
 
 

MULTI-ROBOT PATROL VIA THE METROPOLIS- 

HASTINGS ALGORITHM 

 

 

An Undergraduate Research Scholars Thesis 

by 

MATTHEW RYAN EDWARDS 

 

 

Submitted to Honors and Undergraduate Research 

Texas A&M University 

in partial fulfillment of the requirements for the designation as an 

 

 

UNDERGRADUATE RESEARCH SCHOLAR 

 

 

Approved by 

Research Advisor:       Dr. Dylan Shell 

 

 

May 2015 

   

Major: Computer Science 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Texas A&amp;M Repository

https://core.ac.uk/display/79650348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

TABLE OF CONTENTS 

Page 

ABSTRACT .................................................................................................................................. 1 

CHAPTER 

 I INTRODUCTION ................................................................................................ 2 

            Objectives ............................................................................................................. 3 

 

 II METHODOLOGY ............................................................................................... 5 

            Patrolling Setting .................................................................................................. 5 

            Patrolling Policy Generation ................................................................................. 7 

 

 III RESULTS ........................................................................................................... 11 

 Simulation Setting ............................................................................................... 12 

 Results ................................................................................................................. 12 

 

 IV CONCLUSIONS................................................................................................. 15 

 

REFERENCES ........................................................................................................................... 16 

APPENDIX A ............................................................................................................................. 17 

APPENDIX B ............................................................................................................................. 19 



1 
 

ABSTRACT 

Multi-robot Patrol via the Metropolis-Hastings Algorithm. (May 2015) 

 

Matthew Ryan Edwards 

Department of Computer Science 

Texas A&M University 

 

Research Advisor: Dr. Dylan Shell 

Department of Computer Science 

 

The problem of multi-robot patrol is a growing field of study that focuses on the problem of 

coordinating teams of robots to optimally patrol a perimeter or area. In this paper, we propose a 

new method of generating patrolling policies in the form of Markov chains via the Metropolis-

Hastings algorithm. Our proposed method generates non-deterministic patrolling policies with 

the purpose of minimizing the probability of adversarial attack to a given area. We compare our 

method to a wide variety of approaches to patrolling methods on a large set of graphs in order to 

test the effectiveness of Markov chains as a patrolling policy. 
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CHAPTER I 

INTRODUCTION 

 

To patrol is defined as the activity of going around or through an area at regular intervals for 

security purposes. In this context, patrolling should be performed by a team of robots. Multi-

robot patrolling is a field of study which has been growing throughout the last decade [2, 3, 5]. 

Within this problem, researchers are searching for ways to optimally patrol an area or perimeter 

based on various factors including communication and coordination, environmental settings, and 

the presence of an adversary, in order to protect a designated area or set of valuable items. 

 

Chevaleyre presents a paper that contains a theoretical analysis of the multi-robot patrolling 

problem [3]. The strategies analyzed fall into one of two categories: cyclic and partition-based 

strategies. The analysis of these strategies uses the concept of idleness, or length of time a node 

experiences between visits from the patroller, to determine the effectiveness of each strategy 

type. Through his work, Chevaleyre shows that the cyclic approach is more effective than 

partition-based strategies. Related to his paper is a survey by Almeida et al., which compares 

various approaches towards patrolling when utilizing an idleness criterion and provides high 

results for a cyclic approach [4]. 

 

Elmaliach et al. [2] presents frequency optimization criteria that can be used to evaluate 

patrolling policies, as well as an algorithm for generating a patrolling policy that guarantees 

maximal uniform, optimal frequency for all nodes on the graph. Their solution finds a circular 
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path that visits all points in an area while ensuring that patrolling robots are positioned uniformly 

along the path. 

 

Agmon explores the problem of multi-robot perimeter patrol in the presence of an adversary [5]. 

