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ABSTRACT

Evaluation of the OpenBCI Neural Interface for Controlling a Quadrotor Simulation. (May 2015)

Alejandro Francisco Azocar
Department of Aerospace Engineering

Texas A&M University

Research Advisor: Dr. Aaron D. Ames
Department of Mechanical Engineering

This thesis presents an initial analysis on the use of electroencephalography and electromyography

to control the thrust settings of a quadrotor. The OpenBCI neural interface is used to sample muscle

activity on a subject’s face. Signal processing and event detection algorithms are implemented to

identify eyewinks, and these wink events modify the thrust commands in a high fidelity, nonlinear

quadrotor simulation. Currently only right and left wink events are detected; these can be mapped

to two quadrotor commands such as fly up and down, roll right and left, pitch up and down, or

yaw right and left. The ultimate goal of this project is to create a low-cost brain-machine interface

system to fully control a real quadrotor using only bioelectrical signals such as electroencephalog-

raphy and electromyography. A successful demonstration of the OpenBCI system may result in

brain-machine interfaces that can be used in the development of low-cost prosthetic arms and legs.
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NOMENCLATURE

ALS Amyotrophic Lateral Sclerosis

BMI Brain-machine Interface

DCM Direction-Cosine Matrix

DOF Degrees of Freedom

ECoG Electrocorticogram/Electrocorticography

EEG Electroencephalogram/Electroencephalography

EKG Electrocardiogram

EMG Electromyography

fMRI Functional Magnetic Resonance Imaging

ICMS Intracortical Microstimulation

iEEG Intracranial Electroencephalography

LFP Local Field Potential

MEA Microelectrode Array

NED North, East, Down

RPM Revolutions per Minute

SNR Signal-to-Noise Ratio

VEP Visually Evoked Potential
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CHAPTER I

INTRODUCTION

Neurological injuries and limb loss have led millions of people to suffer from mobility related

disabilities. The Christopher & Dana Reeve Foundation reports that nearly 1 in 50 Americans,

approximately 6 million total, are suffering from paralysis; the Amputee Coalition estimates that

nearly 2 million are suffering from limb loss [1, 2]. Current treatments for paralysis are generally

ineffective, and typical prostheses are not capable of giving a patient true mobile independence.

Brain-machine interface (BMI) technology, coupled with neural prostheses and exoskeletons, may

eventually restore mobility and independence in amputees and patients suffering from impaired

motor function due to spinal cord injury, strokes, cerebral palsy, and amyotrophic lateral sclerosis

(ALS) [3]. In addition to the rehabilitation potential of BMIs, this technology may also be used to

augment the lives of healthy subjects [4].

In a typical paralysis or limb loss case, the motor cortex in the brain is still healthy and able com-

mand movement; however, movement is not accomplished due to a disconnect between the nervous

system and the body’s effectors. BMIs are capable of bypassing this disconnect by recording the

user’s brain activity, predicting the user’s intent from the brain signals, and sending commands to

computers, robotic prostheses, and exoskeletons [4]. This process is usually a closed system, tak-

ing advantage of visual feedback as shown in Figure I.1. In the past, BMIs have been successfully

used to type with a virtual keyboard and control wheelchairs; however, there are many challenges

to solve before the ultimate goal of accurately controlling robotic arms, legs, and exoskeletons can

be accomplished.
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Fig. I.1. Component overview of a simple BMI.

Elements of a Brain-machine Interface

There are four major tasks that a BMI should be able to accomplish: BMIs must interface with

the brain for real-time recording, extract and interpret noisy brain signals, command the signals to

various kinds of actuators, and supply some form of feedback to the user. Each of these tasks is

explored in more detail in the following sections.

Neuronal Recording

Obtaining neural signals requires a trade-off between resolution and level of invasiveness. The

fundamental unit of neuronal activity in an individual neuron is the action potential discharge; the

sum of the individual discharges creates an electrical field called a local field potential (LFP) [5].

To record single-unit activity, an electrode must be implanted in the brain. In order to accurately

characterize the motor intentions of the brain, and to offer redundancy in control, multi-neuron

recordings are necessary [6]. Microelectrode arrays (MEAs) offer this increased accuracy at the

cost of invasive implants. On the opposite end of the spectrum is the electroencephalogram (EEG),

which is non-invasively attached to the scalp. Electroencephalography (EEG) integrates the ac-

tivity of neurons over a much larger area than MEAs do; as a result, EEG signals exhibit much

lower resolution. Electrocorticography (ECoG), or intracranial EEG (iEEG), offers a compromise

between MEAs and EEG. Since electrocorticograms (ECoGs) are placed directly on the surface

of the brain, they measure signals at a higher resolution than EEG does; at the same time, they
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are less invasive than MEAs because they do not penetrate the blood-brain barrier [7]. Figure I.2

shows examples and the progression between EEG, ECoG, and MEAs.

