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ABSTRACT

This paper reports the results of Monte Carlo experiments on the 

quality of different estimators of parameters in a variance components 

model with both a lagged endogenous and an exogenous variable. Methods 

of estimation include ML (with and without the imposition of natural 

constraints on parameters) and three least squares techniques, including 

MGLS. We conclude that the relative quality of ML and MGLS estimates 

varies according to the amount of serial error correlation over time and 

to the relative strength of the effects of the lagged endogenous and the 

exogenous variable. We find that there is a slight, but usually negligible, 

advantage to constrained ML estimation as compared with unconstrained 

ML estimation.



I. INTRODUCTION

The variance components model of cross-sections pooled over 

a few discrete points in time has attracted considerable interest 

among social scientists (e.g., Balestra and Nerlove [1]; Nerlove 

and Schultz [15]; Hannan and Nielsen [7]). This interest has been 

heightened by the increasing availability of panel data and the 

accompanying need for a model and estimation technique that take 

full advantage of the richness of this information.

Maximum likelihood (ML) estimation of a variance components 

model has intuitive appeal for at least two reasons. First, ML 

estimators have desirable asymptotic properties under quite 

unrestrictive conditions (see, e.g., Kendall and Stuart [9]).

Second, the ML method incorporates all assumptions about the model 

in a single estimation step, unlike modified generalized least 

squares procedures that require two estimation steps.

Previous evidence on the quality of ML estimates of regression 

coefficients in a variance components model is equivocal. Using ML 

to estimate regression coefficients in a variance components model 

containing both a lagged endogenous variable and an exogenous 

variable and simulated data, Nerlove [14] concluded that ML estimates 

were poor in quality.^ On the other hand, Maddala and Mount's [11] 

application of ML to a variance components model containing only an 

exogenous variable (and no lagged endogenous variable), which also



used simulated data, found that the quality of ML estimates was 

similar to that of estimates obtained by various other techniques, 

even when data were generated with lognormally-distributed errors 

rather than the normally-distributed errors assumed for the likelihood 

function.

There are two main possibilities why these two studies reached 

different conclusions concerning the quality of ML estimates of a 

variance components model. First, Nerlove's study, unlike Maddala and 

Mount's, included a lagged endogenous variable, and the joint presence 

of lagged endogenous and exogenous regressors may adversely affect the 

quality of ML estimates. Second, Nerlove's study constrained p to lie 

in the [0,1] interval by substituting a trigonometric function for it in 

the likelihood equation. This method of imposing constraints, which 

has been recommended by Box [2], leads to multiple maxima of the 

likelihood function; it can also increase the nonlinearity of the 

likelihood function and cause the matrix of second derivatives of the 

likelihood function to be singular or ill-conditioned (Murray [12]). 

Consequently the poor performance of ML in Nerlove's study may result

from the way that constraints on p were imposed.
The research reported here uses simulated data to study the small- 

sample properties of estimates of a variance components model in which 

the right-hand side includes both a lagged enodgenous and an exogenous 

variable. We focus on three main issues. First, we compare the quality 

of estimates obtained by least squares alternatives with the quality
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of ML estimates obtained by imposing constraints on p. We obtained 

the constrained ML estimates with a recently-developed method (Gill 

and Murray [4]) that avoids the problems accompanying the use of a 

trigonometric function to impose constraints. Second, we compare 

the quality of constrained and unconstrained ML estimates of the 

slope coefficients and of p. We are unaware of any previous studies 

concerning the relative quality of constrained and unconstrained ML 

estimates of these parameters. Third, we consider how the quality of 

ML estimates depends on the effects of the lagged endogenous and 

exogenous variables and on p, the intra-class correlation of an 

individual's observations over time.

Section 2 gives an outline of the model that we study. Section 3 

describes the method of generating the Monte Carlo data. In Section 4 

we discuss the methods of estimation utilized. The results are presented

in Section 5 and further discussed in the conclusion, Section 6

2. THE MODEL

The model that we have studied can be represented as follows:

(2.1)
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and IN is an N by N identity matrix. For a more detailed discussion

of these assumptions see Nerlove [14] or Hannan and Young [8].

