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ABSTRACT 
 

Medial Axis-Biased Rapidly-Exploring Random Trees. (May 2012) 
 

Evan John Greco 
Department of Computer Science and Engineering 

Texas A&M University 
 

Research Advisor: Dr. Nancy M. Amato 
Department of Computer Science and Engineering 

 

RRTs (Rapidly-Exploring Random Trees) have shown wide applications in robotics.  

RRTs are a type of sampling-based motion planners that expand to fill the space starting 

from one or more root configurations.  RRTs are excellent at rapidly exploring open 

space in an environment, as well as finding configurations close to obstacles.  PRMs 

(Probabilistic RoadMap methods) are another class of sampling-based motion planners.  

One particular planner, Medial Axis PRM (MAPRM), constructs roadmaps on the 

medial axis, leading to paths with high clearance.  This work introduces a novel RRT 

variant, namely the Medial Axis RRT (MARRT) that constructs trees whose nodes and 

edges lie on (or near) the medial axis of the free configurations space.  This is achieved 

through the use of MAPRM-like techniques to retract sampled configurations to the 

medial axis of the free space.  We show MARRT successfully increases clearance along 

RRT paths for a broad spectrum of motion planning problems.   
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1CHAPTER IINTRODUCTIONMotion Planning is a known diÆulty in robotis involving planning the paths ofrobots through many di�erent types of environments. These environments may bea workspae for manufaturing robots, a disaster area in searh and resue, or evenenergy landsapes in protein folding. Appliations of Motion Planning inlude virtualreality (VR), protein folding, multi-agent systems, manufaturing, prototyping, andomputer aided design (CAD), among others.More preisely, Motion Planning (MP) algorithms address the problem of �nding asequene of valid (ollision-free) states (on�gurations) that take a moving objet,referred to as a robot, from an initial on�guration (Cstart) to a goal on�guration(Cgoal). Deterministi alulation of the on�guration spae of an environment isknown to be P-Spae Hard [1℄ and generally infeasible, exept for lowDOF problems,e.g., DOF < 5.The omplexity of motion planning led to the introdution of sampling-based motionplanning. Sampling-based planners sample the environment for valid on�gurations,and may bias these on�gurations based on ertain parameters or algorithms [2℄[3℄.Within this lass of samplers lies tree-based and graph-based planners. Tree-basedplanners generally involve starting at some on�guration Croot and inrementallygrowing towards some goal on�guration Cgoal, with eah root growing it's own on-neted omponent (CC). One of the most ommon examples of a tree-based planneris the Rapidly-Exploring Random Tree (RRT) [4℄. RRTs are useful for single-queryThis thesis follows the style of the IEEE Transations on Robotis andAutomation.



2problems in simple environments, where the goal is to explore free spae eÆiently to�nd a goal in real-time appliations. There are several RRT-based methods to solvingmotion planning problems, inluding RRT-Connet [4℄ and OBRRT [5℄. Graph-basedplanners, suh as the Probabilisti Roadmap Method (PRM) [6℄, randomly samplethe environment and reate a graph that an be queried for paths from one loationto another, usually using a shortest-path algorithm suh as Dijkstra's Single SoureShortest Path Algorithm.In general, sampling-based planners have diÆulty reating roadmaps with highlearane. A PRM-based method that addresses this problem is the Medial-AxisPRM (MAPRM [3℄). MAPRM randomly samples the environment and retrats thesampled on�gurations to the medial axis of the free spae. This gives a roadmapwith high learane from obstales, whih as previously mentioned an be an impor-tant harateristi for paths. However, there is no suh RRT-based method whihfully grows on the medial-axis.The primary ontribution of this work is a novel RRT variant, the Medial-AxisBiased Rapidly-Exploring Random Tree (MARRT). MARRT retrats RRT nodes tothe medial axis of the free spae, along with the onnetions between them usingthe Medial Axis Loal Planner (MALP [7℄). In low dimensions, samples an betransformed to the Medial Axis at a low ost, while in higher dimensions we usean approximate method. In summation, the tree and its edges are all be on, ornear, the medial axis, and grow in the fashion of an RRT. The goal of MARRTis not neessarily to provide the most eÆient planning algorithm, but to establishthe feasibility of a medial-axis biased RRT planner. A summary of the primaryontributions of this paper are as follows:



3� Introdution of a novel method, MARRT, that suessfully grows RRTs on themedial axis of the free spae.� Detailed experimental evaluation in 2D and 3D environments with robots withDOF varying from 2 to 6.� Analysis of MARRT roadmap performane and evaluation of learane-relateddata ompared to other ommon RRT-based planners suh as RRT [8℄ andOBRRT [5℄In order to analyze the performane of MARRT, metris suh as path length, averagelearane, node ount, and others are detailed. The experiments are designed tomeasure general roadmap harateris (e.g., learane) in the absene of a queryand query-based senarios, with both start and goal on�gurations being given. Theenvironments themselves ontain ompliated narrow passages that many plannershave trouble navigating, as well as open spaes that an also be e�etively mappedusing the medial axis. Qualitative analysis is done by utilizing visualizations of 2Dexperiments. The results show a lear advantage produed by MARRT in its abilityto reate paths that maximize learane.



4CHAPTER IIPRELIMINARIESIn this setion, some basis of motion planning will be explained, along with the twoalgorithms that inspire MARRT: RRT and MAPRM.A. Con�guration spaeCon�guration Spae (Cspae) is the spae that inludes all poses and positions of apartiular robot subjet to environmental onstraints. Eah point in the Cspae or-responds to a on�guration of the robot. Cspae is split into three primary subsets:Cfree, Cobs, and Contat. All valid on�gurations are 2 Cfree, while on�gurationswith one or more dimensions partially or ompletely inside of an obstale are 2 Cobst.Contat on�gurations, partiularly useful in ases suh as when roboti manipula-tors make ontat with objets (holding a glass, piking up a pakage, solderingpoints, et.), our where on�gurations and obstales touh.Sampling-based motion planning ame to be after it was shown that expliitly alu-lating the C-Spae of an environment is P-Spae Hard[1℄. To address this problem,sampling-based motion planning was developed.B. Sampling-based motion planningSampling-based planners are partiularly useful in motion planning. In sampling-based planners, di�erent algorithms use di�erent metris and methods in order tobias samples in a way that failitates the mapping of the workspae. In general,



5random on�gurations are sampled in the environment. Various methods have beendeveloped to �lter [9℄[10℄ or retrat [2℄[3℄ samples to bias sampling towards di�erentarea of Cfree.As desribed in the introdution, the primary basis of MARRT is the Rapidly-Exploring Random Tree (RRT [8℄, Figure 1) Algorithm 1 desribes the basi idea ofhow RRTs explore free spae. For a given number of iterations, RRTs randomly sam-ple a on�guration in the workspae, and extend the tree rooted at qstart a distaneÆ towards the randomly sampled node. [8℄ desribes the introdution of RRT-basedalgorithms to motion planning, as well as theoretial analysis that details the use-fulness of applying RRTs to the realm of motion planning. The authors formulatetheoretial and experimental results for 4 di�erent types of motion planning prob-lems: holonomi, non-holonomi, kinodynami, and losed kinemati hains.The primary funtion of the RRT is to inrementally randomly explore spae. De-pending on the Æ value, RRTs an expand large distanes eÆiently in Cfree. Par-tiularly appliable to motion planning is RRT-Connet [4℄ whih grows 2 trees: onefrom Cstart and one from Cgoal. However, we adjust MARRT from the basi RRTalgorithm.
Fig. 1. RRT example.



