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ABSTRACT

An Analysis of Energy Use in Grocery Stores (December 1993)

Ralph Luther Cox III, B.S., Texas A&M University

Chairman of Advisory Committee: Dr. Jeff S. Haberl

Approximately 3% of the United States' commercial building energy

consumption is attributable to food sales facilities. Although this is one of the

smallest consumption percentages, it is still significant, amounting to about 151

trillion Btu, or $2.17 billion per year. Food sales facilities ranging from 10,000 to

100,000 ft2 use 3 to 5.5 W/ft2 (32 to 60 W/m2) of electricity - two to three times what

typical office buildings of the same size use (EIA 1986). Identifying potentials for

energy savings in food sales facilities is therefore a worth-while pursuit.

Why do people study energy consumption? According to Haberl et al. (1990),

there are five different groups of people who can benefit from building energy

monitoring and at least seven basic applications of energy monitoring projects. The

five groups of beneficiaries are: the energy analyst; the energy consumer;

governmental agencies; engineers, manufacturers, and contractors; and, utility and

fuel suppliers. The seven basic applications are: energy consumption and load

forecasting, evaluation of end-use energy data, the monitoring of energy savings from

retrofits, determining system efficiencies, environmental quality issues, analyzing the

human factor, and diagnosing operational and maintenance problems.

This thesis is a study of the energy use in supermarkets, which fall into the

category of the energy consumer. This study is of interest to the energy analyst and

the manufacturers of grocery store equipment, and to utilities which can use the

results of energy consumption modeling procedures developed herein as inputs to

load-predicting models. Many papers and reports have been written about the energy

use in grocery stores. In general, they addressed three major issues: energy use

surveys and market analyses, refrigeration and HVAC system improvements, and

energy use modeling methods. This thesis extends the foregoing work by first

performing a general energy use survey of over 90 grocery stores, and presenting

statistics regarding their energy use characteristics. Then, several of the previous

methods of energy consumption modeling are adapted and applied to the whole-



building and sub-metered component load data from two case study grocery stores.

Two methods of modeling, multiple linear regression and principal component

analysis are evaluated. Finally, a new method is developed and tested that allows for

the accurate estimation of sub-metered loads without incurring the expense of

collecting many months of hourly, sub-metered data.
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CHAPTER I

INTRODUCTION

1.1 BACKGROUND

Approximately 3% of the United States' commercial building energy

consumption is attributable to food sales facilities, as shown in Figure 1.1. Although

this is one of the smallest consumption percentages, it is still significant, amounting to

about 151 trillion Btu, or $2.17 billion per year. Food sales facilities ranging from

10,000 to 100,000 ft2 use 3 to 5.5 W/ft2 (32 to 60 W/m2) of electricity - two to three

times what typical office buildings of the same size use (EIA 1986). Identifying

potentials for energy savings in food sales facilities is therefore a worth-while pursuit.

Figure 1.1 Percentages of Total US Energy Consumption in Commercial
Buildings (Source of data: EIA 1986).

This thesis follows the format of the Journal of the American Society of Heating. Refrigeration, and Air Conditioning Engineers.
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Why do people study energy consumption? According to Haberl et al. (1990),

There are five different groups of people who can benefit from building energy

monitoring and at least seven basic applications of energy monitoring projects. The

five groups of beneficiaries are: the energy analyst; the energy consumer;

governmental agencies; engineers, manufacturers, and contractors; and, utility and

fuel suppliers. The seven basic applications are: energy consumption and load

forecasting, evaluation of end-use energy data, the monitoring of energy savings from

retrofits, determining system efficiencies, environmental quality issues, analyzing the

human factor, and diagnosing operational and maintenance problems. Figure 1.2 is a

matrix of the beneficiaries and uses of energy monitoring. In it, the reader can see that

the energy consumer is primarily interested in environmental quality issues,

operational and maintenance problems, retrofit energy savings, and system and

component evaluation.

Figure 1.2 Beneficiaries and their uses of energy monitoring (Adapted
from data in Haberl et al.(1990)).



This thesis is a study of the energy use in supermarkets, which fall into the

category of the energy consumer. The four factors listed above affect the profitability

of the sale of food and other merchandise. This study is also of interest to the energy

analyst, utilities, and the manufacturers of grocery store equipment.

1.2 LITERATURE REVIEW

Many papers and reports have been written about the energy use in grocery

stores. In general, they addressed three major issues: energy use surveys and market

analyses (FEA [1977], DOE [1981]), refrigeration and HVAC system improvements

(Adams [1985], Adams [1992], Khattar [1991]), and energy use modeling methods

(Howell [1993], Hill and Lau [1993], Wong [1988], Khattar et al. [1991], Fels [1986],

Shrock and Claridge [1989], Ruch and Claridge [ 1991 ], Chen [ 1991 ], Ruch et al.

[1991], Wu et al. [1992], Reddy and Claridge [1993]).

1.2.1 Energy Use Surveys and Market Analyses

In 1977, the Federal Energy Administration (FEA) published its Guide to

energy Conservation for Grocery Stores, in which it stated that food retail

establishments comprise about 3% of the nation's total energy use, and 4% of the

nation's electricity use. Grocery stores typically experience energy costs which are 1 to

3% of their sales. This amount often exceeds profits (FEA 1977). The FEA found

that for the more than 200,000 food retail outlets in 1977 typical total1 energy use for

stores of given average floor area was as follows:

Store Size Annual Energy Consumption Energy Use Intensity
(ft2 [m2]) (kWh/yr) (W/ft2 [W/m2])

1 This includes electrical and non-electrical energy converted to kWh.

3



During this period, a concerted effort was made to improve the energy performance of

supermarkets. The values for energy use intensity (W/ft2) have decreased significantly

in the years since the FEA study was published.2

Four years after the FEA report, the Department of Energy (DOE), in

cooperation with Oak Ridge National Laboratory (ORNL), conducted a study to

investigate the potentials for energy-efficient supermarket refrigeration systems (DOE

1981). ORNL performed a market analysis detailing the overall structure of the

supermarket industry as well as the distribution of energy-using equipment in that

industry. The "supermarket industry" was defined as "the cumulative total of all retail

outlets in the country dealing in the sale of food, food-related and accompanying

items, and the associated organizational structures, distribution systems, equipment

suppliers, and support organizations necessary to retail food sales." (DOE 1989 p. xix)

Today's supermarkets are still included in that definition, but have grown beyond it by

often stocking dry goods and items not related to food or household needs. ORNL

found that for the 175,820 food retail outlets surveyed in 1981 typical total energy use

for stores of given average floor area was as follows:

Store Size Annual Energy Consumption Energy Use Intensity
(ft2 [m2]) (kWh/yr) (W/ft2 [W/m2])

The survey performed in this thesis, in 1992, presents data which are comparable to

those in the ORNL study. The average energy use intensities in the 1992 thesis survey

were:

Store Size Annual Energy Consumption Energy Use Intensity
(ft2 [m2]) (kWh/yr) (W/ft2 [W/m2])

The FEA values seem quite high compared to the values of 7 to 9 W/ft2 found in the survey performed for this thesis.



40,000 (3717) or less 2,676,000 9.5 (102)

40,000 to 50,000 3,173,000 8.2 (87.9)

50,000 (4647) or more 3,973,000 7.7 (82.9)

Neither the ORNL study nor this thesis list energy use intensities which are

comparable to those of the FEA.

Equipment analysis in the study focused mainly on refrigeration systems, but

provided some general statistics for all systems found in typical stores. The ultimate

goal of the ORNL study was to produce a model to investigate the potential benefits of

various energy-efficient refrigeration equipment. They recommended a system

consisting of unequally sized, parallel compressors, condensers controlled by floating-

head pressure, and microprocessor electronic control of the system pressures, for

installation as a retrofit for stores using standard, dedicated refrigeration compressor

systems.

ORNL cited FEA (1977) in claiming that refrigeration systems in typical

supermarkets often comprise 40 to 60% of the total in-store energy consumption. Of

this, 15% is often attributable to case lights and fans. Likewise, HVAC systems

comprise 15% to 20%, lighting 20% to 25%, and miscellaneous utility 5% to 10%.3

ORNL noted that while any of these systems could be improved, complex

relationships between them may make improvements in one detrimental to another.

The study found that typical supermarkets have about 200 horsepower of refrigeration

compressors and about 50 tons of air-conditioning capacity.4 At the time, only ten

percent of the compressors systems in supermarkets were energy-efficient, parallel

systems. ORNL concluded that there was much opportunity for energy savings.

ORNL discussed how the various energy-using systems in the store affected one

another. Inter-relationships between these system are as listed in Table 1.1.

3 In the thesis study, for the College Station store, electricity end-use percentages were 29% for refrigeration compressors, 21%
for HVAC, 31% for lighting, and 19% for miscellaneous equipment and receptacles (including display case fans and anti-sweat
heaters).

4 ORNL did not specify what a "typical" store is, but the two stores studied for this thesis had about 100 tons of air-
conditioning capacity each, amounting to roughly 460 ft2/ton, and between 165 and 200 hp of refrigeration capacity each.

5



1.2.2 Refrigeration and HVAC System Improvements

Adams (1985) noted that supermarkets have HVAC requirements not seen in

other commercial buildings that do not have refrigeration5. He found that there exist

several potentials in supermarkets to optimize the interactions between the HVAC and

refrigeration systems. However, as of 1985, those systems were still handled by

different ends of the HVAC&R industry. According to Adams, there had been little

effort to organize information about the design and operation of HVAC and

refrigeration systems in concert. Thus, the single greatest influence on system

purchasing decisions is the persuasion of the equipment salesperson. Adams listed

several ways in which standard commercial HVAC systems could be tailored for use

in supermarkets by taking advantage of the refrigeration system's effects. These

supermarket HVAC units might include under-floor return air ducts which allow cool,

dry air escaping from display cases to be recycled immediately into the HVAC return

mixing after the cooling coils; tighter building construction which reduces infiltration

heat loads; evaporators in the air-conditioning system which are designed for moisture

removal; supply air distribution at the front of the store to provide fresh, conditioned

air at the point-of-sale area for customer and employee comfort; humidity control; heat

reclaim from the refrigeration system; and, night set-back operation. But, Adams says

that "[the] market for specialized supermarket HVAC equipment — 1000-plus new

stores in 1983 — is too small to attract more than a few manufacturers. These are the

smaller, custom HVAC companies. At the most, 10% of new stores in 1983 were

equipped with supermarket HVAC units".

Adams (1992) stated that the primary goal in the design and operations of

supermarkets is to maximize sales. Refrigerated merchandisers and display cases are

crucial to this effort, and their ability to attract the customer has always taken

precedence over energy efficiency issues. The more attractive and easily accessible

display cases are those which are less energy-efficient; efficient compressor systems

have higher initial costs, and without careful consideration may appear to be

unattractive investments for the store management.

This is due to the interactions between a store's HVAC system and its refrigeration system.

6



TABLE 1.1
Inter-relationships Between Energy-using Systems in a Supermarket

(adapted from DOE [1981])
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Adams found that the development of cost-to-display numbers can be used to

help management make better-informed decisions about which systems to purchase.

For example, in comparing an open, roll-in milk display without glass doors to a

sealable display cooler with an enclosure on the back and a glass door in the front

between the product and the customer. The difference in refrigeration cost was 3.5%,

or $115 per linear foot of display case per year. For a typical 72-ft display case, this

amounts to $8,280 which is the profit on $552,000 worth of annual sales.6 Thus, once

a display case is installed, a store which uses the roll-in display case versus a closed

door case must sell $552,000 more merchandise to justify the its higher operating cost.

Management is responsive to persuasion to use the efficient display cases, such as

those with glass doors, if it can be shown that overall profitability is increased. This

thesis takes advantage of the advice of Adams in providing information to the

management of the case study stores in relation to the costs associated with any

operational problems noticed through the energy monitoring, and provides owners of

multiple grocery stores with a procedure to estimate the electrical end-use

consumption without expensive sub-metering.

In an effort to bring together the technologies which serve the needs of

supermarkets, the Electric Power Research Institute (EPRI) has published several

studies on supermarket refrigeration and HVAC systems. As part of this effort,

Khattar (1991) discussed new HVAC systems and requirements for supermarkets. He

stressed the significance of indoor humidity control as the principal factor which

distinguishes grocery stores from other commercial HVAC users. This discussion

pertains to this thesis since dehumidification control is used in one of the two case

study grocery stores.

The control of indoor humidity is important. Too little humidity can damage

merchandise such as produce and meat. Too much humidity unduly burdens the

refrigeration system. Both the HVAC system and the refrigeration display case coils

have the effect of removing moisture from the air. But if the humidity removal is

performed chiefly by the refrigeration system, it is inefficient because the moisture

must be, frozen out of the air rather than being condensed out by the HVAC coils. The

ice that subsequently collects on the refrigeration coils must then be thawed by defrost

heating since it otherwise decreases the heat transfer capacity of the coils. In addition,

" Adams uses a before-taxes profit of 1.5%.
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in a humid store, anti-sweat heaters must be installed in display case doors to prevent

condensation.

While exposing the refrigeration cases to moist space air does have the effect

of dehumidifying it, Khattar states that HVAC systems are much more efficient at

removing moisture from the air than refrigeration cases. The 50% relative humidity

values which are common in grocery stores without dehumidification are merely

coincidental to the cooling effect produced by the HVAC systems (set at about 75 °F

[24°C]). When conventional systems are used to reduce the humidity below 50%, the

resulting air is too cold, and must be reheated. According to Khattar, alternative

methods of dehumidification include gas-fired desiccant systems, dual-path electric

air-conditioning systems7, and recycling of cool space air collected near refrigerated

areas.8 All of these methods allow for air-flow rates to be lowered from the

conventional 0.7 to 1 CFM per square foot of floor area to as low as 0.5 CFM/ft2. The

first case study grocery store in this thesis has a flow rate of 0.78 CFM/ft2.

Dehumidification is provided during the heating season by using the cooling coils

when the store's relative humidity goes above 55%.

1.2.3 Energy Use Modeling Methods

Howell (1993) developed a mathematical procedure to evaluate the theoretical

effects of in-store ambient relative humidity on the energy use of single- and multi-

shelf supermarket refrigeration cases both with and without case doors. The

theoretical results of the model were compared with limited experimental data for ten

types of display cases, with uncontrolled values of relative humidity. Howell found

that agreement between the theoretical and actual energy use ranged from 0.3%, for

multi-shelf deli cases with no doors, to 135% for single-shelf frozen food cases with

no doors. Of the ten cases modeled, the theoretical energy use predictions for only

four agreed to within 20% of the actual values. Considering this acceptable level of

error, Howell used the model to determined the correlation between varying relative

humidity and the energy use of the display case. As one might expect, higher store

relative humidities resulted in higher required energy input to the refrigeration system.

Savings in refrigeration case energy use due to changing from 55% relative humidity

A dual-path system has separate cooling coils — one for conditioning the return air, and one for conditioning the incoming
outdoor air. The air streams are mixed after being conditioned. This type of system can reduce the need for reheating since a
significant portion of the dehumidification can be achieved without cooling the supply air to unsuitably low temperatures.

This recommendation was also made by Adams (1985).

9
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to 35% ranged from 5% (for cases with glass doors) to 29% for reach-in cases without

doors. This seems to indicate that cases with glass doors are not as sensitive to store

humidity as those without doors. Howell's work was significant in that it showed the

importance of store humidity control. But, it did not detail any particular methods of

maintaining a desired relative humidity, rather, merely the effects of doing so.

Dehumidification is only used at one of the stores studied in this thesis, which does not

attempt to make any conclusions regarding the effects of store dehumidification

control on the display cases. However, the interactions between the refrigeration

system and the HVAC system, via the heat reclaim coils used during dehumidification

are explored.

Hill and Lau (1993) performed a study of six grocery stores at various locations

in the United States examining the effectiveness of using heat pipe heat exchangers to

provide dehumidification in the HVAC system. The heat pipe heat exchangers used to

dehumidify the air were able to reduce the indoor dew-point to 50°F (10°C) or lower,

amounting to a increase of 18% to 27% in the amount of moisture removed per unit of

HVAC compressor energy use (lbm/kWh or kg/kWh). Hill and Lau reported an

average resulting refrigeration energy savings of 0.65% per degree Fahrenheit of

indoor dew-point reduction. However, while moisture removal efficiency increased,

the use of the heat pipe heat exchangers to dehumidify the air had a minimal effect on

the HVAC system's overall cooling efficiency. Hill and Lau noted that because of site-

to-site variations in thermal building loads, no general conclusions could be drawn

about the benefits of the application of heat pipe heat exchangers.

Other energy-saving measures in supermarkets were investigated by Wong

(1988) who presented the results of an energy conservation retrofit on the lighting and

refrigeration systems of a small grocery store (16,843 ft2) in Seattle. This store did not

have an air-conditioning system since what little cooling needs there were were

provided by the intereffects between the refrigeration display cases and the ambient

air. Lighting system modifications included changing from mercury vapor lamps to

high-pressure sodium lamps, adding photocell controls to the lights, and partial lamp

shut-off during selected operating and non-operating hours.

Refrigeration system modifications included strip curtains in stockroom

freezers, and case doors installed on horizontal display cases. Wong did not comment

on any effects the refrigeration system retrofits may have had on store comfort, though,

Wong found that the store management was pleased with the savings and willing to

cooperate in future retrofit measures. Hourly whole-building electricity use data for
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pre- and post-retrofit periods were monitored with data-acquisition equipment.

Annual energy consumption decreased 17%, from 86.4 to 71.8 kWh/ft2-yr.9 Of this,

refrigeration loads decreased 10%, and lighting loads decreased 36%. The pay-back

period for all retrofits was 5.4 years. Because of utility billing structures involving

peak load periods (time-differentiated billing), Wong measured energy savings on a

monthly basis. He asked the reader how the actual, time-differentiated savings would

compare with those from a computer simulation of the retrofit measures. Would such

a simulation predict time-differentiated savings? In response to this question, it seems

reasonable that a model capable of predicting hourly data could be used to both

determine peak periods as well as evaluate energy savings during those periods if the

utility billing structure is known. This thesis develops such models and employs them

in predicting monthly energy consumption based on daily consumption and weather

data (see Chapter 4). The coefficients of the daily models are also applied to hourly

binned weather data (see Chapter 5). The models developed in the works cited below,

as well as in this thesis, could be used to determine time-differentiated savings in a

retrofit analysis.

Khattar et al. (1991) developed a computer model to predict the energy use of

various configurations of supermarket refrigeration equipment based on system

configuration, interaction with indoor and outdoor ambient conditions, defrost

schedules, heat reclaim, and load correlations. The model could simulate the

intereffects between HVAC and refrigeration equipment due to both the indoor

ambient conditions and to a heat reclamation system. This model's ability to predict

refrigeration system energy consumption was within 3% of field test measurements in

a 42,139 ft2 grocery store in California, though only after the model was calibrated

using more than 200 channels of data sampled every 10 seconds. This type of

modeling was deemed important for the design, selection, and operation of cost-

effective equipment. The model was used to evaluate the energy use and pay-back

periods of potential refrigeration system installations. Its only drawback is the extent

of electrical and thermodynamic sub-metering required to calibrate the model. Its

most important feature, however, is its modularity. The user of the model may add

new components to the modeled system with ease.

Energy consumption in the two case study stores monitored for this thesis were 77.4 and 69.6 kWh/ft2yr. However, it should
be noted that these stores differ from Wong's case study in that they have significant air-conditioning energy use.
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Modeling the effects of climate on the energy-using systems in grocery stores

is important when the goal to see the effects of energy-saving measures without them

being obscured by variations in the weather. The need for a robust means of modeling

building energy use data in residential buildings based on climatic conditions has been

addressed by Fels (1986) through the use of the Princeton Scorekeeping Method

(PRISM). PRISM was developed to evaluate the energy savings realized by building

retrofits in such a way "that the effects of conservation [were not] obscured by

differences in weather from one year to the next." (Fels 1986 p. 5) It provided a means

of tracking and presenting energy savings in a manner which was easy to understand.

The weather-dependent heating energy consumption models used by PRISM consisted

of three parameters — a base-level energy consumption, a change-point temperature

below which the heating load was a function of outdoor temperature, and a heating

slope which represented the variation in heating energy use due to changes in outdoor

temperature. This three-parameter model assumed that heating energy was not

consumed when temperatures were above the change-point. This assumption worked

well for heating-only (HO) models and, to a limited extent, with cooling-only (CO)

models for residential buildings.

However, when applied to situations in which energy use is non-constant on

either side of a change-point temperature, a four-parameter model with slopes on

either side of the change-point may be more appropriate. This is, in fact, the type of

model used in this thesis. The idea of expanding the three-parameter model into a

four-parameter model was first proposed by Schrock and Claridge (1989), who

developed a four-parameter change-point linear regression model for predicting the

daily and hourly whole-building electricity use of a supermarket. The whole-building

energy use data clearly revealed a change-point temperature of about 17°C (62°F).

However, contrary to the PRISM assumption, slopes above and below the change-

point were also apparent. The change-point was estimated visually. Their work also

showed that predictor models identified from daily energy consumption data work as

well as those identified from hourly data when used to predict the hourly, whole-

building data. Daily models were found to be useful at identifying building

operational problems which appeared as deviations from model predictions of energy

use. A few short-comings of the whole-building models were that they were unable to

identify operational problems in small pieces of equipment, and that the change-point

temperature was estimated by visual inspection of the data. This presented a problem

since visual inspection is subjective, and non-reproducible. Subsequent studies,
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including this thesis, significantly improve on the estimation of the change-point.

Schrock and Claridge noticed a pattern of hourly fluctuations in the whole-building

energy use data, and suggested that it might be due to the operation of the time clocks

which control the defrost schedules of the refrigeration cases. If these clocks were not

synchronized properly, different defrost heaters might run at the same time, creating

and unnecessarily high electrical demand. The work performed for this thesis includes

sub-metering of the store's refrigeration system, as well as other end-use loads, and

helps to identify the source of the wave behavior in order to verify Schrock and

Claridge's hypothesis.

The work of Schrock and Claridge was extended by Ruch and Claridge (1991).

Ruch and Claridge developed a four-parameter change-point modeling procedure

using the same grocery store as Schrock and Claridge. The fourth parameter in the

model was a slope for temperatures below the change-point.10 Their study developed a

rigorous, computerized method for determining the whole-building change-point

temperature. In addition, Ruch and Claridge formally compared their new four-

parameter model to the three-parameter model made using a cooling-only application

of PRISM. It was found that the slope of the data below the change-point was

appreciable, and that including a below change-point slope in the new model resulted

in a statistically better fit for the data than did the 3-parameter PRISM model. This

work used daily data only, citing the added noise and processing time which hourly

data added as the reason for not using hourly data. This thesis uses the same modeling

procedure to estimate end-use component loads as well as whole-building loads for

grocery stores.

Researchers have seen a strong outdoor air temperature dependency in grocery

store energy use as well as a large, non-weather-dependent base-level consumption,

but have noted that other variables effect energy use as well. One of these researchers

was Chen (1991). Chen applies principal component analysis in combination with a

change-point modeling method to predict the energy use of the grocery store studied

by Schrock and Claridge. Briefly stated, principal component analysis (PCA) is a

statistical modeling technique involving data transformation that may be used, in

theory, to provide a more accurate fit to data when the independent variables in the

data are intercorrelated (not truly independent of one another). PCA transforms a set

of n intercorrelated variables into a set of n independent, uncorrelated, and statistically

This is the same procedure used in this thesis to estimate the change-point temperature for the case study grocery stores.
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significant variables called principal components. If one of these independent

variables is ignored, and a regression is performed on the remaining principal

component variables, the resulting model parameter coefficients are more stable (have

smaller standard errors) than they would have had if all n principal component

variables had been regressed.11 Chen reported that as a result of dropping one PC

variable, the goodness-of-fit of the model decreases slightly, but, that the gain in

parameter stability is considered to be worth the sacrifice in goodness-of fit. The

resulting parameters may then be easily translated back into terms corresponding to the

original variables, and are considered to better represent the effects of the regressor

variables. The variable and parameter transformation methods are covered in more

detail in Appendix D of this thesis. Chen stated that PCA has been used extensively in

the field of meteorology (Henry and Hidy 1979) and in the study of residential space

heating (Hadley and Tomich 1986). But, the use of PCA with change-point models by

Chen represented the first combined application of these methods.

Attempts by other researchers (MacDonald and Wasserman 1988) to use

standard multiple linear regression (MLR) techniques to predict building energy

consumption as a function of climate variables have been plagued by intercorrelations

between predictor variables. In a follow-up to Chen's work, Ruch et al. (1991)

hypothesized that if predictor variables12 in a change-point model were strongly

correlated, the parameter estimates provided by standard multiple linear regression

(MLR) would be inaccurate since not all of the predictor variables were independent

of one another. Principle component analysis (PCA) was tested as a means of

providing a more accurate change-point (CP) model when highly correlated variables

are used. Ruch refined Chen's CP/PCA model, applying it to the same grocery store

used by Ruch and Claridge (1991) and Schrock and Claridge (1989). For Ruch's

analysis, PCA proved superior to MLR in separating out the effects of temperature,

relative humidity, solar radiation, and customer count on the electricity consumption

of the store.13 Ruch did not determine how PCA compares to MLR when used to

predict data from a period different from that used to identify the models. This thesis

' ' In fact, if all n PCs are used in the regression, the resulting model parameters, when back-transformed into terms of the
original intercorrelated variables, are identical to those which would be obtained with standard multiple linear regression (MLR)
analyses.

These variables were outdoor dry-bulb temperature (°C), specific humidity (kg moisture/kg dry air), solar radiation (W/m2),
and daily sales ($/day).

1 3 Ruch et al. evaluated PCA and MLR using the same year's worth of data from which the respective models were identified.
But the ultimate goal of energy modeling is to predict energy use for future periods.
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tests Ruch's 1989 PC A and MLR models on 1992 energy consumption data for the

same store, and also compares the 1989 models to new PC A and MLR models

identified from 1992 data.

Wu et al. (1992) compared PC A to MLR using measured energy use data from

a large commercial building in central Texas. They modeled the building's space

conditioning load as a function of outdoor dry-bulb temperature, specific humidity,

solar radiation, and internal lighting and receptacle loads. Wu et al. stated that for the

levels of correlation found in the predictor variables, there was no apparent

justification for selecting PCA over MLR based on the criteria of model R2, RMSE,

and CV value. They concluded, however, that further investigation involving data sets

which exhibit a wide range of correlation strengths for the regressor variables was

required to determine if and when PCA is superior to MLR.

To further investigate when PCA is superior to MLR, Reddy and Claridge

(1993) performed a study using one year's worth of synthetic energy data sequences

generated from models of climatic data from three different locations in the U.S.

These models were considered to be true values of the synthetic energy data. They

took the predictions of these models and intentionally added random scatter in such a

manner as to create synthetic data sets with various, prescribed R2 values and

correlation coefficients between the regressor variables. Reddy and Claridge then used

PCA and MLR methods to identify new models from the synthetic data sets, and

compared these models to the original, true ones. They concluded that PCA should do

a better job at identifying the true parameters of the model than MLR if either:

a) one or more pair of regressor variables has correlation coefficients of

0.5 or higher, and the model R2 value is less than about 0.5.

or,

b) only one pair of regressor variables has correlation coefficients of 0.8 or

higher, regardless of the model R2 value.

The criteria used to judge the superiority of the modeling approach were: 1) how well

each model re-identified the true model parameters and, 2) how well each identified

the mean of data generated for another year. This thesis tests Reddy and Claridge's

method to determine if their recommendations hold true for a grocery store.

This thesis extends the foregoing work by first performing a general energy use

survey of over 90 grocery stores, and presenting statistics regarding their energy use
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characteristics. Then, several of the previous methods of modeling energy

consumption are adapted and applied to the whole-building and sub-metered

component load data from the grocery store studied by Schrock and Claridge (1989).

Models identified from 1992 data are compared to those identified from 1989 data by

Ruch et al. (1991). The purpose of this effort is to verify the original findings of Ruch

et al., and Wu et al., and to see if PC A performs better than MLR at identifying models

based on data sets from different time periods. In addition, the two methods are

further evaluated by a comparison to ASHRAE CLTDS14 and building UA energy

load models.

Finally, a new method is developed and tested that will allow for the accurate

estimation of sub-metered daily loads without incurring the expense of collecting

many months of hourly, sub-metered data. Component electricity use models

identified from sub-metered electricity load data are compared to models identified

from less expensive, walk-through survey methods. The models are then applied in

bin calculations to estimate yearly electricity loads. The ability to accurately estimate

component end-use electricity loads without having to resort to months of expensive

sub-metered hourly data can provide grocery store owners with valuable information

about what electrical loads may be excessive and therefore in need of further attention.

Such information can also provide electric utilities with valuable input data for load-

forecasting models.

1 4 CLTDS = Cooling Load Temperature Difference for Solar contribution. Refer to Knebel (1983).
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CHAPTER II

THE SURVEY STUDY

With the goals of identifying key predictors of energy use and discovering the

potentials for energy-saving retrofit measures, a project to monitor and assess the

energy use of typical urban grocery stores was initiated. As part of this effort, a

database for 93 grocery stores in the south Texas area was developed. These stores are

all owned and operated by a single nationwide grocery retailer. In addition, two case

study stores were monitored. Insight gained from the case studies is expected to be

applicable to the 93 stores since most are of similar construction and geographic

location. This section details the database/survey portion of this project.

2.1 SURVEY METHODS

Data were obtained from recent annual utility bills for the 93 stores provided

by the supermarket corporate management. Information was also obtained with a

mail-in store survey questionnaire developed with the help of the regional chief

facilities engineer of the retail chain. Data were compiled into a spreadsheet database,

discussed with the chief facilities engineer, and spot-checked with visits to a local,

case study store. Questionnaire and report parameters that were assembled into the

database are listed in Table 2.1 -1

Stores were indexed by climatic zones based on the annual wet-bulb degree

hours above 66 °F (19°C). Ten zones were defined for the south Texas area — zone #1

having the least degree-hours (least humid climate), and zone #10 having the most

degree-hours (most humid climate), as shown in Figure 2.1 (adapted from Dubin and

Long, 1978).

The second index used was a heating-type code which designated "e" for

electric heating, "g" for gas, "E" for process reclaim heat with electric booster heat,

and "G" for process reclaim heat with natural gas booster heat. These codes were used

Some parameters represented conditions as recorded during store construction. Others represented conditions at the
time of the annual billing report. Refrigeration horsepower represented installed, rated capacity, and did not necessarily
represent present operating conditions.
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TABLE 2.1
Parameters Included in Store Database

store location
construction status
climatic zone index
floor area
hours per budgetary period
store acquisition date
recent store improvement date
source of heating
installed refrigeration capacity
annual electricity consumption
actual peak electric demand
billed peak electric demand
average daily electricity use

annual electricity consumption per ft2

annual electricity cost
annual electricity cost per ft2

annual natural gas consumption
annual natural gas cost
annual water consumption
annual water cost
linear feet of freezers/coolers
number of fluorescent lamps
number and type of parking lot lamps
method of thermostat adjustment
method of inside lamp control
method of parking lot lamp control

Figure 2.1 Climatic Zones. This figure shown the wet-bulb degree hours
above 66°F {19°C) (adapted from Dubin and Long [1988]).
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as data labels in several subsequent figures. The numbers "1" and "2" are used in these

figures to refer to the College Station and Bryan case study stores, respectively. The

College Station store uses reclaim heating with gas booster heat, while the Bryan store

does not have reclaim heating, and uses natural gas fired duct heaters.

2.2 SURVEY RESULTS

Whole-building electricity use and store size were the most useful parameters.

For the stores surveyed, the floor areas ranged from approximately 20,000 to 80,000 ft2

(2,000 to 8,000 m2). The average store size was 43,000 ft2 (4,000 m2), with 50% of the

stores having floor areas between 41,000 and 47,000 ft2 (3,800 and 4,400 m2) (see

Figure 2.2a). While a number of the larger stores were built to more closely adhere to

corporate specifications, some of the smaller stores were acquired from other retail

chains, and did not meet all of the same standards.

Annual electricity consumption in 1990 ranged from about 1.5 to 6.0 GWh/yr

(million kWh/yr), with 70% of the stores consuming between 2.7 and 3.7 GWh/yr, as

shown in Figure 2.2b. Of the 68 stores using natural gas, approximately 70%

consumed between 300 and 1,000 million Btu/yr (see Figure 2.2c).

