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There is a considerable stress in current methodological discussion in 

sociology on shifting focus from cross-sectional to longitudinal designs. So­

ciological research has been almost exclusively cross-sectional and our method­

ology is suited primarily to this case. Attempts to shift to longitudinal de­

signs raise a number of new issues, in particular, the many discontinuities 

between cross-sectional thinking (where many instances of a process are observ­

ed simultaneously) and time series thinking (where a single instance is observ­

ed at many points in time). While both types of analysis are well understood, 

the non-experimental social scientist is typically faced with a design which 

falls somewhere between the two. The typical case involves observations on 

many instances of a process at only a few points in time. Sociologists have 

relied almost exclusively on the panel method to address this case.■*"

Sociologists, however, have greatly exaggerated the "power" of the panel 

design. While changing to a simple longitudinal design allows one to use time 

orderings to rule out some causal effects, it does not unambiguously resolve 

many questions concerning either direction or time sequencing of causal effects 

(Duncan 1969, 1972a, 1972b). In fact, as Heise (1970) and Duncan have shown, 

causal inferences in such simple longitudinal models depend on rather restric­

tive assumptions. It has become clear that most of the analysis problems aris­

ing in even the simplest cases are not yet well understood.

While sociologists have used the panel design primarily to resolve diffi­

culties in causal analysis, there has been a recent emphasis in the causal 

models approach to measurement error on using panel observations to eliminate 

complications suggested by the acknowledgement of measurement imperfection. 

Blalock (1970) has suggested that a panel design will generally help in reduc­

ing the excess of unknowns which arises when the true sample values of sub­

stantive variables are assumed to be unknown and measured with error. Costner



(1969) earlier had demonstrated that with three indicators for each substantive 

variable in a recursive cross-sectional model the analyst can both test measure­

ment models and (if appropriate) estimate causal parameters. Obtaining three 

indicators of each variable is often not possible, however, and Blalock (1970) 

has shown that a rough trade-off exists between the number of indicators in a

cross-section and waves of observations in a panel under certain specified
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conditions. In some situations, the researcher who can only obtain one or two 

indicators of some variables can generate tests and estimates if he can obtain 

repeated measurements in a panel design.

Work on measurement error in panel models has focused on only the very 

simplest cases. Attention has been limited to single-variable models (where a 

single substantive variable is measured at several points in time). This poses 

a serious problem for the analyst faced with a multivariate panel model (where 

several variables are measured at several points in time) measured with error.

In attempting analysis, the researcher must deal simultaneously with the in­

ference problems of linear panel models and with those arising from the exist­

ence of measurement error. We have begun to face such dual problems in our 

substantive research. This paper focuses, then, on the additional complications 

which arise when multivariate panel models are measured with random and non- 

random errors. In spirit and approach, it relies heavily on the papers cited 

above.

In any didactic discussion it is difficult to introduce more than one 

complication at a time. We are primarily interested in measurement error and 

are willing for the present to employ highly restrictive assumptions to rule 

out other complications. It is highly likely in panel models that regression 

disturbances (residuals) will be correlated over waves of observations due to 

stability in these causal variables excluded from the model (see Heise [1970]),



Since the presence of both correlated regression disturbances and measurement
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error will generally result in underidentification, we will generally assume 

that the disturbances are uncorrelated inter se and with substantive variables 

in our models. We are forced to adopt this position largely because we have no 

a priori information about measurement quality. Evidence in each case is in­

ternal to the model , We construct models incorporating substantive arguments as 

likely sources of measurement error and test them with our data. We do not, 

however, attempt to arrive at the appropriate error model inductively. Rather, 

the thrust of this paper, and the literature it follows, is to emphasize the
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practical impossibility of solving measurement problems inductively.

We follow the literature cited above in employing the technical apparatus 

of path analysis for testing and estimation. All of the coefficients we dis­

cuss are standardized by sample variances. This approach simplifies the prob­

lem of generating the large number of structural equations containing unmeasur­

ed (true values) variables arising in realistic models but has serious disad­

vantages for panel analysis. Wiley and Wiley (1970)have demonstrated that the 

assumption of stable standardized coefficients requires both the true popula­

tion variances and the measurement error variances be stable over the waves of 

observations. This is particularly problematic in "development" models and we 

will discuss its implications in terms of specific models below.

The substantive research application is a cross-national study of the in­

terrelations of national educational systems and economic, social and political 

development (Meyer and Hannan, 1971). In this paper we focus on one highly 

simplified model relating expansion of educational systems to economic develop­

ment. Using data reported by the United Nations (U.N. Statistical Yearbooks) 

we follow a panel of 96 nations'* through three waves of observations, 1955,

1960, and 1965. The research project is still in an early phase and we are

3



less concerned here with substantive findings than witnessing the import of 

measurement complications.

We have confined our attention to lagged cross-effects rather than instan­

taneous effects. Since this decision may often be problematic, we will discuss 

our reasoning. Duncan (1969) has shown that in general one cannot take both 

the direction of cross-effects and the timing of causal effects as problematic. 

Consider the model taken from Duncan's paper drawn in Figure 1. As long as the

Figure 1 about here

analyst is unwilling to make at least one a priori restriction, e.g. to rule 

out either the lagged effects or the instantaneous effects, this model is un­

deridentified (there are seven parameters and only six independent equations). 

Alternatively, one can proceed by ruling out effects (either lagged or instan­

taneous) in one direction. What is clear is that in the very general model 

drawn in Figure 1, one cannot employ only sample information to infer either 

lagged or instantaneous effects in one, the other, or both directions.

However, the substantive significance of the distinctions between lagged 

and instantaneous effects seems to vary with the process being studied and the 

development of the theory. In Duncan's examples, the observation points cor­

respond to socially meaningful categories (grade in school, stage in life cycle, 

etc.), and the variables can conceivably increase or decrease in magnitude be­

tween waves of observations. In our research the time periods of observations 

are more or less arbitrary indicator points since the variables are cumulative 

(monotonically increasing) for almost all units. Whether the effects are lagged 

or instantaneous is not an important substantive issue (at least given the pres­

ent state of development of the theories involved) and, ignorance of appropriate



lags is less likely to produce faulty inferences when all variables are mono- 

tonic over time.^ We will make an argument below (for didactic purposes) for 

lags of different lengths, i.e. an argument that the causal processes under 

study in a model differ in the lag with which they have an impact on the vari­

ables under study. Here Duncan's argument is compelling. The point is that 

for the present we take the direction and magnitude of cross-effects as particu­

larly important and do not systematically investigate the timing of causal ef­

fects. In particular, we restrict all causal effects to be lagged effects.

