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ABSTRACT 

 

 The primary goal of this research is to develop statistical methods to determine if 

observed real responses are adequately modeled by (possibly stochastic) simulation 

models that incorporate first-order autoregressive measurement errors.  We assume the 

measurement errors are normally distributed to allow development of likelihood-based 

methods of inference.  Simulated true responses are modeled as a simple linear 

regression on the true response values.  That is, we wish to detect if either additive or 

multiplicative biases exist in the simulation model.  Efficient score and likelihood ratio 

tests using observed real process data are developed to test the joint null hypothesis that 

no significant additive or multiplicative biases exist in the stochastic simulation model.  

Tests for adequacy of both stochastic and deterministic simulation models are developed 

using, respectively, structural and functional simple linear measurement error models 

that allow the measurement errors to satisfy normal first-order autoregressive processes.  

 A byproduct of this research is developments of analogous tests of the null 

hypothesis that errors of measurement are independent.  Such tests would be of use if the 

real process is not a times series and there was uncertainty whether the simulation model 

should allow for correlated measurement errors. 

Analytic and simulation results show that all maximum likelihood estimators 

(MLEs) of model parameters MLEs are consistent under the structural model, but some 

MLEs of parameters are inconsistent under functional model.  Test statistics developed 

under the structural model are shown to be asymptotically distributed as chi-squared 
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random variables with two degrees of freedom when testing for additive and 

multiplicative biases in the simulation model having correlated measurement errors.  

Test statistics developed under the structural model are shown to be asymptotically 

distributed as chi-squared random variables with one degree of freedom when testing for  

independence of the measurement errors.  However, for functional models, the 

corresponding test statistics are asymptotically distributed as random variables that are 

two times the chi-squared distributions. Empirical power curves are plotted under 

different parameter configurations.  Behaviors of test statistics and power curves are 

found to be affected by the sample size, signal to noise ratio and strength of correlations 

among measurement errors. 
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1. INTRODUCTION  

 

1.1 Introduction and Motivation 

1.1.1 Introduction 

Regression models are widely used to investigate if, and how, potential predictor (or 

independent) variables might be related to a response (or dependent) variable of interest.  

Standard assumptions for regression models are a) response errors are independently and 

identically distributed as 𝑁(0, 𝜎2) random variables, b) the regression model is correctly 

specified and c) predictor variables have been measured or observed without error. 

However, in practice independent variables may be measured with errors. If predictor 

variables are measured with errors, it is known that the least squares estimators of some 

regression model parameters are inconsistent and inferences based on these estimators 

are invalid (Neyman and Scott, 1948). 

Regression models with measurement errors in independent variables are referred to 

as measurement error models.  This dissertation will develop joint hypothesis test 

statistics under simple linear measurement error models when errors of measurement in 

both the response and the predictor variables follow the same first-order autoregressive 

scheme.  Motivation for consideration of this model and the joint hypotheses of interest 

are given in section 1.1.2. 

Recall that the classic simple linear model with only one explanatory variable is, 

𝑌𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 𝑢𝑡 𝑡 = 1, 2, … , 𝑛  (1.1.1) 



 

2 

 

where 𝑥𝑡 is the predictor variable, 𝑌𝑡 is the response variable, and 𝑢𝑡 is an independent 

identically normally distributed random variable with mean 0 and variance 𝜎𝑢
2 . The 

maximum likelihood estimators for 𝛽0 and 𝛽1 are also the least squares estimators of 

these parameters. These estimators are consistent and, in fact, minimum variance 

unbiased estimators under the standard assumptions. Furthermore, the (uncorrected) 

ANOVA F test statistic for testing the hypothesis 𝐻0: (𝛽0, 𝛽1) = (𝑏0, 𝑏1)  has an F 

distribution with 2 and 𝑛 − 2  numerator and denominator degrees of freedom, 

respectively. 

But it is common that not all the standard assumptions are satisfied, and in particular, 

that  𝑥𝑡 is measured with error. For example, people are interested in predicting heart 

rate using body mass index (BMI). The BMI is determined by height and weight, both of 

which are likely measured with error. Instead of the true value of 𝑥𝑡 , we actually 

observe, 

𝑋𝑡 = 𝑥𝑡 + 𝑒𝑡  𝑡 = 1, 2, … , 𝑛  (1.1.2) 

where 𝑒𝑡 is an error of measurement. In such a case, 𝑥𝑡 is often called a latent (or error-

prone) predictor variable, and the model (1.1.1) and (1.1.2) is known as a simple (linear) 

measurement, or errors-in-variables, model. Simple (and multivariate) linear as well as 

certain types of nonlinear, measurement error models are thoroughly covered in Fuller 

(1987). Thorough coverage of nonlinear measurement error models can be found in 

Carroll, Ruppert, Stefanski and Crainiceanuet (2006). Both the Fuller (1987) and the 

Carroll, et al. (2006) references contain comprehensive reviews of the substantial 

literature that is concerned with measurement error models. 
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Unlike standard regression models, the distinction between random and fixed 𝑥𝑡 

values is crucial in measurement error models. A structural model is said to occur when 

latent predictor variables are considered to be random variables. A functional models is 

said to occur when latent predictor variables are considered to be fixed, in which case 

the 𝑥𝑡 ’s are unknown parameters. Neyman and Scott (1948) showed that under the 

functional model, the maximum likelihood estimators (MLEs) of some parameters are 

inconsistent due to the indefinitely increasing number of parameters that must be 

estimated. 

Although measurement error models have been extensively investigated, little 

attention has been given to testing the joint hypothesis of intercept and slope, 𝐻0: 𝛽0 =

𝑏0,  𝛽1 = 𝑏1 . In the next section, we describe how evaluation of complex stochastic 

simulation models using experimental data can be formulated in terms of this joint 

hypothesis and simple linear measurement error models. Abdul-Salam (1996) apply this 

formulation to cases in which measurement errors are independent of each other and 

both sets of measurement errors are independent, identically distributed normal random 

variables. 

1.1.2 Motivation 

One of the most important methods in the engineering and natural sciences is 

simulation models of real systems. People are interested in evaluating the performance 

of the model which is designed to represent the real system. The method of using 

regression theory to evaluate models arose from applications in the management 

sciences (Cohen and Cyert, 1961; Aigner, 1972). The adequacy of a model is evaluated 
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by regressing of real data on simulation data and failing to reject the null hypothesis of 

zero intercept and unit slope. Usually, problems exist when there are stochastic 

components in the model. 

We construct a stochastic model, for example, to mimic contaminant movement 

through an aquifer and want to evaluate its performance at some different initial 

conditions and/or input values. From the knowledge of experimenters, initial conditions 

including aquifer flow rates and contamination concentrations and/or input values of 

aquifer elevation etc. may have an effect on contaminant flow rates. For every set of 

baseline conditions and/or input values, we have (𝑥𝑡, 𝑦𝑡), 𝑡 = 1,2, … , 𝑛 representing the 

true simulated contaminate flow rates and observations from the real system, 

respectively. The ‘true’ simulated flow rate is obtained by solving the model with means 

of stochastic components. 

The true flow rates (𝑥𝑡, 𝑦𝑡) , 𝑡 = 1,2, … , 𝑛  are unobservable due to random 

components such as the amount of rainfall in the real system and also stochastic 

components in the simulation model. Further, it is likely that contaminate flow rates 

measured over time result in auto-correlated responses.  Therefore, instead of true 

values, we observe: 

𝑍𝑡 ≡ (
𝑋𝑡
𝑌𝑡
) = (

𝑥𝑡
𝑦𝑡
) + (

𝑒𝑡
𝑢𝑡
), 

where 𝑢𝑡  and 𝑒𝑡  are additive random measurement errors and from autoregressive 

processes. 

The bias of the simulation model is assumed to be additive and/or multiplicative, that 

is: 
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𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡. 

