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ABSTRACT

The Neritic Zooplankton of the Northwestern
Gulf of Mexico. (May 1980)
Thomas Joseph Minello, B.S., Cleveland State University
M.S., Texas A&M University
Co-Chairmen of Advisory Committee: Dr. E. Taisoo Park
Dr. M. H. Sweet

Copepod species and major groups of zooplankton were identified
from 513 samples taken at 20 stations on 5 transects in the coastal
waters of the northwestern Gulf of Mexico. Monthly samples, using
obligue tows and a GULF V sampler (approximately 200 um mesh size),
were taken over a 3-year period from 1963 to 1965. The bottom depths
of the sampling stations ranged from 8 to 73 m. Temporal and spatial
distributional patterns were examined in detail for major groups of
zooplankton and common species of calanoid and cyclopoid copepods.

The relationships between the densities of these groups and various
physical and chemical factors were also examined.

Total zooplankton densities averaged over the entire sampling area
peaked in April and September. The highest mean densities occurred in
April (2870 organisms/m3) and the lowest densities occurred in February
(1124/m3). Mean zooplankton densities decreased from 3412 organisms/m3
at the 8 m stations to 1l3l/m3 at the 73 m stations. The greatest
mean densities occurred in 1964.

The dominant groups of zooplankton, determined by their average

densities in the sampling area, were the copepods (61% of total
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zooplankton), larvaceans (7.7%), bivalve larvae (5.5), ostracods
(Buconchoecia) (4.7%), and gastropod larvae (3.6%). All groups had
density peaks in the spring although peaks also occurred during other
seasons. Densities of all groups except the ostracods appeared to
decrease with the bottom depth of the station. In general, the dens-
ities of the major groups of zooplankton showed little relationship
with surface temperature, surface salinity, or the other physical
factors examined.

Since the copepods dominated the zooplankton at all depths and
times of the year, these or¢anisms were identified to species and
examined in greater detail. Overall, adult females were present in
similar densities as immature forms (copepodids). The percentage of
adult males generally remained around 15 to 20% of the copepods.
Calanoid and cyclopoid copepods were abundant and harpacticoids were
relatively rare.

A total of 134 species of adult female calaﬁoid and cyclopoid
copepods were identified. The dominant species, ranked in the order
of their abundance based on mean densities over the entire sampling
area, were Paracalanus indicus, Acartia tonsa, Paracalanus quasimodo,
Paracalanus crassirostris, Clausocalanus fureatus, Oncaea media,
Oithona nana, Oithona plumifera, Temora turbinata and Oncaea venusta.
These ten species made up over 77% of the adult female copepods. When
the temporal and spatial distributions of the abundant species were
examined, the effect of bottom depth and month were frequently signif-
icant. Changes in density often appeared to be significantly related

to surface temperature and surface salinity. Other physical variables,
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including runoff, were rarely significant in regression models. The
mean number of species of adult female copepods increased with the
bottom depth of the station reaching a maximum of 51 at the 73 m sta-
tions in January.

A species by species correlation matrix for 25 abundant species
was used as a basis for graphically determining species clusters in
the sampling area. This analysis revealed a distinct offshore group
with many marginally linked members, an intermediate depth group, and
an inshore group. These species groups were similar to groups re-
ported in other studies on copepods from the coastal waters off Texas
and the southeastern United States.

Since interspecific competition might be important in determining
the distributions of closely related species, the temporal and spatial
distributional patterné of common congeneric copepods were examined.
Most congeners appeared to be distinctly separated by their sizes,
distribution with station bottom depth, or by their temporal distri-
butions. Apparent exceptions were seen in two common congeneric
herbivorous species (Paracalanus indicus and P. quasimodo) which
appeared to be separated vertically in the water column and in two
carnivorous genera of cyclopoids. The lack of separation in these

cyclopoid genera may be related to their predatory feeding habit.
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INTRODUCTION

Zooplanktonic organisms are generally present in great numbers
in marine environments. These animals establish a major link between
the primary producers and the carnivores in the world's oceans. Since
coastal waters over the continental shelf are among the most productive
marine habitats, supporting a large percentage of the fisheries of the
world, the zooplankton populations in these waters are ecologically and
commercially important.

Although competition, predation, and a limiting food supply are
significant factors affecting populations of organisms in marine habi-
tats, the physical variability of the environment undoubtedly plays an
important role in controlling the distribution and abundance of organ-
isms in neritic waters. The physical characteristics of most coastal
waters, including those in the northwestern Gulf of Mexico, are nighly
variable. Rapidly changing temperatures and salinities along with
periodic upwelling and flushing of estuarine waters are common occur-
rences. The zooplankton populations in these areas are subsequently
characterized by large numerical fluctuations both in time and space.

Despite their ecological importance, the coastal zooplankton popu-~
lations in the Gulf of Mexico have not been extensively studied. A
primary objective of this research is to examine the temporal and
spatial variability of the zooplankton in the neritic waters of the

Gulf of Mexico off Texas and western Louisiana. Changes in density will

This dissertation follows the style and format of Bulletin of Marine
Science.
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also be examined with respect to physical parameters such as surface
temperature, surface salinity, runoff, and upwelling.

Due to the relatively homogeneous size distribution of the phyto-
plankton and the simplicity and similarity of feeding appendages in the
most abundant planktonic animals, the copepods, the role of food in
niche differentiation would appear to be limited in the marine plank-
tonic environment as compared to terrestrial systems. Relatively little
refuge from competition can be found by selective herbivory if the
amount of food available is a limiting factor controlling zooplankton
densities. It is expected that competition for the same food would
frequently be indicated by differences in temporal and spatial distri-
butions between morphologically similar species. A number of groups of
similar congeneric species of copepods occur in the coastal waters of
the northwestern Gulf of Mexico and a special effort will be made “o
examine the ecological separation between the species in these genera.

Most of the work done in the Gﬁlf of Mexico has provided only a
limited amount of information on the neritic zooplankton populations.
Many studies simply report data with little or no analysis while others
cover only a small geographic area or are limited to a few taxonomic
categories. Samples taken for several years over a wide geographic
range are necessary in order to determine general patterns of abundance
and distribution for zooplankton populations in neritic areas. Usually,
the collection and analysis of the great number of samples needed for
a study of this type are beyond the capabilities of a single researcher.
The opportunity to examine such a series of samples however was pro-

vided by the National Marine Fisheries Service Laboratory in Galveston,
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Texas. As part of a major project to study the biology and dynamics of
shrimp populations (Kutkuhn, 1963), monthly zooplankton samples were
collected from 1963 to 1965 at stations throughout the coastal waters
of the northern Gulf of Mexico. The samples were taken from a modified
shrimping vessel, the GUS III, and temperature and salinity data were
also recorded. Zooplankton data from 11 of these stations (located off
South Texas) were analyzed by Park (1976a, 1978). Data from nine other
stations off the coasts of Texas and Louisiana were subsequently
analyzed and the entire data set (513 samples from 20 stations) was
used to examine the zooplankton populations in this area.

The present study therefore includes data from approximately 3
years of monthly samples taken at 20 stations on transects radiating
off the coasts of Texas and western Louisiana. Many groups of zoo-
plankton have been examined and copepods, the dominant organisms, have
been identified to species. Temporal and spatial trends have been
analyzed and the relationships between zooplankton densities and
selected physical and chemical parameters have been examined. Corre-
lated species groups have been identified and the distributions of the

common congeneric copepods have been compared.
Literature Review

The zooplankton literature on the Gulf of Mexico has often been
referred to as depauperate. There have been a number of studies,
however, conducted on nearshore and continental shelf zooplankton
populations in which some aspect of seasonality has been examined.

None of these have covered the entire Gulf of Mexico, although Arnold
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(1958) reported on settling volumes of planktonic fish eggs and larvae
from a large portion of the Gulf, including coastal areas, from samples
taken on ten cruises between March, 1951 and July, 1953.

In the Eastern Gulf, King (1950) studied zooplankton displacement
volumes and identified copepods and other groups from monthly samples
taken in 1949 at five stations on a transect off South Florida. Pierce
(1951) worked on the chaetognaths of the western coast of Florida from
1948 to 1950. Grice (1957, 1960a) examined the calanoid and cyclopoid
copepods from nearshore waters along the western coast of Florida from
1948 to 1955. At one station immediately offshore of Naples, Florida,
Dragovich (1961, 1963) reported on zooplankton and phytoplankton samples
taken five times per week from March, 1956 to August, 1957. Kelly and
Dragovich (1967) studied macrozooplankton taken in monthly tows from
September, 1961 to August, 1962 in the Tampa Bay area and the surround-
ing coastal waters. Also working in this area, Austin and Jones (1974)
measured displacement volumes of total zZooplankton at one station off
Tampa, Florida from monthly samples taken between June, 1969 and August,
1970. The seasonal abundance and distribution of pink shrimp larvae
have also been fairly extensively studied on the Tortugas Shelf and in
the coastal waters off Tampa between the years 1959 and 1964 (Eldred
et al., 1965; Munro et al., 1968; Jones et al., 1970). At coastal
stations located between Horn Island and Tampa, Florida, Caldwell and
Maturo (1976) examined the zooplankton, including some copepods, over
three seasons in 1975 and 1976.

Most of the work done along the north central coast of the Gulf of

Mexico has been conducted in the estuaries. Gonzalez (1957) however
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recorded seasonal abundances for the copepods of the Mississippi Delta

region in 1956. Gillespie (1971) examined the zooplankton from monthly
samples taken at 28 stations during 1968 and 1969 in the estuarine and

coastal waters off Louisiana.

Many of the seasonal studies done in the western Gulf have been
associated with samples taken by the National Marine Fisheries Service
Laboratory in Galveston, Texas. Temple and Fischer (1965) examined the
vertical distribution of larval penaeid shrimp over a 6-month period
in 1963 at one station approximately 80 km south of Galveston. Other
studies employing these samples include work on chaetognaths (Adelmann,
1967) and copepods (Allison, 1967). Temple and Fischer (1967) also
reported on an extensive examination of the seasonal and spatial dis-
tribution of Penaeus spp. larvae in the shelf waters off Texas and
Louisiana in 1961. Harper (1968) studied the seasonal distribution of
Lucifer faxoni off the Texas coast from monthly samples taken in 1962.
A limited amount of seasonal work on zooplankton populations has also
been conducted off Freeport, Texas in 1973 (SEADOCK, 1975).

Monthly data from 11 of the GUS III stations sampled off South
Texas from 1963 to 1965 have been recorded by Park (1976a, 1978).
Temple (1976) examined larval penaeids from these samples and from
other monthly samples taken off Texas from 1962 to 1965. Seasonal data
on ichthyoplankton from 12 stations sampled in 1974 and 1975 off South
Texas have been recorded by Finucane (1976). Park (1976b, 1977, 1979)
also analyzed seasonal and some monthly data from these 12 stations and
reported on the copepods and other zooplankton from 1974 to 1977.

These data were analyzed in more detail by Park and Turk (1980).
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There are several other studies on copepods in the coastal areas
of the Gulf of Mexico which did not include seasonal data but did pro-
vide useful information. Davis (1950) reported on the copepods off
West Florida in 1947 and 1948, Fleminger (1956) examined the distribu-
tions of calanoids in the epiplanktonic waters throughout the Gulf, and
Grice (1960b) recorded occurrences of five species of 0ithona in the
Gulf. Livingston (1974) examined recurrent groups of calanoids from
the open ocean and coastal areas of the Gulf of Mexico.

The faunal assemblages within the zooplankton along the southeast-
ern coast of the United States appear to be similar to those found in
the Gulf of Mexico (Fleminger, 1956). Bowman (1971) examined the
seasonal distributions of calanoid copepods in the coastal waters
between Cape Hatteras and South Florida. In the meore northern areas
along the eastern coast, a large amount of seasonal data has been
analyzed from the waters off of New York by Malone (1977). He also

summarized other work done in this area.

Hydrography and Physiography of the

Northwestern Gulf of Mexico

The continental shelf off Texas and Louisiana extends to approxi-
mately the 100 m depth contour. Its width ranges from about 75 km near
Port Isabel, Texas to approximately 177 km near the mouth of the Sabine
River on the border of Texas and Louisiana (Lynch, 1954; Uchupi, 1975).
The waters over this shelf owe a great deal of their characteristics
to the flow of the Mississippi River which turns westward and moves

along the coast.
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Hedgpeth (1953) noted that in the coastal waters off Texas and
Louisiana surface salinities became higher and seasonal salinity ranges
became narrower as the distance from the Mississippi River increased.
He also reported that surface water temperatures were generally related
to air temperatures and seasonal differences were similar over the
area.

Temperature and salinity measurements taken with the samples used
in this study were analyzed by Harrington (1966), Temple and Martin
{(1976) , and Temple, Harrington, and Martin (1977). These studies also
showed that surface water temperatures varied with air temperatures and
seasonal changes decreased with station depth and with latitude. Sub-
surface water temperatures over the outer shelf reached their maximum
levels in the fall and minimum levels in the spring. Aan analysis of
vertical temperature profiles indicated that upwelling was occurring at
offshore stations through much of the spring and summer and at times
this upwelling extended to the nearshore stations (Temple and Martin,
1976) . Surface salinities were found to increase with the distance
from shore and again with the distance from the freshwater input off
the Louisiana coast. Seasonally, surface salinities were closely
related to this freshwater runoff from Louisiana rivers with a lag time
of approximately 1 to 1% months. River flows along the entire coast
wexe relatively low in the fall and winter and increased dramatically
in the spring. The mean outflow of Louisiana rivers was at least an
order of magnitude greater than the mean riverflow of Texas.

Drift bottle studies were conducted over the entire shelf area

from the Mississippi River to Port Isabel in order to measure surface
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currents in 1962 and 1963. The results of this work have been reported
by Kimsey and Temple (1964) and Temple and Martin (1979). The surface
current patterns were similar for the 2 years and can be divided into
four different seasonal types.

1. September-February. Surface currents generally flowed down the
coast, i.e., west off Louisiana and southwest off Texas.
Velocities ranged from 4-19 km/hr.

2, March-May, Transitional Period. The flow off Louisiana was to
the west in March but changed to the north and in toward the
shore by May. An area of convergence was noted off the Texas
coast where southwest currents met northwest currents. This
area of convergence moved northward as the season progressed.
In general, velocities decreased from March to May as currents
moved more onshore.

3. June-July. Flow was reversed from the winter. Coastal surface
currents flowed northward along the Texas coast and averaged
around 7 km/day. Off Louisiana currents were to the north
(ave. vel. 3 km/day) or east. Most of the eastward movement
was restricted to the deeper waters over the shelf.

4, August, Transitional. Currents were onshore along the Texas
coast with velocities slowing to 2-3 km/day.

Current patterns for the coastal waters off Texas from 1963 to 1965

were inferred by Armstrong (1976) from vertical temperature and salinity
profiles and densities. His results were similar to those from the

drift bottle study. Over the outer shelf flow was to the north and
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east (along the coast) from mid-March through September and to the
west and south from October through February. In nearshore waters
from Galveston, Texas to Port Aransas, Texas flow was typically to

the southwest from October to June and northwest in July and August.
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METHODS AND MATERIALS

All of the samples analyzed in this study were collected by the
staff of the National Marine Fisheries Service Laboratory in Galveston,
Texas. The location of all of the GUS III stations examined is shown
in Figure 1 and the bottom depths for each station are indicated in
Figure 2. I assisted in the analysis of samples from the stations on
Transects I-III and these data have been reported by Park (1976a, 1978).
The additional stations on Transects IV and V were subsequently analyzed
and the data from all 20 GUS III stations were then used to examine the
spatial and temporal distributions of organisms and the relationships
between the densities of these organisms and the chemical and physical
factors examined.

At each GUS III station, one sample was collected approximately
once a month for 3 years from 1963 to 1965. Table 1 is a summary of
the location and number of samples collected during each year. The
samples were taken with a Gulf V net having a mouth diameter of 40.5 cm
and a mesh size of approximately 200 um (Arnold, 1958). Tows were of
the step oblique type from just off the bottom to the surface. Tow
durations were approximately 20 minutes and the amount of water
filtered was estimated from a flowmeter positioned in the center of
the net mouth.

Larval penaeids were removed by the staff of the National Marine
Fisheries Service (NMFS) before the samples were received. In the
laboratory the samples were split using a Folsom Plankton Splitter.

The size of the aliquot examined varied to allow at least 1000 total
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Table 1. Summary of sampling information.
examined from different combinations of bottom depth, transect, and

year are listed.

The number of samples

BOELOM  pransect  Station 1963 1964 1965 Sums
Depth
8 m I 60 9 12 8 29 53
v 53 9 10 5 24
14 m 11 24 9 10 2 28
III 13 9 10 7 26 95
v 1 11 8 - 19
v 12 10 6 6 22
28 m I 61 8 11 8 27
II 23 ° 9 2 27
IIT 14 9 12 7 28 128
v 2 10 12 X 22
v 11 11 7 6 24
46 m T 62 9 11 7 27
I 22 10 12 7 29
III 15 10 12 9 31 132
v 10 11 8 6 25
73 m II 58 11 12 8 31
III 57 11 12 9 32 455
v a4 5 11 .. 20
All I 26 34 23 83
IT 39 43 33 115
III 39 46 32 117
v 41 28 24 23
513

13
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individuals to be counted per sample. The organisms present were then
identified and grouped into various taxonomic categories. Since the
copepods dominated the zooplankton, adult female copepods were ident-
ified to the species level. Abundances were calculated as average
densities (#/m3) in the water column using the flowmeter readings
supplied by the NMFS.