A THREE-WAVE, TWO-VARIABLE, TOO-INDICATOR (3W-2V-2I)MODEL

We began our analysis with a three-wave, two-variable model. Our data

enable us to select two indicators of economic development, per-capita gross
7

national product and per-capita consumption of electricity. We also select 

two indicators of educational expansion, the ratio of primary school students 

to the appropriate age-group population and the ratio of secondary school 

students to the age-group population.

This model, with uncorrelated residuals and purely random measurement 

error, is diagrammed in Figure 2. The curved arrow at the left represents the 

summary of the history of the operation of the postulated causal processes. We 

further assume that all coefficients in the model are stable over waves of ob­

servations. Throughout this paper, the underlying economic development variable

Figure 2 here

will be represented by and the educational variable by Y^, with the subscript

standing for the period of observation. The indicators of economic development

will be represented by X Î . and the indicators of educational expansion by Y ' ,
ij ij



with the first subscript standing for the period of observation and the second 

subscript for the specific indicator.

The correlation matrix for this model is presented in Table 1.

Table 1 here

The matrix includes a pattern which, on initial inspection, is very perplexing. 

Examine the intercorrelations of the educational ratios. The primary ratio at 

the first time period is most highly correlated with the secondary ratio at the 

last time period, next most highly correlated with the secondary ratio at the 

middle time period and least highly correlated with the cotemporal secondary 

ratio. The pattern for the primary ratio measured at the middle time period 

is similar in that the correlation with the secondary ratio of the last time 

period is the greatest. For the primary ratio measured at the last time period״ 

the correlation is greatest at the same point in time and the correlation 

with secondary ratios decreases monotonically as one moves back in time.

We had originally intended to treat the two educational enrollment ratios 

as related only through their common relationship to the underlying variable 

educational expansion. We began with this hypothesis of ,common factor vari­

ance' (or "congeneric tests") because, in terms of scientific simplicity, this 

model represents the most parsimonious structure. Yet we find that indicators 

of variables measured at different points in time are more highly inter-corre­

lated than are cotemporal measures of the variables. This result violates our 

conventional understanding of validity (see Campbell and Fiske (1959), And it 

is unlikely that such a simple causal structure could generate the observed 

correlation matrix. For instance, the educational portion of this model (Fi­

gure 2) fails the consistency criterion for purely random measurement error
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developed by Costner (1969)

We were faced with the practical problem of how to proceed with such an 

unforeseen result. Two lines of investigation seemed open: (1) construct 

more complicated two-indicator models to generate the observed pattern of in­

ter-correlation, and (2) decompose this model to allow the indicators to be di­

rectly causally related. We will trace out the details and implications of

To simplify the algebra we revise the model in Figure 2 to include only 

that portion relating to educational expansion. Since we assume that this var­

iable is systematically affected by economic development, we allow the resi­

duals to be correlated with the true (unobserved) values of the educational 

variables, where the correlations do not violate least squares restrictions. 

Note that this model is now more restrictive than we could like since we must 

postulate that U is uncorrelated with early values of educational expansion. 

This revised model is diagrammed in Figure 3. The new k. terms will be used in

the second of the models discussed below.

Using the algorithm of path analysis, we write the fifteen equations for

the measurement model in Figure 3, with k=l:

P , , = k^cd (1)
11 12

P , , = k V a  (2)
11 21

each strategy

Figure 3 here

(3)

(4)

= lc3cda = p , , 
12 21

= k^c^ (ab + su)



P״i Y t = k cd (ab + su) = p , , (5)
11 32 12 31

P ,״ ״ , = k cd (6)
21 22

2
p , , - kc (b + srt + asu) (7)

21 31

P y l  v '  = k c d  ^ab +  SU) = PY  * V ׳
21 32 22 31

p״, yl = cd (9)
31 32

p , , = k2d2 (ab + su) (10)
12 32

P , , = k V a  (11)
12 22

PY + kd2 (b ־= , ,  srt + asu) (12)
22 32

Consider first the possibility dismissed above that the primary and sec­

ondary ratios are ,equivalent' indicators of educational expansion and are 

measured with random error. In this case the Ik terms are assumed equal to 

unity. The ordering of magnitudes of the sample correlations between the pri­

mary ratio in 1955 (Yjj_) and the secondary ratios ( Y ^ »  ^ 2 2’ ^32^ 8ives rise 

to the following inequality:

ry 1 V ’ > rY ' V ' > rY • Y 1
11 32 11 22 11 12 

Substituting from the path equations (1), (3), and (5), we obtain corresponding 

values:

cd(ab + su) > cda > cd
or (cd + n )

ab +  su > a > 1

This result violates the basic model since the two terms required to exceed 

unity are a zero order correlation (a) and a sum of direct and indirect causal 

effects in standardized form (ab + su). Each term is bounded by plus and minus 

one. If they were not so bounded, we would be accounting for more than 100% of

8
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the variance in the dependent variables. This result argues against the com­

mon factor model. Note, however, that this involves a statistical inference 

since it is possible to obtain sample values exceeding unity when the popula­

tion parameter is less than unity.

If we continue to accept the model diagrammed in Figure 3, we might pro­

ceed by allowing other complications in the model in order to generate the cor­

relation matrix in Table 1. For example, we might allow the different indi­

cators of educational expansion to be correlated at every wave because of com­

mon sources of measurement error (e.g. both pieces of information are process­

ed by the same national bureaucracies); or, we might allow the same indicators

to be correlated at different points in time because of stable sources of mea- 

variance
surement errorA (e.g. stability for units in the bureaucratic procedures for 

gathering and reporting educational statistics). Working through the resulting 

equations (where, for instance, e^ and e ^ , e^ and e^, and ej and ê . are corre­

lated, or e^and e ^ s e^ and e^, etc.) quickly reveals that these added complica­

tions cannot reproduce the observed pattern of inter-correlations.

Allowing inter-temporal correlation of the measurement error terms of 

different indicators (i.e. allowing Y ^  and Y ^  and Y ^  to share common sources 

of error variance) will allow us to reproduce the correlation matrix. We re­

ject this solution, however, for it merely represents a mechanical way to gener­

ate the matrix in the absence of any substantive knowledge (i.e. it is a 

formalisation of our ignorance).