Another assumption is that the variability of the simulation model and the real system 

are equal because the randomness of the simulation model can be adjusted with 

sufficient accuracy. That is, 

𝑉𝑎𝑟(𝑢𝑡) = 𝑉𝑎𝑟(𝑒𝑡) = 𝜎
2. 

Similarly, we assume that both measurement errors follow first-order autoregressive 

(AR(1)) processes, and that the correlation is (at least approximately) the same for both 

processes. 

To evaluate the accuracy of the simulation model, the hypothesis test of 𝐻0: 𝛽0 = 0, 

𝛽1 = 1 against 𝐻𝑎: 𝛽0 ≠ 0 and/or 𝛽1 ≠ 1 is performed. The null hypothesis means that 

there is no additive or multiplicative biases exist. And the alternative hypothesis refers to 

an additive and/or a multiplicative bias exists in the simulation model. 

Harrison (1990), Mayer, Stuart and Swain (1994), and Mitchell (1997) discuss the 

inappropriateness of using the F test in an (ordinary) least squares analysis to test 

𝐻0: 𝛽0 = 𝑏0, 𝛽1 = 𝑏1  in the presence of measurement error. We extend the work of 

Abdul-Salam (1996) to cases in which measurement errors follow first-order 

autoregressive processes. This extension of Abdul-Salam (1996) permits a more 

appropriate evaluation of such complex stochastic simulation models for responses that 

may be temporally or spatially correlated. We derive appropriate large-sample statistical 

tests under this extension, and evaluate the performance of these tests in small sample 

settings. 
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We also develop methods for testing whether or not measurement errors follow 

identical first-order autoregressive processes. These methods could be useful in settings 

where it is not certain that the process being modeled has correlated responses. In such 

cases a modeler could test whether a correlated error structure should be incorporated 

into their simulation model. 

1.2 Organization 

The remainder of this dissertation of this dissertation is organized as follows. We 

define the structural and functional simple linear measurement error models that we 

consider, and state the hypothesis of interest in terms of parameters of these models in 

Section 2. Likelihood functions are derived for both models, from which we derive 

maximum likelihood estimators of certain model parameters, likelihood ratio test 

statistics and score test statistics. Section 3 reviews preliminary theoretical results to be 

are used in Section 4. In Section 4, we discuss the consistency of parameter estimators 

and derive asymptotic distributions of the derived test statistics. Simulation studies of 

small sample properties of estimators and test statistics are presented and discussed in 

sections 5. In Section 6, we summarize our conclusions and propose problems for future 

study. 
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2. DERIVATION OF LIKELIHOODS, ESTIMATORS AND TEST STATISTICS 

 

2.1 Model Introduction 

We focus on the linear relationship between the two sets of unobservable values. 

That is, 

𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡 ,                 𝑡 = 1,2, … , 𝑛   (2.1) 

where 𝛽0  and 𝛽1  are unknown parameters need to estimate, and (𝑥𝑡, 𝑦𝑡) ’s are 

unobservable values. We assume that both 𝑦𝑡 and 𝑥𝑡 are unobservable due to additive 

random components in both the real and simulated data. That is, we observe 

  (
𝑋𝑡
𝑌𝑡
) = (

𝑥𝑡
𝑦𝑡
) + (

𝑒𝑡
𝑢𝑡
)  ,                𝑡 = 1,2, … , 𝑛   (2.2) 

where (𝑋𝑡, 𝑌𝑡) are random variables and, 𝑒𝑡 and 𝑢𝑡 are unobservable additive error terms. 

2.1.1 Assumptions 

We develop the likelihood functions under the following assumptions. The first 

scenario leads to the so-called structural simple linear measurement error model and the 

second scenario leads to the so-called functional simple linear measurement error model 

(Kendall, 1951, 1952). For convenience, we simply refer to these models as structural 

and functional models, respectively, in what follows. 

2.1.1.1 Assumptions for the structural model 

In the structural model, we regard both 𝑥𝑡 and 𝑦𝑡’s as random variables. We assume 

that, 𝑥𝑡, 𝑡 = 1,2, … , 𝑛  are distributed as i.i.d. 𝑁(𝜇𝑥, 𝜎𝑥
2)  random variables. The error 

terms, 𝑒𝑡  and 𝑢𝑡 , are mutually-independent of each other and the 𝑥𝑡’s. Both 𝑒𝑡  and 𝑢𝑡 

follow first order autoregressive (AR1) processes, 
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   𝑒𝑡 = 𝜌𝑒𝑡−1 + 𝜐𝑡 ,                𝑡 = 1,2, … , 𝑛   (2.3) 

𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝛿𝑡 ,                𝑡 = 1,2, … , 𝑛   (2.4) 

where (𝜐𝑡, 𝛿𝑡), 𝑡 = ⋯ ,−1,0,1,2, … , 𝑛  are i.i.d. bivariate normally distributed as 

𝑁2(𝟎, 𝜎
2𝑰) random vectors. The same correlation is assumed for both autoregressive 

processes under the null hypothesis that the simulation model is correct. 

2.1.1.2 Assumptions for the functional model 

In the functional model, we assume both 𝑥𝑡 and 𝑦𝑡 are fixed rather than random, and 

they must therefore be regarded as unknown parameters. Additionally we assume that 

{𝑥𝑡, 𝑡 = 1,2, … , 𝑛}  is a sequence of fixed numbers with a sample mean and sample 

variance having some constant limit, say, 

�̅�𝑛 =
1

𝑛
∑ 𝑥𝑡
𝑛
𝑡=1 → 𝜇𝑥       (2.5) 

𝑠𝑛
2 =

1

𝑛−1
∑ (𝑥𝑡 − �̅�𝑛)

2𝑛
𝑡=1 → 𝜎𝑥

2    (2.6) 

The assumption with respect to error terms is the same as in the structural case. 

2.1.2 Tests of hypotheses 

We are interested in two problems. Our primary interest is testing 

𝐻0: (𝛽0, 𝛽1) = (𝑏0, 𝑏1) vs. 𝐻𝑎: (𝛽0, 𝛽1) ≠ (𝑏0, 𝑏1)     (2.7) 

under the scenario described in our motivating example in section 1.2. Of particular 

interest is the case in which (𝑏0, 𝑏1) = (0,1), i.e., that the simulation model an adequate 

representation of the real-system process. However, the more general formulation (2.7) 

also allows for possible construction of large sample joint confidence regions for 

(𝛽0, 𝛽1) in this scenario. 
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In the process of investigating hypothesis (2.7), we develop tests of the hypotheses 

𝐻0: 𝜌 = 0 vs. 𝐻𝑎: 𝜌 ≠ 0        (2.8) 

Such tests may be of value when simulation modelers are not sure that the real-system 

process produces correlated responses, but wish to test if such correlations should be 

incorporated into their model. For both problems, we develop likelihood ratio and score 

tests. Likelihood functions under both the structural and functional cases are developed 

in the next section. 

2.2 Likelihood Functions 

A bivariate normal random variable, 𝑍𝑡 = (𝑍1, 𝑍2)
𝑇 , 𝑡 = 1,2, … , 𝑛, with mean 𝜇 and 

covariance matrix Σ, has likelihood function 

ℒ = (2𝜋)−𝑛|Σ|−
𝑛

2𝑒𝑥𝑝 (−
1

2
∑ (𝑍𝑡 − 𝜇)

𝑇Σ−1(𝑍𝑡 − 𝜇)
𝑛
𝑡=1 )     (2.9) 

Therefore, the log likelihood function is, 

ℓ = 𝑙𝑜𝑔ℒ = −𝑛𝑙𝑜𝑔(2𝜋) −
𝑛

2
𝑙𝑜𝑔|Σ| −

1

2
∑ (𝑍𝑡 − 𝜇)

𝑇Σ−1(𝑍𝑡 − 𝜇)
𝑛
𝑡=1   (2.10) 

This is the general form of the log likelihood function for a bivariate normal random 

variable. The specific forms for each case are developed below. 