Her work focuses on maximizing the chance of a patrolling robot detecting an adversary along 

different patrolling environments such as a perimeter or fence. Her experiments also utilize three 

different methods of patroller movement, and her resulting algorithms maximize this probability 

of detection for all movement models of the patrollers. 

 

In another survey by Portugal et al. [1], multi-robot area patrolling algorithms are compared 

based on the criteria of robot perception, communication, coordination, and decision-making. 

This survey provides strengths and weaknesses for a variety of approaches to the multi-robot 

patrolling problem, ranging from randomized and partitioning algorithms to approaches using 

heuristics and the concept of idleness. 

 

Objectives 

In this project, we propose the generation of patrolling policies in the form of Markov chains 

with the use of the Metropolis-Hastings algorithm. The patrolling policies generated by this 

algorithm can be applied to any type of graph, as opposed to only area or perimeter graphs as in 

the examples above. Many patrolling policies that are frequency-based in their approach provide 

a deterministic solution which can be easily exploited by an adversary [5]. We theorize that by 

using a Markov Chain to represent a patrolling policy, the actions of a patroller will be much 

more difficult to predict by an adversary, thus making it more difficult for an adversary to attack 

an area undetected [6]. Through these experiments, we will explore different methods with 
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which to generate patrolling policies using the Metropolis-Hastings algorithm, and we will 

provide a comparison of our methods against existing patrolling schemes to test the usefulness of 

Markov chains as a potential representation of a patrolling strategy. 
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CHAPTER II 

METHODOLOGY 

 

Patrolling Setting 

We define the patrolling environment as an undirected graph G = (V, E) with a vertex set  

V = {1,…,n} and an edge set E = {1,…,m}. Each vertex v ∈  V corresponds to a region in the 

graph and each edge e ∈  E to a connection between two regions in the graph. Let M be a discrete 

time Markov chain on the graph G where Mij is the probability of transitioning from vertex i to 

vertex j. Using this formulation, a patroller can utilize the local information of its position on the 

graph to perform a weighted random walk. For instance, if the patroller is at vertex k, it utilizes 

the transition probabilities in the k-th row of M to weigh its random choice of which vertex to 

move to next (Figure 1). A robot using a Markov chain in this way can patrol a graph such that 

its decision-making and perception are independent and local to the agent from the other loosely 

coupled patrollers, thus bypassing many communication and coordination constraints [1]. 

 

When using Markov chains to patrol, the stationary distribution (π) becomes an important 

property. The stationary distribution of a Markov chain provides the long-run probabilities of 

how often one can expect to be in any state within a Markov chain. To illustrate this, suppose we 

have a two state Markov chain, as depicted in Figure 2. The stationary distribution of this 

Markov chain can be thought of as a weighted coin where heads represents state 1 and tails 

represents state 2. If we flip this coin, then there is some chance p of getting heads and some 

chance 1-p of getting tails. This analogy can be extended to Markov chains containing n states 

where the stationary distribution can be represented by a weighted n-sided object. In a patrolling 
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setting, the stationary distribution of a Markov chain strategy describes the probability that one 

can find a patroller in any given node. To use the example of the two state Markov chain again, 

if we flip the weighted coin, there is some probability p that the patroller will be in location 1 and 

some probability 1-p that the patroller will be in location 2. 

 

 

Figure 1: Choosing a Movement – On the left is the physical world visualization of the robot deciding where to patrol next. On 

the right is the abstraction of the environment. There, the robot uses the Markov chain for the graph to roll a weighted die (with 

probabilities in the red box) to decide the location it will move to next.  

 

 

Figure 2: Two State Markov Chain – A two state Markov chain with transition probabilities represented as variables a and b. 
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Figure 3: Patrolling environments – a) A small, 8 node graph; b) An 11 node line graph; c) An 11 node cycle graph; d) A 16 

node dumbbell graph; e) A 25 node tree graph; f) A large, 50 node graph. Larger versions of these graphs can be found in Figures 

B-1 through B-6. 