To comply with the ML method's requirement that a particular

probability distribution be assumed, we have also assumed that the

u. 's are normally distributed random variables, it

3. DATA GENERATION

We have followed Nerlove's [14] procedure for generating data

with four exceptions: First* we have chosen the number of individuals

N as fifty and the number of time periods T as five, whereas Nerlove

chose twenty-five and ten, respectively. We chose the former values

of N and T because they are representative of many available data sets.

Second, we have generated pseudo-random variates by Marsaglia's

rectangle-wedge-tail algorithm, recommended as best by Knuth [10],

rather than the method described by Nerbove [14]. Third, we have

studied somewhat different combinations of parameter values. In each
2combination we set = 0.0 and a = 1.0. We selected five values 

for p: 0.0, 0.25, 0.50, 0.75, and 0.90. To examine the dependence of 

estimator quality on the relative strength of the effects of the lagged 

endogenous and the exogenous variables, we chose three combinations of 

andp^: = (0.3,1.0), (0.8,1.0), and (0.8,0.5). Thus, we

examined a total of fifteen combinations of parameter values. Fourth, 

for each combination of parameter values we generated 100 sets of data, 

where Nerlove generated 50. The additional data sets give increased 

confidence about the properties of an estimator.

5.



4. METHODS OF ESTIMATION

We have employed five methods of estimation. Two are variants
2on maximum likelihood: one with constraints on p and o , one without. 

The other three are variations of least squares; they are included .to 

provide baseline evaluations of the ML estimators. A fuller discussion 

of the three least squares estimators may be found in Nerlove [14] and 

in Hannan and Young [8].

We list each of these five methods:

(1) Ordinary Least Squares (OLS): We used ordinary least 

squares to estimate |3q, f3̂  and |3 ̂ in equation (2.1).

This method ignores the nonzero error covariances across 

time periods and consequently leads to inconsistent 

estimates of the regression coefficients.

(2) Least Squares with Dummy Variables (LSDV): We obtained

least squares estimates of the parameters in:
N

־ it׳5 P 1 yi,t-l + P 2 * i t  + .Z, *i *i + V it׳
*  1 =  1

where the (Ĵ׳ 's are the individual specific constants and
tilis a dummy variable which equals one for the i 

individual and zero otherwise.

The LSDV procedure provides the following sample estimate 

of p :

r
LSDV

where:
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(3) Modified ("Two-round") Generalized Least Squares (MGLS):

We calculated generalized least squares estimates of the 

regression coefficients, using estimates of the error 

variance-covariance matrix in equation (2.4) based on

rLSDV'
(4) Maximum Likelihood Constrained (MLC): Maximum likelihood

2estimates of the parameters ¡3̂ , ¡3̂ , P an<̂ a can t>e
found by maximizing the log likelihood function:

L = - log 2tt 1/2 ־ log |C1| - 1/2 u׳ Cl1־ u.
2The constraints are that 0 < p < 1 and a > 0 .

(5) Maximum Likelihood Unconstrained (MLU): Maximum likelihood 

estimates were obtained as above, except that constraints on 

p or ct̂  were not imposed.

An initial set of parameter estimates must be provided to find 

the ML estimates in both methods (4) and (5). We compared the 

performance of two types of starting values for five different 

parameter combinations (a total of 500 data sets) using unconstrained 

ML: the LSDV estimates and the true values used to generate the 

data. The two types of initial estimates produced nearly identical 

final estimates for the four combinations in which p > 0. For p = 0

7.
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the two sets of parameter estimates differed in only a handful

of cases, and by a negligible amount. Therefore, because of the

cost involved in obtaining the LSDV estimates, we used the true

parameter values as starting estimates in all remaining ML

estimations. We report only the results obtained from using this

latter type of initial estimates.