Fig. I.2. Resolution and invasiveness comparison of neuronal signal recording methods.

Other advantages and disadvantages of invasive and non-invasive BMIs are further discussed in the

following sections.

Invasive BMIs

Although invasive BMIs are out of the scope of this work, they are worth discussing due to the

opportunities and challenges presented by their implementation in BMIs. Due to their high reso-

lution, MEAs are the only current method that can decode the subject’s intended limb movements

with high accuracy and reliability [4]. Both invasive and non-invasive methods have traditionally

relied on visual feedback to close the loop; however, MEAs are capable of bi-directional data

flow. This is currently being explored through intracortical microstimulation (ICMS)- stimulation
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of neurons via small electrical currents [4]. ICMS can be used reduce the time needed to learn

new tasks with a neuroprosthesis, increase the accuracy of such tasks, artificially convey a sense of

touch, and provide the brain with knowledge of the prosthesis’ relative location to the rest of the

body (proprioception). ICMS will allow neuroprostheses to feel like natural appendages instead of

artificial actuators.

The biggest challenge faced by invasive BMIs is achieving stable, long-term recordings (over many

years) of thousands of neurons from multiple areas in the brain [3]. Since a foreign object is

inserted into the brain, the body reacts by creating a layer of scar tissue around the MEAs; over

time this results in deterioration of the signal-to-noise ratio (SNR) of the electrodes [4]. Another

challenge faced by invasive techniques is reliable, high-speed, wireless data transmission between

the electrodes and a computer [3]. Both of these challenges must be addressed before invasive

methods become robust enough to be used outside of research settings.

Non-invasive BMIs

The research presented in this thesis uses a combination of EEG and facial electromyography

(EMG); therefore, we will focus on the many aspects of non-invasive BMIs. The clear advantage

of non-invasive BMIs is that patients avoid the risks of brain surgery and the biocompatibility chal-

lenges that result from implanted MEAs. Unlike MEAs that measure neurons in specific locations,

EEGs interpret a subject’s intentions through the overall electrical activity of an enormous amount

of neurons. As a result, EEG is typically used to detect brain activity related to visual stimuli, gaze

angle, voluntary intentions, and cognitive states [3]. A particularly effective example of visual

stimuli for brain activity modulation is the use of visually evoked potentials (VEP), or changes in

the brain signals that occur when subjects looks at particular items on a screen [3].

A significant challenge for EEG-based BMIs is the amount of time required to train subjects to

control their own brain activity [4]. Visual feedback from the actuator is essential for effective

training; this provides an avenue for the implementation of virtual reality systems in BMIs in order

to reduce training time [3]. A critical requirement for BMIs is the ability to control actuators

while simultaneously performing unrelated tasks; with the proper training, some subjects have
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successfully controlled BMIs while speaking [4]. Since EEGs are placed on the scalp, they are

subject to interference from muscular and ocular movements, as well as other electromagnetic

effects [3]. Finally, most EEG electrodes require a conductive gel in order to function; this gel

takes a significant amount of time to apply, limits the amount of sensors capable of being placed

on the scalp, and eventually dries out [8]. This is a small challenge, but may limit recording time in

longer tests. Dry-contact electrodes are under development, but are generally even lower resolution

than typical electrodes.

Other non-invasive recording techniques have also been explored, including the detection of mag-

netic fields produced by ionic current flows and detection of changes in blood flow via functional

magnetic resonance imaging (fMRI) [5]. A major drawback to using these systems, particularly

fMRI, is the lack of mobility resulting from large, bulky hardware. EMG, recording the electri-

cal signals produced by muscle contractions, has also been shown to control bionic legs and arms

[9, 10].

Signal Extraction and Control Algorithms

The nature of signals corresponding to motor activity is not yet fully understood; however, the

successful design of BMIs does not rely on exact knowledge of the motor activity in the brain

[3]. The standard operating concept in the field is to repeatedly perform a specific task, construct

a neural model for that task, and identify the neuronal characteristics associated with the task

[5]. The recurring patterns resulting from motor tasks have been successfully analyzed using

linear regressions and the Unscented Kalman Filter, among others [6]. The quantity and quality of

data available depends on the recording method, bandwidth, frequency, and SNR. Specific signal

processing techniques used in this project are discussed in more detail in the subsequent chapters.

Although non-invasive systems have traditionally been regarded as insufficient to control pros-

theses with multiple degrees of freedom (DOF), advances in electrodes and control systems are

making this a more feasible option. Sharing control of a BMI between a subject’s brain activ-

ity and automatic controllers eases the burden on the subject when attempting to control multiple

DOF prostheses. In shared BMI control, the brain is in charge of high-order motor control, such
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as deciding where to move and initiating movement, whereas a robotic controller directs low-level

motor functions, such as accuracy, machine learning, and stability [6]. A continuing challenge in

shared BMI control is the development of computationally efficient algorithms.