Interestingly, one of the most revealing ways of looking at trends in the energy

use was the use of simple scatter plots. An energy use intensity (EUI) was defined for

electricity and natural gas consumption. The electricity EUI (W/ft2 or W/m2) was

created for the annual electricity use (kWh/ft2-yr or kWh/m2-yr) to represent an

average electricity intensity. EUIs were also defined for refrigeration nameplate

capacity (W/ft2 or W/m2), and natural gas use (Btu/m2-yr).



21

Figure 2.2 a,b,c Histograms of Store Floor Area, Electricity Consumption, and
Natural Gas Consumption. Annual electricity consumption in
1990 ranged from 1.5 to 6.0 GWh/yr, with 70% of the stores
consuming 2.7 to 3.7 GWh/yr. Of the 68 stores using natural
gas, 70% consumed between 300 and 1,000 million Btu/yr.
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As expected, Figure 2.3a shows an increase in electricity consumption as floor

area increases. On average, stores tended to have an electricity EUI of roughly 9 W/ft2

(96.9 W/m2), and varied to extremes by ± 2 W/ft2 (±21.5 W/m2), as shown in Figure

2.3b. These values differ from those presented by EIA (1986)2 by an about 100%.

Stores smaller than 40,000 ft2 had an average electricity EUI of 9.5 ± 1.7 W/ft2 (102 ±

18 W/m2 )(± twice the sample standard deviation). Stores larger than 50,000 ft2 had an

average EUI of 7.7 ± 1.1 W/ft2 (83 ± 12 W/m2). Stores between 40,000 and 50,000 ft2

had an average EUI of 8.2 ± 1.4 W/ft2 (88 ± 15 W/m2).

It was initially thought that the latent load on the stores' air-conditioning

systems would be a significant determinant of the electricity consumption, and

therefore easy to determine either statistically or graphically. Unfortunately, a

significant influence was not readily apparent using a climate index based on wet-bulb

degree hours and annual electricity consumption. This can be seen when the whole-

building electricity EUI is plotted against the climatic index (see Figure 2.4a).

Stores in the more humid zones (i.e., zones 5+) tended to show only slightly

greater EUIs than those in the dryer zones. While this may well be due to an increased

latent air-conditioning load in the more humid climates, the increase only represents

on average about 1 W/ft2 (10.76 W/m2) which is 11 % of the average EUI value .

Also, since this climate index considers only wet-bulb temperature, stores closer to the

Gulf of Mexico may not be represented as well as they could be with a dry-bulb

temperature index because they may have higher latent loads yet lower outside dry-

bulb temperatures than stores which are farther inland where temperatures are higher

and latent loads are lower. The counteractive effect between wet-bulb and dry-bulb

temperatures in this region may mask the influence of either dry-bulb or wet-bulb

when considered separately. Constant lighting and miscellaneous loads may also

make it difficult to see a climate effect when only annual whole-building EUIs are

available.

In Figure 2.4, a more significant trend can be seen in the plot of gas use versus

climate index. Stores in the drier, northern zones (zones 1 to 3) tended to have higher

gas EUIs (Btu/m2-yr) than do the other stores. Stores in the more humid zones (higher

2 The EIA reported an average of 4.3 W/ft2.
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Figure 2.3 a,b Electricity Consumption and Electricity EUI vs. Floor Area.
An increase can be seen in electricity consumption as floor area
increases. Stores tended to have an electricity EUI of roughly
9 W/ft2 (96.9 W/m2), and varied to extremes by ±2 W/ft2 (±
21.5 W/m2). These values differ from those presented by El A
(1986) by an average of 100%.
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Figure 2.4 a,b Electricity and Natural Gas EUIs vs. Climatic 7/me Index.
A significant influence was not readily apparent using a climate
index based on wet-bulb degree hours and annual electricity
consumption. A more significant trend can be seen in the plot
of gas EUI versus climate index. Stores in the drier, northern
zones (zones 1 to 3) have higher gas EUIs than do the other
stores.
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Figure 2.5 Heat Reclaim System Schematic.
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zone indices) tended to show only slightly greater electricity EUIs (annual, averaged

W/m2) than those in the dryer zones. The College Station store (store 1 in Figure 2.4)

has a slightly higher natural gas use per unit floor area than the Bryan store. As will be

noted later in Chapter 3, although the College Station store used about 100 million Btu

per year more than the Bryan store in 1990, the Bryan store has the higher peak gas

consumption in the heating season. This makes sense since the Bryan store uses its

gas for heating instead of cooking.

All but six of the stores used waste heat recovered from the condensers of the

refrigeration system to provide space heating. These stores were equipped with either

gas-fired or electric booster heat for use when the reclaim heat was not adequate.

Seventy-six stores use reheat for dehumidification. Figure 2.5 shows a typical heat

reclamation system installed in many stores. Heat is extracted from the condensing

units of the refrigeration system, and used for space heating. According to discussions

with the facilities engineer, stores in zones 4 to 7 only called for gas booster heat about

1% of the time (or less); the majority of their gas usage went to cooking. Stores in the

more inland regions (zones 1 and 2) made significant use of their booster heating,

which accounted for their greater gas usage compared to stores in other zones.

As shown in Figure 2.6a, stores built by the corporation after about 1979 are

larger than those built prior to that year ("construction date" actually refers to the date

each store was acquired and/or built). As shown in Figure 2.6b, post-1979 stores use

less electricity per ft2, due in part to the use of heat reclaim from the refrigeration

compressors and natural gas booster heat for space heating. These buildings were built

to new corporate engineering specifications. An appreciable decrease in electricity

EUI (W/m2) is seen after 1979, which corresponds to the beginning of a new energy

conservation policy. New stores average 8.3 W/ft2 (89 W/m2), while older stores

average 9.1 W/ft2 (98 W/m2), a difference of about 9%. As shown in Figure 2.6c,

stores using gas, built after about 1983, tend to use less gas per unit area as well.

Typical energy-saving measures employed since 1979 by this grocery store chain

include:

1) better insulation (an R-4 increase),
2) the changeover from incandescent to fluorescent lamps,
3) installation of energy-efficient ballasts on fluorescent lamps,
4) the changeover from electric to gas-fired booster heating,

(or elimination of booster heating altogether),
5) better sealing of building entrances using vestibules.
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Figure 2.6 a,b,c Floor Area, Electricity and Natural Gas EUIs vs. Construction
Date.
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In addition, an effort was made to ensure that buildings were built to the new corporate

design specifications.

It was thought that the lack of electric heating in gas-boosted stores explained

their lower electricity consumption. However, discussions with the chief facilities

engineer of the store chain revealed that stores using heat reclaim from the

compressors (92% of the stores) rarely needed booster heat whether it be gas or

electric. It is estimated that electric booster heating is needed about two days per year,

if at all. And indeed, at the case-study store located 100 miles northwest of Houston,

the fraction of booster heat time is only 1% of the HVAC system's operating hours

(Schrock, 1989). According to the chief facilities engineer, booster heating is no

longer installed in new stores built between climatic zone 6 and the Gulf coast. Thus,

since booster heating is so rarely used, it is unlikely that the absence of electric heat in

gas-boosted stores is the primary cause of the reduction in their electricity

consumption.

Figure 2.7a shows that there has been only a slight variation in the installed

refrigeration capacity over the last twenty years. The variation tended to follow the

same pattern as store size. As shown in Figure 2.7b, the refrigeration nameplate EUI

(W/m2) has been fairly constant over the years, though a slight decrease is seen after

about 1983. This corresponds to the point at which the corporation began to build

larger stores which stock a considerable amount of dry merchandise that does not

require refrigeration.

Discussions with the stores' engineering personnel have revealed other possible

reasons for the trends that are displayed in Figure 2.8. Even the smaller stores seemed

to have a minimum amount of refrigeration, roughly 100 to 150 hp. As the stores

become larger, refrigeration capacity increases. But there seems to be an upper limit to

the capacity. When store size reaches about 50,000 ft2 (4,600 to 5,600 m2), the

capacity-floor area curve appears to level off, indicating that additional refrigeration

capacity is not being added to service the additional floor area.

While whole-building energy consumption, floor size, and construction date

tell us general characteristics about the store buildings, specific information is difficult

to glean from the data without a detailed knowledge of the equipment in the store. The
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Figure 2.7 a,b Nameplate Refrigeration Capacity and Refrigeration EUI vs.
Construction Date. Variation in installed refrigeration capacity
tended to follow the same pattern as store size. Refrigeration
nameplate EUI has been fairly constant over the years, though
a slight decrease is seen after about 1983, when the corporation
began to build larger stores which stock a considerable amount
of dry merchandise that does not require refrigeration.
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Figure 2.8 a,b Nameplate Refrigeration Capacity and Refrigeration EUI vs.
Floor Area. As the stores become larger, refrigeration capacity
increases. But when store size reaches about 50,000 ft2 (4,600
to 5,600 m2), the capacity-floor area curve levels off, indicating
that additional refrigeration capacity is not being added to
service the additional floor area.
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energy-using components of a store do not all share the same characteristics with

respect to floor area. While some components, such as air-conditioning and lighting,

are intuitively functions of floor area, refrigeration capacity and other miscellaneous

loads may not be.

2.3 SUMMARY

The survey of the 93 grocery stores in south-Texas showed that there is much

that can be learned about energy use in grocery stores using annual EUIs and

information which can be gleaned from a mail-in survey. The following specific

points were made:

1) Total electricity EUI is as average of about 9 W/ft2 (96.9 W/m2), and varies to

extremes by ± 2 W/ft2 (± 21.5 W/m2). Stores smaller than 40,000 ft2 had an

average overall EUI of 9.5 ± 1.7 W/ft2, while stores larger than 50,000 ft2 had

an average EUI of 7.7 ± 1.1 W/ft2. Stores between 40,000 and 50,000 ft2 had

an average EUI of 8.2 ± 1.4 W/ft2.

2) Annual electricity consumption in 1990 ranged from about 1.5 to 6.0 GWh/yr

(million kWh/yr), with 70% of the stores consuming between 2.7 and 3.7

GWh/yr. Of the 68 stores using natural gas, approximately 70% consumed

between 300 and 1,000 million Btu/yr.

3) With most of the stores in the same geographic area, it seems unlikely that

variations in climate-dependent loads explain the trend in EUI. Rather, this

seems to be due to component loads which do not increase as store size

increases. The largest such load is refrigeration.

4) Stores built after 1979 have roughly 9% less energy consumption per square

foot than those built before 1979. This is due to at least two reasons.

a) Stores built after 1979 were larger. These stores used their additional

space to stock merchandise that did not require refrigeration.

b) Stores built after 1979 included a significant number of energy-saving

measures.

5) In the south-Texas region, heat reclamation from the refrigeration systems

provides an adequate means of space heating for most winter-time conditions.
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However, there is a limit to what may be learned from general surveys. The two case

study stores, described in the next chapter, represent about 70% of the 93 stores in the

survey with respect to their building characteristics and energy use. In general, grocery

store energy use is divisible into components. Because only some of these

components are dependent upon store size and/or climate, a more detailed analysis

involving sub-metering of energy use is required in order to determine key predictors

of energy use for a particular store. Nevertheless, the database section of the project

provides a good foundation on which to apply the results of the findings in the case

study.
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CHAPTER III

CASE STUDY

The sections that follow describe the two case study grocery stores. First, the

College Station store will be discussed, followed by the Bryan store. General building

characteristics are given, followed by a description of the major energy-using

equipment in each store. Both stores are located approximately 100 miles northwest

of Houston, Texas, in the cities of College Station and Bryan, Texas. The 1% mean

dry bulb temperature for this area is 98°F (37°C), with a coincident wet bulb of 76°F

(25 °C). The location has 1786 annual heating degree-days and 2806 annual cooling

degree-days (19°C [65°F] base) (Schrock 1989).

3.1 BUILDING STRUCTURE OF COLLEGE STATION STORE

The first case study grocery store is located in a medium-sized shopping plaza.

Customer parking is available at the front of the store, while deliveries are made at the

rear of the store. Adjacent to the store is a video tape rental store, also run by the

grocery store management. Both stores share one interior wall, and are flanked by

other adjacent, air-conditioned buildings.

For the grocery store portion of the building, the exterior northwest and

southeast walls are constructed of 6-inch (0.15-m), poured concrete, and have 3.5

inches (0.09 m) of batt insulation behind interior dry-wall. The northeast and

southwest walls are 160 feet (50 m) and 250 feet (76 m) long, respectively, and 20 feet

(6.1 m) high. The northeast wall has a 60-ft by 16-ft (18-m by 5-m) glass section

which serves as the entrance to the store and includes a double-doored enclosure with

automatic doors. The roof is constructed of a metal deck which supports a 1.5-inch

(0.04-m) layer of styrofoam insulation, a 2-inch (0.05) concrete slab, and a built-up

roof covered with light-colored aggregate. A plan view of the store is shown in Figure

3.1.

The building is a single-story structure with 16-foot (4.9-m) drop ceilings and a

total area of 46,000 ft2 (4,300 m2). The front 35,000 ft2 (3,300 m2) of floor area is used

for product display, and the rear 11,000 ft2 (1,000 m2) holds the space-conditioning
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Figure 3.1 Plan view of the College Station grocery and video stores.
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equipment, walk-in coolers and freezers, and the meat preparation areas. The store

contains a 500-ft2 (46-m2) office space located above the pharmacy and delicatessen,

and a 150-ft2 (14-m2) mechanical room located above the rest rooms in the rear of the

store (Schrock and Claridge, 1989). Pictures of the inside and outside of the store, and

the components therein, can be found in Appendix F.

The video tape rental store is accessible from the northwestern wall of the

grocery store, and has 9,100 ft2 (845 m2) of display space with 10-ft (3-m) ceilings.

The northeastern wall is a 21-m by 3-m (70-ft by 10-ft) glass and dry-wall section.

The entrances to the store are double swinging doors without vestibules.

3.2 MAJOR ELECTRICAL EQUIPMENT OF COLLEGE STATION STORE

This section describes the major energy-using equipment in the College Station

store. The information was gathered during walk-through surveys, and consists of

nameplate readings and selected clamp-on power readings (where possible). All

equipment in the College Station store runs at 120 VAC (1-phase) and 208 VAC (3-

phase). A detailed listing of the loads can be found in Appendix B of this thesis.

3.2.1 Refrigeration Equipment

Twenty-three single-mounted compressors units are used to cool the

refrigeration/freezer cases and coolers in the facility. Fifteen use refrigerant R12, and

eight use refrigerant R502. The total compressor nameplate capacity is 166 hp, or 124

kW input. Condenser fans comprise an additional nameplate load of 8.5 kW. The

electric resistance defrost heaters have a total nameplate load of 71 kW.

Including the condenser fans, the measured, connected compressor system load

is roughly 138 kW during non-defrost operation. Some display cases use hot gas

defrost provided by the compressors.1 Others use electric resistance heaters for this

purpose. A high load of 156 kW was measured during defrost cycles, implying an

electric resistance defrost cycle load of 18 kW. Time clocks control the compressor

defrost cycles. The defrost cycles last up to one hour or until the cooling coils reach

70°F (21°C). The compressors are summarized as follows in Table 3.1.

Ambient air is circulated through the compressor room by four 6-hp fans which

have a total nameplate load of 22 kW. These fans come on in stages

During hot gas defrost, the compressors operate in a reverse cycle, acting as heat pumps. Hot refrigerant is pumped
through the display case evaporator coils. This melts any ice that may have accumulated on the coils.
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TABLE 3.1

Refrigeration Compressor Summary for College Station

* Hot gas defrost. Some display cases use electric heaters for defrost. Electric heater loads, not included
here, are part of the Miscellaneous Utility loads (see below).
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beginning when the temperature difference across the condenser coils is about 8°F

(4°C), and stop when the compressor room ambient temperature is less than about

60°F (16°C)2.

The peak connected load of the compressor and exhaust fan system, based on

measured loads, is 160 kW under normal operation, and 178 kW during coincident

defrost periods.3 The peak load based on nameplate information is 155 kW during

non-defrost periods, and 226 kW during coincident defrost periods.

Sixteen groups of refrigeration/freezer cases (about 60 separate case units)

display the food, with one compressor dedicated to each group. Six walk-in storage

coolers and freezers are located in the store's back rooms, and are cooled by the

remaining seven compressors. The case fans, glass door anti-sweat heaters, and

lighting are connected to the utility and lighting circuits of the store. See Utility and

Lighting sections below for more information.

3.2.2 HVAC Equipment

The store has two 50-ton air-conditioning systems, which each have two 43-hp

compressors and one 15-hp fan which circulates air at 18,000 CFM (manufacturer's

data).4 The maximum nameplate load of both air-conditioning units is 170 kW.

Based on this information, the nameplate EER rating of the combined system is 7.1

Btu/W-h. This implies a coefficient of performance (COP) of 2.08. On one of the

units, 290 CFM (measured) of outside air are brought into the store through a passive

ducting system.5

From clamp-on measurements, the blower fan in each air-handling unit draws

about 43 amps per phase. At a voltage of 208 VAC, this amounts to about 14 kW.

During second-stage cooling, the compressors on each air-handler draw as much as

184 amps per phase, amounting to 58 kW. Thus, the maximum load for both air-

^ This could be one of the reasons for the change-point behavior seen in the sub-metered refrigeration system energy use.
The change-point temperature is about 62°F (17°C).

These values are consistent with those obtained through electrical sub-metering, which vary with ambient outdoor
temperature from about 70 to 170 kW.

4 An estimated power factor of 0.88 (ratio of kW to kVA) and mechanical efficiency of 0.90 were taken from tables
provided by Turner (1982) and used to determine the maximum load of each compressor and fan based on nameplate amps and
horsepower.

The store management is aware that this is an undesirably low fresh air ventilation rate. There is an unquantifiable
amount of outdoor air which enters the store through doors and the loading dock, and leaves through exhaust ducts.
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handlers observed during walk-through surveys is 144 kW. This is 85% of the

nameplate load.

Each air-handler unit has its own controller which controls the heating or

cooling stage based on indoor dry-bulb temperature and relative humidity sensors.

The store set point is 75°F (24°C) dry-bulb, and 55°F (13°C) wet-bulb. Figure 3.2

shows a schematic of the temperature conditions for which the various stages of

cooling and heating are controlled.

Cooling stage 1 uses one compressor; stage 2 uses both compressors. Heating stage 1

uses half of the heat reclaim capacity available to the air-handler unit; heating stage 2

uses all available heat reclaim capacity. Likewise, there are two stages of gas booster

heating from furnaces installed in the air ducts down stream of the heat reclaim coils.

Figure 3.3 shows the HVAC system control curves.6 The two main HVAC units each

have their own temperature/relative humidity controller, and are set to operate at, or

below, curve B. The humidity controller activates one stage of cooling upon

These curves were transcribed from the specifications inside the thermostat box, model number H609A manufactured
by Honeywell, Minneapolis, MN, 55422.
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determining a rising dew-point temperature, thus reducing the moisture content of the

air. Return air conditions, monitored since November, 1992, reveal that the HVAC

system is keeping return air conditions at or below the control curve B, and between

15° and 24°C (58° and 74°F) dry-bulb, 25 and 55% relative humidity (which is

between -1° and 10°C [30° and 50°F] dew-point).

Figure 3.4 shows these data for four modes of HVAC system operation —

cooling only, heating only, dehumidification (heating and one stage of cooling), and

fans only. We determined from the sub-metered HVAC data when the fan and cooling

stages were operating. Duct air temperatures were monitored with battery-operated

temperature recorders for about three months. The cold-deck, hot-deck, and return air

temperatures were the three points which were monitored. This made it possible to

determine when the heating coils were being used. With this information, we

determined when any of the four modes of HVAC operation were in effect.

Heat recovery from the refrigeration system is used to provide heat during the

first two stages of heating. A third and fourth stage of booster heating is available

from natural gas duct heaters which have a capacity of 125 million Btu/hr (nameplate).

However, the gas booster heating has been used only 1% of the time the store has been

in operation. This is consistent with the findings of ORNL (DOE 1981 p. 1-16),

which state that "[in] 1979, 96 percent of new stores had installed heat reclaim units

. . . . Even in northern climates, properly designed heat reclaim units can provide all

the necessary space heating requirements."

Three 7.5-ton, and two 5-ton roof-top HVAC units serve the video store which

is located next to the main store. Three of these units draw their power from the main

store's HVAC electricity circuit. The remaining two — two of the 7.5-ton units — are

connected to the main store's refrigeration circuit, and therefore are monitored

separately from the main store HVAC load. Each of the units are controlled by

standard dry-bulb thermostats which have on/off and temperature adjustment switches.

During a walk-through survey, the electricity load of these units was measured to be

21.7 kW. The load of the remaining three units was 15.4 kW, although not all were

running at full capacity. The total electricity load of the five units was measured to be

37 kW. The peak load based on nameplate data is 44 kW7.

One of the 5-ton units is disconnected due to maintenance problems. It is not included in the load count.



40

Figure 3.3 HVAC system control curves. The HVAC control thermostat
has a range of six control curves (A-F). The system is set near
to curve B. Return air conditions are maintained below control
curve B.
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Figure 3.4 Four modes of HVAC system operation, (a) Cooling only; (b)
heating (heat reclaim) only; (c)fans only; (d) dehumidification
(one stage of cooling and heating).
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The measured, combined load of the main and video store HVAC systems

during peak times is 181 kW, and the peak nameplate capacity is 214 kW.

3.2.3 Lighting

The main store's interior is primarily lit by fluorescent lamps which have

nameplate loads ranging from 40 to 100 watts per lamp. Of these, there are

approximately 900 overhead lamps in the main sales area (with a total nameplate load

of 65.5 kW8), 140 overhead lamps for non-sales areas (10.5 kW), 180 refrigerated case

lamps and 200 non-refrigerated case and rack lamps (21 kW). See Appendix B for a

detailed description of the lights.

About one-half of the sales and back room overhead lights, all bakery lights,

and lights on perimeter refrigeration cases are shut off at midnight by the store

management. They are turned back on around 8:00 a.m. This is currently done by

switching the power off at the electrical panel in the rear of the store. Consideration

has been given to controlling these lights with a timer switch. Timers already exist on

the lighting electrical panels. Some rewiring would be necessary to affect only the

desired lights.

The main store also has 58 metal halide lamps (175 W/lamp) and 17

incandescent lamps (100-W) at various locations. These amount to a connected load

of 14 kW. The total connected load of all the lights in the main store is 112 kW

including ballasts (nameplate).

The video store has 550 40-W and eight 75-W overhead fluorescent lamps

amounting to 30 kW. They are turned on at about 8:00 a.m., and turned off between

midnight and 2:00 a.m. when workers in the video store complete their tasks.

The exterior lights, used to illuminate the front and rear parking lots, consist of

twenty 1,000-watt high-pressure sodium vapor lamps which have a total connected

load of 25 kW (nameplate). The video store has four exterior 400-W high-pressure

sodium lamps which illuminate the front of the store. All outside lamps are controlled

° This includes the ballast watts. The lighting ballast is a small voltage regulation device — often a small transformer.
According to General Electric's Ballast Technical Guide (GE 1986), an average ballast for F40T12, standard and energy-
efficient fluorescent lamps increases the lamp circuit wattage by about 10% of the nominal lamp rating. That is, a lamp fixture
which houses two 40-watt lamps draws about 88 watts. Thus, a ballast factor of 1.1 is used for all fluorescent lamps in the case
study stores. Likewise, ballast factors of 1.2 and 1.25 are used for metal-halide and sodium vapor lamps, respectively.
Incandescent lamps do not have ballasts.
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by a time clock inside the store.9 The timer pins are adjusted manually to account for

seasonal changes in the length of nights. They are switched on between 5:00 p.m. and

8:00 p.m., and switched off between 6:00 a.m. and 8:00 a.m.

The store has 13 point-of-sale registers throughout the store which have a total

connected load of 6.8 kW (nameplate). These are connected to its lighting circuit.

The peak nameplate lighting load for the entire store is 177 kW, including

ballasts. Figure 3.5 shows the lighting load profile throughout the day. The daily

average lighting load, adjusted for daily lighting schedules, is about 126 kW. The

average lighting load measured through sub-metering is 124.7 kW, and the yearly peak

is 175 kW, amounting to a diversity factor of 71%. A detailed table of the lighting

loads can be found in Appendix B. Three modes of lighting energy use can be seen in

Figure 3.5 ~ one when half of the in-store lights are off and the parking lights are on,

one when all in-store lights are on but outside parking lights are off, and one when in-

store and parking lot lights are all on.

3.2.4 Miscellaneous Utility

The remaining electrical loads mentioned in this section are listed in detail in

Appendix B.

There are 37 pieces of food-processing equipment used for the preparation of

meat and deli goods. These items have a total connected load of 109 kW (nameplate)

and are used when needed.

One 10-hp trash baler is located in the loading dock room. At an efficiency of

0.87, its connected load is 8.6 kW.

There are approximately 60 refrigerated display case units. The evaporator

fans and anti-sweat heaters10 of these cases contribute about 27 kW to the

miscellaneous utility circuit. Six walk-in coolers and freezers are located in the store's

back rooms, which have a total evaporator fan load of 3 kW. Thus, the peak

connected nameplate load of the refrigeration case fans and anti-sweat heaters is 30

kW.

This timer had malfunctioned occasionally during the summer and fall months of 1991. The operating costs associated
with this problem are discussed further in Appendix C.

The anti-sweat heaters prevent condensation from forming on the glass doors and edges of the display cases. They
should not be confused with case defrost heaters.
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Figure 3.5 Lighting schedule profile for a typical day at the College
Station store.
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The total, peak utility load is 148 kW, though this never occurs since all utility

loads rarely run at the same time. The average sub-metered utility load is about 76

kW. This amounts to a diversity/load factor of 51%.

3.2.5 Natural Gas

The store uses natural gas primarily for cooking. There are two two-stage gas

duct heaters for space heating for the main store, though, as mentioned above, these

are rarely used. These have a combined, rated capacity of 840,000 Btu per hour. The

roof-top HVAC units on the video store have a combined, rated capacity of 658,000

Btu per hour. The delicatessen has one large natural gas oven which comprises most

of the 50 million to 75 million Btu per month base level gas consumption. In the two

years since the annexation of the video store, the College Station store used an average

of 851 million Btu/yr of natural gas, which amounts to 18,400 Btu/ft2-yr.

3.3 ELECTRICAL SUB-METERING OF COLLEGE STATION STORE

The first case-study store had been examined previously by Schrock (1989),

who used 15-minute whole-building electricity data transcribed from local utility

readings, and Chen (1991), who also used daily whole-building data which had been

summed from 15-minute data. For this thesis, a year's worth of hourly sub-metered

electricity data and coincident weather data from a nearby weather station (Ruch et al.

1991) were recorded and converted it into an averaged daily format for use with the

modeling procedures to be tested.

Four component loads of interest for the combined grocery and video stores

were sub-metered. These were:

1) refrigeration compressor system loads (compressors, condenser fans,
exhaust fans, and defrost heaters)

2) lighting loads (exterior, interior, and miscellaneous refrigeration case
lighting loads)

3) combined store HVAC loads

4) miscellaneous utility loads (food preparation equipment, refrigeration
case fans and anti-sweat heaters).

Loads were monitored with current and potential transducers, and recorded

with a commercially available data-acquisition system.11 Hourly data were polled on a

The data acquisition procedure is described in detail in Appendix A.
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weekly basis, processed into a format readily usable by a statistical computer software

package. This procedure is shown graphically in Figure 3.6, and is described in

greater detail in Appendix A. The processed data was displayed graphically and

reviewed by the project staff on a weekly basis, and by store management, to monitor

data quality and to observe and document any anomalies in store operation. Figure 3.7

shows the electrical end-use distribution for the College Station store. The four

component loads are divided conveniently into the four main electrical distribution

panels of the store. This allowed for ease in monitoring. The only exceptions were

two of the video store's 7.5-ton roof-top HVAC units which were connected to the

store's refrigeration compressor circuit, and two new 7.6-horsepower dairy cooler

compressors which were connected to the store's HVAC circuit.12

In the two years since the annexation of the video store, monthly electricity use

increased during the summer by about 50,000 kWh/month, and peak demand by about

100 kW. This is shown in Figure 3.8. This increase seems comparable to the sum of

the measured video store and new dairy compressor loads, which is 85 kW. The 15-

kW difference is most likely due to the photo developing machines and soda display

cases in the video store. These loads could not be measured in the walk-through

survey. For the past two years since the annexation of the video store, 1991 and 1992,

the combined College Station store used an average of 3,610,800 kWh/yr of electricity,

amounting to a energy use intensity (EUI) of 7.5 W/ft2 (81 W/m2). This represents a

greater energy use than was reported in the 1990 multi-store survey in Chapter 2,

because it includes the load of the video store.13 However, the EUI is less than it was

in 1990 since the total store floor area has increased by about 9,100 ft2. The store has

used an average of 851 million Btu/yr of natural gas, amounting to a gas EUI of 15,400

Btu/ft2-yr (166,000 Btu/m2-yr). Like the electricity use, the gas use has increased since

the annexation of the video store, but the gas EUI has decreased. Figure 3.9 shows the

monthly gas use for the store. Natural gas is used by the delicatessen for cooking and

by the video store's roof-top HVAC units for heating. The gas use is relatively

constant throughout the year except during the months of December to January.

2 The video store HVAC units were sub-metered separately, so that their load could be subtracted off the store's
refrigeration load. But, the new dairy compressors were added after the sub-metering was installed; as a result, their load appears
as part of the store's HVAC load. However, they amount to less than 10% of the true HVAC load.

1 3 The electricity use and EUI in 1990 were 3,215,000 kWh/yr and 8 W/ft2 (86 W/m2), respectively. The natural gas use
and EUI were 819 million Btu/yr and 17,700 Btu/ft2yr (191,000 Btu/m2yr).
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Figure 3.6 Data Acquisition Procedure.



48

Figure 3.7 Sub-metered electrical circuit in College Station store.
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Figure 3.8 Historical Monthly Electricity Use from August 1988 to
December 1992 for the College Station store.
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Figure 3.9 Monthly natural gas consumption for College Station store.
Gas use for 1990 to 1993 varies between 50 million and 130
million Btu per month, though in general it is less than 75
million Btu/month. It is reasonable to assume that at least this
much is attributable to cooking use only since it occurs in the
summer months.
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Since there is no heating requirement in the remaining months, we assume that natural

gas is used primarily for cooking in this store.

Prior to the annexation of the video store, in an attempt to estimate component

loads, Schrock and Claridge (1989) performed an energy load survey based on

nameplate ratings of store equipment. Their work was repeated and refined in a new

walk-through energy use survey for this thesis. Figure 3.10a and Figure 3.10b show

the breakdown of electricity use in the case study store. Figure 3.10a shows the

estimated contribution to peak loads based on nameplate power ratings for various end

uses. Figure 3.10b shows the contribution of the four main end-use loads as

determined from the 1992 survey as well the sub-metered data and from Schrock

(1989). The percentages given in DOE (1981) are also included for comparison.

Basing the percentages on the nameplate data tends to overestimate the contribution

due to HVAC, and underestimate the contribution due to lighting. This is to be

expected since the HVAC load varies significantly throughout the year, while loads

such as lighting load remain fairly constant. Also, the fact that the HVAC load does

not run at full load constantly makes one-time estimation, such as nameplate readings,

unreliable. Because of this, peak load estimations cannot represent the true

distribution of electricity end use. Both Schrock's thesis and the DOE report estimate

a higher contribution due to refrigeration than is seen in either the 1992 nameplate

survey data or the sub-metering data. But Schrock's study was performed on the store

before the video store was annexed. And, it is assumed that the DOE study also did

not include a video store. Because the video store energy use is comprised of only

HVAC and lighting, we should not expect the percent contribution due to refrigeration

to remain the same after these video store loads were added. Table 3.2 shows a

description of the loads included in each breakdown as well as the DOE's percentages.

3.4 ENERGY CONSUMPTION DATA FOR COLLEGE STATION STORE

The usefulness of providing plots energy consumption data on a daily and

hourly basis was informally tested by establishing an information loop with the store

management. Recorded data were presented in two formats — weekly summary plots

and 3D inspection plots. Ambient hourly weather conditions were provided by a

weather station located approximately two miles away. These data were plotted along

the top of the summary plot page. This approach gave the store management a chance

to keep record of the store processes, and provided the researcher with the kind of data

necessary to develop statistical models for predicting the future energy use in the store.
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Figure 3.10 a,b Percentages of Nameplate Contribution to Peak and Measured
Contribution to Electricity Use for the College Station store,
(a) contribution based on nameplate data; (b) Contribution
based on Schrock (1989), 1992 nameplate survey, 1992 sub-
metered data, and DOE (1981) survey.
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TABLE 3.2

Description of End-use Loads Included in Group Breakdown

for the College Station Store
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3.4.1 Summary Plots and 3D Inspection Plots

An example of the summary plots is shown in Figure 3.11. The four main

loads are plotted with respect to both time and temperature. Ambient hourly weather

conditions were provided by a weather station located approximately two miles away,

and are plotted along the left edge of the summary page.

