3 ANALYSIS OUTPUT

Correlation Analysis

5 'WITH' Variables: WHB TEMP SH SOL SALES
5 'VAR' Variables: WHB TEMP SH SOL SALES
Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
WHB 231 9043 674.1137 2088925 7215 10099
TEMP 231 24.6577 3.3730 5696 18.7035 31.2226
SH 231 0.0130 0.003472 2.9971 0.003404 0.0188
SOL 231 212.4719 70.6488 49081 16.1967 321.3380
SALES 231 46462 9628 10732607 28453 80680

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 231

WHB TEMP SH SOL SALES
WHB 1.00000 0.92328 0.72268 0.45866 -0.15642
0.0 0.0001 0.0001 0.0001 0.0174
TEMP 0.92328 1.00000 0.75901 0.54079 -0.18424
0.0001 0.0 0.0001 0.0001 0.0050
SH 0.72268 0=75501 1.00000 -0.01534 -0.20623
0.0001 0.0001 0.0 0.8167 0.0016
SOL 0.45866 0.54079 -0.01534 1.00000 -0.12055
0.0001 0.0001 0.8167 0.0 0.0674
SALES -0.15642 -0.18424 -0.20623 -0.12085 1.00000
0.0174 0.0050 0.0016 0.0674 0.0
Principal Component Analysis
231 Observations
3 Variables
Simple Statistics
TEMP SH S0L
Mean 24.65769351 0.0129744643 212.4719346
StD 3.37304191 0.0034717717 70.6487890
Correlation Matrix
TEMP SH SOL
TEMP 1.0000 0.7580 0.5408
SH 0.7590 1.0000 -.0153
SOL 0.5408 = 0183 1.0000
Eigenvalues of the Correlation Matrix
Eigenvalue Difference Proportion Cumulative
PRIN1 1.92475 0.910259 0.641585 0.64158
PRIN2 1.01450 0.953744 0.338165 097975
PRIN3 0.06075 ‘ 0.020250 1.00000
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Eigenvectors
PRIN1 PRINZ PRIN3
TEMP 0.709840 0.005377 -.704342
SH 0.575892 -.580190 0.575958
SOL 0.405556 0.814463 0.414939
N = 231 Regression Models for Dependent Variable: WHB
Number in R-square Root Variables in Model
Model MSE
1 0.82166621 285.29629 PRIN1
1 0.03150684 664.85598 PRIN3
1 0.00163801 675.03038 PRINZ2
2 0.85317305 259.43735 PRIN1 PRIN3
2 0.82330422 284.60512 PRIN1 PRINZ
2 0.03314486 665.74869 PRIN2 PRIN3
3 0.85481106 258.55377 PRIN1 PRIN2 PRIN3

Mcodel: MODEL1
Dependent Variable: WHB

Analysis of Vvariance

Sum of Mean

Source DF Squares Square F Value Prob>F
Model 3 89343758.203 29781252.734 445,493 0.0001
Error 227 15174961.682 66850.051464
C Total 230 104518719.89

Root MSE 258.55377 R-square 0.8548

Dep Mean 9042.96636 Adj R-sg 0.8529

C.V. b 1

Parameter Estimates

Parameter Standard T ifor= HD%
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 9042.966364 17.01158906 531,517 0.0001
PRIN1 1 440.446573 12.28851357 35.842 0.0001
PRINZ2 1 ~27,087370 16.92629796 -1.600 0.110¢%
PRIN3 1 -485.465871 69.16877701 =019 0.0001



Model: MODEL1

Dependent Variable: WHB
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value
Model 2 89172555.163 44586277.581 662.424
Error 228 15346164.723 67307.740011
C Total 230 104518719.89
Root MSE 259.43735 R-square 0.8532
Dep Mean 9042.96636 Adj R-sg 0.8519
c.V. 2.86894
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 9042.966364 17.06972460 529.766 0.0001
PRIN1 1 440.446573 12.33050844 35.720 0.0001
PRIN3 1 -485.465871 69.40515496 -6.995 0.0001
Model: MODEL1
Dependent Variable: WHB
Analysis of Variance
Sum of Mean
Source DF Squares Square F value
Model 2 86050703.388 43025351.694 531.177
Error 228 18468016.498 81000.072359
C Total 230 104518719.89
Root MSE 284.60512 R-square 0.8233
Dep Mean 9042.96636 Adj R-sqg 0.8218
GV 3.14725
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T]|
INTERCEP ik 9042.966364 18.72564188 482.919 0.0001
PRIN1 i 440.446573 13.52667900 32.561 0.0001
PRIN2 1 -27.087370 18.63175703 -1.454 0.1474

Prob>F

0.0001

Prob>F

0.0001
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Model: MODEL1
Dependent Variable: WHB

Analysis of Variance

Sum of Mean

Source DF Squares Square F value Prob>F
Model 3 89343758.203 29781252.734 445.493 0.0001
Error 227 15174961.682 66850.051464
¢ Total 230 104518719.89

Root MSE 25885377 R-square 0.8548

Dep Mean 9042 .96636 Adj R-sqg 0.8529

CulVe 2.85917

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 4432.135130 161.28889041 27.479 0.0001
TEMP 1 194.019275 14.67319550 13.223 0.0001
SH 1 -2950.290747 11992.930810 -0.246 0.8059
SOL 1 -0.635181 0.45616752 ~1.392 0.1652



