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The City of Jonestown: Wastewater Master Plan  

1. Executive Summary 

The City of Jonestown is committed to responsible planned development, economic vitality, 

public service improvements, continued park expansions, and overall improved quality of life for 

its residents. Developing and maintaining a city-wide wastewater collection system is an 

important step in creating a clean, safe environment for the public, especially as the city looks 

forward to a blooming commercial and residential sectors. 

The main design objectives were to develop city population projections, a vulnerability 

assessment map, a wastewater collection system design with manageable phases, an effluent 

disposal plan, and a cost estimate. The final wastewater collection system design consisted of 

gravity lines, force mains, low pressure system (LPS), lift stations, wastewater treatment plants 

(WWTPs), and drip irrigation fields. 

The design includes three WWTPs, located based on topography, existing infrastructure, and 

regulations from the TCEQ, LCRA, and Jonestown City Ordinances. Two plant designs have 

adjoining drip irrigation fields for effluent disposal. Due to the suburban development 

surrounding the southernmost WWTP, an effluent reuse field for this plant was deemed to be out 

of the scope of this project. Construction projects should take the topography and soils in the 

areas into extreme consideration during the planning process of such projects. According to the 

data included in the vulnerability maps, the entire city of Jonestown is highly susceptible to 

contamination and is not an ideal candidate for construction of any type. The vulnerability maps 

show few decent locations for WWTP or wastewater pipe layouts. 

The majority of pipes used were gravity pipes; however, due to topography constraints, lift 

stations and force mains were required to overcome this dilemma. Due to the highly developed 

nature of downtown, an LPS was selected for the main downtown area of the Commercial 

Corridor. Compared to gravity lines, LPS pipes are much smaller, require minimal ground 

intrusion, do not rely on gravity, and are a cheaper alternative due top minimal wastewater 

generation in this area.  

 In order to make the overall construction of the wastewater collection system more 

manageable, it was divided into several phases. These phases represent incremental development 

of the City of Jonestown over the next 10 to 20 years. First, wastewater collection service will be 

provided to the northern half of the commercial corridor through construction of wastewater 

lines, a chain of lift stations, and the LPS in the downtown area. This area will be serviced by an 

existing WWTP in the city of Leander. Second, the southern half of the corridor will be serviced 

through the construction of wastewater lines, lift stations, and a new WWTP.  Additional 

residential developments throughout Jonestown will be serviced through the construction of 

further wastewater collection networks and two additional WWTPs. 

In order to give the City of Jonestown an initial idea of the expenses of the overall project 

of each phase, a cost estimate was developed. It did not include contingency costs or soft costs, 

but only the costs of WWTPs, drip irrigation fields, lift stations, gravity lines, force mains, and 

the LPS. The total of estimated costs are just under $16 million, with the two phases in the 

corridor totaling $3.5 million. This initial estimate should give the City of Jonestown material 

from which to continue conversations on funding options and project feasibility. 
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5. Introduction  

5.1. Project Background 

Public health is a major concern across the globe. Developing and maintaining a city-

wide wastewater collection system is an important step in creating a clean and safe environment 

for the public. A centralized wastewater collection system takes the contaminated sewage water 

and transports it to a city wastewater treatment plant for cleaning and water recycling. This 

process allows cities to take control of wastewater treatment and move from a septic system to a 

city-wide system. In addition, the reclaimed water can be reused as a non-potable water source 

for various purposes throughout a city and in homes.  

Septic systems work well for less populated areas in which a large sewer system would 

not be feasible. In larger cities with a commercial sector, a sewer system is a necessity to keep up 

with increased wastewater generation. Such is the case for Jonestown, Texas. Located just north-

west of Austin in Travis County, Jonestown is currently at a population of approximately 2000 

and growing, with the surrounding area experiencing significant growth and an influx of 

homeowners. The land use is mainly residential with a commercial corridor running along a 

major road through town. The majority of Jonestown is currently serviced by septic systems, and 

the city has expressed a desire to move away from individual septic wastewater disposal towards 

a city-wide sewer system. Located in Texas hill country, Jonestown has variable topography that 

has made the design and implementation of a centralized system difficult; however, the city-wide 

collection and treatment system would increase town revenue, accessibility and growth.  

This project is sponsored in part by the Jonestown City Council with Marilee Pfannstiel 

as the Community Development Director of Jonestown, and in part by Frank Phelan, P.E. from 

Jay Engineering Company. Mr. Phelan was commissioned by the city to design their public 

sewer system and is the engineering lead for the students in the Biological and Agricultural 

Engineering department at Texas A&M University working in conjunction with Mr. Phelan. 

 

5.2. Scope (Basic Objectives, Design Study Areas/Horizons) 

 

Objectives: 

1. Develop environmental vulnerability and risk assessment maps for the study areas. 

2. Design a wastewater collection network for different population projections. 

3. Size and locate wastewater treatment plants. 

4. Create an effluent disposal or re-use plan.  

 

This report provides the following deliverables:  

 

1. Population Projections - includes: 

a. 10 year population estimate for study areas. 

b. Ultimate population estimate corresponding to fully developed condition of study 

areas. 

2. Sewer Pipe Design as CAD drawings - includes: 

a. Phase A and Phase B implementations for the commercial corridor corresponding to 10 

year and ultimate time horizons that plan for future land and population development. 

b. Piping layout, pipe diameters and lengths sizing, and capacity of flow. 
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3. Wastewater treatment plant (WWTP) suggested locations as CAD drawings, influent flow 

rates, and capacity sizing. 

4. Vulnerability Mapping as GIS maps of all study areas for risk assessment towards the 

environment.  

5. Suggested locations as CAD drawings for treated effluent irrigation reuse area.  

6. Estimated design cost as Excel spreadsheet – includes sewage system installation and material 

costs. 

 

This wastewater collection and treatment system will help the city of Jonestown develop 

and accommodate for growth pressures from Austin and the surrounding cities. This report 

outlines the design and design strategies utilized by the students at Texas A&M University. 

 

6. Design Objectives 

 

6.1. WWTP and Collection Network Layout  
The objective of the collection network layout is to provide wastewater service to all 

areas within the study boundaries. The layout must accommodate for future areas of 

development that will be able to connect to the wastewater sewage main. Additional sub-main 

piping will be necessary for these connections, but sub-mains are out of the scope of this project. 

They are assumed to be accommodated for by the future land planner. 

 

6.2. Vulnerability Mapping 
The objective of the vulnerability mapping is to assess the risk against the environment 

involved with construction of the piping layout. Environmental hazard could result from a break 

in the system, which would allow untreated wastewater to flow into the soil.  

 

6.3. WWTP and Collection Network Sizing  
The objective of the collection network and wastewater treatment plant sizing is to ensure 

that current and future wastewater services are being provided to the residents of Jonestown. The 

WWTPs and adjoining piping must be sized according to the amount of wastewater that will be 

generated. The unit used for the capacity calculations was the LUE. An LUE, or living unit 

equivalent, is a unit of measurement used to define the typical wastewater flow produced by a 

single family residence. 

 

6.4. Population Projections 
The projected number of people living in the Jonestown area will be determined utilizing 

population growth history from Travis County and Jonestown. Historically, Jonestown has seen 

less growth than the surrounding areas of Travis County, but the projections for this project will 

assumed that it will grow at the same aggressive rate as the rest of Travis County, as requested 

by the Jonestown City Council. By sizing the wastewater system for this aggressive growth rate, 

Jonestown will be able to accommodate all projected upcoming growth. The rates collected will 

also be compared to traditional urban planning methods, in order to compare effectiveness and 

accuracy. 
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6.5. Land Use Mapping 
The land use mapping is a requirement for developing the final system design. Two areas 

will be zoned, residential and commercial, based on the current existing development and city 

zoning maps. This is done in order to calculate the amount of wastewater that will drain from 

each area, as a residential area drains less than a commercial area. Land use mapping will aid in 

final design as it will enable pipe layout to be more accurate and efficient. 

 

6.6. Effluent Discharge and Reuse System Design  
After treatment in the WWTP, the effluent must be disposed of appropriately. Due to 

regulations forbidding the disposal of effluent in Lake Travis or any adjoining streams, a 

dispersal field for each WWTP will be utilized for this disposal. Drip fields were chosen for this 

project since they are more versatile in application and allow for more alternate location 

possibilities. The effluent will be pumped from the WWTP to the appropriate drip field with 

force mains, and a drip field line will be used to dispose of the effluent into the field. 

 

6.7. Economic Impact Assessment  
 In order to assess the feasibility of the overall project and of each of the phases of the 

project, a cost estimate needed to be developed.  This would allow the City of Jonestown to 

decide exactly how it would like to phase its development plan.  The City of Jonestown would be 

able to evaluate its financial resources and explore proper funding options to see how it would 

approach the problem of implementing a wastewater collection network. 