The 3D plots show loads for the College Station store individually plotted with

respect to hour of the day on one axis, and day of the year on the other. This allows

the viewer to see not only day-to-day variations in energy use, but also hourly

variations. The plots are shown in Figures 3.12 to 3.17 for 1992 data. The hour of day

is given in 24-hour time, with midnight corresponding to hour "0".

In the 3D plots, temperature-dependent effects can only be perceived as a

month-to-month change. Figures 3.12 (a), 3.13 (a), and 3.15 (a) clearly show a

seasonal behavior in the whole-building, refrigeration, and HVAC data. Each load has

a minimum during winter months and a maximum during summer months. In Figure

3.13 (b), a series of "rolling waves" appear in the refrigeration system data from hour

to hour. Schrock and Claridge (1989) also noticed this effect, and hypothesized that it

may be due to defrost timer controls being out of synchronization. They suggested

that this might cause several defrost heaters to run at the same time, creating

unnecessarily high levels of electric demand. The fact that the waves tend to occur at

the same time each day lends support to this hypothesis. Schrock and Claridge,

however, did not have sub-metered data, but only whole-building data. The use of

sub-metered data clearly revealed the general source of the wave behavior.

A seasonal effect, the variation in day length, can be seen in the lighting load in

Figure 3.14 (b). The step in electricity use during the latter portion of the day

(between 4 p.m. and 10 p.m.) corresponds to the time at which the parking lot lights

are turned on. What is interesting to note is the fact that this step occurs earliest

during December and January, when longer nights prevail. The lights are controlled

by a timer which is adjusted to account for the change in daylight hours. However, as

can be seen near the beginning of July, the timer occasionally malfunctions or is

manually overridden. The 3D plot easily reveals when there is any deviation from the
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Figure 3.11 Summary inspection plots for College Station store.
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Figure 3.12 a,b 3D plot of whole-building electricity for College Station store.
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Figure 3.13 a,b 3D plot of sub-metered refrigeration compressors for College
Station store. A series of "rolling waves" appear in the data
from hour to hour. Schrock and Claridge (1989) noticed this in
the whole-building data, and hypothesized that it may be due to
defrost timer controls being out of synchronization. They
suggested that this might cause several defrost heaters to run at
the same time, creating unnecessarily high levels of electric
demand. The fact that the waves tend to occur at the same time
each day lends support to this hypothesis.
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Figure 3.14 a,b 3D plot of sub-metered lighting for College Station store. The
step in electricity use between 4 p.m. and 10 p.m. corresponds
to the time at which the parking lot lights are turned on. The
lights are controlled by a timer which is adjusted to account for
the change in daylight hours, and shut off around 8 a.m. The
times when the outdoor lights are left on after 8 a.m. are easily
seen, most noticeably near the beginning of July. Between
midnight and 7 a.m., half of the overhead, indoor sales lighting
are scheduled to be turned off. At these times, the lighting load
is about 100 kW. It is quite clear from the plots when the lights
are left on.
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Figure 3.15 a,b 3D plot of sub-metered combined store HVAC for College
Station store.
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Figure 3.16 a,b 3D plot of sub-metered utility for College Station store. The
utility load includes food-preparation equipment, various
receptacles, and refrigeration display case fans and anti-sweat
heaters. The load is fairly constant throughout the year, but is
slightly higher during the daytime than during the night. This
makes sense since the food-preparation equipment is only run
during the day.
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Figure 3.17 a,b 3D plot of sub-metered video store HVAC for College Station
store. This is the sub-metered load of two of the video store's
7.5-ton roof-top HVAC units. Most of the electricity use occurs
during the summer months, when cooling is required. A period
of maintenance problems can be seen between the middle of
July and the beginning of September. Natural gas is used for
heating in the winter. A 2- to 5-kWfan load can be seen
between November and February. The heating provided by
these two units is turned off when the video store closes at about
1 a.m., and comes back on when it opens around 8 a.m.
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usual lighting schedule when that schedule is very regular.14 During the early morning

hours, between midnight and 7 a.m., half of the overhead, indoor sales lighting are

scheduled to be turned off except when required by stocking personnel. From Figure

3.14 (b), it is quite clear when the lights are left on. These occurrences are also visible

in the whole-building plots (Figure 3.12), although less pronounced. When off, the

lighting load is about 100 kW. When the indoor lights are kept on, there in an increase

of roughly 50 kW. Visual inspection of the 3D lighting plot reveals that this occurs

about twenty times per year, which is about once every two-and-a-half weeks.

Figure 3.16 shows the store's miscellaneous utility load. This includes such

electrical end-uses as food-preparation equipment, and refrigeration display case fans

and anti-sweat heaters. The load is fairly constant throughout the year, but is slightly

higher during the daytime than during the night. This makes sense since the food-

preparation equipment is only run during the day.

Figure 3.17 shows the sub-metered load of two of the video store's 7.5-ton

roof-top HVAC units. Most of the electricity use occurs during the summer months,

when cooling is required. A period of maintenance problems can be seen between the

middle of July and the beginning of September.15 Natural gas is used for heating in

the winter. As can be seen in Figure 3.17 (a), only a 2- to 5-kW fan load can be seen

between November and February. The heating provided by these two units is turned

off when the video store closes at about 1 a.m. and comes back on when it opens

around 8 a.m.

3.4.2 Constant and Schedule-dependent Loads

In anticipation of the statistical modeling detailed in Chapters 4 and 5, scatter

plots of whole-building and component electricity loads were made. Figure 3.18

shows plots for daily electricity and weather data which were derived by averaging 24

hours of hourly data. From the plots, it is easy to see that some component loads are

sensitive to outdoor temperature, while others are not. For some loads, the

temperature dependency exhibits a strong change-point behavior. Some of these

change-point loads have a bimodal characteristic. These are described below.

As is the case during the afternoon hours.

1 5 A fan belt had broken and the evaporator coils had frozen over. One compressor was taken out of service temporarily
for repairs.
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Figure 3.18 a-f Scatter Plots of Daily Loads vs. Outdoor Dry-bulb Temperature
for the College Station store.
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Utility. The daily average miscellaneous utility load, shown in Figure 3.18 (d),

is quite constant. The hourly data in Figure 3.19 (d) appear to show a slightly lower

energy use at lower temperatures. But this is may not be a true effect of temperature,

but rather an effect of hourly scheduling. Food preparation equipment is not run at

night, when outdoor ambient temperatures are lower. This hypothesis is supported by

the fact that when daily data are considered, which are not subject to the effects of

hourly scheduling16, we see that there is practically no temperature dependency at all.

The average value of the daily data is 76.4 kWh/h. When compared the maximum

nameplate load connected to the Utility circuit, 148 kW this amounts to a combined

diversity and load factor of 51%. This represents a significant difference; had we

relied only on a nameplate survey to estimate store energy use, the Utility load would

have been twice what it actually is.

Lighting. As discussed in Section 3.2.3, the lighting load is dependent on

hourly schedules. It is also dependent on changes in the length of the day. The daily

lighting load shows a decrease at higher temperatures (see Figure 3.18 (c)). This

diurnal pattern of energy use is expected since the hot summer days have shorter

nights, resulting in the parking lot lights being on less.17 This diurnal effect can only

be seen in the daily data. A band of about 15 outliers (about 15 to 20 kW higher than

the rest of the data) can be seen in the lighting-temperature plot above most of the

other points. During 1991, there were about 45 such outliers. These represent days

during which either the parking lot lights or some interior lights (or both) were left on

when they should have been off.

Comparing the daily and hourly plots, it is apparent that use of hourly data adds

scatter, and shows the extremes of the energy use. While for the purposes of

regression modeling, the general characteristics of the hourly loads can be predicted by

daily data, the hourly data reveal important facts about the lighting load which the

daily data cannot. In Figure 3.19 (c), three modes of usage may be seen in the hourly

lighting data — one during the early morning when many of the interior lights are off

and the parking lot lights are on; one during the day, when only interior lights are on;

and one during the night, when the parking lot lights and all interior lights are on. This

1 6 This is true provided that the hourly scheduling is the same from day to day.

Parking lot lights represent about 20 kW, almost 12% of the peak connected lighting load. They are controlled by a
timer which is adjusted monthly for the changing periods of daylight throughout the year. Their operation can be seen in Figure
3.14 as well as Figure 3.19.
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Figure 3.19 a-f Scatter plots of Hourly Loads vs. Outdoor Dry-bulb
Temperature for the College Station store.
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reveals the daily lighting schedule which was shown earlier in Figure 3.5. The daily

average data are closer to the upper two modes of energy use, indicating that there are

more hours of the day when most the lights are on. This is not surprising since the

middle and upper mode occur from 8 a.m. to 12 p.m. — 16 hours of the day.

The length-of-day characteristic of the lighting load cannot be seen by viewing

only the daily lighting data. When operational problems occur, such as lights

remaining on when they should not be, these may only show up in daily data as an

electricity consumption which is slightly greater than usual. Only in hourly data is

such a problem easily noticed.

3.4.3 Temperature-dependent Loads

As mentioned above, some electricity load components are dependent on

temperature rather than daily scheduling. For the College Station store, these loads are

the HVAC and refrigeration systems. The whole-building data, shown in Figure 3.18

(a) have a strong temperature change-point characteristic. There is a noticeable bend

in the curve at about 64°F (18°C). This is a result of the behavior of the temperature-

dependent component loads.

Refrigeration. From Figure 3.18 (b), refrigeration compressor loads seem to

be linearly related to outdoor air temperature. Below temperatures of 60°F to 65°F,

two modes of electricity use are seen. It is clear that there is a change-point operation.

This is discussed in the sub-section on bimodality which follows. The slope in the

refrigeration curve is due to the fact that when the outdoor air is warmer, the

condensers run hotter which requires the refrigeration compressors to run longer to

realize the desired cooling effect. Essentially, this makes the refrigeration cycle less

efficient. Both daily and hourly data reflect this trend. But as seen in Figure 3.19 (b),

hourly data have so much scatter that the temperature change-point seen in the daily

data is obscured.

HVAC. The main store HVAC load is due to two air-handling systems and

three of the smaller video store HVAC units. Both systems in the main store have a

set-point of 75°F (24°C) and 55% RH. The video store systems are set at 75°F.

Below the set-point, in the main store air-handlers, only the fans run. Above the set-

point, fans and compressors run.18 In Figure 3.18 (e), the outdoor air change-point

The two fans comprise 13.6 kW each. The four compressors draw between 17.1 and 29.3 kW each (measured on
different occasions).
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temperature for the combined HVAC load can be visually estimated at about 65 °F

(18.7°C). The HVAC load appears to have a linear relationship with temperature

above the change-point. The data below the change-point are thought to involve

mostly fan loads and dehumidification (one compressor) loads. Two modes of data are

clearly present below the change-point in both the hourly and daily data. The lower,

about 20 kW, is the fan load; the upper, at about 50 kW, is the fan load plus one

compressor which is being used during the heating season (when temperatures are

below about 75°F (24°C)) for dehumidification. This is a reheating process. This

bimodality shows up in the refrigeration compressor data as well.

Bimodality. The HVAC system is equipped with heat reclaim coils through

which hot refrigerant from the refrigeration compressors flows when space heating is

needed. These coils function as the refrigeration system condensers, and yield their

heat to the HVAC air stream. When reheat or dehumidification is occurring, chilled

air is blown across the heat-reclamation coils in the air duct. Since the air being blown

across them is often cooler than the outdoor ambient air, which otherwise is used to

cool the condensers, the refrigeration system operates more efficiently. The

bimodality in HVAC operation has the effect of producing a bimodality in the

refrigeration system energy use. These two modes may be seen in the refrigeration

data below about 65°F (18.7°C) (see Figure 3.18 (b)).

Below 65°F, there is less dependency on outdoor ambient temperature. This is

because when dehumidification is occurring, the condensers are by-passed so that heat

reclaim is possible, and the refrigeration system yields its waste heat to the HVAC air

stream. The temperature of this air stream does not change when outdoor air

temperature changes.

While the use of reheat with heat reclamation may help to explain the 65 °F

(18.7°C) change-point, there is another factor involved. In the compressor room, when

heat reclamation is not in use, the condenser coils are exposed to ambient air which is

drawn into the room and exhausted through the roof by four large fans. As described

in Section 3.2.1, these fans control the room air temperature, but do not let it drop

below 60°F (16°C). As outdoor temperature drops, the refrigeration system energy

consumption also decreases. However, during periods when outdoor temperatures fall

below about 60°F, compressor room temperature remains at or above 60°F, thus

eliminating the further effects of falling outdoor ambient temperature on the

refrigeration system energy use.
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When heat reclaim is used, and when one stage of cooling is necessary for

dehumidification purposes, energy is saved in two ways. First, the refrigeration

system provides the necessary space heating. Second, the heat reclaim coils serve as

the refrigeration system condenser coils; since these coils are exposed to air which is

cooler than the minimum compressor room temperature (60°F [16°C]), the

refrigeration system operates more efficiently. In Figure 3.20b, we see that in both

modes of refrigeration system energy use, below about 60°F, the curve is fairly flat.

This is to be expected since, whether the heat reclaim coils are being used or the

compressor room condenser coils are used to reject heat, the temperature at which the

system rejects its heat is fairly constant.

Since the fan load of the main HVAC units is between 25 and 30 kW, we were

able to determine from the sub-metered HVAC load when there was no cooling coil

load by looking for an HVAC energy consumption less than 30 kW. Thus, the sub-

metered refrigeration compressor load data were sorted into times when the heat

reclaim coils were or were not exposed to chilled, conditioned air. Figure 3.20a shows

the hourly refrigerator compressor data sorted according to when the HVAC cooling

system is on (designated by a filled symbol) and when it is not (unfilled symbol). In

the hourly data, it is difficult to determine if there is any difference in the refrigeration

load as a result of the HVAC cooling system. There is too much scatter in the data.

However, when daily averaged data are used, the difference in the two modes

is quite clear. The daily data in Figure 3.20b clearly show the two modes in the

refrigeration energy use which correspond to the two modes of HVAC system

operation below the change-point temperature, that is: 1) when one or more stages of

cooling are running (filled symbol), and 2) when only the air-handler fans are running

(unfilled symbol). This difference is only apparent when the outdoor temperature is

below the 65°F (18.7°C) change-point. This is to be expected since waste heat from

the refrigeration system is no longer used when the building is in the cooling-only

mode of operation.
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Figure 3.20 a,b Bimodality of refrigeration load, a) Scatter in hourly data make
the two modes of energy use below 65°F {16°C) difficult to see.
b) Daily data reveal the two modes of energy use. Sorting these
data shows that the lower mode corresponds to times when the
HVAC cooling stage is running. The higher refrigeration mode
corresponds to times when only the fans of the HVAC system
are in use.
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The video store HVAC system is comprised of five small roof-top units, the

two largest of which are monitored on the video store HVAC load. These systems

have a history of maintenance problems. The 3D plot of those data showed a

relatively high base load profile for the summer of 1991. This was the result of control

malfunctions which persisted for several months.

In Figure 3.18 (f), daily data for the video store HVAC system seem to fall into

two clusters separated by a step change — one cluster from 40 to 70°F (5 to 21°C), and

the other from 70 to 85°F (21 to 30°C). This is thought to be an effect of the

maintenance problems and staged operation of the air-conditioner compressors.

In the hourly video store HVAC data, shown in Figure 3.19 (f), a pattern of

eight modes, or "rays", can be seen. Each of the two air-conditioner units has two

compressors. Due to the staged operation of these compressors (each compressor may

either be on or off), there should be 2 x 2 x 2, or 8, modes of operation. This agrees

with the eight modes seen in the Figure 3.19 (f). The first mode is an almost flat

profile, as expected. This represents the fan-only operation of the two HVAC units19.

The second distinct mode appears at about 7 kW. This is the load of the first

compressor on one unit plus the fans on both units. We leave the reader to identify the

remaining modes. The scatter in between modes is due to the operation of the other

components of each HVAC unit — condenser fans, gas furnace blowers, and controls.

A zero base load appears in the video store HVAC profile for outdoor

temperatures less than about 65°F (19°C). This indicates that the two HVAC systems

on that channel are being completely shut off during periods when temperature falls

below 65°F (19°C). This can be seen in Figure 3.19 (f) as well. This should not be

too surprising since the video store has three other HVAC units (sub-metered along

with the main store HVAC) which may be operating when the first two are off. The

other three units are monitored along with the main store HVAC load. The base load

of the main store HVAC system is about 25 kW. There are times when only this load

occurs in the combined-store HVAC data. This occurs for outdoor temperatures

between -5° and 0°C (22° and 32°F). Thus, there are times when all of the video store

HVAC units must be either off or running in fan-only mode.

The fans referred to here are the evaporator fans.
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3.5 BUILDING STRUCTURE OF BRYAN STORE

Like the first case study store, the second store is located in a medium-sized

business plaza. Customer parking is available at the front of the store, while deliveries

are made at the rear. One-third of the southeast wall is shared with an adjacent, air-

conditioned office building, not associated with the store.

The construction of the second store is similar to that of the first. The exterior

walls are constructed of 6-inch (0.15-m), poured concrete, and have 3.5 inches (0.09

m) of batt insulation behind interior dry-wall. The northeast and southwest walls are

about 160 feet (49 m) and 330 feet (101 m) long, respectively, and 24 feet (7.3 m)

high. The northeast wall has a 60-ft by 10-ft (18-m by 3-m) glass section which serves

as the entrance to the store and includes a double-doored enclosure with automatic,

sliding doors. The roof is constructed of a metal deck which supports a 1.5-inch (0.04-

m) layer of styrofoam insulation, a 2-inch (0.05) concrete slab, and a built-up roof

covered with light-colored aggregate. A plan view of the store is shown in Figure

3.21.

The building is a single-story structure with 16-foot (4.9-m) drop ceilings and a

total area of 48,800 ft2 (4,540 m2). The front floor area is used for product display, and

the rear walk-in coolers and freezers, and the meat and produce preparation areas. The

store contains about 500-ft2 (46-m2) office space located above the produce area, and a

150-ft2 (14-m2) mechanical room located above the loading dock in the rear of the

store.

3.6 MAJOR ELECTRICAL EQUIPMENT OF BRYAN STORE

This section describes the major energy-using equipment in the Bryan store.

The information was gathered in walk-through surveys consisting of nameplate

readings and actual clamp-on power readings (where possible). Lighting and

miscellaneous utility equipment in the Bryan store runs at 120 VAC and 208 VAC,

while air-conditioning and refrigeration compressors run at 480 VAC. A detailed

listing of the loads can be found in Appendix B of this thesis. The electrical end-use

distribution at the Bryan store is not as well organized as it is at the College Station

store. There are lighting loads on the miscellaneous utility circuit, and utility loads

and a few HVAC loads on the lighting circuit. Because of this, the four main end-use

categories listed below — refrigeration, HVAC, lighting, and utility — do not

necessarily coincide with the load categories measured through the electrical sub-

metering.
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Figure 3.21 Plan view of the Bryan grocery store.
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3.6.1 Refrigeration Equipment.

Twenty-three single-mounted compressors are used to cool the

refrigeration/freezer cases and coolers in the facility. Thirteen use refrigerant R12, and

ten use refrigerant R502. The total compressor nameplate capacity is 196 hp, or 162

kW input. Condenser fans comprise 7.3 kW (nameplate). The electric resistance

defrost heaters have a total nameplate load of 40 kW.

Including condenser fans, the measured, connected compressor system load is

142 kW. Some display cases use hot gas defrost provided by the compressors to melt

the ice which forms on the evaporator coils. Others use the electric resistance heaters

for this purpose. A high load of 167 kW was measured during defrost cycles, implying

an electric defrost load of 25 kW. Time clocks control the compressor defrost cycles.

The defrost cycles last up to 1 hour or until the cooling coils reach 70°F (21°C). The

compressors are summarized as follows in Table 3.3.

Outdoor ambient air is circulated through the compressor room by five 6-hp

fans which have a total nameplate load of 28 kW. These fans come on in stages

beginning when the temperature difference across the condenser coils is about 8°F

(4°C), and ending when the compressor room ambient temperature is less than about

60°F

The total connected load of the compressor system and exhaust fans, based on

measured loads, is 170 kW under normal operation, and 195 kW during coincident

defrost periods. The peak load based on nameplate information is 197 kW during non-

defrost periods, and 237 kW during coincident defrost periods.

Approximately seventy-six display case sections display the frozen goods.

There are seven walk-in coolers which are used to store meat and other frozen foods.

These loads — case lighting, fans, and anti-sweat heaters — are connected to what was

designated as the lighting circuit of the store.20 The peak connected nameplate load of

the refrigeration case fans and anti-sweat heaters is 36 kW during non-defrost periods.

Including defrost heaters, the peak load is 76 kW. See the section on lighting below

for more information.

This is different than the case loads for the College Station store.
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TABLE 3.3

Refrigeration Compressor Summary for Bryan Store

* Hot gas defrost. Some display cases use electric heaters for defrost. Electric heater loads are part of
the Miscellaneous Utility loads (see below).
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3.6.2 HVAC Equipment

Twelve roof-top HVAC units having a total cooling capacity of 114 tons heat

and cool the facility. The units are controlled in groups by four zone controls which

demand heating or cooling based on four indoor dry-bulb temperature sensors. The

store set point is 75°F (24°C) dry-bulb. There is no humidity control in the Bryan

store. The total peak cooling load of the air-conditioning units totals 183 kW

(nameplate), giving an overall EER of 7.47 Btu/hr-W.21 During the six months since

monitoring began, normal running load of the HVAC system has not exceeded about

90 kW. The systems are detailed in Table 3.4

Space heating is provided by means of natural gas-fired heaters installed in

seven of the HVAC units. These heaters have a total capacity of 1,215,000 Btu/hr

(356 kWth). Unlike the College Station store, these units do not utilize heat

reclamation from the refrigeration compressors. For the years of 1990 to 1992, the

Bryan store used an average of 691 million Btu/yr of natural gas for heating. This is

14,200 Btu/ft2-yr - about 4,200 Btu/ft2-yr less than the College Station store.

3.6.3 Lighting

The main store's interior is primarily lit by fluorescent lamps ranging from 40

to 100 W/lamp. Of these, there are approximately 1544 overhead lamps in the sales

area (with a total nameplate load of 91 kW), 289 overhead lamps for non-sales areas

(18 kW), and 414 refrigerated case and rack lamps (24 kW).

About one-half of the sales and back room overhead lights, all bakery lights,

and lights on perimeter refrigeration cases are shut off at 10:00 a.m. by the store

manager. They are turned back on around 8:00 a.m. This is currently done by

2 1 The total rated capacity of the units is 114 tons. At 12,000 Btu/hton, the bulk rated capacity of the HVAC units is
1.37(106) Btu/h. Dividing this by the peak rated electrical load of 183 kW gives an EER of 7.47 Btu/hrW.
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TABLE 3.4

HVAC System Summary for Bryan Store

* converted to equivalent Btu/h
** These units are connected to the store's Utility circuit
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switching the power off at the electrical panel in the rear of the store. This pattern of

electricity use can be seen in Figure 3.22 which shows a day's worth of hourly data

from the sub-metered circuit which is primarily lighting.22

The main store also has 10 metal halide lamps (175-W). These amount to a

connected load of 2.1 kW including ballast loads.

The exterior lights, used to illuminate the front and rear parking lots, consist of

14 1,000-W and six 400-W high-pressure sodium lamps which have a total connected

load of 20.5 kW (nameplate). All outside lamps are controlled by a time-clock inside

the store. They are set to switch on at about 6 p.m., and switch off at 8 a.m. (see

Figure 3.23) The timer pins are adjusted twice a year to account for daylight savings

time. These lights are not on the designated lighting circuit, but are connected to the

utility circuit.

The peak connected load of all the lights in the store is 159 kW (nameplate),

though the average daily load adjusted for schedules is 113 kW. This amounts to a

71% diversity factor.

There are approximately 76 refrigerated display case units. The evaporator

fans and anti-sweat heaters of these cases contribute about 34 kW to the lighting

circuit load. Some cases use electric heaters for defrost cycles. As mentioned earlier,

these heaters have a total nameplate load of 40 kW. Seven walk-in coolers and

freezers are located in the store's back rooms, which have a total evaporator fan load of

2.1 kW during normal operation. Thus, the peak connected nameplate load of the

refrigeration case fans and anti-sweat heaters is 36 kW. This represents 18% of the

total nameplate load on the lighting circuit.

The total load on the lighting circuit, including lights and display case loads, is

195 kW.

There are some meat department equipment loads on this circuit as well.
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Figure 3.22 Lighting schedule profile for a typical day (01/01/93) at the
Bryan store. While this indoor lighting circuit contains
refrigeration case fan and anti-sweat heater loads, the effect of
the indoor store lighting system schedule is clear. About half of
the overhead sales area lights, and all perimeter case lights are
turned off at 10:00 p.m., and turned on at 8:00 a.m.
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Figure 3.23 Utility load profile for a typical day (01/01/93) at the Bryan
store. The parking lot lights, which represent about 20 kW, are
connected to the utility circuit. Their switch-on and switch-off
can be seen at 6p.m. and 8 a.m., respectively.
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3.6.4 Miscellaneous Utility

The remaining electrical loads mentioned in this section are listed in detail in

Appendix B.

There are 32 pieces of food-processing equipment used for the preparation of

meat and deli goods. These items have a total connected load of 114 kW (nameplate)

and are used when needed.

One 5-hp trash baler is located in the loading dock room. At an efficiency of

0.85, its connected load is 4.6 kW.

The store has 13 point-of-sale registers throughout the store which have a total

connected load of 6.8 kW (nameplate). These are connected to its Utility circuit.

The total, peak utility load is 125 kW, though this never occurs since all utility

loads rarely run at the same time.

There are two roof-top HVAC units which are connected to the store's

miscellaneous utility circuit. These units have a combined, measured load of 16 kW,

and a peak nameplate load of 21 kW. As mentioned above, the parking lot lights,

representing a nameplate load of 21 kW, are connected to the utility circuit.

3.6.5 Natural Gas

The store uses natural gas for heating purposes only. The HVAC gas use is

described in Section 3.8.

3.7 ELECTRICAL SUB-METERING OF BRYAN STORE

The Bryan store has only recently come under study (since the Fall of 1992).

An attempt was made to obtain the same information about the second store as about

the first. The monitoring scheme for the Bryan store is similar to that in the College

Station store, although the sub-metered electrical circuits do not divide the store's

electricity end-uses as distinctly as the sub-metering at the College Station store. Four

component end-use loads of interest for the store were sub-metered. These were:

1) refrigeration compressor, condenser, and defrost heater loads.

2) interior and refrigeration case lighting, fan, and anti-sweat heater loads;

some meat preparation equipment.
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3) ten of twelve roof-top HVAC unit loads.

4) miscellaneous utility loads, food preparation, exterior lights, two of

twelve HVAC unit loads.

Loads were monitored and data were polled in the same manner as for the first

case study store. Figure 3.24 shows the layout for the store monitoring. Because the

electrical layout does not group all lighting and utility loads separately, there was no

way to completely distinguish lighting loads from utility loads with the level of sub-

metering used. However, experience with the College Station store suggests that this

is not a problem since, for analysis purposes, the lighting and utility loads are treated at

one combined, constant load. Thus, the level of sub-metering at the Bryan store was

considered adequate for this study. Since the store has only been monitored for less

than a full year, much of the analyses performed on the first store cannot yet be done

on the second. This store will be useful material for future study, although it will be

considered in Chapter 5.

Figure 3.25 is a plot of the Bryan store's electricity use and demand from

January 1990 to January 1993. Unlike the College Station store, its electricity

consumption has remained fairly constant over the past three years. There have been

no major modifications to this store's electrical system in that period. The Bryan store

used an average of 3,884,000 kWh/yr in the two years (1991-1992) since the multi-

store energy use survey (in Chapter 2). This amounts to an electricity energy use

intensity (EUI) of 9.1 W/ft2 (98 W/m2). These values do not differ significantly from

those reported in the multi-store survey. Figure 3.26 shows monthly natural gas

consumption from January 1990 to January 1993. The Bryan store used an average of

734 million Btu/yr of natural gas during 1991 and 1992. This is about 120 million Btu

more than the College Station store. This amounts to a gas EUI of 15,000 Btu/ft2-yr —

only 400 Btu/ft2-yr less than the College Station store. However, the Bryan store's

peak gas use is significantly higher than that of the College Station store. High peak

consumption can be seen in January of each year. This is clearly a result of space

heating requirements during the very cold months. This occurs because the Bryan

store does not use reclaim heat from the refrigeration system. Significant space

heating is only used during one or two months per year for the past three years (1990

to 1992). The store's base-level consumption is about 35 million Btu/month. This is

attributed to the heater pilot lights. Based on utility bill information, the average
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Figure 3.24 Sub-metered Electrical Circuit in the Bryan Store



83

Figure 3.25 Historical Monthly Electricity Use from January 1990 to
January 1993 for the Bryan store.
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Figure 3.26 Monthly natural gas consumption for the Bryan store.
Gas use for 1990 to 1993 is less than 50 million Btu per month
except in peak heating seasons. Heating is only needed for
about one month per year. In January, 1992, the gas use was
nearly 400 million Btu. Over the past three years, the over-base
amount of gas used for heating was an average of 245 million
Btu/yr. The use of heat reclaim from the refrigeration system
could eliminate the need for gas heating, and would save about
$l,090/yr.



85

annual amount of gas used for heating is 245 million Btu/yr. If heat reclaim were used

to supply this heating requirement, an estimated $l,090/yr in natural gas bills could be

saved.

Figure 3.27 (a) shows the breakdown of peak electricity end-uses in the Bryan

store based on nameplate power ratings. Figure 3.27 (b) shows a more general

breakdown based on four sources of information - one half year's worth of sub-

metered energy use data from the Bryan store, the breakdown given by Schrock (1989)

for the College Station store, and the breakdown given by DOE (1981) for the store

studied in that reference. Because the descriptions for the loads in the lighting and

utility categories overlap to such an extent, they were treated as one category for

Figure 3.27 (a and b). Based on the nameplate data, the utility and lighting groups

account for 46% of the peak energy use for the Bryan store (compared to 51% for the

College Station store). As in the case of the College Station store, the percentage of

whole-building energy use attributed to the refrigeration system seems to be overstated

by DOE (1981). The nameplate data, sub-metered data, and Schrock's survey all

estimate the refrigeration system to use between 30% and 35% of the whole-building

electricity, compared to the nearly 40% given by DOE. For the HVAC and lighting

and utility categories, the percentages given by the nameplate data, Schrock, and DOE

are in fair agreement. However, the sub-metered data seem to understate the

contribution due to HVAC (6%), and overstate the contribution due to lighting and

utility loads (60%). This is due to the fact that a full year's worth of data was not

available; much summertime HVAC load was not included. Also, as discussed in

Section 3.6.4, some of the HVAC load is on the utility circuit. Table 3.5 lists the

component nameplate loads and their relative percentages of total store electricity use.

3.8 ENERGY CONSUMPTION DATA FOR BRYAN STORE

3.8.1 Summary Plots

The usefulness of energy consumption plots was informally tested by

establishing an information loop with the store management. Recorded data were

presented the format of weekly summary plots.

Examples of the summary plots are shown in Figure 3.28. The four main loads

are plotted with respect to both time and temperature. Ambient hourly weather

conditions were provided by a weather station located approximately two miles away,

and are plotted along the right edge of the summary page.
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Figure 3.27 a,b Percentages of Nameplate Contribution to Peak and Measured
Contribution to Electricity Use for the College Station store,
(a) End-use contribution based on nameplate data; (b)
Contribution based on Schrock (1989), 1992 nameplate survey,
1992 sub-metered data, and DOE (1981) survey.
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TABLE 3.5

Description of Loads Included in Group Breakdown for the Bryan Store

(a) Schrock (1989)
(b) 1992 Survey
Nameplate Peak (c) 1992 Sub-metered (d) DOE (1981)

Compressors
(33%)
Refrigeration
compressors, condenser
fans.

HVAC
(27%)
Air-conditioning loads
from the two main
units.

