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ABSTRACT 

 

The bed nucleus of the stria terminalis (BNST) is thought to be involved in the 

expression of fear to shock-associated contexts, but not to discrete conditional stimuli 

(CSs) paired with shock. Because context plays an important role in the extinction and 

relapse of fear, we sought to examine the contribution of the BNST to two different 

relapse phenomena: renewal and reinstatement. In the renewal experiment, male Long-

Evans rats received 5 tone-shock trials for conditioning in “context A”; 24 hours later 

they received 45 tone–alone (extinction) trials in either “context B” or “context C”. Ten 

minutes prior to a retrieval test (5 tone-alone trials), rats were infused with either 

selective agonist for GABAA receptors, muscimol or vehicle in the BNST. In the 

reinstatement experiment, rats underwent a similar procedure, but were presented with 

an unsignaled ‘reminder’ shock in the extinction context to reinstate fear.  As before, we 

examined the influence of muscimol inactivation of the BNST during a retrieval testing 

24-hours after the reinstatement shock. In the reinstatement test, rats with muscimol 

infusion showed significantly less freezing than did rats with vehicle infusion. In 

contrast, BNST inactivation did not attenuate the renewal of fear to an extinguished CS 

outside the extinction context. These data indicate that the BNST is involved in forms of 

fear relapse that depend on direct associations of the test context with an aversive US. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

 

The work of the thesis presented here is composed of two different experiments, 

and thus requires a broad background. In this introductory chapter, use of Pavlovian 

conditioning in fear learning and memory and neural circuitry involved in acquisition, 

extinction, and relapse of fear will be discussed. Then, the neural framework underlying 

fear learning, will be addressed. Finally, the role of bed nucleus of stria terminalis 

(BNST), the brain site of interest in this thesis work, in fear memory will be explained. 

The aim of this thesis work is to investigate the role of the BNST in renewal and 

reinstatement of extinguished fear.  

I.1 Statement of Problem 

Among psychiatric illnesses, anxiety disorders have a high incidence and an 

elevated societal cost (Pincus & Pettit, 2001). The lifetime prevalence of anxiety 

disorders is estimated at about 29% of the population in the United States and 4.5% of 

global population (Kessler, et al., 2005; Demyttenaere, et al., 2004). Of these, there are 

anxiety disorders which are driven with fear emotion. The representative of fear-driven 

mental disorder is posttraumatic stress disorder (PTSD). PTSD is a severe, chronic 

mental illness that develops after exposure to a traumatic event such as warfare, serious 

injury, or sexual assault and causes intense fear and a feeling of helplessness. In recent 

years, one of the vast interests in the field of behavioral neuroscience is to find an 
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effective approach to extinguish learned fear to develop effective behavioral therapies 

and pharmacological treatments for patients with anxiety disorders. 

It is known that learning of fear memories is rapid and robust, but extinguishing 

these memories is slow and susceptible to disruption. Therefore, currently available 

psychotherapeutic approaches that are built upon extinction learning have major 

drawbacks such as context dependency. For instance, exposure therapy is not long 

lasting because it is not generalized across various environments and circumstances. 

Because extinction learning is found to only temporarily suppress fear memories, rather 

than erase them, fear can easily return as a consequence. This return, or “relapse” of fear 

is a great challenge for maintaining robust and long-lasting fear suppression after 

behavioral therapies. Therefore, from a clinical perspective, developing novel 

therapeutic interventions is essential. Furthermore, from a neuroscientific point of view, 

it is critical to find the neural circuitry underlying the relapse of extinguished fear.  

I.2 Pavlovian Fear Conditioning, Extinction, and Fear Relapse 

Learning from experience and consolidating memory is critical for survival, 

particularly when it involves threats in the environment. Fear is one of the most basic 

emotions; it is programmed into the nervous system. Fear emotion produces a 

physiological and behavioral response to the present or anticipated occurrence of a 

dangerous stimulus. Learning to fear is critical for survival. However, intense experience 

of fear may be deleterious or incapacitating, producing dysregulated fear response. 

Consequently, learning not to fear is critical as well in order to regulate and control 

emotion to modify behavioral responses appropriately.  
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Decades of work in animal fear models have relied on Pavlovian conditioning, 

which is a behavioral procedure to study the brain mechanisms underlying fear learning 

and memory. Pavlovian fear conditioning is a form of associative learning in which a 

neutral stimulus such as a tone, or a conditioned stimulus (CS), is paired with an 

aversive stimulus such as a footshock, or an unconditioned stimulus (US). One or more 

presentations of this CS-US paring enables the animal to rapidly acquire a robust 

association between the CS and the US (Bouton, 1988; Fanselow, 1998). In addition to 

the CS, the animal associates the US the environmental stimuli, or context, in which the 

footshock was presented (Maren, et al., 2013). The CS-US association results in the 

transformation of the animal’s response to the CS which was previously neutral and did 

not pose a threat. After being presented with the pairing, the animal learns that the CS is 

a dangerous stimulus, predicting an unsafe event (i.e. footshock). Thus, the CS evokes 

conditioned responses (CR) of fear, including freezing, especially in the context the CS 

was encountered. After fear conditioning (FC), the learned CR can be suppressed by 

repeated presentation of CS in the absence of the US (Pavlov, 1927; Rescorla, 2000). 

This procedure is called extinction.  

Similar to FC, extinction involves learning and memory. Historically, extinction 

was perceived as ‘unlearning’ of the previously learned CS-US association (Rescorla, 

1969; Rescorla & Wagner, 1972). Researchers argued that the CS-US association that 

elicits the CR was weakened, and through extinction training, the CS loses its 

significance and no longer induces the CR. However, other researchers hypothesized that 

extinction is a form of active inhibitory learning that suppresses the previously learned 
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CS-US association (Bouton, 2004; Myers & Davis, 2002). The majority of investigations 

into extinction learning have supported the latter hypothesis that an organism learns an 

entirely new CS-no US association. In other words, extinction is not considered as an 

erasure of previously learned fear memories, but rather generates a new extinction 

memory. Over the course of the extinction, the original CS-US association is not 

degraded, and both excitatory and inhibitory representations of the CS remain (Bouton, 

2004).  

Convincing evidence behind the notion that extinction does not eliminate 

previously learned fear memories is based on relapse phenomena. There are four types 

of fear relapse phenomena: spontaneous recovery, reacquisition, renewal, and 

reinstatement. Spontaneous recovery occurs when significant amount in passage of time 

after extinction, and an extinguished CR to a CS is returned (Bouton, 1993; Rescorla, 

1997). Reacquisition phenomenon is exhibited when the subject is reintroduced with the 

original CS-US pairing after extinction training is conducted, and the behavioral 

procedure induces reacquisition of CR (Bouton, 2002; Napier, et al., 1992). Renewal is 

observed when an extinguished CS is presented outside of the extinction context, and the 

fear to the tone ‘renews’ (Bouton & Nelson, 1994). Lastly, reinstatement of fear 

response is observed when the US is presented alone after extinction training, and it 

causes a return of extinguished CR to the CS (Bouton & Bolles, 1979; Westbrook, et al., 

2002). These phenomena would not be possible if the original association between CS 

and US was degraded, and also, if fear extinction is characterized as forgetting of FC 

memories.  
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I.3 Renewal and Reinstatement of Extinguished Fear  

The standard procedure for extinction is to expose a subject with repeated CS-

alone trials to produce a reduction in CR. However, as discussed above, extinction is not 

permanent and does not indicate a total loss of CS-US association due to evidence of 

fear relapse. In addition, extinction memories are characterized as short-lived and highly 

context-dependent. Due to its context-dependence, extinction imposes a “mask” that is 

relatively specific to the context in which extinction training was given. 