5
5

Variable

COMP
TEMP
SH
SOL
SALES

Pearson Correlation Coefficients

COMP

TEMP

SH

SOL

SALES

'WITH' Variables:
'VAR' Variables:

N

231
231
231
231
231

COMP

1.00000
0.0

0.87350
0.0001

0.73336
0.0001

0.47365
0.0001

-0.10004
61295

N = 231

Number in
Model

Mean Std Dev Sum
2936 224.9154 678132
24.6577 3.3730 5696
0.0130 0.003472 29971
212.4719 70.6488 49081
46462 9628 10732607

The SAS System
Correlation Analysis

CcoMP TEMP SH
COMP TEMP SH

Simple Statistics

TEMP SH
0.87350 0.73336
0.0001 0.0001
1.00000 0.75901
0.0 0.0001
0.75901 1.00000
0.0001 0.0
0.54079 -0.01534
0.0001 0.8167
-0.18424 -0.20623
0.0050 0.0016

R-square Root

MSE

.79174976 102.86275
.00120927 225.26962
.00022241 225.38088

14:47 Thursday,

July 15, 1993

SOL SALES

SOL SALES
Minimum Maximum
2403 3305
18.7035 31.2226
0.003404 0.0188
16.1967 321.3380
28453 80680

SOL

0.47365
0.0001

0.54079
0.0001

-0.01534
0.8167

1.00000
0.0

-0.12055
0.0674

/ Prob > |R| under Ho: Rho=0 / N = 231

SALES

-0.10004
0.1295

-0.18424
0.0050

-0.20623
0.0016

=0,12055
0.0674

1.00000
0.0

Regression Models for Dependent Variable: COMP

Variables in Model

PRIN1
PRIN2
PRIN3

.79295903 102.78834
.79197218 103.03302
.00143168 225.73796

PRIN1
PRIN1
PRIN2

PRIN2
PRIN3
PRIN3
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Model: MODEL1
Dependent Variable:

Source

Model
Error
C Total

Root MSE
Dep Mean
CaNa

Variable DF

INTERCEP 1
PRIN1 1
PRIN2 ik
PRIN3 ik

Model: MODEL1
Dependent Variable:

Source

Model
Error
C Total

Root MSE
Dep Mean
GV

Variable DF

INTERCEP 1
PRIN1 i
PRIN3 1
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COMP
Analysis of Variance
Sum of Mean
DF Scuares Square F Value Prob>F
3 9228663.0362 3076221.0121 290.193 0.0001
227 2406333.0824 10600.586266
230 11634996.119
102.95915 R-square 0.7932
2935.63742 Adj R-sqg 0.7904
3.50722
Parameter Estimates
Parameter Standard T for HO:
Estimate Error  Parameter=0 Prob > |T|
2935.637416 6.77421463 433.355 0.0001
144.253239 4.89343048 29.479 0.0001
-7.765249 6.74025071 -1.152 0.250%5
13.608886 27.54381966 0.494 0.6217
COMP
Analysis of Variance
Sum of Mean
DF Squares Square F value Prob>F
2 9214593.2139 4607296.607 434.004 0.0001
228 2420402.9046 10615.802213
230 11634996.119
103,03302 R-square 0.7920
2935.63742 Adj R-sg 0.7901
3:50973
Parameter Estimates
Parameter Standard T for HO:
Estimate Error  Parameter=0 Prob > |T|
2935.637416 6.77907470 433.044 0.0001
144.253239 4.89694121 29.458 0.0001
13.608886 27.56358060 0.494 0.6220



Model: MODEL1
Dependent Variable: COMP

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 2 9226075.2601 4613037.63 436.616 0.0001
Error 228 2408920.8585 10565.442362
C Total 230 1163495%6.119
Root MSE 102.78834 R-square 0.7930
Dep Mean 2935.63742 Adj R-sg B.7911%
(i 8 3.50140
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 2935.637416 6.76297610 434,075 0.0001
PRIN1 1 144.253239 4.88531220 29.528 0.0001
PRIN2 1 -7.765249 6.72906853 -1.154 0.2497
Model: MODEL1
Dependent Variable: COMP
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 3 9228663.0362 3076221.0121 280.193 0.0001
Error 227 2406333.0824 10600.586266
C Total 230 11634996.119
Root MSE 102.95915 R-square 0.7932
Dep Mean 2935.63742 Adj R-sg 0.7904
c.V. 3.50722
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error  Parameter=0 Prob > |T|
INTERCEP 1 172%6.976173 64.22713112 26.889 0.0001
TEMP 1 27.503279 5.84303884 4.707 0.0001
SH 1 27484 4775.7259521 5755 0.0001
SOL 1 0.818486 0.18165127 4.506 0.0001
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Variable