Lighting and Utility
(40)
sales area lighting,
office, outdoor lights,
cash registers, display
case lighting, food
preparation equipment,
case evaporator fans
and anti-sweat heaters.

Compressors
(32%)
Refrigeration
compressor, condenser
and exhaust fans.

HVAC
(22%)
Air-conditioning loads
from 10 of 12 units.

Lighting and Utility
(46)
sales area lighting,
office, display case
lighting, some
receptacles, meat dept.
equipment, food prepa-
ration, misc. receptacle
loads, case fans and
anti-sweat heaters,
outdoor lights, cash
registers, 2 of 12
HVAC units.

Compressors
(34%)
Refrigeration
compressor, condenser
and exhaust fans.

HVAC
(6%)
Air-conditioning loads
from 10 of 12 units.

Lighting and Utility
(60)
sales area lighting,
office, display case
lighting, some
receptacles, meat dept.
equipment, food prepa-
ration, misc. receptacle
loads, case fans and
anti-sweat heaters,
outdoor lights, cash
registers, 2 of 12
HVAC units.

Compressors
(39.0%)
compressors,
condensers, case fans.

HVAC
(17.0%)
air-conditioning, fans,
electric heat.

Lighting and Utility
(45)
sales area, office, and
outdoor sign lights.



88

Figure 3.28 Summary inspection plots for Bryan store.
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3.8.2 Constant and Schedule-dependent Loads

Following the format of the graphical presentation used in the College Station

store, scatter plots of the Bryan store whole-building and component electricity loads

were made. Figure 3.29 shows plots for daily data which were derived by averaging

hourly data. Figure 3.30 shows plots of the hourly data themselves. However, only a

half year's worth of data were available - from 12/20/92 to 6/28/93. Nevertheless,

from the plots of half-year data, it is still easy to see which component loads are

sensitive to outdoor temperature and which are not. The whole-building data, shown

in Figure 3.29 (a) have a strong temperature change-point characteristic. Much the

same as for the College Station store, there is a noticeable bend in the curve at about

64°F (18°C). This is a result of the behavior of the temperature-dependent component

loads. Both stores have a whole-building load between 350 and 500 kW.

Lighting and Utility. The miscellaneous utility load, shown in Figure 3.29

(d), is rather constant below 20°C (67°F), and increases slightly for temperatures

above 20°C. This is in contrast to the College Station store, the utility load of which is

quite constant over all temperatures. The daily data predict close to the average of the

hourly data, shown in Figure 3.30 (d). There are two roof-top HVAC units on the

utility circuit. One of them serves a conference room, and is rarely used. The other,

representing a load of about 10 kW, serves the manager's office. The energy use of

these HVAC units can be seen in the daily utility circuit data when the outdoor

temperature is above 20°C (67°F). Apart from the effects of the HVAC units, the

daily and hourly Utility data do not vary with respect to outdoor temperature.

The average value of the daily miscellaneous utility data is 55.5 kWh/h. The

maximum nameplate load of utility equipment is 125 kW. But not all of this

equipment is connected to the utility circuit; some of it is connected to the lighting

circuit. Likewise, some of the loads on the utility circuit are lighting loads. For this

reason, for the purposes of further modeling, the lighting and utility loads might be

considered as one composite load. Experience with the College Station store suggests

that this is a reasonable approach since the lighting and utility loads are considered to

be constant base loads for purposes of change-point analyses.
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Figure 3.29 a-e Scatter Plots of Daily Loads vs. Outdoor Dry-bulb Temperature
for the Bryan store.
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Figure 3.30 a-e Scatter plots of Hourly Loads vs. Outdoor Dry-bulb
Temperature for the Bryan store.
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Unlike the College Station store, the lighting circuit does not include the

outdoor lights.23 However, half of the interior lights are turned off from 10:00 p.m.

until 8:00 a.m. Thus, in Figure 3.30 (c), two distinct modes of usage may be seen in

the hourly lighting data - one during the early morning when many of the interior

lights are off; and one during the day, when only interior lights are on. Figure 3.22,

discussed previously, shows the lighting schedule profile for a typical day at the Bryan

store.

Because the indoor lighting schedule does not change from day to day, nor

does it vary with temperature, its variation should not show up in the daily data. For

the College Station store, it was the outdoor lights which cause the lighting load to

exhibit a slope. Yet, even though the outdoor lights at the Bryan store are not

connected lighting circuit, the daily lighting data do appear to have a slope. The daily

average energy use increases as outdoor temperature increases. One plausible

explanation comes when we consider the refrigeration case anti-sweat heaters which

are on the lighting circuit. The amount of moisture in the air tends to increase as the

days get warmer. This implies a proportional relationship between specific humidity

and dry-bulb temperature. Because the Bryan store has no dehumidification in its

HVAC system, an increase in outdoor temperature and humidity may be creating an

increase in indoor humidity. The case anti-sweat must run longer and more often in

order to counter the increased latent load on the case doors and cooling coils.24

Compounding this effect is the fact that during the hotter and more humid seasons,

customers may be purchasing more frozen goods, thus increasing the duty factor on the

display cases, and thereby increasing the amount of moisture which collects on the

doors. Figure 3.31 shows the daily average lighting load plotted with respect to

outdoor specific humidity. A slight increase may be seen as humidity increases.

Refrigeration. Refrigeration compressor loads seem to be linearly related to

outdoor air temperature, with only a slight change-point at about 16°C (61°F). The

reasons for the temperature dependency have already been discussed in Section 3.4.3.

The refrigeration capacity for the Bryan store is similar to that for the College Station

2 3 They are connected to the store's miscellaneous utility circuit. Note the 20 kW step seen in Figure 3.NEW.23 caused
by the parking lot lights switching on and off.

Conversations with the chief facilities engineer indicated that it was likely that some of the anti-sweat case door
heaters were controlled by humidity sensors in the doors.
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Figure 3.31 Lighting load versus outdoor specific humidity for the Bryan
store.
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stores. However, the Bryan HVAC system does not use heat reclaim; therefore, there

is no bimodal pattern in the refrigeration compressor load. There is, however, a slight

change-point in the compressor data. Regression analysis of the type used by Ruch

and Claridge (1991) determined this change-point to be 16°C (61°F). As described in

Section 3.6.1, the fans in the compressor room control the room air temperature, and

do not let it drop below 16°C (61°F). This means that outdoor air temperatures below

16°C do not have as much effect on compressor energy use by way of the condenser

coils which are inside the compressor room. The fact that we nevertheless see a slight

temperature-dependency for outdoor temperatures below 60°F means that the

compressor room is never completely shut off from the outdoor air. This could mean

either than the exhaust fan controls are not functioning properly, or that due to the

amount of heat generated in the compressor room, the room temperature is always

higher than 60°F, thus never allowing the fans to shut off.

HVAC. Ten of the twelve roof-top HVAC units are monitored as part of the

HVAC data. They represent 89% of the 183 kW of connected HVAC capacity. These

HVAC data are displayed in Figure 3.29 (e) and Figure 3.30 (e). We have

accumulated six months of hourly and daily data on these systems. While this is not a

full year's worth, it is enough to give some indication of a change-point characteristic

in the HVAC system. This can be seen in both the hourly and daily data. The

maximum load observed so far is about 90 kW. Because there is no dehumidification,

there is no cooling load during very low outdoor temperatures (below about 50°F

[10°C]). Below this temperature, only fan loads (5 to 10 kWh/h) exist. The store

management claims that the fact that there is no dehumidification results in

unsatisfactory indoor air quality conditions. The Bryan store HVAC system is

representative of systems in stores acquired by the retail company — rather than those

constructed by it. Stores constructed by the company have central HVAC systems like

the one at the College Station store.

3.9 SUMMARY

The annual energy use for the College Station store in the years since 1990 is

significantly different than that reported in the multi-store survey in Chapter 2. The

energy use from 1991 onward include the loads of the video store. In general, energy

use has increased since the annexation of the video store, while energy use intensities

have decreased. Average values for each period are shown below:
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The annual energy use for the Bryan store has remained fairly constant over the

years. Average values for each period are a follows:

Due to time constraints, the Bryan store could not be studied as thoroughly as

the College Station store. This work may be left for future research. However, the :

following are general conclusions about both case study grocery stores surveyed in this

report.

1) The sub-metering of component electricity loads in the College Station store

proved useful in making the store management aware of operational and

maintenance problems. In this study, the feedback was handled manually;

however, it is expected that automated methods could have easily provided j

similar information. Problems such as lighting shut-off were spotted quickly

through the feedback process.

3) For this study, peak nameplate and survey readings for electricity loads were

moderately good proxies for sub-metered end-use loads insofaras relative

percentages of energy use are concerned, though they tended to over estimate the

contribution due to miscellaneous utility loads which do not run at all times.
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4) Simple scatter plots of electricity use versus outdoor temperature were useful in

gauging the temperature-dependency of certain component loads. They also

provided a visual means of comparing the component loads to each other and to

whole-building electricity use.

5) Daily data were found to be good indicators of the patterns of hourly electricity

use in the case study store for all loads except lighting which exhibits strong time-

of-day characteristics.

In specific, we note the following:

6) The lighting systems of both stores are comparable. The College Station store has

142 kW of indoor lighting, amounting to 2.6 W/ft2 (28 W/m2). The Bryan store

has 138 kW of indoor lighting, amounting to 2.8 W/ft2 (30 W/m2).

7) In both stores, refrigeration and HVAC loads were found to be dependent on

outdoor temperature, while lighting and miscellaneous utility loads were not.

8) Both the College Station and Bryan stores have refrigeration and HVAC loads

that are temperature-dependent.

9) Both stores have change-points in whole-building, HVAC, and refrigeration

loads. The refrigeration systems of both stores exhibit a change-point temperature

at about 60°F(16°C).

10) The College Station store employs heat reclaim from the refrigeration system. As

a result, the refrigeration energy use exhibits a bimodal characteristic below the

change-point temperature.

11) The most significant difference between he two stores is in their HVAC systems.

The Bryan store lacks heat reclaim and dehumidification, and uses natural gas for

heating.

12) The College Station store uses about 851 million Btu/yr, or 15,400 Btu/ft2-yr or

natural gas whereas the Bryan store uses about 690 million Btu/yr, or 14,200

Btu/ft2-yr. Nevertheless, the Bryan stores peak gas use is significantly higher than

that of the College Station store due to the fact that it uses gas for space heating.
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CHAPTER IV

CP/PCA AND CP/MLR MODELING

This chapter presents the results of the comparison of two modeling techniques

— multiple linear regression (MLR) and principal component analyses (PCA) - for one

year's worth of whole-building data from the College Station grocery store. First, the

1989 MLR and PCA grocery store models developed by Ruch et al (1991) are

discussed. Pre-analysis adjustments to the 1992 data are then reviewed. Next, the

results of the MLR and PCA analysis of the 1992 energy data are presented and

compared to the 1989 models. Finally, the 1992 whole-building models are compared

with component refrigeration and HVAC models and with building energy use

predictions based on standard ASHRAE1 diversified load calculation methods,

outlined in Knebel (1983), to determine whether MLR or PCA analysis gives

parameters which are more physically meaningful.

4.1 BACKGROUND

Ruch et al. (1991) developed a change-point/principal component (CP/PCA)

model for the electricity use for the case-study store prior to the annexation of the

video rental store (1989 data). They concluded that the CP/PCA model, with one

primary component removed, provided more stable parameter estimates than did the

corresponding MLR model.

In order to test the usefulness of the Ruch et al. MLR and PCA 1989 models,

they were used with 1992 weather and sales data to predict the 1992, total daily energy

consumption. Independent variables used were outdoor dry-bulb temperature (°C),

outdoor specific humidity (kg moisture/kg air), solar radiation (W/m2), and sales

($/day).

Unfortunately, the store's energy use has changed since 1989. This change

occurred with the addition of a video rental store (containing loads HVAC and

lighting) and two new dairy compressors which introduced loads that Ruch's 1989 data

set models could not predict. Therefore, before the analyses and comparisons could be

American Society of Heating, Refrigeration, and Air-conditioning Engineers
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performed, it was necessary to subtract estimates of the energy use of the video store

and dairy compressors from the 1992 whole-building data.

Two 7.5-ton video store HVAC units, described in Chapter 3, were sub-

metered separately, and their energy use could easily be subtracted from the whole-

building electricity use data. However, the energy use of the third 7.5-ton unit and the

two 5-ton units was included in the whole-building HVAC data. This required that an

estimation of their energy use be subtracted from the main store's electricity data.

According to store maintenance personnel, one 5-ton unit was disconnected during the

spring of 1992 due to mechanical problems, and is no longer used. With no other

information available, the EER ratings of the AC units were assumed to be the same.

Thus, the ratios of their electricity energy consumptions were assumed to be

proportional to the ratios of their rated cooling capacities (tons). Based on this

assumption, the total video store HVAC load was estimated to be 1.83 times the sub-

metered load of the two 7.5-ton units.

The lighting load was estimated in a lighting count to be 29.6 kW. Because the

lights are not on 24 hours per day, this value was modified to a constant 21.4 kW to

account for scheduling effects. The loads of the two new refrigeration compressors

were measured in a walk-through survey along with the other refrigeration

compressors. These accounted for about 9.1 % of the remaining, sub-metered

refrigeration load. One assumption in this adjustment procedure was that the

variations in the new HVAC and refrigeration loads were proportional to those of the

corresponding systems in the main store which existed at the time of the Ruch et al.

study.

The estimations of the new loads were subtracted from the whole-building

consumption data set. From a simple linear regression of the adjusted 1992 data, a

simple 4-parameter change-point model was identified. The adjusted 1992 model, the

unadjusted 1992 model, and the 1989 model are as follows:
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where T is the outdoor ambient dry-bulb temperature, (°C). Energy use in is kilowatt-

hours per hour. The superscript" indicates that the term to which it is applied is only

applicable when it is negative, and zero at all other times. Similarly, the superscript +

indicates that the term to which it is applied is only applicable when it is positive, and

zero at all other times.

Figure 4.1 shows the three four-parameter whole-building electricity models

which predict consumption based on outdoor temperature. One model was developed

by Ruch and Claridge (1991) from 1989 daily data; the second is the model identified

from adjusted 1992 data; the third is the model identified from the unadjusted 1992

data. There is a noticeable difference between the 1989 and unadjusted 1992 models,

implying a difference in the data. The electricity use is higher in 1992 than in 1989,

and the change-point temperature has changed from 15.4°C (59°F) to 18.7°C (65°F).

However, adjusting the 1992 data yielded a model which agreed with the 1989 model

predictions to within 3.5%. It is difficult to accurately estimate the effect this has on

the change-point of the data themselves. The adjusted 1992 data have a change-point

of 18.7°C (65°F) rather than 15.4°C (59°F). It is worth noting that Ruch and Claridge

used only 191 data points, whereas 359 were available for the development of the

1992 models. This may also be contributing to the difference in change-points. There

were no other physical changes to the store between 1989 and 1992 other than those

already considered. But while the model change-points vary, the data-adjustment

approach sufficiently demonstrates that adding the estimated loads of the video store

lighting, HVAC, and the new dairy compressors to the 1989 data helps to explain the

difference between the 1989 and 1992 whole-building consumption data. Thus, these

new load estimates were subtracted from the whole-building consumption data before

multivariate MLR and PCA models were developed and compared to each other.

After the 1992 data were adjusted to 1989 building conditions, climate and

sales data for 1992 was compared to that of 1989. The correlations between the

variables of daily average temperature, specific humidity, solar radiation, and sales for

each of the two periods are shown in Figure 4.2. Correlations between independent

and dependent variables for the 1992 data are shown in Table 4.1a and Table 4.1b.
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Figure 4.1 1989 and 1992 models of whole-building electricity data.
Estimates of the video store HVAC and lighting loads, and new
dairy compressor loads were subtracted from the 1992 whole-
building data which were modeled to predict whole-building
electricity use within 5.1% of the 1989 model predictions. This
technique will be used in adjusting the 1992 data for PCA and
MLR modeling.
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TABLE 4.1a

Correlation Matrix for Old 1989 Data Set (all data)

TABLE 4.1b

Correlation Matrix for New 1992 Data Set (all data)
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Figure 4.2 Pearson Correlation Coefficients.
The relationships between the climate variables in 1989 and
1992 have remained similar.
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Reddy and Claridge (1993) concluded that PCA should do a better job at

identifying the true parameters of the model than MLR if either:

a) one or more pair of regressor variables has correlation coefficients of

0.5 or higher, and the model R2 value is less than about 0.5.

or,

b) only one pair of regressor variables has correlation coefficients of 0.8 or

higher, regardless of the model R2 value.

As can be seen in Table 4.1b, Reddy and Claridge's case (b) applies to the 1992

data when the whole year is considered. However, like MLR, PCA is a linear

modeling technique. Because the data exhibit a non-linear characteristic due to the

change-point operation of the HVAC and refrigeration systems, it was appropriate to

perform a piece-wise regression on the data as Ruch did. When this was done, the

correlations between the regressor variables changed (see Tables 4.2-4.5).

The largest correlation between regressor variables for the 1992 data above the

change-point was 0.759. This is close to Reddy's criterion of 0.8, though the R2 value

of the MLR and PCA models, above change-point, was high (above 0.8). This data set

fits Reddy and Claridge's case (b).

However, for the 1992 data below the change-point, the largest correlation

between regressor variables was about -0.580, followed closely by -0.489. The R2

values for the below change-point MLR and PCA models did not exceed 0.503. This

data set seems to fit case (a).

There was, therefore, some reason to believe that PCA methods would yield

more realistic models than MLR. But the physical significance of the parameter

coefficients would have to be tested.
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TABLE 4.2

Correlation Matrix for 1989 Data set above CP of 15.4°C (59°F)

TABLE 4.3

Correlation Matrix for New 1992 Data set above CP of 18.7°C (65°F)

* electricity adjusted to remove effect video store and new dairy compressors



105

TABLE 4.4

Correlation Matrix for 1989 Data set below CP of 15.4°C (59°F)

TABLE 4.5

Correlation Matrix for New 1992 Data set below CP of 18.7°C (65°F)
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4.2 MODEL IDENTIFICATION

4.2.1 Above-CP Region

The 1989 MLR and PCA models developed by Ruch et al., were tested by

seeing how well they could predict the electricity consumption for the adjusted 1992

data set. Tables 4.6 and 4.7 show the eigenvector matrices used to translate from the

original variables to principal components for the above-change-point region. Model

parameters are shown in Tables 4.8 and 4.9.

1989 Models. The 1989 MLR and 2-PC PCA models for whole-building

electricity use (kWh/day) above the change point of (15.4 °C [59°F]) were,

EMLR = 129.08 • (Temp °C)
+ 1.48-(Solar W/m2)
+ 36001 • (Spec.Hum. kg w/kg a)
+ 5133.27 (4.2a)

E r c A = 98.82 • (Temp °C)
+ 2.55 • (Solar W/m2)
+ 59227 • (Spec.Hum. kg w/kg a)
+ 5423.48 (4.2b)

1992 Models. The new CP/PCA and CP/MLR models developed from the

1992 data above the change point (18.7°C [65°F]) were,

EMLR = 194.02 • (Temp °C)
0.6352 • (Solar W/m2)
2950 • (Spec.Hum. kg w/kg a)

+ 4432 (4.3a)

EPCA = 92.7 • (Temp °C)
+ 2.216-(Solar W/m2)
+ 77587 • (Spec.Hum. kg w/kg a)
+ 5281 (4.3b)
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TABLE 4.6

Eigenvectors for 1989 PCA Model above CP of 15.4°C (59°F)

TABLE 4.7

Eigenvectors for 1992 PCA Model above CP of 18.7°C (65°F)



TABLE 4.8
Regression Summary: 1989 Models as Used on 1992 Whole-building Data

Above CP of 15.4°C (59°F)
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TABLE 4.9
Regression Summary: 1992 Models as Used on 1992 Whole-building Data

Above CP of 18.7°C(65°F)
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4.2.2 Below-CP Region

Tables 4.10 and 4.11 show the eigenvector matrices used to translate from the
original variable to principal components for the below-change-point region.

TABLE 4.10
Eigenvectors for 1989 PCA Model below CP of 15.4°C (59°F)

TABLE 4.11
Eigenvectors for 1992 PCA Model below CP of 18.7°C (65°F)
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TABLE 4.12
Regression Summary: 1989 Models as Used on 1992 Whole-building Data

Below CP of 15.4°C (59°F)
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TABLE 4.13
Regression Summary: 1992 Models as Used on 1992 Whole-building Data

Below CP of 18.7°C(65°F)
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4.3 MODEL COMPARISON: PCA VS. MLR

Figures 4.3-4.6 are scatter plots of the MLR and PCA models, 1992 adjusted

data, and residuals versus temperature. When used to predict 1992 daily electricity

consumption, the 1989 CP/PCA model has an R2 value of 92%, and a CV of 4.1%, as

compared to the MLR model, which has an R2 value of 91%, and a CV of 4.4% (see

Table 4.14). It is interesting to note that when Ruch evaluated his models by using the

1989 data from which they were derived, the PCA model had a lower R2 value than the

MLR model, and a higher CV. However, when the models are used to predict data

from which they were not derived, the PCA model is the better predictor.

TABLE 4.14
Summary of Performance of Models over 1992 Data Set

* adjusted

When used to predict 1992 daily electricity consumption, the 1992 CP/PCA

model had an R2 value of 95%, and a CV of 3.3%, as compared to the MLR model,

which had an R2 value of 95%, and a CV of 3.2%. The new models have slightly

better R2 values and CVs than the 1989 models. Part of this is to be expected since

they were developed from the 1992 data.

For data above and below the change-point, the 1989 and 1992 PCA model

parameters agreed much more closely than did the MLR model parameters. Table

4.15 shows the differences between the MLR parameters, for temperatures above the

change-point, from 1989 to 1992.

T-*



115

Figure 4.3 Scatter Plot of 1989 MLR Model Predictions and 1992
Measured Data.

Figure 4.4 Scatter Plot of 1989 PCA Model Predictions and 1992
Measured Data.
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Figure 4.5 Scatter Plot of 1992 MLR Model Predictions and 1992
Measured Data.

Figure 4.6 Scatter Plot of 1992 PCA Model Predictions and 1992
Measured Data.
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TABLE 4.15

Percent Differences in Model Parameters for 1989 and 1992 Models*

For the temperature parameters, the difference between the 1989 and 1992 MLR

models was 50%. However, for the corresponding PCA temperature parameters, the

difference was only -6.2% — eight times less for MLR. In every case, the 1989 and

1992 PCA parameters agree more closely with each other than do the MLR

parameters. That is, PCA seemed better than MLR at re-identifying the same

parameters when used to predict data from different time periods.

Figure 4.7 shows the four measured end-use loads - HVAC, utility,

refrigeration compressors, and lighting — plotted individually and added in succession.

All four loads added together comprise the whole-building load. It was initially

thought that the parameters of the PCA and MLR models had direct physical

significance with regards to these loads. For example, we considered whether the

temperature parameter of the whole-building model represented the sum of the two

temperature-dependent loads — refrigeration and HVAC. From examining Figures 4.7

to 4.11, it is apparent that the temperature parameter of the models do not predict these

loads. Rather, it represents the sum of the variations of all temperature-dependent

loads with respect to temperature. Thus, a test for physical significance of the

parameters must involve gauging only the variations, or patterns, in end-use

component loads with respect to a variable. This topic is covered in Section 4.4.

Figures 4.8-4.11 show time-series plots of the predictions of the four models

along with the 1992 data. Figure 4.12 is a time series plot of model residuals — the

difference between each model and the observed 1992 data. Perhaps the most
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Figure 4.7 Time series plot of building electricity loads. This plot shows
the four component loads — HVAC, utility, refrigeration
compressors, and lighting — adjusted to reflect 1989 end-use
conditions (without video store and new dairy compressors).
The adjusted data are plotted individually and added in
succession. All four loads added together comprise the whole-
building load.
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Figure 4.8 Time Series Plot of 1989 MLR Model Predictions and 1992
Measured Data.

Figure 4.9 Time Series Plot of 1989 PCA Model Predictions and 1992
Measured Data.
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Figure 4.10 Time Series Plot of 1992 MLR Model Predictions and 1992
Measured Data.

Figure 4.11 Time Series Plot of 1992 PCA Model Predictions and 1992
Measured Data.
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Figure 4.12 Time Series Plot of Model Residuals.
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noticeable difference between the MLR and PCA models is the greater effect of

temperature in the MLR models. In Figure 4.8 and Figure 4.10, we see that both the

1989 and 1992 MLR models place very little importance on the variables of specific

humidity, solar radiation, and sales. In Table 4.16, the percent differences between

PCA and MLR model parameters for 1989 and 1992 are shown. Above the change-

point, PCA predicts a temperature component which is 23% to 52% less than that of

MLR. In 1992, the specific humidity component is 27 times higher for PCA than for

MLR. In fact, the specific humidity parameter above the change-point for 1992 is

negative for the MLR model, suggesting that an increase in the moisture content of the

air decreases the building's energy use. Intuition suggests just the opposite. Increased

moisture translates to higher latent loads at the HVAC coils, and higher refrigeration

loads. Which set of parameters, then, is more realistic; and, can any physical

significance be attached to them? We must use more than intuition to evaluate the

performance of the PCA and MLR models. In the next section, the predictions of the

models are compared to building loads arrived at through the use of cooling load

temperature difference methods.

TABLE 4.16

Percent Differences in Model Parameters for PCA compared to MLR*

* based on MLR parameters
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4.4 PHYSICAL SIGNIFICANCE OF MODEL PARAMETERS

The MLR and PCA models give comparable estimates for whole-building

electricity. However, they weight the effects of the variations imposed by the climate

variables differently. One way to determine which model gives more realistic

estimates is to model the climate-variant portions of the building's energy use by a

diversified load calculation method. In using this method we adopt the diversified

load estimation procedure outlined by Knebel (1983).

4.4.1 Variation Due to Solar Load

The diversified load calculation method using a cooling load temperature

difference for solar effects (CLTDS) accounts for solar gains as well as ambient

temperature gains for design load estimations. We use only the portion of this

procedure which account for solar loads. The calculation of the loads considered the

cooling load on the walls, on the roof, and through the glazing of the store. The

calculations are covered in detail in Appendix G. For a description of building

characteristics, see Chapter 3, Section 3.1.

The diversified load calculations give estimates for the building cooling load as

it affects the building envelope. It is a thermal load. To translate this to the load on

the building's HVAC equipment, we must consider the system's energy efficiency ratio

(EER). EER is a constant which relates the amount of electrical energy which must be

put into a cooling system in order to achieve a specified cooling effect. Thus, the EER

has units of thermal cooling effect (Btu/hr) per watt input, or Btu/h-W. In Chapter 3,

the EER for the College Station HVAC system was determined to be 7.1 Btu/h-W.

Since there are 3.413 Btu per watt-hour, this can be converted to a coefficient of

performance (COP) of 2.08 kWth/kWe.
2 What this means is that it takes only 1 kW of

electrical power to produce a thermal cooling load of 2.08 kW.

The diversified load calculations give a total possible variation in cooling load

due to solar effects of 29.1 kWth. Dividing this by the COP gives the portion of the

load due to solar radiation as only 14 kWe.

The 1992 MLR model analysis predicts that there is no significant variation in

the whole-building load due to solar radiation or specific humidity. In fact, the values

it gives are near-zero, and often negative! However, the 1992 PCA model predicts

The subscript "th" is used to designate thermal energy. Likewise, a subscript of "e" will be used to refer to electrical
energy.
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that the average variable component of the whole-building electricity load due to solar

effects is 19.6 kWe.
3 This seems comparable to the 14 kWe variation estimated by the

diversified load calculations.

Next, MLR and PCA models were developed for the sub-metered HVAC load.

Tables 4.17 and 4.18 show the regression summaries. The models predict an average

load due to solar effects of-9.1 kWe for MLR, and 15.5 kWe for PCA. The fact that

the HVAC MLR model predicts a negative load suggests that it is wholly

inappropriate for estimating solar effects when other variables are also used in the

regression. Intuition tells us that increasing solar radiation should only add to the

HVAC load. The fact that the HVAC PCA model predicts a solar effect of 15.5 kWe,

allows us to make two points. First, PCA does better at predicting the solar load since

the PCA prediction for HVAC is positive and almost equal to the diversified load

prediction of 14 kW. Second, since the PCA prediction is quite close to the 19.6 kWe

predicted by the whole-building data, we conclude that the solar load on the whole

building appears primarily in the HVAC load.

In both the 1989 and 1992 models, for both the whole-building data and the

HVAC data, it can be seen that MLR techniques understate the effects of solar

radiation, though this is most apparent from the 1992 models. It is reasonable to

assume that, as a result, MLR overstates the variation due to other variables — such as

temperature, but this assumption is tested in the next section.

4.4.2 Variation Due to Temperature

The variation in building electricity load due to temperature can be divided into

two components — that pertaining to the HVAC system, and that pertaining to the

refrigeration system. Since the HVAC system keeps the interior space conditions

fairly constant, at about 70°F (21 °C) to 75°F (24°C) and 55% relative humidity, then

any effect of outdoor air temperature on the refrigeration system must be realized via

the refrigeration system's condenser coils, which are exposed to outdoor ambient air

brought into the compressor room.4

3 The 1989 MLR and PCA models predict average values of 12.5 and 21.6 kWg, respectively.

The hypothesis that the outdoor conditions primarily affect the refrigeration system through its condenser coils can be
verified when we consider the bimodal behavior of the refrigeration system below the change-point temperature, as discussed in
Chapter 3. It is below this temperature that the condensers are shut off from outdoor air. The fact that the refrigeration data
cease to vary significantly when this occurs indicates that the variation in the refrigeration load due to outdoor temperature does
indeed come as a result of the condensers' exposure to outdoor air.
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The coefficients of temperature in the whole-building PC A and MLR models

reflect the whole building's response to temperature, and thus reflect the combined

effect of outdoor temperature on both the HVAC system and the refrigeration system.

However, a simple energy balance equation, with respect to the temperature difference

across the store's walls, roof, and glazing should be useful in determining the effects of

outside temperature on the HVAC system alone. We again adopt a procedure outlined

by Knebel (1983). Calculations may be found in Appendix G. The sum of the U A

values for the building is 4.31 kWth/°C. This should represent the variation in the

HVAC load due to temperature (and temperature only). Accounting for the COP of

the HVAC system, which is 2.08 kWth/kWe, the temperature coefficient is 2.07

kWe/°C. This may be compared to the temperature coefficient in the whole-building

and HVAC MLR and PCA models.

The 1992 MLR and PCA whole-building models predict the following

temperature coefficients:

On an hourly basis, this is:
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TABLE 4.17
Regression Summary: 1992 HVAC Models

AboveCPof 18.7°C (65°F)
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TABLE 4.18
Regression Summary: 1992 HVAC Models

Below CP of 18.7°C(65°F)
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Clearly, MLR and PCA give very different temperature coefficients for data

above the change-point. But these are parameters for the whole-building load, not

merely the HVAC component. What we know from the U A calculations is an HVAC

load variation characteristic — 2.07 kWe/°C. If we consider the HVAC models, we

find that both PCA and MLR give very different temperature coefficients for the

region above the change-point.5 The temperature parameters are as follows:

The average temperature coefficient (above and below the change-point) for

the PCA model is 2.30 kWh/h-°C. This is close to the 2.07 kW/°C from the U-A

calculation, differing by 11%. The average MLR parameter of 4.93 kWh/h-°C, which

differs from the U-A estimation by 140%. If the U-A calculations are an accurate

representation of the effects of changes in outdoor temperature on the HVAC system,

then we can conclude that the MLR model grossly overstates the effects of changes in

temperature on the store's HVAC load as compared to the prediction of PCA.

What this means is that for a building with a simple HVAC system, some

model parameters obtained through PCA have more physical significance than those

This characteristic is also seen in the whole-building model. The principal component variables used in each segment
of the PCA model are the same as those used in the whole-building model.
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obtained through MLR analysis, and that these model parameters correspond to those

which are fairly easily measurable (such as building UA and solar load).

For some variables, such as specific humidity, identifying the physical

significance of the parameters predicted by PCA (or MLR) may be more difficult and

involved since alternative models which would be used to verify the PCA and MLR

predictions are likewise complex and involved. For this study, we were not able to

verify the significance of the specific humidity or sales parameters provided by either

PCA or MLR.

Nevertheless, for this case study, PCA was shown to be of benefit in providing

more realistic estimates of the effects of the predictor variables of dry-bulb

temperature and solar radiation when these variables are correlated.

4.5 SUMMARY

For the College Station case study, the following conclusions are drawn with

regards to principle component analysis.