Renewal is a key phenomenon that demonstrates that extinction involves 

acquisition of a context-specific inhibitory-like association. For instance, when the 

extinguished CS is given in a context that is different from the context where a subject 

received extinction, then the previously learned fear memory will be returned (Bouton, 

2004; Neumann & Longbottom, 2008; Vervliet, et al., 2013). Thus, the subject re-

establishes the CR to the CS.  

In animal models, the “ABC design”, which is a typical behavioral procedures, is 

designed to generate context-dependent retrieval of extinguished fear memory (Bouton 

& Bolles, 1979; Bouton & Ricker, 1994). All subjects receive conditioning training in 

Context A with tone-shock trials. Then, extinction training is performed either in 

Context B or Context C with tone-alone trials. Finally, all subjects are tested in Context 

B with tone-alone trials to examine renewal of fear to the CS. The group that received 

both extinction and renewal testing in the same context, Context B, does not express 

return of fear to the CS, tone. However, the group which received extinction in Context 

C, and renewal testing in Context B expresses fear renewal to the tone since the CS is 
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presented in the context that is different from the extinction context. The same tone in 

the testing context, which was presented equally for all subjects, retrieved two different 

memories. Based on the assignment to extinction context, one group which underwent 

an order of ABC contexts retrieved fear memory to the CS whereas a group which 

underwent an order ABB contexts retrieved safe memory to the CS. Again, this 

emphasizes that extinction is not erasing previously learned fear memories. The renewal 

of fear is also observed in human patients. Through exposure therapy, suppression of 

pathological fear that is acquired in a treatment context such as a therapist’s office may 

not be exhibited in non-treatment contexts that patients would encounter daily life 

(Rodriguez, et al., 1999). Renewal shows that the breaking CS-US contingency by 

multiple series of CS-alone presentation does not block the retrieval of what had been 

learned about the original contingency (Rescorla & Wagner, 1972). 

As renewal occurs due to context-dependence in extinction, reinstatement is 

attributed to context-US associations. Reinstatement occurs when a one or more 

presentations of the US results in recovery of extinguished CR. In other words, the CR 

can be ‘reinstated’ by administering an unsignaled US in absence of the CS, after 

extinction procedure is conducted (Rescorla & Heth, 1975). Previously, it has been 

shown that the unsignaled US must be delivered in the original conditioning context in 

order to produce reinstatement phenomenon because the US exposure in a novel context 

does not result in reinstatement (Bouton, 1984; Bouton & King, 1984).  

However, recent findings from Westbrook and colleagues in 2002 revealed that 

the reinstatement phenomenon is not always context specific. Specifically, in 
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Experiment 4 of their study, rats were conditioned in Context A to two types of CSs: a 

clicker and white noise. For extinction, rats was extinguished to the clicker in Context B 

and white noise in Context C. Following extinction procedures, all rats were exposed to 

a reminder US, footshock in Context B. Lastly, they were tested to both CSs in a novel, 

‘irrelevant’ context, Context D. Their data showed that rats had higher fear to the clicker 

than to white noise when they were tested in D. When extinction and US re-exposure 

occur in the same context, but testing is conducted in another context, the CR is 

reinstated in a CS-specific manner because the CS and US re-exposure are linked by 

their common context associate. In contrast to Bouton et al. (1984), results from 

Westbrook et al. (2002) supports the idea that reinstatement is not context specific.  

In recent years, considerable effort has been focused on understanding the 

mechanisms underlying renewal and reinstatement. These two fear relapse phenomena 

share the importance of contextual information in fear responding. However, there are 

differences between them. Renewal is considered as similar to ‘occasion setting’ 

(Holland, 1992) in which a subject learns a CS-US association during FC and a CS-no 

US association during extinction, and that the different contexts determine which of 

these association is retrieved. The mechanism is different from the reinstatement which 

is considered to be a more specific phenomenon that is attributable to context-US 

associations (Frohardt, et al., 2000). Moreover, there is evidence showing that brain 

regions underlying renewal and reinstatement are different. Wilson, Brooks, and Bouton 

(1995) found that lesions of the fornix abolished reinstatement but not renewal effect. 

Because one route of hippocampal-amygdala connectivity is via the fimbria-fornix 
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fibers, Frohardt, et al. (2000) showed that reinstatement is abolished with hippocampal 

lesions because the amygdala and hippocampus are functionally dissociated, effectively 

preventing the CS-US association from reforming (LeDoux, 1993). Renewal may be 

mediated by entorhinal and cingulate cortices, which do not primarily communicate with 

the hippocampus via fimbria-fornix routes in rats (Swanson & Cowan, 1977). However, 

recent studies have found that lesions of the dorsal hippocampus impairs fear renewal in 

both ABA and AAB designs (Ji & Maren, 2005). Corcoran, et al. (2005) also has found 

that dorsal hippocampal lesions produced a significant impairment in context-dependent 

fear renewal.  

I.4 Neural Circuitry of Fear Learning 

Several decades of research have deciphered brain mechanisms related to fear 

learning.  Studies on neural circuitry of fear learning have revealed that central amygdala 

(CeA) and basolateral amygdala (BLA) are essential for acquisition and expression of 

conditioned fear (Fanselow & Poulos, 2005; Maren & Quirk, 2004). Expression of 

conditioned fear involves CS transmission to BLA, connections from BLA to the CeA 

either directly or by way of intra-amygdala connections, and then output connections 

from CeA to various regions that control specific CRs.  

On the other hand, extinction seems to be involved in plasticity in the amygdala 

(AMYG) (Falls, et al., 1992; Quirk & Mueller, 2008). Also, the neural basis for fear 

extinction is believed to involve connections between the medial prefrontal cortex 

(mPFC) and the AMYG (Savander, et al., 1996; Garcia, et al., 1999, Quirk & Gehlert, 

2003). It has found that firing in BLA neurons increase in response to the CS after fear 
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conditioning, and the fear response decrease in probability and magnitude after 

extinction of CS-alone presentations (Quirk, et al., 1995). The CS-elicited firing in the 

AMYG is context-dependent in which there is return of CR to the CS when the CS is 

presented in a context that is different from extinction context (Hobin, et al., 2003). This 

renewal phenomenon induces a return of CS-elicited activity in BLA neurons in 

response to the extinguished CS. A recent study by Herry, et al. (2008), suggested that 

some AMYG neurons activate in response to the CS during renewal in context that is 

different from extinction context, and others fire in response to the CS during the 

reduction of fear in the extinction context.  

Extinction produces a new CS-no US association that is encoded in the AMYG 

to induce a reduction in CR. There is consensus that the hippocampus (HIPP) is involved 

in regulating the context-dependence of extinction memory. Previous work on HIPP 

manipulation in the renewal paradigm indicated there was a reduction in renewal of fear 

to an extinguished CS under reversible inactivation of the HIPP (Corcoran & Maren, 

2001). Thus, inactivation of HIPP impairs the retrieval of the CS-context associations. 

Considerable work has supported that CS-elicited firing in AMYG depends on the HIPP 

(Krasne, et al., 2011; Maren & Hobin, 2007).  

The majority of the data in literature suggests that there are interactions among 

HIPP, mPFC, and AMYG involved in contextual retrieval of fear memory. For instance, 

pharmacological inactivation of the HIPP disrupts context-dependent firing in the 

AMYG (Maren, 2007) and blocks fear renewal (Corcoran & Maren, 2001). Also, the 

inactivation of the ventral HIPP modulates the activity in the prelimbic regions of the 
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mPFC, in turn impairs fear renewal (Hobin, et al., 2006). Furthermore, when the ventral 

HIPP afferent pathways to either the BLA or prelimbic of mPFC is disconnected, fear 

renewal would not be observed. Renewal and reinstatement shares the neural network of 

structures including HIPP, PFC, and AMYG. As renewal, inactivation of the HIPP 

disrupts the reinstatement (Frohardt, et al., 2000), suggesting that the HIPP plays a 

crucial role in encoding context representations. 