2.2.1 Likelihood function for the structural case 

Since the observations are correlated, we first construct a conditional likelihood 

function. From (2.1) – (2.4), we have, 

𝑋𝑡 = 𝜌𝑋𝑡−1 + (𝑥𝑡 − 𝜌𝑥𝑡−1) + 𝜐𝑡 ,    (2.11) 

𝑌𝑡 = 𝜌𝑌𝑡−1 + (1 − 𝜌)𝛽0 + 𝛽1(𝑥𝑡 − 𝜌𝑥𝑡−1) + 𝛿𝑡 ,          𝑡 = 2,3, … , 𝑛 (2.12) 
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According to the assumptions in section 2.1.1.1, 𝑥𝑡, 𝑢𝑡 and 𝑒𝑡 are independent normally 

distributed with mean (𝜇𝑥, 0, 0)
𝑇 and variance, a diagonal matrix 𝑑𝑖𝑎𝑔(𝜎𝑥

2,
𝜎2

1−𝜌2
,
𝜎2

1−𝜌2
). 

Therefore, (𝑥𝑡−1, 𝑋𝑡−1 − 𝑥𝑡−1, 𝑌𝑡−1 − 𝑦𝑡−1)
𝑇 has a multivariate normal distribution with 

the above mean and variance. Furthermore, the random vector (𝑋𝑡−1, 𝑌𝑡−1)
𝑇 is normally 

distributed with mean and variance, respectively 

𝜇𝑑 = (𝜇𝑥 , 𝛽0 + 𝛽1𝜇𝑥)
𝑇 

Σ𝑑 = (
𝜎𝑥
2 +

𝜎2

1−𝜌2
𝛽1𝜎𝑥

2

𝛽1𝜎𝑥
2 𝛽1

2𝜎𝑥
2 +

𝜎2

1−𝜌2

). 

After further derivation shown in Appendix A, we have 

𝑥𝑡−1 |(
𝑋𝑡−1
𝑌𝑡−1

)~𝑁 (
𝐴𝜇𝑥 + 𝜎𝑥

2𝐸𝑡−1
𝐷

,
𝜎𝑥
2𝐴

𝐷
) 

where 𝐴 =
𝜎2

1−𝜌2
, 𝐷 = (1 + 𝛽1

2)𝜎𝑥
2 + 𝐴 , and 𝐸𝑡−1 = 𝑋𝑡−1 + 𝛽1(𝑌𝑡−1 − 𝛽0) . Since 𝑥𝑡 , 

𝑥𝑡−1 , 𝜈𝑡 , and 𝛿𝑡  are independent, and also 𝑥𝑡 , 𝜈𝑡 , and 𝛿𝑡  are independent of 

(𝑋𝑡−1, 𝑌𝑡−1)
𝑇, it follows that 

(𝑥𝑡, 𝑥𝑡−1, 𝜈𝑡 , 𝛿𝑡)
𝑇|(𝑋𝑡−1, 𝑌𝑡−1)

𝑇~𝑁((
𝐴𝜇𝑥+𝜎𝑥

2𝐸𝑡−1

𝐷
, 𝜇𝑥, 0,0)

𝑇

, 𝑑𝑖𝑎𝑔 (𝜎𝑥
2 𝐴

𝐷
, 𝜎𝑥

2, 𝜎2, 𝜎2)). 

Thus, the conditional distribution for (𝑋𝑡, 𝑌𝑡)
𝑇  given the previous observation 

(𝑋𝑡−1, 𝑌𝑡−1)
𝑇 is, 

(𝑋𝑡, 𝑌𝑡)
𝑇|(𝑋𝑡−1, 𝑌𝑡−1)

𝑇~𝑁(𝜇𝑠, Σ𝑠)  

where 𝜇𝑠 = (𝜇1𝑡, 𝜇2𝑡)
𝑇, Σ𝑠 = (

𝜎𝑥
2 (1 + 𝜌2

𝐴

𝐷
) + 𝜎2 𝛽1𝜎𝑥

2 (1 + 𝜌2
𝐴

𝐷
)

𝛽1𝜎𝑥
2 (1 + 𝜌2

𝐴

𝐷
) 𝛽1

2𝜎𝑥
2 (1 + 𝜌2

𝐴

𝐷
) + 𝜎2

), 
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𝜇1𝑡 = 𝜌𝑋𝑡−1 − 𝜌
𝐴𝜇𝑥+𝜎𝑥

2𝐸𝑡−1

𝐷
+ 𝜇𝑥, 

And 

𝜇2𝑡 = 𝜌(𝑌𝑡−1 − 𝛽0) − 𝛽1𝜌
𝐴𝜇𝑥+𝜎𝑥

2𝐸𝑡−1

𝐷
+ 𝛽0 + 𝛽1𝜇𝑥. 

The determinant of the variance matrix is |Σ𝑠| = (1 + 𝛽1
2)𝜎𝑥

2𝜎2 (1 + 𝜌2
𝐴

𝐷
) + 𝜎4. The 

conditional log likelihood function then can be written as 

ℓ𝑠 = −(𝑛 − 1)𝑙𝑜𝑔(2𝜋) −
(𝑛−1)

2
𝑙𝑜𝑔|Σ𝑠|  

−
1

2|Σ𝑠|
∑

{
 
 

 
 (𝛽1

2𝜎𝑥
2 (1 + 𝜌2

𝐴

𝐷
) + 𝜎2) (𝑋𝑡 − 𝜇1𝑡)

2

−2𝛽1𝜎𝑥
2 (1 + 𝜌2

𝐴

𝐷
) (𝑋𝑡 − 𝜇1𝑡)(𝑌𝑡 − 𝜇2𝑡)

+ (𝜎𝑥
2 (1 + 𝜌2

𝐴

𝐷
) + 𝜎2) (𝑌𝑡 − 𝜇2𝑡)

2
}
 
 

 
 

𝑛
𝑡=2   (2.13) 

2.2.2 Likelihood function for the functional case 

As with the structural case, the data are transformed as, 

𝑋𝑡 − 𝜌𝑋𝑡−1 − (𝑥𝑡 − 𝜌𝑥𝑡−1) = 𝜐𝑡, 

𝑌𝑡 − 𝜌𝑌𝑡−1 − (1 − 𝜌)𝛽0 − 𝛽1(𝑥𝑡 − 𝜌𝑥𝑡−1) = 𝛿𝑡 ,          𝑡 = 2,3, … , 𝑛 

Since (𝜐𝑡, 𝛿𝑡)
𝑇 are i.i.d. 𝑁2(𝟎, 𝜎

2𝑰), the conditional log likelihood function is, 

ℓ𝑓 = −(𝑛 − 1)𝑙𝑜𝑔(2𝜋) − (𝑛 − 1)𝑙𝑜𝑔𝜎2  

−
1

2𝜎2
∑ {(𝑋𝑡 − 𝜌𝑋𝑡−1 − 𝜆𝑡)

2 + (𝑌𝑡 − 𝜌𝑌𝑡−1 − 𝛾𝑡)
2}𝑛

𝑡=2  (2.14) 

where 𝜆𝑡 = 𝑥𝑡 − 𝜌𝑥𝑡−1, and 𝛾𝑡 = (1 − 𝜌)𝛽0 + 𝛽1(𝑥𝑡 − 𝜌𝑥𝑡−1). 

2.3 Test Statistics 

We now derive MLEs for parameters and develop likelihood ratio and efficient score 

test for each set of hypotheses under both the structural and functional cases. 