Whereas Nerlove [14] used the Fletcher-Powell algorithm [3]

programmed by Wells [16] to maximize L, we used the Gill-Murray

algorithm [4] programmed by Wright [17]. Both algorithms are

iterative procedures and are based on modified steepest descent

methods of function minimization. Gill, Murray and their coworkers

[5,6] have shown that the Gill-Murray algorithm converges more

rapidly and more reliably than the Fletcher-Powell algorithm. However,

when both converge, they report that the two algorithms give extremely

similar estimates of the function optimum for a variety of functions.
2Our treatment of constraints on parameter values for o and p

2departed markedly from Nerlove's [14]. Nerlove constrained a to be
2positive by maximizing L with respect to a rather than a . Ke imposed

. 2a nonnegativity constraint on p by equating it with sin 9 and 

maximizing L with respect to 6 rather than p. As Nerlove acknowledges, 

this method of applying constraints causes L to have multiple maxima 

with respect to 9 since sin 9 is a periodic function. Murray [12] 

warns against employment of trigonometric constraints. Such a 

procedure can increase the nonlinearity of the function being maximized

8.



and cause the matrix of second derivatives (which must be negative 

definite at the maximum of the likelihood function) to become singular 

or ill-conditioned.

The Gill-Murray algorithm that we have used for ML estimation 

utilizes a projection method of optimization that permits any 

feasible equality or inequality constraints to be imposed on 

parameter values. For a detailed discussion of this constrained 

optimization procedure, see [4]. This method does not increase the 

nonlinearity of the function being optimized or the number of local 

maxima.

To our knowledge there is no previous evidence indicating the
A A 2magnitude of the effects of constraining p and o on ML parameter

estimates for the model we have simulated. Thus, we do not know

whether the mean squared errors (MSE's) of the constrained estimates 
2of p and ct will be appreciably smaller than the unconstrained

versions. Further, we do not know the ¿ffects of constraining ̂
2and ,a on the quality of the estimates of ¡3 an  ̂f^* Finally, it is 

important to learn whether the poor performance of the ML method in 

Nerlove [14] results from the small-sample properties of ML estimation 

of this model or from the implementation of parameter constraints.

5. RESULTS

In analyzing the results of our simulation study three points 

are critical. First, we must evaluate the success and practicality of 

our implementation of the two ML methods, since they affect the 

credibility of our results and their potential usefulness. Second,

9.



we need to assess the quality of the two sets of ML estimates

relative to each other and to estimates obtained by the least squares

alternatives. Properties of estimates used to assess quality

are their mean squared error (MSE) , bias and variance. Third, we

want to know in what way the quality of the ML estimates of 
2

° and P depends on the true parameter values.

With regard to the first point, we found our implementation of

the ML methods to be both successful and practical. Not only did

ML estimation converge to a solution for every data set, but also

the time required for this was short. On the average the ML solution

was found in four to ten iterations, depending on the particular

combination of parameter values. The MLC and MLU methods required

nearly identical numbers of iterations to converge. For both methods

several more iterations were usually needed for high values of p,

especially when ( 3 ^ = 0.8,32= ^•^)• These higher numbers of

iterations occur together with poor quality of the ML estimates of |3 
2

a and p, as described more fully later in this section.

Before comparing the MLC and MLU estimates with each other and

with estimates obtained by least squares procedures, it is helpful

to know which parameter combinations led to activation of constraints

Obviously for the cases in which no constraints were activated, the
2MLC and MLU estimates are identical. The constraints that a be 

positive and that p be less than or equal to one were never brought 

into play (cf. Nerlove [14]). However, the constraint that p be

10



nonnegative was activated in about sixty percent of the cases in which 

either ( p = 0.0 ) or (¡3̂  = 0.8, = 0.5, p < 0.9 ). Thus, the 

quality of the MLC and MLU estimates is unlikely to differ except for 

these parameter combinations.

Since p^ and P^, the coefficients of the lagged dependent and 

exogenous variables, respectively, are the primary interest of most 

social scientists, we begin our assessment of the two ML methods by
A  Acomparing the overall MSE ' s of P ̂ and p^ obtained from the MLU, MLC,

MGLS, LSDV and OLS methods ( see Table 1). In terms of MSE the three 

most preferable methods are clearly MGLS and the two ML methods. The 

two ML methods lead to estimates with almost identical MSE's; for the 

parameter combinations where the two ML estimates differ, the MSE's of 

estimates are slightly smaller for the MLC method than for the MLU 

method. Overall the LSDV and OLS methods are worse than the MGLS and ML 

methods.

Table 1 about here

AAcross all methods the MSE forP^, the coefficient of the lagged 

dependent variable, is generally larger than that for^» fche coefficient 
of the exogenous variable. Furthermore, across combinations of P^ and

AP^, each of the five methods produces fairly constant MSE's for p^ but 

widely varying MSE's forP^. For all five methods the largest MSE for
AP^ occurs when the effect of the exogenous variable is small in 

comparison to the effect of the lagged endogenous variable.