I.5 Role of the BNST in Fear Learning 

As reviewed above, extinction memories are highly context-dependent and only 

expressed in the context where the subject receives extinction. Learned fear to context 

appears to be a major cause of fear relapse. Given the critical role of context associations 

in fear relapse phenomena, the BNST may be critical for fear relapse. 

In recent years, several studies have reported that the BNST may be important 

relay station linking critical forebrain structures involved in conditioned fear response to 

context such as the AMYG, HIPP and mPFC to the hypothalamus and autonomic 

regulatory brainstem areas (Fanselow, 2000; Huff & Rudy, 2004). In addition, the BNST 

also modulates behavioral responses to aversive stimuli. Studies using lesions or 

reversible inactivation demonstrated that the BNST is important for the expression of 

aversive responses such as freezing, mean arterial pressure (MAP) and heart rate 

increases. A recent study from Haufler, Nagy, and Pare (2013) found that activity and 

volume of the BNST are positively correlated with the level of anxiety. Also, the BNST 

is known to directly modulate stress responding via the hypothalamus (Casada & Dafny 

1992; Erb et al. 2001).   
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The BNST is anatomically positioned to have a role in anxiety and the renewal 

and reinstatement of extinguished fear. The BNST is characterized by reciprocal 

connections with the medial and CeA (Alheid & Heimer, 1988; Shammah-Lagnado, et 

al., 2000) and receives projections from HIPP. Then, the BNST projects to brain sites 

that are responsible for the regulation of heart rate as well as brain areas that are critical 

for the vigilance exhibited in fearful and anxious states, such as the locus coeruleus, 

among other brain stem areas involved in the responses to fear and anxiety (Davis, 1998; 

Dong, et al., 2000).  

Davis and colleagues study (1997) suggested that there are behavioral and 

neuroscientific data distinguishing between anxiety and fear. The amygdala has a critical 

role in the acquisition and expression of CR, but the BNST appears to have a role in 

aversive emotional states, similar to anxiety. The researchers suggested that the CeA and 

BLA are essential in the acquisition and expression of fear to CSs associated with a 

footshock, US, whereas, an intact BNST is not critical for freezing, the fear expression. 

The BNST is necessary, however, for unconditional enhancement of the startle reflex in 

rats through central administration of corticotrophin-releasing hormone and extended 

exposure to bright lights, whereas the central nucleus of the amygdala is not necessary. 

Davis and colleagues suggested that the latter manipulations initiate anxiety rather than 

fear. Sullivan and colleagues (2004) have found that a disruption of freezing to 

contextual cues but not a CS when rats were tested following lesions of the BNST. 

These findings argue that the BNST does not play a role in aversive states that are 
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elicited by brief, discrete CSs, but rather by cues that are diffuse and of a long duration – 

the context.  

Collectively, it appears that the BNST activity is selectively involved in the 

expression of fear to conditioned contexts, but not to an auditory CS (Sullivan et al., 

2004; Zimmerman & Maren, 2011). Zimmerman and Maren (2011) demonstrated that 

fear response to CS is intact after lesions or inactivation of the BNST, but the 

manipulation impaired expression of CR to the context. However, lesions of the BNST 

have been shown to attenuate shock-induced reinstatement of fear (Waddell, et al. 2006). 

This finding reveals that the BNST may be able to indirectly modulate response of fear 

relapse to the CS.  

Here, I explored the role of the bed nucleus of the stria terminalis (BNST) in 

modulating two different forms of fear relapse in rats: reinstatement and renewal of fear. 

The research determined whether reversible inactivation of the BNST is capable of 

preventing reinstatement while leaving renewal of fear intact. In doing so, this thesis 

work illuminated a functional dichotomy in the role of the BNST in these different forms 

of relapse, which may serve to enhance selective brain treatments for anxiety disorders. 
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CHAPTER II  

RENEWAL 

 

 

This chapter consisted of Experiment 1 using the renewal paradigm. 

II.1 Introduction 

The aim of Experiment 1 was to examine role of the BNST in renewal of 

extinguished fear, using either muscimol or NBQX, as a pharmacological inactivation 

tool. A 2 × 2 factorial design was used with four groups: DRUG-Diff, DRUG-Same, 

VEH-Diff, and VEH-Same (see below). Corcoran and Maren (2001) used the same 

experimental design with a HIPP manipulation. They found that muscimol-induced 

inactivation of a dorsal hippocampus (DH) disrupts the contextual retrieval of extinction 

memory in the ABC design (see below). Because the BNST is innervated by the HIPP, it 

may participate in hippocampal-dependent renewal. Findings in the work of reversible 

inactivation as well as neurotoxic lesions of the BNST disrupt the expression of 

contextual but not cued fear (LeDoux, et al., 1988; Sullivan, et al., 2004; Walker & 

Davis, 1997). However, recent studies report that the BNST is functionally 

heterogeneous (Kim, et al., 2013), suggesting that neural activity within the BNST may 

not be necessary for generating learned fear, but it exerts a tonic inhibitory influence on 

fear output networks. Thus, the hypothesis for Experiment 1 is that reversible 

inactivation of the BNST in a familiar but different context from extinction context will 

not block fear renewal given that context fear is not required for renewal.  
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II.2 Methods 

II.2.1 Subjects 

All 35 subjects were adult (60-90 days of age) male Long-Evans (Blue Spruce) 

rats from Harlan Laboratories (Houston, TX, USA). Rats were individually housed in 

clear plastic cages on a rotating rack (Animal Care Systems, Inc.) Group assignments for 

behavioral procedures were randomized for cage position on the rack. Each rat was 

handled for 1 min per day for at least 5 days prior to the start of surgery. In addition, rats 

were habituated to the infusion procedures in the infusion room prior to behavioral 

procedures. Rats were maintained on a 14 h light/dark cycle (lights come on at 7:00 

AM). At the time of surgery, rats weighted between 200 and 250 g. All handling, 

surgeries, and behavioral procedures were conducted during the light phase of the 

light/dark cycle. The procedures were approved by the Institutional Animal Care and 

Use Committee at the Texas A&M University.  

II.2.2 Surgery 

After a period of handling, rats underwent intracranial stereotaxic surgery to 

implant 23 gauge guide cannulae bilaterally into the BNST. Prior to surgery, rats were 

anesthetized with intraperitoneal (i.p.) injections of ketamine (100 mg/kg) and muscle 

relaxant xylazine (10 mg/kg), and they were also injected i.p. with atropine methyl 

nitrate (0.02 mg/kg). Eye lubricant was applied for each rat. The area of incision above 

the skull was shaved with a hair trimmer. Rats were placed in a stereotaxic frame (Kopf 

Instruments), and blunt ear-bars were maintained to fix a head position. Povidone-iodine 

pad was applied prior to injection of 0.5 mL of lidocaine in the tissue above the skull as 
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a local anesthetic. A small incision was made with a scalpel. The skull was leveled with 

bregma and λ on an even horizontal plane to achieve a flat position. A hand drill was 

used to make five small holes. Two holes were drilled for steel guide cannulae, and three 

holes were drilled for stainless steel screws. Rats were implanted bilaterally with 23-

gauge steel guide cannulae (Small Parts, Inc.) The cannulae were slowly lowered into 

the BNST over a minute. The stereotaxic coordinates for the BNST, in mm from bregma 

and dura, were: AP: 0 mm; ML: ±2.7 mm; DV: -6.9 mm. Also, the cannulae were angled 

at 10°. Three 3.175 mm stainless steel screws were embedded in the skull in order to 

help secure the guide cannulae in place once cemented with dental cement. Dental 

cement (methyl methacrylate liquid and powder compound) was applied on top of the 

skull to secure the cannulae and screws. A dummy cannula, or stainless steel obturators 

(30 gauge, 9 mm; Small Parts, Inc.), was kept in each guide cannula at all times, except 

during infusions. The dummy cannulae were changed every two days prior to the start of 

behavioral procedures. Immediately after surgery, rats were given a single bacon- 

flavored Rimadyl tablet (2 mg/tablet; Bio-Serv). Rats were allowed at least seven days to 

recover from surgery prior to the start of behavioral procedures.  