 



 

12 

 

2.3.1 Structural case 

2.3.1.1 Efficient score test of 𝐻0: 𝜌 = 0 versus 𝐻𝑎: 𝜌 ≠ 0 

Taking first derivatives of the structural log likelihood function with respect to the 

unknown parameters (𝜇𝑥, 𝜎𝑥
2, 𝜎2, 𝛽0, 𝛽1)  with 𝜌  constrained to be zero, setting these 

derivatives equal to zero and then solving the system of equations yields the MLEs 

under the null hypothesis. These MLEs are 

𝜇𝑥 = �̅�𝑛  

𝛽0 = �̅�𝑛 − 𝛽1�̅�𝑛  

�̃�𝑥
2 =

∑ (�̃�𝑡�̃�𝑡)
𝑛
𝑡=2

(𝑛−1)�̃�1
  

�̃�2 =
∑ (�̃�1�̃�𝑡−�̃�𝑡)

2𝑛
𝑡=2

(𝑛−1)(1+�̃�1
2)

  

𝛽1 =
−∑ (�̃�𝑡

2−�̃�𝑡
2)𝑛

𝑡=2 +√(∑ (�̃�𝑡
2−�̃�𝑡

2)𝑛
𝑡=2 )

2
+4(∑ �̃�𝑡�̃�𝑡

𝑛
𝑡=2 )

2

2∑ �̃�𝑡�̃�𝑡
𝑛
𝑡=2

  

where �̃�𝑡 = 𝑋𝑡 − �̅�𝑛, �̃�𝑡 = 𝑌𝑡 − �̅�𝑛, and �̅�𝑛 = ∑ 𝑋𝑡
𝑛
𝑡=2 (𝑛 − 1)⁄ . 

The score vector is obtained as the first derivative with respect to each parameter 

under the null hypothesis, i.e., 

𝑈(�̃�) = (0,0,0,0,0,
𝜕ℓ𝑠

𝜕𝜌
|
𝜌=0

)

𝑇

, 

where 

𝜕ℓ𝑠

𝜕𝜌
|
𝜌=0

=
1

(1+�̃�1
2)�̃�2

{

∑ [𝛽1𝑋𝑡 − (𝑌𝑡 − 𝛽0)][�̃�1𝑋𝑡−1 − (𝑌𝑡−1 − 𝛽0)]
𝑛
𝑡=2

+(
�̃�2

(1+�̃�1
2)�̃�𝑥

2+�̃�2
)
2

∑ (�̃�𝑡 + 𝛽1�̃�𝑡)(�̃�𝑡−1 + 𝛽1�̃�𝑡−1)
𝑛
𝑡=2

}. 
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The information matrix, 𝐼(𝜃), is obtained by taking the expectation of the matrix of 

second derivatives of the log-likelihood function taken with respect to each parameter 

under the null hypothesis. All elements in the score vector are zero except for the last 

element. Therefore, when calculating the test statistic only the right bottom value in the 

inverse of information matrix is needed. It is shown in Appendix B that the right bottom 

value is (𝑛 − 1)−1 (1 +
�̃�4

((1+�̃�1
2)�̃�𝑥

2+�̃�2)
2)

−1

. Thus, in the structural case, the efficient 

score test statistic for testing 𝐻0: 𝜌 = 0 versus 𝐻𝑎: 𝜌 ≠ 0 is, 

𝑇𝐸𝑆,𝑠,𝜌 = (𝑛 − 1)−1 (1 +
�̃�4

((1+�̃�1
2)�̃�𝑥

2+�̃�2)
2)

−1

(
𝜕ℓ𝑠

𝜕𝜌
|
𝜌=0

)

2

  (2.15) 

2.3.1.2 Likelihood ratio test of 𝐻0: 𝜌 = 0 versus 𝐻𝑎: 𝜌 ≠ 0 

To perform the likelihood ratio test, we need to find the unconstrained MLEs in 

addition to the constrained MLEs already derived in section 2.3.1.2. Taking the first 

derivative of the structural log likelihood function with respect to 𝜇𝑥  and setting this 

derivative equal to zero, we get 

∑ (𝐸𝑡 − 𝜌
𝐴

𝐷
𝐸𝑡−1 − (1 + 𝛽1

2) (1 − 𝜌
𝐴

𝐷
) 𝜇𝑥)

𝑛
𝑡=2 = 0            (2.16A) 

where 𝐸𝑡 = 𝑋𝑡 + 𝛽1(𝑌𝑡 − 𝛽0), 𝐴 =
𝜎2

1−𝜌2
, and 𝐷 = (1 + 𝛽1

2)𝜎𝑥
2 + 𝐴. Then 

(1 + 𝛽1
2) (1 − 𝜌

𝐴

𝐷
) 𝜇𝑥 = �̅�𝑛 − 𝜌

𝐴

𝐷
�̅�𝑛−1, 

and 

∑ (𝐸𝑡 − 𝜌
𝐴

𝐷
𝐸𝑡−1 − (1 + 𝛽1

2) (1 − 𝜌
𝐴

𝐷
) 𝜇𝑥)

𝑛
𝑡=2 = ∑ (�̃�𝑡 − 𝜌

𝐴

𝐷
�̃�𝑡−1)

𝑛
𝑡=2 , 
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where �̅�𝑛 = �̅�𝑛 + 𝛽1(�̅�𝑛 − 𝛽0), �̅�𝑛−1 = �̅�𝑛−1 + 𝛽1(�̅�𝑛−1 − 𝛽0) , �̅�𝑛 = ∑ 𝑋𝑡
𝑛
𝑡=2 (𝑛 − 1)⁄ , 

�̅�𝑛−1 = ∑ 𝑋𝑡−1
𝑛
𝑡=2 (𝑛 − 1)⁄ , �̅�𝑛 = ∑ 𝑌𝑡

𝑛
𝑡=2 (𝑛 − 1)⁄ , �̅�𝑛−1 = ∑ 𝑌𝑡−1

𝑛
𝑡=2 (𝑛 − 1)⁄ , and 

�̃�𝑡 = 𝐸𝑡 − �̅�𝑛, �̃�𝑡−1 = 𝐸𝑡−1 − �̅�𝑛−1. 

Taking the first derivative of the structural log likelihood function with respect to 𝜎𝑥
2, 

setting this derivative equal to zero and then substituting 2.16A into the resulting 

expression, we get 

{
 
 

 
 −(𝑛 − 1)(1 + 𝛽1

2) (1 + 𝜌2 (
𝐴

𝐷
)
2

)

+
𝜎2

|Σ|
(1 + 𝜌2 (

𝐴

𝐷
)
2

)∑ (�̃�𝑡 − 𝜌
𝐴

𝐷
�̃�𝑡−1)

2
𝑛
𝑡=2

−2𝜌
𝐴

𝐷2
∑ (�̃�𝑡 − 𝜌

𝐴

𝐷
�̃�𝑡−1) 𝐸𝑡−1

𝑛
𝑡=2 }

 
 

 
 

= 0                   (2.16B) 

where |Σ| = |Σ𝑠|. 