Neural Prostheses and Interfaces

A variety of neural interfaces have been developed. The signals from the brain can be used to com-

mand simple, low DOF computer programs and complex, high DOF robotic prostheses. Neurally

controlled computer keyboards and internet browsers have allowed some subjects to communicate

with the outside world and brain controlled wheelchairs have restored a certain amount of mobility

in paralyzed patients and amputees [4]. These solutions have made significant improvements in

the lives of patients; however, there is still much more that can be done.

The current goal for BMIs is to create robust, high DOF, prosthetic arms, legs, and exoskeletons for

amputees and paralyzed patients. This is much more challenging, because such neuroprostheses

require a much higher rate of information flow and more advanced control systems [5]. It is

important to be able to create a variety of neuroprostheses; paraplegic patients choose walking and

trunk stability among the most desired motor functions whereas quadriplegic patients prioritize arm

and hand function [6]. Although the main ideas behind upper limb, lower limb, and whole-body

prostheses are all similar, they face different challenges. Lower limb and whole-body systems have

to account for postural control, while prosthetic arms are generally concerned with high dexterity.

Sensory Feedback

Sensor and actuator systems inherently build up errors in measurement and in commanding out-

puts; therefore, feedback must be introduced into the system in order to ensure robust performance.

Visual feedback is currently the most common form of feedback used in BMI applications [5].

While visual feedback is suitable in a laboratory setting, visual stimuli will not always be avail-

able in real-world settings. In a healthy body, tactile and proprioceptive signals provide crucial

information about one’s limbs. A possible solution is to mount pressure and vibration sensors on

prostheses and use haptic interfaces to transmit the sensed values via direct vibrations on the body
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[3]. While visual and haptic feedback may help to reduce errors in the system, they do not solve a

larger, more abstract problem.

Ideally, a prosthesis should feel like a natural extension of the human body instead of an arti-

ficial limb. In order for this to occur, both tactile and proprioceptive information must be sent

directly to the brain. Neuroplasticty and ICMS are areas of research that hold promise for sen-

sory feedback [4]. Neuroplasticity allows for modification to the neural circuits, or cortical motor

maps, associated with a given task. In addition to modifying the biological components of a BMI,

machine-learning techniques may also be used to modify and improve the control systems used

to control the neuroprostheses [5]. Neuroprostheses with advanced sensory feedback technology

will incorporate an artificial sense of touch and position through the bionic limb. This will allow

patients to reach a subconscious level of control over the prostheses, a crucial step towards the

body’s acceptance of a foreign actuator [3].

Brain-machine Interface Challenges

The development of effective BMIs is clearly an interdisciplinary subject, requiring expertise in

design, electromechanics, computer science, neuroscience, biology, and chemistry. Due to the in-

terdisciplinary nature of BMI, several challenges will have to be overcome before BMIs are robust

and safe enough for daily use beyond the lab. Some of the major challenges include: creating im-

plantable and biocompatible recording devices, increasing the number of neurons to record from,

improving real-time signal processing and control algorithms, integrating accurate sensory feed-

back into the system, and building more advanced neuroprostheses.

Overview

The ultimate goal of this project is to create a quadrotor which can be flown by a human using

only his or her thoughts. In order to achieve this goal, a reliable BMI system must be developed.

The recently developed OpenBCI system was selected as data recording system for it’s low cost

and open-source capabilities. Before OpenBCI can be safely used with a real quadrotor, it must be

tested with a quadrotor simulation.
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This thesis presents preliminary work towards achieving this goal. The OpenBCI system was used

in conjunction with a Python signal processing program to detect a user’s right and left eyewinks.

The eyewinks were used to send the quadrotor different voltage commands. These voltages trans-

late to different thrust values, which allow the simulated quadrotor to take flight.

Chapter II focuses on the OpenBCI system and the signal processing algorithms. Chapter III goes

into details about the development of a high-fidelity quadrotor simulation. This chapter includes

derivations of the equations of motion, voltage-thrust relationships, gyroscopic effects, and simula-

tion verification. Chapter IV highlights some of the results of integrating the OpenBCI system, the

Python signal processing code, and the MATLAB quadrotor simulation. Chapter V discusses fu-

ture improvements to this work, and the next steps required to control a real quadrotor by thoughts

alone.
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CHAPTER II

SIGNAL EXTRACTION

Essential to successful BMIs are the signal processing algorithms. This chapter details the first two

elements of the BMI under development: the recording system and signal processing techniques

used to extract meaningful data from the raw signal.

