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ABSTRACT 

 

With the scale of interconnect number grows to billions, parasitic capacitance 

extraction speed is an important issue for fast turn-around time for designers.  

In this thesis, we propose to build a regression model for the input interconnect 

geometry to predict the parasitic capacitance based on machine learning. A 

simplification algorithm is proposed to reduce the number of conductors for quicker and 

easier regression modeling and the regression models can improve by machine learning 

technique.  

Experimental results show that the proposed method is significantly faster than 

existing method and provides satisfactory accuracy.  
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NOMENCLATURE 

 

SVM Support Vector Machine 

FinFET Fin-shape Field Effect Transistor 

EDA Electronic Design Automation 

RC Resistor Capacitor 

SVR Support Vector Regression 

SV Support Vector 
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CHAPTER I  

INTRODUCTION 

 

1.1 Overview 

With the device structure changing to FinFET, industry successfully scales the 

feature size down to 14 nanometers and the next-generation chip from Intel, called 

Broadwell as shown in Figure 1, which has several billions of transistors on the chip, is 

going to be released this October.  

 

 

 

Figure 1. Intel’s Broadwell chip with 14nm process technology [1] 

 

Several years ago, semiconductor industry followed the Moore’s Law to shrink 

the feature size to increase the speed of the circuits. However, nowadays, the size is 

being reduced for placing more transistors to build multiple cores to boost the chip 
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performance by parallel processing technique. Thus it can be seen that an explosive 

growth in the numbers of transistors on the chip is happening. In order to match the 

growing number of transistors, interconnect wires also increase to billion scale, which 

brings in new challenges for the chip designers and EDA tools.   

1.2 Interconnect  

 What is interconnect? For a single chip, transistors on the silicon substrate need 

to be connected by different layers of metal wires with complicated structure which is 

called interconnect for function realization and signal communication. 

 

 

 

Figure 2. 3D illustration of interconnect in a chip [2] 
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This large and dense structure as illustrated in Figure 2 is interconnect and it can be 

easily seen that the maze-like interconnect metal wires take up most part of the chip. 

However, this cannot indicate the importance of interconnect for the chip design clearly.  

1.3 Interconnect RC Delay 

 Made by metal, interconnect wire has its resistance 𝑅 and capacitance 𝐶 as drawn 

in Figure 3, which forms the RC delay 𝜏 for the signal processing. The RC delay 𝜏 is 

directly proportional to 𝑅𝐶 value and it is an important part of the total delay. 

 

 

 

Figure 3. Interconnect metal wire with ground 
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In order to find the critical path of the chip to determine the circuit performance, 

parasitic total capacitance of all nets should be extracted fast and accurately so that the 

largest total delay can be calculated by sum of possible net delays on the path.  

1.4 Problem Statement 

For billion-scale interconnect wires, full-chip interconnect parasitic extraction 

becomes extremely time consuming. No chip designer is willing to wait several days 

only for the accurate extraction result. Shorter design cycle means commercial success. 

That is why modeling for fast parasitic capacitance extraction is so important. 

Low extraction speed also leads to zero tolerance on the accuracy issue because 

any failure on result accuracy is a huge loss on time and money. Due to the smaller 

width and larger height of the interconnect wire, fringing capacitance is no longer the 

second order effect. Thus the old extraction method cannot guarantee the accuracy any 

more. Then machine learning is introduced to improve the modeling accuracy.  

In next chapter, the parasitic extraction background will be presented and 

different kinds of methods are listed and discussed. 
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CHAPTER II  

BACKGROUND 

  

What are the existing methods applied for the parasitic extraction? Is there any 

method which is both efficient and accurate? As mentioned above, efficiency and 

accuracy are the most important two factors for full-chip parasitic extraction. However, 

there is an obvious trade-off which divides the existing methods into two basic 

categories: field solver and rule-based extraction. 

2.1 Field Solver  

 Given enough information of the input interconnect, including the conductor 

geometry and process technology, the field solver can build a matrix equation for 

voltage potentials based on the Poisson equation with boundary conditions. After solving 

the matrix equation to get the voltage potential distribution, the parasitic capacitance is 

calculated by the cumulated charges on the conductor. For the field solver, there are 

many different numerical methods to set up the matrix equation: 

 Finite Difference Method 

 Finite Element Method 

 Boundary Element Method 

Without doubt, field solver is the parasitic extraction tool with the highest accuracy and 

it is taken as the industry parasitic extraction golden standard. Because of the heavy 

numerical computation work load to guarantee the accuracy, the extraction speed is 
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really low. So the field solver is only applied in small cases or cells for extraction 

reference and it is impossible to handle the full-chip extraction directly in a short time.    

2.2 Rule-Based Extraction 

 For the rule-based extraction, as the name indicates, the layout rule file or the 

pattern matching technique are usually adopted to identify very basic interconnect 

structure for capacitance extraction and the result is the sum of all the pattern 

capacitance. These pre-computed methods are able to speed up the extraction 

tremendously compared with the field solver so that the parasitic extraction can be 

finished in an acceptable time period with an acceptable accuracy. Three industry-

widely-used methods are listed below. 

2.2.1 Look-up Table Method 

 Fine-meshed look-up tables are generated by field solver based on different 

possible interconnect patterns for capacitance calculation before the extraction. For the 

corresponding pattern, parasitic capacitance is read directly from the table or calculated 

by interpolation technique. For the non-matching pattern, field solver is called to 

generate the reference value and the look-up table is updated. The more data in the table, 

the more accurate the interpolation will be. That is the reason this method usually 

consumes large amount of disk resources and costs a lot of preparation time before 

extraction begins. 

2.2.2 Analytical Formula Method 

 Many research works have been done in the analytical capacitance modeling. 

This method is based on the integration analysis of electrical field lines over the 
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conductor areas. Many models for different possible patterns have been presented and 

compared in [3], including the single line and parallel line formula [4]. The preset 

formula is used to calculate parasitic capacitance of interconnect pattern, however, this 

method is no longer accurate enough for the fringe capacitance increasing and the 

interconnect structure goes more complex and denser today. 

2.2.3 Polynomial Fitting Method [5] 

 In this method, interconnect pattern is neglected and all the parameters related to 

the parasitic capacitance of input interconnect are collected in a polynomial fitting 

model, including conductor width, height, dielectric constant and coordinates of the 

center point. After initial sampling, the error is checked to see whether the model needs 

to be improved by more samples or adding more high order terms until the fitting model 

is satisfying. The result model can be directly used to calculate the parasitic capacitance. 