6Algorithm 1 Rapidly-Exploring Random TreeInput: Environment e, Start Con�guration qstart, Step Size Æ, Num Iterations nOutput: Roadmap RR:insert(qstartfor i = 1:::n doqrand  GetRandomCfg(e)qnew  NearestNeighbor(R; qrand)ExtendTowardNode(qnew; qrand; Æ)AddToRoadmap(qnew)end forreturn RAn additional study done by Ku�ner et al. [11℄ introdues the onept of RRT-Connet. RRT-Connet is a bidiretional planner as disussed in [8℄, omprising oftwo trees, with one beginning at qstart and one atXgoal. Eah tree grows towards eahother using a greedy heuristi, with a onnetion between the two being attemptedat eah step. One the two trees meet (i.e. a onnetion between a node in the qstarttree and a node in the qgoal tree is reated), a path an be derived from the tree usinga simple path �nding algorithm. Additionaly, some analysis revealed that RRTs areindeed probabilistially omplete, i.e. probability of �nding a path approahes 1.Another RRT-based sampler, OBRRT [5℄ exploits information gained about obsta-les in order to bias the growth of the tree. Inuened by OBPRM[2℄, OBRRTinrementally hooses growth methods based on user-provided weights, and growsbased on these methods. These methods inlude onstruting vetors from randomlysampled on�gurations, or to randomly hoose vetors based on workspae obstales



7and then hoosing to randomize orientation or position, among others.

Fig. 2. MAPRM example.Algorithm 2 Medial Axis PRMInput: Environment eOutput: Roadmap Rdone = falsewhile !done doqurr  GetRandomCfg(e)PushToMedialAxis(qurr)AddToRoadmap(qurr)Connet(R; qurr; :::)end whilereturn RThere have been several tehniques proposed that utilize the medial axis for motionplanning. This an be desireable sine the medial axis maximizes learane from ob-stales and hene an ontain `safe' paths. One of the �rst is the Medial-Axis PRM



8(MAPRM) [3℄. MAPRM allows nodes to be on the medial axis without its expliitomputation. In partiular, as shown in Algorithm 2 and Figure 2, in MAPRM, arandom on�guration is sampled, and then it is pushed to the medial axis of the freespae. As with any PRM variant, MAPRM an reate multiple onneted ompo-nents, and requires methods to onnet them together if a fully-onneted roadmapis desired. The expense of this algorithm is dominated by the PushToMedialAxis()funtion, espeially in higher dimensions where an approximate version is required.The expense of this funtion omes primarily due to the ost of ollision detetionalls, of whih many are required in order to loate a point suÆiently lose to themedial axis.[12℄ presents details on MAPRM for a three-dimensional free-ying rigid body, outlin-ing that the algorithm is theoretially guaranteed to sample more nodes in a narrowpassage than uniform random sampling. Experimentally, the work displays a largeadvantage over uniform sampling.In both [3℄ and [12℄, sampling is limited to Rd , d � 3 spae, as exat omputation oftranslating a random on�guration to the medial axis is feasible. This is not true forhigher dimensions. This led to the development of a general framework for MAPRM[13℄ allowing for an approximation of the medial axis for higher-dimension problems(Rd , d � 4).C. Loal plannersIn PRMs, roadmap edges orrespond to, typially valid, trajetories onneting thestart and the end on�guration of the edge. These trajetories are typially validatedusing some simple, deterministi planner referred to as a loal planner (LP). The most



9ommon loal planner used in PRMs is the straight line loal planner. In the straight-line LP, the intermediate on�gurations at some problem dependent resolution alongthe straight line in on�guration spae onneting the start and the end points ofthe edge are all tested for validity; if they are all valid then the edge is determinedto be valid and an edge is added to the roadmap representing that onnetion. Thestraight-line LP is simple and onvenient. However, it is not suÆient for our usessine we are interested in paths that lie on the medial axis.In this work we will use the reently introdued medial axis LP (MALP) [7℄ in whihas the edge itself is pushed to medial axis. MALP works by reursively splitting astraight line onnetion in half, and pushing the midpoint of eah biseted straightline to the medial axis. The reursion stops when the verties and edges are allwithin some user provided threshold destane of the medial axis. As shown in [7℄,the ost of MALP an vary greatly depending on the level of auray desired. Fromour experiene, the desired auray is typially ahieved within 4 or 5 levels ofreursion.