II.2.3 Behavioral Apparatus 

For all experiments, behavioral training and testing were conducted in either one 

of two rooms in the laboratory: Room 1 (smaller size) or Room 2 (larger size). Eight 

identical experimental chambers (30 cm [width] × 24 cm [length] × 21 cm [height]; Med 

Associates, Inc.) were placed in each room. Inside the behavioral chambers, including 

ceiling, rear wall, and hinged front door, were constructed with Plexiglas. Side walls 
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were constructed with aluminum. The bottom of each chamber, or grid floor, was built 

of nineteen stainless steel rods that are 4 mm in diameter, spaced 15 mm apart. The grid 

floor was connected to a constant-current generator, or a shock source, in order to 

deliver the US (Med Associates, Inc.). Beneath the rods, an aluminum pan was placed in 

each chamber to collect animal waste and hold context odor (see below). Each chamber 

is equipped with a speaker to provide the CS, 15-W house bulb for contextual lighting, 

and a small fan to provide background noise (~70 dB).  

Each chamber rests upon a load-cell platform, which responds to the animal’s 

movement on the grid floor. Load-cell activity values (ranging from -10 V to +10 V) are 

sent to and digitized by Threshold Activity Software (Med Associates, Inc.) on a remote 

computer.  Threshold Activity Software converts load-cell activity into absolute values 

and multiplies the numbers by ten to generate a range of activity from 0 to 100 in every 

200 msec. The higher values indicate greater in the animal’s movement. Rats are 

considered to be freezing when the absolute values of load-cell activity are ≤10 for 2 sec 

or more. Each chamber was enclosed in wooden cabinets (59 cm [width] × 83 cm 

[height] × 59 cm [height]). The chambers were wiped down and cleaned with assigned 

context odor between squads. 

Experimental contexts were designed to be distinct from one another by use of 

different odors and visual cues. Testing chamber assignments were randomized for 

group assignments. When the same context was used, rats were returned to the same 

testing chamber. For Experiment 1, Context A was used for conditioning procedure. 

Context A was assigned in Room 1 and consisted of acetic acid odor (~50 mL of 1.5% 
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acetic acid solution) which is poured in the pans beneath the grid floor, with the lights of 

the chambers turned off, and white lights of Room 1 was on. The cupboard doors of the 

chambers were left open throughout the behavior procedure conducted in Context A. 

When Context A was in use for behavioral procedure, rats were transported in white 

transport containers from the vivarium and to the laboratory, using a cart.  

Context B and Context C (as per group assignment) were used for extinction and 

renewal testing procedure. Context B was assigned in Room 2 and consisted of 

ammonium hydroxide odor (~50 mL of 1% ammonium hydroxide solution) which is 

poured in pans beneath the grid floor, with the lights of the chambers turned on, and red 

lights of Room 2 was on. The cupboard doors of the chambers were closed throughout 

the behavior procedure conducted in Context B. When Context B was in use for 

behavioral procedure, rats were transported in black plastic containers from the vivarium 

and to the laboratory. Context C was assigned in Room 1 and consisted of ethanol odor 

(~50 mL of 70% ethanol solution) which is poured in pans beneath the grid floor, with 

the lights of the chambers turned on, and red lights of Room 1 was on. Additionally, a 

thin, black plastic sheet was placed on the grid floor to add uniqueness to Context C. The 

cupboard doors of the chambers were closed throughout the behavior procedure 

conducted in Context C. When Context C was in use for behavioral procedure, rats were 

transported in black plastic containers from the vivarium and to the laboratory, using a 

cart. 

The experimenters were not present in the rooms at the time of behavioral 

procedures, and rats’ behavior was recorded remotely. 
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II.2.4 Behavioral Procedures 

Table 1 is an overview of the protocol that is designed for behavioral paradigm 

used for Experiment 1. 

 
 
 

 
Table 1. Experimental design for Experiment 1. The behavioral procedures begin from 
left to right of Table 1. Each phase is separated by 24-hours. However, to note, infusion 
phase occurred 10-minute prior to renewal testing. (A, B & C = experiment context; T = 
tone, CS; + = US presentation; − = US absence.) 
 
 
 
II.2.4.1 Group Assignment 

Experiment 1 consisted of 2 × 2 design with variables of drug infusion and 

renewal testing context. Rats were randomly assigned to an infusion group (DRUG or 

VEH) and a renewal testing context group (Diff or Same). The rats in Same group 

received renewal testing in the context where they received extinction procedure. On the 

other hand, the rats in Diff group received renewal testing in the context where they 

received exposure procedure. A total of 76 rats underwent the surgeries and behavioral 

procedures. Of those, 41 rats were excluded from the results based on their cannulae 

placements. As seen in Table 2, following four groups of subjects were formed in order 

to carry out Experiment 1: DRUG-Diff, n = 11; DRUG-Same, n = 6; VEH-Diff, n = 8; 
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VEH-Same, n = 10. For Experiment 1, rats assigned to DRUG group received 0.3 µL of 

1.0 µg/µL muscimol or 0.3 µL of 10.0 μg/μL 2,3-dihydroxy-6-nitro-7-sulfamoyl-

benzo[f]quinoxaline-2,3-dione (NBQX) per hemisphere 10 min prior to renewal testing 

procedure.  

Muscimol is a potent, selective agonist for GABAA receptors. NBQX is a potent 

AMPA and kainite receptor antagonist. Of the seventeen rats assigned for DRUG, eleven 

were infused with NBQX, and six were infused with muscimol. Rats assigned to VEH 

group received 0.3 µL of physiological saline which is also referred to vehicle. For first 

three cohorts of Experiment 1 (each cohort is consisted of 16 rats), muscimol was used 

to infuse DRUG group. For following two cohorts of Experiment 1, NBQX was used to 

infuse DRUG group. The reason for using two different types of pharmacological 

inactivation tool was that muscimol may have affected locomotor activity of rats in 

DRUG group. In order to rule out that freezing behavior is not due to lack of locomotor 

activity that is induced by muscimol, NBQX was chosen to be infused. Thus, rats in 

DRUG group were either infused with muscimol or NBQX.  

 
 
 

 
Table 2. Group assignment for Experiment 1 
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Table 3 represents number of subjects in each group based on drug type and 

context design for behavioral procedures.  

 
 
 

 
Table 3. Number of subjects in each group for Experiment 1. 
 
 
 
II.2.4.2 Conditioning 

On Day 1 of behavioral procedure, animals were fear conditioned to an auditory 

tone, with group assignments counterbalanced by behavioral squad. Each squad was 

consisted of maximum of eight rats and can be trained at the same time. After three 

minutes of habituation to the chamber, all rats received five CS-US pairings (CS = 80 

dB, 10 sec, 2 kHz, auditory tone; US = 1.0 mA, 2.0 sec, footshock) pairings in Context 

A. Following the final, fifth CS-US pairing, rats were left in the chamber for one minute 

before being returned to their home cages.  
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II.2.4.3 Extinction 

On Day 2, when is twenty-four hours after Day 1, all rats were extinguished 

either in Context B or Context C. The assignment for extinction context was 

counterbalance by group. In Experiment 1, a single day of extinction procedure was 

conducted. Prior to extinction, rats that receive extinction in Context B were exposed to 

Context C for equal amount of duration, and rats that receive extinction in Context C 

were exposed to Context B as well. The reason behind giving Exposure phase was to 

minimize the effect of potential problems for generating fear to the novel context when 

renewal testing procedure is conducted. Extinction consisted of forty-five CS alone 

trials, with each trial separated by 30 sec intervals. Rats were given with three minutes 

for habituation to the extinction context prior to the start of CS alone trials. After final, 

forty-fifth presentation of the CS, rats were left in the chamber for three minutes before 

being returned to home cages.  

