
A TECHNICAL REPORT

The Laboratory for Social Research

STANFORD, CALIFORNIASTANFORD UNIVERSITY

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/79650632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


QUALITY OF MAXIMUM LIKELIHOOD ESTIMATES 
OF PARAMETERS IN A LOG-LINEAR RATE MODEL

Mary L. Fennell 
Nancy Brandon Tuma 
Michael T. Hannan

August, 1977

Technical Report #59
Laboratory for Social Research 

Stanford University



1. OVERVIEW

Most longitudinal analyses in the social sciences can be grouped into 

one of two distinct traditions. The first tradition, typified by the work 

of Lazarsfeld (1948), Pelz and Andrews (1964), Duncan (1969, 1972), and 

Blalock (1970), is explicitly multivariate and causal. But it does not 

utilize the full potential of longitudinal data. Though the models used 

(difference equations) imply dynamic behavior, this tradition restricts 

itself to static inferences. The second tradition involves the application 

of stochastic processes, especially llarkov models, to such social science 

problems as occupational mobility and learning (Blumen et al., 1955;

Atkinson et al., 1965). This tradition concentrates on dynamic behavior.

But it is largely acausal and univariate.

Recently some investigators have attempted to combine these two 

traditions (e.g., Spilerman (1972), Sorensen (1975), and Tuma (1976)) by 

formulating stochastic process models that are explicitly causal. For 

instance, Tuma (1976) estimated models in which the instantaneous rate of 

job leaving depends on a set of observable individual characteristics. A 

similar model has been used in analyzing the effects of experimental income 

maintenance schemes on marital formation and dissolution (Hannan et al., 

1977). This type of model can be applied to any problem involving 

qualitative dependent variables in which changes of state occur stochasti­

cally and at any moment within a continuous time span.

Tuma's approach utilizes Maximum Likelihood Estimation (MLE) to obtain 

estimates of causal parameters. These estimators are asymptotically 

consistent, efficient, and normally distributed under fairly weak regularity 

conditions on the probability distribution function of the dependent variable



(see, e.g., Dhrymes, 1970). However, their small-sample properties when 

applied to instantaneous rate models have not been completely determined. 

Mendenhall and Lehman (1960) have determined these analytically for the 

case in which the rate is constant across individuals.

As social researchers shift increasingly to multivariate dynamic 

models, it becomes important to understand the small-sample properties of 

MLE for a variety of models and complications likely to be encountered in 

practice. Here we concern ourselves with four complications. The first is 

censoring of observations. Sample censoring arises when the length of the 

observation period (length of time between first and last observations) is 

too short for a change to have occurred for every case. Consequently, the 

time of changes on the dependent variable is unknown for those cases in 

which a change has not occurred before the end of the observation period.

This problem characterizes much research on relatively rare events, e.g., 

marriage, job change, failure of an organization, etc. The proportion of 

the sample who have not experienced a change determines the degree of cen­

soring. We need to know, then, how the quality of MLE depends on levels of 

censoring.

Small sample size is another important problem frequently faced by social 

scientists. Thus we also wish to know how the quality of estimates of para­

meters of rate models depends on sample size. We also investigate how 

censoring and small sample size jointly affect the quality of maximum 

likelihood estimates. Finally we add two more complications: collinearity 

among causal variables and improper specification of the causal structure.

What happens to the quality of the estimates under combinations of collin­

earity, small sample size, censoring, and model misspecification?
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This paper reports the results of Monte Carlo simulations designed to 

answer these questions. In particular we study how the four complications 

influence the quality of ML estimates of parameters in a log-linear rate 

model when data consist of the lengths of time between events. The pro­

perties of estimators that we consider are bias, variance, and mean 

squared error.

Section 2 outlines the model studied. Section 3 formally presents the 

method of maximum likelihood estimation. Section 4 briefly discusses some 

previous findings on the quality of ML estimates of parameters of rate 

models. Section 5 describes the method of generating the Monte Carlo data.

We present our results in Section 6 and discuss our conclusions in Section 7.