The samples used to examine vertical distributions of Paracalanus
indicus and P. quasimodo were taken at Station B (Fig. 1, p. 11)
located approximately 80 km south of Galveston, Texas. These samples
were also supplied by the National Marine Fisheries Service Laboratory
in Galveston. Temple and Fischer (1965) originally used the samples to
examine the vertical distribution of penaeid shrimp larvae. Subse-
quently, Adelman (1967) has examined the chaetognaths and Allison
(1967) has identified many of the copepods. The sampling gear con-
sisted of a modified Clarke-Bumpus sampler that carried two 330 um mesh
nets. Each net had a mouth area of 120.6 cmz. Only the samples taken
over a 2-day period in July of 1963 were used in this study. The
collections were made every 4 hr at 2, 18, and 34 m (Temple and Fischer,
1965). 1In the laboratory, I removed four 5 ml subsamples from each
sample with a Stempel pipette. The sample volume was adjusted in re-
lation to the volume of water filtered in the tow so that the subsample

3 of water.

volume (20 ml) always represented 1 m
The relationships between the zooplankton densities in the GUS III
samples and seven chemical and physical variables were examined in this

analysis. These variables included surface temperature, surface sal-

inity, local runoff, Mississippi runoff, upwelling, stability of the
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water column, and the cross shelf component of the water currents.
Temperatures and salinities were measured at each station when the
zooplankton tows were taken (Temple, Harrington, and Martin, 1977).
Temperatures were measured with mechanical bathythermographs. Salini-
ties were measured from water samples taken with Nansen bottles. The
salinities were calculated from chlorinities determined in the lab-
oratory by the Knudsen method. Temperature and salinity measurements
were taken at the surface, 3, 11, 24, 43, and 70 m depending on the
water depth at the station. Temperatures were also taken at the bottom
of the water column.

Local runoff was calculated as mean river flow in m3/sec from
statistics collected by the U.S. Geological Survey (1969). The local
runoff for each transect was a combined mean river flow from all major
rivers located near that transect. The previous month's Mississippi
runcff was also chosen as a variable (PMMSROFF). Although the lag
time for the movement of water from the mouth of the Mississippi to
each transect was undoubtedly not constant, 1 month appeared to be a
reasonable estimate. Temple, Harrington, and Martin (1977) showed a
relationship between the previous month's runcff from the Mississippi
and the surface salinities at these stations.

Periods of upwelling were estimated from surface and bottom temp-
erature charts for each station. When surface temperatures were rising
and bottom temperatures were dropping, upwelling or movement of deeper
colder water into the area was assumed. When bottom temperatures
dropped faster than surface temperatures this also was taken as an

indication of upwelling (Reed Armstrong, personal communication, NMFS,
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Northeast Fisheries Service, Narragansett, Rhode Island). Subjective
values for no upwelling (0), moderate (1), and strong upwelling (2)
were assigned to each sample.

The stability or resistance to mixing was also estimated from the
difference between surface and bottom temperatures. This difference
was used directly as a measure of stability. During periods when up-
welling was occurring, however, the stability was assigned a value of
0.

The cross shelf current component was estimated from current charts
constructed for each cruise by Armstrong (1976). Movement of water
towards or away from the coast was considered to be an important factor
possibly controlling the distributions of organisms. When net movement
was away from the coast the cross shelf current component (CSCURR) was
assigned a value of +1, when it was towards the coast it was assigned
a value of -1. When current patterns were strictly parallel to the
coast CSCU%R was equal to O.

Counts of organisms in each subsample were punched on data cards
and FORTRAN computer programs were constructed to correct abundances to
#/m3, calculate percentages, and tabularize the zooplankton counts.
Programs were also used to check for normality in the data. The
analysis of the frequency distributions of a number of the groups and
species of zooplankton indicated that the data were rot normal and that
a natural log transformation, ln (density + 1), was sufficient for
normalization. All statistical analyses were done on transformed data.

Dengities of the most abundant zooplankton groups and species of

copepods were entered into a Statistical Analysis System (SAS) data set
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along with physical and chemical variables and other attributes for
each sample. Through SAS, graphs of densities versus various factors
were constructed and simple univariate statistics were calculated.

The analysis of variance, analysis of covariance, simple and multiple
regressions, and the correlation analysis were also calculated through

the use of the SAS language and procedures.

The Analysis of Variance

The analysis of variance (AOV) was used as a basis for examining
temporal and spatial variability in the various groups and species of
zooplankters. The main effects of Depth, Transect, Month, and Year
were included in the analysis. Transects were considered to be whole
plots and a split-plot design was used (Charles Gates, personal com-
munication, Institute of Statistics, Texas A&M University). Depth,
Transect, and Month were considered to be fixed effects and Year was
considered to be a random effect. Main effects and first order inter-
actions were tested. The second and third order interactions were
pooled and used as the residual error term. The design resulted in
Year and Transect being tested over the Transect*Year interaction,
Depth being tested over the Depth*Year interaction, and Month being
tested over the Month*Year interaction.

Significant effects in the analysis of variance were examined
graphically. Interactions were examined first if they were significant
at the 1% level. Main effects were examined separately only if the
effect did not interact with another. Emphasis was not placed on
Month*Year interactions which were frequently significant. The delay

of seasonal abundance peaks would strongly influence this interaction.
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Since the AOV was calculated on log transformed densities using a
linear method to £ill in missing data cells, which were numerous, it
was not completely compatible with the graphical methods used to
examine the significant effects in more detail. The means used in the
graphical analyses of spatial and temporal distributions are based on
untransformed data and are often influenced by missing data. Although
I felt it was important to examine the data in this unadulterated form,
care must be taken in interpreting the AOV results through these
methods. One deceptive distributional trend was due to the presence of
8 m stations only on Transects I and IV. Comparing mean densities on
these transects with other transects often was misleading when depth
related trends were significant (a frequent occurrence). The low
number of samples from 1965 on Transect IV (Table 1, p. 13) also caused

the mean densities on this transect to be affected by yearly variability.

The Effect of Sampling Time

Zooplankton tows were taken whenever the research vessel arrived
on station. The effect of this variability in sampling time during the
day appeared to be significant for some organisms. Theoretically,
obligque tows taken to near the bottom should eliminate sampling var-
iability caused by the diel vertical migrations of planktonic animals.
In practice, however, tows seldom reach the water close to the bottom
and the time during the day in which the sample is taken can still be
an important source of variability in estimating densities of migrat-
ing species. In this analysis, days were divided into three periods

and numerically coded: (1) day (0900-1659 hrs); (2) twilight (0500~
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0859 and 1700-2059 hrs); and (3) night (2100-0459 hrs). References to
sampling times throughout this paper refer to these time periods.

When the frequency of sampling times at each station was examined
most stations had a fairly even distribution for the three periocds. A
notable exception was found on Transect IV where most of the samples
from the 8 and 14 m stations were taken during the day or twilight.
Most of the samples taken at the 28 and 46 m stations were taken at
night. This frequency distribution was considered when interpreting
results on spatial differences for organisms.

Since vertical migration patterns can be expected to differ for
various species, the relationship between density and sampling time
was examined for each zooplankton group or species separately. Mean
densities were plotted for each time period. Since most organisms that
showed some relationship between density and sampling time exhibited
intermediate density values during the twilight hours, linear correla-
tions were also calculated. If highly significant correlation coef-
ficients were found between the log of the density and sampling time
or the graphical relationship appeared significant, an analysis of
covariance (AOCOV) was calculated on the spatial and temporal effects

using sampling time as a covariate.

Relationships with Physical and Chemical Factors

Simple linear regressions were calculated on the log of the dens-
ity for each species or group versus the various physical and chemical

parameters measured. These factors included surface temperature,
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surface salinity, local runoff, previous month's Mississippi runoff
(PMMSROFF) , the stability of the water column, the cross shelf current,
and a measure of upwelling. Multiple regressions were also calculated
for all combinations of two factor models, three factor models, etc.
The R2 values from these regression models were considered to be a
measure of the perxcentage of the variability in the log density of the
organism which could possibly be explained by the particular regression
model under consideration. The relationships between density and
surface temperature and salinity were also examined with the use of
histograms! The bars of these histograms represent mean log densities
for each organism over different temperature and salinity intervals.
Since no measure of variance is included around these means, these
charts should be interpreted with the regression results.

Histograms were also used to examine densities at different temp-
erature and sa}inity combinations. Surface temperatures were divided
into two ranges, below 21°C and above 21°C, and the relationship be-
tween density and salinity was exaw.ined over each temperature range.
Salinities were divided into three ranges, (1) below 30°/oo, (2) 30-
35°%/00, and (3) above 35°/00. The relationship between density and
temperature was then examined over these salinity ranges.

A more detailed regression analysis was used to examine seasonal
and spatial effects on the relationship between the density of five
common copepods and surface temperature and salinity. Regressions for
these species were calculated for each month and depth separately.
These copepods included the three most abundant species in the sampling

area, Paracalanus indicus, Acartia tonsa, and P. quasimodo (all
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calanocids) and two abundant congeneric cyclopeoids, Oithona nana and

0. plumifera.

Subsampling Error

The Folsom Plankton Splitter has been used extensively in zoo-
plankton research. This device allows samples to be split in half in
succession until an aliquot small enough to examine is achieved. In an
attempt to statistically examine the error involved in this splitting
process, McEwen, Johnson, and Folsom (1954) split artificial samples
of amphipods and euphausiids and determined that the subsampling error
was random. Using mixed natural zooplankton samples, Miller, C. B.
(unpublished) determined that 95.4% of the splits were random.

The reasons for a nonrandom distribution of Folsom splits probably
are related to the clumping of organisms in the subsampling device.
This could occur through the hooking of spines or setae or through the
entanglement of organisms in gelatinous material in the samples. Non-
randomness in zooplankton subsamples therefore should be related to
the composition of the sample being split. This makes the derivation
of a universal estimate or a correction factor for subsampling error
very difficult. Since this error term will vary for each sample
examined, it should be determined separately for each sample. This
is not feasible in most plankton studies due to the large number of
subsamples that need to be examined.

Snider (1975) showed that the Folsom Splitter was very inaccurate
for samples of pteropods taken in the Gulf of Mexico. These heavy

shelled organisms fall out of suspension rapidly and are not split
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adequately. For this reason, results on shelled molluscs in this study
should be viewed with caution.

Most of the trends examined in this study are based on mean dens-
ities from a large number of samples. This should tend to reduce the
effect of subsampling error on the results. Basing conclusions on
small differences in zooplankton densities or on results from a small
number of samples should generally be avoided in studies of this type

due to the unknown magnitude of the error involved with subsampling.
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RESULTS AND DISCUSSION
Physical and Chemical Factors in the Sampling Area

Surface Temperature

Surface temperature fluctuations over the sampling area were exam-
ined with respect to depth, month, and transect. The monthly varia-
bility of mean surface temperature for each depth, averaged over
transects and years is shown in Figure 3. The highest temperatures
were observed during June, July, and August. The lowest temperatures
were recorded during February at the deepest stations and during Jan-
uary at the shallowest stations (8 and 14 m). During the spring and
fall the temperature profiles were similar at each depth. During the
winter, however, surface water temperatures became colder as water
depth increased. Mean summer temperatures exhibited a decrease during
July (apparently due to upwelling) at stations of all depths except
73 m, which had a mean surface temperature peak during July.

Figure 4 shows the monthly variability of mean surface temperature
at each transect, averaged over depths and years. Although confounded
by the fact that each transect does not have stations at all depths,
it appears that Transects IV and V had the highest summer temperatures
and the lowest winter temperatures. Transect V did not have the July
drop in temperature exhibited at the other transects. The factors
affecting these temperature profiles probably include:

1. Distance from shore. The width of the shelf was considerably

greater at Transects IV and V and it became narrower at the

southern transects (Fig. 5).
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dashed line connecting the 8 m stations indicates that these bottom
depths were not sampled on every transect. Distances were measured
perpendicular to the coastline.
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2. Latitude
3. The absence of some depths on some of the transects.
Transects II, III, and V did not have an 8 m station, and
the 14 m and 73 m stations were absent on Transect I.
Seasonal variability, measured by the difference between mean monthly
minimum and maximum temperatures was lowest on Transect 1 (lowest
latitude) and highest on Transects IV and V.

When temperatures were averaged over all of the samples taken at
a particular station (Fig. 6), the increase in mean temperature with
depth, already seen in Figure 3 (p. 24), was again visible. The 4if-
ference between mean temperatures at the shallow stations and the
deeper stations was greatest at the northern transects. BAgain, this
may have been due to the variability in the distance from shore for
each depth.

The frequency of various surface temperatures taken with samples
is shown in Figure 7. Most temperature values were between 14 and
30°C. Temperatures around 29 and 30°C were most frequently recorded.
The frequency of temperatures for three salinity classes is shown in

Figure 8.
Surface Salinity

The monthly variability of mean surface salinity at each depth is
shown in Figure 9. Stations at 8 and 14 m appeared similar with a high
seasonal variability characterized by a large decrease in salinity dur-

ing April and May and relatively high values during the summer months.
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The profiles at the deeper stations showed less seasonal variability
but the spring salinity minimum was still apparent.

The mean monthly salinity profiles for each transect (averaged
over depths and years) were highly variable and the only distinct
pattern seen was the spring decrease in salinity (Fig. 10). The in-
terpretation of these data is subject to the same problems encountered
with the temperature data represented in similar fashion. Anomalously,
no distinct spring decrease in salinity was apparent on Transect V
although this transect was located near the outflow of the Atchafalaya
and the Mississippi Rivers which had high spring flows. This anomaly
might be partially explained by the relatively large distance from
shore of the stations on Transect V and the absence of an 8 m station.
When the seasonal salinity profiles at each depth on this transect were
examined, it was apparent that a large decrease in salinity during the
spring was present only at the shallowest station (14 m). The drift
bottle studies of Temple and Martin (1979) showed that surface cur-
rents were onshore and to the west during April and May of 1962 and
1963, 1If these same current patterns were present throughout the study
period (1963-1965), high salinity water may have been moving in from
offshore in this area during the spring.

Mean surface salinities at each station averaged over time (Fig.
11) generally showed an increase in salinity with depth. The difference
between salinities at the inshore and offshore stations was lowest on
the southern transects (I and II).

The frequency of occurrence of surface salinity values recorded

with the zooplankton samples is shown in Figure 7 (p. 29). Salinity
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Figure 1ll. Mean surface salinity values at each sampling station.

Values are averaged over months and years. Graphed as in Figure 6
(p. 28).
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frequencies for two different temperature ranges (below 21°C and above

21°C are shown in Figure 8 (p. 30).

Runoff

Mean monthly river flow values were combined for the major rivers
located near each transect in the study area. These rivers are listed

in the following table.

Transect Rivers
I Rio Grande
II Nueces, San Antonio, Guadaloupe
III San Antonio, Guadaloupe, Lavaca, Colorado
Iv San Bernard, Brazos, Oyster Creek, Buffalo
Bayou, San Jacinto, Trinity, Village Creek
v Atchafalaya

Mean monthly local river flow values for each transect, averaged over
the 3 years, are shown with the Mississippi River flow in Figure 12.
Generally the flow from the Mississippi was between one and two orders
of magnitude greater than any of the local flows at the transects.
The Atchafalaya River (Transect V) also had a significantly higher
flow than the other rivers. Local river flow near Transect I (Rio
Grande River) was negligible.

Seasonally, the Mississippi and the Atchafalaya exhibited peak
flows during April. The flow rates at the transects off the Texas
coast (I-IV) generally peaked during the winter and early summer.
Although the annual variability for the 3 years of the study was low
for the Mississippi River, Texas rivers generally had the greatest

runoff during 1965.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

300¢

275}

2501

225¢

200F

175¢

150 Mississippi River

125

100

cubic meters (x 100)/second

7
6 3
S
4
3
2
1
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The relationship between river flow and surface salinity can be
examined by comparing Figures 9 (p. 31) and 12. At four out of the
five bottom depths, surface salinity minimums occurred during May.

This coincided with the peak river flows from the Texas coast. If a
l-month lag time was used, these salinity minimums also coincided with
peak Mississippi River flow. This lag time corresponds approximately
to the time it would take for Mississippi River water to reach the
Texas coast. When local runoff and the previous month's Mississippi
runoff were plotted against surface salinity at each station,
Mississippi flow appeared to influence the salinity at every station
except the deeper stations on Transect V. The high salinities at these
stations have already been discussed. Local runoff only appeared to be
related to salinity at some of the shallower stations. These data
along with the large springtime decrease in salinity on Transect I
(Fig. 10, p. 33) which occurred although there was only negligible
runcff in the immediate area, would seem to indicate that the flow of
the Mississippi River is more of a controlling factor for surface sal-

inity in the study area than local river flow. Local flows probably

have an effect on the salinity at some of the nearshore stations.

Total Zooplankton

Zooplankton densities peaked in April and May and again in
September and October (Fig. 13), with the largest mean density occur-
ring in April (2870 organisms/m3). The lowest mean monthly densities
occurred in January (13Ol/m3) and February (ll24/m3). Densities

decreased with depth from 3412 organisms/m3 at 8 m to ll3l/m3 at 73 m.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

0000090000 ¢eceevetessscess
006000000000 000000

0000400000000 0¢02000c000C¢0 000
00000000!00.000.00.00.0.0.040¢w
S0cev900ss¢ttsoct e

00308 ASTCLEETICLINEIICEIESY
0480¢00000000008s 000
CP00000000¢0000C0008800000000000¢¢
000000000000 CO000800000000c0¢0tosssee
90000080800 0C90¢00PtORCEORTSES

AAA AR ALY Y]

090¢0¢8000¢90¢0 000

[ ZEXRIIT AR NR RS X2 )

0008600060000 0000000

00009008800 ¢ 0000 PORCIIS

$0902 0000820030000 08000¢00%0000s¢

3000+

2400 +
1800 r
1200
600 F

(cu/#) Katsuep

2500 -
2000 }
1500 b
1000 }
500 |

(Qu/#) Aatsusp

28 46 73

depth (m)

14

Mean density of zooplankton for each month and bottom
Monthly means are averaged over transects, bottom depths and

Means for each bottom depth are averaged over transects,

months, and years.

Figure 13.
depth.

years.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

The greatest mean densities occurred in 1964 (Fig. 14). The analysis
of variance indicated that no interactions were significant at the 1%
level (Table 2). The main effects of Month and Depth were significant.

There was some evidence that the time of day when the tows were
taken may have affected the total zooplankton counts. A negative
correlation was obtained by correlating the log of the density with
the three time categories. The analysis of covariance results, however,
were similar to the results from the AOV. The Month*Year interaction
became significant. This was probably the result of the high spring
density peaks which occurred during 1964 (Fig., 14).