Data Acquisition Technology

The EMG signals are acquired using gold-cup, passive electrodes connected to the 32-bit OpenBCI

board; this is a chipKIT-compatible, 8-channel neural interface with a 32-bit processor which

implements the Microchip PIC32MX250F128B microcontroller. The board communicates with

a computer via a Bluetooth enabled USB dongle, which is based on the RFDuino radio module.

Ten20 conductive paste is applied to the electrodes in order to adhere them to the body while also

improving the signal quality. The OpenBCI board and electrodes are seen in Figure II.1 [11].

(a) OpenBCI board. (b) Electrodes and paste.

Fig. II.1. 32-bit OpenBCI board and electrodes. The USB dongle is not shown.

The OpenBCI board and electrodes were selected as the data acquisition devices due to their low

cost and open-source capabilities. The board can be used to as an EEG, EMG, and an electrocar-

diogram (EKG).
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The board records raw data in “counts”. In order to convert from counts to volts, a scale factor, SF

must be used. The scale factor is dependent on the gain of the amplifier, G. For the sample data,

the maximum gain of 24 was used, which results in a scale factor of 0.02235 microvolts per count.

The scale factor varies with gain as shown below.

SF =
4.5

(223 − 1)G
(II.1)

Signal Processing

In order to capture eyewinks with EMG, electrodes are placed on both the right and left temporal

muscles, near the eyeballs. This is seen in Figure II.2 [12].

Fig. II.2. EMG electrode location is marked by the darkened circle. Located near
left eye, below the F7 node. Opposite electrode located near right eye, below the
F8 node (adapted from Klem et al.).

In addition to the two recording electrodes, ground and bias electrodes are attached to the two ear

lobes, where minimal electrical activity is present. The OpenBCI board streams the EMG data

to a computer via bluetooth and a Python program performs real-time signal processing and wink

detection.
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Signal Filtering

The OpenBCI board attenuates most of the 60 Hz electrical noise resulting from the alternat-

ing current in the power supply; therefore, the real-time signal processing in Python focuses on

extracting information from the desired frequency bands. As with any biosignal recording instru-

ment, OpenBCI suffers from baseline wander; this drift contaminates the lower frequencies of the

data and makes it difficult to extract meaningful information. To remove baseline wander, a 0.5 Hz

high-pass filter is applied using a digital biquadratic filter.

K = tan(ωcπ) (II.2)

Z =
1

1 +K/Q+K2
(II.3)

a0 = Z (II.4)

a1 = −2a0 (II.5)

a2 = a0 (II.6)

b1 = 2(K2 − 1)Z (II.7)

b2 = (1−K/Q+K2)Z (II.8)

Where ωc is the cutoff frequency (normalized by sampling rate), Q is the quality factor, and ax,

bx are the filter coefficients. Each sample detected by OpenBCI is filtered in real-time using these

coefficients.

sf = sra0 + z1 (II.9)

z1 = sra1 + z2 − b1sf (II.10)

z2 = sra2 − b2sf (II.11)

Where sr is the raw sample, sf is the filtered sample, and zx are intermediate filter variables.

Figure II.3 shows data obtained from the right temporal muscle.
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Fig. II.3. Comparison of signal before and after applying biquadratic filter. The
eye is closed at 4 s, opened at 8 s, and winked at 20 and 24 s.

The raw signal shows significant baseline wander; this wander continues to increase over time. In

addition to baseline wander, the raw signal does not accurately capture the complete act of closing

and opening the eye during a wink. On the other hand, the filtered signal is centered around 0 µV,

removing the baseline wander. In addition, the entire winking action can be identified. The large

initial pulse seen at 4 s corresponds to the subject closing his right eye, whereas the smaller pulse

at 8 s corresponds to the subject opening his eye again. Similar close actions can be identified at

20 s and 24 s whereas the corresponding open actions occur at 22 s and 26 s.

Wink Detection Logic

As Figure II.3 shows, the act of closing or winking an eye results in a significant amplitude change.

In order to detect a wink in real-time, the following algorithm is used, where i is the sample number.

The OpenBCI board detects 250 samples per second.
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Fig. II.4. Wink detection algorithm.

Part A of the algorithm simply detects when the signal is above or below a certain threshold, in this

case the threshold is ±500 µV. The TRUE instances can be seen in Figure II.5, as a black x. Part

B is invoked every half second and assigns a trigger variable to the current sample if at least 50

samples have exceeded the threshold in that time span. At this point in the algorithm, the trigger

variable may be invoked more than once by a single winking action, if the initial pulse is large

and long enough. Part C ensures that there is only a single trigger per wink by setting the trigger

variable to FALSE if there is already a TRUE value within the last 2 seconds. The final trigger can

be seen in Figure II.5, as a red dot. The drawback to using this method is that a wink performed

within 2 seconds of a previous wink will not be recognized.