2. THE MODEL

An instantaneous rate of change is similar to the conditional probability 

of a change from one state to another within a momentary unit of time. Like 

a probability of change, an instantaneous rate of change cannot be observed 

directly. However, a rate model can be used to generate predictions about 

a variety of observable variables such as length of time between successive 

changes of state, the number of changes of state within a given time interval, 

and the states occupied at a series of points in time. Measurements on 

these observable variables can then be used to estimate parameters in the 

model (see Tuma and Crockford, 1976).

The probability of leaving a state (such as a job or a marital status) 

on or before t is denoted as F(t). The instantaneous rate at which such an 

event (e.g., a job change) occurs, r(t), is defined as follows:



r(t) At = Pr(event occurs between t and t + At) q s
Pr(event has not occurred before t) ’

or

Af. _ F(t + At) - F(t) , (2)
l-F(t)

where At represents a nonnegative time interval. In the job change example 

r At would be the proportion of those who have not changed jobs before time 

t, but who then leave their jobs between t and t + At. Dividing (2) by 

At and letting At 0 ־»־, we have

dF(t)

I ( t> liV ׳  o  '  ^  (3)

where f(t) is the probability density function of the length of time 

between events. Equation (3) is a differential equation that may be solved 

for F in terms of r:

t
F(t) = 1 -exp (-/ r(u)du). (4)

0

If r is constant over time, r(u) = r, then

F(t) = 1 - e־rt . (5)

Since we analyze only constant rate models, (5) is the basic stochastic 

equation of the model investigated.



As in Hannan et al. (1977), r is assumed to be an exponential 

function of exogenous variables. In our experiments r is a log-linear 

function of two causal variables and a constant term:

(6a)lnr

or

(6b)exp (aQ + a1X1 + a ^ )r

We assume that and are joint normally distributed. Since we are

also interested in the effect of omitted variables on the quality of the 

estimates produced by MLE, we compare results from (6b) with the estimates 

of the model that incorrectly excludes

Maximum likelihood estimation has several advantages over the more 

commonly used method of ordinary least squares for the model stated above. 

Given the assumptions about rates of change and the type of data used in 

estimating the model, the relationship between the expected values of obser­

vable dependent variables and exogenous variables is usually nonlinear.^ 

Least squares estimation of rate models requires more costly and complex 

iterative procedures. More importantly, when the expected value of the

(7)exp (aQ + oijXpr

3. METHOD OF ESTIMATION



dependent variable is nonlinear in the parameters, we cannot rely on the 

Gauss-Markov Theorem concerning the desirability of the properties of the 

least squares estimators. ML estimators, however, are asymptotically 

consistent, efficient, and normally distributed under fairly weak regularity 

conditions on the probability distribution function specified by the model 

(see Dhrymes, 1970). Finally, there is no OLS method analogous to the ML 

method developed by Bartholomew (1957) for utilizing the information con­

tained in censored observations. Thus MLE appears to be the more desirable 

method of estimation.

We work with the following data structure. For simplicity assume that 

all individuals enter the state in question at time zero. We observe each in­

dividual i at some later date, T^. At that time we record either that 

they have left the state prior to T^ or that they are still in the 

original state. For those individuals who have changed state we record 

the date of the change, t^. We also define an indicator variable, y^ , 

that takes the value of one for those for whom a change of state is observed 

and zero for censored observations.

Next we define a likelihood function in terms of these three observable 

variables, T^, t^, and y^ . The likelihood function is the joint prob­

ability of the sample observations. For those for whom an event is observed 

the probability is f(t^); for censored observations the probability is 

l-F(T^), the probability of not observing an event by T^ . If the sample 

observations are independent, the likelihood function is
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where N is the number of observations and JL is the vector of exogenous 

variables.