We next develop a model x*hich allows the random errors in variables to de­

crease proportionately with each wave of observation. This model is based on 

the assumption that with the secular trend towards national accounting, the 

quality of the national statistics collected increases over time. Such an as­

sumption seems reasonable for our educational statistics since their collection



and reporting is continually being supervised by the United Nations statistical 

office (UNESCO). To represent this secular trend in statistical quality, we 

allow the k term in our educational model (Figure 3) to take on values differ-

9
ent from unity, and also require them to be between zero and one. Other val­

ues will not produce decreasing random measurement error. (See Duncan, 1972b 

for an analogous model.)

To evaluate this model, we consider the inequalities introduced above. 

Since k is no longer equal to unity, we have the following: 

k^cd(ab + su) > k^cd > k^cd
or (cH * 0)

2
ab + su > ka > k 

We can no longer reject this model on logical grounds.

We can proceed to subject the model to an additional test using the seven 

over-identifying restrictions (the model has eight unknowns and fifteen equa­

tions). All seven restrictions can be written as quantities equal to zero, un­

der the hypothesis that the model is correct (Blalock, 1964). As noted pre­

viously, sampling error may produce deviations from zero even if the model is 

correctly specified and the analyst must make a statistical inference (where, 

unfortunately, the sampling distributions of the estimators are unknown),• The 

over-identifying restrictions with the sample estimates are:

PREDICTION ESTIMATE
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(cont.) PREDICTION ESTIMATE

Py * Y ’ *3Y Y* ~ PY ׳ ’ Y 1 PY' Y ’ •074
1 1 2 1  12 32 12 32 11 32

Py » y• Py» y » “ Py» y» Pyi y• .056
11 21 22 32 12 32 21 31

Py, y I Pyl y I “ Pyt yl Pyl y I .018
12 32 21 32 11 31 21 31

This fit does not seem particularly close. Nonetheless, we proceed to estimate 

the one obviously identified coefficient,^ k. Equations (1), (6), and (9) al­

low two ways of estimating k directly:

k = r Y* PY - ׳  i Y' PY'/ 11 12 / 21 22

\l pyi Py» \l py» Py»
V  21 22 V 31 32

We follow Duncan (1972a,b) and add these two expressions and insert sample esti­

mates to arrive at an "ad hoc" estimate of k : ־̂

/Py* PY • + \ / PY ’ PY '
V 11 12 v 21 22n/°Y Ìi°YÌ2 +  / Y n Pï2:

n/ V ^ T  + \ / Pï3iPï3:

Inserting sample values of correlations gives an estimate of k = 1.04. This 

estimate for k is inconsistent with the hypothesis that the sources of measure­

ment error are stable but decreasing with each new wave of observation . This 

failure is not surprising given the poor fit of the entire model.

A SINGLE-INDICATOR MODEL

At this point (given our aims) we had only two choices. We could ignore 

one of the indicators of educational expansion and proceed with a single indi­

cator or we could entertain the hypothesis that the two "indicators" stand in 

some direct causal relationship. We should mention one variation of the lattei 

alternative which we did not pursue. The previous analysis suggests serious
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defects in the "common factor" approach to the educational ratios. One alter­

native modification would be to keep the common factor model but introduce 

additional direct causal links between the indicators (educational ratios). We

did not puruse this approach since the number of unknown quantities becomes

i 12 too large.

In this section we pursue the single-indicator approach. Thus we revise 

the model of Figure 3 to create the three-wave, two-variable, single indicator 

model drawn in Figure 4. This model contains only educational variables (pri­

mary and secondary ratios measured at three points in time). For purposes of 

algebraic simplicity, we continue to posit uncorrelated residuals and, for the 

present, assume uncorrelated random measurement errors. The latter assumption 

will be relaxed below. This model incorporates a conceptual shift. The en­

rollment ratios are now taken to be abstract causal variables measured with 

random error. We continue to denote the primary ratios by Y ^  and the second­

ary ratios by Y _̂2 Measured values are primed.

Figure 4 about here

This model allows for cross-effects in both directions. However, when we 

first began to examine the correlation matrix in Table 1, two of us were work­

ing on a version of the model in which the effect from secondary to primary ra­

tios was assumed to be absent (i.e. d=0). Call this case (i). We discovered 

that such a model is capable of generating the correlation matrix in question 

given very high autocorrelation terms. In fact, the process can be represented 

in a simple and elegant form. To do this we alter our notation temporarily.

Let and denote the primary and secondary ratios measured at time t, 

and P , S^+1 denote the measured values of the same variables at the next 

point in time, etc. This model is drawn at the top of Table 2 where we con­
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tinue to assume purely random measurement error, stable coefficients, and uncor­

related residuals. Given this specification, the path equation for the popula­

tion value of the zero-order cross-lag correlation takes on the following form:

.k . k-1 k-j-1 i ״
Pp o = ef[pa + cr a J cJ ]
pt;Lst+k 3=0

The behavior of these cross-lagged correlations is indeed time dependent as the 

difference equation representation shows. With P fixed, the correlation

PP S ,, will increase as k increases up to a point and then begin to decrease, 
t^ t+k

Both the length of the interval over which a maximum is attained and the beha­

vior of the correlation around that interval (e.g. rapidity of decline in mag­

nitude) depends on the values of the coefficients of the model. The important

13
point for our purposes is that this model, together with reasonable estimates 

of the coefficients, produces a correlation matrix very close to that reported 

in Table 1. The behavior of the cross-lag correlation over ten time periods 

for alternative hypothesized coefficients is reported in Table 2.

Table 2 about here

Consider an alternative specification of the model relating the two edu­

cational ratios in which only the direction of the cross-effect is changed,(i.e. 

d^O, c=0), call this case (ii). Case (i) seems preferable on substantive 

grounds. Increases in primary enrollments create a demand for the expansion of 

secondary systems as larger cohorts pass through the primary schools. However, 

the possibility remains that educational systems expand down from the top. 

Secondary expansion creates a "pull" into primary school due to the changed op­

portunity structure. For this reason it is useful to subject both models to 

test.
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First we consider the "dynamics" of our second model. This model gener­

ates a correlation matrix which is the transpose of the matrix produced by the 

first model. Thus the correlation matrix generated in this case is not at all 

close to that observed in our sample. This result lends considerable support to 

the model where secondary ratios are taken as dependent on earlier primary ra­

tios (case [i]).