1) The 1992 PCA model worked better than the 1992 MLR model at re-

identifying the same model parameters for the 1992 data set as predicted by the

1989 PCA and MLR models. Thus, PCA does better than MLR in terms of

parameter re-identification when used to predict data from a period which was

different than that used to construct the model.

2) PCA does slightly better than MLR in terms of R2 and RMSE criteria when

used to predict data from a period which was not used to construct the model.

3) In both 1989 and 1992 whole-building models, MLR techniques

underestimated the effects of solar radiation. For this study, PCA was found to

be superior in estimating the effects of the variations in solar radiation on the

grocery store whole building electricity use and HVAC system electricity use.

The variation in the HVAC load due to solar radiation predicted by the HVAC

PCA model was 15.1 kW, which agreed closely with the variation predicted by

the diversified load calculation, 14 kW. MLR analysis predicted -5.6 kW.

4) In the 1992 models, MLR techniques over estimate the effects of outdoor

temperature. For this study, PCA was found to be of greater use than MLR in

estimating the effects of variations in temperature on the grocery store whole

building electricity use and HVAC system electricity use. The temperature

parameter predicted by the HVAC PCA model, 2.34 kWh/h-°C, agreed closely
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with the building U-A, 2.07 kWh/h-°C. MLR analysis predicted 4.96

kWh/h-°C.

5) One shortcoming of both PCA and MLR analyses is that they determine only

one base load. They attempt to account for energy use due to changes in

variables, but cannot estimate the total effect due to any one variable since the

base load cannot be separated into contributions due to each variable.

6) For some variables, such as specific humidity, identifying the physical

significance of the parameters predicted by PCA (or MLR) may be more

difficult and involved, since alternative models which must be used to verify

the PCA and MLR predictions are likewise complex and involved. For this

study, we did not attempt to verify the significance of the specific humidity or

sales parameters provided by either PCA or MLR.

In general, we conclude that for a building with a simple HVAC system, model

parameters obtained through PCA have more physical significance than those obtained

through MLR analysis6, and that these model parameters correspond to those which

are fairly easily measurable (such as building UA and solar load).

This applies to parameters for which physical significance could be tested.
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CHAPTER V

END-USE LOAD ESTIMATION

The energy use data analyzed in this thesis were obtained for both the College

Station and Bryan grocery stores using intensive sub-metering. In this chapter, simple

change-point models are used to determine the quality of information that could have

been obtained without the use of sub-metering which is capable of yielding similar

daily energy end-use data. First, the various forms of linear sub-meter models which

were considered for use are presented and compared. Then, the sub-meter models

which were selected are compared to proxy models developed from information which

could have been obtained from monthly utility billing data and one-day, walk-through

energy use surveys.

Energy end-use information obtained from such models could be useful in

assisting store owners in determining if the separate, energy-consuming sub-systems

are performing efficiently. Such information can also provide utilities with an

inexpensive alternative to end-use load monitoring.

5.1 MODEL OVERVIEW FOR THE COLLEGE STATION STORE

Energy use in grocery stores can be characterized by a mildly temperature-

dependent base level below a change-point between 16° and 21°C (60° and 70°F), and

a second, more strongly temperature-dependent slope above the change-point. Ruch

and Claridge (1992) developed a four-parameter change-point model for the

supermarket studied in this thesis. It takes the form:

(5.1a)

where T is the outdoor ambient temperature, CP is the change-point temperature, ao is

a base-level consumption, aL0W is the slope below the change-point temperature, and
aHiGH *s t n e sl°Pe above the change-point temperature. The superscripts, + and ,

designate that the terms to which they apply are only present in the equation when they

are positive or negative, respectively (see Figure 5.1). For example, point Ej, which

occurs above the change-point, would be determined by,
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Using the change-point selection methods outlined by Ruch and Claridge, a

four-parameter change-point model was developed for the whole-building electricity

use as well as for the HVAC and refrigeration systems' energy use at the College

Station grocery store. Constant linear models, which are simply mean of the data

being modeled, were chosen for the lighting and utility loads. All models were chosen

based on comparisons of mean (constant linear model), simple linear (non-zero slope),

and three- and four-parameter change-point models. The models with the best fit and

most physical significance were chosen to represent the various sub-metered loads.

They are summarized according to R2 and coefficient of variation as follows (the

models which were chosen are underlined):
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* CV = coefficient of variation (root mean squared error -r data mean)

In addition, a sinusoidal lighting model, discussed later in this chapter, was

considered. The sinusoidal lighting model had an R2 of 42% and a CV of 3%.

The parameters for the models chosen for the component and whole-building

loads are as follows:

The choice of which model to use for subsequent analyses was made by

selecting the model with the best R2 and CV values, as well as intuitive knowledge of

the nature of some of the component loads in the store. For example, for loads which

had a visible and physically meaningful change-point, such as those known to have

on/off thermostatic controls, change-point models were chosen when appropriate. For

loads which were known to be independent of temperature, such as lighting and food-
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preparation equipment, constant data mean models were chosen even when change-

point models may have had the statistical upper hand. Model selection is described

below.

Whole-building and HVAC Loads. The selection of a change-point model for the

HVAC and whole-building loads seemed appropriate since the data had a visible

change-point. Furthermore, we knew that the HVAC system has a space condition set-

point of about 21° to 24°C (70° to 75 °F) and a humidity control that was active in the

16° to 21 °C (60° to 70°F) range. The four-parameter models had a slight advantage

over the three-parameter models for the combined-store HVAC and whole-building

data. R2 was highest and CV lowest for the four-parameter models. The change-point

of the whole building model was found to be 18.0°C (63.8°F), and the change-point

for the HVAC system model was found to be 17.4°C (63.3°F).

Compressor Load. The refrigeration compressor load also seemed to display an

ambient temperature change-point characteristic. There are two physical explanations

for the change-point. First, the refrigeration condenser coils are housed in the

compressor room through which outdoor ambient air is drawn by four exhaust fans.

These fans shut off when the room temperature falls below 15.9°C (60°F). This

lessens the effect of outdoor temperature on the condenser coils, resulting in a different

slope below 15.9°C. Second, when the outdoor temperature falls below about 17.4°C

(63.3°F), the HVAC system uses reclaimed heat from the refrigeration condenser lines.

The air to which the reclaim condenser coils are exposed is at a different temperature

than the outdoor air, and thus the slope of the refrigeration compressor energy use

curve changes. It is interesting to note that the change-point temperature identified

with the four-parameter model is 17.4°C (63.3°F) — which is the same as the change-

point for the HVAC system.

Since a change-point model was appropriate for the refrigeration system, the

three- and four-parameter models were compared. R2 is 1 percentage point higher for

the four-parameter model than for the three-parameter model, and the CV (before

rounding) was 0.1% lower. Thus, the four-parameter model was chosen.

Lighting Load. There are no components to the store's lighting load which have a

temperature change-point characteristic. In fact, we had no reason not to choose a flat,

linear model. Upon initial inspection of the lighting data, there appeared to be a

temperature dependency. However, this was not truly a temperature effect, but rather a

seasonal effect that is the result of the change in the length of daylight throughout the
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year (which is indirectly related to temperature). If the lighting energy use is plotted

with respect to time, it is apparent that the load is sinusoidal. Such a sinusoidal load

appears as a slightly temperature-dependent curve when plotted against temperature.

An alternative model to a flat linear analysis was the use of a sinusoidal time

function.1 But, while the sinusoidal model actually gave a better fit based on the

comparison of CV values, it was developed visually and therefore was considered

undesirable since its identification was not repeatable. Thus, a flat linear model,

which predicts the average of the data, was chosen for analysis of the lighting load.

Miscellaneous Utility Load. Like the lighting load, none of the end-use loads

identified on the utility circuit were significantly temperature-dependent. Thus a flat

linear model was deemed appropriate. The CV values are nearly the same for the flat

mean, simple linear, and three - and four-parameter models, which helped to justify the

selection of the constant mean model. For the sake of simplicity and physical

meaningfulness, the flat mean model was chosen for the utility load.

Figure 5.2 shows the refrigeration compressor model and data. Below the

change-point temperature, the slope is less pronounced. It is below this point that a

heat reclamation system is used to recover the waste heat from the refrigeration system

in order to provide space heating in the HVAC system. The heat reclamation coils

take the place of the refrigeration condenser coils when heat reclaim is in use.

Because of this, outdoor temperature has less of an effect on refrigeration system

energy use when the system is not exposed to outdoor conditions via the condenser

coils. The reader may notice two modes of energy use below the change-point. In this

bimodality, the higher mode represents occasions when the compressor room

temperature is kept at 15.9°C (60°F) by the operation of the exhaust fans but when

heat reclaim is not in use. The lower mode represents days when significant heat

reclaim is in use and there is reheating for dehumidification purposes. This occurs

during the heating season, when outdoor air is below the change-point. The exhaust

fans may shut the compressor room air supply off, but the chilled air being blown

across the heat reclaim coils is cooler than the compressor room air, and thus allows

the refrigeration system to reject its waste heat more efficiently ~ resulting in a lower

load on the compressors. This effect is discussed further in Chapter 3, Section 3.4.3.

Discussed later in this chapter.
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Figure 5.2 Refrigeration compressor data and temperature change-point
model for the period 01/01/92 to 01/01/93 for College Station.
The lower of the two modes of energy use below the change-
point corresponds to times when heat reclaim and reheat are in
use.
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Figure 5.3 is a plot of the lighting data and model. Because the parking lot

light timer is adjusted monthly to account for the seasonal variation in the length of the

day, the warmer, summer season has a slightly smaller load than the cooler, winter

season. This causes the plot in Figure 5.3 to appear as if the lighting load is

temperature-dependent when, in fact, the relationship is a seasonal dependency which

is caused by the operation of the parking lot lights. Because of this, the constant

lighting model slightly over-predicts energy use above about 20°C (67.4°F), and

under-predicts it for temperatures below 20°C. Nevertheless, the coefficient of

variation for the constant model is only 4.1%, which implies that the root-mean-

squared-error (RMSE) of the model is 4.1% of the mean value of the data. Thus, if

amp measurements of the lighting electrical panel were taken in the morning,

afternoon, and at night, a daily average load could be calculated from known operating

schedules. This average would differ from the yearly average by about 4% or less.

Figure 5.4 shows the combined-store HVAC model and data. In it may be seen

the bimodality of the energy consumption resulting from the use of reheating to

provide dehumidification. The higher mode represents days when significant

reheating was used. During the reheat stage, one compressor is turned on to remove

moisture from the air.2 This air is then reheated by the heat reclaim system. The

higher mode in the HVAC data corresponds to the lower mode in the refrigeration

compressor data. This interrelationship is discussed further in Chapter 3, Section

3.4.3.

The miscellaneous utility data and model are shown in Figure 5.5. This energy

use is quite constant. The root mean square error for the model is only 2.7% of the

yearly of the data. This suggests that if the electric panels for the utility load were

measured with hand-held clamp meters at any time during the day, the average reading

for the day could be used to predict utility energy use for the entire year, to an

accuracy of about 97%.

From Figure 5.6 and Figure 5.7, it can be seen how the sub-metered load

models can be added together to obtain a whole-building load. Figure 5.6 shows the

whole-building model and data. The change-point of 18.0°C (63.8°F) is quite

noticeable. It is slightly higher than the 17.4°C (62.7°F) change-point associated with

the refrigeration and HVAC systems because the whole-building data include the

One compressor comprises a load of roughly 20 to 30 kW
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Figure 5.3 Lighting data and constant linear model for the period 01/01/92
to 01/01/93 for College Station. The slope in the data is due to
the seasonal change in outdoor lighting load requirements.
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Figure 5.4 Combined store HVAC data and temperature change-point
model for the period 01/01/92 to 01/01/93 for College Station.

Figure 5.5 Utility data and constant linear model for the period 01/01/92
to 01/01/93 for College Station.
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Figure 5.6

Figure 5.7

Whole-building electricity data and temperature change-point
model for the period 01/01/92 to 01/01/93 for College Station.

Addition of sub-metered electricity loads for College Station.
Curve A represents the utility load model. Curve B is the utility
model plus the lighting model. Curve C is the sum of the utility,
lighting, and refrigeration models. Curve D is the sum of the
utility, lighting, refrigeration, and HVAC models.
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lighting and utility loads which cause the regression procedure to weigh the data

differently, thus pulling the change-point up to 18.0°C. This results in a different

change-point temperature for the whole building. The bimodality seen in the HVAC

and refrigeration compressor data is not as easily seen in the whole-building data.

This is because of a trade-off effect — when the HVAC system uses more energy in the

reheat/heat reclaim stage, the refrigeration system uses less, and vice-versa. Thus, the

bimodality is blended into one mode of daily whole-building energy use.

In Figure 5.7, curve A represents only the miscellaneous utility load. Curve B

is the sum of the utility load model and the lighting model. Curve C is the sum of the

utility, lighting, and refrigeration compressor models; and curve D is the sum of the

utility, lighting, refrigeration compressor, and HVAC models. Curve D coincides with

the whole-building model (i.e., the dashed line).

The models developed above were applied to degree-hour bins to predict

energy use for a period of time using binned temperature data. This is the subject of

the next section.

5.2 BIN MODEL APPLICATION FOR THE COLLEGE STATION STORE

With the models identified, binned weather data were applied to the models to

determine the energy load for any arbitrary period of time — in this case, a full year.3

Since bin data were not available for the College Station area, a program was

developed to take hourly weather data and group them into bins.4

5.2.1 Binned Temperature Models

The models identified in Section 5.1 predict kilowatts per degree centigrade.

When they are multiplied by binned degree-hours, they predict energy use in kilowatt-

hours. The bin models were applied to the full year of 1992 binned temperature data,

and compared to the measured data for the same year. Results for the component load

and whole-building models are shown in Tables 5.1 to 5.5. These tables show the bin

hours used, the actual electrical consumption for each bin, and the model predictions

3 In this analysis, binned temperature data from 01/01/92 to 01/01/93 were used. Once the models have been established,
binned temperature data from any period and geographic location can be used.

The procedure is included in Appendix B.
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TABLE 5.1

Bin Simulation for 4-P Refrigeration Model for College Station Store

TABLE 5.2
Bin Simulation for Constant Linear Lighting Model for College Station Store
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TABLE 5.3
Bin Simulation for 4-P HVAC Model for College Station Store

TABLE 5.4
Bin Simulation for Constant Linear Utility Model for College Station Store
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TABLE 5.5
Summary of Bin Simulation for Component Models for College Station Store

* Represent consumption data for which corresponding temperature data were not available.

of consumption for each bin. Tables 5.1 to 5.4 also show the residual difference (as a

percent) between the bin predictions and the data. While the differences may be as

high as 33% for any individual bin, the annual totals of data and bin predictions differ

by no more than 1.2%. In Table 5.5, the component load bin predictions are

summarized. Three whole-building annual energy consumptions are compared. These

are the measured whole-building electricity, the sum of the predictions of the

component bin models, and the annual electricity consumption taken from twelve

months of 1992 utility bill data. There is a 3% difference between the sub-metered

consumption, 3,466,905 kWh/yr, and the utility bill consumption, 3,557,200 kWh/yr

(bill data and sub-meter whole-building data differ by about 3%). The bin model

prediction, 3,401,266 kWh/yr, falls below the other two values, and differs by no more

than 4% from either. Also listed in the table is the total for data which could not be
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processed by the binning routine. These were energy consumption data for which

corresponding hourly temperature data were not available. Their sum is 99,513 kWh.

This is a relatively small amount, and does not explain the 3 to 4% difference between

the sub-metered model and the utility bill data.5

Figure 5.8 and Figure 5.9 show time-series and bin model predictions for the

refrigeration compressors. The bin model predicts the refrigeration load fairly

consistently over the entire range of temperatures (-10°C to 40°C). The bin axis labels

represent the midpoints of each 5-degree bin. As is the case for all of the subsequent

bin plots, the consumption data are skewed towards the higher temperatures in the

range. This reflects the behavior of the temperature variable rather than that of the

energy consumption. The greatest percent difference for a refrigeration consumption

bin is 6.6%.6 However, if the sum of the binned predictions is compared to the annual

sum of the sub-metered refrigeration data, the difference is only 1.1%.

Figure 5.10 shows a time-series plot of the daily average of the lighting data.

The daily average of the lighting data depends only on the length of the day.

Specifically, the scheduling of the outdoor lights is adjusted monthly as the daylight

hours vary. This has the effect of producing a sinusoidal pattern in the data rather than

a constant energy use. The sinusoidal pattern is described in greater detail in Section

5.3.1. Figure 5.11 shows the binned hourly lighting load and predictions. Predictions

and data within each bin differ as much as 32%. However, this occurs in the extreme

bins which contain less than 0.2% of the energy consumption. Below 25°C,

predictions are consistently greater than the data. Likewise, above 25°C, predictions

are consistently less than the data. This is due to the fact that we are using a constant

model to predict consumptions which varies slightly with respect to temperature.7

Figure 5.12 and Figure 5.13 are plots of time-series energy use and binned

hourly electricity use for the combined-store HVAC system. Differences in binned

^ We speculate that the difference in the utility bill and the sub-metered data may be due to inaccuracies in the current and
potential transducers used to monitor the sub-metered energy use. In addition, there may be inaccuracies in the current
transducers used by the electric utility for billing purposes.

Based on sub-metered data for each respective bin.

However, by no means do we wish to imply by this that the lighting data are temperature-dependent. Recall the seasonal
dependency in the parking lot lights.
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Figure 5.8 Time series plot of daily average refrigeration compressor load
for 1992 for College Station.

Figure 5.9 Binned hourly electricity consumption for four-parameter
refrigeration compressor model from 01/01/92 to 01/01/93 for
College Station.
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Figure 5.10 Time series plot of daily average lighting load for 1992 for
College Station.

Figure 5.11 Binned hourly electricity consumption for constant linear
lighting model from 01/01/92 to 01/01/93 for College Station.
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Figure 5.12 Time series plot of daily average, combined-store HVAC load
for 1992 for College Station. The highly visible drop in energy
use near the beginning of June was caused by a shut-down
which was required for maintenance of an electrical line within
the store.
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Figure 5.13 Binned hourly electricity consumption for four-parameter
combined-store HVAC model for 01/01/92 to 01/01/93 for
College Station.
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energy use and predicted energy use are as high as 25% for a particular bin. However,

the actual and predicted annual energy consumptions differ only by 0.73%. As in the

case of the refrigeration system, there is no consistent trend in the differences between

the actual and predicted binned energy use.

Figure 5.14 and Figure 5.15 show the miscellaneous utility load as a time-

series and binned data plot. Because the utility data are so nearly constant, a drop in

food-preparation equipment energy use, which occurs over the Thanksgiving holiday

(11/27/92), can be easily seen. Similar, yet more pronounced, drops in store-wide

energy use over the Christmas holidays (12/24 to 12/26) were removed from the data

set. The binned energy predictions differ from the binned data by no more than 9%,

and tend to underestimate the energy use at higher temperatures, while overestimating

it at lower temperatures.

Finally, Figure 5.16 and Figure 5.17 show the time-series plot and binned data

and model plot for the whole-building. Individual bin predictions differ by no more

than 11 % from their corresponding binned data, and tend to underestimate

consumption at higher temperatures. On the whole, the annual sum of the predictions

differs by only 1% from the annual whole-building energy use data.

5.2.2 Alternative Lighting Model

The largest day-to-day variations in the lighting load are due to lights being left

on at times when they should not be. Beyond this, there is a seasonal variation in the

lighting load which is due to the seasonal change in the duration of daylight. As

mentioned earlier, this produces a false appearance of temperature-dependency in the

data. While a temperature change-point model may fit the data fairly well, estimating

an effective change-point temperature is impossible without having the sub-metered

data. Furthermore, such a change-point temperature may be physically meaningless.

In an attempt to develop an alternative to the constant linear lighting model, the

lighting variation was fit by visual inspection of the sub-metered data to a sinusoidal

function of the form,

SLIGHTS = a + ^-Sin((N + A>2n/365) (5.2)
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Figure 5.14 Time series plot of daily average miscellaneous utility load for
1992 for College Station. The slight drop in consumption near
the end of November is due to a partial store shut down on
Thanksgiving.
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Figure 5.15 Binned hourly electricity consumption for constant linear
miscellaneous utility model from 01/01/92 to 01/01/93 for
College Station.
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Figure 5.16 Time series plot of daily average whole-building load for 1992
for College Station.

Figure 5.17 Binned hourly electricity consumption for four-parameter
whole-building model from 01/01/92 to 01/01/93 for College
Station.
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where the variable, N, is the day of the year. The parameter, O, is the day (or

horizontal) offset of the sine function, a is the vertical offset, and b is the amplitude of

seasonal variation. By visual inspection of the sub-metered data, these parameters

were estimated to be,

Section 5.3.1 describes how this model could have been estimated without the

benefit of sub-metered data. Figure 5.18 shows the seasonal variation in the lighting

load as well as the sine model identified for it. The day offset, A, can be determined

by knowing that the longest day of the year occurs on June 21 (day 172), the summer

solstice. If a sinusoid starts on January 1, that is to say it crosses the x-axis at this

point, its minimum occurs on October 1 (day 274). But, the sinusoidal pattern of the

Earth's solar equinoxes does not start on January 1. Its starts on day 102, April 12.

This implies an offset between June 21 and October 1 of 102 days. But, the data

indicate that as far as the store's lighting system is concerned, the longest day occurs

near July 23 (day 204). This implies an offset between July 23 and October 1 of 70

days.

One possible explanation for the 32-day difference between the day of the

minimum lighting load (July 23) and the summer solstice (June 21) is that the outdoor

lighting system depends on the store management adjusting the timer clock for the

length of day. This is routinely done about once a month. This lag of one month may

explain why the lighting system minimum lags the summer solstice by about a month.

Because the sine model is a function of the day of the year, and not of

temperature, it cannot be implemented using only binned degree-hours for the full

year. Instead, it must be evaluated for each month, and multiplied by the hours in each

monthly temperature bin in order to simulate a bin temperature model. This was done

for all twelve months in 1992. The predicted lighting energy consumption for each

temperature bin was summed over each month to get an annual bin energy

consumption. This binned consumption is shown in Table 5.6 and Figure 5.19, and is
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Figure 5.18 Diurnal pattern of lighting load and sine lighting model, 1992
for College Station. The periodic variation in the lighting load
has its minimum near July 23 (day 204) rather than at the
longest day of the year, June 21 (day 172). The management
adjusts parking lot light timer monthly, after noticing that the
lights fail to turn on at the appropriate hour. This explains the
32-day lag.
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Figure 5.19 Binned annual electricity consumption for sine and constant
linear lighting models, 1992 for College Station.
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TABLE 5.6
Annual Summary of Sine Model and Four-P Model for Lighting

compared to the sub-metered lighting data for each bin. Also shown are the bin

predictions of the constant linear lighting model. On the whole, the annual sum of the

sine model differs from the annual sum of the measured data by only 0.14%. The

annual sum predicted by the linear model differs by 0.88%. The sine model fits the

lighting data with a CVRMSE of 3.12%. The linear lighting model fits the lighting data

with a CVRMSE of 4.1 %. This sine model can be used in place of the linear model in

the bin application by multiplying its predictions (kW) by the hours in each

temperature bin. Because it is not a temperature model, it has the appeal of not

requiring the estimation of an effective change-point temperature. The sine model has

a shortcoming, though; its parameters could not be identified in an objective manner

without detailed information, such as sub-metering, about the lighting load schedules.

Thus, since its performance was only marginally better than that of the constant linear

lighting model, we decided that the linear model was adequate for the bin modeling.

5.3 ALTERNATIVES TO SUB-METERING FOR THE COLLEGE STATION

STORE

We have seen that sub-metering can be used to provide energy consumption

data for both specific component loads and well as whole-building loads. In addition,

sub-metered data provides a means of identifying statistical models for use in binned

load prediction. Unfortunately, sub-metering can be expensive. If there are other

means of identifying component electricity loads, then they are worth pursuing. This
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section investigates some of the possible approaches to estimating component loads

without the use of sub-metering.

5.3.1 Base Loads

The easiest electricity loads to estimate are those which do not vary, or those of

which the variation is periodic and predictable in some way. For the College Station

store, the lighting and miscellaneous utility loads have this quality. Therefore, we

decided that it was worthwhile to see if information from a few site visits could be

used to replace the expensive sub-metering which had been used to identify the

component load models.

From the time-series plots in Figures 5.3, 5.5, 5.10 and 5.14, we can see that

the lighting and utility loads are fairly constant from day to day over a wide range of

temperatures. To estimate these base component loads, an energy use survey was

performed.8 Information in the survey was comprised of nameplate readings of

electrical equipment as well as actual clamp-on measurements of easily identifiable

electrical loads.

Walk-through Survey Procedure. In order to estimate energy use in the store, the

following simple walk-through energy use survey procedure was followed.

1) The lighting load was estimated by a walk-through fixture count. Information

on lamp wattages was obtained from stored replacement lamps. Parking lot

lights exhibit a seasonal behavior since they are on a timer which is adjusted

monthly to account for the changing length of night-time hours throughout the

year. Daily interior and exterior lighting scheduling information, obtained in

conversations with the store manager, was taken into consideration when

determining the average daily lighting load. The information provided by the

fixture count could also have been obtained by clamping the various electrical

distribution panels which make up the lighting circuit; however, this might

have taken more time as a fixture count.

2) Miscellaneous utility loads were also gauged by a walk-through nameplate

survey. However, by comparing the nameplate totals to the sub-metered utility

energy use, we found that nameplate data did not accurately represent actual

energy use. Since the utility load is fairly constant throughout the year, clamp-

See Section 3.1 and Appendix B for detailed results of the survey.
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on watt-meter readings taken on the main utility circuit panel could have been

used to accurately gauge the daily energy use. See Appendix B for a detailed

listing of lighting and utility loads.

3) HVAC fan loads were determined by using clamp-on amp readings.9 This

information was also available from nameplate data, however the amp readings

indicated that the HVAC components do not all run at full rated load. The fans

run at about 80% of their nameplate load, and were measured to have a total

power draw of about 25 kW.

Lighting. The lighting count can be used to estimate the peak lighting load. Indeed,

the peak nameplate lighting load is estimated to be 177 kW. In Figure 5.20, we can

see that the sub-metered, maximum hourly lighting load is about 175 kW. But, as

determined previously, the daily average lighting load is 124.7 kW. Thus, partial load

fractions were determined based on the daily lighting schedules as follows:

Load Description Hours on Load fraction

When multiplied by the peak lighting load, the result is an average daily lighting load

of 126.1 kW. This is close to the average 124.7 kW. Compared to the peak load, this

amounts to a diversity factor of about 71%. The walk-through survey seems to give

values of peak and average energy use which are in fair agreement with the sub-

metered data. As can be seen in Figure 5.20, which depicts statistical box plots of the

hourly lighting load profile (based on a full year of lighting data), there are three

primary schedules of hourly lighting energy use which depend on the time of day.

Clamp-on measurements of these loads could be obtained by measuring the main

lighting circuit panel at times when each lighting schedule is known to be in effect (see

Figure 5.21). In this case, the times to measure are 3 a.m., noon, and 10 p.m. The

Clamp-on readings are made using a hand-held amp meter which, when placed around an electrical conductor, determines the
amount of current flowing in that conductor.
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average daily load could then be calculated based on knowledge of the schedule time

periods. Alternatively, temporary sub-metering could be installed on the lighting

distribution panels for one week.

The parameters of the sinusoidal lighting model - average base, amplitude of

variation, and day offset — were found by visually examining the sub-metered data.

We have already seen that the offset of the sine function is 70 days. With knowledge

of the store's operating procedures, the 70-day offset might have been estimated

without sub-metered data, but this estimation would not have been repeatable, and

would have relied on subjective judgment. When daily light schedules are available,

the average daily load and amplitude of variation can be estimated as described above.

The average of the sub-metered data is 124 kW, and the load estimated from the walk-

through lighting count, accounting for lighting schedules, is 126 kW. So, an estimate

for the mean of the sinusoid may be found without sub-metering. The amplitude of

the sinusoid may be found by estimating the variation in the outdoor lights due to the

variation in their cut-on time. The store management claims that the outdoor lights are

needed as early
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Figure 5.20 Box plot of the hourly lighting load profile for the period
01/01/92 to 01/01/93 for College Station. This plot depicts the
average hourly load profile for the store. Box whiskers and
outliers indicate the extremes of the data. A peak load of about
175 kW can be seen at 11:00 a.m., when parking lot lights had
been left on during the day. The relatively long upper whisker
lines seen between the hours of 1:00 a.m. and 8:00 a.m. indicate
that some of the store's indoor lights are occasionally left on
during those hours. The band of lower outliers during the
afternoon hours represent the load on Christmas day, when the
store is closed.
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Figure 5.21 Hourly lighting schedule with preferred times for clamp-on load
measurements for College Station store. This plot shows times
at which the three schedules of the lighting load at the College
Station store could be measured to determine the average daily
lighting load.

as 5:00 p.m. and as late as 9:30 p.m. — a range of 4.5 hours. They shut off as early as

6:00 a.m., and as late as 8:00 a.m. — a range of two hours. The peak connected load of

the outdoor lighting system is 27.6 kW. Over a total of 6.5 hours, this amounts to a

range of 179 kWh/day, or an average range of 7.5 kWh/h. This is 75% of the range

estimated by visual inspection of the data (10 kW).

While the development of the sinusoidal lighting model is an admirable

exercise in deductive reasoning, the sinusoidal model is only marginally superior to a

constant linear lighting model. Due to the amount of work involved, we chose to use

the linear model for further analysis. Regardless of which model is used, long-term

electrical sub-metering is not necessary to estimate the lighting load.

Miscellaneous Utility. The peak miscellaneous utility load is 130 kW according to

nameplate data. However, different components of this load are never all on at the

same time. The sub-metered data serve as a better source of information, and were

used to represent what clamp-on measurements could have revealed. The average sub-

metered utility load is 76.4 kW, which amounts to a combined diversity and load

factor of 58%. Thus, at estimating the utility loads, the walk-through survey would
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not have been sufficient unless a diversity/load factor could be accurately assumed.

However, since these loads do not vary from day to day, simple clamp-on watt-meter

measurements of the utility circuit at various times during the day and night would

yield enough data to determine a daily average value.

5.3.2 Varying Loads

With the base loads determined, the next task is to identify the loads which do

not remain constant. Primarily, these are comprised of the HVAC and refrigeration

system loads. The two HVAC compressors running at the time of the survey were

measured to have a load of about 59 kW. The average outdoor ambient temperature

for the day was 28 °C (82°F). HVAC compressor and refrigeration compressor loads

were measured with clamp-on amp meters. This was preferred to nameplate readings

since these systems do not operate at full rated load. But while one-time clamp-on

measurements may be valuable for checking assumptions about the HVAC and

refrigeration systems, these loads are not constant, and it was not possible to estimate

their loads based on a survey alone. A different means for estimating varying loads

was necessary.

Monthly whole-building electricity consumption data is readily available from

the electric utility. If the refrigeration system load can be estimated, then it is possible

to deduce the HVAC load by subtracting the refrigeration and base loads (lighting and

utility) from the whole-building consumption. Figure 5.22 shows a whole-building

electricity model identified from 12 months of monthly utility bill data as compared to

the whole-building electricity model identified from the sub-metered data.

One year's worth of monthly utility billing data was used to identify the whole-

building, four-parameter change-point model. The parameters for this model are as

follows:
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CP for sub-meter model = 18.0°C (63.8°F)
CP for bill model = 17.8°C (63.4°F)
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Figure 5.22 Change-point models identified from utility billing data and
sub-metered data for College Station.

The utility billing model does very well at predicting the data from which it was

identified - the R2 value is 99% and CV is 1%. It predicts the 1992 sub-metered data

with an R2 value of 87% and a CV of 4%. The average billing period temperature was

20°C (67°F). When a year's worth of sub-metered electricity data are used, the four

change-point model parameters are as follows

The whole-building model constructed from a full year of sub-metered data

predicts the utility billing data with an R2 value of 96% and a CV of 3% (which,
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incidentally, are better values than the 95% and 3% obtained when predicting the sub-

metered data from which the sub-meter model was identified).

When compared to the utility billing model, the full-year model predictions

differ by no more than 2.0%, based on the utility billing prediction values. It should be

noted that, from comparing monthly utility bills to monthly sums of the sub-metered

data, the sub-metered data themselves differ from the public utility's data by about 3%.

Since the full-year sub-meter model was derived from the sub-metered data, the 2.0%

difference between the models is not surprising. The model constructed from the

billing data is almost the same model that could be constructed from sub-metered data.