Maximum likelihood estimates of the parameters of the model used in 

these experiments were produced by the FORTRAN program RATE, developed by 

Tuma and Crockford (1976). This program is capable of estimating a variety 

of general causal models of rates. The iterative procedure used by RATE 

is a variant of Newton's method developed by Gill and Murray (1972) and 

co-workers (Gill et al., 1972a; 1972b). This method is faster than the 

more widely used Fletcher-Powell algorithm; it compares favorably in terms 

of reliability and accuracy of convergence to other widely used algorithms 

(Gill and Murray, 1972).

4. PREVIOUS FINDINGS

Investigators in the fields of labor turnover and product life-testing 

(see Bartholomew, 1957, 1959, 1963; Mendenhall and Lehman, 1960) have in­

vestigated MLE for models in which the rate is the same for all individuals. 

Bartholomew (1957, 1963) found that the ML estimate of the rate was slightly 

upwardly biased in small samples. Mendenhall and Lehman (1960) developed 

small-sample approximations to the mean and variance of the ML estimator for 

a constant rate model. Their approximations are poor for small samples 

(N50^׳) but improve as sample size increases (e.g., when N=100; see 

Mendenhall and Lehman 1960, pp. 238). Furthermore, they report that the 

sampling distributions differ in large and small samples.

Keeley (1975) investigated the properties of ML estimates of a model 

in which the rate was a log-linear function of uniformly-distributed inde­

pendent variables. He used samples with N=500. He found that the estimated



coefficients were within one standard deviation of the true values, and that 

for uncorrelated independent variables, the estimates were insensitive to 

model misspecification. These results have limited value, however, due to 

the fact that a uniform distribution is rather implausible in most social 

scientific applications.

5. DATA GENERATION

In Section 2 we assumed the rate is a log-linear function of X^, 

and a constant term (see equation 6). In this investigation X^ and
2are normally-distributed variables with mean p of zero and variance o of

1. A log-linear rate model with normally-distributed independent variables

implies a log-normal distribution of rates and a log-normal distribution of

t, the length of time between events. Previous investigators have found

that a log-normal distribution of t gives good predictions of the observed

time between job changes, length of service phenomena, etc. (Bartholomew,

1973; Lane and Andrew, 1955; Young, 1971).

We generated random normal variates by Marsaglia's rectangle-wedge-tail
2algorithmn. Two sample sizes (N=50 and N=100), and three levels of collin-

earity (p = p = 0, 0.5, -0.5) were studied. Using the Marsaglia method
x 2

we produced 100 independent samples for each of the six combinations.

For each of the six conditions, we created three levels of censoring:

1) no censoring - individuals are observed until all experience 

a change;

2) 60% censoring - individuals are observed until 40% are expected 

to have experienced a change (60% have no change);

3) 80% censoring - individuals are observed until 20% are expected 

to have experienced a change (80% have no change).
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The values of the parameters used in generating the data were:

0 1q = -4; *= 2; and a^ = 2. Given these values of cXq, a^, and

p , the expected value of the rate equals 1 when p is zero, exp[2] 

when p is 0.5, and exp[-2] when p is -0.5. The expected time until 

a change of state equals exp[8], exp[10], and exp[6] when p is 0, 0.5, 

and -0.5, respectively.

6. RESULTS

We evaluate the effects of censoring, sample size, and collinearity

in terms of percent-bias, variance, and mean squared error (MSE) of
3estimates. We report percent-bias rather than raw deviations of the mean 

of estimates from parameters to facilitate comparisons across different 

parameter values. Results on absolute bias are given in Appendices A and B.

Our results are presented in Tables 1 through 6. Tables 1, 2, and 3 

show the MSE, percent-bias and variance, respectively, of the ML estimates 

of the correctly-specified model, equation (6b). Tables 4, 5, and 6 give 

the MSE, percent-bias and variance of the estimates of the misspecified 

model, equation (7).

In this section we first discuss the MSE, percent-bias and variance 

of the estimates for the correctly-specified model. Under each of these 

three evaluation criteria we examine the effects of sample size, censoring, 

and collinearity. This order of discussion is then repeated for the esti­

mates from the misspecified model.