11,



The relative quality of the ML and MGLS estimates varies according 

to the size of the ratio of |3̂ , the coefficient of the lagged endogenous 

variable, to coefficient of the exogenous variable. We find

that ML is superior when the effect of the lagged endogenous variable 

is small in comparison to the effect of the exogenous variable, while 

MGLS is best when the opposite is true. As we report below, the 

dependence of the relative quality of the ML and MGLS estimates of 

regression coefficients on the relative effects of 0 ̂ and ¡3 ̂ becomes 

even more apparent when the simulation results are not aggregated 

over values of p.

We now turn our attention to a more detailed examination of the 

performance of the MLU and MLC estimates, contrasted to each other 

and to the best of the least squares methods, MGLS. First we use the 

measure:

% bias (6) = 100% * bias(6)/0.

For both and |3 ̂ the 7» biases of the MLC and MLU estimates are very 

similar across all parameter combinations (see Tables 2 and 3, 

respectively). For p = 0.0, the MLC estimates of ¡3 ̂ and |5 ̂ have 

slightly larger biases than the MLU estimates. The reverse is true 

for p > 0.25, but again the differences are small.

Tables 2 and 3 about here

12.

Both the ML and MGLS methods display consistently low 7־, biases
Ain P2 across all parameter combinations. However, both methods of
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A

estimation produce widely varying % biases in P^. As might be 

expected from the large MSE of p when the effect of the exogenous 

variable is relatively small ( P^ = 0.8, P^ = 0.5 ) (see Table 1),
A ־*the ML estimates of P ̂ have upward biases approaching 257» for this 

parameter combination. For each combination of P ̂ and p^ the 7־ bias 

in ML estimates of p tends to become worse as p increases. However, for 

the first two combinations of 0 ̂ and P^ there is a downturn in the 7־ 

bias for very high values of p. On the other hand, the MGLS estimates 

of P ̂ are downwardly biased for low values of p but the 7־ bias 

increases monotonically as p increases, approaching a negligible 7־ 

bias for p = 0.9.
^aThe MSE’s of P ̂ and P^ depend on the variances of P ̂ and P >׳

(see Tables 4 and 5, respectively), as well as their biases. The 

variances of the MLU and MLC estimates of both P^ and p^ differ only 

slightly, the greatest differences occurring for estimates of p^ 

when p = 0.0. In these cases the variance of P^ is smaller for 

MLC than MLU.

Tables 4 and 5 about here

The variances of the ML and MGLS estimates of p ̂ and p^ are 

also fairly comparable. For some parameter combinations these 

variances are smaller for ML than MGLS, for others the opposite is
A *Atrue. For both ML and MGLS estimates, the variances of and (3 ̂
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are usually the smallest for the highest values of p.

By comparing Tables 2 and 4 we can learn whether there are

compensating trade-offs between size of bias and size of variance
2for the ML and MGLS estimates of p^. For the ML estimates of P^, 

large 7־ bias and large variance are not systematically associated.
A

In fact, the very sizeable 7־ bias in p ̂ found with the ( p^ = 0.8, 

P^ = 0.5 ) parameter combinations are accompanied by very small 

variances in^. In contrast, for MGLS estimates of P^, both 7־ 

bias and variance tend to increase in magnitude as p decreases.

Thus there does appear to be a certain degree of compensating 

trade-off between bias and variance in ML estimates of P , but not 

for MGLS.

The qualities of estimates of p are of special interest both

because of social scientific concern with the serial correlation of

omitted causal variables over time, and because of methodological

concern with occasional negative estimates of p when MLU is the

method of estimation. In both MLU and MLC estimates of p the

biases are usually negative and very similar (see Table 6). The

magnitude of the bias in p is somewhat smaller for MLC than for

MLU when ( P^ = 0.8, P^ = 0.5, 0.25 < p < 0.75) but slightly larger

for MLC than for MLU when p = 0.0. The size of the bias in ML

estimates of p tends to increase as p increases; however, for two

of the three combinations of the regression coefficients, there is
3a downturn in the bias in p as the value of p becomes very large.