 

7. Design Constraints  

 

7.1. Funding Sources 
 One of the most fundamental constraints for the construction of this project is whether or 

not it can be financially supported.  According to Ron Wilde (City of Jonestown, City of 

Jonestown public meeting, 25 March 2015), several funding options exist and deserve 

exploration, including city financing, tax increment financing, state grants, developer 

contributions, and municipal utility districts.  It is likely that this project will need to be funded 

by a combination of several of these options.  Much coordination and correspondence will need 

to be completed to secure sufficient funding. 

 

7.2. Topography  
A major factor in the site selection of the three wastewater treatment plants was 

topography. The plant sites needed to be areas of land within the study boundaries that had 

relatively low slopes so that the building plots could be as flat as possible. According to the city 

ordinances, “development is prohibited on a slope with a gradient that exceeds thirty-five 

percent,” so areas with a greater slope than this were excluded from consideration (City of 

Jonestown, 2014). 

The elevation of the plants relative to the rest of the study areas was taken into account. 

The most ideal location for a plant is at the lowest elevation of the service area to allow for 

gravity flow pipes leading from all reaches of the study areas directly to the plant. Where this 

was not possible, force mains were designed from the gravity flow collection points at the lower 

elevations back up to the treatment plants using lift stations. This was in accordance with the city 

ordinance which states: “All new public wastewater systems shall be designed and constructed to 
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operate on a gravity flow basis by taking advantage of natural topographic conditions and 

thereby reducing the need for lift stations and force mains” (City of Jonestown, 2014). 

 

7.3. Floodplain  
To reduce costs of building the plants, the possible plant locations were chosen away 

from the 100-year floodplain that is located throughout Jonestown. In order to build a plant 

within the floodplain, it must be “protected from inundation and damage that may occur during 

that flood event” (TCEQ, 2009). These special requirements would add extra construction costs 

to the plants, and so areas within the floodplain were excluded from consideration. 

 

7.4. Water Wells  
A plant location must be at least 500 feet away from a public water well or 250 feet away 

from a private water well to avoid contamination of these drinking water sources (TCEQ, 2009). 

Therefore, all recorded wells within the area were located and accounted for using the TCEQ 

Water Well Report Viewer online.  

 

7.5. Existing Infrastructure  
Siting of the wastewater treatment plants took into account the existing infrastructure of 

the study areas. The plants could not be located on plots of land with existing buildings. Google 

Maps was used to locate and account for all existing infrastructure.  

 

7.6. Commercial versus Residential Land Uses  
The capacity of the sewer system must be able to handle any future commercial and 

residential development. The City Zoning map designated many of the study areas as either 

residential or commercial for future development, and any areas that were not included on the 

zoning map were assumed to be future residential zoning. The capacity requirements of the 

sewer system must be able to handle the varying wastewater loads that are generated from 

commercial businesses versus residential locations, since commercial businesses generally 

generate more wastewater than typical residential homes. 

 

 

8. Background Research and Literature Review 

 

8.1. Population Projections 

 

8.1.1 Census Data 
 The United Nations defines a population census as the total process of collection, 

compiling, and publishing demographic, economic, and social data pertaining to a specific time 

to all persons in a country or delimited part of a country. There are four essential features of 

census data (Lacey, 2015):  

1) Each individual is enumerated separately; the characteristics of each person within the 

household are recorded separately, 

2) The census covers a precisely defined territory and includes every person present or 

residing within its scope. The housing census should include every type of building and living 

quarters, 
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3) Each person and each type of building and living quarters is enumerated with respect 

to a well-defined point of time, 

4) The census is taken at regular defined intervals, usually every 10 years. 

Population projections are important for Jonestown because it helps planners, such as the local 

governor, stockholders, and landowners evaluate and revise the local development plans. These 

developments then lead to further examination of needed utilities. 

However, uncertainties and errors could happen due to shortcomings in data collection, 

such as not accounting the homeless population, residents who provide incorrect information, 

etc. Therefore, probability of errors is introduced in the Census Data. 

 

8.1.2 Cohort Component Method  
 Population projections are estimates of the population for future dates. They are usually 

based on the most recent census and are produced using the cohort component method. This 

method uses components of demographic change, such as age, ethnicity, and sex, to predict 

population growth (Lacey, 2015). The main component of population change is based on 

assumptions about future birth, death and net migration. In some cases, the projections also 

needed to consider future fertility and life expectancy in the local area. In the cohort component 

method, these components are assumed to remain constant throughout the projection time. As a 

forecasting tool, planners sometimes alter the vital statistics to reflect their view. It allows them 

to accurately project the total size of the population.  

There are also disadvantages to this method. The total projection would be highly 

dependent on the past census data, which mainly takes into consideration the reliable birth, death 

and migration rates over any other factors. Also, the birthrates and estimates of migration are 

assumed to remain the same throughout the whole period, which is unlikely to happen in reality. 

In conclusion, the cohort method is an efficient tool to project the potential growth or decline of 

a locale by age and sex, but it does not consider any non - demographic factors that could also 

affect the population, such as disaster, regulation, land uses, etc.  

 

8.2. Vulnerability Mapping  
A vulnerability or “risk” map, according to the Handbook for Vulnerability Mapping, 

"gives the precise location of sites where people, the natural environment or property are at risk 

due to a potentially catastrophic event that could result in death, injury, pollution or other 

destruction” (Edwards, et al.) A simple interpretation of this definition is how susceptible an area 

is to contamination. There are several types of methods in developing a vulnerability map. These 

methods can be tailored to the specifics of each project, which makes the process of map-making 

as versatile as ever. The “DRASTIC” methodology is primarily used for groundwater 

contamination. 

The DRASTIC method is a simple mathematical computation consisting of data readily 

available from online sources and previously made maps. The method takes into account: depth 

to water table, net recharge of aquifer, aquifer media, soil media, and topography, the impact of 

the vadose media zone, and the hydraulic conductivity of the aquifer. The DRASTIC method can 

be altered to meet the criteria of your project; each parameter does not need to be used in order to 

complete the mathematical computation. The flexibility of this model is why it is widely used in 

vulnerability mapping. A disadvantage to this model is that it can only be used for homogeneous 

aquifers. An aquifer with two or more media types cannot be evaluated using the DRASTIC 

model. The DRASTIC model's accuracy may be considered unreliable. There are other models, 
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like the PI-Method, that are more accurate and should be used for high impact and costly projects 

or operations. The PI-Method requires: extensive knowledge of ArcGIS, difficult mathematical 

computation, knowledge of fracturing, and lithology (Goldscheider, et al.)  

Babiker et al, created a vulnerability map to assess the possibility of contamination in 

groundwater at Kakamigahara Heights, central Japan. Because many of the aquifers in Japan are 

used for drinking water purposes, the cleanliness of the aquifer is of upmost importance. They 

realized the numerous methods in creating a vulnerability map and ultimately decided to utilize 

the DRASTIC model. Their reasons are the following: “the process-based methods use 

simulation models to estimate the contaminant migration but they are constrained by data 

shortage and computational difficulties, statistical methods use statistics to determine 

associations between spatial variables and actual occurrence of pollutants in the groundwater.” 

With this approach the “limitations included insufficient water quality observations, data 

accuracy and careful selection of spatial variables.” Advantages to using the DRASTIC method 

include rainfall and depth to groundwater, which are readily available for large areas, making the 

DRASTIC model more suitable for large regional areas (Babiker et al.) Babiker saw the 

simplicity of using the DRASTIC model and GIS for this project. “The simple definition of its 

vulnerability index as a linear combination of factors shows the feasibility of the computation 

using GIS” (Babiker et al.).  

 

8.3. Collection System Design  

Wastewater collection systems carry wastewater from residential, commercial or 

industrial properties to a treatment plant or discharge point. Several methods of conveyance may 

be combined in a collection system for maximum efficiency. The three methods researched by 

the Jonestown team are the conventional gravity lines, force mains, and low-pressure systems.  

 

8.3.1. Conventional Gravity Lines 

Conventional gravity sewers transport wastewater by gravity along a downward sloping 

pipe. Gravity lines are designed to drain all the sewage to central lowland. The pipe is designed 

so that the slope and size are adequate to maintain flow in the direction of the discharge point 

without pressurizing the pipe. Gravity lines are the most common collection sewers used to 

collect and transport domestic water due to reliability, durability and consistent minimum 

velocity. Maintaining a minimum velocity decreases blockages, pipe corrosion and odors. 

However, gravity sewers can require large-scale excavations in varied terrain to maintain 

consistent slope.  

Gravity sewers are designed to manage sanitary waste in peak conditions. (USEPA, 

2002) The pipelines must maintain a minimum pipe size to reduce probability of clogging, and a 

minimum velocity to ensure self-cleaning of the lines. The standard minimum size and velocity 

are enforced to reduce maintenance and related costs. In addition, manholes must accompany 

gravity sewer construction, increasing baseline costs. (USEPA, 2002) 

 

8.3.2. Force Mains and Lift Stations 

Force main sewers are pipelines that transport wastewater under pressure from lower to 

higher elevation. Lift stations contain pumps or compressors to provide the energy for 

wastewater conveyance. Force mains and accompanying lift stations are installed when gravity 

line construction will result in deep excavations. Typically, if the gravity lines require trenches 

deeper than 20 feet, than force mains are more economical.  
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Force mains can decrease the overall sewer construction cost due smaller pipe size and 

depth. Installation is also simpler and cheaper due to shallow pipe trenches. (USEPA, 2000) 

However, the construction cost of lift stations, in addition to force main lines, may be 

comparable to the cost of gravity lines. Passage of wastewater through lift stations has a higher 

likelihood of septic discharge. Force mains and lifts stations require frequent maintenance and 

cleaning to avoid clogging and pipe corrosion. The design of force main lines is accompanied by 

lift station design and must incorporate friction losses, pressure surges and maintenance. 