Correctly-Specified Model

Mean Squared Error. In all cases the larger sample size decreases 

the MSE of the estimates, thereby improving the quality of estimates
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(Table 1). Since similar improvements in quality with greater sample size 

generally hold for both percent-bias and variance, the effect of sample 

size is not considered again until the discussion of the results for the 

misspecified model.

(Table 1 about here)

For each value of p (the correlation between the two exogenous 

variables) MSE is small (less than .05) for uncensored observations and 

increases with censoring. The magnitude of the increases in MSE with 

greater censoring is fairly consistent across all three values of p.

For each level of censoring, the correlation between the two causal 

variables has comparatively small effects on the MSE of estimates. When 

the level of censoring and the correlation of the independent variables 

are considered jointly, we see that the MSE of all three estimates (a^, 

a^, a2 ) is largest for the case with the greatest level of censoring 

(80%) and a positive correlation (0.5) between the independent variables.

We conclude, therefore, that for a correctly-specified model: (1) 

a larger sample size reduces MSE of estimates, (2) greater censoring 

markedly increases MSE, and (3) the correlation between the causal variables 

has relatively little effect on MSE. Since our smallest sample size (50) 

is considered quite small by most social scientists and produces a very 

small MSE in the uncensored case, our results suggest that the level of 

censoring is the greatest practical problem insofar as MSE of ML estimates 

of parameters in a log-linear rate model are concerned.

Percent-Bias. Bias of these estimators appears responsive to censoring 

but only slightly sensitive to correlation between the exogenous variables
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(Table 2). When observations are uncensored, the estimators have a small 

positive bias (always less than 5%). The bias is similar for all values 

of p. Overall we find that the effects of sample size, censoring, and 

correlation between the independent variables are small in comparison with 

their effects on MSE.

(Table 2 about here)

Variance. The variances of estimates (Table 3) are extremely similar 

to the mean squared errors (Table 1). In other words, for the correctly- 

specified model, bias of estimates is always so small that MSE is almost 

totally determined by the variance.

(Table 3 about here)

For all three levels of p the variance of estimates is small when 

data are uncensored. Efficiency declines with greater censoring, as indi­

cated by the increase in the variance from uncensored observations to 60% 

and 80% levels of censoring. Correlation of the causal variables has 

little effect on efficiency.

In general the maximum likelihood estimates of parameters of a 

correctly-specified rate model are of good quality for both sample sizes 

and all three correlations between exogenous variables. Bias is consistent­

ly small and usually positive. Variances are also small, meaning that 

estimates are reasonably efficient, except when censoring is extreme. 

Censoring appears to be a more serious impediment to correct inference 

than either sample size or correlation among causal variables.
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The Misspecifled Model

We now turn to results on the estimates of the parameters of the 

misspecified model, which excludes X 2 . We expect that misspecification 

will adversely affect estimator quality. We are interested in determining 

how reduction in quality depends on sample size, censoring, and collinearity 

of the causal variables.

Mean Squared Error. MSE tends to be greatly affected by the omission 

of X2  from the estimation equation (Table A). Most values of MSE are 

considerably greater than comparable entries for the correctly-specified 

model (Table 1), showing that misspecification can markedly reduce the 

quality of estimates, as anticipated.

(Table 4 about here)

More importantly, we find that the effects of sample size, censoring, 

and collinearity on MSE for the misspecified model differ considerably 

from those for the correctly-specified model. In the correctly-specified 

model the larger sample size leads to smaller MSE without exception. In 

the misspecified model the larger sample size reduces the MSE in 55 percent 

of the cases considered; however, this is so close to one-half that it 

may be due to chance. Thus the results for the misspecified model do not 

convincingly indicate that a larger sample size improves estimator quality.

The relationship between MSE and level of censoring for the mis­

specified model also differs from (and is less clear than) that for the 

correctly-specified model. When both causal variables are (correctly) 

included, MSE increases as censoring increases. This monotonic pattern 

is not repeated in the misspecified model. For all three values of p,
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the MSE of the constant term («q) is mu-ch smaller for 60% censored 

observations than for either uncensored or 80% censored data. Identify­

ing the relationship between censoring and the MSE of is still more 

difficult, as it depends both on p and occasionally on the sample size. 