HVAC
TEMP
SH
SOL
SALES

HVAC

TEMP

SH

SOL

SALES

Correlation Analysis

5 'WITH' Variables: HVAC TEMP SH SOL SALES
5 'VAR' Variables: HVAC TEMP SH SOL SALES
Simple Statistics
N Mean Std Dev Sum Minimum Maximum
231 1848 540.7833 426821 434.7230 2650
231 24.6577 3.3730 5696 18.7035 31.22286
231 0.0130 0.003472 2.9971 0.003404 0.0188
231 212.4719% 70.6488 49081 16.1967 321.3380
231 46462 9628 10732607 28453 80680
Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 231
HVAC TEMP SH SOL SALES
1.00000 0.87736 0.66837 0.43474 -0.20136
0.0 0.0001 0.0001 0.0001 0.0021
0.87736 1.00000 0.75901 0.54079 -0.18424
0.0001 0.0 0.0001 0.0001 0.0050
0.66837 0.75901 1.00000 ~0.01534 -0.20623
0.0001 0.0001 0.0 0.8167 0.0016
0.43474 0.54079 -0.01534 1.00000 -0.12055
0.0001 0.0001 0.8167 0.0 0.0674
-0.20136 -0.18424 -0.20623 -0.12055 1.00000
0.0021 0.0050 0.0016 0.0674 0.0
N = 231 Regression Models for Dependent Variable: HVAC
Number in R-square Root Variables in Model
Model MSE
1 0. 72833757 282.47775 PRIN1
1 0.04557024 529.47010 PRIN3
1 0.00082806 541.73834 PRIN2
2 0.77390781 258.26321 PRIN1 PRIN3
2 0.72916563 282.66476 PRIN1 PRIN2
2 0.04639829 530.39971 PRIN2 PRIN3
3 0.77473587 258.35703 PRIN1 PRIN2 PRIN3
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Model: MODEL1

Dependent Variable: HVAC
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value
Model 3 52110837.297 17370279.099 260.235
Error 229 15151877.113 66T48.35T328
C Total 230 67262714.41
Root MSE 258.35703 R-square 0.7747
Dep Mean 1847.70945 Adj R-sg 0.7718
C.V. 13.98256
Parameter Estimates
Parameter Standard T for HD:
Variable DF Estimate Error  Parameter=0 Prob > |T|
INTERCEP 1 1847.709450 16.99864488 108.697 0.0001
PRINL ik 332.661110 12.27916320 27.092 0.0001
PRIN2 bl -15.449982 16.91341868 ~0.913 0.3620
PRIN3 1 -468.367840 69.11614626 =G T 0.0001
Model: MODELL
Dependent Variable: HVAC
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value
Model 2 52055140.051 26027570.026 290219
Error 228 15207574.359 66699.887539
C Total 230 67262714.41
Root MSE 258.26321 R-square 07738
Dep Mean 1847.70945 Adj R-sg 0.7719
C.V. 13.97748
Parameter Estimates
Parameter Standard T for HOS
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 1847.709450 16.99247192 108.737 0.0001
PRIN1 1 332.661110 12.27470409 27.101 0.0001
PRIN3 1 -468.367840 69.09104712 ~6.779 0.0001

Prob>F

0.0001

Prob>F

0.0001
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Model: MODEL1
Dependent Variable: HVAC
Analysis of Vvariance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 2 49045659.386 24522829.693 306.921 0.0001
Error 228 18217055.024 79899.364141
C Total 230 67262714.41
Root MSE 282.66476 R-square 0.7292
Dep Mean 1847.70945 Adj R-sqg 0.7268
Vs 15.29812
Parameter Estimates
Parameter Standard T ‘fox HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 1847.709450 18.59797551 99.350 0.0001
PRIN1 L 332.661110 13.43445776 24.762 0.0001
PRIN2 1 -15.449982 18.50473074 -0.835 0.4046
Model: MODEL1
Dependent Variable: HVAC
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 3 52110837.297 17370279.099 260,235 0.0001
Error 227 15151877.113 66748.357328
C Total 230 67262714.41
Root MSE 258.35703 R-square 0.7747
Dep Mean 1847.70945 Adj R-sq 0.7718
C. V. 13.98256
Parameter Estimates
Parameter Standard T for HO:
variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 -1814.207733 161.16€616517 =11 257 0.0001
TEMP il 167.784569 14.66203062 11.443 0.0001
SH 1 -19938 11983.805351 -1.664 0.0975
S0L 1 ~1.019337 0.45582042 =2.236 0.0263



Correlation Analysis

5 'WITH' Variables: WHB TEMP SH SOL SALES
5 'VAR' Variables: WHB TEMP SH SOL SALES
Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
WHB 128 7533 395.3348 964198 6090 9868
TEMP 128 12.6243 4.0348 1616 -0.1748 18.6302
SH 128 0.005918 0.002683 0.7575 0.001313 0..0127
SOL 128 127.0133 82.9947 16258 8.1171 317 .5310
SALES 128 47682 9777 6103250 19315 T1531