(USEPA, 2000) 

 

8.3.3. Low-Pressure Systems  

Low-pressure systems use individual residential pumps to push the wastewater flow to a 

main pipeline or master lift station. Low-pressure sewer systems are beneficial where 

conventional sewer methods are not feasible, such as in low population rural areas or steep 

terrain areas. Low-pressure systems are also efficient when “cluster” pumps may be installed to 

connect several residences. Small diameter pipes, due to low flow capacity in a low-pressure 

system decrease construction and repair costs (USEPA, 1998). 

 

8.4. Effluent Reuse Network Design  

 

8.4.1. Effluent Requirements  

The requirement found in TAC Chapter 309.1 specifies that the wastewater in the WWTP 

must be treated by secondary treatment before leaving the plant as effluent. The secondary 

treatment must treat the water within standards for Biochemical Oxygen Demand, 5-Day 

(BOD5), Total Suspended Solids (TSS), Dissolved Oxygen (DO), and pH (TAC Chapter 309.1). 

These standards are shown in Table 1: Secondary Treatment Standards for Single Grab Samples. 

 

Table 1: Secondary Treatment Single-Grab Standards (TAC Ch. 309.1) 

Pollutant Required Quality 

BOD5 65 mg/l 

TSS 65 mg/l 

DO 2.0 mg/l 

pH Within 6.0-9.0 standard units 

 

 

The Lower Colorado River Authority does not have any regulations of the quality of the 

effluent in addition to what TCEQ stipulates. There are no additional regulatory authorities that 

have jurisdiction in the area of Jonestown. Only the TCEQ regulations must be considered for 

the effluent quality requirements. 

 

8.4.2. Effluent Reuse Options 

Since the city of Jonestown is within the LCRA boundaries, the LCRA Parks Land and 

Water Use Regulations Rule 17 dictates that the effluent may not be disposed into Lake Travis or 
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the surrounding streams and rivers. The practice of disposing the effluent into lakes, streams, or 

rivers is common throughout most of Texas, as the treated effluent is treated to be as clean as or 

cleaner than the natural water resources. 

Without the effluent draining into Lake Travis or elsewhere, a field must be constructed 

for the effluent disposal. Two such fields can be considered: a drip field or a spray field. A drip 

field used a track buried underground to distribute the effluent uniformly across the field area. 

This can be done either continuously or during regulated intervals. The drip field is viable for 

slopes up to 1% lateral slope (TAC §222.121). A spray field is different than this; it works 

similarly to a lawn sprinkler system. Drawbacks to this system include that the wastewater must 

be treated as stringently as possible, due to potential human contact, and that the land utilized for 

the field cannot reach as great a maximum slope. Drip fields, as opposed to spray fields, are more 

common throughout most of Texas.  

Other reuse options include using the effluent for beautification for city areas like parks 

and golf courses. This is a common practice, since an additional field will not need to be 

developed and the water maximizes potential. 

 

8.5. Previously Proposed Solutions  
Currently, Jonestown has two separate agreements to provide wastewater service to the 

city. The first agreement is with the city of Leander on the North East side of the city. Leander 

will provide 2000 LUE’s of water and 1000 LUE’s of wastewater service to the city. Under this 

agreement Jonestown is responsible for all the necessary piping and equipment needed to move 

the water up to the city limits between the two cities. The agreement has a 15-year limit where 

the city of Leander has the right to inform the City of Jonestown that it needs to find another 

source of water and wastewater service. This is done in case Leander becomes unable to provide 

these services anymore due to fiscal reasons or lack of available water. If Leander decides to 

terminate these services, Jonestown has 2 years to find an alternative way to receive these 

services. On the contrary, if Jonestown decides to terminate the contract at any time, then they 

must give 12 months’ notice. 

The second agreement is with the city of Lago Vista on the southern edge of Jonestown. 

The service is for the area called “The Hollows,” located southwest of Study Area B (Figure 2) 

from the study area map.  This agreement outlined a phased plan for providing wastewater 

service to the Hollows: temporary service would be provided through a “pump and haul system” 

until a permanent effluent line was established. Lago Vista will provide 400 LUE’s of 

wastewater treatment. As with the Leander agreement, the city must provide all the necessary 

pipes to deliver the wastewater to the point of delivery. These agreements familiarizes the design 

teams with some wastewater treatment system practices (quality and quantity of wastewater 

treated in a certain area) and gives an example layout of a wastewater collection pipeline with lift 

stations. 

In the past the city of Jonestown commissioned a different student group to make a 

wastewater master plan. The study was named “Phase 1” and consisted of 6 waste water 

treatment plants (WWTPs) along with: a gravity collection line along FM 1431, a slope map of 

the study area, a map of future development and wastewater flow projections (capacity of gpd 

per plant is shown on map) and an approximate 100 year FEMA floodplain. The Phase 1 study 

was not taken any further due to the residents of Jonestown and the City Council not wanting 6 

WWTPs to be built. The residents thought 6 WWTPs was “excessive” and made a point of 
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telling the design team that 6 WWTPs was something they did not want to see in the final design. 

See Figure 1 below for an image of this previous solution. 

 

Figure 1. Previous design solution that was rejected by the city due to excessive wastewater 

treatment facilities. 

 

 

9. Design 

 

9.1. Alternatives Considered 

 Factors affecting design alternatives were differing study area priorities (primary and 

secondary) and study horizons (short-term and long-term).  

 

9.1.1. Primary and Secondary Study Areas  

The study areas were divided into primary and secondary priority based on the order of 

importance placed on future development of the city. This information was collected during the 

public meetings held in Jonestown, during which the public opinion of the study areas were 

discussed. Based on a consensus, the commercial corridor (Figure 2, labelled CC) was decided to 

be the primary study area, so that the city could grow in its commercial sector. A planned 

subdivision called the “Jonestown 300” was also decided to be a primary study area, since it is 

expected to achieve an aggressive growth in the near future. This study area is labeled “Study 

Area C” in the study boundaries map. See Figure 2 below for study area labeling reference.  
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 Figure 2. Map of Study Areas 

 
All other study areas (B, D, E, F, G, and H) were classified as secondary study areas due 

to the assumption that their projected growth will not being as aggressive as in the commercial 

corridor and Study Area C. These secondary study areas were considered in the final design, but 

with more generalized piping layouts and cost estimates than the primary study areas. 

 

9.1.2. Short-Term Study Horizon  

    The short-term study horizon for this project is 10 years. The 10 year horizon is planned to be 

implemented in Phase A of the phasing plan for the primary study area commercial corridor.  

 

9.1.3. Long-Term Study Horizon  

    The long-term study horizon is the ultimate horizon. This is the assumed full population and 

land development within the study boundaries. This portion of the phasing plan is called “Phase 

B.” It was decided that the best option was to base the final design for the secondary study areas 

and the Jonestown 300 primary study area on the ultimate horizon so that the piping would not 

have to be upgraded in size as the population surpassed the 10-year projections. This also 

ensured that the wastewater treatment plants will be equipped to handle the ultimate horizon 

wastewater capacity flow without having to be redesigned and rebuilt.  

 

9.2 Analysis of Alternatives  

  

 

9.2.1. Study Boundary Definition  

     All relevant design parameters, constraints, and population data were considered only for 

areas within the primary and secondary study areas. Although there is a possibility that in 

practice, the designed sewer system and corresponding wastewater treatment plants will service 



11 

 

areas outside of these set boundaries, the final design is based solely on data relevant to the areas 

within the study boundaries.   

 

9.2.2. Population Projections  

Over the next 20 years, Jonestown is expecting increased growth due to new 

developments. With these new developments, the city of Jonestown is looking to introduce a 

wastewater treatment system to transport, treat and dispose of the new waste stream the city is 

expecting to generate.  This paper aims to develop a population projection curve for the city over 

the next 20 years, to have a better idea of how much wastewater the city will create to size the 

wastewater system.  Conservative, moderate, and aggressive population projections were 

evaluated to determine the best population projection scenario. 

From 1990 to 2010, Jonestown, Texas experienced a growth of just under 600 people 

based on the census data. Over the next 20 years, Jonestown is expecting increased growth due to 

new developments. With these new developments, the city of Jonestown is looking to introduce a 

wastewater treatment system to transport, treat and dispose of the new waste stream the city is 

expecting to generate.  This paper aims to develop a population projection curve for the city over 

the next 20 years, to have a better idea of how much wastewater the city will create to size the 

wastewater system.  Conservative, moderate, and aggressive population projections were 

evaluated to determine the best population projection scenario. 