Many improvements are planned for this algorithm. The ±500 µV threshold works for the subject

in the experiment; however, that threshold may not always be correct for different subjects. In order
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Fig. II.5. Results of the wink detection algorithm. Samples above/below the
threshold are represented by a black x. The final wink trigger is shown as a red
dot.

to make this algorithm robust, the threshold must be calculated for each subject automatically.

This will be accomplished by analyzing the signal during a baseline period, in which the subject

is staring straight forward without blinking. The winks can then be detected by comparing the

waveform to the baseline signal. Another future improvement is to identify winks by detecting the

peaks in the pulses, not just points above a threshold. Advanced debouncing techniques will also

be implemented in order to eliminate the 2-second window in between possible detections.
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CHAPTER III

QUADROTOR SIMULATION

This chapter details the third element of the BMI under development: the device being controlled

by the neural signals. An open-loop quadrotor simulation was developed; the simulation takes four

voltage values as input in order to fly a mathematical model of a real quadrotor.

A quadrotor is a rotorcraft with two sets of fixed-pitch propellers which are connected via four

arms. Changes to the input voltage of each rotor lead to changes in the thrust provided by the

rotor. A top view of the quadrotor is seen in Figure III.1. In order to balance the torques created

by the individual rotors, the odd-numbered rotors rotate clockwise, whereas the even-numbered

rotors rotate counter-clockwise.

Fig. III.1. Quadrotor top view. The arrows represent the angular velocity vector of each rotor.

Table III.1 presents critical mass properties of the quadrotor. The arm length l, is used to calculate

the moments due to rotor thrust. The moments of inertia IXX , IY Y , and IZZ are used in deriving the

rotational equations of motion, and the rotor moment of inertia Jr, is used to calculate gyroscopic

effects.
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Table III.1
Quadrotor mass properties and dimensional characteristics.

Parameter Value
Mass, kg 0.5

Arm Length, m 0.2
IXX , kg-m2 7.5 x 10−3

IY Y , kg-m2 7.5 x 10−3

IZZ , kg-m2 1.3 x 10−2

IXY , kg-m2 0
IXZ , kg-m2 0
IY Z , kg-m2 0
Jr, kg-m2 6.5 x 10−5

Simulation Structure

The MATLAB simulation is based on a pre-developed aircraft simulation [13]. It is divided into

a main script file and two supporting functions. The executive script, quadrotor.m, calls the

supporting functions. The initial state vector and control vector are defined here as well. The state

vector consists of body-axis velocities, body-axis rates, Euler angles, and inertial positions. The

control vector consists of the input voltages for each rotor.MATLAB’s ode45.m integrates the

equations of motion and returns important state information that can be plotted.

The primary supporting function, eqOfMotion.m, contains the twelve equations of motion and

returns the state visualization history. These equations are discussed later. This function also

changes the rotor voltages at the specified times. The direction-cosine matrix (DCM), which is

shown in Eq. (III.1), is contained in DCM.m. This function contains the matrix that relates vectors

in the body frame to the inertial, earth-fixed frame.

Deriving the Equations of Motion

Assumptions

The quadrotor model is treated as a rigid body of constant mass. All internal forces are assumed

to be in equilibrium; therefore, aeroelasticity effects are ignored. As can be shown by the products
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of inertia in Table III.1, the quadrotor is symmetric about the XZ and Y Z planes. The Flat Earth

model is used, Earth is treated as inertially fixed in space, and the gravitational field is uniform and

constant with altitude.

Propulsive forces and gravity are the source of the forces and moments acting on the quadrotor.

Gyroscopic effects due to the rotors are included in the analysis. The quadrotor body frame follows

the usual convention of North, East, Down (NED).

Orientation

In order to describe the motion of the quadrotor in terms of the inertial frame N , where Newton’s

laws of motion are valid, a relationship must be found between the quadrotor body frame B, and

the inertial frame. The inertial reference frame can be rotated to coincide with the body frame

using three rotation, or Euler, angles. First, the inertial frame is rotated about the n̂3 axis. This

angle of rotation is defined as yaw ψ. This new reference frame is denoted by A. A rotation about

the â2 axis, or pitch θ, follows and this reference frame is C. Finally, a rotation about the ĉ1 axis,

or roll φ, occurs. After rotating the inertial frame in this order, it will coincide with the body frame

B. These Euler rotations are shown in Fig. III.2.

Fig. III.2. Euler rotations from inertial frame to body frame.
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The DCM can be computed by multiplying the individual rotation matrices.


b̂1

b̂1

b̂3

 =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




cosψ sinψ 0

− sinψ cosψ 0

0 0 1




n̂1

n̂1

n̂3




b̂1

b̂1

b̂3

 =


cos θ cosψ cos θ sinψ − sin θ

sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ

cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ




n̂1

n̂1

n̂3


(III.1)

The DCM describes the body frame in terms of the inertial frame and is shown in Eq. (III.1). Since

this is an orthogonal matrix, the transpose of the DCM is also its inverse. Therefore, in order to

represent the inertial frame in terms of the body frame, the rotation matrix is simply transposed.