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 128

TEMP

SH

SOL

SALES

WHB TEMP SH SOL SALES
1.00000 0.70050 0.49170 0.19650 0.09603
0.0 0.0001 0.0001 0.0262 0.2809
0.70050 1.00000 0.58014 0.24403 0.06995
0.0001 0.0 0.0001 0.0055 0.4327
0.49170 0.58014 1.00000 -0.48942 0.06136
0.0001 0.0001 0.0 0.0001 0.4915
0.19650 0.24403 -0.48942 1.00000 -0.06541
0.0262 0.0055 0.0001 0.0 0.4632
0.09603 0.06995 0.06136 -0.06541 1.00000
0.2809 0.4327 0.4915 0.4632 0.0
Principal Component Analysis
128 Observations
3 Variables
Simple Statistics
TEMP SH SALES
Mean 12.62434743 0.0059179139 47681.64063
StD 4.03484974 0.0026826481 9777.41206
Correlation Matrix
TEMP SH SALES
TEMP 1.0000 0.5801 0.0699
SH 0.5801 1.0000 0.0614
SALES 0.0699 0.0614 1.0000
Eigenvalues of the Correlation Matrix
Eigenvalue Difference Proportion Cumulative
PRIN1 1.59464 0.609069 0.531546 0.53155
PRIN2 0.98557 0.565772 0.328522 0.86007
PRIN3 0.41980 . 0.139932 1.00000
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Eigenvectors
PRIN1 PRINZ PRIN3
TEMP 0.699205 -.101588 =, 707667
SH 0.698077 =.116589 0.706467
SALES 0.154274 0.987971 0.010603
N = 128 Regression Models for Dependent Variable: WHB
Number in R-square Root Variables in Model
Model MSE
1 0.45079099 294.13752 PRIN1
il 0.05170844 386.50271 PRIN3
1 0.00114635 396.67289 PRINZ
2 0.50249943 281.06622 PRIN1 PRIN3
2 0.45193734 295.00336 PRIN1 PRINZ
2 0.05285480 387.81102 PRINZ PRIN3
3 0.50364579 281.87196 PRIN1 PRINZ PRIN3
Model: MODELL
Dependent Variable: WHB
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 3 9996752.542 3332250.8473 41.941 0.0001
Error 124 9852023.7674 79451.804576
C Total 127 19848776.309
Root MSE 281.87196 R-square 0.5036
Dep Mean 7532.79422 Adj R-sg 0.4916
(3% 4 3.74193
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 7532.794219 24.91419722 302.349 0.0001
PRIN1 1 210.194680 19.80701909 10.612 0.0001
PRINZ H -13.482837 25.19456426 =0.535 0.55938
PRIN3 1 -138.748004 38.60388683 =3i35094d 0.0005
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Model: MODEL1

Dependent Variable: WHB
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value
Model 2 9973998.8118 4986999.4059 63.128
Error 125 9874777.4975 78998.21998
C Total 127 19848776.309
Root MSE 281.06622 R-square 0.5025
Dep Mean 7532.79422 Adj R-sg 0.4945
.V 3.73123
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 7532.794219 24.84297876 303.216 0.0001
PRINL 1 210.194680 19.75039975 10.643 0.0001
PRIN3 1 -138.748004 38.49353571 -3.604 0.0005
Model: MODEL1
Dependent Variable: WHB
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value
Model 2 8970403.25 4485201.625 51538
Error 125 10878373.059 87026.984474
C Total 127 19848776.309
Root MSE 295.00336 R-square 0.4519
Dep Mean 7532.79422 Adj R-sg 0.4432
(.38, V 48 3.91625
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 7532.794219 26.07485985 288.891 0.0001
PRINL 1. 210.194680 20.72975670 10.140 0.0001
PRIN2 1 -13.482837 26.36828818 -0.511 0.6100

Prob>F

0.0001

Prob>F

0.0001
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Model: MODEL1
Dependent Variable: WHB
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 3 9996752.542 3332250.8473 41.941 0.0001
Error 124 9852023.7674 79451.804576
C Total 127 19848776.309
Root MSE 281.87196 R-square 0.5036
Dep Mean 7532.79422 Adj R-sq 0.4916
5%, 3.74193
Parameter Estimates
Parameter Standard T Eor HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP al 6564.526956 143.05985704 45.887 0.0001
TEMP 1 61.099233 7.61746720 8.021 0.0001
SH 1 18744 11450.601221 1.637 0.1042
SALES 1 0.001804 0.00256527 0.703 0.4833
Correlation Analysis
5 'WITH' Variables: COMP TEMP SH SOL SALES
5 'VAR' Variables: CoMP TEMP SH SOoL SALES
Simple Statistics
Variable N Mean Std Dev Sum Minimum Maximum
COMP 128 2395 208.1008 306602 1821 3201
TEMP 128 12.6243 4.0348 1616 -0.1748 18.6302
SH 128 0.005918 0.002683 00,7575 0.001313 0.0127
SOL 128 127.6133 82.9947 16258 8. 1171 317.5110
SALES 128 47682 9777 6103250 19315 71531
Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 128
COMP TEMP SH SOL SALES
COMP 1.00000 0.57785 0.34247 0.23744 0.15980
0.0 0.0001 0.0001 0.0070 0.0716
TEMP 0.57785 1.00000 0.58014 0.24403 0.06995
0.0001 0.0 0.0001 0.0055 0.4327
SH 0.34247 0.58014 1.00000 -0.48942 0.06136
0.0001 0.0001 0.0 0.0001 0.4915
SOL 0.23744 0.24403 -0.48942 1.00000 -0.06541
0.0070 0.0055 0.0001 0.0 0.4632
SALES 0.15980 0.06995 0.06136 -0.06541 1.00000
0.0716 0.4327 0.4915 0.4632 0.0
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N = 128 Regression Models for Dependent Variable: COMP
Number in R-square Root Variables in Model
Medel MSE
1 0.27962555 177.32478 PRIN1
1 0.06507598 202.01259 PRIN3
ik 0.00356162 208.55254 PRIN2
2 0.34470153 169.80095 PRIN1 PRIN3
2 0.28318717 177.59201 PRIN1 PRIN2
2 0.06863760 202.43234 PRIN2 PRIN3
3 0.34826315 170.02032 PRIN1 PRINZ PRIN3
Model: MODELL
Dependent Variable: COMP
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value
Model 3 1915396.1273 638465.37578 22.087
Error 124 3584456.8822 28906.91034
C Total 127 5499853.0096
Root MSE 170.02032 R-square 0.3483
Dep Mean 2395.32559 Adj R-sg 0.3325
o 7.09800
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error  Parameter=0 Prob > |T|
INTERCEP T 2395.325594 15.02781544 155393 0.0001
PRIN1 1 87.142739 11.94725340 7.294 0.0001
PRIN2 1 12.509908 15.196%92802 0.823 0.4120
PRIN3 1 -81.934170 23.28520086 =3.519 0.0006
Model: MODEL1
Dependent Variable: COMP
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value
Model 2 1895807.7573 947903.87865 32.876
Error 125 3604045.2523 28832.362018
C Total 127 5499853.0096
Root MSE 169.80095 R-square 0.3447
Dep Mean 2395.32559 Adj R-sg 0.3342
8V 7.08885
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 2395.325594 15.00842524 159.599 0.0001
PRIN1 1 87.142739 11.93183800 7303 0.0001
PRIN3 1 -81.934170 2325515626 =-3.,823 0.0006