 Assumptions 

 Residential areas in study areas: 2.23 persons/LUE (Census.gov) 

 Homes (LUE): 1.23LUE/acre (Moderate & Aggressive) 

 Homes (LUE): 2 LUE/acre (Study areas B, D, E, F, and G in Aggressive model) 

 Only areas with 0-25% slope change will be inhabited (city ordinance) 

 

9.2.2.1 Conservative Population Projection           
In the conservative scenario, historical population data was collected from Census.gov 

and The Jonestown City Comprehensive Plan. The population data showed a slow increment of 

growth in the past two decades that has averaged 46.7% for Jonestown, which is approximately 

2.34% per year. This is lower than but still comparable to Travis County, which has averaged 

3.8% growth per year over the past two decades. A contributing factor to this lag in growth is 

that the city does not have much existing utility, infrastructure, or wastewater treatment. With the 

new plan for a wastewater system, the city will be able to compete with the surrounding areas in 

Travis County, and population will increase at a rate similar to the Travis County averages. 

There are other factors that affect the population growth in Jonestown, but once the wastewater 

system is updated, infrastructure will cease to be a limiting factor. 

With exclusions of all other uncertainties and probabilities that might potentially affect 

the growth rate in the future, the average growth rate in the conservative scenario was based fully 

on the historical growth rate in the past twenty years. In this estimation, the population would 

increase nearly one thousand people in the next 20 years. However, this estimation would be the 

most inaccurate projection of population growth because this model does not take new 

developments into account. Given the current development climate and the planned development 

of a sewer system and convenient utility supply, a higher growth rate than the historical average 

is highly probable.  The conservative model could be used as a possible projection of growth if a 

“do nothing” alternative is selected. The population projection for the conservative model is 

shown in Table 2 and a graphical representation in Figure 3. 
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Table 2: Census data projections for a conservative model 

Year Population Estimates 

1990 1250 

2000 1681 

2010 1834 

2015 2045 

2020 2194 

2025 2344 

2030 2492 

2035 2641 

 

 
Figure 3: Conservative model for population projections 

 

9.2.2.2 Moderate Population Projection 
           In the moderate scenario, the team evaluated the topography within the study areas and 

excluded the areas that were too steep or might be too costly to build units on. After reviewing 

the city ordinances for Jonestown, we found that the city does not allow development on land 

steeper than 35%, so areas included in the projection ranged from 0-25% slope change.  

As a baseline growth, it was assumed that the starting population for the moderate projection 

would be the current population for 2015. Assuming that Jonestown will follow the same 

population density trend as Travis County, there will be approximately 2.53 person/LUE, 

according to Census.gov. If Jonestown continues the same development patterns seen in current 

development plans and housing seen in the Hollows, a subdivision in Jonestown that developed 

recently as a residential area, it will have approximately 1.23 LUE/acre. This number is a good 

assumption for the rest of the study area due to the similar topography. Areas were calculated 

using the measuring tool in AutoCAD. 
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In order to determine the number of LUE’s per area, the following equation was used: 

 

𝐿𝑈𝐸 = 𝐴 ∗
1.23

𝑎𝑐𝑟𝑒
 

 

(1) 

Where: 

 LUE= Total number of homes in each study area 

 A= Total area of each study area, acre 

 

The population in each of the study areas was determined as follows: 

 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = # 𝑜𝑓𝐿𝑈𝐸 ∗ 2.53
𝑝𝑒𝑟𝑠𝑜𝑛

𝐿𝑈𝐸
 

(2) 

Where: 

 Population= Total number of people within each study area 

LUE= Living Unit Equivalent 

By applying equations 1 and 2 to each study area, the total population and the number of 

LUEs (homes) was determined. In order to project this population, since these areas are not yet 

developed, a growth assumption was made. For the moderate model, the assumption is that 

growth for each area will vary over 8-13 years. Within this time frame, all these areas will have 

been fully developed. Percentage growth over these years varies from 2%-14% of each total 

study area. 

 

Table 3: Study Area Map areas used to estimate moderate population 

Area Acre Houses Population 

B 380 468 1183 

C 202 248 629 

D 121 149 377 

E 260 320 809 

F 33 41 103 

G 1241 1527 3863 

H 192 237 599 

Total 2430 2990 7561 

 

Table 4: Population projection data for a moderate scenario 

Calendar Year Year of Study Population 

2015 0 2045 

2020 5 2124 

2025 10 4355 

2030 15 7742 

2035 20 9606 
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Figure 4: Moderate model for population projections 

 

 

 

9.2.2.3 Aggressive Population Projection 
In the aggressive scenario, assumptions remain the same except for the amount of 

LUEs/acre. Sections B, D, E, F, and G were assumed to have 2 houses/acre in order to portray an 

aggressive development compared to the moderate projection. The growth rate of each different 

section was spread over a time frame of about 4 to 10 years depending on size. Within this time 

frame, all these areas will have been fully developed. Percentage growth over these years varies 

from 10%-30% of each total study area. 

 

Table 5: Study Area Map areas used to estimate aggressive population 

Area Acre Houses Population 

B 380 760 1924 

C 202 248 629 

D 121 242 612 

E 260 520 1315 

F 33 66 167 

G 1241 2483 6281 

H 192 237 599 

Total 2430 4556 13571 

 

Table 6: Population projection data for an aggressive scenario 

Calendar Year Year of Study Population 

2015 0 2045 

2020 5 2675 

2025 10 5049 

2030 15 9457 

2035 20 13571 
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Figure 5: Aggressive model for population projections 

 

Comparison 

In Figure 5, a comparison of all three projections has been made to depict differences in 

population. Most importantly, the rate at which growth occurs is seen throughout all three 

projections. For calculations, the aggressive model was used because it was the best estimation 

that supported the need for a wastewater collection system. Also, it was a good estimate for a 

preliminary wastewater collection design. 

 
Figure 6: Projection comparison for population in all study areas 
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9.2.3. Wastewater Capacity Calculations  

9.2.3.1. Relevant Assumptions 
The general assumptions made, under the guidance of engineering lead Frank Phelan, for 

the ultimate time horizon were as follows:  

 4 LUE/acre for residential land use in the commercial corridor, 

 6 LUE/acre for commercial land use in the commercial corridor, 

 1.23 LUE/acre for residential land use in Study Areas B, C, D, E, F, G, and H, 

 Developable land excludes areas greater than 25-35% slope, and 

 Developable land excludes areas within the 100 year floodplain and the adjoining 25 foot 

LCRA buffer zone. 

  

The assumptions made for the 10 year time horizon were as follows: 

 Wastewater generation of 75 gallons/day/person, 

 Wastewater generation of 200 gallons/day/LUE, and 

 6 LUE/acre for commercial land use. 

 

An LUE, or living unit equivalent, is a unit of measurement used to define the typical 

flow produced by a single family residence. 

 

9.2.3.2. Developable Land Estimates 
The amount of developable land was estimated in order to determine the ultimate horizon 

wastewater capacity generation, in which all available land is developed. Areas within the study 

boundaries greater than 25-35% slopes were deemed too steep for land development, and so 

were excluded from developable land estimates. Areas within the 100 year floodplain and the 

adjoining 25 foot LCRA buffer zone were also excluded from estimates, under the guidance of 

Frank Phelan (LCRA, 2007). 

In order to properly size the piping and WWTPs, it is important to know how many 

people will be using the land and for what kind of use. Looking at the developable land in each 

area gives an idea of how many people will be living in each study area. Since Jonestown is 

zoned to be predominantly residential with a small commercial corridor, the WWTP will only 

need to be able to handle waste from residential and commercial uses. 

 

9.2.3.3. Capacity Calculations 
To determine the size of the pipes, the number of LUEs and the total developable land 

area were used. The projected number of LUE’s for each individual pipe was calculated by 

estimating the developable land that would feed into each specific pipe. Once the total amount of 

LUE’s was determined for each pipe, a sizing spreadsheet was utilized to determine the pipe 

diameter based on total flow through the pipe. For pipes that collect from multiple sources, the 

LUE’s from each pipe that feeds into the main pipe were added up and used to determine the size 

for that pipe.  

     

9.2.4. Design Spreadsheets  

In order to keep calculations consistent with the industry and our engineering lead, Frank 

Phelan, two spreadsheets with integrated equations for pipe sizing and lift station design were 
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utilized. These spreadsheets were provided by Jay Engineering Company, Inc., an engineering 

firm from Leander, TX. The required information needed to apply these spreadsheets was 

determined from measurements done on the AutoCAD map of Jonestown, population 

projections, and TCEQ regulations. See Appendix B at the end of this report for samples of the 

following design spreadsheets. 