Either whole-building model works well. Thus, expensive sub-metering might be

replaced with monthly billing data and information from several site visits.

5.3.3 Load Disaggregation

Once the lighting and utility load models were determined, all that was left to

determine was the refrigeration compressor load and the HVAC load. While a one-

time walk-through survey could not reveal these varying loads in detail, we found it

was possible to obtain them by deductive reasoning from information already

available.

The whole-building model represents the variation for all the loads combined.

This model can be known either from sub-metered, whole-building daily data, or by

monthly utility billing data. Using the utility billing model, the whole-building

electricity load at 5°C (40°F) is 325 kWh/h. Figure 5.7 showed that the component

electricity loads could be added together to form the whole-building load. At this

point, again referring to Figure 5.7, we already have curves A, B, and D without the

use of sub-metering.10 The task then is to estimate curve C from either name-plate or

clamp-on measurements. The difference between curves C and D is the store's HVAC

load, and between curves C and B is the stores refrigeration compressor load. If

estimates of the maximum and minimum HVAC loads can be made, they can be

subtracted from each end of the whole-building model curve (curve D) to obtain two

points which define a line that is a proxy for curve C.

Curve A represents only the miscellaneous utility load. Curve B is the sum of the utility load model and the lighting model.
Curve C is the sum of the utility, lighting, and refrigeration models; and curve D is the sum of the utility, lighting, refrigeration,
and HVAC models. Curve D coincides with the whole-building model (i.e., the dashed line).
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From Figures 3.12 and 3.13 in Chapter 3, it can be seen that at temperatures of

5°C (40°F) or lower, the only HVAC load is that of the air-handler fans. Both sub-

metering and clamp-on measurements reveal the main store air-handler fan load to be

about 25 kW. Clamp-on readings on the video store HVAC load indicate a 3 kW base

fan load. There are two dairy refrigeration compressors on the HVAC circuit with a

peak load of 11.5 kW. At 5°C, they are estimated to be at about half load. If we

subtract these loads from the whole-building model at 5°C, we get 290 kW, which

should be curve C at 5°C. In Figure 5.23, this subtraction is shown. From curve C,

the sub-metered refrigeration compressor load is 291 kW at 5°C (40°F). The

agreement is impressive.

Clamp-on watt measurements for the HVAC system were taken on a day when

the average daily temperature was 28.1°C (82°F). Whole-building electricity use at

this point is 472 kW, based on the utility billing model. The load for the HVAC

channel consisted of about 25 kW of fans, 58 kW in two compressors, 11.5 kW of

dairy compressors, and about 40 kW in the video store HVAC systems, totaling 135

kW. If we subtract this from the whole-building model at 28.1°C, we get 337 kW. If

the estimation of the HVAC load is accurate, this should represent the sum of all loads

except HVAC. In Figure 5.24, curve C shows the sum of the sub-metered non-HVAC

loads (refrigeration load plus base loads) to be 332 kW at 28.1°C. This agrees with

the subtracted value of 337 kW to 1.5%. A proxy for the refrigeration curve C can

then be interpolated between the points at 5 and 28.1°C. This curve is given by,
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Predictions for HVAC and refrigeration compressor energy use based on these

proxy models were compared to the HVAC and refrigeration models developed from

the sub-metered data. The results are as follows:

There are several sources of data from which change-point models can be

identified. Sub-metering unquestionably gives the best data. But, for the case of

constant base loads, the data vary by less than 10% of the mean. Thus, one-time clamp

measurements can give base load data that are within 10% of the average which would

be provided by a year's worth of sub-metered data. And, when it is possible to

accurately model base loads of a grocery store, and when the whole-building load

model is known, it is possible to use one-time clamp-on readings to disaggregate the

data and determine models for the two remaining, temperature-dependent loads. Table

5.7 lists the loads of interest in the College Station grocery store and how the data and

models for them were obtained.

To further test the concept of an end-use model derived from monthly billing

data and information from several site visits, the basic temperature change-point and

bin analysis performed on the College Station store was also performed on the Bryan

store. Only the results and relevant differences will be presented here.
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TABLE 5.7

Sources of Model Identification Data for College Station Store
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Figure 5.23 Model disaggregation showing maximum and minimum HVAC
loads subtracted from whole-building model for College
Station.

Figure 5.24 Model disaggregation showing curve, Cproxy, for College
Station.



170

5.4 MODEL OVERVIEW FOR THE BRYAN STORE

Using the change-point selection methods outlined for the College Station

store, four-parameter change-point and constant linear models were developed for the

whole-building electricity and the four sub-metered loads at the Bryan grocery store. It

should be noted that only six months of sub-metered data were available at the time of

this analysis, and that the energy end-uses in the Bryan store are not as cleanly divided

by the four sub-metering categories. But since this represents a very real situation

which may be encountered, the effort was made to model the Bryan store using the

same procedure as used for the College Station store. Based on the experience with

the College Station store, three-parameter and sinusoidal models were not considered.

The models identified are summarized according to R2 values (where applicable) and

coefficient of variation as follows (the statistics for the models chosen are underlined):

The choice of which model to use for subsequent analyses was made by

selecting the model with the best R2 and CV values, as well as intuitive knowledge of

the nature of some of the component loads in the store. Empirically, the models

chosen for the component and whole-building loads are as follows:
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Figure 5.2 shows the refrigeration compressor model and data. Below the

change-point temperature (16.1°C [60.4°F]), the slope is less pronounced. There is no

heat reclamation in this store. Thus, this change-point was due to the effect of the

compressor room exhaust fans which keep the room temperature above 15.9°C

(60.1°F). This change-point characteristic is similar to that found in the College

Station store.

Figure 5.26 is a plot of the lighting data and the mean lighting load model. It is

apparent that the load on the lighting circuit exhibits some temperature dependency.

The variation in the lighting load is not easy to explain. All lighting loads in the store

run on a set schedule.11 As discussed in Chapter 3 (Section 3.7), there are some

refrigeration case heater loads on the lighting circuit. The energy use of some of these

heaters seems to be related to the amount of moisture in the air, which is in turn

proportional to the outdoor temperature (for the south Texas climate). This may

explain the slope seen in the data when plotted against outdoor temperature. It may

also be that there is some HVAC load on the lighting circuit.

Figure 5.27 shows the HVAC model and data. Unlike for the College Station

store, there is no heat reclaim and no dehumidification provided by the Bryan HVAC

units. Thus there is no bimodal characteristic on either side of the change-point

temperature (18.7°C [60.4°F]).

The miscellaneous utility data and model are shown in Figure 5.28. This

energy use is not as constant as it is in the College Station store. This is due to the fact

This is in contrast to the College Station store, where the switch-on time for the outdoor lights changes from month to month.
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Figure 5.25 Refrigeration compressor data and temperature change-point
model for the period 12/20/92 to 06/28/93 for Bryan store.

Figure 5.26 Lighting data and constant linear model for the period 12/20/92
to 06/28/93 for Bryan store.
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Figure 5.27 Combined store HVAC data and temperature change-point
model for the period 12/20/92 to 06/28/93 for Bryan store.

Figure 5.28 Utility data and constant linear model for the period 12/20/92
to 06/28/93 for Bryan store.
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that there are two HVAC units connected to this circuit. One is rarely used, but

represents a potential load of 10 kW. The other, which cools the manager's office,

adds about 10 kW to the utility load during peak times, and seems to only run at

temperatures above about 20°C (67.4°F). If clamp-on measurements were to be used

to gauge the utility load, they would not be able to account for this load unless it was

known when it occurred.

From Figure 5.29 and Figure 5.30, it can be seen how the sub-metered load

models can be added together to obtain the whole-building model. Figure 5.29 shows

the whole-building model. The change-point of 19.2°C (66°F) is quite noticeable. It

is slightly higher than the 16.1°C and 18.7°C change-points associated with the

refrigeration and HVAC systems because the whole-building data include the lighting

and utility loads which cause the regression procedure to weigh the data differently.

This results in a different change-point temperature for the whole building.

In Figure 5.30, curve A represents only the miscellaneous utility load. Curve B

is the sum of the utility load model and the lighting model. Curve C is the sum of the

utility, lighting, and refrigeration compressor models; and curve D is the sum of the

utility, lighting, refrigeration compressor, and HVAC models. Curve D does not

coincide with the whole-building model as closely for the Bryan store as it did for the

College Station store. This is because the lighting and utility models under-predict the

data (possible HVAC loads) at higher temperatures. Yet, this shortcoming is a valid

test for whether simple clamp-on power measurements can be used to accurately gauge

energy use over a range of temperature conditions. In this case, it reveals a

shortcoming of the method when end-use loads are not separated on different circuits.

There are situations where one-time measurements may not accurately predict the base

loads because they are not always connected to dedicated electrical panels.

The models developed above were applied to degree-hour bins to predict

energy use for any period of time given binned temperature data. This is the subject of

the next section.

5.5 BIN MODEL APPLICATION FOR THE BRYAN STORE

With the models identified, all that remained was to apply binned weather data

to the models to determine the energy load for any arbitrary period of time. Since bin

data were not available for the Bryan area, a program was developed to take hourly

weather data, from 12/20/92 to 6/28/93, and group them into bins.
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Figure 5.29 Whole-building electricity data and temperature change-point
model for the period 12/20/92 to 06/28/93 for Bryan store.

Figure 5.30 Addition of sub-metered electricity loads for Bryan store.
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The models identified in Section 5.4 predict kilowatts per degree centigrade.

When they are multiplied by binned degree-hours, they predict energy use in kilowatt-

hours. The bin models were applied to the half year of 1993 binned temperature data,

and compared to the measured data for the same period. Results for the component

load and whole-building models are shown in Tables 5.8 to 5.12. These tables show

the bin hours used, the actual electrical consumption for each bin, and the model

predictions of consumption for each bin. Tables 5.8 to 5.12 also show the residual

difference (as a percent) between the bin predictions and the data. Two whole-

building, semiannual energy consumptions are compared. These are the measured

whole-building electricity and the sum of the predictions of the component bin models.

There is less than 1% difference between the sub-metered consumption, 1,891,926

kWh, and the predicted consumption, 1,901,784 kWh. Also listed in the table is the

total for data which could not be processed by the binning routine. These were energy

consumption data for which corresponding hourly temperature data were not

available.12 Their sum is 4,769 kWh. This is a relatively small amount, and does not

explain the less than 1 % difference between the sub-metered model and the utility

billing data.

Figure 5.31 and Figure 5.32 show time-series and bin model predictions for the

refrigeration compressors. The bin model predicts the refrigeration load fairly

consistently over the entire range of temperatures (-10°C to 40°C). The bin axis labels

represent the midpoints of each 5-degree bin. As is the case for all of the subsequent

bin plots, the consumption data are slightly skewed towards the higher temperatures in

the range. This reflects the behavior of the temperature variable rather than that of the

energy consumption. The greatest percent difference for a refrigeration consumption

bin is about 3%.13 However, if the sum of the binned predictions is compared to the

semiannual sum of the sub-metered refrigeration data, the difference is less than 1%.

Figure 5.33 shows a time-series plot of the daily average of the lighting data.

The daily average of the lighting data tends to increase at time moves from one month

to the next. It is difficult to tell if this is a cyclic trend from only six months of data.

Figure 5.34 shows the binned hourly lighting load and predictions. Predictions and

data within each bin differ as much as 12.5%. However, this occurs in the extreme

bins which contain less than 3% of the energy consumption. Above 20°C (67.4°F),

1 0

Without temperature data, it is not possible to tell in which bin the energy consumption occurred.

" Based on sub-metered data for each respective bin.
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predictions are consistently greater than the data. Likewise, below 20°C, predictions

are consistently less than the data. This is opposite the trend seen in the College

Station lighting data. This is due to the fact that we are using a constant model to

predict consumption which is not a flat curve, but varies slightly with respect to

temperature.
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TABLE 5.8

Bin Simulation for 4-P Refrigeration Model for Bryan Store

TABLE 5.9
Bin Simulation for Constant Linear Lighting Model for Bryan Store
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TABLE 5.10
Bin Simulation for 4-P HVAC Model for Bryan Store

TABLE 5.11
Bin Simulation for Constant Linear Utility Model for Bryan Store
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TABLE 5.12
Summary of Bin Simulation for Component Models for Bryan Store

Represent consumption data for which corresponding temperature data were not available.
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Figure 5.31 Time series plot of daily average refrigeration compressor load
for 1992 for Bryan store.

Figure 5.32 Binned hourly electricity consumption for four-parameter
refrigeration compressor model from 01/01/92 to 01/01/93 for
Bryan store.
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Figure 5.33 Time series plot of daily average lighting load for 1992 for
Bryan store.

Figure 5.34 Binned hourly electricity consumption for constant linear
lighting model from 01/01/92 to 01/01/93 for Bryan store.
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Figure 5.35 and Figure 5.36 are plots of time-series energy use and binned

hourly electricity use for the combined-store HVAC system. Differences in binned

energy use and predicted energy use are as high as 28% for a particular bin.14

However, the actual and predicted semiannual energy consumptions differ only by

5.3%. As in the case of the refrigeration system, there is no consistent trend in the

differences between the actual and predicted binned energy use.

Figure 5.37 and Figure 5.38 show the miscellaneous utility load as a time-

series and binned data plot. The binned energy predictions differ from the binned data

by no more than 6.5%, and tend to underestimate the energy use at higher

temperatures, while overestimating it at lower temperatures. Semiannual totals differ

by only 0.10%

Finally, Figure 5.39 and Figure 5.40 show the time-series plot and binned data

and model plot for the whole-building. Bin predictions differ by no more than 6.5%

from their corresponding binned data. On the whole, the semiannual sum of the

predictions differs by only 0.78% from the whole-building energy use data.

5.6 ALTERNATIVES TO SUB-METERING FOR THE BRYAN STORE

We have seen that sub-metering can be used to provide energy consumption

data for both specific component loads and well as whole-building loads. In addition,

clamp-on energy use measurements can provide the same information as expensive

sub-metering. But, there are limitations to the usefulness of clamp-on readings. This

arise primarily when constant component loads cannot be isolated. In the case of the

Bryan store, the fact that the lighting and utility loads have some non-constant

components makes clamp-on measurements and constant linear models less reliable.

Nevertheless, the loads predicted by constant linear models can still be accurate to

within 10% of the true average value of the load being studied. The accuracy increases

further when long-term energy use is considered (such as semiannual or annual use).

To fully evaluate the performance of these models, the sections which follow attempt

to disaggregate the whole-building load at the Bryan store using the same methods

used in the College Station store.

Excluding one bin in which the actual consumption is so small as to make the percent difference 115%. This bin contains
only 0.9% if the semiannual energy consumption.
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Figure 5.35 Time series plot of daily average, combined-store HVAC load
for 1992 for Bryan store.

Figure 5.36 Binned hourly electricity consumption for four-parameter
combined-store HVAC model for 01/01/92 to 01/01/93 for
Bryan store.
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Figure 5.37 Time series plot of daily average miscellaneous utility load for
1992 for Bryan store.

Figure 5.38 Binned hourly electricity consumption for constant linear
miscellaneous utility model from 01/01/92 to 01/01/93 for
Bryan store.
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Figure 5.39 Time series plot of daily average whole-building load for 1992
for Bryan store.

Figure 5.40 Binned hourly electricity consumption for four-parameter
whole-building model from 01/01/92 to 01/01/93 for Bryan
store.
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5.6.1 Varying Loads

Using the lighting and utility constant linear models identified above for the

Bryan store through sub-metering15, we proceeded to identify the loads which do not

remain constant — the HVAC and refrigeration system loads. The most previous

year's worth of monthly whole-building electricity consumption data was obtained

from the electric utility company.16 This was used to identify the whole-building

model as was done for the College Station store. Figure 5.41 shows the whole-

building electricity models identified from 12 months of monthly utility billing data as

compared to the whole-building electricity model identified from the sub-metered

data.

When a year's worth of monthly utility billing data is used to identify the

whole-building model, we get,

This utility billing data model does very well at predicting the data from which it was

identified — the R2 value is 91% and CV is 5%. When used to predict the hourly data,

the 12-month billing model had an R2 of 89% and a CV of 4%. When a half-year's

worth of sub-metered electricity data are used, the model is,

Sub-metering is taken to be equivalent to clamp-on energy use measurements for base loads. Since the lighting and utility
loads are not completely constant at the Bryan store, there are limitations to the usefulness of one-time clamp-on measurements.
These are discussed in the sections which follow.

1 6 The period covered was May 1992 to April 1993.
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1 1 1 1 1

Sub-meter Model CP =
19.2°C (66°F)

Bill Model CP =
17.2°C (62.4°F)

H 1 1 1

Figure 5.41 Change-point models identified from utility billing data and
sub-metered data for the Bryan store.

This sub-metered data model predicts the hourly data with an R2 value of 94% and a

CV of 2%. Either whole-building model works well. Thus, the utility billing model

was used for load disaggregation.

5.6.2 Load Disaggregation

All that was left to determine was either the refrigeration compressor load or

the HVAC load. The whole-building model represents the variation for all the loads

combined. Using the utility billing model, the whole-building electricity load at 0°C

(32°F) is 337 kWh/h. Figure 5.30 showed that the component electricity loads could

be added together to total the whole-building load. At this point, again referring to

Figure 5.30, we already have curves A, B, and D without the use of sub-metering. The

task then is to estimate curve C from either name-plate or clamp-on measurements.

The difference between curves C and D is the store's HVAC load. If estimates of the

maximum and minimum HVAC loads can be made, they can be subtracted from each

end of the whole-building model curve (curve D) to obtain two points which define a

line that is a proxy for curve C.
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From Figures 3.28 and 3.29 in Chapter 3, it can be seen that at temperature of

0°C or lower, the only HVAC load is that of the air-handler fans. Both sub-metering

and clamp-on measurements reveal the store's HVAC fan load to be about 5 kW. If

we subtract this load from the whole-building model at 0°C, we get 332 kW, which

should be curve C at 0°C. In Figure 5.42, this subtraction is shown. From curve C,

the sub-metered refrigeration compressor load is 350 kW at 0°C (32°F). The

agreement is not as remarkable as it is for the College Station store, but it the proxy

value is within 5.1% of the value of curve C at 0°C.

Clamp-on measurements of the HVAC system were taken at an outdoor

ambient temperature of 24.8°C (76°F). At this temperature, the HVAC load was 78.5

kW. Whole-building electricity use at this point is 488 kW. If we subtract the HVAC

load from the whole-building model at 24.8°C, we get 409.3 kW. If the estimation of

the HVAC load is accurate, this should represent the sum of all loads except HVAC.

In Figure 5.43, curve C shows the sum of the sub-metered non-HVAC loads

(refrigeration load plus base loads) to be 409.8 kW at 24.8°C. This agrees with the

subtracted value of 409.3 kW to 0.1%. A proxy for the refrigeration curve C can then

be interpolated between the points at 0 and 24.8°C. This curve is given by,

(5.6)

where T is the outdoor temperature. Cproxy represents the proxy model for the sum of

the lighting, utility, and refrigeration loads. Proxies for the HVAC and refrigeration

models can then be determined by subtraction.

(5.7)

(5.8)
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Figure 5.42 Model disaggregation showing maximum and minimum HVAC
loads subtracted from whole-building model for Bryan store.
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Figure 5.43 Model disaggregation showing proxy curve Cpwxyfor Bryan
store. Curve A represents only the miscellaneous utility load.
Curve B is the sum of the utility load model and the lighting
model. Curve C is the sum of the utility, lighting, and
refrigeration compressor models; and curve D is the sum of the
utility, lighting, refrigeration compressor, and HVAC models.
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Predictions for HVAC and refrigeration compressor energy use based on these

proxy models were compared to the HVAC and refrigeration models developed from

the sub-metered data. The results are as follows:

There are several sources of data from which change-point models can be

identified. Sub-metering unquestionably gives the best data. For the case of lighting

load, the data vary by less than 10% of the mean. But, unlike the College Station

store, the variation in the Bryan store's utility load is more significant — data may vary

to ±17% of the average. Thus, one-time clamp measurements can give base load data

that are within 17% of the average which would be provided by a year's worth of sub-

metered data. The effect that this has on the development of the proxy models is seen

in the poor R2 and CV values associated with the proxy HVAC model. Its coefficient

of variation is 75% as compared to the 28% of the model identified from sub-metered

data. TABLE 5.13 lists the loads of interest in the Bryan grocery store and how the

data and models for them were obtained.

Using constant linear models in a load disaggregation procedure works well

only when those models accurately represent the data from which they are identified.

Because the use of constant base-load models leads to unsatisfactory results when

attempting to disaggregate the remaining models, we conclude that there are situations

where it is not possible to accurately model component electricity loads without the

use of sub-metering. At the very least, multiple clamp-on measurements would be

necessary throughout the year to accurately gauge base loads which have significant

variation.



TABLE 5.13

Sources of Model Identification Data for Bryan Store
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5.7 SUMMARY

Some general conclusions about the relative merits of end-use load estimation

and sub-metering can be made here:

1) Four-parameter change-point models work better than three-parameter or

simple linear models when there is a clear change-point in the data, when such

a change-point is physically meaningful, and when slopes exist on both sides of

the change-point. In general, change-point models are not capable of

determining the source of an apparent change-point behavior. As in the case of

the College Station store lighting load, some data sets display false change-

point behavior. However, they can accurately predict the data when the

change-point is present. While change-point models can be used to fit these

data sets, they do not represent the data in quality since they use a temperature

dependency to describe another relationship such as seasonality. Thus, we

must rely on intuition to tell when such cases arise, and may elect to use

constant linear models to predict these loads.

2) The component energy load models, identified from sub-metered data, were

used to predict energy loads from binned degree-hour data. The whole-

building bin model annual prediction differed by no more than 4% from either

the sub-metered whole-building annual sum or the store's utility billing data.

3) A sinusoidal model was found to fit the store's lighting data better than the

constant linear model. The sinusoidal model was physically meaningful since

the variation in the College Station store's outdoor lighting load was due to the

changing length of the day which follows a sinusoidal pattern. The procedure

necessary to identify this model was not simple, and were not warranted by the

marginal superiority to the constant linear model.

4) Utility billing data were found to be good proxies for the whole-building sub-

metered models. This implies that bin methods can be employed with change-

point temperature models developed from utility billing data.

5) In the College Station store, base loads were easily discernible through walk-

through energy use surveys. This was also true for the Bryan store; however,

the sub-metered data (which were used as proxies for clamp-on measurements)

were not at cleanly divided according to end-use as in the College Station store.

For some loads, it was necessary to know hourly scheduling information. By

comparing the nameplate totals to the sub-metered utility energy use, we found
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that nameplate data did not accurately represent actual energy use. Since the

daily utility and lighting load schedules are fairly constant throughout the year,

clamp-on watt-meter readings taken on the distribution panels could have been

used to accurately gauge the daily energy use for these end-uses. Some form of

sub-metering or multiple clamp-on measurements was required to gauge these

loads since lighting and equipment counts only provide peak loads. In the

Bryan store, the presence of some temperature- or humidity-dependent loads on

the lighting and utility circuits proved to be hindrances in modeling the base

loads with only one-time clamp-on measurements and constant linear

techniques. A remedy for this would be to actually follow through with the

clamp-measurement method to attempt to isolate the HVAC and other

temperature-dependent loads which might be on these circuits.

6) Attempts at disaggregating whole-building loads have value and limitations.

Even monthly whole-building data provide enough information to determine a

building change-point model. Without sub-metering, this is the only change-

point model available. Component loads which have strong change-point

behavior are only discernible through some sort of metering. However, if there

is only one such load, then the change-point may be estimated as the change-

point of the whole-building load. If there are two such change-point loads, but

the variation of one is approximated as linear17, then it may be possible to

identify models for both loads based on measurements of the minimum and

maximum of one. This was how the HVAC and refrigeration loads were

disaggregated from the whole-building load at each case-study store.

7) Finally, the disaggregation procedure used to determine the HVAC and

refrigeration loads without sub-metering depends on all other component loads

being fairly constant. This was the case for the College Station store, where

one-time clamp-on measurements were fair estimates of the lighting and utility

loads. However, these loads at the Bryan store varied much more significantly

with temperature, and consequently, the constant linear models identified from

one-time measurements made the disaggregation procedure less accurate. The

only way to avoid this problem is to make extensive clamp-on measurements

in order to aggregate each individual loads into its proper end-use category

(refrigeration, HVAC, lighting, or utility). This effort borders on sub-metering,

' without a change-point. Such is the case for the refrigeration systems of both stores studied here.
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since it would have to be done at several times throughout the year for varying

loads, and would be quite involved. But even with these limitations, the

disaggregation procedure is moderately successful.

8) The models identified with sub-metered data for the College Station and Bryan

stores were tested with binned degree-hour data. The resulting bin models

predicted annual and semiannual energy consumptions to within 5% difference.

In most instances, the difference was less than 2%.
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CHAPTER VI

DISCUSSION AND CONCLUSIONS

6.1 REVIEW OF OBJECTIVES

The literature review of grocery store studies has revealed that identifying

potentials for energy savings in food sales facilities is a worth-while pursuit. Because of

this, there is a need for further study and modeling of store energy use, and for the

evaluation of such models with actual, measured data. The objectives of this thesis were

to:

1) Conduct a survey of the energy characteristics of grocery stores in the south-Texas

area using corporate utility data and information from a mail-in survey.

2) Sub-meter hourly component electricity loads at two local case study grocery store

along with coincident climatic conditions.

3) Develop and test an effective and readily understandable graphical means of

presenting the monitored hourly data to store management.

3) Test change-point, principle component analysis and multiple linear regression

methods to model the daily whole-building and component electricity load data

and to evaluate the physical significance and relative merits of PCA and MLR

models.

4) Compare daily models from the metered data to a model of the monthly utility bill

data, and determine the usefulness of the information in the monthly data in

predicting component loads.

6) Develop and test a new disaggregation technique for determining component-level

electricity use based on readily available whole-building electricity use data and

survey data, and thereby develop means of gauging energy use that are less-

expensive than sub-metering.
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6.2 CONCLUSIONS

6.2.1 93-Grocery Store Survey

The survey of the 93 grocery stores in south-Texas showed that there is much that

can be learned about energy use in grocery stores from utility billing data and from

simple, mail-in survey that include annual energy use statistics. The survey determined

the following:

1) Total electricity EUI is as average of about 9 W/ft2 (96.9 W/m2), and varies to

extremes by ± 2 W/ft2 (± 21.5 W/m2). Stores smaller than 40,000 ft2 had an

average overall EUI of 9.5 ± 1.7 W/ft2, while stores larger than 50,000 ft2 had an

average EUI of 7.7 ± 1.1 W/ft2. Stores between 40,000 and 50,000 ft2 had an

average EUI of 8.2 ± 1.4 W/ft2.

2) With most of the stores in the same geographic area, it seems unlikely that

variations in climate-dependent loads explain the trend in EUI. Rather, this seems

to be due to component loads which do not increase as store size increases. The

largest such load is refrigeration.

3) Stores built after 1979 have roughly 9% less energy consumption per square foot

than those built before 1979. This is due to at least two reasons.

a) Stores built after 1979 were larger. These stores used their additional

space to stock merchandise that did not require refrigeration.

b) Stores built after 1979 included a significant number of energy-saving

measures.

4) In the south-Texas region, heat reclamation from the refrigeration systems

provides an adequate means of space heating for almost all winter-time

conditions.

5) In general, grocery store energy use is divisible into components. Because only

some of these components are dependent upon store size and/or climate, a more

detailed analysis, such as the case study section of this project, is required in order

to determine key predictors of energy use for a particular store. Nevertheless, the

database section of the project provides a good foundation on which to apply the

results of the findings in the case study.
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6.2.2 Sub-metering of Local Case Study Stores

Hourly component electricity loads were sub-metered at two local case study

grocery stores along with coincident climatic conditions. The end-uses of energy were

evaluated by means of walk-through surveys as well as intensive sub-metering. The

following general conclusions were made:

1) The sub-metering of component electricity loads in the case study store proved

useful in making the store management aware of operational and maintenance

problems. In this study, the feedback was handled manually; however, it is

expected that automated methods could have easily provided similar information.

Such systems could pay for themselves in just a few years. Problems such as

lighting shut-off were spotted quickly through the feedback process.

2) Sub-metering also provides good data with which to construct and verify

statistical energy end-use models.

3) For this study, peak nameplate and survey readings for electricity loads were

moderately good proxies for annual sub-metered end-use loads insofaras relative

percentages of energy use are concerned, though they tend to overstate the effects

of food-preparation equipment and other equipment which is used only

occasionally or only for a few hours of the day.

4) Simple scatter plots of electricity use versus outdoor temperature were useful in

gauging the temperature-dependency of certain component loads, and presenting

these facts to the store management. They also provided a visual means of

comparing the component loads to each other and to whole-building electricity

use. Such graphs can be produced each week automatically, and used by store

management to spot operations and maintenance problems.

5) Daily data were found to be good indicators of the patterns of hourly electricity

use in the case study store for all loads except lighting which exhibits strong time-

of-day characteristics.

In specific, we note the following:

6) The lighting systems of both stores are comparable. The College Station store has

142 kW of indoor lighting, amounting to 2.6 W/ft2 (28 W/m2). The Bryan store has

138 kW of indoor lighting, amounting to 2.8 W/ft2 (30 W/m2).

7) In both stores, refrigeration and HVAC loads were found to be dependent on outdoor

temperature, while lighting and miscellaneous utility loads were not.



200

8) Both the College Station and Bryan stores have refrigeration and HVAC loads that

are temperature-dependent.

9) Both stores have change-points in whole-building, HVAC, and refrigeration loads.

The refrigeration systems of both stores exhibit a change-point temperature at about

60°F(16°C).

10) The College Station store employs heat reclaim from the refrigeration system. As a

result, the refrigeration energy use exhibits a bimodal characteristic below the

change-point temperature.

11) The most significant difference between he two stores is in their HVAC systems.

The Bryan store lacks heat reclaim and dehumidification, and uses natural gas for

heating.

12) The College Station store uses about 851 million Btu/yr, or 15,400 Btu/ft2-yr or

natural gas whereas the Bryan store uses about 690 million Btu/yr, or 14,200

Btu/ft2-yr. Nevertheless, the Bryan stores peak gas use is significantly higher than

that of the College Station store due to the fact that it uses gas for space heating.

6.2.3 Test of Regression Methods

For this case study, the following conclusions regarding the performance and

relative merits of PCA and MLR modeling techniques were drawn:

1) The 1992 PCA model worked better than the 1992 MLR model at re-identifying

the same model parameters for the 1992 data set as predicted by the 1989 PCA

and MLR models. Thus, PCA does better than MLR in terms of parameter re-

identification when used to predict data from a period which was different than

that used to construct the model.

2) PCA does slightly better than MLR in terms of R2 and RMSE criteria when used

to predict data from a period which was not used to construct the model.

3) In both 1989 and 1992 whole-building models, MLR techniques underestimated

the effects of solar radiation. For this study, PCA was found to be superior in

estimating the effects of the variations in solar radiation on the grocery store

whole building electricity use and HVAC system electricity use. The variation in

the HVAC load due to solar radiation predicted by the HVAC PCA model was

15.1 kW, which agreed closely with the variation predicted by the diversified load

calculation, 14 kW. MLR analysis predicted -5.6 kW.
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4) In the 1992 models, MLR techniques over estimate the effects of outdoor

temperature. For this study, PCA was found to be of greater use than MLR in

estimating the effects of variations in temperature on the grocery store whole

building electricity use and HVAC system electricity use. The temperature

parameter predicted by the HVAC PCA model, 2.34 kWh/h°C, agreed closely

with the building UA, 2.07 kWh/h-°C. MLR analysis predicted 4.96 kWh/h°C.

5) One shortcoming of both PCA and MLR analyses is that they determine only one

base load. They attempt to account for energy use due to changes in variables, but

cannot estimate the total effect due to any one variable since the base load cannot

be separated into contributions due to each variable.

6) For some variables, such as specific humidity, identifying the physical

significance of the parameters predicted by PCA (or MLR) may be more difficult

and involved, since alternative models which must be used to verify the PCA and

MLR predictions are likewise complex and involved. For this study, we did not

attempt to verify the significance of the specific humidity or sales parameters

provided by either PCA or MLR.

In general, we conclude that for a building with a simple HVAC system, model

parameters obtained through PCA have more physical significance than those obtained

through MLR analysis1, and that these model parameters correspond to those which are

fairly easily measurable (such as building UA and solar load).