In similar fashion, we take the first derivatives of the structural log likelihood 

function with respect to 𝜎2, 𝛽0, 𝛽1 and 𝜌, set them equal to 0, which yields respectively 

{
 
 

 
 −(𝑛 − 1)(1 + 𝛽1

2) (
|Σ|

𝜎2
+ 𝜌2

𝐴𝐶2

𝐷2
+ 𝜎2) +

|Σ|

𝜎4
∑ (𝐹𝑡 − 𝜌𝐹𝑡−1)

2𝑛
𝑡=2

+
𝜎2

|Σ|
(𝜌2

𝐴𝐶2

𝐷2
+ 𝜎2)∑ (�̃�𝑡 − 𝜌

𝐴

𝐷
�̃�𝑡−1)

2
𝑛
𝑡=2

+2𝜌
𝐴𝐶

𝐷2
∑ (�̃�𝑡 − 𝜌

𝐴

𝐷
�̃�𝑡−1)𝐸𝑡−1

𝑛
𝑡=2 }

 
 

 
 

= 0      (2.16C) 

∑ (𝐹𝑡 − 𝜌𝐹𝑡−1)
𝑛
𝑡=2 = 0             (2.16D) 

{
 
 
 
 

 
 
 
 −(𝑛 − 1)𝛽1𝐶𝜎

2 (1 + 𝜌2 (
𝐴

𝐷
)
2

) +
𝛽1

(1+𝛽1
2)

|Σ|

𝜎2
∑ (𝐹𝑡 − 𝜌𝐹𝑡−1)

2𝑛
𝑡=2

+
𝛽1

(1+𝛽1
2)
[𝜎2 +

𝜎4

|Σ|
𝐶 (1 + 𝜌2 (

𝐴

𝐷
)
2

)]∑ (�̃�𝑡 − 𝜌
𝐴

𝐷
�̃�𝑡−1)

2
𝑛
𝑡=2

−
|Σ|

𝜎2
∑ (𝐹𝑡 − 𝜌𝐹𝑡−1)(𝑋𝑡 − 𝜌𝑋𝑡−1)
𝑛
𝑡=2

−𝜎2∑ (�̃�𝑡 − 𝜌
𝐴

𝐷
�̃�𝑡−1) [

(𝑌𝑡 − 𝛽0) − 𝜌
𝐴

𝐷
(𝑌𝑡−1 − 𝛽0)

+2𝛽1𝜌
𝐴

𝐷

(𝐴𝜇𝑥+𝜎𝑥
2𝐸𝑡−1)

𝐷
− 2𝛽1𝜇𝑥

]𝑛
𝑡=2

}
 
 
 
 

 
 
 
 

= 0       (2.16E) 
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{
 
 

 
 −(𝑛 − 1)(1 + 𝛽1

2)𝜌𝐶(𝐶 + 𝜎2) (
𝐴

𝐷
)
2

+
|Σ|

𝜎2
∑ (𝐹𝑡 − 𝜌𝐹𝑡−1)𝐹𝑡−1
𝑛
𝑡=2

+
𝜎2

|Σ|
𝜌𝐶(𝐶 + 𝜎2) (

𝐴

𝐷
)
2
∑ (�̃�𝑡 − 𝜌

𝐴

𝐷
�̃�𝑡−1)

2
𝑛
𝑡=2

+𝜎2
𝐴

𝐷
(1 +

2𝜌2

1−𝜌2
𝐶

𝐷
)∑ (�̃�𝑡 − 𝜌

𝐴

𝐷
�̃�𝑡−1)𝐸𝑡−1

𝑛
𝑡=2 }

 
 

 
 

= 0     (2.16F) 

where 𝐹𝑡 = 𝛽1𝑋𝑡 − (𝑌𝑡 − 𝛽0), and 𝐶 = (1 + 𝛽1
2)𝜎𝑥

2. 

From (2.16D), 

∑ (𝛽1𝑋𝑡 − 𝜌𝛽1𝑋𝑡−1 − (𝑌𝑡 − 𝛽0) + 𝜌(𝑌𝑡−1 − 𝛽0))
𝑛
𝑡=2 = 0, 

so that 

𝛽0 = {−(𝛽1�̅�𝑛 − �̅�𝑛) + 𝜌(𝛽1�̅�𝑛−1 − �̅�𝑛−1)} (1 − 𝜌)⁄ . 

To simplify notation, let 𝛼 =
𝐴

𝐷
 and 

𝐶

𝐷
= 1 − 𝛼 , and then substitute these two 

expressions into (2.16B) to obtain 

{

−(𝑛 − 1)𝐷(1 + 𝛽1
2)(1 + 𝜌2𝛼2)

+
1

1−𝜌2𝛼2
(1 + 𝜌2𝛼2) ∑ (�̃�𝑡 − 𝜌𝛼�̃�𝑡−1)

2𝑛
𝑡=2

−2𝜌𝛼 ∑ (�̃�𝑡 − 𝜌𝛼�̃�𝑡−1)�̃�𝑡−1
𝑛
𝑡=2

} = 0                  (2.16B’) 

Then, with (2.16B’) and some organization we have, 

{

1−𝜌2𝛼2

(1−𝜌2)𝛼
∑ (�̃�𝑡 − 𝜌�̃�𝑡−1)

2𝑛
𝑡=2 − ∑ (�̃�𝑡 − 𝜌𝛼�̃�𝑡−1)

2𝑛
𝑡=2

+4𝜌𝛼
(1−𝜌2𝛼2)

1+𝜌2𝛼2
∑ (�̃�𝑡 − 𝜌𝛼�̃�𝑡−1)�̃�𝑡−1
𝑛
𝑡=2

} = 0,          (2.16C’) 

{
 
 

 
 𝛽1(1 − 𝜌

2𝛼2)∑ (�̃�𝑡 − 𝜌�̃�𝑡−1)
2𝑛

𝑡=2

+𝛽1(1 − 𝜌
2)𝛼 ∑ (�̃�𝑡 − 𝜌𝛼�̃�𝑡−1)

2𝑛
𝑡=2

−(1 − 𝜌2𝛼2)∑ (�̃�𝑡 − 𝜌�̃�𝑡−1)(𝑋𝑡 − 𝜌𝑋𝑡−1)
𝑛
𝑡=2

−(1 + 𝛽1
2)(1 − 𝜌2)𝛼 ∑ (�̃�𝑡 − 𝜌𝛼�̃�𝑡−1)(𝑌𝑡 − 𝜌𝛼𝑌𝑡−1)

𝑛
𝑡=2 }

 
 

 
 

= 0       (2.16E’) 

and 
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{
(1 + 𝜌2𝛼2)∑ (�̃�𝑡 − 𝜌�̃�𝑡−1)�̃�𝑡−1

𝑛
𝑡=2

+𝛼2(1 + 𝜌2) ∑ (�̃�𝑡 − 𝜌𝛼�̃�𝑡−1)�̃�𝑡−1
𝑛
𝑡=2

} = 0.                 (2.16F’) 

There appears to be no explicit solution for system of equations (2.16C’) (2.16E’) 

and (2.16F’). In order to obtain �̂� , �̂�1 , and �̂� , we have to solve these equations 

numerically with the constraints that 𝜌 should be between -1 and 1 and 𝛼 between 0 and 

1. From equation (2.16B’) we see that 

�̂� =
1

(𝑛−1)(1+�̂�1
2)
{

1

1−�̂�2�̂�2
∑ (�̃�𝑡 − �̂��̂��̃�𝑡−1)

2𝑛
𝑡=2 − 2

�̂��̂�

1+�̂�2�̂�2
∑ (�̃�𝑡 − �̂��̂��̃�𝑡−1)�̃�𝑡−1
𝑛
𝑡=2 },  

so that, 

�̂�2 = (1 − �̂�2)�̂��̂�, 

�̂�𝑥
2 =

1−�̂�

1+�̂�1
2 �̂�, 

�̂�0 = {−(�̂�1�̅�𝑛 − �̅�𝑛) + �̂�(�̂�1�̅�𝑛−1 − �̅�𝑛−1)} (1 − �̂�)⁄   

and 

�̂�𝑥 =
1

(1+�̂�1
2)(1−�̂��̂�)

(�̅�𝑛 − �̂��̂��̅�𝑛−1). 

These MLEs will be denoted by 𝜃 = (�̂�𝑥, �̂�𝑥
2, �̂�2, �̂�0, �̂�1, �̂�), and the likelihood ratio test 

statistic is then represented as 

𝑇LRT,𝑠,𝜌 = 2(ℓs(θ̂) − ℓs(θ̃)) 

First, it is noticed that the likelihood function ℓ𝑠(𝜃) and ℓ𝑠(�̃�) for structural case can 

be rewritten as, 

ℓ𝑠 = −(𝑛 − 1)𝑙𝑜𝑔(2𝜋) −
(𝑛−1)

2
𝑙𝑜𝑔|Σ𝑠| −

∑ (𝐹𝑡−𝜌𝐹𝑡−1)
2𝑛

𝑡=2

2(1+𝛽1
2)𝜎2

−
𝜎2∑ (�̃�𝑡−𝜌

𝐴

𝐷
�̃�𝑡−1)

2
𝑛
𝑡=2

2(1+𝛽1
2)|Σ𝑠|

. 