10CHAPTER IIIMEDIAL AXIS RRTIn this setion we desribe Medial Axis RRT, or MARRT, whih is a variant of thestandard RRT algorithm that grows a tree on the medial axis from a spei�ed initialon�guration. There is also a variant MARRT-Connet that is analogous to theRRT-Connet algorithm whih spei�es both a start and a goal on�guration andattempts to grow the tree from the start until it an be onneted to the goal.Algorithm 3 Medial Axis RRTInput: Environment e, Loal Planner lp, Start Con�guration qstart, Step Size Æ,Max Iterations nOutput: Roadmap RR:insert(qstart)for i = 1:::n doqurr  GetRandomCfg(e)qnearest  GetNearestNeighbor(R)qurr  getRRTNode(e; R; Æ) //with respet to step sizePushToMedialAxis(qurr)lp:Connet(R; qurr; e; :::)end forreturn RMARRT, in Algorithm 3, begins similarly to the other related algorithms { the starton�guration qstart is added to the roadmap and will serve as the root of the tree.Inside the main loop, a random on�guration is sampled. As with MAPRM, thisnode an be in qfree or qobst.



11After the node is sampled, the nearest neighbor in the tree must be found based onsome distane metri (e.g. Eulidean). There are several variables in determiningwhat distane metri is suÆient for whih appliation [14℄. This is the same as isdone in standard RRT.Next, the newly sampled node is moved to within a user-de�ned distane Æ awayfrom the losest neighbor in the tree rooted by qstart. In RRT, this node is requiredto be in qfree and is the �nal expansion step. In MARRT, the expansion is done inthe same way, exept that after the expansion the node is then pushed to the medialaxis. The hoie of Æ is problem dependent. As disussed later, if the trajetoryonsists of long straight-line portions, then larger values of Æ may be useful. Indeed,given the nature of the medial axis whih maximizes learane, MARRT may be ableto use larger values of Æ than other RRT variants.In MARRT, as in MAPRM, PushToMedialAxis() is the main step in reating aroadmap with nodes on the medial axis. As previously mentioned, PushToMedialAxis()an be done in an exat fashion assuming the robot's DOF is less or equal to 3. Afterthe on�guration is pushed to the medial-axis of the free spae, a onnetion willneed to be made to it from the tree. This will be obtained by using a loal planner.In the ase of MARRT, the use of the Medial Axis LP [7℄ will be the default hoie.MALP modi�es the edges between nodes in the roadmap suh that this path lies onthe medial-axis. By having the nodes as well as the edges on the medial axis, everyentity of the roadmap will have high learane, as it is one of the primary goals ofMARRT.



12Algorithm 4 Medial Axis RRT-ConnetInput: Environment e, Loal Planner lp, Start Con�guration qstart, Goal Con�gu-ration qgoal, Step Size ÆOutput: Roadmap RR:insert(Cstart)done = falsewhile !done doqurr  GetRandomCfg(e; robot)qnearest  GetNearestNeighbor(R)qurr  getRRTNode(e; R; Æ) //with respet to step sizePushToMedialAxis(qurr)lp:Connet(R; qurr; e; :::)if lp:Connet(R; qgoal; e; :::) thendone = trueend ifend whilereturn RWe also de�ne another version of the algorithm, MARRT-Connet (Algorithm 4),that is similar to RRT-Connet and is designed to grow the tree from the starton�guration qstart to a goal on�guration qgoal. In this ase, we initially add bothqstart and qgoal to the roadmap. Then, one the newly expanded node is added tothe roadmap, a onnetion from the roadmap to qgoal is attempted in order to �nd apath from qstart to qgoal.