6.2.4 End-use Load Estimation

Some general conclusions about the relative merits of end-use load estimation and

sub-metering were made:

1) Four-parameter change-point models work better than three-parameter or simple

linear models when there is a clear change-point in the data, when such a change-

point is physically meaningful, and when slopes exist on both sides of the change-

point. In general, change-point models are not capable of determining the source

of an apparent change-point behavior. As in the case of the College Station store

lighting load, some data sets display false change-point behavior. However, they

can accurately predict the data when the change-point is present. While change-

point models can be used to fit these data sets, they do not represent the data in

This applies to parameters for which physical significance could be tested.
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quality since they use a temperature dependency to describe another relationship

such as seasonality. Thus, we must rely on intuition to tell when such cases arise,

and may elect to use constant linear models to predict these loads.

2) The component energy load models, identified from sub-metered data, were used

to predict energy loads from binned degree-hour data. The whole-building bin

model annual prediction differed by no more than 4% from either the sub-metered

whole-building annual sum or the store's utility billing data.

3) A sinusoidal model was found to fit the store's lighting data better than the

constant linear model. The sinusoidal model was physically meaningful since the

variation in the College Station store's outdoor lighting load was due to the

changing length of the day which follows a sinusoidal pattern. The procedure

necessary to identify this model was not simple, and were not warranted by the

marginal superiority to the constant linear model.

4) Utility billing data were found to be good proxies for the whole-building sub-

metered models. This implies that bin methods can be employed with change-

point temperature models developed from utility billing data.

5) In the College Station store, base loads were easily discernible through walk-

through energy use surveys. This was also true for the Bryan store; however, the

sub-metered data (which were used as proxies for clamp-on measurements) were

not at cleanly divided according to end-use as in the College Station store. For

some loads, it was necessary to know hourly scheduling information. By

comparing the nameplate totals to the sub-metered utility energy use, we found

that nameplate data did not accurately represent actual energy use. Since the daily

utility and lighting load schedules are fairly constant throughout the year, clamp-

on watt-meter readings taken on the distribution panels could have been used to

accurately gauge the daily energy use for these end-uses. Some form of sub-

metering or multiple clamp-on measurements was required to gauge these loads

since lighting and equipment counts only provide peak loads. In the Bryan store,

the presence of some temperature- or humidity-dependent loads on the lighting

and utility circuits proved to be hindrances in modeling the base loads with only

one-time clamp-on measurements and constant linear techniques. A remedy for

this would be to actually follow through with the clamp-measurement method to

attempt to isolate the HVAC and other temperature-dependent loads which might

be on these circuits.
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6) Attempts at disaggregating whole-building loads have value and limitations.

Even monthly whole-building data provide enough information to determine a

building change-point model. Without sub-metering, this is the only change-point

model available. Component loads which have strong change-point behavior are

only discernible through some sort of metering. However, if there is only one

such load, then the change-point may be estimated as the change-point of the

whole-building load. If there are two such change-point loads, but the variation of

one is approximated as linear2, then it may be possible to identify models for both

loads based on measurements of the minimum and maximum of one. This was

how the HVAC and refrigeration loads were disaggregated from the whole-

building load at each case-study store.

7) Finally, the disaggregation procedure used to determine the HVAC and

refrigeration loads without sub-metering depends on all other component loads

being fairly constant. This was the case for the College Station store, where one-

time clamp-on measurements were fair estimates of the lighting and utility loads.

However, these loads at the Bryan store varied much more significantly with

temperature, and consequently, the constant linear models identified from one-

time measurements made the disaggregation procedure less accurate. The only

way to avoid this problem is to make extensive clamp-on measurements in order

to aggregate each individual loads into its proper end-use category (refrigeration,

HVAC, lighting, or utility). This effort borders on sub-metering, since it would

have to be done at several times throughout the year for varying loads, and would

be quite involved. But even with these limitations, the disaggregation procedure

is moderately successful.

8) The models identified with sub-metered data for the College Station and Bryan

stores were tested with binned degree-hour data. The resulting bin models

predicted annual and semiannual energy consumptions to within 5% difference.

In most instances, the difference was less than 2%.

without a change-point. Such is the case for the refrigeration systems of both stores studied here.
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APPENDIX A

DATA PROCESSING

This appendix describes the basic procedures used to poll and archive data

from the College Station and Bryan grocery stores. Portions of this work are

adapted from Haberl, et al. (1992) which contains a wealth of background

information about building sub-metering projects in general.

A.I REVIEW OF MEASUREMENT TECHNIQUES

This section provides a review of measurement techniques used at the case

study stores, including how electricity measurements, temperature measurements,

and humidity measurements were taken. Component electricity loads for both the

Bryan and College Station stores were measured with voltage (potential) and

current transducers and recorded on separate data acquisition systems. Indoor

temperature and relative humidity measurements for the College Station store were

measured with sensors located near the air-handler units' return air grille and were

also recorded with the data acquisition systems. Outdoor climate data — dry-bulb

temperature, relative humidity, solar radiation, and wind speed — were measured

with sensors located atop the Zachry Engineering Center located in between the

two stores approximately two miles from each, and were provided by the Texas

LoanSTAR monitoring program.

A.I.I Basics of Electricity Monitoring.

In the case study stores, hourly electricity use was recorded using digital

watt transducers. These make use of the Watt/Watt-hour transducer. This solid

state device provides a direct analog or digital output signal that is proportional to

the energy being consumed. Watts are calculated electronically and output as

either an analog DC signal or pulsed output that uses a basic time-division-

multiplier principle. Almost all of the kW channels at both stores receive analog

output. The only exception is the digital whole-building signal at the Bryan store.

Conversion of the energy consumption to analog or pulsed output utilizes two

different processes. In brief, an input reference voltage from a potential

transformer (PT) is supplied that provides a signal that is proportional to the

voltages of each of the phases being monitored. This is combined within the data
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acquisition hardware with input current signals - from current transducers (CTs)

attached to the wires of each monitored circuit— to produce digital output signals

that are proportional to the energy used by each circuit being monitored. These

signals are then stored by the data acquisition system for later retrieval.

A.1.2 Measuring Temperature

The measurement of temperature by a computer is a rather mature

technology. In fact, the computerized measurement of temperature has become so

reliable that it is quite often used as and indirect method for measuring other

quantities such as flow and humidity. The temperature sensor used at the College

Station store is a 2-wire, 1000-Ohm, Platinum resistance temperature detector

(RTD).

An RTD is an electrical device which has a resistance that varies linearly

with temperature. It can be used, therefore, to measure temperature. Electrical

resistance in many materials changes with temperature. In some materials this

change is very reproducible and therefore can be used as an accurate measure of

the temperature.

A.1.3 Measuring Humidity

This section describes the humidity-sensing devices in the College Station

store (there are none in the Bryan store).

Resistance-type Humidity Measurements. The remote humidity sensor

used by its HVAC system is known as a resistance-type humidity sensor. The

electrical conductivity of certain hygroscopic materials varies in proportion to the

amount of moisture absorbed by the material. In certain materials this occurs in a

repeatable fashion and can be used to measure the relative humidity of the

surrounding air. One of these sensors, known as a Pope cell-type sensor, utilizes a

thin layer of sulfonated polystyrene which has been placed on an insoluble surface.

An electrically conductive layer is then bonded to the resin and electrodes are

attached to facilitate the measurement of the difference in electrical resistance.

Such a device exhibits a non-linear change in resistance as moisture is absorbed by

the hygroscopic resin, varying from a few megohms to about 1,000 ohms at 100%

saturation.



210

Thin-film Capacitance-type Humidity Measurements. Humidity

measurements were taken at the College Station store to help determine how well

the store's humidity was controlled by the HVAC system. Figure A. 1 shows the

return air temperature and humidity sensors used at the College Station store. The

return air humidity sensor installed at the College Station store is a thin-film

polymer humidity sensor manufactured by Vaisala Sensor Systems (Vaisala 1988).

It uses a polymer to absorb and desorb moisture. The polymer is usually mounted

between a rigid aluminum base and another electrode (usually a thin gold film).

The polymer exhibits a change in capacitance with a change in absorbed moisture.

In one type of sensor, this changing capacitance changes the frequency of an

oscillating circuit which in turn is changed into a varying voltage or current that is

proportional to the moisture present. The return air humidity sensor was tested

with a two-salt solution calibratation and found to agree with theoretical RH values

to 6.3%. The RH calibration results are listed in Table A.I The salt solutions used

in the calibration were NaCl (for 75%RH) and LiCl (for 11%RH). The theoretical

equations for the relative humidity of the air above the surface of these solutions

are as follows (Greenspan 1977).

Lithium Chloride:

Sodium Chloride:

where T is the temperature of the air and solution at thermal equilibrium.

The RTD sensor was tested against a transfer reference RTD sensor which

agrees with ASTM thermometers to 1%. The test RTD agreed with the transfer

standard RTD to 6% accuracy.
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Figure A.I Photograph of the temperature/humidity sensor installed at
the College Station store.

TABLE A.I

Results of the Calibration of Vaisala Humidity Sensor
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A.2 MONITORING EXPERIMENTS USED IN THE CASE STUDY

STORES

Two sites were used in the case study — the College Station and Bryan

grocery stores. Weather data was obtained from a nearby weather station located

on top of the Zachry Engineering Center on the campus of Texas A&M University,

approximately half-way between the two stores. FigureA.2 shows a map of the

cities of College Station and Bryan including the locations of the case study stores

and weather station.

The level of monitoring used in the case study stores enabled a more

detailed analysis for identifying the building energy use characteristics and for pin-

pointing building operational problems. Figure A.3 shows the weather station

monitoring diagram. The weather station was located approximately two miles

from either grocery store, atop the Zachry Engineering Center at Texas A&M

University. The weather station provided data which include outdoor ambient dry-

bulb temperature, outdoor relative humidity, horizontal solar radiation, and wind

speed. Other psychrometric propertied of outdoor air were derived using

psychrometric relationships coded in to a computer processing routine developed

FigureA.2 Map of Bryan-College Station area showing store locations.
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Figure A.3 Monitoring Diagram for Weather Station
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Figure A.4 kWh Monitoring Diagram for College Station Store, Site
901
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Figure A.5 kWh Monitoring Diagram for Bryan Store, Site 913
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Figure A.6 Photograph of the front of the College Station store

Figure A.7 Photograph of the front of the Bryan store.
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by the staff of the Energy Systems Laboratory at Texas A&M University (AIR

1992). Figure A.4 and Figure A.5 show the monitoring experiment plans as

installed in the College Station and Bryan case-study stores, respectively. Figure

A.6 and Figure A.7 are photographs of the fronts of the College Station and Bryan

stores. The electrical connections to the loggers are illustrated in Figure A.8 and

Figure A.9. The loggers have been configured to record the following:

College Station Logger.

• fifteen channels of electrical power, kW (CT Channel 0, 1, 2 ... 14),

• one channel of temperature, 1000 Ohm RTD (AN Channel 10),

• one channel of relative humidity, 4-20 mA (AN Channel 11)

Bryan Logger.

• twelve channels of electrical power, kW (CT Channel 0, 1, 2 ... 11),

• one channel of whole-building electrical power, kW (D Channel 0)

Fifteen separate channels are recorded for the College Station site. When the

monitoring was installed, an attempt was made to isolate each of the four major

electrical loads — refrigeration compressors, lighting, HVAC, and miscellaneous

loads. Three channels were designated for each load (for each electrical phase).

However, because part1 of the video store's HVAC system was installed on the

whole-building refrigeration circuit, three additional sub-metering channels were

added to monitor the video store HVAC load so that it could be subtracted from

the main store refrigeration load. In late 1991, it was discovered that the store

management had subsequently installed two additional 7.5-horsepower dairy

refrigeration compressors on the main store's HVAC circuit. These were

discovered too late to install more sub-metering. Walk-through survey

measurements revealed that the two new dairy compressors amount to about 9% of

the remaining refrigeration compressor load. Thus, during subsequent statistical

analysis, this fraction was used to adjust the data when necessary to accurately

gauge the refrigeration and HVAC loads. For the College Station store, whole-

building electricity data are not monitored directly, but assembled by adding the

data from the first twelve sub-metered channels.

Two 7.5-ton roof-top units.
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Figure A.8 Diagram of College Station logger set-up.



219

Figure A.9 Diagram of Bryan logger set-up.
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Figure A. 10 Pulse Detector Circuit.
This optical isolation circuit was added between the utility
meter and the logger to provide a clear pulse signal. The
logger digital channel 1 is used as a bias for the input
signal conditioning, but does not record any data. Digital
channel 0 is used to record the pulse output.
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Figure A. 5 shows the monitoring experiment plan as installed in the Bryan

case study store. The Bryan monitoring scheme is made up of thirteen separate

data channels. While the ultimate goal was to monitor the four major components

of the whole-building load, these loads could not be gauged directly. Instead, a

cascading scheme of sub-metering was used. The first three data channels measure

the three phases of the refrigeration compressor load. The next three measure the

three phases comprising lighting and HVAC. The next three channels measure the

HVAC and some lighting loads. The next three channels measure the lighting load

contained in the previous three channels. Subtraction is then used in the data

processing routines to isolate the total lighting load from the HVAC load. The last

data channel monitors whole-building electricity use. This is in the form of a

digital pulse signal provided by the electric utility. Figure A. 10 shows a pulse

detector circuit which was installed between the logger terminals and the electric

meter output terminals. This was done to ensure that the voltage pulse generated

by the utility meter was detected and electrically isolated from the logger. The

remaining miscellaneous store loads are identified by subtracting the sum of all the

sub-metered loads from the whole-building energy consumption.

The whole-building data recorded for both stores compares to that given by

the monthly utility bills as follows in Table A. 2. Values of monthly electricity

consumption for the College Station store differ by less than 3%, and those for the

Bryan store by less than 1%. The strong agreement for the Bryan store data is not

surprising since it represents the same signal that the utility company uses for

billing.

A.3 USING A DATA LOGGER

This section that follows is intended to document how the energy and space

condition data for both grocery stores were collected, stored, and retrieved. The

loggers used at the grocery stores are of the same model and were developed by

Battelle/PNL for the USDOE. This model is commercially available (Synergistics

1990). The reader is referred to the manufacturer's manual for additional details.
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TABLE A.2

Monthly Utility Bills and Sub-metered Whole-building Data

A.3.1 Connecting the Sensors to the Logger

Figure A. 11 is a photograph of the data logger installed at the College

Station store. Figure A.8 and Figure A.9 are diagrams of the logger setups at both

stores. The following sections detail the connections made to each logger from the

electricity and thermal loads being monitored.

Connecting a Digital Pulse Signal. A digital pulse signal is used at the

Bryan store in order to monitor whole-building electricity. The on/off pulse signal

was provided by a 2-wire KYZ pulse. Only the KY terminals were monitored by

the data logger. For every pulse counted, 0.288 kiloWatt-hours were recorded.

This constant was provided by Bryan Utilities which provided the signal from the

meter. This figure was verified by comparing recorded monthly whole-building

data to the monthly utility bills; monthly totals differed by less than 1%.
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Figure A.ll Photograph of connection of the logger at the Bryan store
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Connecting a 2-Wire Resistive RTD Signal. A resistive RTD is used at

the College Station store to monitor return air temperature from a temperature

sensor. The RTD was connected directly to the logger without the need of a

header module by approximately 50 feet of 2-conductor, 22 AWG shielded cable.

The shield wire was grounded to the logger to avoid a ground loop.

Connecting a 2-Wire, 4-20 mA Signal with the Use of a 200-Ohm

Resistive Header. At the College Station store, a 4 to 20 mA signal is used to

monitor return air relative humidity. Connecting a 4-20 mA current loop to the

logger required that a resistive header be inserted into the logger circuit board for

this channel. The header module provides a 200-Ohm resistor across the Al to

GND terminals. This converted the 4 to 20 mA signal to a 0.8 to 4 V signal.

Software options in the polling procedure are used to calculate relative humidity

from the signal provided to the logger. The relative humidity was found by

multiplying the signal voltage by 31.25, and subtracting 25 (calibration constants

provided by the manufacturer). Thus, a sensor signal of 2.4 V translates to a

reading of 50% relative humidity.

Connecting Multiple CTs Using a Summing Module to One Power

Channel. Electrical power, voltage, current, and power factor were measured at

both case study stores by the on-board solid state Watt/Watt-hour transducers. The

primary input(s) that were needed were properly sized, shunted current

transformers (CTs) and a potential (voltage) transformer (PT). CTs were field-

checked with hand-held "clamp-on" ammeter. All CTs were installed with the

same polarity. This was accomplished by aligning the arrows marked on the CTs

themselves toward the electrical source.

Connecting the PT to Provide a Voltage Signal. In order to provide the

power measurements, one potential transducer per store was connected to each 3-

phase feed being monitored. The loggers used in both case study stores provided

PT inputs for two 3-phase feeds — only one input was used. Care was taken to

align the A, B, and C phases with their respective CTs both on the termination

board and in software (this is the single most common mistake that is made with

any logger — incorrect configuration of power monitoring). At the College Station

store, when the video store HVAC monitoring was installed, an error in the

labeling of electrical wiring was discovered. The phases were labeled incorrectly

by the electrician who installed them. As a result, phasing of the monitoring was

changed to match the wiring.
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A.3.2 Survival Commands for Programming the College Station and Bryan
Loggers.

Data from the stores were originally collected with SYNERNET software

provided by the logger manufacturer. Eventually, these stores were polled with an

automatic procedure to facilitate uniform data storage for data used by the

LoanSTAR program.

The SYNERNET software that was provided by the manufacturer with

each logger is a reasonably powerful polling software package. The section that

follows provides a a summary of the commands used to poll the loggers used in the

case study stores. In each example, enough details are provided to illustrate the

basic steps that are necessary for polling a site. As such, only those SYNERNET

commands that are necessary to accomplish this are discussed.

SYNERNET. SYNERNET is the menu-driven software that was provided

by the manufacturer to schedule and poll a logger. It contains five sub-programs

that can be used to perform the different functions. Each of the sub-programs can

be executed separately by typing the executable name (i.e., PARSET <enter>) to

execute directly or by beginning a session with SYNERNET and working ones

way down the menu tree. SYNERNET always begins a session by checking the

PC's time and date.

PARSET. PARSET is the workhorse of the SYNERNET software system

and was the only interface used for accessing the data acquisition systems for the

Bryan and College Station stores. PARSET was used to add a logger to the

network, configure channels in the logger, manually poll the logger, view real-time

data, and download data to a PC. Figure A. 12 illustrates the menu arrangement
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FIGURE A. 12 Diagram for the PARSET program.
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within PARSET. For the most part, one must always choose a logger, then either

edit the channels, or (if this has not already been accomplished) connect to a site,

and use the terminal command to communicate to the logger after connecting.

A.3.3 Setting Up and Polling a Logger.

This section discusses how the data acquisition systems were set up,

accessed, and how data were downloaded. The College Station store logger is

used as an example to illustrate the steps. This next section walks the reader

through how the loggers used in the case studies were set up and configured, and

what the data look like coming from the logger. Except where distinction is

necessary, the examples will pertain to the College Station logger only.

Any new logger that is added to a SYNERNET network needs to be set up

with the PARSET program. In the case study stores, C-180 loggers connected to

the PC via a modem were used. These College Station logger was set up with the

following menu commands:
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Next, the logger needs to be configured so that it is recording the necessary

information. This is accomplished with PARSET as follows:

Table A. 3 is shows the integration periods for logger 901/A/####/A

(College Station store). In general we see that hourly data are being sampled and

captured to memory. Table A.4 is shows the integration periods for logger

913/A/####/F (Bryan store).

Next, the Watt meter channels are set up with

The results of the session are shown in Table A.5 and Table A.6. It should be

noted that in Table A.5, the Hi/Lo polarity of the CT channels 4, 5, and 14 have

been reversed. This was done to compensate for improperly installed polarity on

the CTs. Alternatively, the CT wire terminations in the logger box could have

been switched pair-by-pair. One may also notice that the channel labeled "Video

AC
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TABLE A.3

Configuration Table For College Station Logger Showing Integration Periods.

TABLE A.4

Configuration Table For Bryan Logger Showing Integration Periods.
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TABLE A.5

Configuration Table for College Station Logger Showing Watt Channels.

TABLE A.6

Configuration Table for Bryan Logger Showing Watt Channels.
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Phase A" is designated as corresponding to the PT voltage Cl/Nl. This was done

to correct an electrician's error made in labeling the wiring on the two main video

store HVAC units. What had been labeled as the A-phase of two of the video

store's HVAC units was connected to the C-phase of the building circuit.

Likewise, what was labeled as the C-phase of these units was connected to the A-

phase of the building circuit. As long as the appropriate phases were referenced in

the configuration table for the logger, the data would be monitored correctly.

The analog channels are set up next by selecting

The analog configuration is shown in Table A.7 for the College Station

store (there were no analog channels used in the Bryan store). For logger

901/A/####/A we can see that temperature is being recorded on analog channel 10,

using a scale of 1, and an offset of 0 (this is the default scaling for a 1000-Ohm,

two-wire RTD connected directly to the logger). This setting automatically

produces output in degrees-Farenheit for short lengths of wire leads.

Analog channel 11 is recording humidity using a 4-20 mA signal. In order

to accomplish this we placed a Synergistics 25Al 18-2 resistive header module into

the logger (this amounts to a 200-Ohm precision resistor placed across the Al to

GND terminals). This then allows the recorder to see 0 to 5 DC volts which are

then converted to relative humidity values using a scale of 31.25, and an offset of

-25.

Next, the digital channels are configured as shown in Table A.8. Digital

channels are only used in the Bryan store.
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TABLE A.7

Configuration Table For College Station Logger Showing Analog Channels.

TABLE A.8
Configuration Table For Bryan Logger Showing Digital Channels.
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In the case of the Bryan store logger, whole-building electricity

consumption is being recorded on digital channel 0. Units of one pulse equal to

0.288 kWh have been already assigned to the electric meter by the utility company

which provided the signal.

Finally, the ordering of the configuration table is accomplished by using

The TSR configuration of the College Station logger is now complete and is shown

in Table A.9 (Table A. 10 for Bryan logger). This information is what is written to

disk at each recording interval or Time Series Record (TSR). Table A.7 through

Table A. 10 are the result of printing the configuration tables to a file.

The next step is to connect PARSET to the logger using

PARSET will then respond with the appropriate message to tell us that the modem

connection has been established at the appropriate baud rate.

Actual communications with the logger is established with the TERMINAL

command. At this point we have various different options. If we choose
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TABLE A.9
Configuration Table for College Station Logger Showing TSR Channels.

TABLE A. 10
Configuration table for Bryan logger showing TSR channels.
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we obtain the screen that is shown in Table A. 11 or Table A. 12 depending on

which logger we are calling. To download and/or view TSR data we return to the

TERMINAL menu. This is accomplished by pressing the ESC key. By choosing

we can view and/or download Time Series Records (TSR) to the local PC for

further processing. After selecting "READ TSR DATA", we see that we need to

choose which TSRs to display. If we chose TSRs 284 through 309 we would have

entered:

ENTER STARTING TSR INDEX: 284 LAST TSR INDEX IS 1152

ENTER ENDING TSR INDEX: 309 PRESENTLY WORKING ON 310

(S)CREEN OR (F)ILE OUTPUT: F

OUTPUT FILE NAME: 90193005.RAW

FILE TYPE: ASCII (R)EAL/(E)XPON, (W)K1 SPREADSHEET, (T)SR: R

HEADER TITLES? (N)ONE (A)SCII, (L)OTUS-IMPORT: N

This selects records 284 to 309 to be recorded to disk on the PC in file

90193005.RAW without headers and in floating point, ASCII format. Table A. 13

is an example of what was recorded, from left to right the channels are
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Example of the TERMINAL, READ REAL TIME DATA

screen for College Station Store.
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TABLE A. 12
Example of the TERMINAL, READ REAL TIME DATA

screen for Bryan Store.
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TABLE A. 13
90193005.RAW File Recorded for Sample Session with College Station Logger.
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A.4 PROCESSING THE COLLEGE STATION AND BRYAN DATA

This section provides the reader with instructions on what was done with

the data once they were collected from the loggers. Examples will focus on the

data stream for the College Station Store. Instructions and sample code are

provided for developing summary inspection plots and 3-D plots using a

combination of public-domain data processing tool kits and inexpensive,

commercially-available plotting software.

A.4.1 Processing/Plotting Synergistics Data

Process Overview. This section describes a collection of routines that

were used to process and plot data collected from data loggers. These routines

have been used in the case-study on a weekly basis to create a set of inspection

plots which were used as the primary data quality-control measure.

Controller batch files are used to call the routines in sequence; once a

production mode is established for creating the plots for a particular building, only

a few keystrokes are required to actually create the graphic report. The routines

used to process the data include:

1) Automated quality-control checks of all data channels against static lower

and upper bounds.

2) Insertion of missing records with bad data markers (-99).

3) Creation of summary inspection plots for each data stream of interest.

The processing stream makes these assumptions:

1) Data are being collected on an hourly basis.

2) Each data file to be processed contains exactly one week worth of hourly

records.

3) Each site (data logger) has an associated three-digit code. The example

used herein is site 901 - the College Station grocery store.

4) The raw data recorded from the Synergistics logger have been stored into a

file (90193005.RAW) using real numbers without headers from the

Synergistics software.
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5) The file name used to record the raw data follows the strict format of

XXXYYDDD.RAW where XXX is the three-digit site code, YY is the

year, and DDD is the number of the day during which the data were

collected (which is the day after the last day in the data file). Collectively,

YYDDD is known as the Julian date. As an example, the raw data file

included on the distribution diskette is 90193005.RAW (TABLE A. 14).

This is data for site 901. Because it was collected on 93005 (the 005th day

of 1993 or January 5, 1993), this file contains data for the period beginning

92364 (Dec. 29, 1992 at midnight) and ending 93004 (Jan. 4, 1993 at 11:00

p.m.).

6) To print summary plots, a weekly weather file containing hourly data for

the region is present (00193005.WEA). The weather data were taken from

the weather station at Zachry Engineering Center, on the campus of Texas

A&M University, located approximately two miles from either the College

Station or Bryan grocery store.

7) The commercially-available graphing program GRAPHER (Golden 1990)

is used to create the plots.

8) The public domain programs ARCHIVE and COLS (Feuermann and

Kempton 1987), and GAWK(FSF 1989) are used for quality-control and

data manipulation.

9) The subdirectory \TEMP has been created prior to running the routines.

This directory is used to store all work files during the processing of the

data and graphs.

The following sections discuss the methodology of these routines as well as

possible modifications for plotting other metered data.
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TABLE A. 14

Example Synergistics Raw Data Format 90193005.RAW.
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Preparing Data from Time Series Channels from Raw Synergistics

Data with R2A.BAT. Given this set of filters and programs, a rudimentary

quality-control range check can be performed and a full set of time series plots can

be created with a simple command line operation. To perform the quality-control

and produce plots, type:

This command calls the controlling batch file R2A.BAT to begin the

process as shown in Figure A. 13. The parameters passed to R2A.BAT include the

three-digit logger code (901), a Julian polling date (93005), and a channel table

descriptor (90001). R2A.BAT uses the logger code and Julian date to understand

which file to process.

R2A utilizes an ARCHIVE channel table which is a data dictionary that

attaches static high/low bounds, English language descriptions, and scaling factors

to each data column. The channel table descriptor tells R2A.B AT which channel

table is to be used for the data being processed.

The output of this scheme includes the "flat" file, 90193005.ACH, which is

incorporated into a database. A flowchart for R2A.BAT is given as Figure A. 19.

Briefly, these steps are performed by R2A.BAT:

Step 1) The GAWK script RAW2DAT.AWK is called to preprocess the raw data

90193005.RAW for quality-control checks. Quality-control is performed by the
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FIGURE A.13 Flow chart for R2A.BAT data processing procedure.
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public domain program ARCHIVE (Feuerman and Kempton, 1989) which is

unable to understand some of the characters that the Synergistics software leaves in

the 90193005.RAW file. An example of Synergistics data are given as Table

A. 14. The output of RAW2DAT.AWK is given as Table A. 15. Notice date/time

columns have been adjusted, and that certain characters have been stripped-out of

the file (e.g., 7",":", etc.).

Step 2) The output of RAW2DAT and the site's ARCHIVE channel table are fed

into ARCHIVE for static high/low range checking. The ARCHIVE channel table

9019000l.CHT for the College Station store, site 901, is given as Table A. 16 (and

for the Bryan store, site 913, as Table A. 17). Example output from ARCHIVE is

given as Table A. 18. ARCHIVE will report any offending data readings in a log

file and will replace such readings in the data with a "bad data" marker (Table

A. 19). Currently, this marker is the value, -99. ARCHIVE automatically appends

the DOS file extension ".ACH" to the filename. For the example data set

provided, this step will have created the file 90193005.ACH.

An ARCHIVE channel table must be created manually for each site and

contains the instructions that ARCHIVE uses to process the data from each site. In

Table A. 16, the ARCHIVE channel table 9019000l.CHT is shown which

processes the data from site 901. The first four lines of the channel table are labels

for the columns below. The line beginning with "#" contains special characters

that tell ARCHIVE what kind of data it is processing, and what to use as a missing

variable (the default is -99).

The first eight characters are the date that the parameters are to be applied.

Excluding the last line, this is "07/03/90" for site 901 which is the most recent date

for this parameter set. It does not need to coincide with the first date in the data to

be processed, but must be prior to it.

The next variable is the time, in this case "00:00". This is instructing

ARCHIVE to begin processing on July 3, 1990 at midnight.



TABLE A. 15

Example output 90193005.DAT from RAW2DAT program.
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TABLE A. 16

Example Channel Table for the 9019000l.CHT Archive Program.

TABLE A. 17
Example channel table for the 9139000l.CHT ARCHIVE program.
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TABLE A. 18
Output From The Archive Program, File 90193005.ACH.



TABLE A. 19
Example .LOG file from the ARCHIVE program.

247



248

Next are the line number and column number of the input channel. These

are followed by the ARCHIVE output column number. A "0" value is essentially a

comment line and does not appear in the .ACH file.

Following the ARCHIVE column position indicator is an eight character

descriptor of the channel. This is followed by another twelve character descriptor

of the ARCHIVE units and a six character code word for the ARCHIVE output

format.

The next two variables contain the conversion code word and conversion

constants. The conversion code word is an integer from 1 to 31 and instructs

ARCHIVE whether or not to perform conversions on the incoming data.

Conversion code "0" will place a missing variable into this column, code " 1" is an

identity code that allows the value to pass through ARCHIVE untouched, code "2"

is a linear transformation that requires two constants (i.e., slope and intercept), and

so forth.

The last three columns contain the error code, error constants, and channel

description. The error checking code is an l=on, O=off code that initiates the

high/low limit checking which makes use of the high/low limit values that

immediately follow.

In the 9019000l.CHT channel table in Table A. 16, there are 24 lines of

input. The first line,
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The next six lines,

create the second through seventh columns in the output file, 90193005.ACH. The

second, third, and fourth columns in 90193005.ACH are the month, day and year

that are simply passed through ARCHIVE without change. The fifth output

column is the Julian date (92364), that is calculated by ARCHIVE using the first,

second, and third input columns. The sixth column is the decimal date (4746.000)

that is calculated by ARCHIVE. The decimal date is a combined date and time

stamp that is an offset number of days and hours from January 1, 1980. It is

similar to the @DATE(YR,MO,DAY) function that is used in many spreadsheets.

The seventh column is the hour of the day using military notation (i.e., 0 to 23

hours). Columns eight through twenty-four in 90193005.ACH all contain

monitored data, in this case from the College Station grocery store building.

Step 3) For the processing of the grocery store data, the final step of R2A is to

feed the .ACH file to the program MISSING. This program scans the time stamps

and inserts records and appropriate bad data markers in place of any missing

records. When a logger loses power in the field, it stops recording TSRs, and

begins recording TSRs when the power is restored. However, a hole will exist in

the data for those periods when the power was off. This hole is filled with -99

values to aid in file merging and in graph readability. The output of MISSING

uses the file extension ".ACS". This is the ASCII flat file from which all

subsequent plots are made. When there are no missing data there is no difference

between an .ACH and .ACS file except the filename extension.

Using GRAPHER to Create an Individual Graph. GRAPHER is one of

many commercially available general purpose graphics software packages.

GRAPHER is very useful for rapidly plotting data because of its flexibility,

overlay, and programmable batch mode operation. GRAPHER is actually
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composed of several sub-programs as shown in Figure A.\A. The most important

of these (once configured) are the VIEW and PLOT programs. VIEW allows one

to quickly preview a graph that has been created. PLOT translates GRAPHER's

.PLT file into device-specific plot instructions for printer output.