 

17 

 

From the first order derivatives for 𝜎𝑥
2  and 𝜎2  as shown above, we know that 𝐶 

multiplies equation (2.16B) then plus (2.16C) will give us, 

−
∑ (𝐹𝑡−𝜌𝐹𝑡−1)

2𝑛
𝑡=2

2(1+𝛽1
2)𝜎2

−
𝜎2 ∑ (�̃�𝑡−𝜌

𝐴

𝐷
�̃�𝑡−1)

2
𝑛
𝑡=2

2(1+𝛽1
2)|Σ𝑠|

= −(𝑛 − 1). 

Therefore, 

ℓ𝑠 = −(𝑛 − 1)𝑙𝑜𝑔(2𝜋) −
(𝑛−1)

2
𝑙𝑜𝑔|Σ𝑠| − (𝑛 − 1). 

Then the likelihood ratio test statistic will become 

𝑇𝐿𝑅𝑇,𝑠,𝜌 = (𝑛 − 1)(−𝑙𝑜𝑔|Σ̂𝑠| + 𝑙𝑜𝑔|Σ̃𝑠|)    (2.16) 

2.3.1.3 Efficient score test of 𝐻0: (𝛽0, 𝛽1) = (𝑏0, 𝑏1) versus 𝐻𝑎: (𝛽0, 𝛽1) ≠ (𝑏0, 𝑏1) 

Under the null hypothesis 𝐻0: (𝛽0, 𝛽1) = (𝑏0, 𝑏1), taking the first derivative of the 

structural log likelihood with respect to 𝜇𝑥 and setting it equal zero, yields 

𝜇𝑥 =
1

(1+𝑏1
2)(1−𝜌

𝐴

𝐷0
)
(�̅̇�𝑛 − 𝜌

𝐴

𝐷0
�̅̇�𝑛−1)             (2.17A) 

where 𝐷0 = (1 + 𝑏1
2)𝜎𝑥

2 + 𝐴, and �̇�𝑡 = 𝑋𝑡 + 𝑏1(𝑌𝑡 − 𝑏0), �̅̇�𝑛 = ∑ �̇�𝑡
𝑛
𝑡=2 (𝑛 − 1)⁄ . 

The first derivatives with respect to 𝜎𝑥
2, 𝜎2 and 𝜌 give us, 

{
 
 

 
 −(𝑛 − 1)(1 + 𝑏1

2) (1 + 𝜌2 (
𝐴

𝐷0
)
2

)

+
𝜎2

|Σ0|
(1 + 𝜌2 (

𝐴

𝐷0
)
2

)∑ (�̃̇�𝑡 − 𝜌
𝐴

𝐷0
�̃̇�𝑡−1)

2
𝑛
𝑡=2

−2𝜌
𝐴

𝐷0
2∑ (�̃̇�𝑡 − 𝜌

𝐴

𝐷0
�̃̇�𝑡−1) �̇�𝑡−1

𝑛
𝑡=2 }

 
 

 
 

= 0            (2.17B) 

{
 
 

 
 −(𝑛 − 1)(1 + 𝑏1

2) (
|Σ0|

𝜎2
+ 𝜌2

𝐴𝐶0
2

𝐷0
2 + 𝜎

2) +
|Σ0|

𝜎4
∑ (�̇�𝑡 − 𝜌�̇�𝑡−1)

2𝑛
𝑡=2

+
𝜎2

|Σ0|
(𝜌2

𝐴𝐶0
2

𝐷0
2 + 𝜎

2)∑ (�̃̇�𝑡 − 𝜌
𝐴

𝐷0
�̃̇�𝑡−1)

2
𝑛
𝑡=2

+2𝜌
𝐴𝐶0

𝐷0
2 ∑ (�̃̇�𝑡 − 𝜌

𝐴

𝐷0
�̃̇�𝑡−1) �̇�𝑡−1

𝑛
𝑡=2 }

 
 

 
 

= 0      (2.17C) 

and 
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{
 
 

 
 −(𝑛 − 1)(1 + 𝑏1

2)𝜌𝐶0(𝐶0 + 𝜎
2) (

𝐴

𝐷0
)
2

+
|Σ0|

𝜎2
∑ (�̇�𝑡 − 𝜌�̇�𝑡−1)�̇�𝑡−1
𝑛
𝑡=2

+
𝜎2

|Σ0|
𝜌𝐶0(𝐶0 + 𝜎

2) (
𝐴

𝐷0
)
2
∑ (�̃̇�𝑡 − 𝜌

𝐴

𝐷0
�̃̇�𝑡−1)

2
𝑛
𝑡=2

+𝜎2
𝐴

𝐷0
(1 +

2𝜌2

1−𝜌2
𝐶0

𝐷0
)∑ (�̃̇�𝑡 − 𝜌

𝐴

𝐷0
�̃̇�𝑡−1) �̇�𝑡−1

𝑛
𝑡=2 }

 
 

 
 

= 0   (2.17D) 

where |Σ0| = 𝐶0𝜎
2 (1 + 𝜌2

𝐴

𝐷0
) + 𝜎4 , 𝐶0 = (1 + 𝑏1

2)𝜎𝑥
2 , �̇�𝑡 = 𝑏1𝑋𝑡 − (𝑌𝑡 − 𝑏0)  and 

�̃̇�𝑡 = �̇�𝑡 − �̅̇�𝑛. Upon substitution of 𝛼0 =
𝐴

𝐷0
, then 

𝐶0

𝐷0
= 1 − 𝛼0 and 

|Σ0|

𝜎2
= 𝐷0(1 − 𝜌

2𝛼0
2) 

into (2.17B), (2.17C) and (2.17D), these expressions become, 

{
 
 

 
 −(𝑛 − 1)(1 + 𝑏1

2)𝐷0(1 + 𝜌
2𝛼0

2)

+
1

1−𝜌2𝛼0
2 (1 + 𝜌

2𝛼0
2)∑ (�̃̇�𝑡 − 𝜌𝛼0�̃̇�𝑡−1)

2
𝑛
𝑡=2

−2𝜌𝛼0∑ (�̃̇�𝑡 − 𝜌𝛼0�̃̇�𝑡−1) �̇�𝑡−1
𝑛
𝑡=2 }

 
 

 
 

= 0,           (2.17B’) 

{
  
 

  
 

−(𝑛 − 1)(1 + 𝑏1
2)𝐷0(1 + 𝛼0 − 3𝜌

2𝛼0
2 + 𝜌2𝛼0

3)

+
1−𝜌2𝛼0

2

(1−𝜌2)𝛼0
∑ (�̇�𝑡 − 𝜌�̇�𝑡−1)

2𝑛
𝑡=2

+
1

1−𝜌2𝛼0
2 (𝛼0 − 2𝜌

2𝛼0
2 + 𝜌2𝛼0

3) ∑ (�̃̇�𝑡 − 𝜌𝛼0�̃̇�𝑡−1)
2

𝑛
𝑡=2

+2𝜌𝛼0(1 − 𝛼0)∑ (�̃̇�𝑡 − 𝜌𝛼0�̃̇�𝑡−1) �̇�𝑡−1
𝑛
𝑡=2 }

  
 

  
 

= 0      (2.17C’) 

and 

{
  
 

  
 

