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ABSTRACT 
 

An Effective Framework for the Modeling of Seasonal Parameters for Measles Using a 

Continuous Time Model. (May 2012) 

 

Ali Mahmoud El-Halwagi 

Department of Chemical Engineering 

Texas A&M University 

 

Research Advisor: Dr. Carl Laird 

Department of Chemical Engineering 

 

Currently, measles (also known as English measles) is detrimentally affecting the youth 

of the developing world. The shortage of vaccines and the devastating consequences of 

measles yield disturbing consequences globally. According to the World Health 

Organization, “there were 164,000 measles deaths globally – nearly 450 deaths every 

day or 18 deaths every hour.” In this work an approach was developed for estimating an 

appropriate continuous time seasonal transmission model for the spread of measles. 

Estimation of this time-varying parameter is an ill-posed problem and regularization is 

required. Subsequently, data obtained from New York City over a twenty year period 

were used to formulate the problem for estimating values of the seasonal transmission 

parameter in New York City. Finally, the estimation problem was solved and the results 

were analyzed.  This research shows that there is a clear relationship between school 

terms and seasonal parameters. 
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NOMENCLATURE 

 

β Seasonal Transmission Parameter 

ρ Regularization Term 

t Time 

R0 Reproduction Parameter 

N(t) Number of People in Population 

S(t) Number of Susceptible Individuals 

I(t) Number of Infective Individuals 

R(t) Number of Recovered Individuals 
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CHAPTER I 

INTRODUCTION 

 

Currently, measles (also known as English measles) is providing a detrimental effect on 

the youth of the developing world. The shortage of vaccines and the devastating 

consequences of measles yield disturbing consequences globally. According to the 

World Health Organization, “there were 164,000 measles deaths globally – nearly 450 

deaths every day or 18 deaths every hour.” There is strong motivation to investigate the 

transmission rate of measles through mathematical modeling to get a better and more 

quantitative sense of how measles spreads and how it might be controlled.  

 

Potential benefits 

My work has many necessary goals. First of all, infectious diseases prove to be 

fascinating mechanisms because the spread of each disease is not only dependent on the 

characteristics of the disease, but also on the geography of the disease in question. For 

example, the seasonal transmission parameter profiles for developed locations like New 

York City may be different than those in lesser-developed regions like Thailand. 

Estimation of model parameters provides us insight into the driving forces affecting the 

spread of the disease.  

_______________ 

This thesis follows the style of Chemical Engineering Science. 



  2 

 

Furthermore, the work may provide significant public health care benefits by guiding 

policy decisions. First of all, having a reliable dynamic model will better predict future 

outbreaks which will allow for better preparation of the health care system. This will 

also encourage stronger and more direct health care measures to pinpoint the major 

factors affecting the spread of measles. Moreover, the creation of a continuous model 

will take into account the previous trends of the spread of measles in a particular area 

which will build a more pertinent and effective framework for determining future 

measles outbreaks. 

 

Uniqueness 

This work will prove to be most unique in the following two manners: it focuses on 

estimation using a continuous time model rather than the structurally more simplistic 

discrete time model, and it applies standard techniques for ill-posed problems to remove 

the periodicity requirement inherent in other estimation techniques. 

  

As mentioned earlier, the use of discrete time models has taken center stage in recent 

disease model estimation research. The normal viewpoint of a time model utilizes N(t) = 

S(t) + I(t) + R(t), where N(t) is the total population size, S(t) is the number of susceptible 

individuals, I(t) is the number of infective individuals, and R(t) is the number of 

recovered individuals, all at any given point in time (Anderson and May, 1991). The 

above model can then be used to include other time-varying parameters, including 
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fertility and mortality rates. As more children are born, the total population size 

increases and these newborns directly enter the susceptible compartment.   

 

Models describing the spread of infection are dependent on both the number of infected 

and the number of susceptible individuals. This concept was first examined in detail by 

Hamer who showed that the number of new infections per unit time is proportional to the 

number of susceptibles times the number of infectives (Hamer, 1906). Essentially, more 

people contract a particular disease if there are more people who have the disease to 

spread and more people who are susceptible to the disease. The value of the 

proportionality constant is dependent on the disease itself and other social and 

environmental factors. Furthermore, several researchers have demonstrated that the 

proportionality constant is correlated in time. Thus, a time-varying parameter must be 

introduced to the model. Considering a discrete time model, the parameter, βt, is the 

transmission parameter that affects the rate of new infections between times t and t+1 

(Oli et. al., 2006).  