 

There were six primary settings that were utilized for testing in this project: a small eight node 

graph [10], a line, a cycle, a dumbbell, a tree, and a large randomly generated graph [10] (Figure 

3). Through these graphs, we can run patrolling tests that simulate environments such as fences, 

perimeters, sparsely connected areas, and densely connected areas. 

 

Patrolling Policy Generation 

As mentioned earlier, we consider patrolling policies on a graph as Markov chains M. Given an 

arbitrary graph G and a desired patroller distribution over the graph π, we wish to generate a 

Markov chain with which a robot can patrol. The approach we employ is to use the Metropolis-

Hastings algorithm. The Metropolis-Hastings algorithm is a sampling algorithm that 

approximates a probability distribution with some stationary distribution π [7]. Much like a 
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Markov chain, the longer the algorithm samples on the given probability distribution, the more 

closely the output will approximate to the desired stationary distribution. 

 

The general form of the Metropolis-Hastings algorithm (Appendix A, Algorithm 1) generates a 

list of sampled values which approximates a probability distribution according to a desired 

stationary distribution π. As an example, say we desired to approximate a Normal distribution 

centered at 0 with a standard deviation of 1, N(0, 1) (Figure 4). We begin the algorithm by 

sampling some proposal position from our current point x
i
 with some function q() (line 4). The 

purpose of this proposal function q() is to suggest a new position to move to based on our current 

position, and it can be different depending on the kind of distribution you wish to approximate. 

For our current example of a Normal distribution, say that we want to propose a new position by 

using a normal distribution centered at our current location with some standard deviation, N(x
i
, 

0.05). Using this proposal function (q(): N(x
i
, 0.05)), we acquire our proposed position to move to 

next. Now we can generate an acceptance probability (line 6) which determines whether we 

accept (line 7) or reject (line 9) the movement to this new position. The acceptance probability is 

the product of two ratios: the first ratio is the value of the stationary distribution at our proposed 

location versus our current location, and the second ratio is the probability of being at our current 

position given the proposed position versus the opposite. If the algorithm accepts this movement, 

then the next position for sampling is set to the proposed destination, otherwise we set the next 

position to the current position. In the case of our Normal distribution example, say we are at 

point A in Figure 4. If we propose point B, we can accept this movement based on the 

acceptance probability. Let’s say that because point B is lower on the curve than point A, the 

movement ends up getting rejected. Now let’s say that point C was sampled instead of point B. 
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Since point C is higher on the curve, and therefore a much more probable point to be at, the 

algorithm accepts this transition. After the new position is set, the process repeats for a number 

of iterations (line 3), more closely approximating the distribution as more points are sampled.  

 

 

Figure 4: Metropolis-Hastings Sampling Example – This shows two possible outcomes from sampling in the Metropolis-

Hastings algorithm on a Normal distribution. If the current position is point A, then we can propose a new position with the 

proposal function. If point B is proposed, then it is less likely to be accepted by the algorithm since it is lower on the curve 

compared to point A. If point C is proposed, then it is more likely to be accepted since it is higher on the curve. 

 

Next, we present an adaptation of the Metropolis-Hastings algorithm. In their paper on finding 

the fastest mixing Markov chain on a graph, Boyd et al. show that the Metropolis-Hastings 

algorithm can be applied as a heuristic to a random walk on a graph in order to approximate a 

Markov chain that has the fastest mixing time with some desired stationary distribution π [8]. In 

this formulation, the random walk over a graph is related to the degree of the node that is the 

current state location (Appendix A, Algorithm 2, line 3). This also changes the acceptance 

probability that is utilized by the Metropolis-Hastings algorithm (Appendix A, Algorithm 3): the 

proposal function is now related to the degree of the graph’s nodes, or the probability of a 
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random walk on the graph. These changes allow one to use the Metropolis-Hastings algorithm to 

generate a Markov chain with any desired stationary distribution π as a patrolling strategy 

(Appendix A, Algorithm 4).  