However, there are too many parameters to fit, thus sampling is an extremely large and 

time-consuming project. Also it is hard to pick the right high order term to be added to 

improve the model accuracy. In other words, this modeling method cannot improve the 

model accuracy with experience and time.     

2.3 Proposed Method 

 A proper regression modeling method is needed for fast capacitance extraction 

and the self-improving feature is required to achieve good accuracy for this method. So 

machine learning comes into view and is applied in the proposed method.   

 First of all, what is machine learning? 
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Machine learning is a study of algorithms that improves the performance P at 

some task T with experience E, which is first proposed by Tom M. Mitchell [6]. Now the 

machine learning has already been applied in several fields as following: 

 Natural language processing 

 Speech recognition 

 Computer vision 

 Robot control 

Why machine learning is so important to modeling, or to be specific, parasitic 

extraction? Through machine learning, the learnt regression model can keep learning 

new entry data and the model prediction becomes more and more precise. 

 Machine learning has three basic approaches: 

 Supervised learning 

 Unsupervised learning 

 Reinforcement learning 

The support vector machine from supervised learning is the exact applied method 

because it can both generate regression model without overfitting and do a better 

classification job which is necessary in the proposed method.  

 In next several chapters, the proposed method is discussed step by step and the 

details will also be presented.  

 

 

 



 

9 

 

CHAPTER III  

SIMPLIFICATION 

  

 To generate a parasitic capacitance regression model for the input interconnect 

geometry, enough samples are necessary for no matter what kind of regression method. 

However, there are so many conductors in the input interconnect geometry, so it is 

almost an impossible task to create enough samples for regression.  

  In order to reduce the number of conductors for quicker and easier regression 

modeling, simplification process without losing too much accuracy is a must.  

3.1 Interconnect Definition 

 In Figure 4, it is an example of five-layer interconnect cross-section.  

 

 

 

Figure 4. Interconnect cross-section 
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The conductor in the very middle of layer 0 is the one with positive voltage potential 

called “Aggressor” and it is the conductor whose total parasitic capacitance is going to 

be extracted. The neighbors of the aggressor have zero voltage potentials on them are 

called “Victims”. There is always a ground with interconnect.    

 For the input interconnect geometry as shown in Figure 5, define the parameter 

set as 𝑃 and 𝑃 = {(𝑥𝑖, 𝑦𝑖, 𝑤𝑖, ℎ𝑖), 𝑖 ∈ 1,2, … , 𝑛}, where number of conductors, n varies.  

 

 

 

Figure 5. Input geometry example 

 

The coordinates of the center of conductor 𝑖 is (𝑥𝑖, 𝑦𝑖) and the coordinates of the center 

of the aggressor is always (0,0). Width of conductor 𝑖 is defined as 𝑤𝑖 and height of 

conductor 𝑖 is defined as ℎ𝑖. 

3.2 Shielding Effect Experiments   

 What is shielding effect?  
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 For a dense interconnect structure, shielding effect is the fact that one conductor 

can shield another from the coupling effect so that coupling capacitance of the shielded 

conductor gets a huge reduction. Experiments are designed to study the shielding effect 

under different situations to see the error of dropping the shielded conductors [7].  

 In Figure 6, there are three conductors above the ground: aggressor 𝐴, victim 𝑉 

and the shielded conductor 𝐷. Let the total capacitance of aggressor 𝐴 with conductor 𝐷 

be 𝐶𝑡 and the total capacitance of aggressor 𝐴 without conductor 𝐷 be 𝐶𝑡′. Assume the 

minimum space between victim 𝑉 and the shielded conductor 𝐷 is 𝑆𝑚𝑖𝑛. Then compute 

the error of dropping conductor 𝐷: 𝑒 = (𝐶𝑡 − 𝐶𝑡′)/𝐶𝑡. 

 

 

 

Figure 6. Shielding effect experiment set up 

 

3.2.1 Same-Layer Shielding 

 To study the shielding effect of the victims on the same layer with the aggressor, 

an experiment is set up as shown in Figure 6. Victim 𝑉 and the shielded conductor 𝐷 are 
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on the same side of 𝐴 and the distance between 𝑉 and 𝐴 is 𝑑 as indicated. In this 

experiment, 𝑑 is increasing to see the varying error of the total parasitic capacitance after 

dropping the shielded conductor. Meanwhile, 𝑉 and 𝐷 keep minimum space 𝑆𝑚𝑖𝑛 to 

make sure that it is always the worst case for dropping 𝐷.  

 Experiment result is shown in Figure 7 and two curves are plotted based on the 

metal layer position of aggressor 𝐴. From the graph, it can be seen that the largest error 

occurs when distance 𝑑 is around two times the minimum space. Thus in this case, 

dropping the shielded conductor 𝐷 causes at most 𝑒1 = 0.6% error.  

 

 

 

Figure 7. Experiment result for same-layer shielding effect: 1 
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Another experiment is conducted to study the shielding effect of the same-layer 

victims on the different layer with the aggressor as shown in Figure 8. Victim 𝑉 and the 

shielded conductor 𝐷 are on the same side but upper layer of 𝐴 this time. Everything else 

keeps the same with last experiment.  

This case is the worst case compared to 𝑉 and 𝐷 both on the lower layer of 𝐴 

because the ground will absorb less electrical fields and the coupling capacitance 

between the aggressor and shielded conductor is larger. Thus there is no need for 

experiments on that situation.  

 

 

 

Figure 8. Experiment geometry for same-layer shielding effect 

 

Experiment result is shown in Figure 9 and two curves are plotted based on the 

metal layer position of aggressor 𝐴 as in last experiment. From the graph, it can be seen 

that the largest error exists at the minimum space place. However, the process 

technology limits the space between two conductors so that the error will not keep 
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increasing. Thus in this case, dropping the shielded conductor 𝐷 causes at most 𝑒2 =

1.1% error.  