Equations of Motion

In order to derive the equations of motion, the body velocity vector VB, and angular velocity vector

ω, must be defined.

VB = ub̂1 + vb̂3 + wb̂3 (III.2)

ω = pb̂1 + qb̂2 + rb̂3 (III.3)

The translational equations of motion in the body frame are:

u̇ = rv − qw +
FX

m
− g sin θ (III.4)

v̇ = pw − ru+
FY

m
+ g cos θ sinφ (III.5)

ẇ = qu− pv +
FZ

m
+ g cos θ cosφ (III.6)
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where FX , FY , and FZ are the forces acting on the quadrotor. Since the only force acting on the

quadrotor is thrust, FX and FY are zero. FZ is negative of the sum of thrust for all four rotors.

The rotational equations of motion in the body frame are:


ṗ

q̇

ṙ

 =


IXX 0 0

0 IY Y 0

0 0 IZZ


−1 

L− qr(IZZ − IY Y )

M − rp(IXX − IZZ)

N − pq(IY Y − IXX)

 (III.7)

where L, M , and N are the rolling moment, pitching moment, and yawing moment, respectively.

The angular velocity components can be expressed using the rotational kinematic equations, which

relate Euler angular rates to body-axis angular rates:

φ̇ = p+ tan θ(q sinφ+ r cosφ) (III.8)

θ̇ = q cosφ− r sinφ (III.9)

ψ̇ = sec θ(q sinφ+ r cosφ) (III.10)

Equations (III.8)-(III.10) describe the time rate of change of the quadrotor attitude. These calcula-

tions are necessary in order to solve the translational equations of motion.

In order to describe the location of the quadrotor in the inertial frame, the transpose of Eq. (III.1)

is needed. The inertial velocity vector VN, must also be defined:

VN = Ẋn̂1 + Ẏ n̂2 + ḣn̂3 (III.11)

Using these two relationships, the inertial velocities are found in terms of the body velocities:
Ẋ

Ẏ

ḣ

 =


cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ

cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ

sin θ − sinφ cos θ − cosφ cos θ



u

v

w


(III.12)
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Equations (III.4)-(III.10) and (III.12) are the twelve nonlinear equations of motion for the simu-

lation. These equation are heavily coupled, nonlinear, ordinary differential equations which are

extremely difficult to solve analytically. Instead, these equations are integrated and solved using

ode45.m in MATLAB in order to describe the position and orientation of the quadrotor through-

out time.

Voltage Model

As the voltage, V , supplied to each rotor is varied, the revolutions per minute (RPM) of the rotors

change. Voltage is positively correlated with both rotor RPM and thrust. Rotationally induced drag

on the rotors is also dependent on the input voltage. Applying these relations to the equations of

motion, the quadrotor can be controlled solely by varying the input voltage between 0 V and 4 V.

The relationship between rotor angular velocity, Ω, and input voltage is given by:

Ω = 625V 2 (III.13)

The relationship between rotor thrust, T , and rotor angular velocity is:

T = 4.905× 10−8Ω2 (III.14)

The relationship between rotor drag, Dr, and rotor angular velocity is:

Dr = 9.81× 10−10Ω2 (III.15)

The voltage relations from Equations (III.13)-(III.15) are shown in Fig. III.3.
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Fig. III.3. Relationships between rotor angular velocity and voltage (a), rotor
thrust and angular velocity (b), and rotor drag and angular velocity (c).

Gyroscopic Effects

There are several different gyroscopic and actuator actions that produce moments on the quadrotor.

The first is the body gyroscopic effect, BGE. The cross-product of body angular rates results in a

net gyroscopic effect. Eqs. (III.16) show the relationship between the body rates and the BGE.
BGEX

BGEY

BGEZ

 =


θ̇φ̇(IY Y − IZZ)

φ̇ψ̇(IZZ − IXX)

θ̇φ̇(IXX − IY Y )

 (III.16)

Note that the BGEZ is zero since IXX and IY Y are of equal magnitude.

Each rotor rotates about its own axis of rotation, creating moments about all three body axes of the

quadrotor. The moments produced in the body X and Y axes are due to the propeller-gyroscope

effect, PGE. The propeller-gyroscope effect is neglected in the Z-body axis since the counter-

torque imbalance (explained later) is far more influential.
PGEX

PGEY

PGEZ

 =


Jrθ̇Ωr

Jrφ̇Ωr

0

 (III.17)
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Where Jr is the rotor moment of inertia about its axis of rotation. Note that this equation is the

PGE for a single rotor. Ultimately, all four PGEs are added together, resulting in the net PGE.