11 
 

CHAPTER III 

RESULTS 

 

When using Algorithm 4 to generate patrolling policies, there are three primary strategy types 

that were created: 1) approximation to a uniform distribution (lines 4-11), 2) approximation to a 

distribution with strong and weak clusters of nodes, and 3) approximation to a distribution with 

strong and weak individual nodes (lines 12-20). These three Markov chain strategies are heavily 

influenced by the second input of Algorithm 4, which is the desired stationary distribution π. The 

values of π that are being used as input are customizable depending on the type of strategy that 

one wishes to simulate. Some visual examples of each strategy that was used for testing on the 

Small Graph can be found in Figure 5. Note that if one desired to change the strategy of the 

patroller (strengthen/weaken different clusters/individual nodes), the respective values for each 

node would only need to be modified to reflect this new strategy. 

 

 

Figure 5: Three Types of Strategies – a) The Small Graph when approximated to a uniform distribution; b) The Small graph 

when approximated to a stationary distribution with a weak cluster of nodes; c) The Small Graph when approximated to a 

stationary distribution containing separated weak points. Edge width denotes the probability of travelling along that edge, green 

nodes denote strong nodes, and red nodes denote weak nodes. Larger versions of these graphs can be found in Figures B-7 

through B-9. 
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Simulation Setting 

Patrolling simulations are conducted in the form of a Stackleberg game [9]. Stackelberg games 

are two player scenarios where a leader (the patrollers) first commits to some strategy, and then a 

follower (the adversary) observes the leader’s move and responds as optimally as possible. In our 

simulations, the patroller plays first by committing to a strategy that is represented by some 

Markov chain M with a stationary distribution π that has been approximated to one of our three 

strategy types. Once the robot has committed to a strategy and has begun patrolling, the 

adversary observes the patroller and attacks the graph for some amount of time t. Because the 

adversary is able to observe the patroller for an indefinite amount of time, it is assumed that he 

knows the stationary distribution π of the patroller’s strategy. With this information, the 

adversary knows both the strong and weak points of the patroller’s strategy and is able to watch 

those weak positions so as to determine the best time to attack the graph. 

 

Results 

We tested each graph a large number of times, varying the patrolling strategy, the number of 

patrollers, and the adversarial attack time between each set of tests. For each graph tested, the 

number of patrollers on the graph varied such that the maximum number of patrollers was 

limited to ratio of about one patroller to every eight nodes. In instances where this ratio would 

yield a maximum of one patroller on the graph, the maximum number of patrollers was instead 

raised to two so as to ensure the testing of a multi-robot patrolling scenario. The adversarial 

attack time in the tests was set to range from 5 time steps to about twice the number of nodes in 

the graph. 
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To begin our discussion of simulation results, we would like to focus on Figure B-15, which 

gives details about the testing results on the large randomly generated graph. There are a few 

important things to note from this graph. First, on average the stationary distribution strategy 

tends to return the highest chances of catching the adversary attempting to penetrate the graph 

while the strategy with weaker clusters tends to return the lowest chances. 

 

Second, it is interesting to note that as the number of patrollers increase, the percentages of 

patroller success begins to taper off. This implies that there is a ratio of patrollers to nodes in the 

graph such that the saturation of patrollers on the graph will provide the highest likelihood of 

capturing the adversary. 

 

Third, the rise of success between tests with different amounts of patrollers on the graph is 

independent of the other tests. The main difference that is noticed regarding this is that as the 

number of patrollers increases, the base percentage of success when adversarial attacks are quick 

steadily increases and the chances of success with longer adversarial attacks begin to slowly 

taper off. The reason for this independent rise of success rates is most likely attributed to the 

randomness in movement across the graph that a Markov chain utilizes. For instance, suppose we 

patrolled the same large graph by using a cycle instead of Markov chains. As more patrollers 

were introduced to the cyclic patrolling strategy, the frequency that each node would be visited 

would increase proportionally. Any adversarial attack time that was shorter than this frequency 

could be guaranteed success and anything longer would result in capture. Under this model, we 

would see a rise in success of capturing the adversary that is solely based on the frequency that 

nodes are being visited. On the other hand, since Markov chains allow the patroller to move 
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randomly, there is no set frequency with which a robot will visit each node. This allows a 

patroller to return to any node on the graph after any number of transitions, regardless of how 

probable it is. 