Simple regression models on the log of the density versus the
physical and chemical factors examined, indicated that there was a
negative relationship with salinity that explained 7.8% of the varia-
bility in the zooplankton density. Combining salinity and the cross
shelf current explained 10.5% of the variability in a multiple regres-~
sion model. The other physical factors did not appear to be signifi-
cant. The histogram of density versus salinity showed some indication
of this negative relationship (Fig. 15). No relationship with temp-
erature was apparent and temperature salinity interactions also did
not appear significant (Fig. 16).

Density trends reported off the South Texas coast by Park (1979)
were similar to those found in this study. At the two stations sam-
pled monthly by Park with comparable bottom depths, density peaks
occurred in 1976 and 1977 during the spring and early summer and the
late summer and fall. The highest density was found in May and June

when a mean number of 5768 organisms/m3 was reported over the 2 years.
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Table 2. BAnalysis of variance and covariance for zooplankton groups. Probability values (percent) are
listed from the analysis of variance for all groups. Results of the analysis of covariance with sampling
time as the covariate are given below the horizontal line for some factors.

Percent Interactions Main Effects
Group of zoo- Depth Depth Depth Trans Trans Month
plankton Trans Month Year Month Year Year Depth Trans Month Year
ns 1.6 0.9 ns 1.3 0.2
Zooplankton 9.4 ns ns ns oS ” 0.2 Y oy 2.5
Copepods 60.7 ns ns ns ns ns * 1.1 3.7 ns *
* 1.2 ns ns 4.8
Larvacea 7.7 4.1 ns 2.6 ns ns 0.6 4.9 ns 0.1 0.2
Bivalve 5.5 2.9 1.4 ns ns ns 1.4 * ns 4.8 ns
larvae ) 3.1 0.1 ns 0.7 * 9.0
. 2.4 0.4 0.1 *
Euconchoecia 4.7 ns 15 ns 0.2 ns o1 ” 8.9 9.0 ns
0.3 * 7.3 5.1 5.0 0.5 0.6 ns 0.5 1.6
Chaetognaths 4.3 0.5 * 6.0 5.7 3.0 0.4 0.8 ns 0.7 1.8
Gastropod 3.6 * s ns 2.1 1.0 2.0 * ns 0.2 ns
laxrvae : * n ns 5.2 0.6 1.9 ns 0.3 ns
. * * 1.6 ns * ns ns ns *
Penilia 1.8 5 ns s 0.8 s rs oS oy 9.5 >
Medusae 1.8 7.9 1.6 7.8 2.1 ns ns ns 1.2 3.5 0.2

* = less than 0.1%
ns = greaterxr than 10%
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Mean densities during the rest of the year ranged from approximately 500
to 4000 organisms/m3. Decreasing densities with distance from shore
were also reported by Park (1979). Although his stations were located
slightly farther from shore than the GUS III stations, mean densities
ranged from approximately 3000 organisms/m3 at the inshore stations to
approximately lOOO/m3 at the offshore stations.

Other studies reporting total zooplankton densities are not as
comparable due to different sampling areas and techniques. In the
neritic areas off the west coast of Florida, King (1950) found the
greatest zooplankton densities at bottom depths of 9 m. Densities
decreased at shallower and deeper stations. Caldwell and Maturo (1976)
found a decrease in zooplankton density with increasing station depth.
Their limited seasonal data indicated that the highest densities
occurred during their winter sampling period. Off of the eastern
coast of the United States Malone (1977) also reported a decrease in

zooplankton densities with the distance from the shore.
Major Groups of Zooplankton

When monthly mean densities of all major groups of zooplankton were
examined together (Fig. 17), the dominance of the copepods throughout
the year was apparent. The only period when zooplankton densities were
not tracked closely by copepod densities was during April. Spring
density peaks of almost all of the other major groups occurred during
this month. During the rest of the year, the chaetognaths and ostracods
were found in relatively small numbers during the summer and these
groups occurred in relatively large numbers during the late fall and

early winter months. The larvacea maintained high densities throughout

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2800

2400

2000

1600

1200

800

400

density (#/m3)

300

200

100

45

total zooplankton

copepods

other major groups combined

A
I’ ‘\ —_— larvacea
I\ chaetognaths
A Iy -— ——~ — bivalve larvae
| \ -y - gastropod larvae
! \ ceveneees o Buconchoecia

Figure 17. Monthly mean densities of major zooplankton groups averaged
over the entire sampling area and the three years of the study.
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the summer and early fall and were found in low densities during the
winter. The meroplanktonic groups (gastropod and bivalve larvae) had
density peaks in the summer months. Densities of these groups of mol-
lusc larvae appeared to be highly correlated (r = 0.53) (Table 3).

The chaetognaths and the copepods were the only major zooplankton
groups which had spring density peaks in May. Since the carnivorous
chaetognaths prey mostly on copepods (Raymont, 1963; Barnes, 1974),
this spring density distribution may indicate predator populations in-
creasing with their food supply. The fall peak in chaetognath densi-
ties (November) lagged 1 month behind the fall copepod density peak
which occurred in October. In comparison with the other major zoo-
plankton groups, however, the seasonal density pattern of the chaeto-
gnaths was most similar to that of the copepods. The densities of
these two groups were highly correlated (r = 0.42).

All of the major groups of zooplankton except the ostracods exhib-
ited a general decrease in density with depth (Fig. 18). Ostracod
densities were extremely low at the shallow stations and appeared to
peak at the 46 m stations.

General abundance and distribution data for all of the zooplankton
groups identified are listed in Table 4. Individual groups are dis-
cussed in detail in the following sections in the order of their
abundance over the sampling area. The copepods, however, which were
the most abundant organisms in the area, are examined last in much

greater detail than the other groups.

Larvacea

Most of the organisms included in this category appeared to belong
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Table 3. Correlation matrix for major groups of zooplankton.

on log transformed densities.

Correlation coefficients are based

Probability value (percent) is indicated in parenthesis. = less
than 0.1%, ns = greater than 10.0%.
Copepods  Larvacea Bivalve  r conchoecia Chaetognaths Gastropod  p,,.;7:4
Larvae Larvae
Copepods 0.33 0.41 0.03 0.42 0.37 0.15
(vs) (vs) (ns) (vs) (vs) (vs)
Larvacea 0.25 0.10 0.29 0.40 0.32
(vs) (2.0) (vs) (vs) (vs)
Bivalve 0.02 0.41 0.53 0.15
larvae (ns) (vs) (vs) (0.3)
Euconchoecia 0.22 0.22 0.07
(vs) (vs) (9.0)
Chaetognaths 0.48 0.14
{vs) (0.1)
Gastropod 0.31
larvae (vs)
Pentlia

Ly
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Figure 18. Mean densities of major zooplankton groups at each bottom
depth sampled.
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Table 4. List of zooplankton groups with general abundance and
distribution data. Percent abundance (% Ab) was calculated from
all samples (R = less than 0.5%). Fregq = percent of occurrences

out of 513 samples, Loc = location, i.e., I-inshore, O-offshore,
B-both or between. Seasonality was determined by density (D) for
the common species and by frequency of occurrence (x,i,o0) for the
rare species. Where seasonality differed with locality, i = inshore
and o = offshore.

Season
Phylum % Ab Freq Loc Win Spr S Fal
Cnidaria
medusae 1.81 93.8 I D D D D
Annelida
polychaete larvae 0.77 89.7 B X X X X
Mollusca*
bivalve larvae 5.46 98.0 I D
gastropod larvae 3.64 98.0 B D D
heteropods R 22.4 B b4 X p 4 X
pteropods 0.76 69.6 B b4 b3 X X
Arthropoda
Crustacea
Cladocera
Evadne R 28.3 B D D
Penilia 1.82 62.0 I D D
Podon 0.75 33.5 B X X x
Ostracoda
Conchoecia R 13.5 o] X X X x
Euconchoecia 4.72 77.0 0 D D D
Copepoda
Planktonic 60.8 100
Calanoida
Cyclopoida
Harpacticoida 1.46 71.9 I D D D D
Cirripedia
barnacle nauplii 0.92 29.0 B X b4 X
barnacle cypris R 40.5 B X X X
Malacostraca
Amphipoda R 82.3 B X X X X
Cumaceat R 4.5 B x x
Euphausiacea R 5.8 B b4 X X X
Isopodat R 3.5 I X X X X
Lucifer R 55.2 B x X X X
Mysidacea R 2.7 B X X X X
Stomatopod larvae R 25.0 B X b4 x
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Table 4. (continued)

Season
Phylum % Ab Freq Loc Win Spr S Fal
Chordata
Urochordata
Thaliacea
Doliolida 0.90 67.4 B D D
Salpida R 23.2 0 X X X
Larxvacea 7.70 97.9 B D D D
Vertebratat
fish larvae R 73.2 B o o oi oi
fish eggs R 50.0 B o] oi oi o
Chaetognatha 4.34 98.4 B D D

*Transect II not included (398 obs)
tTransects I, II and III not included (198 obs)
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to the genus Oikopleura. This group was quite abundant, comprising

7.7% of the zooplankton over the entire sampling area. The only inter-
action that was significant at the 1% level in the AOV was the Month*
Year interaction. The main effects of Month and Year were also highly
significant and Depth was significant at the 5% level (P = 4.9%). The
seasonal abundance of Larvacea averaged over the entire sampling area
is shown in Figure 19. A spring density peak was indicated with a more
prolonged peak in late summer and fall. Winter densities were generally
low. The significance of the Month*Year interaction was probably due
to the small spring density peak present in 1963 and the absence of a
large fall peak in 1965. Although Depth was not extremely significant,
there appeared to be a general decrease in density with depth (Fig. 19).
Regression models indicated that a significant positive relation-
ship with temperature could explain 13.2% of the variability in the log
density of this group (Fig. 20). The only other significant single
factor was the cross shelf current explaining 4.1% of the variability.
When these two factors were combined in a multiple regression model,
however, they only explained 14.3% of the variability. Histograms
indicated that the positive relationship between density and surface
temperature appeared to be strongest in samples with salinities ranging
between 30 and 35 o/oo (Fig. 21). Below and above this salinity range,
no distinct relationship could be seen. There did not appear to be any

relationship between density and salinity itself (Fig. 20).

Bivalve Larvae

Bivalve larvae appeared to be abundant in the zooplankton of this

area (5.5% of overall zooplankton density), although subsampling
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problems with this group and other shelled organisms would indicate
that no detailed analysis should be made from these data (Snider, 1975).
No interactions were significant at the 1% level in the AOV results.
Bottom depth was a highly significant factor (P = 0.1%) and Figure 22
shows the dramatic decrease in density with depth. The main effect of
Month was significant at the 5% level (P = 4.8%) and a density peak
during April was indicated (Fig. 22).

Regression results indicated that the density of this group could
not be easily related to physical and chemical factors. Although a
negative relationship with surface salinity appeared to be relatively
important, no single factor in the analysis explained over 5% of the
variability. All factors combined in a multiple regression model only
explained slightly more than 10% of the variability in density. Hist-
ograms also showed no relationship between density and surface tempera-
ture and a negative relationship between density and surface salinity

(Fig. 23). No obvious temperature salinity interactions were apparent.

Euconchoecia

The density of Euconchoecia (Ostracoda) generally appeared greatest
from November to April or March. The lowest values occurred during the
summer although this period of low density was not as apparent on
Transect III and it occurred earlier in the year on Transects IV and V
(Fig. 24). The very significant Month*Year interaction (P = 0.1%)
could probably be attributed to the extremely low densities found during
the summers of 1963 and 1965 (Fig. 25). Also, the large spring density
peak which occurred in March in 1963 did not appear until April in 1964

and 1965. Significant density differences were also related to bottom
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60

depth. Very low values were found at the 8 and 14 m stations and the
greatest density was found at stations with a depth of 46 m (Fig. 26).
The AOCOV used to remove the effect of sampling time did not alter these
results.

Regression models indicated a positive relationship with salinity
which accounted for 11.5% of the variability in the density of Eucon-
choecia. Salinity, combined with surface temperature and the previous
month's Mississippi runoff in a multiple regression model, accounted for
approximately 15% of the variability. The relationship between the
density of this genus and surface salinity and temperature is shown in
Figure 27. The optimum temperature appeared to be around 22 or 23°C
with densities decreasing at higher and lower temperatures. This prob-
ably accounts for the poor linear fit with temperature in the regression
models. This type of relationship with surface temperature was common
for organisms examined in this study. When temperature salinity inter-
actions were examined (Fig. 28), the positive relationship between dens-

ity and salinity appeared most pronounced at temperatures below 21°C.

Chaetognaths

A spring density peak in April and May appeared consistently over
depth although this peak was not large at the 14 m stations (Fig. 29).
Elevated densities in the fall and early winter were also present at
all depths although more pronounced at the shallower stations. January
and February were low density months at all depths. This general sea~
sonal distribution appeared in 1964 and 1965. The 1963 samples indi-
cated no large seasonal peaks of density. Overall densities were

highest in 1964 (Fig. 30). The mean density response at different
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transects was similar at the 14 and 46 m stations, showing generally
high values on Transect III (Fig. 31). This differed from the profiles
at the 28 and 73 m stations where the greatest densities occurred on
Transects I and IV. The high densities on Transect IV could be related
to the time of sampling. The stations with the highest densities (Sta-
tions 2, 3, and 54) had large percentages of night and twilight samples.
The analysis of covariance however indicated that overall, sampling time
was not a significant factor affecting this Depth*Transect interaction.
The regression models indicated that no physical or chemical fact-
ors explained any great portion of the variability in the density of
the chaetognaths. All of the factors combined in a multiple regression
model only explained approximately 6% of the variability. Although no
apparent relationship between density and surface salinity could be
seen in the histograms, there did appear to be a positive relationship
between density and surface temperature up to about 20-23°C (Fig. 32).

Temperature salinity interactions did not appear significant.

Gastropod Larvae

Seasonally, gastropod larvae appeared to be most abundant during
the spring and late summer with density peaks occurring in April and
August. The intermediate depth stations of 28 and 46 m were higher in
density than the 14 and 73 m stations (Fig. 33). Extremely high mean
densities were present at the 8 m station on Transect I and the 46 m
station on Transect V. The Depth*Transect interaction was highly sig-
nificant in the AOV.

Simple regressions with physical and chemical factors indicated

that 14.5% of the variability in the density of this group could be
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explained by a positive relationship with surface temperature. Missis-
sippi runoff and the cross shelf current also appeared to be signifi-
cant factors. These three factors along with the local runoff variable
explained approximately 21% of the variability in a multiple regression
model. The relationship between density and surface temperature is
shown in Figure 34. The positive trend was not as apparent when only
samples with salinities lower than 30 o/oo were examined. Salinity it-

self, however, did not appear to be strongly related to density.

Penilia

The cladoceran Penilia generally appeared in the sampling area be-
tween April and August. It was found only in very émall numbers during
other parts of the year. The overall density was very low in 1965 and
the month of peak abundance also varied depending upon the year (Fig.
35). In 1963 density peaks occurred in April, May, and August. In
1964 only one large density peak occurred in June. Spatially, densi-
ties were greatest at the 8 m stations although very high density values
were recorded at the 28 m stations on Transects I and IV (Fig. 36). The
46 m station on Transect IV also had a high mean density wvalue. The
absence of samples from 1965 (a very low density year for Penilia) on
Transect IV along with the preponderance of night samples at the 28 and
46 m stations on this transect probably contributed to these high dens-
ity values. The analysis of covariance, however, did not appear to
change the basic results of the A0V.

Surface temperature and the cross shelf current appeared to be the
most significant single factors in the simple regression analysis, ex-

plaining 15.2 and 11.6% of the variability, respectively. Combined
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in a multiple regression model these two factors explained 21% of the
variability. None of the other factors that were examined appeared to
be important. Up to 28°C the relationship between density and tempera-
ture seemed to be positive (Fig. 37) and this was exhibited by the over-
all positive slope in the regression analysis. Aabove 28°C however there
appeared to be a negative relationship with temperature. There appeared

to be little relationship between density and salinity (Fig. 37).

Medusae

This group included a wide variety of different organisms and often
included unidentifiable jelly-like structures. The AOV revealed few
highly significant spatial or temporal éffects for the group. The only
effect that was significant at the 1% level was the main effect of
Years. This appeared to be due to low density values in the year 1965.

The most significant single factor in the regression analysis,
surface salinity, only explained 3.2% of the variability in the density
of the medusae. All of the physical factors combined in a multiple
regression model only explained 7.6% of the variability. The relation-
ships between density and surface temperature and salinity are shown in

Figure 38.
Copepods

The variability in copepod densities (Fig. 39) appeared similar to
that of the zooplankton as a whole. The effect of Month, however, was
not significant in the analysis of variance due to the highly signifi-

cant Month*Year interaction, the term used to test for monthly
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variability. Although monthly variability generally appeared similar
over the 3 years, overall density peaks in 1964 were relatively large in
relation to the other years (Fig. 40). The effect of depth was signifi-
cant and the decrease in density with depth is also shown in Figure 39.
The Transect effect was significant in the AOV until the effect of
sampling time was removed through the analysis of covariance.

The percentage of the zooplankton made up by the copepods (calcu-
lated from mean densities) was generally greatest in the winter with
maximums in October (70.7%) and December (70,8%) and lowest in the
spring and summer with a minimum during August (48.0%) (Fig. 39). This
percentage also appeared to change with the depth of the station. The
shallowest stations had the highest values (64.7 and 64.2%) and the
values at the deeper stations ranged between 55.8 and 59.3%. No
relationship between the percent of copepods and transect was apparent.

The percentage of the copepods that were mature females, mature
males, and copepodids is shown over months, depths, and transects in
Figure 41. Copepodids generally made up around 50% of the copepods
while adult females were slightly less abundant. Males contributed a
'relatively small percentage. The seasonal variability did not appear
high in these figures although the percentage of copepodids was gen=-
erally great before and during overall copepod density peaks, indicating
their relationship with increasing population densities. Changes in
these percentages with depth indicated that copepodids were relatively
abundant inshore. Their percentage decreased and the percent of adult
females increased at the deeper stations. At the 73 m stations their

percentages were similar with copepodids and females making up 42.9 and
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40.5% of the copepods, respectively. The percentage of males did not
appear to vary over depth. Perxcentages over transects for all cate~
gories were remarkably stable.