 

However, the discrete time model contains particular inherent flaws with respect to 

continuous time models (Abbott III et. al., 2009). First of all, infectious diseases like 

measles are in fact continuous processes. Additionally, continuous time models allow for 

a more flexible estimation procedures applicable to various sets of data while discrete 

time procedures that require the reporting interval matches the time discretization 

(Finkenstadt and Grenfell, 2000).  
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A more general, applicable approach is necessary for real world data. Models and 

estimation procedures should be flexible to allow for the variations of particular data, 

including the serial interval of the disease and the reporting interval of the data itself 

(Abbott III et. al., 2009). Thus, I will use a continuous time model to estimate the 

seasonal transmission parameters governing the spread of measles. 

 

Currently, the biggest criticism involved with continuous time models is the difficulty in 

estimating the transmission rate parameter, β, in the model (McCallum et. al., 2001). Its 

difficulty lies in the fact that the transmission rate is in fact continuous but all data occur 

 at particular intervals. This means that there are, in essence, an infinite number of 

parameters, but a finite number of data points, producing an ill-posed problem. There are 

two methods to handle this. One can select a particular functional form for the 

transmission parameter and estimate parameters in that function. However, this restricts 

the form of the transmission parameter profile and results could be biased by our 

assumptions of that form. Instead, the concept of regularization is used. Regularization 

produces a well-posed estimation problem while only mildly restricting the form of the 

transmission parameter. Here, total-variation regularization is used for the transmission 

parameter. 

 

On a similar note, continuous models have an advantage over discrete models in lesser-

developed areas where less data may be available. The discrete time series SIR model 
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includes an extra parameter that may correct for the errors in discrete time 

approximation. The continuous time model does not require this parameter. Thus, a 

continuous model would have one less parameter to estimate (Xia et. al., 2004). 

 

As important as it is to model measles, more importance should be placed on the 

transmission of measles throughout different periods of the year. Previous work has been 

done on estimating the measles transmission rate parameter given monthly incidence 

data; in fact, Soper showed that there was a clear relationship between the transmission 

rate parameter and school terms (Soper, 1929). This concept makes intuitive sense; one 

would assume that as children are in school together, they are more likely to get each 

other sick than when outside of school. In another example, Fine and Clarkson examined 

the time-varying parameters for England and Wales from 1950 – 1965 and again 

demonstrated the aforementioned correlation between beta and school terms (Fine and 

Clarkson, 1982). This work makes use of regularization to estimate the time-varying 

transmission profile with few assumptions on its particular form. We believe that the 

transmission profile will be correlated with school term holidays. 

 

Another crucial output from the continuous time model is R0, the basic reproduction 

number. This parameter shows the average number of people who get infected due to 

one infected person. Basically, it measures secondary infections. This concept is 

essential in determining whether a particular disease will survive and thrive. If R0 > 1, 
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the disease has the devastating potential of invading and thriving in a particular 

population.  

 

Some properties of measles (and other common childhood diseases) make them effective 

case studies for modeling and estimation. First, it is important to note that the reported 

case counts in the data under-represent the actual number of cases (some children will 

not be taken to the hospital, some hospitals will not report, etc.). However, prior to 

widespread vaccination, almost every individual in the population would eventually 

contract the disease. This allows us to perform a time-averaged balance between births 

and case counts to approximate the reporting fraction.  
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CHAPTER II 

METHOD 

 

The following general methodology is used to estimate the disease model (in this case, 

measles). Table 1 discusses the four major steps required to build an accurate disease 

model formulation.  

 
Table 1- Methodology for Measles Modeling 

 

 

 

 

 

 

 

Step 1: Developing an accurate model 

Each of the four steps listed above is crucial in creating a reliable model. The first step 

requires first defining the important variables in the system. In the case of measles, the 

important variables include S(t), R(t), and I(t). The estimation formulation requires an 

objective function and, here, we minimize the squared-error. We utilizes AMPL, a 

mathematical modeling language that takes in an objective function, various parameters, 

variables, sets, and constraints.  

 

Develop an accurate and applicable model formulation 

Implement regularization to produce a well-posed estimation problem 

Prepare the case count data and include in the estimation 

Solve and Examine Solution  
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Step 2: Implementing regularization 

To effectively estimate the profile of the transmission parameter β, the effects of the 

parameter ρ (regularization term) must be examined. For a particular set of data, there is 

a value of ρ that appropriately balances the estimation error with the restriction on the 

transmission profile. This value is found using the L-curve method which graphs part of 

the objective function versus
 
the total variation regularization term. Every L-curve has a 

corner, hence the name L-curve. The value of ρ that corresponds to the corner will be 

used throughout the estimation.  We carefully 

 

Step 3: Preparing the data 

For this study, the data were obtained from New York City over a twenty year period. 