−(𝑛 − 1)(1 + 𝑏1
2)𝐷0𝜌(1 − 𝛼0)(1 − 𝜌

2𝛼0)𝛼0
2

+(1 − 𝜌2𝛼0
2)∑ (�̇�𝑡 − 𝜌�̇�𝑡−1)�̇�𝑡−1

𝑛
𝑡=2

+
1

1−𝜌2𝛼0
2 𝜌(1 − 𝛼0)(1 − 𝜌

2𝛼0)𝛼0
2∑ (�̃̇�𝑡 − 𝜌𝛼0�̃̇�𝑡−1)

2
𝑛
𝑡=2

+(1 − 𝜌2)𝛼0
2 (1 +

2𝜌2

1−𝜌2
(1 − 𝛼0))∑ (�̃̇�𝑡 − 𝜌𝛼0�̃̇�𝑡−1) �̇�𝑡−1

𝑛
𝑡=2

}
  
 

  
 

= 0.     (2.17D’) 

Combining (2.17B’) with (2.17C’) and (2.17D’), we have 

{

1−𝜌2𝛼0
2

(1−𝜌2)𝛼0
∑ (�̇�𝑡 − 𝜌�̇�𝑡−1)

2𝑛
𝑡=2 −∑ (�̃̇�𝑡 − 𝜌𝛼0�̃̇�𝑡−1)

2
𝑛
𝑡=2

+4𝜌𝛼0
1−𝜌2𝛼0

2

1+𝜌2𝛼0
2∑ (�̃̇�𝑡 − 𝜌𝛼0�̃̇�𝑡−1) �̇�𝑡−1

𝑛
𝑡=2

} = 0        (2.17C’’) 
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and 

∑ (�̇�𝑡 − 𝜌�̇�𝑡−1)�̇�𝑡−1
𝑛
𝑡=2 + 𝛼0

2 (1+𝜌2)

1+𝜌2𝛼0
2∑ (�̃̇�𝑡 − 𝜌𝛼0�̃̇�𝑡−1) �̇�𝑡−1

𝑛
𝑡=2 = 0    (2.17D’’) 

Solving (2.17C’’) and (2.17D’’) numerically, we get MLEs for 𝜌  and 𝛼0 , which we 

denote by �̇� and �̇�0, respectively. Finally, from (2.17B’) we have, 

�̇�0 =
1

(𝑛−1)(1+𝑏1
2)
{

1

1−�̇�2�̇�0
2∑ (�̃̇�𝑡 − �̇��̇�0�̃̇�𝑡−1)

2
𝑛
𝑡=2 −

2�̇��̇�0

1+�̇�2�̇�0
2∑ (�̃̇�𝑡 − �̇��̇�0�̃̇�𝑡−1) �̇�𝑡−1

𝑛
𝑡=2 }, 

�̇�2 = (1 − �̇�2)�̇�0�̇�0, 

�̇�𝑥
2 =

1−�̇�0

(1+𝑏1
2)
�̇�0  

and 

�̇�𝑥 =
1

(1+𝑏1
2)(1−�̇��̇�0)

(�̅̇�𝑛 − �̇��̇�0�̅̇�𝑛−1). 

The score vector is the vector containing the first derivatives of the structural log 

likelihood under the null hypothesis H0: (β0, β1) = (b0, b1)  taken with respect to 

𝜇𝑥, 𝜎𝑥
2, 𝜎2, 𝜌, 𝛽0, 𝛽1 and evaluated at the MLEs, �̇� = (�̇�𝑥, �̇�𝑥

2, �̇�2, �̇�, 𝑏0, 𝑏1). That is, 

𝑈(�̇�) = (0,0,0,0,
𝜕ℓ𝑠

𝜕𝛽0
|
𝛽=𝑏

,
𝜕ℓ𝑠

𝜕𝛽1
|
𝛽=𝑏

)

𝑇

, 

where 

𝜕ℓ𝑠

𝜕𝛽0
|
𝛽=𝑏

= −
1−�̇�

�̇�2(1+𝑏1
2)
∑ (�̇�𝑡 − �̇��̇�𝑡−1)
𝑛
𝑡=2   

and 

𝜕ℓ𝑠

𝜕𝛽1
|
𝛽=𝑏

= 𝑏1
1

(1+𝑏1
2)
2

1

�̇�2
∑ (�̇�𝑡 − �̇��̇�𝑡−1)

2𝑛
𝑡=2 +

4𝑏1

(1+𝑏1
2)
2

�̇�2

|Σ̇|
�̇�
�̇��̇�0

𝐷0
2 ∑ (�̃̇�𝑡 − �̇��̇�0�̃̇�𝑡−1) �̇�𝑡−1

𝑛
𝑡=2 , 

+
𝑏1

(1+𝑏1
2)
2

�̇�2

|Σ̇|
∑ (�̃̇�𝑡 − �̇��̇�0�̃̇�𝑡−1)

2
𝑛
𝑡=2 −

1

1+𝑏1
2

1

�̇�2
∑ (�̇�𝑡 − �̇��̇�𝑡−1)(𝑋𝑡 − �̇�𝑋𝑡−1)
𝑛
𝑡=2   
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−
�̇�2

|Σ̇|

1

1+𝑏1
2∑ (�̃̇�𝑡 − �̇��̇�0�̃̇�𝑡−1) (𝑌𝑡 − �̇��̇�0𝑌𝑡−1)

𝑛
𝑡=2 . 

The score test statistic under 𝐻0: (𝛽0, 𝛽1) = (𝑏0, 𝑏1) is thus represented as 

𝑇𝐸𝑆,𝑠,𝛽 = 𝑈(�̇�)
𝑇
𝐼(�̇�)

−1
𝑈(�̇�) 

Since the first four elements of the score vector are zeros and only the last two are 

non-zero, only the right bottom two by two sub-block of the inverse of information 

matrix is required.  The estimator of this sub-block is represented by 𝐼(�̇�)
𝑠𝑢𝑏

−1
.  

Therefore, the test statistic can be written as, 

𝑇𝐸𝑆,𝑠,𝛽 = (
𝜕ℓ𝑠

𝜕𝛽0
|
𝛽=𝑏

,
𝜕ℓ𝑠

𝜕𝛽1
|
𝛽=𝑏

)

𝑇

𝐼(�̇�)
𝑠𝑢𝑏

−1
(
𝜕ℓ𝑠

𝜕𝛽0
|
𝛽=𝑏

,
𝜕ℓ𝑠

𝜕𝛽1
|
𝛽=𝑏

)     (2.17) 

2.3.1.4 Likelihood ratio test of 𝐻0: (𝛽0, 𝛽1) = (𝑏0, 𝑏1) versus 𝐻𝑎: (𝛽0, 𝛽1) ≠ (𝑏0, 𝑏1) 

The MLEs under the null hypothesis derived in section 2.3.1.3 and were denoted as �̇�. 

The unconstrained MLEs, 𝜃, were derived shown in section 2.3.1.2. The likelihood ratio 

test statistic is therefore represented as 

𝑇𝐸𝑆,𝑠,𝛽 = 2(ℓ𝑠(𝜃) − ℓ𝑠(�̇�))    (2.17) 

And also because of the reason shown in 2.3.1.2, the last two summation terms in 

likelihood function will equal to (𝑛 − 1). Then the likelihood ratio test statistic is 

𝑇𝐿𝑅𝑇,𝑠,𝛽 = (𝑛 − 1)(−𝑙𝑜𝑔|Σ̂𝑠| + 𝑙𝑜𝑔|Σ̇𝑠|)     (2.18) 

2.3.2 Functional case 

2.3.2.1 Efficient score test of 𝐻0: 𝜌 = 0 versus 𝐻𝑎: 𝜌 ≠ 0 

Under the null hypothesis H0: ρ = 0, the log likelihood function for the functional 

case is 
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ℓ𝑓|𝜌=0
= −(𝑛 − 1)𝑙𝑜𝑔(2𝜋) − (𝑛 − 1)𝑙𝑜𝑔𝜎2 −

1

2𝜎2
∑ {(𝑋𝑡 − 𝑥𝑡)

2 + (𝑌𝑡 − 𝑦𝑡)
2}𝑛

𝑡=2 . 