A similar graphical method was used to examine the percentages of
calanoids, cyclopoids and harpacticoids in the copepods (Fig. 42).

Sexes and developmental stages were combined for these figures. Overall
monthly variability in these percentages did not appear high. Calanoids
were by far the dominant group with the highest values in the winter
and spring reaching 83.1% of the copepods in May. The lowest percentage
of calanoids occurred during July (65.4%). The cyclopoid percentages
were generally the inverse of the calanoids with a low value of 14.4%

in May and a high value of 31.7% in August. Harpacticoids made up only
a small percentage of the copepods.

The percent of calancids and cyclopoids showed a distinct trend
with depth. The percent of calanoids decreased with depth from 85% at
8 m to 61.6% at 73 m, while the percent of cyclopoids increased Qith
depth from 11.4% at 8 m to 36.4% at 73 m. The percentage of harpacti-
coids, although small, also appeared to change with depth decreasing
from 3.7% inshore to 2.1% offshore. Again, the variability over tran-
sects did not appear to be large.

The simple regression models indicated that a significant negative
relationship with salinity (Fig. 43) could explain 7.3% of the varia-
bility in the log of copepod densities. The stability of the water
column and the cross shelf current also appeared to be marginally
significant factors, each explaining approximately 2% of the variability

as single regression factors. These three factors in a multiple
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regression model explained 11.9% of the variability. The relationships
between density and surface temperature and salinity indicated by the
histograms were similar to those found for total zooplankton. Mean
densities at different temperature and salinity combinations are shown
in Figure 44.

Grice (1957) reported densities of copepods from inshore waters
off of West Florida to range from 2000/m3 at Knights Key to 45,000/m3
off of Cedar Key. The largest densities occurred in the spring and the
summer. The mesh size of his finest nets, however, was 150 um which
was considerably smaller than the nets used on the GUS III céuises. In
offshore waters Grice reported densities ranging from 2100 to 19,900
organisms/mB.

Park (1979) reported distributions for copepods off of South Texas
which were similar to those found in the GUS III samples. He found a
general decrease in density with bottom depth. From monthly datalaver-
aged over the entire sampling area, the highest mean densities occurred
in the spring (approximately 2300 organisms/m3) and in the fall. Aaver=-
aged over the years and months, the percentage of adult females did not
appear to change with depth remaining around 50 to 55%. This percent-
age was greatest in the summer however when it reached 67 to 70% in
July and August. The percentage of copepodids varied inversely with
the percentage of adult females. Adult males were not well represented.

Density trends for copepods from a number of studies conducted off
of the coast of New York have been summarized by Malone (1977). In this
more northern neritic area the copepods made up a much larger percentage

of the zooplankton reaching 99% in some samples from offshore stationms.
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C . 3
Copepod densities ranged between 200 to 8000 organisms/m .
Distributions of Common Species

General abundance and distribution data for all of the copepod
species identified in the samples are listed in Table 5. The analysis
of variance results for the 18 most abundant species in the sampling
area are listed in Table 6. Temporal and spatial distributions along
with possible relationships with physical and chemical variables are

examined for each of these common species in the following discussion.

Paracalanus indicus. This species was the most abundant copepod

in the study area, making up 16% of all female copepods examined. The
mean monthly variability, averaged over depths, transects, and years,
indicated peaks in density in the late spring to early summer and the
late fall to early winter. When this monthly variability was examined
at each depth, a similar seasonal pattern could be seen although the
spring-summer density peaks appeared to occur mostly in the summer
(Fig. 45). Densities were low at the 73 m stations and the seasonal
variability at these stations was reduced. When the AOCOV was calcu-
lated, the effect of Transect became highly significant (P = 0.6%).
This appeared to be due to a relatively high mean density on Transect
I, a transect without a 73 m station (Fig. 46).

The regression results indicated that physical and chem%cal factors
did not appear to explain the variability in the density of this species
to any great extent. The simple regression models showed moderately
high R? values for stability (2.1%), PMMSROFF (1.9%), and upwelling

(1.5%). When these were combined in a multiple regression model, they
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Table 5. List of copepod species with general abundance and
distribution data. Percent abundance (% Ab) was calculated from
all samples (R = less than 0.5%). Freq = percent of occurrences
out of 513 samples, Loc = location, i.e., I-inshore, O-offshore,
B-both or between. Seasonality was determined by density (D) for
the common species and by frequency of occurrence (x,i,o) for the
rare species. Where seasonality differed with locality, i = inshore
and o = offshore.

. Season
Species % Ab Freq Loc win Spr S Fal
CALANOIDA
Calanidae
Calanus teruicornis
Dana, 1849 R 3.7 0 X X X
Nannocalanus minor
(Claus, 1863) R 31.6 0 X X X X
Neocalanus gracilis
(Dana, 1849) R 1.6 0 X b4
Urdinula vulgaris
(Dana, 1849) R 11.5 B X X
Eucalanidae
Eucalanus hyalinus
(Claus, 1866) R 2.7 0 X X
E. monachus
Giesbrecht, 1888 R 1.8 0 X X
E. ptleatus
Giesbrecht, 1888 0.89 65.3 B X X b'4 X
E. sewells
Fleminger, 1973 R 2.5 0 x b'e
Rhinealanus cormutus
(Dana, 1849) R 7.0 0 X x
Mecynocera clausii
I.C. Thompson, 1888 R 22.8 0 X b4 X X
Paracalanidae
Aerocalanus andersoni
Bowman, 1958 R 10.3 0 X X X
A. longicormis
Giesbrecht, 1888 R 30.4 0 X X x
Paracalanus aculeatus
Giesbrecht, 1888 3.00 73.9 B D D
P. crassirostris
¥. Dahl, 1894 9.68 58.7 I D D
P. derudatus
Sewell, 1929 R 13.5 0 b4 X X x
P. indicus
(Wolfenden, 1905) 16.0 96.9 B D D D
P. nudus
Sewell, 1929 R 6.0 0 X X X
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Table 5. (continued)
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. Season
Species % Ab Freqg Loc Win Spr Sum Fal
P. quasimodo
Bowman, 1971 10.7 94.5 B D D
Calocalanus contractus
Farran, 1926 R 8.4 0 X X b4 X
C. elegans
Shmeleva, 1965 R 1.4 0 b4 X
C. gracilis
Tanaka, 1956 R 19.9 0 X b X X
C. neptunus
Shmeleva, 1965 R 4.1 Q X X X
C. pavo Dana, 1849 0.49 37.4 0 X X X
C. pavonivus
Farran, 1936 0.50 43.7 0 X b4 x X
C. stylirvemis
Giesbrecht, 1888 R 48.1 0 X X X X
Calocalanus sp. 2 R 6.4 0 X
Iscehnocalanus
plumulosus
(Claus, 1863) R 18.5 0 X X X b4
Pseudocalanidae
Clausocalanus
areuicornis
(Dana, 1849) R 5.7 0 X X X
C. furcatus
(Brady, 1883) 6.81 75.4 0 D D D
C. jobei
Frost and
Fleminger, 1968 1.09 43.3 0 D D D
C. mastigophorus
{Claus, 1863) R 4.5 0 X X
C. parapergens
Frost and
Fleminger, 1968 R 6.6 0 X X
C. paululus
Farran, 1926 R 6.4 0 X b4
C. pergens
Farran, 1926 R 7.0 0 b4 X
Ctenocalanus varus
Giesbrecht, 1888 R 19.7 0 b4 x X
Aetideidae
detideus acutus
Farran, 1929 R 2.7 0 X
Bradyidius sp. R 0.2 0 x
Euchirella amoena
Giesbrecht, 1888 R 0.2 0 X
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Table 5. (continued)

Season
Win Spr Sum Fal

Species % Ab Freq Loc

Aetideidae (cont.)
E. rostrata
(Claus, 1866) R 0.4 0 X X
Patvella inaciae
Vervoort, 1965 R 0.2 0] b4

Euchaetidae
Euchaeta marina
(Prestandrea, 1833) R 9.6 0 x X x
E. media
Giesbrecht, 1888 R 0.2 I X
E. paraconcinna
Fleminger, 1957 R 6.4 o] X X X b

Phaennidae
Phaenna spinifera
Claus, 1863 R 0.2 0 X

Scolecithricidae

Scaphocalanus

subcurtus Prark,
1970 R 1.2 0 X

Seolecithricella

etenopus
{Giesbrecht, 1888) R 0.2 Q X

S. dentata
(Giesbrecht, 1888) R 0.4 0 b4 X

S. tenutserrata
(Giesbrecht, 1892) R 1.2 0 X X

Scolecithrix bradyi '
Giesbrecht, 1888 R 0.8 0 X x

S. dance
(Lubbock, 1856) R 6.6 0 X X X x

Tharybidae
Parundinella
spinodenticulata
Fleminger, 1957 R 2.9 0 X

Stephidae

Stephos deichmannae
Fleminger, 1957 R 8.4 0 X X x
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Table 5. (continued)
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Season

Species % Ab Freq Loc Win Spr Sum

Pal

Temoridae
Temora stylifera

(Dana, 1849) R 43.9 B X x X
T. turbinata

(Dana, 1849) 3.60 83.6 I X
Temoropia
mayumbaensis

T. Scott, 1894 R 0.2 0] X

Metridiidae
Pleuromamma
abdominalis
(Lubbock, 1856) R 0.4 0 x
P. gracilis
(Claus, 1863) R 1.0 0 X x
P. piseki
Farran, 1929 R 1.4 0] b4 X

Centropagidae
Centropages
caribbeanensis
Park, 1970 R 1.6 0 x b4
C. hamatus
(Lilljeborgi, 1853) 0.73 12.5 I D D
C. velificatus
De Oliveira, 1947 1.24 6l1.0 I D

Pseudodiaptomidae
Pseudodiaptomus sp. R 1.8 I X X x

Lucicutiidae
Luetecutia flaviecornis

(Claus, 1863) R 17.2 0 X b4 X
L. guassae

Grice, 1963 R 6.2 0 X b3 X
L. paraclausi

Park, 1970 R 7.0 0 x X b4

Heterorhabdidae
Heterorhabdus
paptilliger
(Claus, 1863) R 1.0 0 X
H. spinifer
park, 1970 R 0.8 o] X
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Table 5. (continued)

Season
Win Spr Sum Fal

Species % Ab Freq Loc

Augaptilidae
Haloptilus
longicornis
(Claus, 1863) R l.6 0 X X X

Candaciidae
Candacia curta
(Dana, 1849) R 7.4 o] X X x x
C. pachydactyla
(Dana, 1849) R 2.0 0 X X b4
Paracandacia
bispinosa
(Claus, 1863) R 0.6 B X
P. gimplex
(Giesbrecht, 1889) R 5.1 0 X X

Pontellidae
Anomalocera ornata

Sutcliffe, 1949 R 0.6 0 b'4
Calanopia americana

F. Dahl, 1894 R 34.1 B o o oi oi
Labidocera
acutifrons

(Dana, 1852) R 0.2 0 be
L. aestiva

Wheeler, 1901 R 14.4 I X X X X
L. scottt

‘Giesbrecht, 1897 R 5.5 1 x x
Pontella meadii

Wheeler, 1900 R 0.4 B ’ X b'4
P. securifer

Brady, 1883 R 0.4 0 X
Pontellina plumata

(Dana, 1849) R 0.6 0 b4
Pontellopsis villosa

Brady, 1883 R 0.6 B X X X

Acartiidae
Acartia danae
Giesbrecht, 1889 R 23.4 0 D D
A. lilljeborgii
Giesbrecht, 1889 2.15 13.6 I D
A. tonsa Dana, 1849 11.9 49.1 I D
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Table 5. (continued)

Species % Ab Freq Loc Win §Eieas°2um Fal
CYCLOPOIDA
Oithonidae
Oithona colearva
Bowman, 1975 R 10.5 I X X X
0. deeipiens
Farran, 1913* R 4.3 0 x X X
0. hamata
Rosendorn, 1917%* R 4.8 0 X X
0. hebes
Giesbrecht, 1891%* R 12.6 B X b3 X X
0. narna
Giesbrecht, 1892 5.62 75.4 I D D
0. plumifera
W. Baird, 1843 3.86 76.2 0 D D
0. robusta
Giesbrecht, 1892%* R 0.7 0 X X
0. setigera
Dana, 1849% R 15.7 0 X x X X
0. similis
Claus, 1866%* R 13.1 0 X X
0. simplex
Farran, 1913% R 12.9 I X X X
0. tenuis
Rosendorn, 1917 R 7.6 0 X X
0. vivida
Farran, 1913* R 4.5 0 X X
Oithona sp. 1 R 13.1 0 X X
Parotithona pulla
Farran, 1913 R 1.6 B X X
Paroithona sp. R 1.2 0 X X x x
Oncaeidae
Oncaea conifera
Giesbrecht, 1891 R 17.9 0] X X x X
0. dentipes
Giesbrecht, 1891 R 1.8 0 X X
0. media
Giesbrecht, 1891 6.10 82.3 B D D
0. mediterranea
Claus, 1863 1.03 51.5 0 D D D
0. similis
Sars, 1918 R 0.8 B X x
0. venusta
Philippi, 1843 3.14 €9.8 0 D D D
Lubbockia
squillimana
Claus, 1863 R 9.0 0 X X x
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Table 5. (continued)

Species % Ab Freq Loc Win sprseasgzm Fal
Sapphirinidae
Sapphirina angusta
Dana, 1852 R 0.4 0] X
S. auronitens
Claus, 1863 R 1.2 0 x 'S X
S. intestinata
Giesbrecht, 1891 R 0.2 B X
S. lactens
Giesbrecht, 1892 R 0.2 B X
S. metallina
Dana, 1852 R 1.2 0 X X X
S. nigromaculata
Claus, 1863 R 15.2 B X b4 X X
S. ovatolanceolata
Dana, 1852 R 0.4 B b4
Corissa parva
Farran, 1936 R 0.4 0 b4 X
Copilia lata
Giesbrecht, 1892 R 1.0 0 X X
C. mirabilis
Dana, 1852 R 8.0 0 X X b4
C. quadrata
Dana, 1852 R 0.4 0] X X
Corycaeidae .
Corycaeus ami.2onicus
¥F. Dahl, 1894 1.81 79.3 B D D
C. americanus
M. Wilson, 1949 1.55 70.2 1 D D D
C. elaust '
F. Dahl, 1894 R 5.1 6] X X
C. flaceus
Giesbrecht, 1891 R 2.7 o] X X
C. fureifer
Claus, 1863 R 0.2 0 X
C. giesbrechti
F. Dahl, 1894 0.88 64.7 B D D
C. latus
(Dana, 1849) R 21.8 0 X X b'q
C. lautus
Dana, 184° R 1.9 0 X x
C. limbatus
Brady, 1888 R 2.1 0 x
C. minimus indicus
M. Dahl, 1894 R 0.6 0 X x
C. speciosus
Dana, 1849 R 17.3 0 X x x
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Table 5. (continued)

94

. Season
Species % Ab Freq Loc win Sor Sum Fal
Corycaeidae (cont.)
C. typicus
(Kroyer, 1849) R 1.8 0 X
Farranula gracilis
(Dana, 1853) 1.80 46.4 0 : D D
F. rostrata
(Claus, 1863) R 10.9 0 X X X
Sabelliphelidae
Hermanella sp.t R 3.0 I X x %
Kelleria sp.t R 16.2 B X x X
Sabelliphelidae
spp.# R 25.7 B X X x 4

*Transect V not included (420 obs)
+Transects I, II and III not included (198 obs)
F#Transects IV and V not included (315 obs)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘uoissiwiad (noyum paygiyosd uononpoidal Joyung JBUMO WbuAdoo ay) Jo uoissiwiad yum paonpoidey

Table 6. Analysis of variance and covariance results for copepod species. See legend for
Table 2 (p. 41).

Percent Interactions Main Effects
Species of Depth Depth Depth Trans Trans Month
Copepods Trans Month Year Month Year Year Depth Trans Month Year
Paracalanus 16.0 s * ns 7 4 ns 7.6 0.2 2.8 2.7 0.3
indicus - n * y 2.9 * 0.6 ns 0.8
Acartia 0.6 * * 4.9 1.1
tonsa 11.9 * 0.2 ns 7.6 ns 0.1 * 8.0 1.0 5.5
Paracalanus 10.7 * ns ns 0.2 ns 3.5 * ns 0.3 ns
quasimodo . 0.5 ns * 8.8 0.3 0.2
Paracalams 9.7 2.1 0.1 ns 0.3 ns 0.3 * * 0.7 ns
cerassirostris
Clausocalanus 6.8 4.7 * ns 2.9 ns * * 2.4 s 0.5
Sfurcatus : 3.8 * ns 3.9 ns * * 1.6 0.2
Oncaea * 1.4 * 2.5 ns * 0.2
media 6.1 ns * 0.3 ¥ 3. ns 0.1 ns * ns
Oithona 5.6 ns * ns 1.2 ns * * * ns ns
nana
Oithona 3.9 * 2.4 ns * * 0.8 ns ns
plumifera . ns * ne 0.8 * * 1.1 ns ns
Temorq 3.6 ns ns ns 0.4 ns * 0.2 1.6 ns ns
turbinata
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Table 6. (continued)

Percent Interactions Main Effects
Species of Depth Depth Depth Trans ‘Trans Month
Copepods Trans Month Year Month Year Year Depth Trans Month Year
Oncaea 3.1 ns 2.9 ns 1.6 ns 0.6 * 1.0 ns 1.1
venusta
Paracalanus 3.0 ns * ns 1.0 ns 0.6 * 3.7 1.0 ns
aculeatus : * 2.6 0.4 * 0.5 1.0 ns
Aeqrtga . 2.2 4.5 * ns * ns ns * 0.2 * ns
lilljeborgii
Corycaeus 1.8 ns ul ns 9.6 ns 28 ol ns * ns
amazonicus - * 0.3 ns * 0.1
Farranula 1.8 7.4 * ns ns ns * * ns 0.2 ns
gracilis
Corycqeus 1.6 ns * ns ns ns 7.9 * ns 0.2 4.5
americanus
Centropages 1.2 ns * ns ns ns * 0.1 0.7 0.8 *
velificatus : : ’ :
C%ausqaalanus 1.1 ns 1.9 ns 0.6 ns * 0.1 ns ns ns
Jobet
aed 1.0 ns ns ns ns ns ns * ns ns ns
mediterranea :
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Figure 45. Mean monthly densities of Paracalanus indicus at each

bottom depth sampled.