13CHAPTER IVRESULTSIn this setion, experimental setup, results, and analysis are provided.A. SetupMARRT was implemented in C++ in the Probabilisti Motion Planning Library(PMPL), developed in the Parasol Lab at Texas A&M University. PQP [15℄ is usedfor Collision Detetion. The experiments themselves ran on a luster onsistingof 24 IBM x335 servers with 4GB RAM and (2) 2.4GHz Intel Xeon CPUs eah.The operating system for the luster is CentOS 5.4, with Roks 5.0 as the lusteringsoftware. Visualization is done with Vizmo [16℄, an in-house developed tool developedby Parasol Lab that displays sampled on�gurations, bounding boxes, paths, andother useful information pertaining to motion planning. Results were averaged over10 random seeds.When onsidering the e�etiveness of MARRT, it is important to note that thelearane of the resulting roadmap is the main bene�t of the algorithm. With thisin mind, there are several learane-based metris of note:� Minimum Path Clearane: When navigating environments that may bedynami or approximated, having a small hane of an unexpeted ollision isimportant. RRT paths should have low path learane, while MARRT shouldhave high path learane.� Average Roadmap/Path Clearane: In addition to knowing the mini-



14mum learane, knowing the average is a good way to see just how safe theroadmap is as a whole in terms of avoiding ollisions. As a whole we omparethe entire tree's ability to retain learane for MARRT.In addition to these metris, standard motion planning performane metris inludingollision detetion (CD) all totals and roadmap node ount are reported for problemsinvolving queries.B. EnvironmentsThe experiments are split into 2 main setions: 2D and 3D environments. The2D environments are meant to provide a qualitative analysis on how the di�erentRRTs grow, and how they perform when presented with narrow passages. In the 2Danalysis, all methods are given a Æ value of 5% of the environment's resolution, basedon a given distane metri (in all ases in this paper, standard eulidean). In the 3Denvironments, an emphasis is given on the RRTs solving queries. To enable betterperformane in all planners, a maximum Æ value is used (that is, at eah iteration,the algorithms are allowed to be as greedy as possible when attempting to expand).The 2D environments inlude S-Tunnel (Figure 3), 2D Maze (Figure 8), and 2DZ-Tunnel (Figure 9). S-Tunnel presents a 2-DOF robot that needs to navigate awinding narrow passage in order to omplete the query. The 2D Maze presents arelatively ompliated maze that has 2 solutions. The beginning node starts in thevery middle of the maze, whih allows for an interesting view into how the variousRRT-based methods perform in suh an environment over a set number of iterations.The 2D Z-Tunnel environment provides an in-between in diÆulty ompared to the



15other two 2D environments, in that it has a z-shaped narrow passage while alsoforing the methods to navigate additional orners in order to solve the query.The 3 3D environments are alled 3D Z-Tunnel (Figure 11), 3D Maze (Figure 13),and Flange (Figure 14). The 3D Z-Tunnel presents a 3-Dimensional Z-shaped narrowpassage. In order to see how the RRTs are able to navigate while inside the narrowpassage, the starting on�guration is plaed in the enter, with the goal on�gurationat one of the ends of the passage. The 3D Maze environment inludes a series oftubes that must be navigated in order to reah the goal. As with Z-tunnel, thestarting on�guration is plaed in the middle of the environment. Finally, the Flangeenvironment simply requires the methods to plan the motion of a tube that is stuk ina onstriting obstale. This environment requires subtle translations and rotationsof the tube before it an be extrated from its onstriting obstale. The 3D Mazeenvironment is also used for the 9 DOF serial robot experiment.C. Results and analysisThe experimental results show a pervasive and onsistent inrease in overall lear-ane for MARRT. First, we show and analyze the qualitative results for the 2Dexperiments as shown in Figure 3, Figure 8, and Figure 9.1. 2D EnvironmentsThe initial experiment involves a qualitative analysis of the overage of MARRTversus RRT and OBRRT. The experiment onsists of 3 separate starting positionswith no queries, as we are interested in the manner of the growth of the RRTs. The



16�rst position, as shown in Figure 3, is in the bottom left of the environment, whilethe other two starting positions are in the enter and top right of the environment.2,000 nodes are sampled.