Table 6 about here

The ML and MGLS methods perform optimally at opposite ends of

p continuum. Whereas ML estimates of p are almost always downwardly
4

biased, the MGLS estimates of p are almost always upwardly biased. And
A

as we found in our examination of the % biases of |3 ̂ , the performance 

of the ML method tends to be best when MGLS is at its worst, and vice 

versa. Thus, we find that while the bias in ML estimates of p is 

greatest for high values of p and least for low values of p, just the 

opposite is true for MGLS. The MGLS estimates of p are most biased 

when p is near zero and least biased when p is near unity.

Nonetheless, the ML and MGLS methods have two obvious similarities
• ^ • A(1)״ there is an inverse relationship between 7־ bias in 0 ̂ and bias in p 

and (2) absolute values of the biases in 0  ̂and p are positively 

associated. These similarities are curious becuase the ML and MGLS 

methods have opposite signs to the biases of their estimates of p and 

of 0^. Though the two methods differ dramatically in their tendencies 

to attribute stability in the dependent variable to serial correlation 

of residuals for individual units rather than to inertia in the 

dependent variable, for both methods there are compensating effects. 

That is, for both methods error in one direction in estimating 

the strength of serial correlation of residuals is accompanied by 

error in the opposite direction in estimating the strength of the 

lagged endogenous variable.



6. CONCLUSION

The Monte Carlo experiments reported in this paper provide 

evidence on several questions of interest to social scientists 

planning to estimate a variance components model containing a 

lagged endogenous variable and an exogenous variable when an 

individual's errors over time have the intra-class correlation 

coefficient p .

The first question for which our research has implications is 

the following: Under what circumstances— if any— should maximum 

likelihood (ML) estimation be used? We assume that cost and 

reliability of the estimation technique and the quality of the 

estimates (in terms of their mean squared error, bias, and variance) 

are the most important criteria for selecting an estimation technique.

With our implementation of ML, both constrained and unconstrained 

ML estimates of parameters were obtained rapidly. Thus we find 

little difference in the practicality of using ML rather than a two- 

stage least squares procedure, such as modified generalized least 

squares (MGLS).

More importantly, we find that under certain circumstances ML 

estimates of the parameters of most interest to social scientists 

(i.e., the regression coefficients and p) were superior in quality 

to those obtained by MGLS. Overall both ML and MGLS estimates had 

smaller mean squared errors than estimates obtained by ordinary least 

squares or by least squares with individual constants (the other

16.



least squares methods that we studied). Our results indicate that 

ML estimation is a better choice than MGLS when p is small, but 

that MGLS is better than ML when p is large, especially when the 

effect of the lagged endogenous variable is large relative to the 

effect of the exogenous variable.

Since in practice social scientists do not know the true 

parameter values, they cannot know which estimation technique is 

perferable for their particular problem. In this situation there 

are good reasons for using both ML and MGLS to estimate parameters 

in a variance components model.

First of all, by using both methods, investigators should be able 

to determine the approximate range within which the true parameter 

values fall. This is because the biases of ML and M3LS estimates of 

parameters whose biases vary greatly with the true parameter values 

(namely, p and the coefficient of the lagged endogenous variable) are 

almost always opposite in sign. Thus, p is downwardly biased with ML
Abut upwardly biased with MGLS, while p^ is upwardly biased with ML 

but downwardly biased with MGLS. Usually the true values of p and p^ 

will lie between their ML and MGLS estimates. Of course, these guides» 
like all our results, undoubtedly depend upon proper specification of 
the model used in estimation.

Second, a comparison of the ML and MGLS estimates provides 

information that can be useful in judging whether the model assumed

in estimation is correct. Our results indicate that for correctly
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specified models the ML and MGLS estimates of the coefficient of the 

exogenous variable should be nearly identical. This suggests that if 

the ML and MGLS estimates of ¡3̂  differ greatly, the model may be 

misspecified.