Since this method of evaluating the competing causal models is somewhat 

novel in the sociological literature (and involves a number of implicit assump­

tions and approximations), we were interested in also conducting a more standard 

path analytic test of the models. To do this we write out the path equations 

for the two models as follows:

Case (i)(d=0) Case (ii)(c=0)

2 2
PY * y* = e U  + P C1 e a 

12 22

2 2 2 2
PY ! y • = e [a + Pea + pbc] e a

12 32

PY t Y ! = epf epf
12 11

p , , = epbf ef[d + pb]
12 21

p , , = epb2f ef[pb2 +  db +  ad]
12 31

p , , = ef[c + pa] efpa
11 22

2 2
p , , = ef[pa +  ca + be] efpa

11 32

PY , Y f2b f2 ־ , [b +  Pd]
11 21

p , ״| = f2b 2 f2 [b2 + Pdb + Pad]

11 31
■+A

2 2 2
p , , = e־־[a + apbc + c b] e a

22 32
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Case (ii)(c=0)Case (i)(d=0)cont.

ef[ad +  apb]P , , = ef[apb + cb] 
22 21

ef[d + adb + apb2 ]
2 2

P , , = ef[apb + cb ]
22 31

>׳

ef[a2d + a2pb]

f^fb + d2a + bpad]

ef[ad + a2db + a2pb2]p , , = ef[cb + acb2 + a2pb2 ]
32 31

The two models do not share any prediction equations, making it difficult 

to choose between the two. Both cases fit better than the model tested earlier, 

as is shown in Table 3. If anything, case (ii) fits slightly better than case(i).

Since as far as we know the sampling distributions of the series of prediction 

equations is not known, it is difficult to choose between the two cases purely 

on the basis of the small difference in fits. Proceeding to the estimation stage 

does not reduce the uncertainty. In each case only two coefficients are obvi­

ously־̂*־  identified, the autoregression and "epistemic correlation" for the inde­

pendent variable. There are five equivalent solutions for each of the autore-
A

gression terms. Using the Duncan procedure outlined above we obtain b = .893 for
A

case (i) and q = 1.021 for case (ii). Using these composite estimates, we can

A A

solve directly for f in case (i) and e in case (ii) in three equivalent ways.

The combined estimates for the two quantities respectively are 1.048 and .937.

Under the model specifications for the two cases, the four terms estimated 

are correlations as well as path coefficients. Each case violates this assump-

Table 3 about here
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tion and neither model is satisfactory. The fact that none of the remaining 

parameters of either model are obviously identified greatly limits the useful­

ness of these models. Thus we do not continue this analysis in an effort to mod­

el the complications which might yield more acceptable estimates. Our ultimate 

objective is to relate these educational variables to other substantive varia­

bles (economic development in the present application). To do this we will pur­

sue a number of the issues which arise when single-indicator models are embedded 

in more complex models. The most obvious extension in this substantive research 

is to three-variable, three-wave panel models.

Since the path analysis is indeterminate in choosing between the two mod­

els, we will take the argument based on dynamics (together with our substantive 

preference) as persuasive. Henceforth in the analysis we will consider case (i) 

as the appropriate causal model.

Before going on to more complex models, we will comment briefly on the i- 

dentification problem in this simple model with one-way cross-effects. It is 

rather surprising that even when we assume stability in all parameters (which 

implies constant true and error variances), purely random measurement error, 

and uncorrelated disturbances, only the autoregression of the "independent" 

variable and the coefficient associated with the measurement term for this 

variable are identified.'*■'3 What is even more surprising is the finding that 

the addition of new waves of observations do nothing more than provide addition­

al tests of the model and additional estimates of the coefficients already i- 

dentified even when the new waves do not add any additional unknowns. This is 

quite important. The bottom half of the model for case (ii) corresponds to the 

single indicator case discussed in the literature cited at the outset. Our re­

sult conforms to what is already known — with single indicators measured with 

purely random error, uncorrelated disturbances and three waves of observations,
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all parameters of interest are identified. However, the addition of a second 

substantive variable makes clear that the more general case is considerably more 

complicated. This is particularly puzzling since the variable we add is exogen­

ous (i.e. it is posited to be independent of the residuals in the regression e- 

quations for the educational ratios). We seem to have a case, then, where the 

addition of more information precludes the estimation of previously identified 

coefficients.

Inspection of the equations for case (ii) isolates the difficulty. Consi­

der the expression for the population correlation of the primary ratios at the 

second and third observations (since the autoregression in this variable could

be solved for before the addition of the exogenous variable):

2 2 
r , = e [a + apbc +  c b]

22 32

We see that the estimation complications arise because of the curved double 

headed arrows at the left hand side of the model (denoted by p) and because of 

the stability in all of the substantive variables. When early values of the 

variables are correlated due to previous operation of the causal structure un­

der study and the variables are stable, the number of indirect paths connecting 

observations quickly becomes very large and expressions do not repeat them-

i 16 selves.

This, plus the nonlinear manner in which the measurement error terms enter 

the equations, gives rise to systems of non-linear equations in k unknowns 

(where k is fairly large, e.g. 4) which are unlikely (in our experience) to 

yield useful solutions. As we noted above, even if the systems of equations 

may in principle have real roots, the actual work of solving the system (even 

using a computer) is enormous.

The technical problem is a failure of the sufficient conditions for identi­

fication. We have become accustomed to concerning ourselves only with the nec-



essary conditions for identification. In the present context these may be stat­

ed in the form: the number of path coefficients to be estimated must not exceed 

the number of independent equations (Wright, 1960). Clearly we have no diffi­

culty satisfying this condition.

Our practical problem is accentuated since we lack a readily applicable 

set of guidelines showing a. priori for complicated cases (where a portion of the 

system is overidentified and another portion is underidentified) which, if any, 

coefficients are identified. In the usual representation of structural equa­

tions in an (unstandardized) econometric system, the application of both the 

necessary ("order") and sufficient ("rank") conditions to each equation is 

straightforward. Our difficulty has been in failing to be able to extend this 

approach to complicated path analytic panel models. In principle, we should be 

able to follow Jtireskog's (1970) representation of the covariance structure and 

pinpoint identification problems from an inspection of the various variance-co- 

variance matrices. To the present we have not been able to isolate the diffi­

culties using this approach.

This brief discussion should make plain the fact that an investigation of 

the usefulness of single-indicator models measured with error must focus heavi­

ly on the conditions under which in over-identified models the parameters of 

interest are identified (or perhaps practically estimable). Unfortunately we 

have proceeded on a rather ad hoc basis since we have not found any simple al­

gorithms which allow one to make such a judgment prior to writing out the sys­

tems of equations and searching for estimates.