Prob>F

0.0001

Prob>F

0.0001
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Model: MODEL1

Dependent Variable: COMP
Analysis of Variance
Sum of Mean
Source DF Squares Scuare F value Prob>F
Model 2 1557487.7893 778743 _.89465 24.692 0.0001
Error 125 3942365.2202 31538.921762
C Total 127 5499853.0096
Root MSE 177:.59201 R-square 0.2832
Dep Mean 2395.32559 Adj R-sg 02717
(&l 17 7.41411
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 2395.325594 15.69706426 152.597 0.0001
PRIN1 1 87.142739 12.47931244 6.983 0.0001
PRINZ 1 12.509908 15.87370810 0.788 0.4321
Correlation Analysis
5 '"WITH' Variables: HVAC TEMP SH S0L SALES
5 'VAR' Variables: HVAC TEMP SH SOL SALES
Simple Statistics
Variable N Mean Std Dev Sum Minimum Maximum
HVAC 128 784.4384 340.1172 100408 299.3840 2438
TEMP 128 12.6243 4.0348 1616 -0.1748 18.6302
SH 128 0.005918 0.002683 0.7575 0.001313 0.0127
SOL 128 127.0133 82.9947 16258 8.1171 317.5110
SALES 128 47682 9777 6103250 19315 71531
Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 128
HVAC TEMP SH SOL SALES
HVAC 1.00000 0.42151 0.33421 0.12741 -0.03574
fo ] 0.0001 0.0001 0.1518 0.6888
TEMP 0.42151 1.00000 0.58014 0.24403 0.06995
0.0001 0.0 0.0001 0.0055 0.4327
SH 0.33421 0.58014 1.00000 -0.48942 0.06136
0.0001 0.0001 0.0 0.0001 0.4915
SOL 9.12741 0.24403 -0.48942 1.00000 -0.06541
0.1518 0.0055 0.0001 0.0 0.4632
SALES -0.03574 0.06995 0.06136 -0.06541 1.00000
0.6888 0.4327 0.4915 0.4632 0.0
N = 128 Regression Models for Dependent Variable: HVAC
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Number in R-square Root Variables in Model
Model MSE
1 0.17120861 310.86212 PRIN1
1 0.01391242 339.08059 PRINZ2
1 0.00932300 339.86874 PRIN3
2 0.18512104 309.47246 PRIN1 PRIN2
2 0.18053162 310.34271 PRIN1 PRIN3
2 0.02323543 338.82106 PRIN2 PRIN3
3 0.19444404 308.93526 PRIN1 PRIN2 PRIN3
Model: MODEL1
Dependent Variable: HVAC
Analysis of Variance
Sum of Mean
Source DF Squares Square F value Prob>F
Model 3 2856640.266 952213.42199 .87 0.0001
Error 124 11834683.092 95440.992678
C Total 127 14691323.358
Root MSE 308.93526 R-square 0.1944
Dep Mean 784.43843 Adj R-sg BETS0
a5 1723 39.38298
Parameter Estimates
Parameter Standard T Eor HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 784.438430 27.30627685 28.727 0.0001
PRIN1 1 111.444977 21.70874469 5.134 0.0001
PRINZ2 1 -40.409813 27.61356269 -1.463 0.1459
PRIN3 il -50.685941 42.31035067 =1..:198 2.3332
Model: MODEL1
Dependent Variable: HVAC
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 2 2652248.3328 1326124.1664 13.769 0.0001
Error 125 12039075.025 96312.600202
C Total 127 14691323.358
Root MSE 310.34271 R-square 0.1805
Dep Mean 784.43843 Adj R-sq 0.1674
Vs 39.56241
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP i, 784.438430 27.43067970 28.597 0.0001
PRIN1 1 111.444977 21.80764612 5.110 0.0001
PRIN3 1 -50.685941 42.50310959 =1,183 0.2353
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Model: MODEL1
Dependent Variable: HVAC

Analysis of Variance

Sum of Mean
Source Squares Square F Value Prob>F
Model 2 2719673.0211 1359836.5105 14.199 0.0001
Error 125 11971650.337 95773.202696
C Total 127 14691323.358
Root MSE 309.47246 R-square 0.1851
Dep Mean 784.43843 2Adj R-sg 0.1721
V. 39.45147
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error  Parameter=0 Prob > |T|
INTERCEP 1 784.438430 27.35375927 28.678 0.0001
PRIN1 1 111.444977 21.746459366 5.125 0.0001
PRIN2 1 -40.409813 27.66157944 -1.461 0.1466
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APPENDIX F

SITE PHOTOGRAPHS

This appendix contains photographs from the College Station and Bryan case

study stores.