Fig. 3. S-Tunnel with starting CFG points.

Fig. 4. S-Tunnel MARRT examples: left, enter, and right starting positions.The MARRT graphs, as shown in Figure 4, show a relatively even overage of thespae while maintaining high learane. The starting position of the tree makes littledi�erene in the trees that are grown, whih is in ontrast to the performane of theother two methods. This may be explained when onsidering the high onnetivityof nodes on the medial axis, espeially in low DOF environments (in this ase, onlytwo).



17

Fig. 5. S-Tunnel RRT examples: left, enter, and right starting positions.RRT, as seen in Figure 5, performane inonsistently when ompared to MARRT.RRT grows evenly in the enter starting position, with an even distribution of nodesthroughout the environment. However, imbalanes are visible when the startingon�gurations are moved to the top right or bottom left of the environment.

Fig. 6. S-Tunnel OBRRT examples: left, enter, and right starting positions.Similarly to RRT, OBRRT displays an uneven distribution of nodes based on theloation of the root on�guration, as seen in Figure 6. While not as drasti as RRT,OBRRT fails to ahieve the symmetri overage of MARRT.
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Fig. 8. 2D Maze examples: MARRT, RRT, and OBRRT.In the 2D Maze environment, we see that, in Figure 8, the general paths are similar.However, the quality of these paths in terms of learane vary greatly. For MARRT,high learane is obtained throughout the entire map, while both OBRRT and RRTonstrut maps that go near the walls of the narrow passages. Overall distane thatan be traversed in the workspae favors RRT, but MARRT an traverse near as far,while retaining a high learane roadmap.



19

Fig. 9. 2D Z-Tunnel examples: MARRT (left), RRT (enter), and OBRRT (right).In Figure 9, we an see that all 3 methods managed to map the overall workspae.The main di�erene is in the learane of the overall roadmaps. MARRT maps theentire available free spae, with nodes that have high learane. RRT and OBRRThave a larger overage of the free spae, but the learane values are low, as shownin Figure 7 2. 3D (6 DOF) ExperimentsWe now move to analyzing the results for the 3D environments. For these environ-ments, a quantitative approah is taken. For eah environment, queries are assigned(qstart and qgoal), and tree generation halts when the trees are able to onnet to thegoal on�guration. The results of the experiments an be viewed in Figure 10 as wellas Table I.In terms of learane data, MARRT produes higher learane roadmaps and paths,whih is the primary objetive of the method.



20In the 3D Z-Tunnel environment (Figure 11), the largest disrepany is in the pathlength of eah method. MARRT produes a path that is several times larger thanboth RRT and OBRRT. This may be explained by a type of bak-traking that ispossible with a medial-axis based algorithm, espeially when produing a tree. Whensampling in a tight narrow passage, it is possible that the nearest neighbor an hangefrom an out-most branh to an inner branh, resulting in a sution e�et that anlimit outward growth. One way to address this artifat of the method would be toiteratively smooth and then re-push the path to the medial axis. Another reason theMARRT paths are longer is beause paths on the medial axis are inherently longerthan those that are allowed to ut orners, whih is a natural trade-o� between pathlength and path quality.
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Fig. 10. 3D average learane data.



213D MazeMethod Nodes Collision Detetion Calls Roadmap Clearane Path Length Path Clearane Clearane VarianeMARRT 1167.1 133099 0.0109656 264.5 0.0145652 2.24012e-05RRT 1386.6 17881 0.00245215 77.7 0.00557842 1.41861e-05OBRRT 4104.8 35966.7 0.0015525 64.6 0.0073481 4.94818e-06FlangeMethod Nodes Collision Detetion Calls Roadmap Clearane Path Length Path Clearane Clearane VarianeMARRT 146.8 289510 0.0268746 81.7 0.0384039 0.000697416RRT 1605 6484.14 0.0522617 56.8571 0.0423998 0.00161294OBRRT 1115.11 6343 0.031549 53.556 0.0434707 0.00110043D Z-TunnelMethod Nodes Collision Detetion Calls Roadmap Clearane Path Length Path Clearane Clearane VarianeMARRT 647 71617.7 0.00821397 540.1 0.0203978 2.78616e-05RRT 332.1 6731 0.00133686 108.1 0.00316082 1.18155e-06OBRRT 92.1 83217.3 0.00132918 138.9 0.00331836 2.40437e-06Table I3D environment experimental data. Clearane values are averaged. Clearanevariane is the average variane of eah roadmap's learane values.