 

 

 

Figure 9. Experiment result for same-layer shielding effect: 2 

 

3.2.2 Different-Layer Shielding 

 To study the shielding effect of both victims on the different layer with the 

aggressor separately, an experiment is set up as shown in Figure 10. Victim 𝑉 and the 

shielded conductor 𝐷 are on the upper side of 𝐴 and the horizontal distance between 𝑉 

and 𝐴 is 𝑑 as indicated. In this experiment, 𝑑 is increasing from zero to see the varying 

error of the total parasitic capacitance after dropping the shielded conductor. Meanwhile, 
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the shielded conductor 𝐷 is always one layer above 𝑉 to make sure that it is the worst 

case for dropping 𝐷 compared with other cases.  

 

 

 

Figure 10. Experiment geometry for different-layer shielding effect 

 

Experiment result is shown in Figure 11 and two curves are plotted based on the 

metal layer position of aggressor 𝐴. From the graph, it can be seen that the largest error 

exists when distance 𝑑 is around five times the minimum space. Thus in this case, 

dropping the shielded conductor 𝐷 causes at most 𝑒3 = 1.8% error.  

3.2.3 Experiment Summary 

For two victim neighbors 𝑉 and 𝐷 on one side of the same layer with the 

aggressor 𝐴, dropping the shielded conductor 𝐷 causes at most 0.6% error.  

For two victim neighbors 𝑉 and 𝐷 on one side of the different layer with the 

aggressor 𝐴, dropping the shielded conductor 𝐷 causes at most 1.1% error.  
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For two victim neighbors 𝑉 and 𝐷 that are on the different layer with the 

aggressor 𝐴 separately, dropping the shielded conductor 𝐷 causes at most 1.8% error.  

 

 

 

Figure 11. Experiment result for different-layer shielding effect 

 

3.3 Simplification Algorithm 

Based on the three experiments on the shielding effect, the simplification 

algorithm describes how to drop the shielded conductors to reduce the number of 

conductors in the input geometry as seen in Figure 12. After running the simplification 

algorithm, all of the shielded conductors have been removed and only the simplified 

geometry is left.  
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Figure 12. Simplification algorithm 

 

 

The error bound needs to be calculated to see whether it is useful or not. 

3.3.1 Simplification Algorithm Error Bound  

 Two experiments are designed to find the maximal error of the total capacitance. 

The first one is a symmetrical structure with four shielded conductors on the upper and 

lower layers of the aggressor as shown in Figure 13. The victims and the shielded 

conductors are on the same layer and every distance 𝑑 is varying at same time as last 

experiment to find the maximal error. 

Experiment result is shown in Figure 14. It is seen that the maximal error occurs 

when the distance is equal to minimum space. The error bound equals 3.6% and is 

smaller than four times of the error 𝑒2. 
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Figure 13. Experiment geometry for error bound worst case 1 

   

  

 

Figure 14. Experiment result for error bound worst case 1 
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The second one is a symmetrical structure with four shielded conductors on the 

upper and lower layers of the victims as shown in Figure 15. The victims and the 

shielded conductors are on the different layers and every distance 𝑑 is varying 

simultaneously to find the maximal error. Meanwhile, the shielded conductor 𝐷 is 

always one layer above or below 𝑉.  

 

 

 

Figure 15. Experiment geometry for error bound worst case 2 

 

Experiment result is shown in Figure 16. It is seen that the maximal error occurs 

when the distance is twelve times the minimum space. The error bound also equals 3.6% 

and is smaller than four times of the error 𝑒3. 
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Figure 16. Experiment result for error bound worst case 2 

 

 

 Thus the maximal error bound of the simplification algorithm is 4𝑒, where error 

𝑒 is the maximal error in the shielding effect foundation experiments. For the first error 

bound case, the error is decreasing with the distance and for the second case, the error is 

increasing with the distance until it reaches the maximum. If combining these two cases, 

the maximal error will be even lower for the real simplification algorithm application.  

 To sum up, the simplification algorithm is valid to use and the algorithm 

illustration is shown in Figure 17. The shielded conductors 𝐷1, 𝐷2, 𝐷3, 𝐷4 have all been 

removed and the simplified geometry is generated. 
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Figure 17. Simplification algorithm illustration 
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3.3.2 Simplified Geometry  

 After applying the simplification algorithm, the input interconnect geometry is 

reduced to the simplified geometry. As shown in Figure 18, simplified geometry is a 

nine-square form geometry and the aggressor 𝐴 is always in the center square. Each 

neighbor square only has two states: 1 for a victim conductor inside and 0 for no victim 

inside. Depending on the number of present neighbors, there can be at most 8 neighbors 

and 28 = 256 cases for three-layer input geometries. 

 

 

 

Figure 18. Simplified geometry 

 

 Now, it is ready to create samples and build a SVM regression model for the 

simplified geometry for total parasitic capacitance prediction.  
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CHAPTER IV  

SVM REGRESSION 

  

Every good regression model is based on enough training data, this is not an 

exception. After generating a simplified geometry for the input interconnect, it is 

necessary to find out the key parameters related with the total parasitic capacitance and 

create training samples by varying the corresponding parameters. 

4.1 Create Samples  

 For the input geometry, there is a corresponding parameter set 𝑃 =

{(𝑥𝑖, 𝑦𝑖, 𝑤𝑖, ℎ𝑖), 𝑖 ∈ 1,2, … , 𝑛} which describes all the parameters of input interconnect. 

As is known to all, the interconnect process technology fixes the height of conductors on 

each different metal layers. Thus ℎ𝑖 and 𝑦𝑖 are not variables for the chip designers to 

change and experiments need to be done to show that the left parameters do affect the 

total parasitic capacitance of the input interconnect.    

4.1.1 Variables Experiments 

 The first experiment is designed to show that varying coordinate 𝑥𝑖 affects the 

total capacitance. There is only aggressor 𝐴 and victim 𝑉 with the ground in the 

experiment geometry. With the coordinate 𝑥𝑖 increases, total capacitance decreases as 

shown in Figure 19.  
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Figure 19. Experiment result for variable x 

 

 

The second experiment has the same set up, however, the victim is on the upper 

layer of the aggressor and its width 𝑤𝑖 varies this time. As seen in Figure 20, the total 

capacitance increases as 𝑤𝑖 increases. 