Values are averaged over transects and years.
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Figure 46. Mean monthly densities of Paracalanus indicus on each
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explained 8.9% of the variability in the density of this species.
Temperature and salinity did not appear to be significant factors. The
graph of density versus surface salinity also showed no obvious rela-
tionship (Fig. 47). There did appear to be an optimum surface temper-
ature, however, of approximately 20°C. Mean densities decreased in
both directions from this temperature. No apparent temperature salin-
ity interactions could be seen (Fig. 48).

Regression results for surface temperature and salinity were also
examined for each month and each depth (Fig. 49). Density was posi-
tively related to surface temperature during March and negatively
related during October. The relationship between density and salinity
also appeared to change from negative to positive during the year.
When regressions were calculated at each depth, no apparent relation-
ship with either temperature or salinity was exhibited at the shallow
stations. Densities appeared to be negatively related however to both

temperature and salinity at the deeper stations.

Acartia tonsa. Although Acartia tonsa had a limited seasonal and

spatial distribution, it was a very abundant copepod in the sampling
area making up approximately 12% of the females examined. This species
occurred in significant numbers only at the 3 and 14 m stations (Fig.
50). At both of these depths a distinct spring density peak was present
during April and May. The largest spring densities occurred in 1964.
At the 8 m station on Transect IV a density peak also occurred in
October of 1963. When mean values at each station averaged over time

(Fig. 51) were examined, it was apparent that large numbers of Aeartia
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were frequently found only at the shallow stations on Transects III and
IV. The analysis of covariance calculated to examine the effect of
sampling time on these data did not appear to alter the results of the
AQV.

Simple linear regression models indicated that the density of
Acartia tonsa appeared to be closely related to surface salinity. This
negative relationship with salinity explained 43.5% of the variability.
When added to surface temperature in a two variable multiple regression
model the RZ was 46.1%. Density did not appear to be related to the
other physical factors examined. The negative relationship between
density and surface salinity can be seen graphically in Figure 52. A
negative relationship with temperature also appeared to be present up
to approximately 18°C. At higher temperatures no distinct trend was
evident. The combination of higﬁ salinity and high temperature gen-
erally resulted in very low densities of this species (Fig. 53). The
relatively large mean density at 31°C for salinities over 35°/ooléame
from one ancmalous sample.

Figure 54 shows the regression results for salinity and temperature
for each month and also for each depth. Highly significant relation-
ships were frequently found in regressions with temperature and salinity
for each month. Since this species was almost exclusively found at
inshore stations, the seasonal distrxibution of temperature and salinity
at each depth (Fig. 3, p. 24 and Fig. 9, p. 31) appeared to be respons-
ible for these high R? values. There seemed to be little relationship
between temperature and density at any depth but salinity regressions

were negative at all depths and the R? vaiues were high at all depths
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except 46 m. In general, these results indicated that the seasonal and
spatial abundance of Acartia tonsa appeared to be closely related to

changes in surface salinity.

Paracalanus cuasimodo. The mean monthly densities of this species

appeared to be different from those of P. indicus. Paracalanus
quasimodo had density peaks in April and September. Although more
pronounced at the inshore stations, this seasonal distribution apveared
to be conmsistent over depth (Fig. 55). Upon examining the monthly var-
iability at each transect however (a significant interaction, P = 0.2%)
it could be seen that much of the seasonal variabpility in Figure 55
came from Transect I, and that densities on Transects IV and V showed
little seasonal variability (Fig. 56). The plot of density versus
transect for each depth (Fig. 57) indicated that the stations at 73 m
generally had the lowest densities. The 28 m stations had the highest
densities on all but one of the transects. The AOCOV with sampling
time as the covariate did not appear to affect these results signifi-
cantly.

The density of this species did not appear to be strongly related
to any of the physical or chemical factors examined. The highest R2
values in the simple regression models were for PMMSROFF (2.7%),
surface salinity (2.7%, negative), and the cross shelf current (1.7%).
All of the variables combined in a multiple regression model however
only had an R? value of 6.7%. The negative relationship between dens-
ity and surface salinity is shown in Figure 58. When temperature
salinity interactions were examined (Fig. 59), the negative trend

C s o)
between density and salinities above 31 /oo was more apparent at
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temperatures above 21°C than in the histogram including all tempera-
tures. The relationship between density and surface temperature itself
showed no distinct pattern.

Temperature and salinity regressions for each month separately are
shown in Figure 60. A positive relationship with temperature was pres-
ent during the month of March. A negative relationship with salinity
occurred during the summer months of July and August. When regressions
between density and temperature were examined at each depth, no signif-
icant relationships were found. The negative relationship between
density and salinity was present at four out of the five depths. The

46 and 73 m stations had the highest R®

values. These results indicated
that the density of Paracalanus quasimodo was affected only by seasonal
changes in salinity. Densities were probably not related to changes in
salinity with depth. The only negative seasonal regressions occurred

in July and August when there appeared to be little change in surface

salinity over depth (Fig. 9, p. 31).

Paracalanus crassirostris. Paracalarnus crassirostris was abundant

at the 8 and 14 m stations and rarely found at the deeper stations
(Fig. 6l1). Seasonally, peaks of abundance occurred in the winter and
early spring. Densities appeared to be greatest on Transects IV and
vV (Fig. 62).

The regression models indicated that a negative relationship with
salinity could explain 22.4% of the variability of this species. A
negative relationship with temperature explained 15.1% of the varia-
bility. The stability of the water column also appeared to be import-

ant in a simple linear regression model, explaining 8.6% of the
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Figure 61. Mean monthly densities of Paracalanus crassirostris at
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variability. When temperature and salinity were combined in a multiple
regression model the R2 was 35.1%. Adding stability increased this to
37.4% and adding the previous month's Mississippi runoff brought this
value up to 39.0%. Adding other factors did not appear to increase

the fit of the multiple regression model. Figure 63 graphically shows
the relationships between density and surface salinity and temperature.
No obvious temperature salinity interaction was apparent in the data

(Fig. 64).

Clausocalanus furcatus. This species was abundant at the 28, 46,

and 73 m stations. At the deepest stations (46 and 73 m) mean densities
were greatest during July and remained relatively high through December
(Fig. 65). Monthly mean densities at the 28 m stations were also high
during July but the fall values were lower than those at the deeper
stations. At the 8 and 14 m stations this species occurred only in
small numbers, mostly in the summer. The significant Month*Year inter-
action in the AOV can probably be‘attributed to the relatively high
densities in 1964 from June through December.

Simple linear regression models indicated that a number of factors
explained significant portions of the variability in the density of this
species. Surface salinity and surface temperature were the most import-
ant factors explaining 21.5 and 11.6% of the variability, respectively.
Stability and upwelling also appeared to be relatively important as
simple regression variables. When temperature and salinity were com=
bined in a multiple regression model they explained 31% of the varia-

bility. Adding stability and upwelling increased this value to 35.8%.
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The overall regression relationship between the log of the density
of this species and surface temperature was positive. Up to 23°C this
relationship appears positive in Figure 66. At temperatures above 23°C
however no distinct pattern was apparent. This density temperature
relationship appeared to be consistent over the three salinity classes
although only a few samples had témperatures below 23°C and salinities
below 30°/co (Fig. 67). The relationship with surface salinity itself
was strongly positive with the highest salinities having the highest
densities. No specimens were found in the 15 samples with temperatures

below 21°C and salinities below 31°/co.

Oncaea media. This species appeared to be most abundant at the 28
and 46 m stations. The Depth*Month and Transect*Month interactions
were both significant at the 1% level in the AOV and seasonal varia-
bility was therefore plotted at each depth (Fig. 68) and each transect
(Fig. 69). At the shallowest stations (8 and 14 m) Oncaea media
occurred mostly in the summer months and at the 46 and 73 m stations
the greatest densities occurred during the spring. No distinct sea-
sonal pattern appeared to be consistent over transects.

A positive relationship with surface salinity explained 10.9% of
the variability in the density of this species in a simple linear
regression model. When all physical and chemical variables were
combined in a multiple regression model it explained 22.6% of the
variability. The relationship between density and salinity is shown
in Figure 70. When this relationship was examined over the two temp-
erature classes the positive trend between density and salinity seemed

less distinct (Fig. 71). The relationship between density and
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temperature itself appeared to be positive at the lower temperatures

and negative at the higher values. The density peak or optimum temp-
erature was around 18 to 19°c (Fig. 70). This pattern was also not as
distinct when the different salinity classes were examined separately

(Fig. 71).

Otthona nana. Oithona nana was one of the most abundant cyclopoids
found, comprising 5.6% of all of the female copepods in the sampling
area. This species was most abundant at the shallow stations and al-
most never present at the 46 and 73 m stations (Fig. 72). Densities
were highest in the summer and the fall and the monthly variability
appeared to be greatest at the 8 m stations.

Surface salinity was the only significant variable in the simple

regression models with an R2

of 7.0% (negative slope). Although the
previous month's Mississippi runoff was not significant by itself,
when combined with salinity in a multiple regression model, the model
explained 8.9% of the variability in the density of this species.
A negative trend between density and surface salinity appeared to be
present at salinities above approximately 30°/oo (Fig. 73). A similar
density-salinity pattern could also be seen when samples with tempera-
tures below 21°C were examined (Fig. 74). At higher temperatures,
however, the negative relationship between density and salinity was not
obvious until salinities reached 34 to 350/00. The relationship between
density and surface temperature showed no distinct pattern (Fig. 73).
When regressions with temperature and salinity were calculated for

each month, September through December had high negative R2 values for

both factors. Regressions between density and temperature and salinity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



131

300

200

100

100

100

number/cubic meter

Ug m
100 b ]
m__ | & | - 1
150 } ]
73 1 .
100 o r
50 p )
J F M A M J J A S 0 N D

Figure 72. Mean monthly densities of Oi{thona nana at each bottom
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at each depth however indicated little relationship with temperature

and a positive relationship with salinity at the 8 m stations (Fig. 75).

Oithona plumifera. This species was also one of the most abundant

cyclopoid copepods found in the study area. Unlike OZthona nana,

0. plumifera was most abundant at the deeper stations and was infre-
quently found at the 8 and 14 m depths (Fig. 76). It occurred most
frequently from June through December and relatively low densities were
observed in the spring. The effect of Transect was highly significant
(P = 0.8%), apparently due to high density values on Transect V. The
tendency for the stations on Transect V to be further offshore than the
stations on the other transects probably was a contributing factor in
these results. The analysis of covariance with the time of sampling as
the covariate indicated a highly significant (P = 0.8%) Transect*Month
interaction. This could have been due to the very low densities found
during all months on Transect I. The other AOV results remained un-
changed.

Results from the regression models with physical and chemical
factors indicated a number of significant variables. Surface salinity
(26.3%), surface temperature (11.9%), and the PMMSROFF (5.6%) all
appeared to explain a significant percent of the variability in density
in simple regressions. When temperature and salinity were combined the
R? was 35.9%. The best three factor multiple regression model included
these two factors and the cross shelf current and had an R2 of 37.1%.
The addition of PMMSROFF only increased this value to 37.4%. The pos-

itive relationship between density and surface salinity is shown in
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Figure 77. The density relationship with surface temperature was also
positive. At low salinities however (below 35°/oo), the positive rela-
tionship with temperature was not as apparent (Fig. 78).

The regression analyses with temperature and salinity for each
month and depth are shown in Figure 79. High densities in this species
appeared to be closely related to high surface temperatures and high
surface salinities whether these factors were changing due to depth or
season. The only negative relationships were with temperature during
June and August when the highest mean surface temperatures in the

sampling area were found at the 14 m stations (Fig. 3, p. 24).

Temora turbinata. Temora turbinata was generally most abundant at

the shallow stations (8 and 14 m) and its density appeared to decrease
with the depth of the water at the other stations (Fig. 80). Averaged
over transects, depths, and years, mean monthly density values peaked
in July and also in the fall months. The July density peak was mainly
due to high densities in 1963 (Fig. 8l). High fall densities were
present during all 3 years. When mean monthly densities were examined
on each transect (Fig. 82) the above seasonal distribution was not as
evident.

The regression models did not appear to explain much of the var-
iability in the density of this species. The stability of the watexr
column appeared to be most important and only explained 2.3% of the
variability. All variables combined explained less than 10% of the
variability in a multiple regression model. The histograms of density

versus surface salinity indicated a slight negative relationship at
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Densities of Oithona plumifera at different surface temperature and surface sal

Figure 78.

See legend of Figure 16 (p. 43).
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high salinities (Fig. 83). Densities did not appear to be related to

surface temperature.

Oneaea venusta. This species was most abundant at the offshore

stations. Stations with a depth of 46 m averaged the highest densities
(Fig. 80, p. 141). When densities were averaged over depths, transects,
and years, the seasonal distribution appeared to show peaks of abund-
ance in the late summer and early winter months. Although this sea-
sonal distribution was present during 1964 and 1965, a distinct fall
peak was not present in 1963 (Fig. 84). The greatest overall densities
occurred in 1964,

Simple regression models indicated that surface salinity and temp-
erature were important factors explaining 14.7 and 10.3% of the var-
iability in the density of this species, respectively. These two
variables combined in a multiple regression model explained 23.3% of
the variability. All of the variables combined had an R2 of 27.6%.

The relationships between density and surface temperature and salinity
were both positive (Fig. 85). No interactions between temperature and

salinity could be distinguished.

Paracalanus aculeatus. Paracalanus aculeatus generally occurred

from June through December at the 28 and 46 m stations (Fig. 86). It
was found only in very small numbers at the other depths except for a
density peak at Station 60 (8 m, Transect I) in October, 1964. The
seasonal distribution was examined on each transect due to a significant
(P = 1.0%) Transect*Month interaction. These monthly distributions on

each transect appeared similar except for a very large density peak on
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Transect V in December (Fig. 87). This was due to a high density value
at Station 10 in 1964. The density of this species also appeared to be
related to sampling time with the greatest densities occurring when
sampling was conducted at night. The AOCOV showed only one major change
in the distribution results. The effect of Transect became highly sig-
nificant (P = 0.5%) which appeared to be due to the high mean densities
found on Transect V.

The important physical and chemical variables in the simple regres-
sion models were surface salinity, surface temperature, and the PMMSROFF
explaining 14.9, 10.4, and 6.3% of the variability in the density of
this species, respectively. When these three factors were combined in
a multiple regression model they explained 26.3% of the variability.

The positive relationships between density and surface temperature and
salinity are shown in Figure 88. There did not appear to be any mean-

ingful temperature salinity interactions (Fig. 89).

Acartia lilljeborgi. This species was most abundant at the 8 m

stations where it occurred in large numbers during the fall (Fig. 90).
At the deeper stations it appeared occasionally, usually during the
fall, except at the 73 m stations where no specimens were captured.
Although the Transect*Month interaction was significant (P = 0.1%) it
appeared that any apparent transect effect (Fig. 91) could be explained
by the density distribution over depth.

Few variables appeared to be important in the regression analysis.
The previous month's Mississippi runoff (PMMSROFF) was the most signif-
icant factor in the simple regressions and it only explained 2.6% of

the variability in density. The best two factor multiple regression
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model combined surface salinity and PMMSROFF and explained 6.3% of the
variability. When surface temperature was added to the model the R2
increased to 8.0% and the inclusion of the vertical stability of the
water column further increased this value to 9.7%.

The histograms of density versus surface temperature and salinity
are shown in Figure 92. The relationship with temperature was difficult
to interpret. The optimum temperature appeared to be around 24°¢.

When this relationship was examined for the three salinity classes (Fig.
93), it was apparent that the overall relationship between density and
temperature was mostly influenced by samples with salinities between

30 and 35°/oo. At higher salinities (above 350/00) no specimens were
found at temperatures below 23°C, although 98 samples had this temp-
erature salinity combination. This species was never found in samples
with salinities less than 28°/oo and the greatest mean density occurred
in samples with a salinity of approximately 3l°/oo. In samples with
temperatures below Zloc, most specimens were found at salinities be-

tween 32 and 35°/00 (Fig. 93).

Coryeaeus amazonrcus. Lorycasus amasonicus was fairly evenly dis-

tributed over the sampling area. A slight tendency for a decrease in
density with depth was exhibited however and the 73 m stations had the
lowest mean densities. Seasonal peaks of density occurred in the spring
and the fall although the spring peaks appeared later in the year at the
shallow stations and the fall peak was absent at the 73 m stations (Fig.
94). Although this seasonal pattern was not as distinct when mean
monthly density values were examined at each transect, no really anoma-

lous seasonal distribution could be seen (Fig. 95). The ana;ysis of
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covariance used to examine the effect of sampling time on these results
did not appear to alter the probability values in the AOV table.

The results from the regression models indicated little relationship
between the density of this species and the physical and chemical factors
examined. The most important single factors appeared to be surface
temperature and the PMMSROFF. Both of these variables explained approx-
imately 1.4% of the variability in density. All of the factors combined
in a multiple regression model only explained 6.5% of this variability.
The graphical representation of density versus surface salinity also
showed little apparent relationship (Fig. 96). There did appear to be
a positive relationship between density and surface temperature up to
26°c. Above this temperature mean densities declined. The overall
regression slope was positive. No obvious temperature salinity inter-

action was apparent (Fig. 97).