A THREE-VARIABLE, THREE-WAVE, SINGLE-INDICATOR MODEL (3V, 3W, II)

We have already argued that primary enrollment ratios affect secondary ra­

tios (and not the reverse), and it seems a natural extension to argue that eco-



nomic development affects only primary ratios directly. To further simplify our 

analysis, we assume for the moment no cross-effect from either educational var­

iable to development.^ The model drawn in Figure 5 incorporating our usual 

simplifying assumptions concerning disturbances and measurement error terms 

represents the causal structure. Again we must require all of our (standard­

ized) coefficients to be stable or none will be identified.

Figure 5 about here

This model has an excess of 25 equations over unknown coefficients. As be­

fore each of the overidentifying restrictions (redundant equations) can be writ­

ten as quantities (Spearman tetrad differences) equal to zero under the hypothe­

sis of no specification error (i.e. the model is correct) and no sampling er­

ror. The fit of these 25 equations with our sample is extremely close. The 

largest deviation from the predicted value is .021 and the mean of the absolute 

values of the deviations is .0067. As this latter figure suggests, most of the 

predictions are almost exactly met.

The massive inadequacies of single indicator models (even with strong sim­

plifying assumptions such as those made above) become inescapable when we shift 

attention from testing to estimation. Just as with the cases analyzed earlier, 

only the autoregression coefficient for economic development, the most "indepen­

dent" variable and the path coefficient linking this variable with its indicator 

are apparently estimable. It is easy in this case to see that it is only the 

presence of measurement error which rules out the estimation of the remaining

coefficients. In other words, if each of the path coefficients linking variable

18
with indicators is a priori set equal to some value, all of the remaining co­

efficients in the model can be solved for in a number of ways (i.e. they will 

not only be identified, they will be over-identified). If only partial inform­
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ation is available (say the value of one of the "epistemic correlations", say

r) a portion of the remaining coefficients can be solved for (in this example,

b , d and p ).
c

As a further partial check on the model we estimate the available coef-

A

ficients with the result that c = 1.01 and s = .987. In this model c is a cor­

relation and thus should not exceed unity. However, the discrepancy is smaller 

than was the case previously and the estimated value of s is reasonable.

Duncan (1972b) has shown that one need not stop here in a substantive 

analysis. In a number of the cases he examined, estimation of the model's re­

maining coefficients based on "provisional" estimates of some of the unknown 

quantities gave rise to either logical inconsistencies (e.g., correlations 

greater than unity, unreal solutions, etc.) or to substantively uninterpretable 

results. Since we are more concerned at this point with the logic of the 

analysis problems, we do not pursue this strategy, but note its potential 

usefulness.

We have reached consistently negative conclusions about the usefulness of 

single-indicator models. Even under the most idealized conditions, such models 

do not allow us to estimate the parameters of the postulated causal structure. 

However, we should not totally dismiss the fact that single-indicator models 

are falsifiable and thus can contribute at least negative evidence to substan­

tive problems. In addition, a focus on the dynamics of the difference equations 

conveys important information. Yet, any consideration of more realistic 

complications must inevitably lead to the study of multiple indicator models.

We make this shift in the next section.

A TWO-VARIABLE, THREE-WAVE, TWO-INDICATOR MODEL (2V, 3W, 21)

In this section, we alter the model in Figure 2, with which we began the
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analysis, in an effort to eliminate the causal interconnections which produced

the earlier anomalous results. Specifically, we choose as our indicators of

educational expansion a combined ratio of primary and secondary students to the

appropriate age-specific population and the ratio of students in tertiary

19
schools to the total population. Economic development is measured by GNP/cap 

and KWH/cap. Unfortunately, the existing data is such that the inclusion of

2!
GNP/cap reduces our sample to the 46 (presumably) most developed nation-states.

We will continue to explore the consequences of measurement error in the 

context of a substantive model which specifies asymmetric cross-effects from 

economic development to educational expansion over the time period of investiga­

tion. The revised model incorporating double indicators is diagrammed in Figure 

6 .

Figure 6 about here

Before analyzing this model we must digress and consider an anlysis prob­

lem raised by Blalock (1970) which seems to point to a problem with our model.

To do this, we specialize the model drawn in Figure 6 in the following ways. 

Concentrate only on the educational "half" of this model, i.e., treat the eco­

nomic development variable as unobserved and thus part of the residual. Assume 

(contrary to the model drawn in Figure 6 ) that the residuals are uncorre­

lated with the included variables and are not stable over waves of observa­

tions (i.e., are intertemporally uncorrelated). Assume further that the measure­

ment error terms are correlated both simultaneously for different indicators and 

intertemporally for the same indicators measured at different points in time. 

Finally, assume that the correlations of measurement error terms are stable over 

waves of observations. The restrictions give us the model discussed by Blalock
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(1970: Figure 5) which is diagrammed in Figure 7.

Figure 7 about here

Note that this model requires the "epistemic correlations" to be stable but 

allows the autoregression terms to vary between waves of observations.

This model gives rise to the following system of 15 equations:

“ abc' (101) 

= abc'd' (ID  

(12*)

xllx22

X 11X 32

= a b c ' (13%

= abc'd' (14*)

= abd’ (15)  

’abd ־־

x12x21

x12x 31

X21X32

X22X 31

(1•)

(׳2)

( 3?)

(׳4)

 r * (׳5)

( (׳6

r * (׳7)

(S’)

(9 )

r - ab + a'b'f
11 12

= ab +  a'b'f 

= ab + a'b'f

X21X22

X 31x 32

r = a2c '  + ( a ' ) 2g
11 21

r_. _  = a 2d' + ( a ' ) 2g

= a2c ' d '  + ( a ' ) 2g'  

= b2c'  + ( b ' ) 2h

X21X31

xllx31

( * redundant)

x12x22

r = b 2d' + (b')2h
X22X32

r = b 2c'd' + (b')2h'
X 12x 32

As Blalock notes the following estimates obviously fall out;

r r

c ' = 32 _ abc'd' . X 11X32 _ abc'd'
r abd' 5 r abc'

xllx22X 21X32

However, one can obtain estimates of a and b, by for example subtracting (4̂ )
2

from (5} and multiplying both sides by (ab) as long as c V d ' .



The above procedure depends on the assumption that c V d ' .  If, in fact 
the two stability coefficients are nearly identical in the popula­
tion, then even though their sample counterparts may be slightly 
different, there will be very large sampling errors for the esti­
mates of the ratio a^/b^ and also for all the estimates dependent 
on this ratio. Therefore, for all practical purposes, the proce­
dure will be useful only if the stability coefficients c 1 and d' 
are very different. (Blalock, 1970: 109).