 

The results shown for the other five types of graphs (Figures B-10 through B-14) indicate that 

the trends seen from the tests on the Large Graph also hold true. In almost every test case, we 

can see that the uniform distribution strategy still provides the highest percentages of success and 

the weaker clusters the worst. This disparity is more noticeable in graphs that are more sparsely 

connected, such as the Tree Graph, and less noticeable in denser graphs, such as the Dumbbell 

Graph. The tapering effect can also be seen among the other graphs, but seems to be more 

prominent in graphs that are more heavily connected, such as the Dumbbell Graph, and less 

prominent in the Line and Cycle Graphs.  
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CHAPTER IV 

CONCLUSIONS 

 

One of the goals of our work was to generate patrolling policies in the form of Markov chains 

through the use of the Metropolis-Hastings algorithm. Utilizing Boyd et al.’s adaptation of the 

algorithm to a random walk on a graph, we were able to create strategies based on any desired 

stationary distribution π, specifically the distributions that contained strong and weak spots 

coverage, strong and weak cluster coverage, and uniform coverage on the graph. We showed that 

patrolling with Markov chains that provide uniform coverage over the graph is the best strategy 

that patrollers can implement with this formulation. We have also showed that there is some 

saturation point of patrollers that should exist on the graph when performing a weighted random 

walk so as to give the best likelihood of capturing an adversary. 

 

We also desired to investigate the usefulness of Markov chains as a patrolling policy 

representation. Indeed, Markov chains are very useful because of their non-deterministic nature. 

As discussed earlier, Markov chains also allow patrollers to move between nodes on a graph with 

some set of probabilities, which is a disadvantage for the adversary who can no longer easily 

predict how patrollers will move. It is also important to note that different Markov chains can 

yield the same stationary distribution π. This is very advantageous for patrollers because 

different methods can be used to create different Markov chains that conform to the same 

strategy type, such as uniform coverage. Such a scenario would be even worse for an adversary 

that is trying to penetrate a graph. 
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APPENDIX A 

ALGORITHMS 

 

__________________________________________ 

Algorithm 1 Metropolis-Hastings(s, q(), π, N)_____ 

Input: s, q(), π, N (starting position, sampling function, desired stationary distribution of 

function, number of samples) 

Output: vals (1xN) (N-length vector of sampled values) 

1: x
0
 ← s 

2: vals ← 0 

3: for i = 0..N-1 do 

4:  x
*
 ← q(x

*
 | x

i
) 

5:  u ← U[0..1] 

6:  if u < min{1, 
π(𝑥∗)

π(𝑥𝑖)

𝑞(𝑥𝑖 | 𝑥∗)

𝑞(𝑥∗ | 𝑥𝑖)
 } then 

7:   x
i+1

 ← x
* 

8:  else 

9:   x
i+1 

← x
i
 

10:  end if 

11: end for ________________________________ 

__________________________________________ 

Algorithm 2 pRW(A, i, j)_____________________ 

Input: A, i, j (NxM) (Incidence matrix of graph, graph position i, graph position j) 

Output: p (probability of moving from i to j)  

1: p ← 0 

2: if (i, j) ∈ ℇ and i ≠ j then 

3:  p ← 1/di 

4: else 

5:  p ← 0 

6: end if _________________________________ 

__________________________________________ 

Algorithm 3 R(A, π, i, j)_ ____________________ 

Input: A, π, i, j (NxM) (Incidence matrix of graph, stationary distribution of Markov Chain, 

graph position i, graph position j) 