The total capacitance may not change with the two variables exactly as the 

curves in Figure 19, 20 show, but the two variables affecting total capacitance has been 

proven. Now samples for the initial models are going to be created based on these two 

parameters. 
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Figure 20. Experiment result for variable w 

 

 

4.1.2 Rule for Creating Samples 

 For each simplified geometry, unbiased samples are necessary to create initial 

models for preventing regression overfitting. The left and right side of aggressor 𝐴 are 

easily divided by positive or negative sign of the coordinate 𝑥𝑖. Then for each victim on 

one side, uniformly create 5 sample points for its coordinate 𝑥 with step 2 × 𝑆𝑚𝑖𝑛 and for 

every conductor, create 2 sample points for its width 𝑤 with step 𝑆𝑚𝑖𝑛 increasing and 

decreasing. After each sample geometry has been set up, run field solver for it to get 

parasitic capacitance reference value 𝑟𝑟 as target value for regression model.  
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4.2 SVM Regression 

  Regression is to find the relationship between the variables and the target value 

by building a model to describe and predict. For each simplified geometry, define 

variable vector 𝑓 used for regression as 𝑓 = (𝑥1, 𝑤1, 𝑥2, 𝑤2, … , 𝑤7, 𝑤7, 𝑥8, 𝑤8). After 

creating enough samples with reference value 𝑟 based on vector 𝑓, a high-dimensional 

accurate regression model 𝑀(𝑓) is learnt by SVM. Taking 𝑓 as input, SVM regression 

model is used to predict the total parasitic capacitance of aggressor 𝐴. This is the general 

idea about how to build and use the regression model. But now, why the SVM regression 

is applied here? What is the advantage compared with other regression technique? 

4.2.1 Why SVM Regression? 

 Talking about the regression technique, from the most simple and easy-

understanding, linear regression to the recent popular technique, SVM regression, it is a 

mathematical revolution process. Before the machine learning idea came into view, 

many regression methods have been tried to achieve a general model covering all sample 

data with good accuracy. Because coupling capacitance between victims and the 

aggressor follows the Gaussian distribution with respect to the coordinate 𝑥, it is no 

wonder that only the nonlinear regression method made it by Levenberg-Marquardt 

method [8]. However, no matter linear or nonlinear regression, they are old techniques to 

solve the numerical problem in its own space. SVM regression is different. In essence, it 

is still the linear regression after mapping all sample data into higher-dimension space 

with the penalty parameter preventing overfitting issue.  This will be discussed later and 

now Table 1 lists major pros and cons of different regression methods. 
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Table 1. Comparison between different regression methods with SVM 

Regression methods Pros compared to SVM Cons compared to SVM 

Linear regression  Not accurate at all. 

Linear piece-wise 

regression method 

Needs lots of samples to 

guarantee accuracy. 

Least square exponential 

regression method 

Can predict data out of 

the range. 

Generate too many models 

for single case. 

Levenberg-Marquardt  

regression method 

Can predict data out of 

the range. 

Cannot improve the 

regression model. 

 

 

From table 1, it is seen that SVM regression model cannot predict accurately for 

data out of the input sample range. This is the limitation of SVM regression model and it 

can be solved by building more regression models. The reason why building a new 

model is to prevent the overfitting issue and details are saved for later discussion. As 

mentioned before, the self-improving feature is the best reason for choosing SVM.  

Next an example is presented to illustrate what SVM regression really does. 

4.2.2 SVM Regression Example 

In daily life, SVM regression can be used to predict the blood pressure for 

patients. Collecting all the related parameters including blood glucose, daily exercise 

time, weight, age and the target blood pressure value from patients 1 to 7, SVM can 

learn a regression model based on these already-known data as training data listed in 

Table 2. Then the regression model can be used to predict the blood pressure for the new 

patient, the conductor. His blood pressure is predicted as 68 mm hg.  
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Table 2. SVM regression example training data 

Patient  
# 

Blood glucose 

(mg/dL) 
Daily exercise 

(hours) 
Weight 

(lb) 
Age 

(years) 
Blood pressure 

(mm hg) 

1 85 2.5 152 25 66 

2 157 0.2 188 31 64 

3 89 3 150 28 63 

4 138 1 148 36 52 

5 75 5 140 21 58 

6 181 0.5 203 45 71 

7 120 4 161 52 74 

8 98 1.8 137 35 ? 

 

 

 

Figure 21. Blood pressure prediction 

 

A hyperplane is generated by SVM as the regression model as seen in Figure 21. 
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 Of course, this is only an intuitive example for people to have a straight-forward 

understanding on practical application of SVM regression. But for better understanding, 

it is necessary to know how SVM regression works. 

4.2.3 SVM Regression Work Principles [9] 

 A linear regression model, or the hyperplane with respect to given 𝑚 training 

samples (�⃑�𝑚, 𝑦𝑚) ∈ 𝛸 × ℝ is defined as a function 𝑓(𝑥) = (�⃑⃑⃑� ∙ �⃑�) + 𝑏 by normal vector 

�⃑⃑⃑� and offset b. As mentioned before, SVM regression is linear regression in essence. In 

Figure 22, the solid line represents the function or the regression model and the dash 

lines indicates the tolerance range of predefined error 𝜀. Error analysis is important to 

any regression method and here the Vapnik 𝜖-SVR is applied [10].  

 

 

 

Figure 22. SVM regression work principle illustration 
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 Define Vapnik’s 𝜖-insensitive loss function |𝑦 − 𝑓(𝑥)|𝜖 = 𝑚𝑎𝑥 {0, |𝑦 − 𝑓(𝑥)| −

𝜖} where 𝜖 > 0 is a predefined constant which controls the noice tolerance. This loss 

function ignores the error within dash lines and penalize the other data with large error 𝜉 

as indicated in Figure 23 which prevents the overfitting issue.  

 

 

 

Figure 23. SVM regression error analysis illustration 

 

 After introducing the Vapnik loss function, the goal is to find a function 𝑓(𝑥) 

that has at most 𝜖 deviation from targets 𝑦𝑖 for all 𝑚 examples and as flat as possible. 

Here word flat means to keep the regression model as simple as possible to prevent it 

from being too complex.  

 Summarizing these two points, there is an optimal problem with the goal to 

minimize the model regularization and sum of penalized errors as following: 
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Minimize 
1

2
||𝑤||

2
+ 𝐶 ∙ ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑚
𝑖=1  

Subject to {

𝑓(𝑥𝑖) − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖

𝑦𝑖 − 𝑓(𝑥𝑖) ≤ 𝜖 + 𝜉𝑖
∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

, where penalty parameter 𝐶 > 0 and 𝑖 = 1, … , 𝑚. 