Figure F.1 Front of the College Station store. The front of the main store,
including the covered porch and glass section is shown here.
The parking lot lights directly in front of the store are connected
to its lighting circuit.

Figure F.2 Front of the Bryan store. The front of the main store, including
the covered porch and glass section is shown here.
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Figure .3 Refrigeration compressor room at College Station store. The
compressor room at this store is almost identical to that at the
Bryan store. Each compressor is dedicated to a single group of
refrigerated display cases and merchandisers.

Figure F.4 Refrigeration compressor #12 at the College Station store. This
compressor uses the refrigerant, R12, and serves the island
produce displays. This compressor is typical of all compressors
used for refrigeration at both stores.
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Figure F.5 Return air grille on air-handler unit #1 ar the College Station

store. The duct at the top of the grille allows outdoor air to be
pulled in.

Figure F.6 Air-handler supply duct at the C. ollege Station store. Between
the two access doors can be seen the reclaim heat coils. The
coils transfer waste heat from the refrigeration system to the
supply air. This provides adequate space heatin g for 99% of

the time. There are auxiliary gas-fired duct heaters (not shown
here) installed about 25 feet downstream.
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Figure F.7 HVAC control circuit box for air-handler unit #1 at College
Station store.

Figure F.8 Roof-top HVAC unit at the Bryan store. There are twelve
working roof-top units at the Bryan store. All but one use
natural gas for heating.



Figure F.9
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ot ]

Data acquisition equipment at the Bryan store. This data
logger is identical to the one at the College Station store. The
black and white wires are connected to current transducers
which monitor the electrical power being used by the four main
component loads of the store. Readings are accumulated and
recorded on an hourly basis. Data are retrieved via a modem
(seen at the bottom of the box) and stored on a computer disk.



352

Figure F.10 Temperature and relative humidity sensor for return air
conditions at College Station store. The signals from these
sensors are recorded as part of the sub-metered, hourly data

Streain.



Figure F.11
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Time clock control for the parking lot lights at the College
Station store. The cut-on and cut-off times are changed by
adding or removing small screws to the edge of the rotating disk
(visible in this picture). The management changes the timer
settings each month to adjust for changes the time of dawn and
dusk. Since the parking lot lights are the only lights in the store
with varying schedules, the store's daily lighting load follows a
sinusoidal pattern throughout the year.
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APPENDIX G

PHYSICAL SIGNIFICANCE OF MODEL PARAMETERS:
DIVERSIFIED LOAD CALCULATIONS

This appendix contains the detailed calculations used in Chapter 4 to evaluate
the relative merits of the MLR and PCA models of whole-building and HVAC system
energy use. The MLR and PCA models give parameters which predict the variation of
energy use due to climate variables for the College Station store. To determine if these
parameters have any physical significance, and to determine which model gives more
realistic estimates, the climate-variant portions of the building's energy use can be
modeled by a diversified load calculation method. In using this method we adopt the
procedure outlined by Knebel (1983).

G.1 VARIATION DUE TO SOLAR LOAD

The diversified load calculation method accounts for solar gains as well as
ambient temperature gains. We use only the portion of this procedure which account
for solar loads. The calculation of the loads is divided into three sections which
consider the cooling load on the walls, on the roof, and through the glazing of the

store. For a description of building characteristics, see Chapter 2, Section 2.1.

Wall Load. The transmission load on the roof due to solar effects is given by,

Qs = M(T - Tph) + Uis,Jan
where,
T = outdoor ambient air temperature
M = (qts,JuI - qts,]an)/ (Tpc - Tph)
Qi Jan = solar transmission contribution for January
= U-A, x CLTDS,, -K-FPS,, / A;
Qsgu = solar transmission contribution for January

= U'AS'CLTDSJUI'K'FPSJHI f Af



CLTDS,,, -

CLTDS,,

is

FPS,,,
FPS,,

ph

pc

For the walls,
U
K
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- 24 hour averaged solar component of cooling load temperature
difference for January.

= 24 hour averaged solar component of cooling load temperature
difference for July.

= color correction factor for a given surface.
= heat transfer coefficient of exposed surface.
= exposed surface area

= floor area. This term is used only if a cooling load per unit area

desired.
= fraction of possible sunshine for January
= fraction of possible sunshine for July
= design temperature for heating season

= design temperature for cooling season

= 0.119 Btu/hr-ft2-°F (0.675 W/m2-°C)
= 0.83

The wall areas are,

ASW
ANE

CLTDS,,, ne
CLTDS},, sw
CLTDS, nx
CLTDS}, sw

= 5,000 ft2 (465 m?)
= 4,040 ft2 (375 m?)