9.2.4.1. The Wastewater Capacity Modeler Spreadsheet 

 The Wastewater Capacity Modeler spreadsheet was created to determine the pipe 

diameter for gravity lines in wastewater collection networks. The inputs for the Modeler included 

the number of LUEs, magnitude of area served, actual pipe diameter, Manning’s roughness 

coefficient (n), and minimum pipe slope. Manning’s roughness coefficient refers to the 

roughness of open channels and is assumed to be 0.013 according to the minimum requirements 

of the TCEQ §217.53 standards. The minimum pipe slope varies for different pipe sizes and can 

be found in TCEQ §217.53 Table C.1.  The pipe diameter was chosen based on criteria for, flow 

velocity, full-flow capacity, and design flows. 

 The flows and peaking factor section on the spreadsheet refer to the full flow velocity, 

average dry weather flow and the peaking factor. The average dry weather flow is the sewage 

flow measured following a 7-day rainless week. This is an important aspect of the design 

because if flow is too slow due to the lack of water infiltration, sewage will have a longer sitting 

time, which causes sedimentation of solid particles and undesirable biological reactions. The 

average dry weather flow was calculated as follows (Jay Engineering Company, 2015): 

 

𝐴𝑣𝑔. 𝐷𝑟𝑦 𝑊𝑒𝑎𝑡ℎ𝑒𝑟 𝐹𝑙𝑜𝑤 (𝐴𝐷𝑊𝐹) = 𝐿𝑈𝐸 ∗
200𝑔𝑝𝑑

𝐿𝑈𝐸
∗

1 𝑑𝑎𝑦

1440 𝑚𝑖𝑛𝑢𝑡𝑒𝑠
 

(3) 

Where: 

 ADWF = wastewater flow (gpm) 

 LUE = Living Unit Equivalent 

 

The full flow velocity was calculated as follows (Davis, 2010): 

 

𝑉 =
1.486

𝑛
∗ 𝑅

2
3 ∗ 𝑆

1
2 

(4) 

 

Where: 

 V = Velocity of the pipe (fps) 

 n = Manning’s roughness coefficient (unitless) 

 R = Hydraulic radius (ft) 

 S = Minimum pipe slope (ft/ft) 

 

The peaking factor is used to determine the peak flow of the proposed design capacity. It was 

calculated as follows (Jay Engineering Company, 2015): 

 𝑃𝐹 =  
18 + (0.0206 ∗ ADWF)0.5

4 + (0.0206 ∗ ADWF)0.5 
 

(5) 
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Where: 

 PF= Peaking Factor 

 ADWF= wastewater flow (gpm) 

 

Capacity calculations for the pipes include the flow capacity of the pipes (Q), the peak dry 

weather flow (PDWF), and the peak wet weather flow (PWWF). The flow capacity of the pipes 

was determined as follows (Jay Engineering Company, 2015): 

 

𝑄 = 𝑉 ∗ 𝐴 ∗
7.485 𝑔𝑎𝑙

𝑓𝑡3
∗

60 𝑠𝑒𝑐

𝑚𝑖𝑛
 

(6) 

Where: 

 Q = Flow rate (gpm) 

 V = Velocity of the pipe (fps) 

 A = Cross-sectional area of the pipe (ft2)  

 

PDWF and PWWF were calculated as follows (Jay Engineering Company, 2015): 

 

𝑃𝐷𝑊𝐹 = 𝑄65% = 0.65 ∗ 𝑄 

 

(7) 

𝑃𝑊𝑊𝐹 = 𝑄85% = 0.85 ∗ 𝑄 

 

(8) 

 

PDWF is assumed to be 65% of the flow capacity of the pipe and occurs when there is no 

infiltration into the pipe. PWWF is assumed to be 85% of the flow capacity in the pipe and 

occurs when there is infiltration. The design flow refers to the peak dry weather flow and peak 

wet weather flow in relation to the areas served. This differs from the previously calculated 

PDWF and PWWF because those are in terms of pipe theoretical capacity versus actual 

wastewater flow being produced. The design flow peak dry weather, inflow & infiltration, and 

peak wet weather flow were calculated as follows (Jay Engineering Company, 2015): 

 

𝑃𝐷𝑊𝐹𝑑𝑒𝑠𝑖𝑔𝑛 𝑓𝑙𝑜𝑤 = 𝐴𝑣𝑔. 𝐷𝑟𝑦 𝑊𝑒𝑎𝑡ℎ𝑒𝑟 𝐹𝑙𝑜𝑤 ∗ 𝑃𝑒𝑎𝑘𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 

 

(9) 

 

𝐼𝑛𝑓𝑙𝑜𝑤 𝑎𝑛𝑑 𝐼𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑔𝑝𝑚) = #𝑜𝑓 𝑎𝑐𝑟𝑒𝑠 𝑠𝑒𝑟𝑣𝑒𝑑 ∗
750

𝑔𝑝𝑑
𝑎𝑐𝑟𝑒

1440
𝑚𝑖𝑛
𝑑𝑎𝑦

 

(10) 

 

𝑃𝑊𝑊𝐹𝑑𝑒𝑠𝑖𝑔𝑛 𝑓𝑙𝑜𝑤 = 𝑃𝐷𝑊𝐹 + 𝐼𝑛𝑓𝑙𝑜𝑤 𝑎𝑛𝑑 𝐼𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (11) 

 

The PDWF and PWWF of the pipes had to be greater than the design flow PDWF and 

PWWF because this indicated that the pipe size would be sufficient to hold the expected flow 
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production. Pipe diameters were chosen according to whether the pipes could sustain the 

expected capacity.  

 

9.2.4.2. The Lift Station Design Spreadsheet 

The Lift Station Design spreadsheet was used to design the lift station specifications, 

including lift station capacity, wet well dimensions, force main diameter, and pump 

specifications. Flow development of the lift stations was based on the peak wet weather flow. 

This determined what capacity the lift stations and pumps had to be in order to handle the 

expected incoming flow. The peak wet weather flow was calculated as follows (Jay Engineering 

Company, 2015): 

 

𝑃𝑃𝑊𝐹 = 𝑃𝐷𝑊𝐹 + 𝐼𝑁𝐹𝐿𝑂𝑊 𝐴𝑁𝐷 𝐼𝑁𝐹𝐼𝐿𝑇𝑅𝐴𝑇𝐼𝑂𝑁     (12) 

 

The PDWF and PWWF for lift station design is the accumulation of flows from incoming 

gravity pipes. Lift station and pump capacity is chosen based on the PWWF. The capacity must 

be higher than the calculated PWWF. 

The next step was to determine the depth of the wet well required for the lift station. The 

purpose of a wet well is to store wastewater and to provide sufficient submergence to the pump 

suction inlet to maintain suction and prevent pump cavitation (Davis, 2010). 6 and 8-foot 

diameter wet wells were used because they provided the best detention times and could sustain 

the minimum wet well working volume. The minimum well working volume (WWV) was 

calculated as follows (Jay Engineering Company, 2015): 

 

𝑊𝑊𝑉𝑚𝑖𝑛 =
𝑃 ∗ 6

4
 

 

(13) 

Where: 

 WWVmin = minimum well working volume (gal) 

 P = Pump capacity (gpm) 

 6 = minimum cycle time (min) 

 

The total static head was determined from the difference in elevation between the force 

main outflow and the force main inflow. Based on the Q-H system curve needed to transport the 

wastewater, an optimal pump system could be determined based on published pump performance 

curves.  

9.2.4.3. Force Mains Spreadsheet 

Since the topography in Jonestown has areas that are not favorable to gravity sewage 

systems, the use of force mains became an alternative to overcome high slope changes. Since 

TCEQ §217.62 mandates flow velocity in force mains to be in the range of 3-7 fps, the diameter 

of the force main was determined based on this required velocity and the expected flow 

production from the serviced LUEs. The following equation was used to find the pipe flow 

velocity for determining the desired pipe diameter (Jay Engineering Company, 2015): 

 

𝑉 =
𝑄

𝐴
 

 

(14) 
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Where: 

 V = Velocity of the force main (fps) 

 Q = Flow rate in the force main (ft3/s) 

 A = Cross sectional area of the force main pipe (ft2) 

By inputting the known quantities, the diameter was interpolated for the required 

velocity, 3-7 fps. 

9.2.5. Vulnerability Mapping  

9.2.5.1. DRASTIC Methodology 

The DRASTIC model method consists of several different types of data and information, 

including: depth to water (D), net recharge (R ), aquifer media (A), soil media (S), topography 

(T), impact of the vadose media zone (I), hydraulic conductivity of the aquifer (C.) The 

DRASTIC model equation is as follows: 

 

𝐷𝑅𝐴𝑆𝑇𝐼𝐶 𝐼𝑁𝐷𝐸𝑋(𝐷𝐼) = 𝐷𝑅𝐷𝑊+𝑅𝑅𝑅𝑊+𝐴𝑅𝐴𝑊+𝑆𝑅𝑆𝑊+𝑇𝑅𝑇𝑊+𝐼𝑅𝐼𝑊+𝐶𝑅𝐶𝑊   (15) 

 

Where: R = rating (Refer to Tables 4,5,6,7,8,9,10 – EPA DRASTIC Handbook) 

W = weight (Table 2 – EPA DRASTIC Handbook) 

 

The higher the DRASTIC INDEX (DI) the more susceptible the area is to contamination. 