When p equals 0.0 or -0.5, the MSE of is usually smallest for 

uncensored observations. But when P equals 0.5, it is smallest for 

60% censoring.

In the correctly-specified model MSE is only slightly affected by 

the correlation between the exogenous variables. Again the misspecified 

model shows a different pattern. When p equals -0.5, the MSE of the 

constant term is smallest while the MSE of the coefficient of the causal 

variable is greatest. Though the MSE of estimates for p equal to 0.0 

and 0.5 are not always similar, which level of correlation produces a 

smaller MSE varies with both sample size and level of censoring. The 

effects of collinearity are much greater than in the correctly-specified 

model, even though they cannot be summarized in a simple way.

The results for the dependence of MSE on sample size, censoring, and 

collinearity in a misspecified model are complex. Examination of the 

results for percent-bias and variance of estimates in the misspecified 

model may help explain them.

Percent-Bias. The biases for the misspecified model (Table 5) are 

much larger than those for the correctly-specified model (Table 1). As 

anticipated, omitting a causal variable from the estimation equation 

distorts estimates of the constant term and of the effect of the

included variable a^.

(Table 5 about here)
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In all but one case the larger sample size actually leads to a 

greater bias in estimates. However, the differences for the two sample 

sizes are small compared to those produced by variation in censoring and 

in the correlation between the independent variables.

For each value of p , the constant term is underestimated when 

observations are uncensored but is overestimated for the two levels of 

censoring. Moreover, the positive bias in increases with the degree

of censoring. The situation for estimates of the causal parameter is

more complicated. Level of censoring, correlation among independent 

variables, and (to a lesser extent) sample size apparently interact in 

affecting bias. When the exogenous variables are negatively correlated, 

the bias in estimates of is always negative and relatively unaffected

by sample size. When they are positively correlated, bias is usually 

positive and decreases as censoring increases. When p is zero, bias is 

slightly positive in the uncensored case and quite negative in the censored 

cases.

Variance. The variance of estimates is not affected as much by mis- 

specification (Table 6) as is the bias of estimates. Only in the case of 

uncensored observations is the variance of the constant term greater

in the misspecified model than in the correctly-specified one. However, the 

variance of the coefficient of is almost always higher in the misspe­

cified model than in the correctly-specified one.

(Table 6 about here)

In both correctly and incorrectly specified models, a larger sample 

size reduces the variance of estimates. However, effects of censoring and
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of correlation between the causal variables are quite different in the two 

models. In the correctly-specified model variance increases with censoring 

and is relatively unaffected by the correlation between the independent 

variables. In the misspecified model, the variance of estimates is usually 

least when there is an intermediate level of censoring (60%) and a negative 

correlation between the causal variables.

7. CONCLUSION

Our Monte Carlo experiments indicate that the quality of maximum 

likelihood estimates of a correctly-specified log-linear rate model is 

generally good. This applies to small samples (N = 50 and 100) and positive­

ly, negatively, and uncorrelated causal variables ( p = 0.5, -0.5, and 0.0, 

respectively). Bias is usually positive but consistently small (under 5%). 

Variance is also small, except when censoring is extreme. This means that 

the estimators are reasonably efficient. Somewhat surprisingly (for those 

accustomed to least squares estimation of linear regression equations), 

efficiency is only slightly affected by collinearity between the independent 

variables. For the correctly-specified model, censoring seems to be the 

most serious impediment to correct inference, but can be compensated for 

by increasing the sample size.

As anticipated, misspecification noticeably reduces the quality of 

estimates. In addition, we find that sample size, censoring, and collinearity 

affect quality quite differently in the misspecified and correctly-specified 

models. In the misspecified model, the net effect of sample size on quality 

(as measured by mean squared error) is ambiguous; a larger sample size in­

creases bias but decreases variance. We also find that in the misspecified
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model uncensored observations do not always produce the best estimates. 