II.2.4.4 Renewal Testing 

On Day 3, renewal testing was conducted. Based on group assignment, rats were 

infused with either drug (muscimol or NBQX) or vehicle 10 min prior to renewal testing 

procedure. Infusion phase took a place in a separate room from behavioral testing. Rats 

were infused with drug or vehicle at a rate of 0.3 μL/min for a total volume of 0.3 μL per 

hemisphere. For the infusion procedure, experimenters utilized an infusion syringe pump 

(KD Scientific, Inc.) to draw up either drug or vehicle into stainless steel injection 

needles (30 gauge, 9.0 mm; Small Parts, Inc.) immediately prior to infusion. The 

injection needles were attached to polyethylene tubing (PE-20; Braintree Scientific, 
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Inc.); the tubing was inserted over gastight 10 μL syringes (Hamilton, Co.) that were 

resting on the infusion pump. Experimenters gently removed the dummy cannulae from 

the guide cannulae on the rats, and the stainless steel injection needles were inserted into 

the guide cannulae. Following the infusion of drug or vehicle, the injection needles 

remained in the guide cannulae for one minute for diffusion before being removed and 

clean dummy cannulae inserted. Tubing and injection needles were flushed with water 

between each infusion cohort and cleaned with ethanol after the entire set of infusions. 

Following infusion phase, rats underwent renewal testing procedure. All subjects 

were tested to the five CS alone trials either in the context which was used for extinction 

to the CS for the SAME group or in the context which was used for exposure phase for 

the DIFF group to induce renewal to the extinguished CS. In detail, rats that received 

extinction in Context B were tested for renewal in the same Context B if they were 

assigned to SAME. On the other hand, rats that received extinction Context C were 

tested for renewal in familiar but different Context B. Thus, there were two types of 

behavioral procedure design for each group; DIFF group underwent either ABC or ACB 

design, and SAME group underwent either ABB or ACC design. Rats were given a 

three-minute baseline prior to the start of CS alone trials during the renewal testing. The 

intertrial intervals were 30 sec. After final, fifth presentation of the CS, rats were left in 

the chamber for three minutes before being returned to home cages.  

II.2.5 Data Analysis 

Freezing behavior served as the index of fear and the dependent variable in the 

statistical analyses. Rats were considered to be freezing if immobile (i.e., values of ≤10 
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in Threshold Activity Software; refer to Behavioral Apparatus) for ≥2 sec. The number 

and type of testing trials used for the analyses for each day of training is described under 

Behavioral Procedures. Analysis of variance (ANOVA) and post-hoc analyses (Fisher’s 

Protected LSD) identified significant p-values (set at <0.05) when critical F ratios were 

revealed in the data set (statistical software StatView 5.0, SAS Institute, NC, USA). All 

data are represented as means ±SEMs. Effect size was calculated by partial eta squared 

(ηp
2) for ANOVA results (SPSS 20.0, IBM Corporation). Only rats with injection sites 

localized within the BNST (in both hemispheres) are included as part of the data 

analyses of this thesis document. 

II.2.5.1 Conditioning 

Freezing (%) for conditioning to the CS was analyzed across six trials: one trial 

accounted for baseline activity within the three-minute period of habituation, five more 

trials were generated for freezing (%) during each minute following the CS-US pairings. 

II.2.5.2 Extinction 

Freezing (%) for extinction was analyzed across eleven trials: one trial for 

baseline activity within the three-minute period of habituation, nine more trials 

accounted for mean levels of freezing (%) across blocks of five post-CS intervals; a final 

trial accounted for mean levels of freezing (%) during the final two minutes of rats in the 

extinction chamber. 

II.2.5.3 Renewal Testing 

Freezing (%) for renewal testing data was analyzed along seven trials: a single 

trial accounted for freezing (%) during the three-minute baseline, five more trials were 
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generated for freezing (%) during the 30 sec following each of the post-CS intervals, and 

a final trial accounted for freezing (%) in the 150 sec following the final post-CS 

interval. In addition to the post-CS intervals, freezing (%) during each 10-sec tone was 

calculated and analyzed separately (five tone trials in total). 

II.3 Results 

II.3.1 Histology 

Following the conclusion of behavioral procedures, all rats were overdosed on 

pentobarbital and transcardial perfusions were performed with physiological saline and 

10% formalin solution. Brains were dissected from the skull and placed in 10% formalin 

for 24 hrs at 4° C. After, brains were placed in a solution of 10% formalin and 30% 

sucrose for at least 3 days before sectioning. Coronal sections (40 µm) were collected on 

a cryostat (Leica Microsystems) at –20°C and mounted onto subbed slides. Sliced tissue 

was stained with 0.25% thionin to identify cannula tracts in the tissue and to localize 

injection sites. Refer to Figure 1 for an example of cannulae tracts localized within the 

BNST. 

 
 
 

 
Figure 1. Representative photomicrograph of a thionin-stained coronal section. The 
coronal section (40 µm) of the tissue is from the brain of a rat with cannulae placements 
in the BNST. 
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Figure 2A represents histological placements from Experiment 1. Of all subjects, 

35 rats were included in the data analysis based on their correct cannulae placements. 

 
 
 

 
Figure 2. Illustration of guide cannulae placements in the BNST (split by Experiment 1 
and 2). For Experiment 1 (A), placements are representative of all rats included in the 
final analyses in renewal paradigm. For Experiment 2 (B), placements are representative 
of all rats included in the final analyses in reinstatement paradigm. Adapted from 
Swanson (1992). Distances shown are relative to bregma. 
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Figure 3. Conditioned freezing behavior in rats throughout the behavioral procedures. (A) Data from each 
phase in Experiment 1 with renewal paradigm are represented. Conditioning graph depicts the mean 
±SEM percentage of freezing during fear conditioning, which consisted of a 3-min baseline (BL) period 
followed by five tone–shock pairings. Freezing was averaged across the pre-CS BL as well as during each 
of the five 1-min post-CS−US intervals. Extinction graph is consisted of mean ±SEM percentage of 
freezing during the 45 tone-alone extinction session. Freezing was averaged across the BL period as well 
as during each of 45 30-sec post-CS intervals. Data in extinction phase were binned into 9 blocks of 5-trial 
averages. Lastly, freezing was measured during a 150-sec post-trial phase (P). Testing graph is consisted 
of mean ±SEM percentage of freezing during the renewal testing session which involves five CS-alone 
trials with 30-sec intervals. Freezing was measured during the BL period, during the five 30-sec post-CS 
intervals, and during the P. Data are shown for rats that were tested outside the extinction context after 
Drug infusion (DIFF/DRUG; red circles), tested outside the extinction context after Vehicle infusion 
(DIFF/VEH; blue circles), tested within the extinction context after Drug infusion (SAME/DRUG; red 
squares), or tested within the extinction context after Vehicle infusion (SAME/VEH; blue squares).  
(B) Data from each phase in Experiment 2 with reinstatement paradigm are represented. Conditioning 
graph is consisted of mean ±SEM percentage of freezing during fear conditioning. Freezing was measured 
the 3- min BL period and during each of five 1-min post-CS−US intervals. Extinction graph in Experiment 
2 represents data from the Day 3, which is the second day of extinction session. Extinction graph is 
consisted of mean ±SEM percentage of freezing during the 45 tone-alone extinction session. Freezing was 
averaged across the BL period as well as during each of 45 30-sec post-CS intervals. Data in extinction 
phase were binned into 9 blocks of 5-trial averages. Lastly, freezing was measured during the P. Testing 
graph is consisted of mean ±SEM percentage of freezing during the renewal testing session which 
involves 10-min BL followed by five CS-alone trials with 30-sec intervals. Freezing was measured during 
the BL, five 30-sec post-CS intervals, and the P of a 150-sec post-trial interval. Data are shown for rats 
that were infused with Drug (DRUG; red circles) or were infused with Vehicle (VEH; blue circles). 
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II.3.2 Data Report 

On Day 1 of Experiment 1, all rats acquired the CS-US associations robustly 

(Figure 3A). There was a significant main effect of trial as rats increased in freezing 

level over the course of CS-US pairings, F(5,155) = 31.193, p < 0.0001, ηp
2 = 0.502. No 

significant difference was observed between the groups for renewal testing context; In 

other words, freezing levels during conditioning were not significantly different between 

Diff and Same groups, F(1,155) = 0.293, n.s.. Also, freezing levels did not differ based on 

group assignments for infusion, F(1,155) = 0.193, n.s.. Fear to the CS is shown in Figure 

3A for extinction phase. All rats showed a significant reduction in their freezing level 

across trials. There was a main effect of trial, F(10,310) = 50.607, p < 0.0001, ηp
2 = 0.62. 