 The key idea to solve this problem is to construct a Lagrange function from both 

the objective function and the corresponding constraints by introducing a dual set of 

variables. It is purely mathematic problem thus the detail process is omitted. After 

solving this optimal problem, the SVM regression model is found. 

 As shown in Figure 24, linear regression is not a good choice to deal with the 

nonlinear problem. It is certainly a bad idea to use one piece of line to describe a circle. 

So here comes the question, how does SVM regression deal with nonlinear problem? 

 

 

 

Figure 24. Linear regression fails in nonlinear problem in 2D space 
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 Of course, using a circle to describe another circle is the most straight-forward 

method. However, SVM has a better solution. By mapping the original training data 

from 2D to 3D, it is easy to find a plane to cover all these points as shown in Figure 25. 

 

 

 

Figure 25. Linear regression solves nonlinear problem in 3D space 

 

In other words, SVM transfers the low-dimensional nonlinear regression problem 

to high-dimensional linear regression problem by mapping the data 𝑥 → Φ(𝑥).  

It is a genius idea, but after mapping to the high-dimensional space, the number 

of dimensions is growing explosively. Thus the mathematical computation to solve the 

dot product becomes tremendously complex and impossible to be done. 
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Then the kernel method is introduced to solve this problem by conducting the 

mathematical computation in low-dimension space but gives out the result for dot 

product in high-dimensional space.    

Standard SVM kernels which are usually applied in SVM are listed as following: 

 Linear kernel:    𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 

 Polynomial kernel:  𝐾(𝑥𝑖, 𝑥𝑗) = (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)

𝑑
 

 Gaussian kernel:  𝐾(𝑥𝑖, 𝑥𝑗) = exp (−𝛾 ∥ 𝑥𝑖 − 𝑥𝑗 ∥2) 

 Sigmoid kernel:   𝐾(𝑥𝑖, 𝑥𝑗) =  tanh (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟) 

4.2.4 SVM Training for Regression  

 After building a SVM regression model for a simplified geometry, it can be used 

to predict the parasitic capacitance of the input geometry that has the same simplified 

geometry as illustrated in the example. 

 

 

 

Figure 26. SVM regression applied in proposed method 
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 As shown in Figure 26, the new simplified geometry is like the male conductor 

and the input variable vector 𝑓 is like the health data of patients. Through this regression 

model, the target parasitic capacitance value is predicted just like the blood pressure. 

 How to train the SVM for regression model in the proposed method? 

 At first, enough samples have been created for the corresponding simplified 

geometry by varying the variables from vector 𝑓 and field solver has been run to 

generate the reference value 𝑟𝑟. Then the training data 𝑡𝑟 for SVM is created with 

reference 𝑟𝑟 and vector 𝑓. For a simplified geometry, it is written in the format as below.  

𝑟𝑟        1: 𝑥1 2: 𝑤1 3: 𝑥2 4: 𝑤2 …  13: 𝑥7 14: 𝑤7 15: 𝑥8 16: 𝑤8 

In the line, 𝑟𝑟 is called label, the number is called index and 𝑥 or 𝑤 is called value.  

 Secondly, scale the range of training data. Scale target value 𝑟𝑟 to [0, +1] and 

scale the values to [−1, +1], which is to prevent the small values from being dominated 

by the large ones.    

 Then choose Gaussian kernel for the nonlinear regression. Why it is a nonlinear 

regression problem? As mentioned before, the coupling capacitance between victims and 

the aggressor is following the Gaussian distribution, thus it is a nonlinear regression 

problem. Also Gaussian kernel is the universal kernel for SVM and its corresponding 

Hilbert space has infinite dimensions, so it is the best kernel here. Through cross 

validation method, the best Gaussian kernel parameter vector 𝑝𝑟 = (𝐶, 𝛾, 𝜀) is found 

when the validation error is minimal.   

 Finally, train regression SVM to get model 𝑀(𝑓).  

Is this model ready to predict? Will it have overfitting issue? 
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4.2.5 Overfitting 

 As mentioned for a lot of times, apparently overfitting is a common and 

important issue when dealing with the regression problem. From different perspectives, 

efforts have been done to prevent the overfitting happening. Generally, overfitting 

occurs when the model complexity to its training data size ratio is high, which means it 

is using a too complex model to describe a simple data or the data itself is biased so that 

the information is missing.    

 Thus, to prove that there is no overfitting issue in the regression model that used 

in the proposed method, both two perspectives have been considered and tested.  

   

 

 

Figure 27. Graph comparing two errors with training cycles increasing [11] 
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For model complexity, five-times cross validation is applied in selecting 

parameters for the Gaussian kernel to achieve the minimal validation error. In general, 

the training error decreases with the training cycles and it is always small as in Figure 

27. Only when the validation error approximately equals the training error, there is no 

overfitting, because the regression model describes the training data well. That is why 

the minimal validation error is required.  

 For training data size, unbiased samples of smaller size are tested to prove no 

overfitting. 

 

 

 

Figure 28. Simplified geometry to test overfitting 

 

Following is an experiment conducted to study the overfitting issue. For a three-

layer input geometry as shown in Figure 28, create a SVM regression model for it. When 

creating unbiased samples, uniformly pick 3 sample points for the coordinate 𝑥 of 

victims on the left and right side with step 2 × 𝑆𝑚𝑖𝑛 and run field solver for each sample. 
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Find the best parameters 𝑝𝑟 for Gaussian kernel by five-times cross validation and train 

the regression SVM. Because there are 6 neighbors for both sides, the training data size 

is 36 = 729. After the five-times cross validation and training process, the minimal 

validation error is 8.23436𝑒−6 and training error is 7.55652𝑒−6. Thus conclusion 1 is 

drawn that because training error is approximately equal to validation error, there is no 

overfitting for this regression model. This conclusion may seem not very persuading, 

thus test needs to be done to show the accuracy of the regression model.  

Finally, for each victim on left and right side, uniformly create 3 test points for 

its coordinate 𝑥 with step 𝑆𝑚𝑖𝑛 and test them with the regression model. Also the field 

solver needs to run for the test data to get the reference values. Based on the prediction 

values and reference values, calculate errors to check whether there is overfitting or not. 

Set the error limit as 3%. 