Fig. 11. 3D Z-Tunnel environment.
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Fig. 12. Minimum learane for 3D environments.



22In the 3D Maze environment (Figure 13, Figure 12), similar results to 3D Z-Tunnelare obtained. In total, the learane values learly favor MARRT, while path lengthfollows a similar pattern that was shown in the 3D Z-Tunnel results. MARRT solvedthe query with fewer nodes than RRT and OBRRT as well, beause it took longersteps toward the goal.

Fig. 13. 3D Maze environment.The Flange environment (Figure 14) presents a di�erent hallenge than the otherenvironments, in that it requires a large objet to be removed from a onstrainingobstale. This is also the only environment where not all methods solved the problemwith 100% eÆieny. MARRT performed the best, solving 100% query attempts.OBRRT performed with 90% eÆieny, while RRT solved the query with only 70%eÆieny. MARRT was also far more eÆient in terms of node ount with 146.8nodes on average being required.



23

Fig. 14. Flange environment.3. 3D Maze Serial3D MazeMethod Collision Detetion Calls Roadmap Clearane Clearane VarianeMARRT 7.86312e06 0.00319565 1.08712e-05RRT 54503.4 0.00214199 1.52141e-05OBRRT 69656.2 0.00154734 7.2189e-06Table II3D environment serial experimental data. Clearane values are averaged. Clearanevariane is the average variane of eah roadmap's learane values.
In order to show the generi nature of MARRT, a 9 DOF experiment was run onthe 3D Maze environment. The experiment onsists of a robot with 3 rotationaljoints, 3 rotational degrees of freedom, and 3 translational degrees of freedom, allof whih ombine to a 9 DOF robot. The experiment does not have a query; theroadmap onsists of 5,000 nodes of free growth from the starting on�guration, whihis loated in the enter of the environment. The experiments show a qualitativeadvantage for MARRT, as MARRT is able to navigate through the narrow passageto the open areas above and below. Displayed in Figure 15, MARRT is the onlymethod of the 3 that is able to move out of the medial axis. With the extra degreesof freedom, utilizing the medial axis is espeially helpful. In the ase of RRT andOBRRT, randomly sampling on�gurations to expand to beomes more diÆult, as



24the randomization of additional parameters lowers the ability that a on�gurationin Cfree may be sampled. While MARRT omes out ahead qualitatively, its largesthindrane is the number of ollision detetion alls. This is due to the use of MALPin higher degrees of freedom. The experiments were run with 5 random rays permedial axis alulation, whih, when ombined with MALP and a higher degree offreedom, leads to very high numbers of ollision detetion alls, visible in Table II.However, the average roadmap learane is also higher for MARRT, whih whenombined with the qualitative advantage, gives MARRT an edge.

Fig. 15. 3D Maze Serial (9 DOF) examples: MARRT (left), RRT (enter), andOBRRT (right).



25CHAPTER VCONCLUSIONIn onlusion, we introdued a novel algorithm, Medial Axis RRT (MARRT), whihsuesfully grows RRTs with high learane. When ompared to RRT and OBRRT,MARRT provides attrative roadmaps. These roadmaps would be safer to navigatefor a robot under unertainty. For future work an exploration into ways to fous theexpand step to eÆiently bias the roadmap towards a goal on�guration ould betaken, a high DOF analysis, and potentially how to limit the ollision detetion allsrequired by the PushToMedialAxis operation.
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