The use of the DRASTIC model for the city of Jonestown risk map used data from: United States 

Geological Survey (USGS), the Web Soil Survey (WSS), Environmental Protection Agency 

(EPA), and the Jonestown comprehensive plan and city ordinances.  

 

9.2.5.2. DRASTIC Data Collection and Assumptions 

Table 1 from the EPA DRASTIC handbook contains information on where the data for 

the DRASTIC parameters were found for Tables 2-11 (USEPA, 1987.) 

The Jonestown Comprehensive plan clearly states that the city of Jonestown area lies on a 

karst limestone area with no aquifer area directly beneath (Espey Consultants Inc, 2006). With 

this information, a safe assumption was made for the “R” value of the DRASTIC model; the 

value can be zero or eliminated from the equation for this specific project. 

Since there is no aquifer water to consider in the area, eliminating the “C” value (the 

hydraulic conductivity of the aquifer water) was a valid assumption. 

Because the Jonestown Comprehensive plan states the city is on a karst limestone area aquifer 

media, the “A” value for aquifer media was assumed constant for the entire City of Jonestown 

and its ETJ area. 

The Jonestown comprehensive plan didn’t specifically state information regarding a 

water table, and it was decided not to eliminate the “D” value (depth to water table) from the 

DRASTIC model. Data for the depth to water table was taken from the United States Geologic 

Survey (USGS) website and was found to be 200 feet. It was assumed that this value was 

constant for the entire city of Jonestown and its ETJ area. 

The impact of the vadose zone was assumed to be equal in length to the depth to water 

table as the vadose zone takes into account the soil and geologic layer. Therefore, the “I” value 

was assumed to be equal to the “D” value. 
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Soil maps and topography maps were provided by the United States Department of 

Agriculture (USDA) and Natural Resource Conservation Service (NRCS) via the Web Soil 

Survey (WSS.) Each individual study area was mapped on the WSS.  

 

9.2.5.3. DRASTIC Vulnerability Calculations 
Excel was used to compute the data from the DRASTIC INDEX equation and 

corresponding EPA tables (USEPA, 1987.) A table for risk values of the Jonestown vulnerability 

map was generated and the results can be found in Table 7 below. 

 

Table 7. Vulnerability Mapping table 

Study 

Area 

Soil Type Slope Rating DI Color 

code 

B W- Water         

  TdF- Tarrant-Rock outcrop complex 18-50% 1 117 Rose 

  TaD- Tarrant soils 5-18% 5 121 Rose3 

  BoF- Brackett-Rock outcrop-real complex 8-30% 3 119 Rose2 

  BiD- Brackett-Rock outcrop- complex 1-12% 8 124 Red 

C BiD- Brackett-Rock outcrop- complex 1-12% 8 124 Red 

  TcA- Tarrant and speck soils 0-2% 10 126 Red 

  BoF- Brackett-Rock outcrop-real complex 8-30% 3 119 Rose2 

 D BoF- Brackett-Rock outcrop-real complex 8-30% 3 119 Rose2 

  BiD- Brackett-Rock outcrop- complex 1-12% 8 124 Red 

  VoD- Volente silty clay loam 1-8% 8 124 Red 

  TaD- Tarrant soils 5-18% 5 121 Rose3 

E BoF- Brackett-Rock outcrop-real complex 8-30% 3 119 Rose2 

  TaD- Tarrant soils 5-18% 5 121 Rose3 

  BiD- Brackett-Rock outcrop- complex 1-12% 8 124 Red 

  VoD- Volente silty clay loam 1-8% 8 124 Red 

  TcA- Tarrant and speck soils 0-2% 10 126 Red 

 F VoD- Volente silty clay loam 1-8% 8 124 Red 

  TaD- Tarrant soils 5-18% 5 121 Rose3 

  BiD- Brackett-Rock outcrop- complex 1-12% 8 124 Red 

  BoF- Brackett-Rock outcrop-real complex 8-30% 3 119 Rose2 

G TcA- Tarrant and speck soils 0-2% 10 126 Red 

  Md- Mixed alluvial land (frequently 

flooded) 

0-1% 10 126 Red 

  LcB- Lewsville silty clay 1-2% 10 126 Red 

  BoF- Brackett-Rock outcrop-real complex 8-30% 3 119 Rose2 

  BiD- Brackett-Rock outcrop- complex 1-12% 8 124 Red 

  AgC2- Altoga silty clay 3-6% 9 125 Red 

  TaD- Tarrant soils 5-18% 5 121 Rose3 

  VoD- Volente silty clay loam 1-8% 8 124 Red 

H GP- pits, gravel 1-90% 1 117 Rose 

  VoD- Volente silty clay loam 1-8% 8 124 Red 

  BoF- Brackett-Rock outcrop-real complex 8-30% 3 119 Rose2 



22 

 

  BiD- Brackett-Rock outcrop- complex 1-12% 8 124 Red 

  W – Water         

  TaD- Tarrant soils 5-18% 5 121 Rose3 

 

According to the excel data, the majority of Jonestown has very high levels of 

contamination risk, primarily due to the topography of the areas. Since all areas initially rated 

“high – very high”, the “very low – very high” scale was revalued to include all ratings within 

the original risk evaluation. Refer to Table 8 below for the general and revalued scale. 

 

 

Table 8. General DRASTIC scale and revalued scale used for Jonestown. 

 

General Scale DI Value   Revalued Scale DI Value 

Very Low 19   Very Low 115 

Low 45   Low 117.75 

Moderate 70   Moderate 120.5 

High 115   High 123.25 

Very High 160   Very High 126 

 

After downloading the ArcGIS information from the WSS, and reviewing the information 

from the excel tables, a “color system” was devised marking which areas were: very low to low, 

low to moderate, moderate to high and high to very high susceptibility to contamination based on 

the DRASTIC INDEX (DI) value for each area. Refer to the Appendix for the Vulnerability 

Maps for the study areas B,C,D,E,F,G,H. 

 

10. Final Recommendation 

10.1. WWTP Locations and Specifications 

Since the study areas are separated, the final recommendation for the WWTPs is that 3 

separate WWTPs are to be built. WWTP1 will serve Study Areas C, D, E, F, and H. WWTP2 

will service Study Area G. WWTP3 will service Study Area B. The three zones that the study 

areas have been divided into will allow each WWTP to service the surrounding study areas. 

 

10.1.1. WWTP1 Location 
Study Areas C, D, E, F, and H, along with portions of the commercial corridor will feed 

into a treatment plant located in the center of Study Area C, labeled WWTP 1. Area C was 

chosen because it is the most centralized of the study areas, and so will be the most cost efficient 

location which to convey the wastewater. See Figure 7 for the location of the treatment plant 

located in the center of Study Area C.  

The suggested placement of WWTP 1 within Study Area C was based on the grade of the 

land, the sizing of the WWTP, the elevation, and the proximity to the 100-year floodplain. It 

would be difficult and costly to build in an area where the slope is too great because it would be 

necessary to excavate large amounts of land. Therefore, an area with a low slope was chosen.  

A disadvantage is that the chosen location is at an elevation that is slightly higher than a 

good portion of the serviced study areas. This means that there will have to be a force main 
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connecting the plant to a lift station collection point downhill to WWTP1, located in the 

commercial corridor. 

 

 

 
Figure 7. Location of WWTP 1 and Drip Irrigation Field in Study Area C 

 

 

10.1.2. WWTP2 Location 
The second wastewater treatment plant will be placed within Study Area G. The plant can 

be seen in Figure 8, labeled WWTP 2. This plant will only provide service for Study Area G. 

This may change in the future as more land is developed in the surrounding areas since this study 

area is isolated, but the scope of this project focuses only within the study area boundaries. The 

criteria for placement of this WWTP is the same as the first: topography, size of plant, elevation 

and proximity to 100-year floodplain. There was also a water well located within the study area, 

and so the plant had to be placed at least 500 feet away. The suggested location has the most 

level grade within Study Area G. The elevation is roughly average of the surrounding study area, 

meaning that both gravity lines and force mains will be required. Similar to WWTP 1, gravity 

lines flow into low points and lift stations pump the wastewater uphill to WWTP2. 
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Figure 8. Location of WWTP 2 and Drip Irrigation Field in Study Area G 

 

10.1.3. WWTP3 Location 
The suggested WWTP in Study Area B can be seen in Figure 9, labeled WWTP3. This 

treatment plant will service only Study Area B. “The Hollows,” suburb adjacent to Study Area B 

has a wastewater agreement with Lago Vista and so was removed from the scope of this project. 

The location criteria for WWTP3 are the same as for the other two plants.      