The size of test data is same as the training data and from Figure 29, it is easily 

found that all of the test errors fall into the range of [−3%, +3%]. Thus conclusion 2 is 

drawn that because the absolute value of every test error is smaller than 3%, it is a good 

regression model and there is no overfitting issue. Also it indicates that there will be no 

overfitting issue for the regression model generated by more unbiased training data.  
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Figure 29. Test results for overfitting experiment 

 

 

4.2.6 SVM Regression Applied 

 Having proved the SVM regression model is valid to use, it is ready for applying 

in parasitic capacitance prediction.  

 After the simplification process, the simplified geometry has the variable vector 

𝑓𝑛𝑒𝑤 = (𝑥1′, 𝑤1′, 𝑥2′, 𝑤2′, … , 𝑥7′, 𝑤7′, 𝑥8′, 𝑤8′) as the input vector. Based on the vector 

and any guessed value 𝑟𝑔𝑢𝑒𝑠𝑠, create test data 𝑡𝑝 as below. 

𝑟𝑔𝑢𝑒𝑠𝑠        1: 𝑥1′ 2: 𝑤1′ 3: 𝑥2′ 4: 𝑤2′ …  13: 𝑥7′ 14: 𝑤7′ 15: 𝑥8′ 16: 𝑤8′ 
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 Scale the range of test data to [−1, +1] as it did in training process. Then use 

regression model to predict the parasitic capacitance value 𝑀𝑙1
(𝑓𝑛𝑒𝑤) = 𝑟𝑠𝑐𝑎𝑙𝑒𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡. 

Because it is the scaled value, a backward-scaling is necessary to restore the value to 

normal range 𝑟𝑝𝑟𝑒𝑑𝑖𝑐𝑡 and it is the predicted parasitic capacitance of new input geometry.  

At last, check the accuracy by running field solver for this input geometry to get 

reference value 𝑟𝑟 and calculate error with (𝑟𝑟 − 𝑟𝑝𝑟𝑒𝑑𝑖𝑐𝑡)/𝑟𝑟. If the error is larger than 

the error limit 𝜀 which is usually preset as 3%, the prediction result is considered 

inaccurate. Otherwise, it is accurate. Then the training data is updated by adding 𝑟𝑟 and 

vector𝑓𝑛𝑒𝑤. Also store 𝑟𝑝𝑟𝑒𝑑𝑖𝑐𝑡 into prediction database 𝐷𝐵𝑝1 for model 𝑀𝑙1
.  

Before the size of prediction database 𝐷𝐵𝑝1 reaches threshold 𝑇, the accuracy of 

model 𝑀𝑙1
 needs to be checked every time when there is a new input geometry that is 

identified to use the same model. Until the size reaches threshold 𝑇, check the model 

accuracy periodically with the size increasing by 𝑇. If error is smaller than 𝜀, then it must 

be also smaller than the satisfying limit 𝜖 =  𝜀 . Round it to 1-significant figure to update 

𝜖 and update 𝑇 to 𝑇𝑛𝑒𝑤 = 10 × 𝑇 until the error is reduced to the satisfying level 𝜖𝑠 

which can be preset as 0.1%. If the error is larger than 𝜖 but smaller than 𝜀, the 

regression model is considered unsatisfying. Otherwise, it is satisfying and if the 

prediction error keeps being under the satisfying level 𝜖𝑠 for another 𝑇 times parasitic 

prediction, then there is no need for checking accuracy any more. When checking 

accuracy, always update the training data set with the reference value and input variable 

vector.   
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If the prediction parasitic capacitance for the new input geometry is not accurate, 

a new regression model will be built for it. Why? 

This question has been answered in previous chapters which discuss how to 

create samples for initial regression models and why SVM regression is better. The input 

vector 𝑓 with large prediction error is usually out of the regression model range because 

SVM is not able to handle this kind of input. If creating new samples around the original 

values and merge them into the old training data, it will no longer be unbiased and the 

refined regression model trained by it will have overfitting issue. Also it is hard to create 

unbiased training data for unknown input range. It may cost a lot of time to create 

enough samples for that but only a little to build a new model. All in all, these are the 

reasons why to build a new model but not to refine the old one. 

For each victim on left and right side, uniformly create 2 sample points for its 

coordinate 𝑥 on each side with step 𝑆𝑚𝑖𝑛. Then follow the method above to select the 

best kernel parameter and train SVM to get the new model. 

Next chapter, it is going to talk about how to choose the right corresponding 

regression model from the model library for the input geometry to predict its parasitic 

capacitance.  
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CHAPTER V  

SVM CLASSIFICATION 

 

 After building regression models for each simplified geometry, a right 

corresponding regression model needs to be chose for the input interconnect geometry to 

predict accurate parasitic extraction. Certain number of initial regression models have 

already been generated and stored in a model library that is classed by number of 

conductors in the simplified geometry. For instance, there are 256 initial models for the 

three-layer input interconnect. However, according to the nine-square form and the 

status of victims, the corresponding model can be easily found by the binary codes based 

on the victim status, like 10011101 for model 157. Same method can be applied on the 

more layer input geometry by adding more squares. So why SVM classification is 

necessary and applied here?  

5.1 Why SVM Classification? 

  Because not only there are many regression models stored in the same model 

library for different simplified geometries, but also there may be multiple models for the 

same simplified geometry. That forms a boundary problem which cannot be solved by 

the binary codes based on victim status, which is exactly the reason that SVM 

classification is important and useful here.   

 For the simplified geometry in Figure 30, there is a coordinate vector 𝑔 =

(𝑥1,  𝑦1, 𝑥2, 𝑦2, … , 𝑥7, 𝑦7, 𝑥8,  𝑦8) used for classification.  
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Figure 30. Simplified geometry for classification illustration 

 

 

 There are basically three classification jobs. The first one is to find the 

corresponding model library according to the number of conductors in the simplified 

input geometry. The second is to find whether there exists any model built for the 

geometry. If not, build a new initial model. Otherwise, find the corresponding regression 

model that has already been built for it.    

5.2 SVM Classification Example [12] 

In daily life, SVM classification can be used to tell whether the patients lack 

exercises or not. Collecting all the related parameters including blood glucose, blood 

pressure, weight, age and the target labels, yes or no from patients 1 to 7, SVM can learn 

a classifier based on these already-known data as training data listed in Table 3. Then the 

classifier can be used to predict the status for the new patient, the conductor.  
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Table 3. SVM classification example training data 

Patient  

# 

Blood glucose 

(mg/dL) 

Blood pressure 

(mm hg) 

Weight 

(lb) 

Age 

(years) 

Lack 

exercises 

1 85 66 152 25 No 

2 157 64 188 31 Yes 

3 89 63 150 28 No 

4 138 52 148 36 Yes 

5 75 58 140 21 No 

6 181 71 203 45 Yes 

7 120 74 161 52 Yes 

8 98 68 137 35 ? 