As expected, there was no main effect of context assignment, F(1,310) = 0.449, n.s.. Also, 

there was no difference between Drug and Veh groups, F(1,310) = 0.083, n.s..  

 Immediately prior to renewal testing, rats were infused either with drug or 

vehicle. Responses during renewal testing procedure is depicted in Figure 3A. The 

results revealed that, as predicted, pharmacological inactivation of the BNST was not 

sufficient to block renewal of extinguished fear. Specifically, there was a significant 

difference between group assignments based on renewal testing context. Rats that were 

in Diff group had significantly higher level of fear than rats that were in Same group 

overall across trials, F(1,186) = 12.843, p = 0.0011, ηp
2 = 0.327. However, there was no 

significant interaction between infusion and renewal testing context, F(1,186) = 0.080, n.s., 

indicating that infusion of drug to the BNST did not significantly affect the expression of 

fear renewal. There was a significant interaction between trial and renewal testing 
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context, F(6,186) = 2.647, p = 0.0173, ηp
2 = 0.079, indicating that the higher fear response 

of rats in the renewal condition was specific to the post-CS intervals. For all groups, 

baseline of context fear was low. Although Drug groups exhibited a trend of less fear 

overall compared to Veh groups, there was no main effect of infusion assignment, F(1,186) 

= 1.669, n.s.. Moreover, there was no significant difference between rats that were 

infused with muscimol and rats that were infused with NBQX across all renewal testing 

trials, F(1,90) = 0.035, n.s.. For renewal testing context assignments, there was no main 

effect, F(1, 90) = 0.058, n.s.. Taken together, the results from Experiment 1 show that 

reversible pharmacological inactivation of the BNST does not block renewal of 

extinguished fear.  

II.4 Discussion 

The results of Experiment 1 revealed that when the testing context is different 

from the extinction context but is not directly associated with the US, footshock, the 

BNST inactivation did not prevent fear renewal. The hypothesis was supported by the 

current results. Previous research has indicated that the lesions of the BNST did not 

attenuate tone fear (Sullivan, et al., 2004) and has found that there is no role for the 

BNST in fear responses to an over trained CS (Zimmerman & Maren, 2011). These 

results are in agreement that the BSNT does not appear to interact with cued fear, 

directly. However, it is interesting to note that current results from this thesis work and 

work by others (Waddell, et al., 2006) suggest that BNST manipulations are capable of 

mediating relapse to an extinguished CS, at least indirectly. Data from Experiment 1 
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suggest that the BNST has a role in modulating the expression of fear to the CS when the 

context holds no history of US presentation. 
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CHAPTER III 

REINSTATEMENT 

 

 

This chapter consisted of Experiment 2 using the reinstatement paradigm. 

III.1 Introduction 

 The aim of Experiment 2 was to examine role of the BNST in reinstatement of 

extinguished fear. A between-subjects design was used with two groups: DRUG and 

VEH (see below).  

As it was discussed above, when CS-US pairings are followed by repeated 

presentations of CS-alone, then the animal will exhibit a reduction in CR. However, this 

can be reversed when the US is presented alone between extinction and testing, which is 

called reinstatement. As renewal, reinstatement of the CR depends heavily on contextual 

learning (Bouton & Bolles, 1979). In the human literature, amnesic patients fail to show 

reinstatement extinguished fear after presentations of the aversive US alone outside the 

conditioning context despite being able to acquire the original fear association. This 

suggests that hippocampal damage produces deficits in context encoding or 

conditioning, which is consistent with findings from many animal studies (Maren, et al., 

2013).  

Given the important role of context associations in the reinstatement paradigm 

and that the BNST is both innervated by the HIPP and the AMYG and plays a role in 

contextual fear, the hypothesis for Experiment 2 is that inactivation of the BNST with 
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muscimol will reduce contextual fear preceding presentations of the extinguished CS in 

a conditioning context; thus, BNST inactivation would block reinstatement of 

extinguished fear.  

III.2 Methods 

III.2.1 Subjects 

The subjects were 17 experimentally naïve, adult, male Long-Evans (Blue 

Spruce) rats from the same source and maintained under the same conditions as 

Experiment 1.  

III.2.2 Surgery 

Rats underwent the same surgery procedure as Experiment 1. After surgery, rats 

were allowed at least seven days to recover from surgery prior to the start of behavioral 

procedures. A dummy cannula, or stainless steel obturators (30 gauge, 9 mm; Small 

Parts, Inc.), was kept in each guide cannula at all times, except during infusions. The 

dummy cannulae were changed every two days prior to the start of behavioral 

procedures. 

III.2.3 Behavioral Apparatus 

The apparatus and stimuli used were the same as that used in Experiment I. 

However, for Experiment 2, Context A and Context B were used as experimental 

contexts. In reinstatement paradigm, Context A was used for conditioning and extinction 

procedures. Context B was used for reinstating shock phase and testing phase for 

reinstatement. Both Context A and Context B consisted of same elements and 

uniqueness as described in Experiment 1.  

31 

 



 

III.2.4 Behavioral Procedures 

Table 4 is an overview of the protocol that is designed for behavioral paradigm 

used for Experiment 2.  

 
 
 

 
Table 4. Experimental design for Experiment 2. The behavioral procedures begin from 
left to right of Table 2. Each phase is separated by 24-hours. However, to note, infusion 
phase occurred 10-minute prior to reinstatement testing. (A & B = experiment context; T 
= tone, CS; + = US presentation; − = US absence.) 
 
 
 
III.2.4.1 Group Assignment 

For Experiment 2, rats were randomly assigned to two different infusion groups 

prior to the start of behavioral procedures. After undergoing cannulae surgery, rats were 

either assigned to DRUG group or VEH group: DRUG, n = 7; VEH, n = 10. A total of 

32 rats underwent the surgeries and behavioral procedures. Of those, 15 rats were 

excluded from the results based on their cannulae placements.  

As seen in Table 5, following two groups of subjects were formed. Rats assigned 

to DRUG group were infused with 0.3 μL of 1.0 μg/μL muscimol, a selective GABAA 

receptor agonist, into the BNST per hemisphere immediately prior to testing, whereas 

‘VEH’ rats were infused with 0.3 μL of physiological saline per hemisphere. Because 

there was no effect of locomotor activity by muscimol, NBQX was not used in Exp. 2. 
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Table 5. Number of subjects in each group for Experiment 2. 

 
 
 
 
III.2.4.2 Conditioning 

On Day 1 of behavioral procedure, animals were conditioned via five CS-US 

pairings as described in Experiment 1.  

III.2.4.3 Extinction 

Twenty-four hours later, and over the course of two days, all rats underwent 

extinction to the CS. Rats were given two consecutive days of extinction to avoid ceiling 

effects at the time of reinstatement testing. For each day of extinction, rats were placed 

back in the conditioning context (Context A), with three minutes of acclimation to the 

testing chamber before the first CS presentation. Forty-five CS presentations were 

administered per day of extinction, separated by 30 sec intertrial intervals. Following the 

final CS presentation, rats remained in the testing chamber for three minutes. 