Farranula gracilis. Farranula gracilis was most abundant at the

deeper stations and appeared infrequently in samples from the 8 and
14 m stations. Seasonally, this species had a mean density peak in
July and was relatively abundant throughout the summer and fall (Fig.
98). Only a few specimens were captured in the sampling area between
December and May. The general seasonal distribution was present during
1964. The density peak occurred slightly earlier in the year in 1963
(June and July) and apparently occurred later in 1965, although no July
samples were available for this year of the study. The AOV indicated
that there was no significant Transect effect or Transect interaction.
Surface temperature, surface salinity, and stability all appeared

to be important variables in the simple regression rodels, explaining

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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22.2, 13.4, and 11.7% of the variability in density, respectively. The
best two factor multiple regression model included temperature and sal-
inity and had an R2 of 33.3%. 1Including stability increased this value
to 36.4%. All of the variables combined in a regression model explained
42.8% of the variability in the density of this species. The relation~
ship between density and surface temperature was positive and the
greatest mean densities occurred at temperatures between 28 and 30%%.
The relationship between density and surface salinity was also positive
with the greatest mean densities occurring in samples with the highest
salinities recorded (approximately 37°/oo) (Fig. 99)., Few specimens
were observed in samples with low temperature and low salinity combina-

tions (Fig. 100).

Corycaeus americanus. The density of Corycaeus americanus did not

appear to be closely related to the bottom depth of the station. The
seasonal distribution at each depth is shown in Figure 10l. Low densi-
ties occurred from August through October at all depths and there was
some tendency for abundance peaks to be present in the spring. Late
fall and early winter density peaks also occurred sporadically at all
depths except at the 73 m stations, where few representatives were found
during this part of the year.

Simple regression models indicated a significant negative relation-
ship between the density of this species and the surface temperature
which explained 11.8% of the variability. The best two factor multiple
regression model combined temperature and PMMSROFF and had an R2 of

15.7%. These two variables appeared to be the only significant physical

factors. All variables combined in a multiple regression model only had
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an R2 of 16.6%. The relationship between density and surface tempera-
ture is shown in Figure 102. Although surface salinity did not appear
to be significant in the linear regression models, Figure 102 indicates
that above 32.5°/oo densities appeared to decrease as salinity in-

creased. There was no apparent temperature salinity interaction.

Centropages velificatus. The density of Centropages velificatus

generally decreased with the bottom depth of the station. Highest
densities occurred at the 8 m stations and few specimens were found in
samples taken at the 73 m stations (Fig. 103). Seasonally, the great-~
est numbers were collected from June through October. Specimens were
rarely captured from January through April. The effect of Transect was
significant in the AOV (P = 0.7%) and the mean density on Transect I
was relatively high. The depth distribution of the stations on each
transect, however, could explain this elevation in density. Transect I
had an 8 m station and no 73 m station.

The single regression models indicated that surface temperature
was the only highly significant factor explaining 14.2% of the varia-
bility in the density of this species. The other factors did not
appear to be important by themselves but when they were added into a
multiple regression model with temperature, the model explained 22.6%
of the variability. The positive relationship between density and
temperature is shown graphically in Figure 104. There did not appear

to be any change in this trend at different salinities.
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bottom depth sampled. Values are averaged over transects and years.
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Clausocalanus_jobei. This species was frequently found in large

numbers at the offshore stations. Relatively few specimens were cap-
tured at the 8, 14, and 28 m stations. The overall seasonal distribu-
tion as indicated by mean monthly densities averaged over depth,
transect, and year showed the greatest densities occurring between
February and August (Fig. 105). Although this pattern generally re-
mained unchanged when the seasonal distribution was examined at each
transect, the month of peak density was variable (Fig. 106).

The regression models and the histograms (Fig. 107) both indicated
that surface temperature and salinity did not relate very well to
density for this species. Simple regression models with other physical
factors generally had low R2 values with stability (8.9%), PMMSROFF
(3.3%), and upwelling (3.0%) being the most important variables. When
these factors were combined with surface salinity (R2 = 3.0%) and sur-
face temperature in a multiple regression model it explained 22.9% of

the variability in density.

Oncaea mediterranea. The results of the AOV indicated that even

at the 5% significance level, depth was the only significant factor in
the temporal and spatial distribution of this species. Mean densities
increased dramatically with bottom depth (Fig. 108) and the greatest
densities were found at the 73 m stations. This was one of the few
species or groups of organisms that showed no significant effect of
Month or any Month interactions. This indicated a relatively stable
population throughout the year (Fig. 108).

Simple regression models indicated that stability of the water

2
column (R2 = 8.4%), salinity (R2 = 8.1%), and upwelling (R = 3.4%)
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were important physical and chemical factors. Combined with surface
temperature in a multiple regression model these factors explained
22.4% of the variability in the density of this species. The overall
regression slope for density and salinity was positive. The histogram
of density and salinity showed this general trend of increasing density
with salinity (Fig. 109). This pattern however was much more apparent
in the samples with temperatures below 21°C (Fig. 110). The histograms

of density and temperature showed no distinct relationships.
Species Diversity

Species diversity was measured by the number of species of adult
female copepods found in the subsample analyzed from each sample. The
relationship between the number of specimens examined and the number of
species found is shown in Figure 111 for all of the samples combined
and for samples grouped by bottom depth. Subsamples with over 150-250
females appeared to include most of the species. Only 50 subsamples
contained fewer than 150 adult females.

The monthly mean number of species is shown in Figure 112 for each
depth. The greatest number of species was found at the 73 m stations
and the diversity generally decreased at the shallower stations. At
the deepest stations (46 and 73 m) the greatest diversity occurred
during the winter. The largest mean number was found in January at
73 m (51 species). At the 28 m stations diversity was high in the
winter and the summer and at the shallow stations the highest diversi-
ties were found in the summer months. This seasonal distribution with

depth implied a positive relationship with surface salinity (see Figqg.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



178

MOOUXXAHUX AN XX AN KX
AXXXXAXXXXXXXXXXX
HXNXXXXHXX XXX HXXNNNXX
IXXXXU XX XX XXX XX XXX KHNNNK
HXXXX XX XXX XXX KKK
AXXXXXXXXAXXXAXHX XX XXX X
HNUXXXXAXXXXXNXXXXKX XXX
MOXXXXXUX XXX XX XX XXX XNNNXX
MR XXXNAXXXHX XX XNK X XN XX

XXX XHN XX XXKIHHXXXHN XX
XXXXXAXXXX XXX XXX X
OCXXUXUMAXX XX XXX XN K
XXXXKXXKHXX XX XXX HXXXXNXXXX
AXXXXXXNNXXXX

XUXNXXXX XXX

XXXXNX XX

AXXXXX XX

XX

temperature (Oc)

1.4
1.2
1.0
0.8
0.6
0.4
0.2

(T + KaTsusp) ug

XX XXHX XK AHXNXXXHHXXNNXX XX
XXXXXXKKXXXHKX XX XXX XX XXX XX XX
XXX MUK XX KX XN XANNXX XX
XXXXX XX AXMXAXXXNX XX

XXX XXX XX

1 282000808888
XXXMXAKXNNXX
HXAXXXXXXXXXX X
HAXXXX XX XX HNXNX XX
XXXXXXXXXXNXX

XXX RXXXX XX

XXXXXXXXX

OO XXXXXHXXHXXXXXXKXXX
XXX

XXXXXXKXNXXNNX XX

XXXXXXX XX

XXXKXKXXXXUXXXKKXKXXHHH XXX XX

XXX XX XICHMOHX M X XX
1 ] L 1 [} 1 1
<t o o 0 (e} < o
- ~ ©o o o o

(T + K3tsusp) uy

perature and surface
See legend of Figure 15 (p. 42).

30
saiinity (%;)

y relationships with surface tem
1terranea.

25
salinity for Oncaea med

Densit

Figure 109.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



179

>
i)
xxxxxxxxxxxxx f XXXXXXXXXAXX s
™ I [~
AXX XX XX XX XX XX XX XHXX XXX XXX XX o~
AXXXXX XA XX XX XXXX XXXXXXXXXXXX | i
KXXXXXXXXXXXX XK XX XX XXX X XX XX XXXX 3
AXXXXXAXXXXXXX xx I umﬁ
XXXXXXXXXXXXXXXXXAXAX o O XXXXX Q
o Q
AXXXLLXXXXXXXAXXXXXXXXX AXXXXXX p= <
XXXXAXXAXXXXXX XX XXX XXX XXXXXXXXYX (]
XXXXXXXAXXXX XX XX XXXXXAXXXXXXX o ~
. XXXXXXXXXXXXX XX XX XXXXXX g
N XXXXXIXXXXXXXXXXXXXXXX [ g XXXXXXXX |
[Ty AXXXXXXXXXX XX XX XX XXXXXXX Lo}
/"\" XXXXXXXXXXXXXXXXXX 0 XXXXXXXXXXX P 5]
AXXXXXXXAX XX XX o XXX “5
XXXXXXXXXXXXXX - ) e} )
XXXXXXXXXXXX b U,_} : xxxxxxxxx| @ 5:-,‘
i ]
XXX XXXXXX ©
- N
| © g
ot AXXXXXLLLXXXXXXXXX XX XXX XXXXX £
——t m
L o+
XXXXXX = © )
xxxxxxxxx| O ..‘-‘(} O
XXXXXXXXXXXX — o]
XAXXXXX XX XX XX XX - .3 '4;‘{
XXXXXXXXXXX §> 3
XXXX b U~ XXXXXXXXX [= 0
xxxxxxxx| N O >
N [o] i e
S x - aand <}
wn XXXXXXX XXX XXX g o
f"" XXXXXXXXXXXX 8 XXXXXXXXXXXX e :14)
o XX g = XXXXXXXXXXX XX XX ~ (el
P XXX 2 XXXXXXXX [~ g Yy
XXX XXX XXX X XX XXX X X X XXX X XX S X XXXX i)
XXX ) XXXXXXX [* (.mj i)
xxx| o g, XXX XX XXXX s
XX 5 XXXX Q.
XXX X XXX XX XXX ~
)
. <k g 2
X% XXX XXX <
XXX f S
L O " o
~ &~
e o m
3} Lo
XXXXXXXXXXXXXXXX fo O - ] - Q Q
xxxxxx| O = o~ s
~N Qv 8
o =
XXX Vv =)
XXXXXX o g 2
XXXXXXXXXXXXXX b= “N‘ g 3
XXKXXXKK XXX XXX XXX XXX g us
x -
J
N Hg
o . O T o g
™ N N 0] g\
V S 09
o
H o
o ﬂ L 1 0 o
o o s 0
. . ]
o~ - Q
.
)]
b O =]
= o 0
1 i1 1 | ! -~ o=
® 0 N & 0 ™ -
R B o 8
- e~ =i
o © O 9 .
&2
X o
(T + &3Tsusp) ug o9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 111. The relationship between the number of species found

and the number of specimens examined for adult female copepods.

This relationship is shown for all bottom depths combined and for
stations grouped by bottom depth. Each bar represents an interval of
50 specimens examined in a subsample. The height of the bar represents
the mean number of species identified from these subsamples.
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9, p. 31). The seasonal intrusion of oceanic waters into inshore areas,
as evidenced by high salinities, probably increases the number of spe-
cies in these areas. Seasonal changes in diversity at the deepest sta-
tions however may be more complex. Diversity was low during the summer
months at these stations although salinities were relatively high. This
indicates that some other factors may also be involved in controlling
species numbers in these offshore areas. Histograms indicated a gen-
eral positive relationship between the number of species and surface
salinity (Fig. 113) which was most prominent in samples with tempera-
tures below 21°C (Fig. 114).

Grice (1957) found differences in the number of species collected
with latitude along the west coast of Florida but inshore-offshore and
seasonal trends were apparently not distinct. From samples taken in
February and March in the coastal and oceanic waters of the Gulf,
Livingston (1974) reported a trend of decreasing species numbers of
calanoids with bottom depth. Caldwell and Maturo (1976), using the
Shannon-Wiener index, reported increasing diversity offshore and the
highest diversities in the fall. Organisms were seldom identified
to species, however, and a wide variety of taxa were included in the
analysis. Off of South Texas, Park (1979) reported the greatest number
of species at offshore stations. At stations with bottom depths comp-
arable to the intermediate and offshore GUS III stations, the number
of species of copepods appeared to be greatest during the winter and
the surmer. Off of the eastern coast of the United States, a trend of
increasing species numbers with bottom depth has been reported by

Bowman (1971) and Malone (1977). Malone also reported the greatest
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diversities in the summer and fall. He attributed these high diversi-

ties to the intrusion of oceanic waters during these periods.
Correlated Species Groups

Species of adult female copepods were grouped or clustered by first
comparing their log transformed densities through product-moment corre-
lation coefficients and constructing a species X species correlation
matrix. The species examined along with their identity codes and
relative abundances are listed in Table 7. All 513 samples were used
in this analysis.

The properties of the correlation coefficient as a similarity
index for ecological abundance data have been discussed by Cassie
(1961), Clifford and Stephenson (1975), and Boesch (1977). Its use is
most appropriate for species grouping or reverse numerical classifica-
tion. Correlation coefficients have the advantage of a sign which
distinguishes between a negative correlation and no correlation and
they also incorporate a test of statistical significance. These prop-
erties are generally not found in other similarity indices (e.g.,
Bray-Curtis, Canberra Metric).

The use of the correlation coefficients in normal analyses (entity
or site grouping), however, is usually avoided as it often yields
small similarity values especially when a large number of zeros are
present in the data matrix. This problem is dgenerally due to a few
species being abundant and most others relatively rare. Also, corre-
lating entities or sites violates the assumption of independence
implicit in the coefficient and causes the statistical significance

tests to become unreliable.
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Table 7.

copepods in the correlated species group analysis.

Codes used to identify species of adult female
Percent

abundance for each species was determined by densities over
the entire sampling area.

. rercent
Code Species Abundance
PI Paracalanus indicus 16.0
AT Acartia tonsa 11.9
PQ Paracalanus quasimodo 10.7
PC Paracalanus crassirostris 9.7
CF Clausocalanus furcatus 6.8
oM Onecaea media 6.1
ON Oithona nana 5.6
oP Oithona plumifera 3.9
T Temora turbinata 3.6
ov Oncaea venusta 3.1
PA Paracalanus aculeatus 3.0
AL Acartia lilljeborgi 2.2
CAZ Corycaeus amazonicus 1.8
FG Farranula gracilis 1.8
ca Corycaeus americanus l.6
cv Centropages velificatus 1.2
cJ Clausocalanus jobet 1.1
OMD Oneaea mediterranea 1.0
EP Eucalanus pileatus 0.9
cG Corycaeus giesbrechtt 0.9
CH Centropages hamatus 0.7
CPS Calaocalanus pavoninus R
cp Calaocalanus pavo R
cs Calocalanus styliremis R
TS Temora stylifera R
AD Acartia danae R

R = less than 0.5%
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Other measures of species associations found in ecological studies
often use presence-absence (binary) data. In particular, various forms
of Fager's (1957) "recurrent group analysis" have been used extensively
in marine zooplankton work (Fager and McGowan, 1963; Bowman, 1971;
Fleminger and Hulsemann, 1974; Livingston, 1974; Shulenberger, 1976).
The information loss involved in the use of binary data not only seems
unnecessary but also seems undesirable in some instances. Depending
on the size of the sampling area, a situation could easily arise where
two common species are always found together in ecological samples
although their abundances in these samples are inversely related. The
tendency for this to occur seems especially likely in zooplankton
sampling where relatively long tows tend to homogenize the small scale
distributions of species (Cassie, 1961). The use of presence-absence
data would cause these species to cluster strongly although their
overall distributions would be dissimilar.

In addition to the above problem with very abunéant or ubiquitous
species, Hurlbert (1969) recognized that there is a very basic differ-
ence between correlation coefficients and indices based on binary data;
they are not measuring the same thing. The recurrent group type of
analysis on presence-absence data is an attempt to establish groups of
species which occur together frequently and are possibly members of a
community. Group analysis based on correlation coefficients is an
attempt to find groups of species which vary in density together either
in relation to changes in one another or to extrinsic factors such as
food or physical attributes of the enviromment. The formation of these

groups could be related to competition. Species competing with each

" e
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other for limited resources should have a tendency to appear in dif-
ferent groups. Species which have similar temporal and spatial dis-
tributions should be grouped together. In this paper, these groups

of species which appear to vary in abundance together will be called
correlated species groups.

In the species grouping analysis, I only included the 25 most
abundant species of copepods, as determined by their mean densities
over the entire sampling area. Data reduction of this type is usually
necessary even with an inverse analysis since correlations between rare
species found missing together frequently are often high although of
no real ecological significance.

After the construction of the correlation matrix a graphical
method was used to group species (Wirth et al., 1966; Clifford and
Stephenson, 1975). Decreasing levels of r were chosen and species
correlated at each level were connected with a line. The length of
the line was not significant. As the level of r and subsequently the
entry level into a group got lower, the number of members in groups
increased and groups often fused. The groups formed at correlation
levels from 0.75 to 0.40 are shown in Fiéures 115 to 117. Members
that were completely interconnected within a group were enclosed in
a dashed line and the linkages between these species were omitted.

The first group was formed when the correlation level reached
0.78. This group (a.75) included Clausocalanus furcatus and Oncaea
venusta. Both of these species occurred at the deeper stations during
the late summer to early winter months and the densities of both spe-

cies appeared to be positively related to surface temperature and
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r= 0.75
@ a.75
r=20.70
: ©
a.70 @ b.70
r= 0.65

wes @) ()

Figure 115. Correlated species groups of adult female copepods formed
at correlation coefficient levels between 0.75 and 0.65. Species codes
are listed in Table 7 (p. 187). The correlation coefficients were
calculated on the natural log of the density for each species. Solid
lines connecting species denote correlation at the level indicated.
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Figure 116. Correlated species groups of adult Zemale copesods Zormed
at correlation coefficient levels between 0.60 and 0.50. Species en-

closed within dashed lines are completely interconnected. See legend
of Figure 115 (p. 190).
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Figure 117. Correlated species groups of adult female copepods formed
at correlation coefficient levels between 0.45 and 0.40. Species en-
closed within dashed lines are completely interconnected. See legend

of Figure 115 (p. 190).
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salinity. At r values above 0.70, Oithona plumifera and Farranula
gracilis were added to this offshore group forming group a.70. A new
group, b.70, was also formed with a linkage between (alaccalanus
pavoninus and Calocalanus styliremis. Up to this level of the analysis,
all of the clustered species were offshore forms. Group a.70 was com-
prised of relatively abundant species found mostly in summer, fall, and
winter. The densities of all of these species were positively related
to surface temperature and salinity. Group b.70 was composed of two
less abundant species present in samples taken throughout the year.