 

 

 

Figure 31. Health condition classification  

 

His health condition is considered lacking exercise and a hyperplane is generated 

by SVM as the linear classifier as seen in Figure 31. 



 

44 

 

5.3 SVM Classification Work Principles [13] 

 A canonical hyperplane with respect to given 𝑚 training samples (�⃑�𝑚, 𝑦𝑚) ∈

𝛸 × {±1} is defined as a function 𝑓(𝑥) = (�⃑⃑⃑� ∙ �⃑�) + 𝑏 by normal vector �⃑⃑⃑� and offset b. 

The zero hyperplane ℎ shown in Figure 32 is (�⃑⃑⃑� ∙ �⃑�) + 𝑏 = 0, which linearly separates 

the points with two different labels.  

 

 

 

Figure 32. SVM classification work principle illustration 

 

 Then there is a classifier ℎ(𝑥) = {
+1 𝑖𝑓  (�⃑⃑⃑� ∙ �⃑�) + 𝑏 > 0
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 generated by SVM to 

discriminate the different classes.  

However, in SVM learning process, it always finds the hyperplane with maximal 

margin shows in Figure 33.  
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Figure 33. Support vectors and maximal margin for hyperplane 

 

 

After normalizing 𝑦𝑓(𝑥) as 1 and doing some mathematical calculation, the 

margin is represented as 
1

‖𝑤‖
. So there is another maximal problem to solve. 

Maximize 
1

‖𝑤‖
 

Subject to |(�⃑⃑⃑� ∙ �⃑�) + 𝑏| ≥ 1, where 𝑖 = 1,2, … , 𝑚 
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Like how the regression optimal problem being solved, Lagrange multipliers are 

introduced to transfer it into a dual problem. Then it is solved by quadratic programming 

method. Mathematical details are omitted here.  

After finding the maximal margin, the support vectors SV = {�⃑�𝑗| |(�⃑⃑⃑� ⋅ 𝑥𝑖⃑⃑⃑⃑ ) + 𝑏| =

1, 𝑗 = 1 … } lie on the margin and they are the only useful points which determine the 

linear hyperplane with the hard margin. This is how the name of support vector machine 

comes. If introducing slack variables 𝜉 and penalty parameter 𝐶, the hyperplane will 

have the soft margin with certain error tolerance.   

 

 

 

Figure 34. 1D non-separable case to 2D separable case 
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As shown in Figure 34, there is no point to discriminate these two classes in one-

dimensional space. Like the SVM regression, mapping data 𝑥 from 1D to 2D by 𝑥 →

Φ(𝑥) = (𝑥, 𝑥2) can solve this problem easily. Still in Figure 34, two classes are 

separated by a line (�⃑⃑⃑� ∙ Φ(𝑥)) + 𝑏 = 0, which is called hyperplane in high-dimensional 

space. Behind this mapping trick, there is a supporting mathematical theorem to 

guarantee an existing hyperplane. For any data set, there exists a mapping Φ to a higher-

dimensional space such that the data is linearly separable.  

Then the kernel method is introduced to solve this problem by conducting the 

mathematical computation in low-dimension space but gives out the result for dot 

product in high-dimensional space.    

5.4 SVM Training for Classification 

 How to train SVM to generate different classifiers as needed?  

 

 

 

Figure 35. One-class classification illustration 
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After building a one-class SVM classifier for simplified geometries with same 

size of coordinate vectors 𝑔, it can be used to tell whether the simplified input geometry 

has any regression model built for it or not as illustrated in Figure 35. It is clearly seen 

that the simplified input geometry with no built regression model is treated as the outlier. 

If no, build a new initial model for it. If yes, a multi-class SVM classifier is needed to 

find the label of the right corresponding regression model for the simplified input 

geometry as illustrated in Figure 36.  

 

 

 

Figure 36. Multi-class classification illustration 

 

 The simplified input geometry with vector 𝑔 is classified into class 1.  

 How to train the SVM for classification in the proposed method? 

 At first, every sample created for the simplified geometry with same size of the 

geometry vector 𝑔 has been collected with its vector 𝑔 and label 𝑙 of the corresponding 
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regression model 𝑀(𝑓). Then the training data 𝑡𝑐 for SVM is created with label 𝑙 and 

vector 𝑔. For a sample geometry, it is written in the format as below.  

𝑙        1: 𝑥1 2: 𝑦1 3: 𝑥2 4: 𝑦2 …  13: 𝑥7 14: 𝑦7 15: 𝑥8 16: 𝑦8 

 Secondly, scale the range of training data to [−1, +1] to prevent the small values 

from being dominated by the large ones.    

 Then choose Gaussian kernel for the nonlinear classification. Through cross 

validation method, search for the best Gaussian kernel parameter vector 𝑝𝑟 = (𝐶, 𝛾) 

when the validation error is minimal.   

 Finally, train one-class SVM with the training data 𝑡𝑐 to get classifier 𝑂𝐶(𝑔) and 

train multi-class SVM with the same training data 𝑡𝑐 to get classifier 𝑀𝐶(𝑔). 

 5.5 SVM Classification Applied 

 Having trained SVM to get two different classifiers, it is ready for applying in 

choosing the corresponding regression model for the simplified input geometry.  

 After the simplification process, the simplified geometry has the geometry vector 

𝑔𝑛𝑒𝑤 = (𝑥1′, 𝑦1′, 𝑥2′, 𝑦2′, … , 𝑥7′, 𝑦7′, 𝑥8′, 𝑦8′) as the input vector. Firstly check the 

number of conductors of the simplified geometry to find the corresponding model 

library. Based on the vector and any guessed label 𝑙𝑔𝑢𝑒𝑠𝑠, create test data 𝑡𝑔 as below. 