This is to examine the behavior of the seasonal transmission parameter in New York 

City. A twenty year period was chosen. The data needed to be entered from original 

documents, a susceptible reconstruction procedure was done to estimate the level of 

underreporting. Then, the corrected values were transferred to AMPL dat files.  

 

Step 4: Solve and examine the solution 

After formulation in AMPL, the problem was solved using the nonlinear interior-point 

solver IPOPT. This is an open-source package available for solution of large-scale 

nonlinear programming problems.  
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After solving the estimation problem, we investigate the temporal profile of the 

transmission parameter. We hypothesize that our solution will show that there is a clear 

correlation between school terms and the seasonal transmission parameter. Moreover, 

our hypothesis includes that the measles is spread more rapidly during the school year 

than during the summer months, providing crucial data on when to supply vaccines or 

prepare health care facilities.  
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CHAPTER III 
 

RESULTS 

Regularization is absolutely necessary to form a well-posed estimation problem. 

However, care must be taken when selecting the regularization parameter. In this 

chapter, the methodology of determining the proper regularization term will be 

examined and the appropriate value in this model will be shown.  

 

The objective function includes the regularization parameter 1/ρ as a factor in front of 

the regularization term (based on total variation). The methodology used to determine 

the correct ρ value is as follows. 

 

The process to determine ρ is known as the L-curve method as shown in Figure 1. The 

L-curve graphs optimal values of the objective function against the value of the 

regularization term for different values of the regularization parameter. The corner of the 

graph indicates a good balance between fitting the data and overly restricting the shape 

of the transmission parameter profile. Thus, too high or too low ρ values will produce a 

strictly horizontal or vertical graph; with no true curve, the proper ρ value cannot be 

determined.  

 

For our estimation problem, the regularization parameter values were varied from 1e-4 

to 1e-6 by 1e-7, and the following graph was obtained.  
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Fig. 1 L-Curve 

 

By examining the L-curve, it is evident that the corner exists at ~24-25 on the x-axis. 

This value corresponds to a regularization parameter value of 6.5*10
-6

.  

 

With this newly found regularization value, the formal estimation problem can now be 

solved and the estimated seasonal transmission parameter profiles can be examined. 

Figure 2 shows how the seasonal transmission parameter varies every month for a 

twenty year period. From this figure, a clear relationship exists between the time of the 

year and school transmission parameter since β oscillates annually, hitting its lowest 

value in the summer. 

L-Curve 

Seasonal Transmission (month
-1

) 

Obj 
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Fig. 2 Twenty Year β 

 

To show that β exhibits similar behavior from year to year, β was graphed annually as 

shown below in Figure 3. Figure 3 demonstrates how β starts off large at the beginning 

of the year, hits its lowest point in the summer, and returns to its highest value near the 

end of the year. 

 

β (month
-1

) 

Month 

Twenty Year β 
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Fig. 3 Annual β 

 

If the value of the regularization parameter was too low, then variation in the 

transmission parameter would be heavily penalized and the curves would be 

significantly flatter. However, if the value of the regularization parameter is too high, 

then the problem is ill-posed and the estimated transmission parameters would be very 

noise. By properly utilizing the L-curve, the appropriate regularization value is 

determined, and the seasonal transmission profiles are efficiently estimated. This entire 

procedure is general, and it can be applied to other data sets from alternate regions. 

  

β (month
-1

) 

Month 

Annual β 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 

After developing a procedure for estimation of time-varying transmission profiles, the 

method was applied to New York City data over a twenty year period. Many conclusions 

can be drawn. First of all, this work has demonstrated the power available in large-scale 

nonlinear programming techniques and the ability of these techniques to estimate time-

varying parameters like β. More specifically, these results showed a strong correlation 

between the seasonal transmission parameter and school term holidays as estimated from 

New York City data. These results are consistent over the twenty year period. 

 

Since many countries lack central health care facilities and the proper tools to 

continuously care for the sick, determining the optimal time to give measles vaccines is 

crucial. From the results above, the seasonal transmission parameter was at its lowest 

each year during the summer time. Thus, we propose giving vaccines toward the end of 

the summer to prevent the large spike in measles transmissions that occur at the 

beginning of the school year. This will limit the number of infectives and mitigate the 

devastating effects of measles worldwide. 
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