Furthermore, the effects of censoring depend on the parameter considered, 

the correlation between the included and omitted variables, and sample 

size. Consequently there does not appear to be any simple rule about the 

effects of censoring when specification error is present. The correlation 

between the causal variables also affects quality. The coefficient of the 

included causal variable is estimated most accurately when its correlation 

with the omitted variable is zero, but the constant term is estimated best 

when the two causal variables have a negative correlation. The overall 

complexity of results in the presence of specification error only adds 

weight to the usual conclusion that problems abound when the model is wrong.



FOOTNOTES

If it is assumed that =exp(a^ • ) , then E(t-t' )=exp(-a^j) and 

ln(E(t-t')) = -a •Xj. In this case, the parameters can be

estimated by least squares regression of the logarithmn of (t-t1) 

on the exogenous variables JL . The appropriate form of the linear 

regression when some data are censored, as is typically the case, is 

unclear.

A "fast normal random deviate generator" was used to produce single­

precision pseudo-normal (0,1) random numbers. This method follows 

Marsaglia's rectangle-wedge-tail algorithmn as described in Knuth 

(1969). The Marsaglia method uses the following distribution:

F(x) = ( e_V /2dv x - 0
71 )0

which gives the distribution of the absolute value of a normal deviate.

Following Knuth (1969), two standard normal variables, X^ and X^, 

were generated with correlation coefficient p set at 0.0, 0.5, and 

-0.5, using the equation

X2  = pXj_ +  (  /  1 ־ P 2  )  Y

where X^ and Y are both standard normal variables.

The time of a change t was generated as follows:

t = -io a (u (o .,i,)j____
a ־* + a x + a x0 1 1  2 2e

where U(0,1) represents a uniformly distributed variable on the range



0 to 1. For censored data the times at which a change occurs were 

calculated; however, here t^ or (which ever was the smallest) was 

generated. For example, if t^ > T_̂ , then we would not have observed 

a change of state; therefore 1\ (the ending time) would be used.

Percent-bias is calculated as 100• [̂־ p]
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Table 1. Mean Squared Error of Estimates: Correctly-Specified Model
(All entries based on 100 observations,•)

N=50 N=100

.030 .013

.077 .039

.297 .127

N=50 N=100

.024 .015

.105 .058

.222 .095

N=50 N=100

.024 .012

.109 .061

.606 .237

Uncensored 

p=0.0 60% cens.

80% cens.

.039 .017

.121 .045

.395 .186

.032 .020

.124 .058

.390 .159

.026 .012 

.198 .064

1.324 .650

Uncensored 

p=0.5 60% cens.

80% cens.

017. 040. 017. 029. 012. 024. Uncensored

052. 092. 061. 095. 044. 071. .0.5 60% cens־=_p

152. 369. 126. 291. 153. 373. .80% cens



Table 2. Percent-Bias of Estimates; Correctly-Specified Model
(All entries based on 100 observations.)

“o “l a2
N=50 N=100 N=50 N=100 N=50 N=10C

Uncensored 1.0% .8% 2.4% 2.0% -0- .1%

p=0.0 60% cens. -.3% -.5% 5.8% 4.9% 1.3% 1.6%

80% cens. -3.5% .2% 7.6 % 3.1% 6.8% 2.3%

Uncensored 1.3% .7% 2.7% 1.6% -.6% .6%

p=0.5 60% cens. .5% -.2% 4.4% 3.2% 1.5% 1.9%

80% cens. 4.5% 3.9% -1.4% 1.2% 3.2% -1.4%

Uncensored 1.0% .7% 2.4% 2.2% -0- .6%

>=-0.5 60% cens. .3% .5% 4.7% 3.1% 1.8% 1.4%

80% cens. -3.6% -.7% 9.8% 4.7% 7.5% 3.4 %



Table 3. Variance of Estimates: Correctly-Specified Model
(All entries based on 100 observations.)