= 2°F(l.1°C)

= 16 °F (8.9 °C)
= 11 °F (6.1 °C)
= 13 °F (7.2 °C)

For College Station, sunshine conditions were assumed to be the same as those for

Austin. The fractions of possible sunshine for winter and summer are,

l:"PSJan
FPSJuI

= 0.46
= 0.76
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The hourly temperature extremes observed at the case study store were about -2.5°C
and 37.5°C (36°F and 99°F).
Ty = -2.5°C

ph
T 31.3°C

pc

We are not interested in the solar load per unit of floor area. Therefore, neglecting the

floor area term,
Qs gan = (Uyan'A;CLTDS,, -K-FPS;, Jow
+ (UyarA, - CLTDS - K-FPS;, ng
= (0.675 W/m2-°C)(465 m?)(8.9 °C)(0.83)(0.46)
+ (0.675 W/m2-°C)(375 m2)(1.1 °C)(0.83)(0.46)
1.173 kW,

Again omitting the floor area term, the solar transmission effects during July are,

Qsua =  UA,-CLTDS,, - K- FPSy,
(0.675 W/m2-°C)(465 m2)(7.2 °C)(0.83)(0.46)

+(0.675 W/m2°C)(375 m2)(6.1 °C)(0.83)(0.46)

= 2.4 kW

With the two end-points established, the interpolation slope is,

M = (qts,lu! - qu,Jan)/(Tpc - Tph)
(2.4 kW - 1.173 kW)/(37.5°C + 2.5°C)
0.0307 kW/°C

So, the cooling load for the walls is,

Qs = M (T - Tph) + qts,Jan
= (0.0307 kW/°C)T + 2.5°C) + 1.173 kW
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This gives an estimation of the solar load based on ambient temperature. We are only
interested in the variation in the solar load, since the solar coefficients of the MLR and
PCA models only predict variations in solar effects. The variation in solar load

contribution is simply the difference between qy;,) and gy, j,,-
= 24-1.173
= 1.23 kW,

where the subscript "th" is used to designate thermal energy.

Roof Loads. The procedure for calculating the roof load is the same as it is for
the wall loads.

For the roof,

Uor = 0.131 Btu/hr-ft2-°F
- 0.744 W/m2.°C
K = 0.75
The roof area is,
A = 46,000 ft2 (4,275 m?)

For a location at 32° latitude,
CLTDSy 100f = 7 °F (3.9 °C)
CLTDSy, 00t = 23 °F (12.8 °C)

For College Station, sunshine conditions were assumed to be the same as those for

Austin.
FPS,,, =0.46
FPS,, =0.76

The hourly temperature extremes observed at the case study store were about -2.5°C
and 37.5°C (36°F and 99°F).
Ty = “28°%C

T, = 37.5°C
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Neglecting the floor area term,

Qesm =  UA, CLTDS,,, - K-FPS,, /A
(0.744 W/m2-°C)(4,275 m?)(3.9 °C)(0.75)(0.46)
= 4.28 kW

Qesa =  UA,-CLTDS,, - K-FPSy, /A
s (0.744 W/m2-°C)(4,275 m?)(12.8 °C)(0.75)(0.76)
= 232 kW,

M = (qes,.lul - qts,Jan)/(Tpc - Tph)
= (23.2 kW - 4.28 kW)/(37.5°C + 2.5°C)
= 0.473 kW/°C

So, the cooling load for the walls is,

s = M (T - Tph) * Qis Jan
= (0.0307 kW/°CY(T + 2.5°C) + 1.1T3 kW

The variation in solar load is simply the difference in qts,Jul and qts,Jan.

= 23.2-4.25
= 19.0 kW,
Glazing. The transmission load through windows due to solar effects is given
by,
o1 = M (T - T;p) + Qo1 an
where,
T = outdoor ambient air temperature
M = interpolation slope

= (qsol,}ul - qsul,]an)/(Tpc - Tph)
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(opJan averaged solar transmission contribution for January
MSHGF,,, - A, - SC - CLFTOT - FPS,,, / (t - Ap)
Qo Jul averaged solar transmission contribution for January
MSHGF,,, - A, - SC - CLFTOT - FPS,,,, / (t - Ap)
MSHGF, ;i maximum solar heat gain factor for orientation of wall for a
given
month at the specified latitude.
A, exposed glass area
SC shading coefficient for glass exposure
CLFTOT 24-hour sum of CLF values for a particular orientation of glass
exposure
FPS;,, fraction of possible sunshine for January
FPS;, fraction of possible sunshine for July
Tph design temperature for heating season
Tpc design temperature for cooling season
For the windows,
SC = 0.70
CLFTOT = 5.15 for a NE glass exposure.
MSHGF,,, ng = 65 Btu/hr/ft? (205 W/m?)
MSHGF; g = 167 Btu/hr/ft2 (527 W/m?)
The window area is,
A, = 960 ft2 (89 m?)