While this statement is accurate as it refers to the estimation procedure 

Blalock employed, it is somewhat misleading if it is taken to apply more gener­

ally to the estimation of "stability" coefficients in this model.

To see this, let c' = d', and rewrite the system of equations just consid­

ered:

r = ab + a'b'f = r = r (1" - 3 }t)
X11X 12 x21x 22 x31x 32

r ־־ a2c ' + (a!)2g - r (4" - 5’0
11 21 X21 31

r = a2 (c')2 +  (a’) V  (6'0
X11 31

r = b2c ' + (b')2h = r (7" - 8 ”)
X12X 22 x22x32

r = abc' ־־ r = r (10Tf - 1 3 ,?)
xllx 22 X12X 21 X22X 31

r = ab(c 2(׳ = r (14” - 15")
llx32 x12x 31

We see immediately that in this case we employ different equations to estimate 

all of the coefficients. The estimation procedes as follows:
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Subtracting equation (6!) from (4') and (9') from (7') and taking a ratio of 

these quantities gives:

r ־־ r
£  m xllx 21 x llx31 = a2 (c' - (c')2)

b 2 Txi 2 x 22 rx12x 32 b 2 c) ־ '°) ')2)

Combining the above expressions yields:

*4 xllx22 x12x 21 . xllx 21 xllx31
a = - —

r r - r
X11X 32 X12X 22 X12X 32

Given estimates of c and a, we can use equations (10' - 13') to provide esti­

mates of b, and the disturbances.

It is obvious that this method faces a restriction similar to that dis-

2 2
covered by Blalock. Our estimates of the ratio a /b will have very large sam-

2
pie variance if c' is very close to (c') , i.e. if c' is very close to unity in 

the population. Thus this method is useful only if the process is such that 

these correlations are considerably less than unity. However, in the multi­

variate applications, the "stability coefficients" will be ”partial" coeffi­

cients and thus may exceed unity. This is a frequent occurrence in the models 

with which we have worked. The implication is that the estimation method is not 

restricted to the case of "unstable" systems, i.e. those in which factors left 

out of the analysis are quite important in producing intertemporal variation in 

the variable under study. The method is applicable even when such variables are 

introduced explicitly into the analysis. The requirement is that the stability 

in the variable itself (as opposed to stability in other variables) not be so 

high as to produce almost no intertemporal variation. More concretely, if there 

are variables which produce systematic variation in the variable under study



25

over time, the estimation method should not be expected to have exceedingly 

large sampling variance.

The important point here is that the utility of any estimation method 

must be evaluated relative to the substantive model under study. A method 

which is optimal for unstable autoregression coefficients may not be optimal 

for the stable case. This conclusion is reinforced by the demonstration that 

our method of rewriting the system of equations so as to introduce the presumed 

complication does not contradict Blalock's analysis of the requirement of 

moderately low intratemporal correlations among at least two indicators in 

his discussion of the three-wave, three-indicator (single variable model).

The point of this digression is to demonstrate that if our assumptions 

are justified we can expect to estimate the coefficients of the model drawn in 

Figure 6, even if the autoregression parameters are stable over waves of ob­

servations. With this assurance we can return to that model and proceed to 

examine the consequences of the complications thought to be most troublesome 

in this type of substantive application.

The first problem is familiar. With 66 equations and only eight un­

knowns, we face a bewildering variety of estimates for many of the coefficients, 

The autoregression in economic development, b, can be estimated at least 50 

different ways. The problem is that the various estimates must surely differ 

in sampling variance. Some estimates are "direct" in the sense that they are 

given by ratios of two sample correlations. These "direct" estimates can then 

be used to solve rather more complicated systems of linear equations involving 

the quantity b. It is no simple matter to even identify all o f ‘the possible ׳way: 

to estimate, each coefficient in a model as simple as this (the complications 

arise through, for instance, the many possible paths connecting educational ra­
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tios between the last two time periods) nor to establish which estimates are 

independent. The practical problem is that the various estimators differ con­

siderably. One would normally suspect that considerable divergence in the es­

timates would suggest specificaion error in the model. However, as long as 

the sampling distributions of the estimators is unknown, such inferences do not 

have any firm support. Consequently we have continued to report composite esti­

mators which make use of some but not all of the information in the sample. We 

have made no attempt to exhaustively incorporate all of the logically possible 

independent estimates. Our estimates, then, are highly tentative as they make 

use primarily of the most "direct" methods of estimation. As we shall see be­

low, this approach if carried out in substantive analyses has some serious 

drawbacks.

Thus we proceed to estimation of the coefficients of the model in Figure

21
6 assuming for the moment that j=k=l:

a = 1.205 g = .935

b = 1.003 fi = .978

c = -.210 p = .772

e = 1.031 

f = .368
A /\

The only obvious difficulty is that e exceeds unity (and, as a consequence, f is 

small in magnitude). However, 6 is so close to unity that if we were limited 

to the estimation procedure presented as an alternative to the one suggested 

by Blalock, the estimates would be extremely responsive to sample error. The 

fact that we have three waves and six indicators results in considerably 

more ways to estimate the model coefficients. However, this may only 

serve to mask the consequences of the obvious high autoregression 

terms. We have not yet been able to assess the seriousness of any such problems
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at this time.

As before we proceed to consider the implications of several types of 

nonrandom measurement error. As noted earlier, among the most realistic non- 

random errors in cross-nation research is organizational "memory". All of the 

measures we employ are generated by national bureaucracies. It seems reasonable 

to argue that these bureaucracies tend to err in the same sorts of ways consis­

tently over time. We examine this type of complication by simplifying the argu­

ment to specify a 5-year memory and allow for correlated measurement error for 

the same indicators over five year intervals but not longer. We have restricted 

the intervals to five years to simplify the problem, however, it seems reason­

able to argue that organizational memory in this sense is "covariance station­

ary." We will continue the analysis with the last substantive model considered 

which is adapted for our present purposes and rediagrammed in Figure 8.

Figure 8 about here

Only 26 of the equations for this model are different from those in the 

previous model (Figure 7). The addition of the "memory" terms eliminates nu­

merous simple equation systems yielding estimates of b. As a result, assuming 

j=k=l, the estimate of b becomes 1.06, perhaps enough greater than unity to cast 

doubt on this particular model. There is no apparent change in the estimation 

procedures for the remaining coefficients. More precisely, every valid estimate 

for any of the remaining terms in this model is also appropriate under the speci­

fication of the model with uncorrelated measurement error terms. Since the mag­

nitudes of the correlations between measurement error terms are not obviously 

estimable, we can proceed no further without additional assumptions. The logic
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for proceeding with this model is not obvious since it fits the logical bounds 

(on magnitudes of correlation coefficients) less well than the more restrictive 

model discussed earlier.