III.2.4.4 Reinstating Shock 

On Day 4, when is twenty-four hours after the final day of extinction, rats were 

placed in Context B for three minutes. After three minutes in the chamber, all rats 

experienced a weak unsignaled footshock (1 sec, 0.4 mA). 
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III.2.4.5 Reinstatement Testing 

On Day 5, reinstatement testing was conducted. Based on group assignment, rats 

were infused with either drug or vehicle 10 min prior to reinstatement testing procedure. 

Infusion phase took a place in the same room as described in Experiment 1. The 

experimenters followed the same infusion protocol as explained in Experiment 1. Rats 

were infused with drug or vehicle at a rate of 0.3 μL/min for a total volume of 0.3 μL per 

hemisphere.  

Following infusion phase, rats underwent reinstatement testing procedure. Rats 

were placed in Context B for ten minutes prior to the start of the first of five CS alone 

trials; The ten-minute baseline is given to ensure that reinstatement would not be masked 

by high levels of context fear preceding CS onset. CS presentations were separated by 30 

sec intervals, and rats remained in the testing chambers for three minutes following the 

final CS presentation. 

III.2.5 Data Analysis 

Data analysis was performed as same as described in Experiment 1.  

III.2.5.1 Conditioning 

Freezing (%) was analyzed along the same number and type of trials as described 

for Experiment 1. 

III.2.5.2 Extinction 

Freezing (%) for extinction training in Experiment 2 was analyzed per day along 

the same number and type of trials as for a single day of extinction as described for 

Experiment 1. 
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III.2.5.3 Reinstating Shock  

The level of fear was analyzed across two trials for Day 4. First trial was 

generated for baseline freezing (%) in Context B prior to footshock, and a second trial 

was generated for freezing (%) during a minute following footshock. 

III.2.5.4 Reinstatement Testing  

Freezing (%) for reinstatement testing was analyzed along the same number and 

type of trials as for Experiment 1. But the baseline trial in Experiment 2 refers to 

freezing (%) during ten minutes of exposure prior to CS onset. 

III.3 Results 

III.3.1 Histology 

Figure 1 shows the representative histology with cannulae tracts localized in the 

BNST. 

III.3.2 Data Report 

Figure 2B represents histological placements from Experiment 2. On Day 1 of 

behavioral procedures, rats exhibited normal and robust conditioning to the auditory CS 

(Figure 3B), without significant differences between rats assigned to drug or vehicle. 

There was a significant main effect of trial as rats increased in freezing level over the 

course of CS-US pairings, F(5,75) = 9.060, p < 0.0001, ηp
2 = 0.377. As expected, no 

significant difference was observed between the groups for infusion; In other words, 

freezing levels during conditioning were not significantly different between DRUG and 

VEH groups, F(1,75) = 0.096, n.s.. Additionally, there was no trial × infusion group 

interaction effect for conditioning phase, F(5,75) = 1.623, n.s..  
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Over the course of Day 2 and Day 3, all rats received extinction in Context A. 

Figure 3B shows freezing level of rats on Day 3. Extinction was robust for each day. 

Specifically, on Day2, there was a main effect of extinction trial as there was a reduction 

in freezing level of rats to multiple presentations of the CS, F(10,150) = 10.613, p < 

0.0001, ηp
2 = 0.414. No difference was detected between the two infusion groups, F(1,150) 

= 0.079, n.s.. There was no trial × infusion group interaction effect for extinction phase, 

F(10,150) = 0.265, n.s.. Both infusion groups extinguished equally. On Day 3, there also 

was a main effect of extinction trial, F(10,150) = 7.938, p < 0.0001, ηp
2 = 0.346. There was 

neither a main effect of infusion group [F(1,150) = 0.083, n.s.] nor a trial × infusion group 

interaction [F(10,150) = 0.630, n.s.]. Taken together, extinction in Experiment 2 was 

normal.  

On Day 4, when all rats received reinstating shock, rats experienced a weak 

reinstating footshock in a novel context, or Context B. A main effect of trial was 

detected [F(1,15) = 49.531, p < 0.0001, ηp
2 = 0.768] as rats increased in freezing level 

following the reinstating footshock. This fear response did not differ based on infusion 

assignment, indicating that there was no main effect of infusion group assignment, F(1,15) 

= 0.644, n.s.. Also, there was no trial × infusion interaction [F(1,15) = 2.061, n.s.] for Day 

4. 

On Day 5, rats were tested to the CS in Context B. Results indicate that BNST 

inactivation effectively blocked reinstatement of fear to the extinguished CS (see Figure 

3B). Specifically, there was a main effect of infusion across all testing trials [F(1,90) = 

12.668, p = 0.0029, ηp
2 = 0.729], and also a significant trial × infusion group interaction 
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[F(6,90) = 3.633, p = 0.0028, ηp
2 = 0.195]. In other words, rats infused with drug into the 

BNST immediately prior to reinstatement testing to the CS showed significantly less fear 

to the CS than rats infused with vehicle. A main effect of trial was detected [F(6,90) = 

4.998, p = 0.0002, ηp
2 = 0.250] as most of the rats increased in freezing level following 

CS onset. A similar pattern was observed for freezing (%) during the tones, such that 

DRUG rats showed significantly less fear response than VEH rats, F(1,60) = 8.508, p = 

0.0106, ηp
2 = 0.585. A data analysis of responses at the baseline trial indicated that there 

is a trend but not significant enough to see a main effect of infusion group, F(1,15) = 

2.298, n.s. DRUG rats exhibited a trend of having less fear prior to CS onset. Taken 

together, the results from Experiment 2 indicate that pharmacological inactivation of the 

BNST can block reinstatement that results from testing the extinguished CS in a shock-

associated context.  

III.4 Discussion 

The results of Experiment 2 support the hypothesis that reversible inactivation of 

the BNST would prevent reinstatement of fear to the CS, even if the testing context is 

different from the context where extinction procedure was conducted. As shown in the 

previous literature, the contextual fear preceding CS onset in the testing context is a 

primary mechanism for reinstatement of fear an extinguished CS. Although there was no 

significant main effect of infusion group at the baseline, DRUG rats showed a trend of 

less fear prior to CS onset compared to VEH group. In Experiment 2, a weaker shock 

(compared to the footshock that was given in conditioning procedure) was presented to 

rats in order to prevent VEH rats to have high responding to the extinguished CS. If rats 
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were given a stronger shock, then there might be a significant different between the two 

infusion groups. In current study, BNST inactivation may be sufficient to block 

reinstatement of fear to the CS in the context where it has a history of unsignaled shock.  
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CHAPTER IV 

CONCLUSIONS 

 

 

The current experiments reveal that when the testing context is directly 

associated with the US (footshock) reversible inactivation of the BNST prevents 

reinstatement of fear to the CS, even if the testing context is different from the extinction 

context (Exp. 2). In contrast, BNST inactivation does not prevent this renewal of fear 

(Exp. 1), when the testing context is different from the context where extinction 

procedures were performed. These two sets of experiments implicate that the BNST in 

various innate anxiety responses, including vigilance in the presence of unconditioned 

threats (Fendt, et al., 2003; Fendt et al., 2005; Kenny, et al., 2004; Somerville, et al., 

2010; Walker & Davis, 1997). The results suggest that the BNST may play a role in 

anxiety-eliciting activity with relation to sustained cues (Davis, et al., 2010; Walker, et 

al., 2009). In contrast, the BNST is not involved in acute conditioned fear responses per 

se (Sullivan, et al., 2004; Treit, et al., 1998; Zimmerman & Maren, 2011). Sullivan and 

colleagues (2004) found that lesions of the BNST did not disrupt normal acquisition of 

conditioned fear to a cue, nor did it impair acquisition or retention of extinction memory. 