g
The air-handlers run 24 hours per day.
t = 24
For College Station, sunshine conditions were assumed to be the same as those for
Austin.
FPS;,, - 0.46
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FPS;, = 0.76
The hourly temperature extremes observed at the case study store were about -2.5°C
and 37.5°C (36°F and 99°F).
T = -2.5°C
T i e i

pPc

1l

Neglecting the floor area term,
Qsoljan = MSHGF,,, A, - SC - CLFTOT - FPS,, / t
= (205 W/m2)(89 m?)(0.70)(5.15)(0.46)/(24)
= 2.74 kW
Qolyul = MSHGF;,, A, - SC - CLFTOT - FPS;,, / (t - Ap
= (527 W/m?)(89 m?)(0.70)(5.15)(0.76)/(24)
= 11.6 kW

M = (qsol,Ju] - qsol,]an)/ (Tpc - Tph)
= (11.6 kW-2.74 kW)/(37.5°C + 2.5°C)
= 0.222 kW/°C

So, the cooling load for the walls is,
Qo1 = M AT = T+ Qugigan
= (0.222 kW/°C)(T + 2.5°C) + 2.74 kW
The variation in solar load contribution is simply the difference in gy 5, and gy j,,-
= 11.6 kW - 2.74 kW
= 8.84 kW,

So, the total possible variation in cooling load due to solar effects is,

Gsolotal = Roof Transmission Load + Wall Transmission Load + Glazing
Load

19.0 kW, + 1.23 KW, + 8.84 kW,
29.1 kW
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The calculations give a total possible variation in cooling load due to solar
effects of 29.1 kW .1 A seasonal energy efficiency ratio (SEER) of the HVAC system
was not available, but its general energy efficiency ratio (EER) was found to be 7.1
Btu/W_-h. This amounts to a coefficient of performance (COP) of 2.08 kW, /kW..
What this means is that it takes only 1 kW of electrical power to cool a thermal load of
2.08 kW. This means that the portion of the load due to solar radiation is only
29.1/2.08, or 14.0 kW,

The 1992 MLR model analysis predicts that there is no significant variation in
load due to solar radiation or specific humidity. In fact, the values it gives are near-
zero, and often negative! However, the 1992 PCA model predicts that the average
variable component of the electricity load due to solar effects is 19.6 kW,. The 1989
MLR and PCA models predict average values of 12.5 and 21.6 kW, respectively.
This seems comparable to the 14.0 kW variation estimated by CLTDS techniques.

MLR and PCA models were developed for the HVAC load. Tables 4.17 and
4.18, in Chapter 4, show the regression summaries. The models predict an average
load due to solar effects of -9.1 kW, for MLR, and 15.5 kW, for PCA. The fact that
the HVAC MLR model predicts a negative load suggests that it is wholly
inappropriate for estimating solar effects when other variables are also used in the
regression. The fact that the HVAC PCA model predicts 15.5 kW, allows us to make
two points. First, PCA does better at predicting the solar load since the PCA
prediction is almost exactly equal to the CLTDS prediction, 14.0 kW. Second, since
the PCA prediction is quite close to the 19.6 kW, predicted by the whole-building data,
we conclude that the solar load on the whole building appears primarily in the HVAC
load.

In both 1989 and 1992 models, it can be seen that MLR techniques
underestimate the effects of solar radiation, though this most apparent from the 1992
models. Thus, for this case study, PCA is of benefit in estimating the effects of
predictor variables when these variables are correlated.

! The subscript "th" is used to designate thermal energy. Likewise, a subscript of "e" will be used to refer to electrical

energy.
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G.2 VARIATION DUE TO TEMPERATURE

The variation in building electricity load due to temperature can be divided into
two componets -- that pertaining to the HVAC system, and that pertaining to the
refrigeration system. Since the HVAC system keeps the interior space conditions
fairly constant, the effect of outdoor air temperature on the refrigeration system is
realized via the refrigeration system's condenser coils, which are exposed to outdoor

ambient air.

The coefficients of temperature in the PCA and MLR models reflect the whole
building's response to temperature, and thus reflect the combined effect of outdoor

temperature on both the HVAC system and the refrigeration system.

A simple energy balance equation, with respect to the temperature difference
across the store's walls and roof should be useful in determining the effects of outside

temperature on the HVAC system. We again adopt the procedure outlined by Knebel.

q = ZUA(To-T)
where,
U = U-value of the wall, roof, or glazing
A = surface area of wall, roof, or glazing
Ty = outdoor ambient temperature
T, = indoor temperature

The U A term represents the temperature coefficient which should be predicted by the
PCA and MLR models, if the parameters in those models are physically meaningful.

We are interested, then, in the sum of the U A terms for the store.

Roof. From the previous calculations for the solar load, we know that,

U, =  0.131 Btu/hrfe2°F
= 0744 W/m2°C
A = 46,000 ft2 (4,275 m?)
(UA)py =  3.181 kW/°C

Walls.



(U A)wall,SW
(U A)wa]l,NE

Glazing.

The window area is,

g

Ug

(U A),

0.119 Btu/hr-f2-°F (0.675 W/m2-°C)
5,000 ft2 (465 m?)
4,040 f2 (375 m2)

0.314 kW/°C
0.253 kW/°C

960 ft2 (89 m?)
1.11 Btu/hr-ft2-°F
6.30 W/m2-°C
0.561 kW/°C
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Thus, the sum of the U A values is (3.181 + 0.314 + 0.253 + 0.561), or 4.308 kW, /°C.

This should represent the variation in the HVAC load due to temperature (and
temperature only). Accounting for the COP of the HVAC system, which is 2.08

kW, /kW,, the temperature coefficient is 2.07 kW /°C.