The inclusion of all species correlated at r values above 0.65
connected groups a.70 and b.70 and added one other species, Paracalanus
aculeatus, forming the group ab.65. Paracalanus aculeatus was rela-
tively abundant in the sampling area and it was found at intermediate
depths from June through December. A new group was also formed at this
stage of the analysis between Oncaea mediterranea and Clausocalanus
Jobeil. Both of these fairly abundant species were offshore forms which
were found in greatest numbers during the first part of the year
(January-August). This group was designated c.65.

At the 0,60 level the only changes included the addition of Calo-
ealanus pavo to group ab.65 forming ab.60 and the formation of a new
group between two of the most abundant copepods, Paracalanus indicus
and Paracalanus quasimodo. The grouping of these morphologically sim-
ilar calanoids seemed especially anomalous in relation to competition
theory. The distributions of these species are discussed in more

detail in the following section on congeneric groups.
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When species groups correlated at levels above 0.55 were examined,
Corycaeus giesbrechti was added to ab.60 and a new group of inshore
species was also formed. This inshore group (e.55) included 0Zthona
nana, Paracalanus crassirostris, and Acartia tomsa. Although all of
these were inshore species, 0. nana was found mostly in the fall while
A. tonsa was found mostly in the spring. They were linked through their
relationship with P. crassirostris which was very abundant in the spring
and appeared to have more representatives in the fall than 4. tonsa.

The densities of P. crassirostris and A. tonsa were negatively related

to both surface temperature and salinity while the densities of 0. nana
only appeared to be negatively related to surface salinity. The corre-
lation between the §ensities of A. tomsa and 0. nana was low (r = 0.28).

The next correlation level, 0.50, linked groups ab.55 and c.65.

Two new groups were also formed with linkages between Eucalanus pileatus
and Centropages velificatus (£.50) and between Corycaeus amazonicus and
Corycaeus americanus (g.50) . At the next level of r (0.45) the analysis
indicated that there were three separate groups:

1. Group abcf.45 was a large offshore group with many marginally
linked species. The densities of the core species appeared
to be positively related to surface temperature and salinity.
Densities of many of the peripheral species also appeared to
be positively related to surface salinity.

2. Group dg.45 included four species found at all bottom depths
but in highest densities at stations of intermediate depth.
The densities of these species did not appear to be related

to either temperature or salinity.
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3. Group e.55 was an inshore group which included three species.
This group persisted unchanged over several levels of the
analysis. The densities of these species were all negatively
related to salinity.

The final level of correlation that was examined (r = 0.40) re-
vealed a single link between the offshore group and the intermediate
depth group. These groups were linked through Eucalanus pileatus which
was present throughout the sampling area in relatively small numbers.
Another species, Centropages hamatus, was also added to the inshore
group. At this level in the analysis, 24 out of the 25 species examined
were included in groups.

This type of graphical clustering has several advantages over the
typical dendrograms used in most clustering methods. The species within
the dashed lines can be considered core species within a group and the
degree of interconnection between core species and peripheral species
can be easily seen. The development of the various groups with changing
similarity levels also reveals information about the relationships be-~
tween group members.

When the negative correlation values from the matrix were examined,
the greatest negative relationship (r = -0.60) was found between
Oithona plumifera and Paracalanus crassirostris, an offshore and an
inshore species. At the ~0.50 and the =-0.45 levels, the three core
species of the inshore group in the original cluster analysis were all
negatively correlated with members of the offshore group. Paracalanus

erassirostris had the greatest number of negative linkages. The species
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relationships based on negative correlation coefficients are shown in
Figure 118.

Although the wide variety of clustering techniques in use makes
comparisons with other literature difficult, the results of several
studies involving species found in this coastal area agree with the
clustering results reported here. Off the southeastern coast of the
United States, Bowman (1971) used the affinity index of Fager and
McGowan (1963) which is based on presence-absence data to group 13
species of calanoid copepods. He placed seven species in an oceanic
association (Clausocalanus furcatus, Euchaeta marina, Lucicutia
flavicornis, Nannocalanus minor, Paracalanus aculeatus, Temora styl-
ifera, and Undinula vulgaris), four species in a shelf association
(Centropages velificatus, Eucalanus pileatus, Paracalanus "parvus”,
and Temora turbinata), and two species in a coastal or inshore group
(Acartia tonsa and Labidocera aestival). In the Gulf of Mexico, however,
Livingston (1974) used the recurrent group analysis of Fager and McGowan
(1963) and found 9 out of the 1l species in Bowman's shelf and oceanic
associations to be grouped together. His samples in the coastal and
oceanic areas of the Gulf were taken in February and March and he noted
that no species assemblage appeared to be indicative of shelf waters.

My results however were very similar to those reported by Bowman
(1971). Eight of Bowman's 13 species were included in the analysis of
GUS III samples when Paracalanus indicus and P. quasimodo were combined
as P. "parvus”. The three species identified by Bowman as oceanic
species (Clausocalanus furcatus, Paracalanus aculeatus, and Temora

stylifera) were strongly connected to the offshore group (Fig. 117,
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Figure 118. Relationships between adult female copepods in the
sampling area based on negative correlation coefficients. These

coefficients were calculated on the natural log of the density of each
species. Species connected by dashed lines are negatively correlated

at the level indicated. Species codes are listed in Table 7 (p. 187).
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p. 192). The four species examined in this study which were members of
Bowman's shelf association (Centropages velificatus, Eucalanus pileatus,
Paracalanus "parvus", and Temora turbinata) were closely linked to each
other and were either marginal members of the offshore group or members
of the intermediate depth group. Acartia tomsa was an inshore species
in both analyses.

It is apparent from these results, however, that attempts to
cluster species are potentially misleading. At the final level (r >
0.40) of my correlated species group analysis, seven-eights of Bowman's
species examined in this study were included in one group. An examina~
tion of the various linkages, however, readily distinguishes the species
relationships. This type of graphical analysis therefore seems valuable
as a method of examining species groups in ecological studies.

Park and Turk (1980) also examined groups of copepod species in
the neritic waters off the South Texas coast. They grouped 19 species
using a cluster analysis based on the Bray-Curtis dissimilarity coef-
ficient. Seventeen of these species were also included in the corre-
lated species group analysis of the GUS III samples. Park and Turk

(1980) placed these species into the following four groups.

Inshore Offshore

1. Acartia tonsa 3. Onecaea mediterranea

: Lausocalanus jobetl
2. Corycaeus americanus Clausocalanus jobe

Corycaeus amazonicus 4. Farranula gracilis
Eucalanus pileatus Calocalanus pavo
Centropages velificatus Coryeaeus giesbrechti
Temora turbinata Paracalanus aculeatus
Paracalanus quasimodo Oithona plumifera
Paracalanus indicus Oncaea venusta

Clausocalanus furcatus
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The offshore groups were very similar to those found at the 0.55
level in my correlated species group analysis (Fig. 116, p. 191).
Oncaea mediterranea and Clausocalanus jobei were separated from most of
the other species through their seasonal distributions. The inshore
species in group 2 were all connected at the 0.40 level in the corre-
lated group analysis. These were mostly intermediate depth species in
the GUS III samples and the strongest linkages were between Paracalarus
indicus, P. quasimodo, Corycaeus americanus and C. amazonicus. BAgain,
Acartia tonsa was an inshore species in both analyses.

This comparison between the study done by Park and Turk (1980) and
the analysis of the GUS III samples is especially interesting since it
involves two independent sampling programs of the copepods off the
Texas coast. Although entirely different types of cluster analyses

were employed, the results from both studies appear quite similar.
Comparisons of Common Congeneric Copepods

The competitive exclusion principle (Hardin, 1960) has often been
used to explain the distributions of closely related species. According
to this theory, species that compete for a limited resource cannot co-
exist. The relevancy of competition theory in changing environments,
however, has occasionally been questioned (Hutchinson, 1961; Wiens,
1977). Variability in the environment may periodically vary the
availability of "limiting resources" providing a refuge for species
that are poor competitors or it may frequently alter the direction of
competition between species. Selective predation may also play an

important role in species distribution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



200

If interspecific competition for food is a major factor affecting
the distributions of species within the zooplankton, the effect of this
competition should be seen in the temporal and spatial distributions of
congeneric copepods. In the classification of calanoid and cyclopoid
copepods, most taxonomic differences based on feeding appendages are
absent below the family level. The distinction of taxa within families
is usually based on reproductive structures and swimming appendages.
Almost all morphological differences therefore between feeding struc-
tures in congeneric species are due to the size of the organism. This
appears to be especially true in particle feeding genera where the size
and shape of the setae on the second maxilla determine the efficiency
and particle retention capabilities of the filtering mechanism
(Marshall and Orr, 1955). Unless food is not limiting or feeding be-
havioral differences exist, congeners of similar size, found together,
probably compete for food particles. This would appear to be especially
likely for herbivorous species that feed on a relatively homogeneous
food source, the phytoplankton. Competition for food between these
species therefore might be related to differences in their temporal
and spatial distributions.

The distributions of the common congeneric species from five genera
of calanoid copepods (Paracalarnus, Acartia, Clausocalanus, Temora, and
Centropages) and three genera of cyclopoid copepods (Oncaea, Oithona,
and Corycaeus) were examined over the study area. Members of these
genera made up more than 93% of the adult female copepods examined in
this study. The size data on the species reported here came from total

length measurements on specimens from samples taken off the South Texas
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coast in the 1970's by Park (1976b, 1977). These measurements were
means or ranges, usually from four to six specimens. They were not in-
tended for this purpose, but should be an adequate estimate of species
lengths in the study area.

Since these distributions are based only on data for adult females,
any trophic analysis is necessarily incomplete. Ideally, the distribu-
tions of the immature forms and the males for each species should be
included in an analysis of this type. Problems with identifications
of immature forms of congeners along with possible changes in feeding
habits with development make the lumping of immature forms with adult
females difficult and undesirable. Data on males, although easier to
obtain, would be of limited usefulness. The overall abundances of
males were generally low. The males of many species also have reduced
mouth parts and do not feed as adults. It is important to note however
that the lack of data on males could be significant for several groups
of copepods. Relatively large numbers of Acartia and Temora males were
present in the samples, and information on cyclopoids may also be lack-

ing due to the abundance of males in the family Corycaeidae.

Paracalarnus. Members of this genus dominated this neritic area
and comprised more than 39% of the female copepods, based on density.
The common species included P. indicus, P. quasimodo, P. erassirostris,
and P. aculeatus. These calanoids are generally considered to be
filter feeding herbivores (Wickstead, 1962; Mullin, 1967; Itoh, 1970;

Timonin, 1971).
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Paracalanus crassirostris, a relatively small species (0.6 mm), and
P. aculeatus (1.1 mm) had limited distributions in the study area.
Paracalanus crassirostris was found at inshore stations, mostly in the
spring and P. aculeatus was abundant at stations of intermediate depth
during the fall.

The two most abundant species in this genus, P. ZndZicus and P.
quasimodo, provided an interesting taxonomic and distributional problem.
These two species are very similar morphologically and were first sep-
arated by Bowman (1971). Originally, both species had been identified
as Paracalanus parvus. Paracalanus parvus however differs in the spina-
ture of the swimming legs and the shape of the forehead and Bowman (1971)
reported this species from the northeastern coastal waters of the United
States. Past records on the worldwide distribution of P. parvus there-
fore need to be re-examined.

The major distinguishing characters between the females of P.
indicus and P. quasimodo include a dorsal hump and the presence of hairs
on the genital segment in P. quasgimodo (Figs. 119 and 120). The mouth
parts and swimming legs appear to be identical. The sizes of both spe-
cies are approximately 1 mm. Although the dorsal hump character appear-
ed to be intermediate in about 5 to 10% of the specimens examined from
this area, P. quasimodo could always be distinguished by the generally
rounded shape of the forehead. When the specimens were grouped in this
manner, the presence of hairs on the genital segment almost always was
consistent with the cephalothorax shape attributed to P. quasimodo.
Although Bowman also considered the shape of the spermatheca to be a

valid character separating these species, this character did not appear
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Figure 120. Dorsal and lateral views of the genital segment and urosome
of female Paracalanus indicus (A and C) and P. quasimodo (B and D).
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to be dependable in the routine identification of specimens from the
GUS III samples. Males were not examined in detail in this study but
Bowman reported that the only difference between the males of these
species was the presence of hairs on the first urosomal segment in

P. quasimodo.

Bowman (1971) reported these species from samples taken in October
and November off the southeastern coast of the United States. Para-
calanus quasimodo was approximately three times as abundant as P.
indicus and P. indicus was more frequently found in oceanic samples.

In the GUS III samples, P. indicus was more abundant than P. gquasimodo.

The AOV results for these two species indicated that there were
several differences in their temporal and spatial distributions. The
Depth*Month interaction was highly significant for P. Zndicus while
the Transect*Month interaction was significant for P. quasimodo. When
monthly densities were averaged over the entire sampling area, the over-
all seasonal distributions also appeared dissimilar (Fig. 121). Para-
calanus quasimodo had density peaks in April and September while the
density of P. indicus peaked in May and December. This graphical rep-
resentation of the main effect of Month in the AOV might give a general
picture of the distributional differences between the two species even
though several other factors showed significant interaction with Month.

Other results indicated a number of similarities between the two
species. Regressions and histograms showed that the densities of both
of these species did not appear to be related to physical or chemical
factors. The histograms of density versus surface temperature and

salinity were especially similar (Fig. 47, p. 100 and Fig. 58, p. 113).
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Results from the correlated species group analysis showed that the dens-
ities of these two species were positively correlated at the 0.60 level.
They remained together as a group without interconnections to other
species through several levels of the analysis. These correlation data
suggest that, especially in relation to other common species, the dis-
tributions of P. indicus and P. quasimodo were quite similar.

The vertical distribution data, however, shown in Figures 122 and
123 indicated that there was a definite vertical separation between
these two species during the daylight hours. In daytime surface tows,
P, quasimodo was almost exclusively found in five out of the six sam-
ples. The other daytime surface tow contained almost all P. <ndicus.
This indicated that these two species had distinctly separate daytime
vertical distributions at the time of sampling. The two species may
have been layered in narrow vertical bands and variability in the depth
of towing could account for the occurrence of P. Zndicus in the 1200 hr
surface tow on July 4. The degree of vertical migration for both spe-
cies did not appear to be extensive since neither species appeared in
large numbers at the 18 m sampling depth. The significance of this
behavioral difference in vertical migrations could be related to avoid-
ance of competition or predation.

The ecological separation of the four common congeners of Para-
calanus in this area appeared to be significant. Paracalanus crassi-
rostris is a relatively small species which might indicate some size
selective differences in feeding. This species was found in inshore
areas and densities were negatively correlated with temperature and

salinity. The other congeners, P. aculeatus, P. indicus, and
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P. quasimodo, were all of similar sizes. Paracalanus aculeatus had a
limited seasonal and spatial distribution and its density was positively
related to temperature and salinity. Paracalanus indicus and P. quasi-
modo showed little relationship with temperature and salinity and were
widely distributed over the sampling area. Some evidence for a temporal
separation existed but the vertical distribution data indicated a defi-
nite vertical separation in the water column during daytime hours.

These four species of Paracalanus (P. indicus and P. quasimodo
reported as P. parvug) have been recorded‘in the Gulf of Mexico as
cammon inshore and neritic forms by Davis (1950), King (1950), Fleminger
(1956) , and Grice (1957, 1960). Gonzalez (1957) also reported P. parvus
as a coastal species found near the mouth of the Mississippi River. I
have been unable to find distribution records of P. <ndicus and P.
quasimodo other than those by Park (1977, 1979).

Fleminger (1956) reported that P. parvus was concentrated in neritic
waters throughout the Gulf of Mexico and that P. qculeaqtus was an oceanic
species which was also abundant in shelf waters. He recorded P. crassi-
rostris as a neritic form found to be most abundant in the coastal waters
over the northern continental shelf. Grice (1957, 1960) and Park (1977,
1979) reported spatial distributions for these common Paracalanus spe-

cies which were similar to those found in the GUS III samples.

Acartia. Members of the genus Acartia made up 14% of the adult
female copepods examined. This genus is generally considered to be
omnivorous (Anraku and Omori, 1963; Itoh, 1970; Timonin, 1971; Richman,
Heinle, and Huff, 1977; lLonsdale, Heinle, and Siegfried, 1979). Most

of the specimens were Acartia tonsa, a typical estuarine form which was
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abundant in the nearshore areas. Other congeners included 4. danae, an
oceanic form which occurred in small numbers at offshore stations in the
summer, and 4. lilljeborgi, a slightly larger species (approximately

1.8 mm) which occurred sporadically. The density of A. lilljeborgi did
not appear to be strongly related to physical or chemical factors, al-
though it was seldom found in samples with high salinity and low temp-
erature combinations. Acartia tonsa was found mostly on Transects III
and IV during the spring and it exhibited a strong negative relation-
ship with both surface temperature and surface salinity.

Although 4. tonsa is a typical estuarine copepod, it has been re-~
ported frequently as a common and very abundant coastal species in the
Gulf of Mexico (Davis, 1950; King, 1950; Gonzalez, 1957; Fleminger,
1956; Grice, 1957, 1960; Park, 1977, 1979). Most of these reports
indicate that this species is restricted to nearshore areas. Aecartia
1illjeborgt and A. danae have been reported as less common species in
the coastal waters of the Gulf by Fleminger (1956) ana Park. 1977,
1979) . Acartia danae has also been reported as rare in neritic waters
by Grice (1957), although it is a relatively common oceanic species

(Park, 1970; Livingston, 1974; Minello, 1974).

Clausocalanus. Members of the genus Clausocalarnus made up 7.9% of

the adult female copepods examined. Of the seven species found in this
genus (Table 5, p. 87), only two, C. furcatus and C. jobei, were found

in any great number. The other five species occurred infrequently and

had low overall mean densities. Members of this genus are generally

considered to be herbivorous filter feeders (Itoh, 1970; Timonin, 1971).
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Clausocalanus furcatus ranked f£ifth in abundance and comprised
6.8% of all adult female copepods. It was found in greatest numbers at
the deepest stations during the summer and fall (Fig. 124). The density
of this species also exhibited a strong positive relationship with temp-
erature and salinity.