We could engage in a completely parallel analysis of the proposition that 

the bureaucracies tend to err in the same sorts of ways in a given time period 

in reporting different national account statistics. In such a case we would 

allow different indicators of the same variable as well as indicators of differ­

ent variables measured at the same point in time to be correlated. Since we 

could not estimate the systematic error components in this case, we have 

shifted attention to other problems.

The final class of nonrandom measurement errors we consider in the context 

of this model is the systematically (proportionally) decreasing random error 

discussed in the first section. That is we relax the restriction that j=k=l 

in the model drawn in Figure 6.

By and large the estimation procedure is as above. On exception involves 

the proportionality terms for the decreasing error, j and k. In this case, we 

solve directly for these terms and then proceed as above using the estimates 

of j and k wherever such terms appear. Recall that our substatnive understand­

ings require 0<j-l and 0<k£l. Our sample estimates are

j = .991 

k = 1.090

The result for k is much like that obtained earlier for the single indicator 

educational ratio model. Clearly this particular nonrandom error hypothesis is 

not appropriate for at least this portion of the model in Figure 7. Our exam­

ination of the data strongly suggests that failure here is due to a secular

22
trend of decreasing cross-sectional ־,variance in the primary-secondary ratio. Thit
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trend reflects a type of "ceiling effect" which is enormously problematic in 

standardized models. At any rate, given the unrealistic estimate of k, there

A

is no point in proceeding to estimate terms which depend on k.

It is interesting to consider the consequences of proportionately decreas­

ing error for the remainder of the model (the economic development portion). 

Allowing for this type of nonrandom error raises the estimates of path coeffi-
A A

cients linking economic development with its indicators, g and h, from .935 to 

.994 and from .978 to .989 respectively and lowers the estimate for the auto­

regression, b, from 1.003 to .879. Both types of changes are quite encouraging 

for substantive analysis.

We had originally become interested in this type of nonrandom error be­

cause of an interest in eventually modeling substantive processes which involve 

lags of different lengths. For example, we might argue that the lag in the 

causal effect of educational expansion on economic development is twice as long 

as the lag in the reverse effect. In cases like this we should expect that over 

any time period of observation the longer lagged effects will be more seriously 

affected by random measurement error. Unless the analyst takes the decrease 

in the time-dependent magnitude of random errors into account, he is likely to 

make incorrect inferences in comparing the magnitudes of the longer lagged and 

shorter lagged effects.

An example of the type of model in which this would be problematic is 

drawn in Figure 9. Ilere the lag for the effect from educational expansion is

Figure 9 about here

two waves of observations (ten years) and the lag for the effect from economic
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development to educational expansion is one wave (five years).

The failure of our model for decreasing random error in the educational 

expansion of the model in Figure 7 rules out the possibility of estimating all 

of the coefficients in this new model. Yet, we can see some of the consequences 

of this type of error using a hypothetical value of k. If we restrict j=k=l, 

d = -.076. However, when we assume that j=k=.991, the estimate of d is in­

creased to -.220, a considerable increase. This exercise does suggest that our 

original concerns were justified and that researchers modeling processes like 

that under study here ought to attend to such nonrandom error.

The model drawn in Figure 9 illustrates one further difficulty with ad hoc 

estimation methods for complicated path models. The addition of a long-lagged 

cross-effect has only a very slight effect on ohter estimates in the model 

since the term appears in relatively few equations. This, given simple composit! 

estimates, has the consequence of minimizing the difference between a model 

tihich has such an effect and one which does not. This factor will often make 

it very difficult to choose between two such models when both are confronted 

with the same sample data.

But the more serious problem lies with the "stepwise" method of estimation 

used by us, Duncan (1972a,b), and Blalock (1970). In this procedure we first 

estimate (inserting sample estimates) those terms which appear simply as, say, 

ratios of population correlations. Then those first-order estimates are used 

to solve more complicated expression to produce "derived" estimates for addi­

tional terms. In very complicated models like those considered in this paper, 

the analyst may have to go through several steps. The difficulty is the follow­

ing. We can solve directly for b in the model in Figure 9 without tak­

ing into account the presence of the other cross-effect, d. Then we use this
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estimate of b to solve for d. However, it may be possible to solve more com­

plicated systems of equations for b and d simultaneously. Obviously the latter 

procedure would be preferable since it would more faithfully represent the 

causal structure of the model by simultaneously taking into account the presence 

of both cross-effects. We should expect that estimates produced by such a pro­

cedure will ordinarily differ from those arrived at by the procedure we used. 

This estimation problem will loom quite important in the substantive research 

which motivated this analysis.

CONCLUDING REMARKS

We will not attempt to recapitulate the series of technical results 

scattered throughout the paper. The main point is that inferences in the multi­

wave, multivariable panel are much more complicated than was generally realized. 

Results from single-variable models with measurement error are not easily 

generalized to more complicated cases. Moreover the consequences of measurement 

error are not easily generalized but depend heavily on the specific features of 

the model in which it occurs. In this sense this paper reinforces the develop­

ing consensus in sociological methodology that simple formulations of the con­

sequences of even random measurement error (e.g. attenuation) are not likely 

to be invariant across models. This new emphasis is beneficial since social 

scientists appear to have begun to rely too heavily on stock reactions to the 

presence of measurement error.

We have noted at numerous points difficulties of estimation. This type 

of work is greatly hampered by the lack of a systematic theory of identification 

and statistical inference for realistic panel models. The thrust of recent 

statements (Hauser and Goldberger, 1971, Herts, Linn and J&reskog, 1971) is to



suggest that sociologists may not have to invent such a theory but may be able 

to borrow formulations from econometrics and biometrics. Unfortunately, the 

formulations which have been applied to path models to this point are not easily 

generalizable to cases we have considered. It is clear that this sort of work 

must proceed before the causal approach to measurement error will be practically 

useful to sociologists employing panel models in substantive research.



FOOTNOTES

Considerable attention has recently been paid to the problem of merging 
cross-sectional and longitudinal designs in the econometric literature. See 
Nerlove (1971) for a clear exposition of the methodological issues involved.