The counter-clockwise rotation of rotors 2 and 4 is accounted for by assigning them negative

angular velocities.

The counter-torque imbalance, CTI , causes the quadrotor to yaw. The CTI is caused by drag on

the rotor. The result is a drag moment that translates to the entire quadrotor. As Eqs. (III.13)-

(III.15) show, the drag moment on each rotor is quadratically proportional to its angular velocity.

As a rotor rotates in a particular direction, the quadrotor will have a tendency to rotate in the

opposite direction.

CTI = (−1)i
4∑

i=1

Drib̂3 (III.18)

The roll and pitch actuator action moments, AA, are the main sources of rolling and pitching

moment. Increasing the voltage on one of the rotors will result in a moment, which is the cross-

product of l and Ti. 
AAX

AAY

AAZ

 =


l(T4 − T2)

l(T1 − T3)

0

 (III.19)

The summation of Eqs. (III.16)-(III.19) results in the rolling, pitching, and yawing moments on

the quadrotor, which are applied in Eqs. (III.7).
L

M

N

 =


BGEX + PGEX + AAX

BGEY + PGEY + AAY

CTI

 (III.20)

Model Verification

The 0th second model verification depicted in Table III.2 is a unique method of verifying known,

hand-calculated values against the values that MATLAB is producing during the simulation. Mul-

tiple voltage values are shown against the different responses; these responses are then compared
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to the expected physical response. For example, if no voltage (no thrust) is provided, one would

expect the acceleration in the Z-direction to match gravitational acceleration. That is exactly the

case in the first row. Using the 0th second model verification technique, the certainty of MATLAB

performing the calculations correctly and the code working as expected can be assured.

Table III.2
0th second model verification in the body frame (voltage input vs. response).

V1 V2 V3 V4 u̇ v̇ ẇ ṗ q̇ ṙ
0 0 0 0 0 0 9.81 0 0 0

2.8284 2.8284 2.8284 2.8284 0 0 0 0 0 0
2.8284 0 2.8284 0 0 0 4.9050 0 0 -3.7731

0 2.8284 0 2.8284 0 0 4.9050 0 0 3.7731
3 3 3 3 0 0 -2.6058 0 0 0

3.5 3.5 3.5 3.5 0 0 -13.192 0 0 0
1 1 1 1 0 0 9.6567 0 0 0

2.80634 2.85 2.80634 2.85 0 0 0 0 0 0.2329
2.6183 2.6183 3 3 0 0 0 17.373 -17.373 0

3 3 2.6183 2.6183 0 0 0 -17.373 17.373 0

Table III.2 shows many expected outcomes from the quadrotor. The first row shows that when

zero voltage is supplied to the quadrotor, the vehicles falls with the acceleration of gravity. The

second row shows that when each rotor receives 2.8284 V, the vehicle hovers in place without any

acceleration. The third and fourth row show that when two rotors receive 2.8284 V, the vehicle

falls with half the acceleration of gravity. In addition to falling, a yawing motion is caused by

the counter-torque imbalances. The final two rows show a set of voltage values that cause the

quadrotor to hover in place while rolling and pitching; this effect is caused by the actuator action

moments.

This quadrotor simulation serves as an excellent starting point to test different control systems,

including BMI systems. The simulation is currently still open-loop, which means that there is no

feedback supplied to the system. Each quadrotor motion (such as initiating motion, maintaining a

current state, or deceleration) must be manually controlled by the user. In the future, a controller

will be integrated in order to reduce the workload of the user.
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CHAPTER IV

OPENBCI TESTING

Experimental Setup

In the experiment, which was approved by the Texas A&M Institutional Review Board, the subject

closed and winked his eyes in an arbitrary pattern. The test took place in an engineering laboratory,

as opposed to a Faraday cage. A Faraday cage was not used because relying on a cage to reduce

electromagnetic interference is not practical in a mobile BMI system. Electrodes were attached to

the temporal muscles, as previously mentioned; channel 1 corresponds to the right side whereas

channel 2 corresponds to the left side.

The OpenBCI system recorded and transmitted the biosignal to a computer at 250 Hz while a

Python program filtered the signal in real-time. The program also performed wink detection at a

half second delay. Once the experiment finished, a file with a time history of the detected right and

left winks was generated.

The MATLAB quadrotor simulation uses the time history file to determine the voltages to apply to

each rotor. For example, a right wink corresponds to a temporary increase in voltage (increase in

thrust) in order to ascend for a few seconds, and then return to a hover. Similarly, a left wink cor-

responds to a temporary decrease in voltage (decrease in thrust) in order to descend and eventually

return to a hover. The simulation always commands the quadrotor to ascend at t = 0 in case the

user decides to descend (left wink) first.