Clausocalanus jobeil which was similar in size to (. furcatus and
was also found at the deeper stations, had the greatest densities in the
late winter, spring, and summer. Few specimens were captured during the
fall. The density of (. Jobei did not appear to be strongly related to
surface temperature and salinity.

Clausocalanus furcatus has been reported in the coastal waters of
the Gulf of Mexico by Davis (1950), Fleminger (1956), Grice (1957, 1960),
and Park (1977, 1979). Fleminger (1956) described this species as com-
mon in oceanic and neritic waters although Grice (1957) reported it as
relatively rare off the west coast of Florida. Park (1977, 1979) has
reported (. furcatus as a common species at offshore stations in the
fall although it was present in low densities throughout the year.

Clausocalarus jobei was not described until 1968 (Frost and
Fleminger, 1968). This species has been reported in the coastal waters
off Texas during the spring and summer by Park (1977, 1979). Previous
studies in the Gulf of Mexico may have reported this species as C.

areuicornis.

Temora. The two species of Temora found in this area, T. turbinata
and T. stylifera, appeared to be distinctly separated through size dif-
ferences and differences in their spatial distributions. Although both

species occurred in greatest numbers during the summer and fall,
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T. turbinata (1.36 mm) was found mostly at inshore stations and 7.
stylifera (2.02 mm) was found at the deepest stations (Fig. 125).
Harris and Paffenhoffer (1976) and Paffenhoffer and Knowles (1978) have
reported that both of these species eat phytoplankton in the lakora-
tory. They have been considered omnivorous, however, on the basis of
the structure of their mouthparts (Anraku and Omori, 1963; Itoh, 1970)
and the presence of crustacean remains in gut contents (Marshall and
Orr, 1962).

These species of Temora have been recorded as common neritic forms
in the Gulf by Davis (1950), King (1950), Fleminger (1956), Gricé (1957,
1960), and Park (1977, 1979). Grice (1957) and Park (1979) reported
T. turbinata to be abundant at inshore stations. Temora stylifera was
relatively rare and moct frequently found at offshore stations. Al-
though Fleminger (1956) commonly found both species in coastal and

oceanic waters they were seldom found together in large numbers. He

suggested that this inverse relationship could indicate competition.

Centropages. Three species in the genus Centropages have been
reported from the Gulf of Mexico. These species are similar in size
and specimens of all three were collected in the sampling area. Data
from feeding studies have indicated that this genus is omnivorous
{(Marshall and Orr, 1962; Wickstead, 1962; Mullin, 1967), a conclusion
supported by the morphology of feeding structures (Anraku and Omori,
1963; Itoh, 1970). C(Centropages caribbeanensis was present only at
offshore stations and was found in less than 2% of the samples examined
in this study. Centropages hamatus and C. velificatus were both rela-

tively abundant at the inshore stations but they showed a striking
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separation in their seasonal distributions. When monthly means over the
entire sampling area were examined (Fig. 126), C. hamatus was found al-
most exclusively from January through March and C. velificatus was
found in significant numbers only from April through December with a
density peak in September.

Centropages velificatus (recorded as (. furcatus) has been reported
in the coastal waters of the Gulf of Mexico by Davis (1950), King (1950),
Gonzalez (1957), and Caldwell and Maturo (1976). Both (. velificatus
and C. hamatus have been reported as coastal species by Fleminger (1956),
Grice (1957, 1960), and Park (1977, 1979). 1In samples analyzed by
Grice (1957), C. velificatus was common at inshore stations in the sum-
mer months and present year-round at the offshore stations. Fleminger
(1956) classified C. velifieatus and C. hamatus as coastal and shelf
species and described (. caribbeanensis (reported as C. violaceous) as
an cceanic species. Centropages caribbeanensis has also been reported
from the oceanic waters of the Gulf by Park (1970), Livingston (1974),
and Minello (1974, 1976). The distributions for C. velificatus and
C. hamatus described by Park (1979) were very similar to those seen in
the GUS III samples. Both species were abundant at inshore stations.
Centropages hamatus was found only in January, February, and March and

C. velificatus was collected during the rest of the year.

Oncaea. Three common species of Oncaea were found in the sampling
area, 0. media, 0. mediterranea, and 0. venusta. Members of this genus
made up approximately 4.2% of the female copepods examined and are
generally considered‘to be carnivorous (Wickstead, 1962; Mullin, 1967;

Timonin, 1971). Oneaea mediterranca was most abundant at the 73 m
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stations during the spring and summer. Oncaea venusta which was similar
in size (0.92 to 1.20 mm) and also found at the deeper stations appeared
to be most abundant in the late summer, the fall, and the early winter.
fhe third species, 0. media, was smaller in size (0.58 to 0.82 mm) and
appeared to be most abundant at the intermediate and deep water sta-
tions. Its seasonal distribution was sporadic although densities were
generally low in the fall.

The densities of all three of these species were positively related
to surface salinity. Oncaea venusta however was the only species with
densities related to surface temperature. The overall distributions of
these species did not appear to be as distinctly separate as those of
the herbivorous congeners. This may reflect a reduced necessity for
temporal and spatial distributional differences due to the complexity
of their predatory feeding habit.

These three common species of Oncaea have also been reported in the
coastal waters off of Texas by Park (1977, 1979). Their spatial dis-
tributions were similar although the seasonal data (Park, 1979) was
highly variable and difficult to compare with the seasonal data from
the GUS III cruises. Oncaea venusta has also been recorded in the Gulf
by King (1950) and Grice (1957, 1960), and Ferrari (1973, 1975) has
reported all three species as common open ocean forms in the Gulf of

Mexico and Caribbean Sea.

Oithona. Members of the genus Oithona made up approximately 9.5%
of the female copepods examined from the study area. Timonin {1971)
considered the species in this genus to be piercing and sucking carni-

vores. These organisms however do not have the heavy cuticle and the
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robustness normally associated with predatory copepods and Marshall and
Orr (1962) found that Oithona would eat phytoplankton. These species
should probably be considered omnivores.

A large number of species of Oithona were found in the sampling
area (Table 5, p. 87). Most of these were rare and found at offshore
stations. The two dominant species, 0. nana and 0. plumife;u, exhibited
distinct differences in their distributions (Fig. 127), sizes, and re-~
lationships with temperature and salinity. Oithona nana, a relatively
small species (0.58 to 0.64 mm) was found at inshore stations from June
through December, The density of this species was negatively related
to surface salinity. The density of 0. plumifera (1.15 to 1.50 mm in
total length) was also greatest during the summer, fall, and early
winter but spatially this species was found at the mid-depth and off-
shore stations. Regression analyses indicated that 0. plumifera was
most abundant at high surface temperatures and salinities.

Although these two dominant members of the genus Oithona appear t;
be ecologically separated in these coastal waters, it is difficult to
explain the occurrence of such a high number of other congeners. Some
size differences existed, and most of the species were found at offshore
stations where they could have been temporarily displaced from more
oceanic areas. The rarity of these species along with normal sampling
error would make a more detailed analysis of their distributions from
these data unwarranted. There have been other reports of some of these
species in the coastal waters of the Gulf of Mexico and the Caribbean
Sea. Grice (1960b) reported 0. similis, 0. brevirornis (colcarva?),

and 0. simplex from the West Florida coast and reviewed distributional
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reports on these species. Owre and Foyo (1967) recorded 0. robusta and
0. setigera from the Florida Current and the Caribbean Sea and Gonzalez
and Bowman (1965) identified 0. hebes and 0. simplex from the coastal
waters of Puerto Rico.

Oithona nana and 0. plumifera have been reported in the coastal
waters of the Gulf by Davis (1950), King (1950), Gonzalez (1957), Grice
(1957, 1960a,b) and Park (1977, 1979). Grice (1957) and Park (1979)
recorded 0. nana as a common inshore species and 0. plumifera as a

common offshore species.

Corycaeus. Members of this genus were considered by Timonin (1971)
to be piercing and sucking carnivores and other evidence also exists
indicating that these species are predaceous (Wickstead, 1962; Mullin,
1967). Three species of Corycaeus, all of similar size (0.90 to 1.16
mm) , were abundant in the sampling area. Spatially these species had
similar distributions and were common at all bottom depths except at
the 73 m stations. Some evidence was present for a seasonal separation
in density with (. amazonicus peaking in the spring and fall, C. amerti-
canus in the early winter, and (. giesbrechti in the summer and fall.
The seasonal distributions of these species, however, wére not distinct.
Allison (1967) did report some vertical separation in the water column
between C. amazonicus and C. americanus (subulatus) at Station B during
June.

King (1950) has recorded C. americanus and C. giesbrechti (as C.
venustus) from the west coast of Florida and Ferrari (1973) has reported
all three of these species of (Corycaeus as common open ocean forms in

the Gulf of Mexico. Grice (1957, 1960) and Park (1977, 1979) have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



222

reported the three species as being widely distributed in coastal Gulf
waters. The spatial distributions described by Park (1979) for these
species were similar to those found from the GUS III samples. At the
three stations that he sampled monthly off the South Texas coast,

C. amazonicus and C. americanus appeared to be abundant in May and June
and (. giesbrechti was abundant in September.

The similarities between this genus and Onegeq were striking. Both
genera are considered to be carnivorous and both are widely distributed
in this neritic area. Seasonal distributions generally did not appear
to distinctly separate their populations. Perhaps the heterogeneity in
the size and shape of the prey along with the presence of various be-
havioral escape mechanisms allow the predators to separate their feeding
niches and coexist. This could explain the relative lack of temporal
and spatial separation in the common carnivorous species when compared

to the distributions of the common herbivore and omnivore congeners.
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CONCLUSIONS AND SUMMARY

Zooplankton densities examined from the GUS III samples taken in
the coastal waters of the northwestern Gulf of Mexico exhibited a number
of general trends. Densities decreased with increasing bottom depths
and mean values indicated a threefold decrease from the 8 m stations to
the 73 m stations. Peak densities occurred in the spring and in the
fall and the lowest densities were found in January and February. The
effect of latitude (as determined from the Transect effect) did not
appear to be significant, even though the sampling area extended from
the Mexican border (Transect I) to Atchafalaya Bay, Louisiana (Transect
V).

The major groups of zooplankton included copepods (averaging 61%
of the zooplankton in the sampling area), larvaceans, bivalve larvae,
ostracods (Euconchoecia), gastropod larvae, cladocerans (Penilia), and
medusae. These groups are listed in the order of their relative dens-
ities in the sampling area. Seasonal distributions and zones of peak
abundance varied with each individual group. The general distribution
of the chaetognaths, however, appeared relatively similar to that of
the copepods. Thig may reflect a2 p

Copepods dominated the zooplankton at all depths and times of the
year. This group exhibited a distribution pattern which was similar
to that described for the zooplankton as a whole. Adult female cope-
pods were found in similar densities as copepodids (immature forms).
The percentage of copepodids generally peaked when copepod densities
were highest indicating the relationship between immature forms and

increasing populations. The density of adult males was relatively
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stable and remained at about 15-20% of the population. Calanoid and
cyclopoid copepods were abundant while the harpacticoids were relative-
ly rare. The mean percentage of calanoids in the copepods decreased
from the inshore stations to the offshore areas but always remained
above 50%. Cyclopoids were most abundant at the offshore stations.

A total of 134 species of adult female calanoid and cyclopoid cop~
epods were idéntified from this coastal area. The five most abundant
species in the sampling area were Paracalanus indicus, Acartia tonsa,
Paracalanus quasimodo, Paracalanus crassirostris, and Clausocalanus
furcatus. These five species combined made up over 55% of the adult
females examined. Other common species in the order of their abundance
were Oncaea media, Oilthona nana, Oilthona plumifera, Temora turbinata,
and Oncaea venusta. These ten most abundant species in the area made
up over 77% of the adult female copepods.

The temporal and spatial distributions of the 18 most abundant cop-
epods and the major groups of zooplankton were examined graphically and
through the use of an analysis of variance. The analysis of variance
results indicated the significance of the effects of Month, Depth,
Transect, and Year on the densities of these groups. The Depth*Month
interaction appeared to be the most frequently significant factor
indicating changes in the seasonal distributions of these groups with
changes in bottom depth. The main effects of Bottom Depth and Month
appeared to be more important than Transect and Year in describing the
distributions of these organisms. The effect of the sampling time dur-
ing the day was examined through the use of correlations and an analysis

of covariance. In most cases this effect, which was probably due to
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the vertical migrations of the animals, did not appear to affect the
significance of the analysis of variance results.

Regression analyses were used to examine the relationships between
the natural log of the density of each group or species and the physical
and chemical factors examined. Densities of the major groups of zoo-
plankton generally appeared to be poorly correlated with these factors.
Densities of individual species of copepods appeared to be most fre-
quently related to surface salinity and surface temperature. In most
cases these relationships could also be seen in the temporal and spatial
distributions of the species. The other factors such as local runoff,
previous month's Mississippi runoff, stability, upwelling and the cross
shelf current were seldom highly significant in the regressions and did
not appear to explain a large part of the variability in the densities
of the species examined. Most of these variables were only rough esti-
mates of the parameter and this could be the reason for their poor fit
in the regression models.

The lack of an apparent relationship between the densities of some
of the typical estuarine copepods and the local river runoff values was
especially puzzling. Acartia tomsa is an estuarine species which
appeared to be strongly associated with low salinities in the sampling
area. The density of 4. tonsa was examined with respect to local run-
off over the entire area, on each transect, and at each station through
the use of regressions and histograms. Changes in the mean monthly
local runoff did not appear to affect the density of this species.
Therefore, although it is generally assumed that large blooms of spe-

cies such as 4. tonsa in coastal waters are caused by flushing from the
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local estuaries, the data from the GUS III cruises did not seem to
support this conclusion. Estuarine flushing, however, may lag behind
peak river flows delaying the movement of estuarine populations into
coastal areas.

There are three basic possibilities for finding no significant
relationship between the density of a species and a possible causal

variable in linear regression models.

1. There is no significant relationship.

2. The variables are not accurately measuring the phenocmena
involved.

3. The relationship is not linear.

All three of these reasons have probably contributed to the regression
results reported in this paper. The variables used in this study to
describe upwelling, stability, and the cross shelf current probably
only crudely approximate the real phenomena. Although any error in
their measurement theoretically violates linear regression assumptions,
they were used strictly as exploratory variables in this analysis.
The presence of a non-linear relationship between population densities
and the chemical and physical variables is also a possible explanation
for the poor fit of many of the regression models. A relationship of
this‘type could be frequently seen in the histograms of density versus
surface temperature. In many cases an optimum temperature occurred
around 20 to 22°C. Mean densities decreased in both directions from
this temperature.

Species diversity, measured as the number of species of adult fe-

male copepods present, increased markedly with the bottom depth in the
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sampling area. This trend has also been reported in many of the
coastal zooplankton studies reviewed in this paper. Sanders (1968, K
1969) felt that in the marine environment stable areas generally sup-
ported a larger number of species than unstable areas. The seasonal
temperature and salinity charts indicate that both of these factors
vary less throughout the year at the deepest stations. Open ocean
areas which generally display moderate seasonal changes in temperature
and salinity generally have high diversities and estuaries which are
very unstable generally have very low diversities.

The analysis of correlated species groups revealed several clusters
of copepod species that appeared to vary in density together. Most of
these species grouped together showed similar relationships with temp-
erature and salinity. A distinct offshore group with many marginally
linked members, an intermediate depth group, and an inshore group of
species were present. Other studies on these same species from the
southeastern coast of the U.S. and off the South Texas Coast, using
different clustering techniques, have reported similar results. The
graphical method used to cluster species in the GUS III samples was
found to be preferable to the use of dendrograms. BAlthough the in-
herent complexity of the graphical clustering technique makes it more
difficult to interpret in some ways as opposed to dendrograms, this
complexity is informative and in many cases may be essential in order
to avoid misinterpreting results.

Although the significance of competition in plankton systems is
a matter of controversy, competition for food might be expected be-

tween similar sized congeneric copepods. The temporal and spatial
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distributions of eight copepod genera were examined in this analysis.
Most congeners appeared to be distinctly separated by their sizes, dis-
tributions over the shelf, or their temporal distributions. The major
exceptions occurred between two herbivorous calanoid species, Para-
calanus indicus and P. quasimodo, and between species in the predaceous
genera of cyclopoids, Corycaeus and Oncaea. Vertical distribution data
from a 2-day period in July at a station off Galveston, Texas appeared
to show a distinct vertical separation in the water column for the
Paracalanus species. The vertical distribution data reported by
Allison (1967) for the species of Corycaeus and Oncaea were incomplete,
however, and inconclusive. A possible explanation for the apparent lack
of temporal and spatial separation in these species of cyclopoids could
be related to their predatory feeding habit. The diversity of food
available to a predator in marine plankton systems would appear to be
greater than that available to a herbivore. Selective feeding in the
species of Corycaeus and Oncaea could result in niche separation.
Although most of the work done in the Gulf of Mexico has provided
only a limited amount of information on zooplankton populations, the
study that is perhaps most comparable to the work presented here was
done by Park (1979) and Park and Turk (1980) in the coastal waters
off South Texas. They examined seasonal samples taken at nine stations
and monthly data were reported from three stations. Their data on zoo-
plankton and copepod densities, species distributions, species divers-
ity, and species groups were generally similar to the data reported

here from the GUS III samples.
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The analysis of the GUS III samples presented in this study pro-
vides essential information on temporal and spatial distributional
patterns and relationships with physical and chemical factors for the
neritic zooplankton populations of the northwestern Gulf of Mexico.

In order to determine the environmental conditions affecting popula=-
tion densities and potential rates of increase for populations in the
area, however, field work on food availability and predator densities
is gecessary. Laboratory studies on feeding, predation, reproductive,
and developmental rates are also needed. Although some of this infor-
mation is available in the literature, many zooplankton species are not
readily adaptable to laboratory conditions. This general lack of basic
information on zooplankton populations also makes it difficult to
interpret information on interspecific competition and community

structure in plankton systems.
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