Third, a comparison of the ML and MGLS estimates provides 

information that may be useful in judging which set of estimates is 

probably better and thus deserves greater weight. Our results suggest 

that: (1) The smaller the MGLS estimate of p, the more weight should 

be given to the ML estimates of the regression coefficients. (2) The 

smaller the difference between the ML and MGLS estimates of p, the 

more likely that the effect of the exDgenous variable is large relative 

to the effect of the lagged endogenous variable, and that ML estimates 

have high quality. Or, to state it differently, the larger the 

difference between the ML and MGLS estimates of p, the more likely 

that the lagged endogenous variable has a strong effect relative to 

that of the exogenous variable, and that ML estimates are poor in 

quality. Further research is needed to determine whether these two 

relationships hold more generally.

Our results also have implications for a second question that 

investigators using ML estimation may ask: What conclusions should 

be drawn from obtaining a boundary solution for p in constrained ML 

estimation or a negative estimate for p in unconstrained ML estimation?
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We find that a boundary solution for p in constrained ML (or 

a negative estimate of p in unconstrained ML) is not associated with 

poor quality in the ML estimates of regression coefficients. In 

fact, when p is truly zero, ML not only leads to a boundary estimate 

of p in about sixty percent of our simulated data sets, but also 

produces estimates of regression coefficients that have very small 

biases and variances, and are more accurate than the MGLS estimates.

On the other hand, when there is a boundary solution for p and the 

true value of p is large, the ML estimate of the coefficient of the 

lagged endogenous variable tends to be poor in quality. Consequently, 

our results suggest that a boundary solution for the ML estimate of 

p is not a good clue to the quality of the ML estimates of the 

parameters in the model studied here. Better clues about estimator 

quality can probably be obtained by comparing ML and MGLS estimates of 

regression coefficients and of p, as outlined above.

Investigators who have chosen to use ML estimation of a variance 

components model will want to know the implication of our research for 

a final question: Should natural constraints on parameters be imposed? 

We find, as did Nerlove [14], that in practice only the nonnegativity 

constraint on p is at issue because other natural constraints are 

never violated.
A

Our results show that in terms of the mean squared error of 0^
A

and ML estimation with constraints on p has a slight advantage

over that without constraints. Clearly constrained ML estimation



gives more reasonable estimates of.p because it prevents p from 

having a negative value, which is contrary to the assumptions of 

the model. In addition, the constrained ML estimates of the regression 

coefficients always have a smaller variance than the unconstrained ones, 

and this usually compensates for occasionally larger biases in the 

constrained estimates. Still, the differences between the constrained 

and unconstrained ML estimates are never large--and always negligible 

for those parameter combinations in which ML estimates are superior in 

quality to MGLS estimates. Consequently, our research provides no 

evidence that omitting constraints on p will seriously damage the 

quality of ML estimates of regression coefficients in the model.

20.
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FOOTNOTES

Balestra and Nerlove [1] used ML on data on natural gas demand to estimate 

a variance components model with both a lagged endogenous and an exogenous 

variable. They also concluded that ML estimates were poor in quality, but 

their conclusion may result from a poor fit between the model and their data 

rather than their use of ML.

2 There is so little variation in the bias of fc across parameter combinations 

that a similar comparison of Tables 3 and 5 is not very informative.

3 Not surprisingly the variance of p is smaller for MLC than MLU for para­

meter combinations in which the nonnegativity constraint on p was frequently 

activated, i.e., for p = 0.0 and (g! = 0.8, 0.5). The variance of the ML 

estimates of p and the magnitude of the bias in p appear to covary positively

across values of pfor each combination of 6! and $2• Our results indicate
2that the bias and variance of the ML estimates of a vary across parameter 

combinations in a way closely parelleling the results for the ML estimates 
of p.

 ̂By MGLS estimates of p we mean the estimates of p used in the second stage 

of the MGLS estimation, calculated from the results of the LSDV regression, 

as described in Section 4 above.



TABLE 1

Mean Squared Error of Estimates

(Cases averaged over all values of p ; each 
entry based on 500 sets of estimates)

a
Bl

A
32

0! = 0.3, 02= 1.0

MLU ־ .175* .182

MLC .169 .182

MGLS .226 .194

LSDV .822 .239

OLS 6.449 .348

0 0 . 8 ,  02s 1.0

MLU .722 .199

MLC .720 .199

MGLS .146 .198

LSDV .748 .228

OLS 1.592 .341

01= 0.8,02 = 0.5

MLU 2.415 .218

MLC 2.352 .208

MGLS .925 .194

LSDV 3.865 .220

OLS 2.420 .228

All entries in this table have been multiplied
by 10 .