Sullivan and colleagues (2004) did not attempt to induce reinstatement or renewal of 

extinguished fear in these animals. However, lesions of the BNST did attenuate 

contextual fear. In rats with BLA lesions, Zimmerman and Maren (2011) found no role 

for the BNST in responding to an over-trained CS. This indicates that even under 
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extreme input of the CS, the BNST does not appear to directly modulate acute fear 

responses to the CS. From this current set of data and previous work by others (Waddell, 

et al., 2006), manipulations to the BNST are able to mediate fear relapse to an 

extinguished CS, indirectly. The BNST may indirectly affect CS responding in 

paradigms of reinstatement by attenuating the context fear preceding CS onset. Indeed, 

others have argued that context fear preceding CS onset in the test context is a primary 

mechanism through which reinstatement manifests to the extinguished cue (Bouton & 

Bolles, 1979; Waddell, et al, 2006; Westbrook, et al., 2002). Although there was no 

significant effect of drug solely at the baseline trial, rats on drug trended towards less 

fear prior to CS onset. In this particular case, rats were presented with a weak reinstating 

shock so that context fear in vehicle rats would not mask an increase in responding to the 

extinguished CS. Therefore, if animals were presented with a stronger shock, or the 

same shock they received on Day 1, baseline of contextual fear might differ significantly 

between drug and vehicle groups.  

In the case of renewal, inactivation of the HIPP, prefrontal cortex (PFC), or 

AMYG is known to disrupt renewal of fear (Corcoran & Maren, 2004; Ji & Maren, 

2005; Ji & Maren, 2007; Maren, 2014; Orsini, et al., 2011; Orsini, et al., 2013). 

Interestingly, the BNST receives input from these brain regions. However, the current 

results indicate that the BNST does not play a role in the renewal of extinguished fear. 

The HIPP, PFC, and AMYG are all highly interconnected, suggesting that during the 

renewal testing, these regions act uniquely to facilitate the relapse of responding 

(Knapska & Maren, 2009; Orsini, et al., 2011; Orsini, et al., 2013). 
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In addition to the experience of reinstating shock, rats in Exp. 2 were tested to the 

CS outside of its extinction context. This experiment was designed and conducted in 

order to build on the work of Waddell and colleagues (2006), which showed that BNST 

lesions prevented reinstatement of fear in the extinction context once the extinction 

context had been conditioned with shock. Specifically, in Exp. 2 of this report, rats were 

conditioned in Context A, extinguished in Context A, and tested to the CS in Context B 

(i.e., “AAB” design) following the reinstating shock in Context B. In Exp. 1, rats were 

conditioned in Context A, extinguished in Context B or C, and tested to the CS in either 

the same or different context as used for extinction (i.e., “ABC” or “ACB” renewal). Is 

Exp. 2 confounded by renewal? Indeed, others have shown renewal effects with “AAB 

design” (Maren, 2014). However, renewal appears to be more robust in ABC (or ACB) 

designs when compared to “AAB design” (Maren, 2014).  

In the current study, the BNST inactivation may have been sufficient to attenuate 

relapse in Exp. 2 because unsignaled shock was the most salient and latest threat to the 

animals. The inefficacy of the BNST inactivation in curbing renewal in Exp. 1 suggests 

that if renewal were a major factor in Exp. 2, there would not be such a robust effect of 

drug between two groups. Thus, while not tested in these experiment, this present work 

suggests that, in the absence of a reinstating shock, BNST inactivation does not attenuate 

“AAB” renewal. Additionally, although there was no control of “no-shock” group in 

Exp.2, the data from Exp. 1 indicates that the animals are capable of freezing with 

muscimol (or NBQX) in the BNST. In other words, under infusion of drug into the 

BNST, freezing behavior does not appear to be due to sedative effect from muscimol (or 
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NBQX). The drug effects are likely specific to the role of the BNST in reinstatement. 

Likewise, the levels of fear of vehicle rats in Experiment 2 are on par with the levels of 

relapse observed in Experiment 1. 

Although the drug effect was not significant in Exp. 1, rats on muscimol or 

NBQX showed a tendency to freeze less overall as compared to vehicle rats regardless 

of the renewal condition. This may be related to a non-specific reduction in stress 

responses as a result of the BNST manipulation. In particular, the BNST is known to 

directly modulate stress and autonomic responses via its connections with hypothalamic 

and brain stem structures (Crestani, et al., 2013; Lezak, et al., 2014, Roman, et al., 

2014). Lesions of the BNST are known to disrupt corticosterone signaling in rats 

associated with contextual fear (Sullivan, et al., 2004). In this case, it might be that 

pharmacological inactivation of the BNST may have blunted stress responses overall, 

which may have slightly, but not significant enough, blunted fear responses, independent 

of whether rats were tested in a renewal context or not.  

Regions that neighbor the BNST include the hypothalamus, caudoputamen, 

substantia innominata, and the preoptic area (Canteras, et al., 1995). While it is possible 

that drug may have spread into these neighboring regions at the time of test, the drug 

effects is expected to be limited specifically to the BNST based on previous BNST 

manipulations (e.g., Zimmerman & Maren, 2011). The angle of the cannulae placements 

helped to precisely target the site and avoid non-BNST-specific effects by reducing the 

possibility of leakage of drug into the ventricles. On a similar note, others have reported 

unique behavioral effects based on subregion-specific manipulations of the BNST (Kim, 
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et al., 2013). Kim and colleagues (2013) reported that photostimulation of activity in the 

oval nucleus of the BNST resulted in the manifestation of anxiety-driven behaviors, 

while activity in the anterodorsal region of the BNST resulted in anxiolytic behaviors. In 

line with this evidence, electrophysiological recordings by Haufler and colleagues in 

2013 found unique patterns of activity within the BNST that suggest that certain 

subregions may oppose one another in response to a CS. Additionally, there is evidence 

which indicates that anterior and posterior regions of the BNST may be differentially 

involved in certain behaviors, such as feeding (Kocho-Schellenberg, et al., 2014). These 

effects, in part, may be related to the relative expression of anxiety- and stress-related 

signaling systems within regions of the BNST. Based on the histology in the current 

study, the cannulae placements were located closely within the anterior portion of the 

BNST, though spread of drug likely affected both anterior and posterior regions of the 

BNST. It is interesting to note that afferent and internal projections of the BNST are 

largely GABAergic (Sajdyk, et al., 2008), though the BNST has glutamatergic 

projections as well (Jennings, et al., 2013; Sparta, et al., 2013). Taken together, these 

findings suggest that the net behavioral result of BNST manipulations likely depends 

heavily on the task at hand and which subregions are affected by the manipulation. 

Even though it was not examined here, research indicates that the BNST is 

sexually dimorphic (Allen & Gorski, 1990; Hines, et al., 1992). It is possible that the 

relapse of fear phenomena that depends on the BNST may interact with the sex of the 

animal. Future research work should explore this possibility. In addition to future 

research, substantial research showed the BNST in various reinstatement paradigms of 
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drug-seeking behavior (Buffalari & See, 2011; Erb, et al., 2001; Stamatakis, et al., 

2014). In light of the comorbidity of addiction with anxiety disorders (Conway, et al., 

2006), the BNST may be a critical region for the treatment of complex psychiatric 

disorders that include features of addiction.  

In conclusion, this thesis work suggests that selective manipulations of the BNST 

may be particularly effective in preventing reinstatement of extinguished fear when 

contextual fear is major factor. However, renewal of fear appears to rely on circuits that 

may be independent of the BNST. Future studies may need to examine whether 

subregions of the BNST plays a selective role in these fear relapse phenomena. At large, 

in order to be effective, the future of brain-specific manipulations aimed at reducing 

fear-related anxiety should be particularly mindful of the circumstances that may give 

rise to relapse. 
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