 

 
Figure 9. Location of WWTP 3 in Study Area 
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10.1.4. WWTP Sizes and Specifications 

 According to Frank Phelan, P.E. (Jay Engineering Company, Inc., personal 

correspondence, 21 April 2015), the wastewater treatment facilities should have 20:20 

(TSS:BOD) effluent characteristics.  Furthermore, WWTP 1 should be able to process both 

residential and commercial wastewater since it will be servicing the commercial corridor in 

addition to residential developments.  Only residential wastewater will be processed by WWTPs 

2 and 3.  These characteristics will be important to consider when completing the final cost 

analysis of the project.  The WWTPs’ capacities are calculated from the flow from the collection 

network: 

 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑀𝐺𝐷) =
𝑃𝑖𝑝𝑒 𝑓𝑙𝑜𝑤 (𝑔𝑝𝑚) ∗ 1440

𝑚𝑖𝑛
𝑑𝑎𝑦

𝑃𝑒𝑎𝑘𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟
 

 

(16) 

Each of the capacities of the WWTPs are shown in Table 9 and reflect the ultimate 

horizon and inclusion of all study areas. 

 

Table 9. WWTP Capacity for ultimate development. 

WWTP 

Location 

(Study 

Area) 

Study 

Areas 

Serviced 

Capacity 

(MGD) 

1 C 

C, D, E, F, 

H, CC 0.86 

2 G G 0.40 

3 B B 0.22 

 

 

10.2. Effluent Discharge  

10.2.1. Drip-field Locations  

The recommended location for the drip fields associated with WWTP1 and WWTP2 can 

be seen in Figure 7 and Figure 8, respectively. WWTP3 does not currently have a projected drip 

field or recommended location currently selected.  

For WWTP1, the drip field location was chosen to be the best fit between current land 

uses, land zoning, and topographical slope. This location has the lowest slope rise across the 

whole of the drip field, and is placed in an area that has not been developed. According to TAC 

§222.81, the drip field cannot be within 500 feet of public water wells, 150 feet of private water 

wells, or 100 feet of surface water. Precise drip field sizing is out of the scope of this project.  

The drip field for WWTP2 was selected with the same process as the first.. This location 

has low slope relative to the rest of the surrounding area, and it is set in an undeveloped plot of 

land. It meets TAC criteria, and the sizing is handled similarly as the first drip field, with 

specifications not required for the purpose of this project. 
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10.2.2. Re-use Plan  

Drip fields will be utilized to disperse the treated wastewater from the WWTP. This type 

of drip line is the recommended design since it can be used on the widest range of slope options 

and is easily built and maintained. 

           The physical process of the effluent reuse will start at each WWTP, and the effluent is 

then pumped through force mains to each dispersion site location. The drip field details such as 

layout of the drip field and sizing of the individual drip field pipes are beyond the scope of this 

project, but can be developed from the work shown here for this project on WWTP sizing, total 

effluent flow, and force main sizing. 

10.3. Collection Network Layout and Specifications 

 A well-laid out and properly sized wastewater collection network was fundamental to the 

overall project objectives. This network included a system of pipes and lift stations. In order that 

the City of Jonestown would be able to fund this project effectively and sustainably, a phased 

design of incremental project implementation is recommended.   

10.3.1. Pipes 

The pipe layouts for each study area are shown below in Figures 10-14.  The mains and 

laterals were laid out in such a way to meet the following criteria: 

·         Provide wastewater collection service access to all parts of the study areas, 

·         Minimize pipe length 

·         Follow the topography, usually running along the valleys to allow wastewater to be 

collected from all hills by gravity, and 

·         Follow right-of-ways (ROWs) for easy, organized infrastructure construction. 

           For all gravity mains and force mains, the chosen pipe material is PVC.  This is also the 

preferred material for pressure systems (Davis, 2010).  The benefits of PVC include corrosion 

resistance, low density per unit length, and low installation cost.  For the discharge pipes within 

the lift stations, ductile iron is chosen.  This is a common material to choose for pressure pipes 

(Davis, 2010). 

           The final pipe sizes are shown in Table 10 below. The sizes were chosen to provide 

adequate wastewater collection capacity for ultimate development of all study areas.  Therefore, 

with regards to capacity, no system upgrades will be needed, even as new pipes are added in 

phases. 
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Figure 10.  Pipe layout for the commercial corridor. 

 

 

 
Figure 11.  Pipe layout for Study Areas C, D, E, and F. 
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Figure 12.  Pipe layout for Study Area H. 

 

 

 
Figure 13.  Pipe layout for Study Area B. 
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Figure 14.  Pipe layout for Study Area G. 

 

 

Table 10.  Final pipe sizes. 

Study 

Area  

Pipe 

ID Pipe Type Material 

Pipe 

size 

(in.) 

Length 

(ft) 

B B1 Gravity PVC 6 2,153 

B2 Gravity PVC 6 468 

B3 Gravity PVC 8 1,838 

B4 Gravity PVC 6 448 

B5 Gravity PVC 8 675 

B6 Gravity PVC 6 1,150 

B7 Gravity PVC 8 1,671 

B8 Gravity PVC 6 1,853 

B9 Gravity PVC 8 3,245 

B10 Gravity PVC 8 2,209 

B11 Gravity PVC 6 1,490 

B12 Gravity PVC 6 923 

B13 Gravity PVC 6 1,314 

B14 Gravity PVC 6 746 

B15 Gravity PVC 6 3,635 

B16 Gravity PVC 8 584 

B17 Gravity PVC 8 583 

BA Force Main PVC 8 2,559 
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C C1 Gravity PVC 6 3,017 

CA Force Main PVC 12 2,895 

CB Force Main PVC 15 190 

CC CC1 Gravity PVC 6 1,080 

CC2 Gravity PVC 12 2,569 

CC3 Gravity PVC 6 1,016 

CC4 Gravity PVC 10 4,635 

CC5 Gravity PVC 8 2,705 

CC6 Gravity PVC 10 1,749 

CC7 Gravity PVC 6 1,232 

CC10 Gravity PVC 12 2,819 

CC8 Gravity PVC 15 1,713 

CC9 Gravity PVC 10 2,012 

CCA Force Main PVC 8 2,251 

CCB Force Main PVC 8 1,069 

CCC Force Main PVC 8 1,678 

CCL1 LPS PVC 1.5 1,753 

CCL2 LPS PVC 2 1,735 

CCL3 LPS PVC 2.5 1,834 

CCL4 LPS PVC 3 362 

CCL5 LPS PVC 1.5 1,535 

D D1 Gravity PVC 6 2,090 

D2 Gravity PVC 8 6,518 

D4 Gravity PVC 8 4,433 

D3 Gravity PVC 10 4,051 

E E1 Gravity PVC 6 3,388 

E2 Gravity PVC 6 1,674 

E3 Gravity PVC 6 833 

E4 Gravity PVC 6 1,855 

E5 Gravity PVC 8 627 

E6 Gravity PVC 6 2,083 

E7 Gravity PVC 8 711 

E8 Gravity PVC 6 2,504 

F F1 Gravity PVC 6 1,487 

F2 Gravity PVC 6 1,401 

F3 Gravity PVC 6 2,414 

F4 Gravity PVC 12 593 

FB Force Main PVC 8 1,858 

FA Force Main PVC 8 1,535 

G G1 Gravity PVC 6 2,905 

G2 Gravity PVC 6 1,610 

G3 Gravity PVC 12 8,389 
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G4 Gravity PVC 8 5,584 

G5 Gravity PVC 15 1,994 

G6 Gravity PVC 6 3,762 

GA Force Main PVC 10 2,101 

GB Force Main PVC 10 2,692 

H H1 Gravity PVC 8 4,199 

H2 Gravity PVC 6 1,824 

H3 Gravity PVC 10 679 

H4 Gravity PVC 6 2,306 

H5 Gravity PVC 10 2,424 

H6 Gravity PVC 6 1,117 

H7 Gravity PVC 10 850 

H8 Gravity PVC 6 1,479 

H9 Gravity PVC 10 2,450 

H10 Gravity PVC 6 2,333 

HA Force Main PVC 6 3,501 

 

10.3.2. Lift Stations 

Lift stations were located within each study area in order to maximize the efficiency of 

wastewater collection and conveyance under the constraint of the topography.  In the final 

design, lift stations were located at the lowest points within the study areas so that wastewater 

could drain to them through gravity lines.  In the final design, the team sought to minimize the 

number of lift stations by finding valleys that are central to the study areas so that large portions 

of the study areas could be serviced by each lift station. 

           The size of each lift station is determined by the total peak wet weather wastewater flow 

through a given lift station.  This is determined by the amount of LUEs and within the lift 

station’s service area.  In the final design, the lift stations capacities are chosen such that each 

service area are capable of being serviced indefinitely, through ultimate development.  Within 

each lift station, pumps are chosen to achieve the minimum cost and maximum efficiency.  Pump 

and wet well characteristics for each lift station are shown in Table 11 below. 

 

Table 11. Lift station pump and wet well specifications.  Lift stations are designed to handle 

wastewater production from ultimate development. 