Results

Figures IV.1 and IV.2 show the results of the test. As stated before, the quadrotor simulation

commands an ascent followed by a hover command at the start of the simulation. At approximately

4 s the user closes his right eye, causing the quadrotor to ascend and subsequently return to a hover.

At approximately 12 s the user closes his left eye, causing the quadrotor to descend. Finally, at

20 s and 24 s the user winks his right eye, leading to two more ascents. Although only ascent and
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descent maneuvers are shown here, the same time history file could be used for other maneuvers

such as roll right and left, pitch up and down, or yaw right and left.

Fig. IV.1. Right eye (a) and left eye (b) signals, and resulting velocity (c) and
altitude (d) change. The vertical lines represent when a wink is detected.

The detected winks can be identified by the vertical bars in the figures. Note that the accelerate

up, accelerate down, and hover commands are generated by individual quadrotor voltages of 2.85

V, 2.807 V, and 2.82843 V, respectively. The quadrotor velocities that are generated from these

voltage commands and result in an altitude change can be seen in Figure IV.1 (d). Note that using

the NED reference frame, a negative velocity is actually an ascent velocity whereas a positive

velocity is a descent velocity.

Figure IV.2 shows that the OpenBCI system, along with the Python algorithm is able to success-

fully command the vertical motion of a simulated quadrotor. Further work will involve increasing
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the amount of motions detected. One way to do this is to add recognition of double and triple wink

sequences.

Fig. IV.2. Quadrotor altitude throughout the experiment.

Since the simulation is still open-loop, the ascent maneuver requires the simulation to generate an

increase in voltage above the hover voltage in order to accelerate, a decrease in voltage below the

hover voltage in order to decelerate (1.5 s later), and finally a return to the hover voltage once the

vertical velocity is zero again (3.04 s later). Similarly, the descent maneuver requires a decrease

in voltage, followed by an increase in voltage (1.5 s later), and finally a return to the hover voltage

(2.95 s later).
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CHAPTER V

CONCLUSIONS

This thesis outlined the early stages of developing a low-cost BMI system, which integrates EEG

and EMG to control a quadrotor. The OpenBCI system was used to record neuromuscular activity

when winking the eyes. Real-time signal processing and wink detection algorithms were developed

in Python and integrated with the OpenBCI board. An open-loop quadrotor simulation was created

for testing. This simulation is a physically accurate model of a quadrotor, which will eventually

be built to fly in real life. The experimental results showed that it is possible to control at least the

ascent and descent motion of a quadrotor using winks only.

Future Work

Various improvements to the system are currently underway. The quadrotor simulation will be

ported to Python in order to integrate it with the Python signal processing and wink detection

algorithms. This will result in a truly real-time BMI system, because the quadrotor simulation will

be running alongside the OpenBCI signal detection, instead of afterwards. Feedback will be added

to the simulation in order to close the loop and increase the controllability of the quadrotor. Real-

time control using OpenBCI has been conducted successfully in the lab; the same experiment was

conducted with the Aldebaran Nao robot in which right and left winks corresponded to walking

right and left, respectively.

Peak detection algorithms will be used alongside advanced debouncing techniques in order to

eliminate the 2-second window in between possible wink detections. In addition, the program will

check for winks more often than every half second. This will increase the number of available

commands by allowing subjects to take advantage of single, double, or even triple winks.

An alternative BMI setup that is currently planned will use VEP in addition to winks. VEPs can be

recording by placing electrodes on the scalp along the occipital lobe. If a subject concentrates on a

screen which is flashing at a particularly frequency, the waveforms picked up around the occipital
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lobe will match that frequency. A subject concentrating on a screen sectioned into four different

flashing frequencies can choose a particular frequency based on the desired action. Combining this

with the basic wink commands, a four-frequency screen can result in 8 different commands.

The ultimate goal is to attach electrodes to the motor cortex in order to send commands by thought

alone. As mentioned before, this training may take months to complete, so this goal is much more

challenging. Once pure thought can be demonstrated to be robust enough to control the simulation,

it will be tested on a real quadrotor.

Although the OpenBCI system is being used to control a quadrotor, the success of this project has

much larger implications. If successful, OpenBCI can be used to create low-cost EMG and EEG

controlled prostheses. This will be particularly useful for child amputees. Since children’s bodies

grow so quickly, it is not feasible to constantly purchase new expensive prostheses. OpenBCI could

be used in conjunction with 3D printing to create custom neurally controlled prostheses that may

be modified as the child grows. As a low-cost BMI, OpenBCI has the potential to revolutionize the

prostheses industry.
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