2
The most important of these is that standardized coefficients remain 

stable over the time period of observation so that the addition of waves of 
observations does not add additional unknowns.

3
This is not universally true, of course. In some realistic cases, 

sociologists may have access to enough measurements and a priori restrictions 
on the model so that both types of complications may be dealt with. This has 
not been the case in our research, however.

4
This point is quite important in the substantive context, i.e. compara­

tive research, since so much quantitiative cross-national research has attempt­
ed to deal with measurement problems inductively, e.g. by employing exploratory 
factor analyses. Even exploratory factor analysis requires substantive assump­
tions at some point. The operative issue then is whether or not the assump­
tions are made explicit and justified substantively.

5
When we employ two indicators of each variable, the number of observa­

tions drops to 46 due to missing data on GNP in the earliest time period. Ob­
viously this makes the single-indicator and two-indicator models noncomparable. 
We have chosen this option to minimize the "ceiling effect" in primary school 
enrollments.

6
The difference between a cyclic process and a monotonic process in this 

respect is easily visualized by diagramming the process and then arbitrarily 
shifting the observation points along the time axis.

7
These variables have been logged to make their relationship to other 

variables linear.

8
Again, this argument involves implicit statistical inference since it 

is possible to obtain sample results that violate the restriction when it is 
satisfied in the population.

9
The k term must be less than one because the value of the total "epis- 

temic correlation" (the decreasing component k times the stable random error 
component) increases over time to a maximum value of 1. In other words, the
residual paths for the measured values (e.g. /--------— ;r\ decrease over time.

v 1 - (k e) /

1



See the discussion of identification below.

11
The issues involved in estimating over-identified path models are 

rather complex. Hauser and Goldberger (1971) have shown that for models like 
ours with all recursive "arrows" allowed by the model specification to take 
on non-zero values, the best estimator is a maximum-likelihood procedure.
Since for most of the models we use some causal connections are assumed to be 
absent, this method is apparently not appropriate (given the present state of 
our knowledge). Thus we follow Duncan's heuristic method recognizing that 
the properties of the resulting estimators have not been studied. This pro­
cedure seems justified only so long as we are concerned mainly with the gen­
eral properties of these models as distinct from precise estimates of causal 
parameters. At the point where attention focuses on estimation, we would 
suggest following Hauser and Goldberger (1971) and Jiireskog (1969).

12
Duncan (1971b) has exhaustively treated the problems of inference in 

two-wave, two-variable panel models with common factors.

13
The parameter estimates are taken from regression analyses which do 

not allow for measurement error.

14
The estimation equations for the coefficients we estimate are obvious 

from the path equations. It is possible both that more complicated estimates 
of these terms are available and that more complicated systems of equations 
yield solutions for the other terms. In the cases we investigated, this did 
not seem to be the case. Most often the systems of nonlinear equations were 
not amenable to direct algebraic solution. In the cases where we were able 
to reduce the estimation equations to quadratic, cubic or quartic equations, 
we did not obtain real roots for all of the unknown terms. Since our search 
procedures were not entirely systematic, however, we cannot assert with 
confidence that no other estimates exist. In this and what follows we refer 
to "obvious" solutions when we refer to the estimation status of parameters.

15
In fact, with these assumptions and the assumption of no measurement 

error, we can allow each autoregression and cross-effect to have a unique 
value between each two waves of observations.

16
This is the reason that the addition of waves of observations does not 

eliminate the estimation problem. This only gives rise to more complicated 
expressions relating early "independent" variables to later "dependent" 
variables.

17
The literature on "returns to education" in economics suggests that 

this assumption does not grossly violate reality at least over the time span 
we are ' considering.

10



We mentioned at the outset that sociologists are sometimes in the posi­
tion to be able to use outside information, previous research, etc. to produce 
reasonable estimates of measurement quality. Of course, the most common prac­
tice is setting the paths from variables to indicators equal to unity ־־ 
assuming perfect measurement.

19
This seemingly unreasonable standardization is, in fact, the one 

recommended by UNESCO (need citation) since the appropriate age -group is un­
clear. A superior measure which we will eventually incorporate is per pupil 
expenditures.

20
This is particularly problematic when one uses (as we do) standardized 

coefficients. In such a case the changing variances will create unstable 
(standardized) population parameters even when the slopes are invariant across 
time periods.

21
All of the coefficients but a and c are solved by the Duncan estimate 

of nine equivalent estimating expressions chosen unsystematically from the ob­
vious possibilities. The estimation of a and c requires the solution of sys­
tems of two equations in two unknowns. There are a number of equivalent sys­
tems in the same two unknowns and the method of combining the alternative solu­
tions is not obvious. Foir the lack of any better method we took the arithmetic 
mean of five sets of solutions.

22
In general when a model specification fails, the analyst assigns blame 

to specific elements with considerable risk of error. Thus in this case the 
inappropriatenesls of standardized coefficients with systematically changing 
variances may be at fault as we suggest, or the causal structure .may be 
wrong,or there may be any number of additional defects.

18

(From title page) The research reported herein was performed pursuant to 
a contract with the United States Department of Health, Education, and Welfare, 

Office of Education, and was partially supported by NSF Grant (GS-23065). John 
Boli performed many.of the computations for this research.'



Table 1

Correlation Matrix of Educational Measures

Secondary 1965Secondary 1960Secondary 1955

.391,303.212

Primary

1955

.236.149.115

Primary

1960

.123.089.066

Primary

1965



TABLE 2

SaiE SAMPLE RESULTS FOR CROSS-LAG CORRELATIONS

t+2
^  S

t+2

t+1
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t+1-־* P

k , k-1 k-j-1, j 
pp = pa + C£ o J bJ

* t ^ t + k  j=0
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P = •3 
c = .1

a=b= .8 
p = .3 
c = .1

a=b= . 

P = . 
c = .

1 .37 .34 .31
2 .42 .35 .29
3 .46 .34 .25
4 .49 .33 .21
5 .507 .30 .17
10 .49 .173 .004
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!= . 9 
= .3 
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a=b= .8 
P = .3 
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P = 
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47 .44 .41
60 .51 .43
70 .54 .40
78 .53 .34
84 .51 .29
86 .31 .08
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Table 3

Derivations of Tetrad Differences from Zero

Case (i) (ii)

.027 .084

.102 .001

.108 .016

.045 .052

.029 .086

.007 .065

.002 .087

.060 .014

.026 .012



FIGURE 1״

*Figure taken from Duncan (1969: Figure 1)
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Blalock (1970: Figure 5)
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