Lift 

Station 

ID 

Study 

Area LUEs 

Peak 

wet 

weather 

flow 

(gpm) 

Pump 

Capacity 

(gpm) 

Pump 

Max 

Static 

Head (ft) 

Wet 

Well 

Diameter 

(ft) 

Wet 

Well 

Depth 

(ft) 

LSB B 589 547 600 30.5 8 13.5 

LSH H 321 306 325 70.5 6 11.5 

LSF1 F 626 580 600 84 8 14 

LSF2 F 556 519 550 137 8 14 

LSG1 G 836 763 800 25.5 8 14.5 
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LSG2 G 1060 955 1000 29 8 16 

LSCC1 CC 1248 736 750 116 8 13 

LSCC2 CC 766 480 500 43 8 13 

LSCC3 CC 910 716 750 65 8 14 

LSCC4 CC 2533 1644 1700 79.5 10 17.5 

LSC1 C  2771 1832 1900 16 10 18 

 

10.3.3. Phasing Plan 

As shown in Figure 15 below, the wastewater collection system is divided into several 

phases and sub-phases.  In this way, the wastewater collection system will grow along with the 

City of Jonestown.  Jonestown will have the option to begin construction with partial funding 

and will not have excess infrastructure. 

           Phase A represents the northern half of the commercial corridor, including the downtown 

area.  This Phase is further divided into three sub-phases, A.1, A.2, A.3, and B.1.  This will 

incrementally provide the commercial corridor with wastewater collection service within the 

next five years.  Since the commercial corridor is the most essential study area and an Interlocal 

Wastewater Collection Agreement with the City of Leander is already in place, this system can 

begin development. 

           Within the 10-year study horizon, Phase B.1 will be developed.  Phase B.1 will 

incrementally provide wastewater service to (1) the “Jonestown 300” development of Study Area 

C, (2) the southern half of the corridor, and (3) the developments of Study Areas F and H. 

           Further beyond the 10-year study horizon will be the development of wastewater 

collection systems in Study Areas B, D, E, and G for the ultimate horizon.  Since these 

developments will provide wastewater collection service independent of the other study areas, 

they can be developed any time, independent of progress in the other developments. 
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Figure 15.  Overall map of wastewater collection system with phases and study areas delineated. 

 

10.2.4. Opinion of Probable Cost/Cost Estimate 

 The cost estimate has been broken down by phases and study areas to show how 

Jonestown will need to fund the construction of the wastewater collection system over time 

(Tables 12 and 13).  As this is a basic cost estimate, it includes only the cost of the pipes, lift 

station, and wastewater treatment plants.  Soft costs (e.g., right-of-way acquisition and surveying 

fees) and contingency costs are not included in this analysis. Inherent to the pipe cost estimates, 

though, are construction costs and manhole costs.  Inherent to the lift station cost estimates are 

the cost of generator sets, wet wells, and pumps. Also, the time value of money is not taken into 

consideration.  These cost estimates are based on values given or interpolated from 

correspondence with Frank Phelan, P.E. (Jay Engineering Company, Inc., email, 21 April 2015). 

 

 

Table 12. Total cost estimates for each study area. 

 

Study Area Total Cost Estimate 

CC (Commercial 

Corridor) 

 $             3,429,100.00  

     Phase A  $             1,747,800.00 

          A.1  $                750,500.00  

          A.2  $                396,300.00  

          A.3  $                601,000.00  

     Phase B  $             1,681,300.00 

B  $             2,342,600.00 

C  $                 826,200.00 
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D  $             1,464,000.00  

E  $             1,018,300.00  

F  $             1,154,800.00  

G  $             3,091,300.00  

H  $             1,998,900.00 

  $           15,325,200.00  

 

 

Table 13. Cost estimates broken down for each study area. 

Study Area Item Description Units 

Quantity 

(LF) Unit Price Cost 

CC – Phase 

A.1 

6" Gravity Line LF 1 1,080  $                 73.40   $        79,300.00  

12" Gravity Line LF 1 2,569  $               106.40   $      273,300.00  

8" Forced Main LF 1 2,251  $                 39.05   $        87,900.00  

Lift Station - 750 GPM LS 1   $       310,000.00   $      310,000.00  
      $      750,500.00  

 

Study Area Item Description Units 

Quantity 

(LF) Unit Price Cost 

CC – Phase 

A.2 

6" Gravity Line LF 1 1,016  $                 73.40   $        74,600.00  

8" Forced Main LF 1 1,069  $                 39.05   $        41,700.00  

Lift Station - 500 GPM LS 1   $      280,000.00   $      280,000.00  

       $      396,300.00  

 

Study Area Item Description Units 

Quantity 

(LF) Unit Price Cost 

CC – Phase 

A.3 

1.5" Pressure Sewer LF 1 1,753  $                 18.00   $        31,600.00  

1.5" Pressure Sewer LF 1 1,535  $                 18.00   $        27,600.00  

2" Pressure Sewer LF 1 1,735  $                 24.05   $        41,700.00  

2.5" Pressure Sewer LF 1 1,834  $                 26.05   $        47,800.00  

3" Pressure Sewer LF 1 362  $                 28.05   $        10,200.00  

10" Gravity Line LF 1 4,635  $                 95.40   $      442,200.00  

       $      601,000.00  
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Study Area Item Description Units 

Quantity 

(LF) Unit Price Cost 

CC – Phase B 6" Gravity Line LF 1 1,232  $                 73.40   $      904,400.00  

8" Gravity Line LF 1 2,705  $                 84.40   $      228,300.00  

10" Gravity Line LF 2 3,762  $                 95.40   $      358,800.00  

12" Gravity Line LF 1 2,819  $               106.40   $      300,000.00  

15" Gravity Line LF 1 1,713  $               127.40   $      218,200.00  

8" Forced Main LF 1 1,678  $                 39.05   $        65,500.00  

Lift Station - 1700 

GPM 

LS 1   $       420,000.00 

 $      420,000.00  

       $   1,681,300.00 

 

Study Area Item Description  Units 

Quantity 

(LF) Unit Price Cost 

Study Area B 6" Gravity Line LF 10 14,180  $            73.40   $  1,040,800.00  

 8" Gravity Line LF 7 10,805  $            84.40   $      911,900.00  

 8" Forced Main LF 1 2,559  $            39.05   $        99,900.00  

 Lift Station - 600 GPM LS 1   $  290,000.00   $      290,000.00  

       $   2,342,600.00  

 

 

Study Area Item Description  Units 

Quantity 

(LF) Unit Price Cost 

Study Area C 6" Gravity Line LF 1 3,017  $            73.40   $  221,400.00  

 12" Forced Main LF 1 2,895  $            51.05   $  147,800.00  

 15" Forced Main LF 1 190  $            89.05   $    17,000.00  

 Lift Station - 1900 

GPM 

LS 1   $  440,000.00   $  440,000.00  

       $  826,200.00  

 

 

Study Area Item Description  Units 

Quantity 

(LF) Unit Price Cost 

Study Area D 6" Gravity Line LF 1 2,090  $     73.40   $      153,400.00  

 8" Gravity Line LF 2 10,951  $     84.40   $      924,200.00  

 10" Gravity Line LF 1 4,051  $     95.40   $      386,400.00  

       $  1,464,000.00  

 

 

Study Area Item Description  Units 

Quantity 

(LF) Unit Price Cost 

Study Area E 6" Gravity Main LF 7 12,336  $     73.40   $      905,400.00  

 8"Gravity Main LF 2 1,338  $     84.40   $      112,900.00  

       $  1,018,300.00  
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Study Area Item Description  Units 

Quantity 

(LF) Unit Price Cost 

Study Area F 6" Gravity Line L

F 

3 5,302  $            73.40   $      389,200.00  

 12" Gravity Line L

f 

1 593  $          106.40   $        63,100.00  

 8" Forced Main L

F 

2 3,393  $            39.05   $      132,500.00  

 Lift Station - 550 GPM L

S 

1   $  280,000.00   $      280,000.00  

 Lift Station - 600 GPM L

S 

1   $  290,000.00   $      290,000.00  

       $  1,154,800.00  

 

 

Study Area Item Description  Units 

Quantity 

(LF) Unit Price Cost 

Study Area G 6" Gravity Line LF 3 8,277  $            73.40   $      607,500.00  

 8" Gravity Line LF 1 5,584  $            84.40   $      471,300.00  

 12" Gravity Line LF 1 8,389  $          106.40   $      892,600.00  

 15" Gravity Line LF 1 1,994  $          127.40   $      254,000.00  

 10" Forced Main LF 2 4,793  $            45.05   $      215,900.00  

 Lift Station - 800 GPM  1   $  310,000.00   $      310,000.00  

 Lift Station - 1000 

GPM 

 1   $  340,000.00   $      340,000.00  

       $  3,091,300.00  

 

Study Area Item Description  Units 

Quantity 

(LF) Unit Price Cost 

Study Area H 6" Gravity Line LF 5 9060  $            73.40   $      665,000.00  

 8" Gravity Line LF 1 4199  $            84.40   $      354,400.00  

 10" Gravity Line LF 4 6403  $            95.40   $      610,800.00  

 6" Forced Main LF 1 3501  $            31.05   $      108,700.00  

 Lift Station - 325 GPM LS 1   $  260,000.00   $      260,000.00  

       $  1,998,900.00  
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12. Appendices 

A. Vulnerability Maps  
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B. Design Spreadsheets  

Wastewater Capacity Modeler 
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Lift Station Design 
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