N=50 N=100

.022 .013

.091 .049

.199 .091

.029 .019

.116 .054

.389 .158

N=50 N=100

.022 .011

.109 .061

.586 .237

.023 .011

.198 .064

1.291 .626

Uncensored 

p=0.0 60% cens.

80% cens.

Uncensored 

p=0.5 60% cens.

80% cens.

Uncensored .022 .011 .027 .015

p=-0.5 60% cens. .071 .044 .086 .057

80% cens. .351 .152 .252 .117



Table 4. Mean Squared Error of Estimates: Misspecified
Model (All entries based on 100 observations•)

N 5 0 ־־ N=100 N=50 N=100
Uncensored 3.219 3.550 .344 .205

p=0.0 60% cens. .135 .101 .547 .511

80% cens. 1.230 1.304 .584 .125
«

Uncensored 2.280 2.109 .943 1.251

p=0.5 60% cens. .297 .108 .457 .275

80% cens. 2.123 1.299 .580 .312

Uncensored 1.967 2.108 1.090 1.029

p=-0.5 60% cens. .086 .074 1.765 1.779

80% cens. .539 .565 1.597 1.660



Table 5. Percent-Blas of Estimates: Misspecified
Model (All entries based on 100 observations.)

N=50 N=100
4.3% 4.3%

•28.9% -31.4%

•28.2% -33.3%

27.6% 52.7%

-4.5% 14.2%

-3.4% 12.6%

•46.0% -47.2%

•64.5% -65.7%

•60.1% -63.2%

N=50 N=100
-42.1% -45.4%

5.4% 6.1%

25.1% 27.7%

Uncensored 

p=0.0 60% cens.

80% cens.

Uncensored -32.5% -34.8%

p=0.5 60% cens. 8.1% 4.8%

80% cens. 22.0% 25.9%

Uncensored -32.5% -34.8%

p=—0.5 60% cens. 4.9% 5.5%

80% cens. 16.1% 17.9%



Table 6. Variance of Estimates: Misspecified
Model (All entries based on 100 observations.)

N=50 N=100
.337 .198

.212 .155

.266 .121

.639 .138

.449 .195

.575 .248

.244 .138

.103 .055

.155 .065

N=50 N=100
.387 .256

.089 .041

.224 .076

.590 .171

.192 .071

1.347 .222

.274 .170

.048 .026

.126 .054

Uncensored 

p=0.0 60% cens.

80% cens.

Uncensored 

p=0.5 60% cens.

80% cens.

Uncensored 

p=—0.5 60% cens.

80% cens.



Appendix A. Bias of Estimates: Correctly-Specified Model (All entries based 
on 100 observations.)

ao “l a2
N=50 N=100 N=50 N=100 N=50 N=100

Uncensored .041 .030 .048 .040 -0- .003

p=0.0 60% cens. -.013 -.019 .177 .097 .026 .032

80% cens. -.140 .008 .152 .062 .136 .046

Uncensored .052 .027 .054 .032 -.012 .012

p=0.5 60% cens. .022 -.009 .087 .063 .029 .038

80% cens. .181 .155 -.027 .024 .064 -.029

Uncensored .041 .027 .048 .044 -0- .012

p=-0.5 60% cens. .011 .020 .093 .062 .035 .028

80% cens. -.145 -.027 .196 .094 .150 .068



Bias of Estimates: Misspecified Model
(All entries based on 100 observations.)

____ ^ ______  ____ h ______
N=50 N=100 N=50 N=100

.086 .086

-.579 -.629

-.564 -.667

.551 1.055

-.089 .283

-.068 .253

-1.683 -1.815

.215 .244

1.003 1.108

-1.300 -1.392

.324 .193

.881 1.038

Appendix B.

Uncensored 

p=0.0 60% cens.

80% cens.

Uncensored 

p=0.5 60% cens.

80% cens.

Uncensored -1.301 -1.392 -.920 -.944

p— 0.5 60% cens. .196 .218 -1.289 -1.313

80% cens. .643 .715 -1.201 -1.263