In general, to produce a plot with GRAPHER, one needs data files (.DAT)

and plotting instruction files (.GRF). GRAPHER also allows for additional

customization with axis (.AXS), grid (.GRD), dividing line (.DIV) and text (.TXT)

files, although custom information can be stored in the general .GRF files.

Figure A. 15 shows the result of processing the "T901_03.GRF"

GRAPHER instruction file. Table A.30 contains a summary of the graphic

instructions contained in the T9O1_O3.GRF file. Table A.31 is the T901_03.GRF

file that GRAPHER produces. From Table A.30, one can see that input file,

901week.DAT, is being used and that a linear X-Y plot is being produced using

the sixth column (F) for X and the eleventh column (J) for the Y variable.

GRAPHER produces a time series graph since the X variable is actually the

decimal date and a solid line without symbols is being used to plot the data. Each

graph that is to be plotted requires a .GRF file. The use of GRAPHER to produce

weekly inspection plots is reasonably efficient because the same .GRF file

(modified slightly) can be used with each week's data.

A.4.2 Description of the Summary Inspection Plots from Raw Synergistics Data
and Area Weather Data

The Need for Summary Plots. Because each building usually has a

unique parameter set, summary inspection plot pages have been created to produce

a generalized scheme for quickly inspecting data collected from multiple buildings.

A summary plot page contains whole-building and sub-metered information

presented in a standard orientation.

The motivation for creating such a page is two-fold. First, in both grocery

stores, electricity load readings are recorded on multiple channels (e.g. A, B, and C

phases). It is the sum of these phases that is of interest. Second, summary plot

pages decrease the time required during plot inspection because they present

combined-phase data. It was found early on in the study that pages such as these

are tremendously helpful for visual quality-control.
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TABLE A.30

Summary of GRAPHER instructions for graph T901_03.GRF.

TABLE A.31

T901 03.GRF GRAPHER file.
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Figure A. 14 Flow chart for the GRAPHER program.
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Figure A. 15 Graph created with T901_03.GRF and 901week.DATdata
file.

Examples summary pages are shown in Figure A. 16 and Figure A. 17 for

the College Station and Bryan stores, respectively. The first column of the

summary pages contains a time series plot of whole building electric for the site, as

well as weather time series data (outdoor dry-bulb temperature, relative humidity,

and solar radiation) for the region. In this case, the loggers used in the College

Station and Bryan stores do not have their own weather stations. Therefore

weather data from a nearby site at Texas A&M University must be merged in from

an outside file, 001*.WEA. The second column contains time series graphs of

building sub-metered electricity loads. The third and final column contains scatter

plots of the same data points in the second column plotted against outdoor dry-bulb

temperature for the region.
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FIGURE A. 16 Example of the first 12 summary page plots from the
College Station store.
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FIGURE A.17 Example of the summary plots from the Bryan store.



Creating Graphs Using 901SUM.BAT. 901SUM.BAT is another

controlling batch file. Its function is to automatically produce a set of time series

plots (Figure A. 16) — one per sub-metered load (refrigeration compressors,

lighting, HVAC, and miscellaneous utility). A flowchart for 901SUM.BAT is

given as Figure A. 18. Briefly, these steps are performed by 901SUM.BAT:

1) Copy temporary versions of the 90193005.ACS and OO193OO5.WEA files into

the \TEMP directory.

2) Merge the data from these two files into one file (without duplicating time-

stamp information) with the program COLS.COM and 901JOIN.AWK.

COLS.COM is one of the helpful tool kits that comes with ARCHIVE.

C0LS.COM is used to copy the lines in the .ACS and .WEA files together :

(juxtaposition). It produces a temporary output file called JUX.
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This calls C0LS.COM with the input files 90193005.ACS and OO193OO5.WEA.

All columns in each file are merged together to form 90193005.JUX in the sub-

directory \TEMP. 901JOIN.AWK then takes the JUX file and removes redundant

time-stamp information and performs calculations to reduce 3-phase electric power

data into combined-phase data for each sub-metered load. The output of

901 JOIN. AWK is a compact data file called .DAT.
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FIGURE A.18 Flow chart for 901SUM.BAT.
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3) The .DAT extension is required because GRAPHER only takes files with the

.DAT extension as input. For the input file, 90193005.ACS, the output file

90193005.DAT is created. Another batch file, MAKESPAC.BAT can be used to

generate a second data file, SPCYYDDD.DAT, containing indoor ambient space

conditions. This calls on AIR.EXE (AIR 1992) which takes indoor temperature

and relative humidity data (found in the .ACS file) and derives several other

psychrometric properties. This can only be done for the College Station store,

where indoor ambient air conditions are monitored, and is not detailed here.

4) Call the GAWK script 901DATE.AWK to determine the beginning dates in the

data set. This script automatically writes the batch file 901CHGRF.BAT.

5) Call 901CHGRF.BAT. This uses the GAWK script 901CHGRF.AWK and the

dates found in 901DATE.AWK to change the .GRF files for each plot. These files

need to be changed to start the time line (the X axis) at the correct spot for each

week. As each GRAPHER file is modified, it is written into \TEMP.

6) For each .GRF file in \TEMP, call GRAPHER. The output is a device

independent .PLT file.

7) Format each page. To print twelve graphs per page, the .PLT files need to be

shrunk and "pasted" together. This is accomplished electronically with the

insertion of a simple set of scale/translate files and the DOS copy command. The

scale/translate files work as follows:

. SCALE.PLT: Shrink to about 30% of default GRAPHER output dimensions.

• A.PLT: Move to the lower left corner of page.

• B.PLT: Move up one row, the height of one plot.

• C.PLT: Move to the right X column (usually 1) and down three rows (usually)
back to the bottom of the page.

The dimensions of translation may be changed to fit the number of plots desired

and to fit the page orientation. A full page of plots (twelve for example, i.e., #1,

#2, ...#12) is created by appending all of these together:
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A.4.3 Creating a 3-D Graph Using Lotus 123 and Intex Solutions 3D Graph

3-D graphs have been shown to be useful in displaying schedule-related

whole-building and end-use energy profiles. However, it is not always easy to

create useful 3-D plots on a PC because certain software packages require that data

be placed in a special format prior to processing. The combination of software

packages used to generate 3D plots for the College Station store is shown in Figure

A. 19. Columnar data are plotted with the Intex Solutions 3-D plot package that

can be attached to Lotus 123 on a PC.

To facilitate the creation of 3-D plots a special routine was created to

convert COLumnar data into ROW format to produce a 3D plot - COLROW3D

(1991). With this routine, two columns of ASCII data are fed to C0LR0W3D by

which they are reformatted into a row-wise matrix to allow for importing into 123

for plotting with the 3-D graphics add-on package. To facilitate this easily in a

batch mode previously compiled 3-D plot instructions can be used in a 123 macro

file as shown in Figure A. 19. Output from 123 consists of .PIC files that can be

plotted or passed on to additional programs for further processing. This next

section describes how to use the software to produce 3-D surface plots with the

Lotus 123 add-on package that is available from Intex Solutions. The reader is

referred to the Lotus 123 manual or the Intex Solutions 3-D graphics manual for

further information about plotting the 3-D graphs.
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FIGURE A. 19 Flow chart for producing 3-D plots.



261

Using the COLROW3D Column-to-Row Data Processing Routine.

COLROW3D is a columnar data manipulation program which processes hourly

energy consumption data to produce a "new" file containing a spread sheet

compatible data matrix. COLROW3D compresses each day's worth of data into

one row in the matrix. For example, a leap year's worth of hourly data (8784 lines)

will be compressed down to just 367 lines!

The output file generated by C0LR0W3D can be used in conjunction with

Lotus 123 and Intex Solution's 3D-Graphics add-on package to produce a three

dimensional (3D) picture of energy consumption versus day of year and time of

day. COLROW3D also creates a .LOG file containing information about the run

and any erroneous data found.

Input file(s). The original energy consumption file contains two columns

of data: Date (day of year and time of day expressed as a single decimal date

string), and consumption (expressed in units between -999.9 and +9999.9). The

data should be separated by a space from the decimal date and can be of real or

integer type. The input file may contain up to 366 days of hourly data with each

day containing 24 hours. All dates must be in chronological order. Table A.32 is a

sample input file. When preparing the input file, keep in mind the following rules:

• The input file may only contain numeric data of the integer and real type. No

characters other than the numerals 0 through 9, decimal points, minus signs,

and spaces are allowed.

• Each line row or record should contain only two data fields. If more than two

values are included, data beyond the second value are ignored. If only one

datum is given on a line, the program will assume a missing value for the

second field. A value of 0 is used as the missing code.

• The maximum data that will be read are 366 days worth of hourly data. Each

day may contain from 1 to 24 hours of data-one record per hour. Only hourly

data should be used as input to COLROW3D. Data in sub-hourly format must

be converted to hourly format prior to processing.
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TABLE A.32

Example Input Data File For Colrow3d.

The second data column in the input file can be any consumption

environmental data. Acceptable values are between -999.9 and 9999.9. A

value of 0 will be used for missing data. If the value lies outside the acceptable

range, the program records an error message to the .LOG file, and sets the

hourly consumption to 0 for missing data. Data are recorded to the output file

by rounding off to the first decimal place.

Time stamp. COLROW3D requires a decimal time stamp. Arbitrarily,

January 1, 1980 00:00:00 hours is considered to be "day 0" and has the decimal

date representation 0000.0000. The number on the left hand side of the decimal

point represents the number of days since January 1, 1980. The number on the

right hand side of the decimal point represents the hour as a fraction of the day.

Hours range from 0 through 23 and are calculated as the decimal portion

multiplied by 24 and rounded to the nearest integer. Hour 24 becomes Hour 0 of

the following day. Note, the day of the year must be in chronological order. No

such requirement is imposed on the hour of the day.

Valid dates are from January 1, 1980 (day 0) through December 31, 2009

(day 10957). Leap years and century leap years are taken into consideration. The

program will need to be updated for decimal dates beyond the year 2009. Table

A.33 gives decimal dates for January 1 from 1980 through 2009. The following

are examples of decimal date conversion,



263

TABLE A.33

Decimal Date Reference Table for COLROW3D.
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Examples of Energy use data.

2901.0417 100 record indicates that on December 11, 1987 at 1:00 am the

building used 100 kW of energy.

4020.0000 99999 ERROR! data value is out of bounds. A message will be

written to the .LOG file, and the consumption will be set to

0.

Output file(s). The output data file contains the original energy use data

which have been rearranged in a matrix format for use with Lotus 123. This file

must have a .3D extension. The .LOG file contains information written by

COLROW3D while the program is executed. Information regarding date and time

of run, and any errors encountered during processing are included. The date of the

first and last string of processed data are shown.

The output file is a N by 24 matrix containing only the valid input data.

Here N stands for number of days between the first and last valid date stamp read

from the input data file. For example, for one year's worth of data N is 366.

Both sample output files are shown in Table A.34. The first row is a

header that contains the hour of the day (ranging from 0 to 23), the first column is

the day of the year (for example, day 121 is May 1st), and the remaining fields are

hourly consumption data (in units of kWh/h). Missing data are represented by the

value -99. The very first value in the first row shows the day of year for the last

date read. This makes it convenient to use the output file in a spreadsheet since it

can be used to compute the number of rows in the table.



TABLE A.34

An Example Output Data File For C0LR0W3D.
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.LOG file. C0LR0W3D keeps a record of what happened during each run

of the program. This information is written to disk in a .LOG file. The .LOG file

has the same name as the input data file, but with a .LOG extension. Existing

.LOG files with the same name will be overwritten. Any errors encountered during

execution are written to the .LOG file. An example of a .LOG file is shown in

Table A.35.

The header specifies the name of the program and the date and time the run

was made. The next line gives the name of the input file, the output file, the .LOG

file, and the option selected. The following line gives the time the first record was

read and the beginning date associated with that record.

The error table follows, and lists the location of the erroneous record, the

data in the record, and the invalid datum. Since COLROW3D can deal with very
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TABLE A.35

An example .LOG file for COLROW3D.

large data files, a maximum of 50 date stamp errors and 20 data errors will be

recorded in the .LOG file. This is to prevent a single bad datum from causing the

entire data file to be written to the .LOG file. At the end of the error table is the

time the last record was read and the ending date associated with that record.

The last part of the .LOG file consists of statistics about the input records.

The .LOG file ends with a note, which states that the time portion of the date

stamp is not checked for chronological order, and a message that the .LOG file is

complete.

Execution.

C:\TEMP> COLROW3D Input Output Option <enter>

Input is the input file name (with complete path and extension specified.)

Output is the processed data file (with .3D extension).

Option is the integer 0 or 1. Choose 0 to create a file beginning with days = 1 and

ending with day = 366, each day containing 24 hours of data. If the original file

has fewer than 366 days of data, missing data are set to 0. Select a value of 1 to
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output fewer than one year's worth of data in contiguous order. Option 1 preserves

the chronological order of input file. Figure A.20 illustrates the difference in 3-D

graphs between a "0" and "1" option. Table A.34 shows the difference in the

output files.

Example.

Action: COLROW3D will read data from the input file called UTIL.DAT, output
data to UTIL.3D, and create the .LOG file UTIL.LOG. Since the UTIL.DAT
input file contains less than one year's worth of data, missing data are given the
value of 0.

Example.

Action: COLROW3D will read the file UTIL.DAT, output to the file UTIL.3D,

and create the .LOG file UTIL.LOG. The output file is a 366 by 24 matrix with

missing data set to 0.

Example.

Action: COLROW3D displays the on-line help screen. For additional help, check

the manual.

Using Intex Solutions 3DGRAPH. Table A.36 contains the 3DGRAPH

plotting instructions that were used to produce the lower half at Figure A.20. This

is a plot of the miscellaneous utility channel from the College Station grocery

store. After installing, configuring, and initiating the Intex 3DGRAPH Lotus add-

on, the UTIL.3D data matrix can be loaded with a FILE IMPORT command (with

the pointer in cell Al). The graphing instructions can then be loaded after 3D

Graph has been initiated with a GRAPH NAME USE command.
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TABLE A.36
Intex Solutions 3DGRAPH Graphing Instructions for 3D Surface Plot

Figure A.20 Example .PICplots using the COLROW3D software
package.
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A.5 DATA-PROCESSING ROUTINES

This section lists the batch files, AWK scripts, and other miscellaneous

instruction files mentioned in the previous sections and used to process the data.

A.5.1 901SUM.BAT
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A.5.2 901JOIN.BAT
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A.5.3 901JOIN.AWK
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A.5.4 901CHGRF.AWK



276



277

A.5.6 901DATE.AWK
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APPENDIX B

BUILDING ENERGY USE SURVEY DATA

TABLE B.I
College Station Store Miscellaneous Utilities

Nameplate Rating Loads

Total: 102.9
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TABLE B.I
College Station Store Miscellaneous Utilities

Nameplate Rating Loads (continued)

Meat Preparation:

Cash Registers (on Lighitng Circuit)
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TABLE B.I
College Station Store Miscellaneous Utilities

Nameplate Rating Loads (continued)
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TABLE B.2
College Station Store Lighting Count
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TABLE B.2a
Store Lighting Count (continued)
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TABLE B.2a
Store Lighting Count (continued)
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TABLE B.2b
Summary of College Station Store Lighting Count
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TABLE B.3a
Summary of Amp Readings for the College Station Store

Refrigeration Compressors System



TABLE B.3b
Summary of Refrigeration Schedules for

College Station Refrigeration Compressors
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TABLE B.3c
Summary of Rated Condenser Fan Loads

for College Station Refrigeration Compressors
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TABLE B.3d
Load Summary of Compressors at College Station Store
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TABLE B.4
Bryan Store Miscellaneous Utilities Nameplate Rating Loads
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TABLE B.4
Bryan Store Miscellaneous Utilities Nameplate Rating Loads (continued)
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TABLE B.5a
Bryan Store Lighting Count
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TABLE B.5a
Bryan Store Lighting Count (continued)
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TABLE B.5b
Summary of Bryan Store Lighting Count
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TABLE B.6a
Summary of Amp Readings for the Bryan Store

Refrigeration Compressors System



TABLE B.6b
Summary of Refrigeration Schedules for

Bryan Refrigeration Compressors
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TABLE B.6c
Summary of Rated Condenser Fan Loads

for Bryan Refrigeration Compressors
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TABLE B.3d
Load Summary of Compressors at Bryan Store
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APPENDIX C

INTERESTING FACTS NOTED DURING THE CASE STUDY

This appendix contains various facts which should be of interest to the store

management which were noticed during the course of this study.

C.I OPERATIONAL PROBLEMS SPOTTED THROUGH SUMMARY

PLOTS

The store management readily understood the summary inspection plots, and

preferred using them to spot maintenance and operational problems. Scheduling

effects could easily be seen. For instance, it was found that the parking lot lights,

which are controlled by a mechanical timer, remained on during daylight hours

because the timer was malfunctioning. Prior to the monitoring, this problem was

spotted only when the store manager ventured out into the parking lot when the lights

were on when they should not have been. The problem could be seen easily in the

inspection plots. Similarly, about half of the store's interior lights were scheduled to

be turned off manually from 11 p.m. until about 7 a.m. However, they frequently were

left on — about once a week. The inspection plots revealed the matter immediately and

without question. The interior lights in question comprise about 90 kW which, if half

are left on for 8 hours/day, cost about $9.00/day. In 1991, this occurred about 45

days/yr, amounting to an avoidable cost associated with this problem is $405/yr. The

management has made an increased effort to turn lights off since being made aware of

this problem.

C.2 DELAY IN ADJUSTMENT OF PARKING LOT TIMER

The minimum lighting load for the College Station store occurs on about July

23, rather than the expected June 21. June 21 is the summer solstice, when daylight

hours are the longest and nighttime hours are the shortest. Since the management

resets the timer clock on the parking lot lights on a monthly basis, the seasonal

lighting schedule should lag the solstice by about 30 days, as is the case.

C.3 BIMODALITY IN REFRIGERATION AND HVAC ENERGY USE

The College Station main store HVAC load is comprised of two air-handling

systems and three of the smaller video store HVAC units. As was seen in Chapter 3,
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Figure 3.18 (e), the outdoor air change-point temperature for the combined HVAC

load can be visually estimated at about 18.7°C (65°F). The HVAC load appears to

have a linear relationship with temperature above the change-point. The data below

the change-point are thought to involve mostly fan loads and dehumidification (one

compressor) loads. Two modes of data are clearly present below the change-point.

The lower, about 20 kW, is the fan load; the upper, at about 50 kW, is the fan load

plus one compressor which is being used during the heating season for

dehumidification. This is a reheating process. This bimodality shows up in the

refrigeration compressor data as well.

The HVAC system is equipped with heat reclaim coils through which hot

refrigerant from the refrigeration compressors can flow. These coils function as part

of the refrigeration system condensers. When reheat or dehumidification is occurring,

chilled air is blown across the heat-reclamation coils in the air duct. Since the air

being blown across them is often cooler than the outdoor ambient air, which otherwise

is used to cool the condensers, the refrigeration system operates more efficiently. The

bimodality in HVAC operation has the effect of producing a bimodality in the

refrigeration system energy use. These two modes may be seen in the refrigeration

data below 65°F (18.7°C) (see Figure 3.18 (b)). When the refrigeration system's

condenser lines are no longer exposed to outdoor ambient conditions, the effect which

outdoor temperature has on the refrigeration system diminishes. The daily data in

Figure 3.20b show that the two modes in the refrigeration energy use correspond to the

two modes of HVAC system operation, that is, 1) when one or more stages of cooling

are running, and 2) when only the air-handler fans are running. This difference is only

apparent when the outdoor temperature is below the 65 °F change-point. This is to be

expected since waste heat from the refrigeration system is not used when there is no

space heating requirement.

While the use of reheat with heat reclamation may help to explain the 65°F

change-point, there is another factor involved. The condenser coils are exposed to

ambient air which is drawn into the compressor room and exhausted through the roof

by four large fans. As described in Chapter 3, Section 3.2.1, these fans control the

room air temperature, but do not let it drop below 60°F (16°C). This means that

outdoor temperatures below 60°F to 65 °F should not have an effect on compressor

energy use by way of the condenser coils. When heat reclaim is used, and when one

stage of cooling is necessary for dehumidification purposes, energy is saved in two

ways. First, the refrigeration system provides the necessary space heating. Second,
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the heat reclaim coils serve as the refrigeration system condenser coils; since these

coils are exposed to air which is cooler than the minimum compressor room

temperature (60°F [16°C]), the refrigeration system operates more efficiently. In

Figure C.lb, we see that in both modes of refrigeration system energy use, below

about 60°F, the curve is fairly flat. This is to be expected since, whether the heat

reclaim coils are being used or the compressor room condenser coils are used to reject

heat, the temperature at which the system rejects its heat is fairly constant.

C.4 HOLE IN AIR-HANDLER UNIT DUCT SPOTTED

During the walk-through survey of the College Station store, a 1-foot hole was

spotted in the duct-work leaving the air-handler unit #1. Air coming off the cooling

coils was being dumped into the store's unconditioned back room. This problem was

reported to the maintenance manager and corrected within a week. Store personnel did

not know how long the leak had been present.

C.5 GAS USE AT THE BRYAN STORE

The Bryan store has a gas EUI of 14,200 Btu/ft2-yr - about 4,200 Btu/ft2-yr less

than the College Station store. And its overall annual gas use is less than that for the

College Station store. However, the Bryan store's peak gas use is significantly higher

than that of the College Station store. High peak uses can be seen in January of each

year. This is clearly a result of space heating requirements during the very cold

months. This occurs because the Bryan store does not use reclaim heat from the

refrigeration system. Significant space heating is only used during one or two months

per year for the past three years (1990 to 1992). The store's base-level consumption is

about 35 million Btu/month. This is attributed to the heater pilot lights. Based on

utility bill information, the average annual amount of gas used for heating is 245

million Btu/yr. If heat reclaim were used to supply this heating requirement, an

estimated $l,090/yr in natural gas bills could be saved.
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Figure C.I a,b -10 -5 0 5 10 15 20 25 30 35 40
Hourly Dry-bulb Temperature (C)

(b)
Bimodality of refrigeration load, a) Scatter in hourly data make
the two modes of energy use below 65°F (16°C) difficult to see.
b) Daily data reveal the two modes of energy use. The lower
mode corresponds to times when the HVAC cooling stage is
running. The higher mode corresponds to times when only the
fans of the HVAC system are in use.
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APPENDIX D

TRANSLATION OF PCA PARAMETERS INTO MLR

PARAMETERS

This discussion assumes that the reader is familiar with principal component

analysis in general, and is a discussion on how the SAS (1989) program implements PCA.

For an in-depth explanation of the PCA technique, the reader is referred to Chen (1991),

Jolliffe (1986), Rao (1964), Daultry (1976), and Draper and Smith (1981).

D.I TRANSLATION RETAINING ALL PRINCIPAL COMPONENTS

PCA can be a useful tool in data analysis. But, the models which SAS predicts are

in terms of the principal component variables (PCs) which it generates. They are not

useful in this form, and must be converted into terms which relate to the original variables

of interest. How, then, are the original variables, Xi; and the PCs related? In order to

perform a PCA analysis, SAS first normalizes all variables, Xj, into variables, Zj, which

vary over a similar range. The conversion is made according to the relationship:

where X j is the sample mean, and Sj is the sample standard deviation for the variable Xj.

SAS provides the eigenvector matrix, [q] or [EIG], which defines the relationship

between the principal components (PCs) and the normalized variables. Consider a model

with three variables:
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A special quality of the eigenvector matrix is that its inverse is the same as its transpose.

The PCA and MLR models must be equivalent when all PCs are used. Thus,

Energy ModelMLR = Energy ModelPCA

where CMLR and CPCA are model constants for the MLR and PCA models respectively.

The P are the parameter estimates for the MLR and PCA models. Substituting for the

[PC] matrix, we obtain,

and CMLR - CPCA.

One final transformation is necessary. That is, switching from the parameter

estimates for the normalized variables, Zj, to parameter estimates for the original

variables, Xj.
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D.2 TRANSLATION DROPPING ONE PRINCIPAL COMPONENT

When a PC variable is to be dropped, the PCA model is transformed back into an

MLR model in a way similar to that described above. However, the values in the column

corresponding to the omitted PC in the eigenvector matrix are replaced by zeros. Let's

consider again the 3-PC model, but with PC3 dropped.

SAS provides the same eigenvector matrix, [q], but we make a modification.



308



309

(D.14)

Q.E.D.

This matrix relationship can be easily incorporated into an algorithm in a

spreadsheet. This is the method used to convert the PCA parameters for the building

energy use models which SAS provides into those which can be used in models which are

in terms of the original climate and sales variables.
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APPENDIX E

STATISTICAL ANALYSIS

The three sections which follow present the data, software routine, and analyses

output used in the PCA and MLR statistical analyses in Chapter 4.

E.1 DATA USED IN ANALYSIS

The data used for the PCA and MLR analyses are listed below. For the purposes

of this display, they are divided into two groups. The first lists the date and the daily

electricity component loads. The second lists the climate variables, some of which were

used as predictor variables.

E.1.1 Building Electricity Load Data

The loads listed are: refrigeration compressors, lighting, HVAC, utility, partial

video store HVAC, whole-building electricity. The colums adjacent to each load

represent the number of hours recorded in each daily sum.
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E.1.2 Predictor Variable Data

The values listed are: outdoor dry-bulb temperature (°C), relative humidity (%),

solar radiation (W/m2), enthalpy (Btu/lbm air), specific humidity (kg moisture/kg dry air),

store sales ($/day). Of these, only temperature, specific humidity, solar radiation, and

sales data are used as predictor variables. The colums adjacent to each load represent the

number of hours of data used in each daily average calculation.
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E.2 STATISTICAL ANALYSIS ROUTINE
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APPENDIX F

SITE PHOTOGRAPHS

This appendix contains photographs from the College Station and Bryan case

study stores.

Figure F.I Front of the College Station store. The front of the main store,
including the covered porch and glass section is shown here.
The parking lot lights directly in front of the store are connected
to its lighting circuit.

Figure F.2 Front of the Bryan store. The front of the main store, including
the covered porch and glass section is shown here.
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Figure F.3 Refrigeration compressor room at College Station store. The
compressor room at this store is almost identical to that at the
Bryan store. Each compressor is dedicated to a single group of
refrigerated display cases and merchandisers.

Figure FA Refrigeration compressor #12 at the College Station store. This
compressor uses the refrigerant, R12, and serves the island
produce displays. This compressor is typical of all compressors
used for refrigeration at both stores.
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Figure F.5 Return air grille on air-handler unit #1 at the College Station
store. The duct at the top of the grille allows outdoor air to be
pulled in.

Figure F.6 Air-handler supply duct at the College Station store. Between
the two access doors can be seen the reclaim heat coils The
coils transfer waste heat from the refrigeration system to the
supply air. This provides adequate space heating for 99% of
the tune. There are auxiliary gas-fired duct heaters (not shown
here) installed about 25 feet downstream.
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Figure F. 7 HVAC control circuit box for air-handler unit #1 at College
Station store.

Figure F.8 Roof-top HVAC unit at the Bryan store. There are twelve
working roof-top units at the Bryan store. All but one use
natural gas for heating.
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Figure F.9 Data acquisition equipment at the Bryan store. This data
logger is identical to the one at the College Station store. The
black and white wires are connected to current transducers
which monitor the electrical power being used by the four main
component loads of the store. Readings are accumulated and
recorded on an hourly basis. Data are retrieved via a modem
(seen at the bottom of the box) and stored on a computer disk.
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Figure F.10 Temperature and relative humidity sensor for return air
conditions at College Station store. The signals from these
sensors are recorded as part of the sub-metered, hourly data
stream.
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Figure F.ll Time clock control for the parking lot lights at the College
Station store. The cut-on and cut-off times are changed by
adding or removing small screws to the edge of the rotating disk
(visible in this picture). The management changes the timer
settings each month to adjust for changes the time of dawn and
dusk. Since the parking lot lights are the only lights in the store
with varying schedules, the store's daily lighting load follows a
sinusoidal pattern throughout the year.
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APPENDIX G

PHYSICAL SIGNIFICANCE OF MODEL PARAMETERS:
DIVERSIFIED LOAD CALCULATIONS

This appendix contains the detailed calculations used in Chapter 4 to evaluate

the relative merits of the MLR and PCA models of whole-building and HVAC system

energy use. The MLR and PCA models give parameters which predict the variation of

energy use due to climate variables for the College Station store. To determine if these

parameters have any physical significance, and to determine which model gives more

realistic estimates, the climate-variant portions of the building's energy use can be

modeled by a diversified load calculation method. In using this method we adopt the

procedure outlined by Knebel (1983).

G.I VARIATION DUE TO SOLAR LOAD

The diversified load calculation method accounts for solar gains as well as

ambient temperature gains. We use only the portion of this procedure which account

for solar loads. The calculation of the loads is divided into three sections which

consider the cooling load on the walls, on the roof, and through the glazing of the

store. For a description of building characteristics, see Chapter 2, Section 2.1.

Wall Load. The transmission load on the roof due to solar effects is given by,

qts = M-(T-Tph) + qtsJan

where,
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The calculations give a total possible variation in cooling load due to solar

effects of 29.1 kWth.' A seasonal energy efficiency ratio (SEER) of the HVAC system

was not available, but its general energy efficiency ratio (EER) was found to be 7.1

Btu/We-h. This amounts to a coefficient of performance (COP) of 2.08 kWth/kWe.

What this means is that it takes only 1 kW of electrical power to cool a thermal load of

2.08 kW. This means that the portion of the load due to solar radiation is only

29.1/2.08, or 14.0 kWe.

The 1992 MLR model analysis predicts that there is no significant variation in

load due to solar radiation or specific humidity. In fact, the values it gives are near-

zero, and often negative! However, the 1992 PCA model predicts that the average

variable component of the electricity load due to solar effects is 19.6 kWe. The 1989

MLR and PCA models predict average values of 12.5 and 21.6 kWe, respectively.

This seems comparable to the 14.0 kWe variation estimated by CLTDS techniques.

MLR and PCA models were developed for the HVAC load. Tables 4.17 and

4.18, in Chapter 4, show the regression summaries. The models predict an average

load due to solar effects of -9.1 kWe for MLR, and 15.5 kWe for PCA. The fact that

the HVAC MLR model predicts a negative load suggests that it is wholly

inappropriate for estimating solar effects when other variables are also used in the

regression. The fact that the HVAC PCA model predicts 15.5 kWe, allows us to make

two points. First, PCA does better at predicting the solar load since the PCA

prediction is almost exactly equal to the CLTDS prediction, 14.0 kW. Second, since

the PCA prediction is quite close to the 19.6 kWe predicted by the whole-building data,

we conclude that the solar load on the whole building appears primarily in the HVAC

load.

In both 1989 and 1992 models, it can be seen that MLR techniques

underestimate the effects of solar radiation, though this most apparent from the 1992

models. Thus, for this case study, PCA is of benefit in estimating the effects of

predictor variables when these variables are correlated.

The subscript "th" is used to designate thermal energy. Likewise, a subscript of "e" will be used to refer to electrical

energy.
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G.2 VARIATION DUE TO TEMPERATURE

The variation in building electricity load due to temperature can be divided into

two componets — that pertaining to the HVAC system, and that pertaining to the

refrigeration system. Since the HVAC system keeps the interior space conditions

fairly constant, the effect of outdoor air temperature on the refrigeration system is

realized via the refrigeration system's condenser coils, which are exposed to outdoor

ambient air.

The coefficients of temperature in the PC A and MLR models reflect the whole

building's response to temperature, and thus reflect the combined effect of outdoor

temperature on both the HVAC system and the refrigeration system.

A simple energy balance equation, with respect to the temperature difference

across the store's walls and roof should be useful in determining the effects of outside

temperature on the HVAC system. We again adopt the procedure outlined by Knebel.

qt = EUA(T O -T ; )

where,

U = U-value of the wall, roof, or glazing

A = surface area of wall, roof, or glazing

To = outdoor ambient temperature

Tj = indoor temperature

The U A term represents the temperature coefficient which should be predicted by the

PCA and MLR models, if the parameters in those models are physically meaningful.

We are interested, then, in the sum of the U A terms for the store.

Roof. From the previous calculations for the solar load, we know that,

Uroof = 0.131 Btu/hr-ft2°F

0.744 W/m2-°C

Aroof = 46,000 ft2 (4,275 m2)

(UA)roof = 3.181 kW/°C
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