Output: p (acceptance probability)  

1: p ← 
𝜋𝑗

𝜋𝑖
×

𝑑𝑖

𝑑𝑗
 

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
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__________________________________________ 

Algorithm 4 Metropolis-Hastings-MC(A, π)_ _____ 

Input: A (NxM), π (Incidence matrix of graph, desired stationary distribution of Markov Chain) 

Output: MC (Markov Chain) 

1: MC ← 0 

2: for i = 1..N do 

3:  for j = 1..N do 

4:   if π is the uniform distribution then 

5:    if (i, j) ∈ ℇ and i ≠ j then 

6:     MCij ← min{1/di, 1/dj} 

7:    else if i = j then 

8:     MCij ← ∑ max{0, 1/𝑑𝑖 - 1/𝑑𝑘} (𝑖,𝑘)∈ ℇ  

9:    else 

10:     MCij ← 0 

11:    end if 

12:   else 

13:    if (i, j) ∈ ℇ and i ≠ j then 

14:     MCij ← pRW(A, i, j) × min{1, R(A, π, i, j)} 

15:    else if i = j then 

16:     MCij ← pRW(A, i, j) + ∑ pRW(A, i, k) × (1 - min{1, R(A, π, i, k)}) (𝑖,𝑘)∈ ℇ  

17:    else 

18:     MCij ← 0 

19:    end if 

20:   end if 

21:  end for 

22: end for ________________________________ 
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APPENDIX B 

FIGURES 

 

 
Figure B-1: Small Graph – This figure depicts a small graph consisting of 8 nodes and 13 edges. 

 

 

 

 

 
Figure B-2: Line Graph – This figure depicts a line graph consisting of 11 nodes and 10 edges. 
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Figure B-3: Cycle Graph – This figure depicts a cycle graph consisting of 11 nodes and 10 edges. 

 

 

 

 

 
Figure B-4: Dumbbell Graph – This figure depicts a dumbbell graph consisting of 16 nodes and 56 edges. 
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Figure B-5: Tree Graph – This figure depicts a tree graph consisting of 25 nodes and 24 edges. 

 

 

 

 

 
Figure B-6: Large Graph – This figure depicts a large graph consisting of 50 nodes and 200 edges. 
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Figure B-7: Uniform Distribution Example – This figure shows the Small Graph when approximated to a uniform distribution. 

The width of each edge is proportional to the probability of that edge being travelled. 

 

 

 

 

 
Figure B-8: Weak Cluster Distribution Example – This figure shows the Small Graph when approximated to a stationary 

distribution containing a weak cluster of nodes. The green node is the strong point on the graph and the red nodes are the weak 

nodes on the graph. The width of each edge is proportional to the probability of that edge being travelled. 
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Figure B-9: Weak Points Distribution Example – This figure shows the Small Graph when approximated to a stationary 

distribution containing separated weak points. The green node is the strong point on the graph and the red nodes are the weak 

nodes on the graph. The width of each edge is proportional to the probability of that edge being travelled. 

 

 

 

 

 
Figure B-10: Small Graph Results – This figure displays the percentage of success of detecting an adversary on the Small Graph. 
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Figure B-11: Line Graph Results – This figure displays the percentage of success of detecting an adversary on the Line Graph. 

 

 

 

 

 
Figure B-12: Cycle Graph Results – This figure displays the percentage of success of detecting an adversary on the Cycle Graph. 
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Figure B-13: Dumbbell Graph Results – This figure displays the percentage of success of detecting an adversary on the 

Dumbbell Graph. 

 

 

 

 

 
Figure B-14: Tree Graph Results – This figure displays the percentage of success of detecting an adversary on the Tree Graph. 
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Figure B-15: Large Graph Results – This figure displays the percentage of success of detecting an adversary on the Large Graph. 
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