𝑙𝑔𝑢𝑒𝑠𝑠        1: 𝑥1′ 2: 𝑦1′ 3: 𝑥2′ 4: 𝑦2′ …  13: 𝑥7′ 14: 𝑦7′ 15: 𝑥8′ 16: 𝑦8′ 

 Scale the range of test data to [−1, +1] as it did in training process. Then use 

one-class SVM classifier to tell whether the simplified geometry has any regression 

model built for it or not by 𝑂𝐶(𝑔𝑛𝑒𝑤) = 0 𝑜𝑟 1 where 0 means no and 1 means yes. If 

yes, use multi-class SVM classifier to predict the label of the right corresponding 
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regression model for the simplified input geometry by 𝑀𝐶(𝑔𝑛𝑒𝑤) = 𝑙𝑝𝑟𝑒𝑑𝑖𝑐𝑡 where 

𝑙𝑝𝑟𝑒𝑑𝑖𝑐𝑡 is the predicted label. At last the corresponding regression model is 𝑀𝑙𝑝𝑟𝑒𝑑𝑖𝑐𝑡
(𝑓). 

However, as mentioned above, if the prediction accuracy for the new input 

geometry is not satisfied, a new regression model will be built for it and correspondingly 

the training data for classification needs to be updated too. It may happen that the 

classifier did not predict the right label of the regression model which leads to the 

parasitic capacitance prediction error and a newly-built model especially for the 

simplified input geometry. Thus there will be more and more models even for the same 

simplified geometry, which is making the structure of model library more complex and 

introducing more unnecessary boundary issues when doing SVM classification. How to 

solve this problem? 

 Regression models merging is another important process when checking 

accuracy. After the size of prediction database 𝐷𝐵𝑝1 reaches threshold 𝑇, merge the 

training data sets of all other different regression models with the same simplified 

geometry into one large training set. To prevent overfitting, check the merged training 

set to verify whether it is unbiased or not with step 
1

2
× 𝑆𝑚𝑖𝑛. If it is not unbiased, create 

samples for the missing part to make it unbiased. Then search for the best Gaussian 

kernel parameter vector 𝑝𝑟 = (𝐶, 𝛾, 𝜀) with five-times cross validation and train SVM to 

get the merged regression model 𝑀𝑚(𝑓) instead of the old discrete ones. Meanwhile, 

update the training data 𝑡𝑐 for classification and retrain SVM to get the merged one-class 

classifier 𝑂𝐶𝑚 and multi-class classifier 𝑀𝐶𝑚. Therefore the prediction range of the 
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regression model is large and the number of models gets reduces. It is a process from 

complexity to simplicity.  

A question may be raised that why not build a large enough initial regression 

model at the very first beginning? First of all, it will cost too much time to create enough 

unbiased samples to generate a good regression model unless all of the samples are 

provided at the beginning. Although it is an offline task, it is still an impossible mission. 

The learning process is a process collecting all the necessary samples and a process 

improving itself. But is it the end? Can it do even better? 

The answer is yes. After successfully predicting and collecting enough reference 

data for the merged model, it is believed that the SVM regression model is steady and 

mature. If the model needs even better accuracy by reducing the error from dropping the 

shielded conductors, more victims should be added in to form a more complex 

regression model. 

 For the steady merged regression model, revisit all of the corresponding input 

geometries in the prediction database and exclude all victims of their simplified 

geometries. Then rerun the simplification algorithm to get the secondary important 

victims for each simplified geometry. For all the secondary simplified geometries, scale 

the range of geometry vectors and discriminate them into different subclasses. New sub-

models are built for each different subclass following the steps above. When finding 

model next time, if the model is found and it has sub-models, then run simplified 

algorithm again to look for the sub-model for better prediction accuracy. Models 

merging process can also be applied until the accuracy reaches preset satisfying level. 
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CHAPTER VI  

CONCLUSION 

 

 Up till now, Chapter I is about introduction of interconnect parasitic extraction 

challenges and motivation of the fast extraction method. Chapter II explains the trade-off 

between different existing extraction methods and brings in the machine learning 

technique for this proposed method. From Chapter III to V, it presents the proposed 

method in details step by step. To sum it up, there is an overall flow in Figure 37. 

    

 

build model

predict parasiticmerge model

improve model

find model

input geometry

parasitic capacitance

check accuracy

model

accurate

simplify geometry

inaccurate

no model

unsatisfying

 

Figure 37. Overall flow 
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 From Figure 37, the general idea of the proposed method is presented and each 

block has its explaining details in different chapters. The dash line here means the flow 

does not continue and the merged model or improved model is used for next time.  

After presenting this overall flow, it is necessary to conduct experiments to show 

this proposed method does work. So a test three-layer interconnect geometry is shown in 

Figure 38 below. 

 

 

 

Figure 38. Test interconnect geometry 

 

 In this test geometry, victims 𝑉𝑖, 𝑖 ∈ 1 … 32 are randomly present and every pair 

of nearest neighbors on the same layer has minimum space between each other. Because 

it is a three-layer simplified geometry, 256 regression models have been built initially by 

LIBSVM [14] and each model has at most 48 = 65536 training samples. 

 Next generate 200 random test geometries and predict the parasitic total 

capacitance 𝑟𝑝 for each of them. Run the field solver Raphael [15] for reference value 𝑟𝑟 

and plot a histogram with errors calculated by (𝑟𝑟 − 𝑟𝑝)/𝑟𝑟 in Figure 39. 
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Figure 39. Histogram for initial 200 tests 

 

 

 From Figure 39, it can be seen that there are some large prediction errors varying 

from −8% to −4%. There may be many reasons for this situation. One is the error from 

dropping shielded conductors; one is the prediction error for the regression model itself; 

one maybe the error for input vector that is out of prediction range. According to this 

proposed method, 27 new models are generated for these inaccurate cases. Then another 

200 random tests have been conducted with 283 models in the library.     
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Figure 40. Histogram for another 200 tests 

 

 

 From Figure 40, it can be seen that the out of range prediction error has been 

removed and the regression model prediction error has also been reduced because of 

more training samples added in. For the sake of simple test geometries, the error seems 

small but it will be larger with a much more complex geometry. 200 also may not be a 

large number but it still proves that this proposed method works. It is believed that after 

the models merging and improving, the proposed method will perform better. 

 Last but not least, Table 4 is made for comparing the execution time between the 

proposed methods with the field solver.  
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Table 4. Execution time comparison table 

Test # Execution Time 

SVM Field Solver 

200 0.013s 23m20s 

Execution time ratio ≈ 9/Million 

 

 

 As seen in Table 4, the proposed SVM prediction method is significantly faster 

than the field solver and provides satisfactory accuracy. 
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