TABLE 2 

Percent Bias in g ̂

(Each entry based on 100 sets of estimates)

p = : 0.0 0.25 0.5 0.75 0.9

Bj = 0.3,e2 = 1 .0

MLU o.o%* 3.7 3.9 2.3 0.9

MLC -1.2 3.7 3.9 2.3 0.9

MGLS -22.4 -12.2 -5.9 -1.5 -0.1

b1 = o.8,e2 = 1.0

MLU 0.2% 9.3 13.6 14.2 6.4

MLC -0.8 9.2 13.6 14.2 6.4

MGLS -7.3 -2.4 .3 1.9 1.7

= 0.8,32 = 0.5 *

MLU -0.4 16.7 21.4 23.4 23.9

MLC -1.5 15.8 21.0 23.3 23.9

MGLS -19.0 -12.4 -7.7 -1.8 1.9

All entries in this table have been rounded off to the nearest tenth
of a percent.



?ABLE 3 

Percent Bias in 

(Each entry based on 100 sets of estimates)

p- : 0.0 0.25 0.5 0.75 0.9

= 0.3, e2 = 1.0 

MLU -0.07*־ -0.0 0.1 0.1 -0.0

MLC 0.1 -0.0 0.1 0.0 -0.0

MGLS -0.3 -0.4 -0.3 -0.2 -0.1.

= 0.8, 32 = 1.0 

MLU 0.0 -1.6 -1.6 -0.4 0.4

MLC 0.1 -1.6 -1.6 -0.4 0.4

MGLS -0.1 -0.3 -0.2 0.0 0.0

= 0.8, g2 = 0.5 

MLU 0.0 -2.5 -3.1 -2.8 -1.5

MLC 0.2 -2.0 -2.6 -2.6 -1.5

MGLS -0.9 -1.4 -1.1 -0.5 0.0

All entries in this table have been rounded off to the nearest tenth
of a percent.



Variance of 

(Each entry based on 100 sets of estimates)

TABLE 4
/v

0.5 0.75 <L90.0 0.25

= o.3, e2 = i.o
035. 087. 165 . 197. *168. MLU
MLC ־ .133 .195 .165 .087 .035
033. 072. 117. 141. 146. MGLS

.061 .055 .046 .076 .084

.055 .054 .046 .076 .084

.078 .087 .074 .047 .021

B = 0 . 8 , e2 = i . o

MLU
MLC
MGLS

MLU .133 .043 .019 .009 .006
MLC .116 .041 .019 .009 .006
MGLS .221 .247 .211 .139 .074

*All entries in this table have been multiplied by 10 .



TABLE 5 . 

Variance o.f B2

(Each entry based on 100 sets of estimates)

p = :

= 0 .3 , B2 = 1.0

0 .0 0.25 0.5 0.75 0.9.

MQJ .283* .272 .202 .107 . 044

MIC .285 .272 .202 .107 .044

MGLS .330 .282 .203 .107 .044

B = 0.8, B2 = 1.0

MLU .284 .267 .211 .128 .050
MLC .287 .266 .211 .128 ■ .052
MGLS .338 .290 .208 .109 .045

Bx 0.5 ~ $2 ,0 . 8 ־־ 

MOJ .281 .233 .166 .098 .052
MIC .282 .238 .169 .097 .052
MGLS .331 .281 . 199 . 105 .044

*All entries in this table have been multiplied by 10̂ .



Bias of p

(Each entry based on 100 sets of estimates)

TABLE 6.

p = : 0.0 0.25 0.5 0.75 0.9.

= 0.3, ß2 = 1.0

MLLI -.006 -.040 -.048 -.025 -.008
MLC .017 -.040 -.048 -.025 -.008
MGLS .254 .215 .145 .064 .021

о
•

r-HIIC
N

ca00оII

м ш -.007 -. 169 -.345 -.398 r-H0ו-H1

MLC י .016 -.166 -.344 -.398 -.101
MGLS .325 .320 .219 .092 .027

= 0.8, ß2 = 0.5
־

МШ -.005 -.273 -.519 -.728 -.766
MLC .017 -.242 -.491 -.718 -.766
MGLS .445 .477 .340 .156 .047