Taking first derivatives of the log likelihood function with respect to 𝑥1, 𝑥2, …, 𝑥𝑛, 𝛽0, 

𝛽1 ,𝜎2 , and then setting these derivatives equal zero results in the following set of 

equations: 

(𝑋𝑡 − 𝑥𝑡) + 𝛽1(𝑌𝑡 − 𝑦𝑡) = 0,              𝑡 = 1, 2, … , 𝑛  

∑ (𝑌𝑡 − 𝑦𝑡)
𝑛
𝑡=1 = 0, 

∑ (𝑌𝑡 − 𝑦𝑡)𝑥𝑡
𝑛
𝑡=1 = 0  

and 

𝜎2 =
1

2𝑛
∑ {(𝑋𝑡 − 𝑥𝑡)

2 + (𝑌𝑡 − 𝑦𝑡)
2}𝑛

𝑡=2 . 

Letting 𝑆𝑋𝑋 = ∑ (𝑋𝑡 − �̅�)
2𝑛

𝑡=2 , 𝑆𝑌𝑌 = ∑ (𝑌𝑡 − �̅�)
2𝑛

𝑡=2 , and 𝑆𝑋𝑌 = ∑ (𝑋𝑡 − �̅�)(𝑌𝑡 − �̅�)
𝑛
𝑡=2 , 

the solution of this system of equations is the MLEs under 𝐻0: 𝜌 = 0, which is, 

𝛽1 =
−(𝑆𝑋𝑋−𝑆𝑌𝑌)+√(𝑆𝑋𝑋−𝑆𝑌𝑌)2+4𝑆𝑋𝑌

2

2𝑆𝑋𝑌
, 

𝛽0 = �̅� − 𝛽1�̅�, 

�̃�𝑡 =
(𝑌𝑡−�̃�0)�̃�1+𝑋𝑡

1+�̃�1
2                   𝑡 = 1, 2, … , 𝑛, 

and 

�̃�2 =
1

2(𝑛−1)

1

(1+�̃�1
2)
∑ (𝛽1(𝑋𝑡 − �̅�) − (𝑌𝑡 − �̅�))

2
𝑛
𝑡=2 . 

Since in the functional case, 𝑥𝑡, 𝑡 = 1,2, … , 𝑛 are fixed values that must be treated as 

unknown parameters, the score vector is the first derivatives of ℓ𝑓 taken with respect to 

𝜓 = (𝑥1, 𝑥2, … , 𝑥𝑛, 𝛽0, 𝛽1, 𝜎
2, 𝜌) under the null hypothesis. That is, 
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𝑈𝑓(�̃�) = (0,0, … ,0,
𝜕ℓ𝑓

𝜕𝜓
|
𝜌=0

)

𝑇

, 

where 
𝜕ℓ𝑓

𝜕𝜌
|
𝜌=0

=
1

�̃�2
∑ {(𝑋𝑡 − �̃�𝑡)(𝑋𝑡−1 − �̃�𝑡−1) + (𝑌𝑡 − �̃�𝑡)(𝑌𝑡−1 − �̃�𝑡−1)}
𝑛
𝑡=2 . 

As previously discussed in the structural case, the only element needed to construct the 

score statistic is the lower right diagonal element of the inverse of information matrix. 

After some derivations (see Appendix C), this value is found to be 
1

2(𝑛−1)
. Therefore, the 

efficient score test statistic for testing 𝐻0: 𝜌 = 0 versus 𝐻𝑎: 𝜌 ≠ 0 in the functional case 

is 

𝑇𝐸𝑆,𝑓,𝜌 =
1

2(𝑛−1)
(
𝜕ℓ𝑓

𝜕𝜌
|
𝜌=0

)

2

                                      (2.18) 

2.3.2.2 Likelihood ratio test of 𝐻0: 𝜌 = 0 versus 𝐻𝑎: 𝜌 ≠ 0 

The MLEs under the null hypothesis were derived in section 2.3.2.1. We now 

calculate the unconstrained MLEs. Taking first derivatives of the log likelihood function 

with respect to 𝜓 = (𝑥2, 𝑥3, … , 𝑥𝑛, 𝛽0, 𝛽1, 𝜎
2, 𝜌), and setting these derivatives equal to 

zero produces the following system of equations: 

(𝑋𝑡 − 𝜌𝑋𝑡−1 − 𝜆𝑡) + (𝑌𝑡 − 𝜌𝑌𝑡−1 − 𝛾𝑡)𝛽1 + (𝑋𝑡+1 − 𝜌𝑋𝑡 − 𝜆𝑡+1)(−𝜌) 

+(𝑌𝑡+1 − 𝜌𝑌𝑡 − 𝛾𝑡+1)(−𝜌𝛽1) = 0             𝑡 = 2, … , 𝑛 − 1            (2.19A) 

(𝑋𝑛 − 𝜌𝑋𝑛−1 − 𝜆𝑛) + (𝑌𝑛 − 𝜌𝑌𝑛−1 − 𝛾𝑛)𝛽1 = 0           (2.19B) 

∑ (𝑌𝑡 − 𝜌𝑌𝑡−1 − 𝛾𝑡)(1 − 𝜌)
𝑛
𝑡=2 = 0             (2.19C) 

∑ (𝑌𝑡 − 𝜌𝑌𝑡−1 − 𝛾𝑡)(𝑥𝑡 − 𝜌𝑥𝑡−1)
𝑛
𝑡=2 = 0             (2.19D) 

−2(𝑛 − 1)𝜎2 + ∑ {(𝑋𝑡 − 𝜌𝑋𝑡−1 − 𝜆𝑡)
2 + (𝑌𝑡 − 𝜌𝑌𝑡−1 − 𝛾𝑡)

2}𝑛
𝑡=2 = 0     (2.19E) 

∑ {(𝑋𝑡 − 𝜌𝑋𝑡−1 − 𝜆𝑡)(𝑋𝑡−1 − 𝑥𝑡−1) + (𝑌𝑡 − 𝜌𝑌𝑡−1 − 𝛾𝑡)(𝑌𝑡−1 − 𝑦𝑡−1)}
𝑛
𝑡=2 = 0   (2.19F) 
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We regard the 𝑥𝑡 as nuisance parameters. Therefore, we reparameterize from 𝑥𝑡 to 

𝜆𝑡 = 𝑥𝑡 − 𝜌𝑥𝑡−1  

to simplify subsequent calculations. Equations (2.19A) and (2.19B) show that, 

�̂�𝑡 =
(𝑋𝑡−�̂�𝑋𝑡−1)+�̂�1(𝑌𝑡−�̂�𝑌𝑡−1)−�̂�0�̂�1(1−�̂�)

1+�̂�1
2                   𝑡 = 2,3, … , 𝑛  

Substituting of �̂�𝑡 into equation (2.19C), we have 

�̂�0 =
(�̅�𝑛−�̂��̅�𝑛−1)−�̂�1(�̅�𝑛−�̂��̅�𝑛−1)

1−�̂�
. 

From equation (2.19E) we see that 

�̂�2 =
1

2(𝑛−1)
∑ {(𝑋𝑡 − �̂�𝑡 − �̂�𝑋𝑡−1)

2
+ (𝑌𝑡 − 𝛾𝑡 − �̂�𝑌𝑡−1)

2}𝑛
𝑡=2 . 

Equations (2.19D) and (2.19F) reveal that 

�̂� =
∑ {(�̂�1𝑋𝑡−𝑌𝑡)−(�̂�1�̅�𝑛−�̅�𝑛)}{(�̂�1𝑋𝑡−1−𝑌𝑡−1)−(�̂�1�̅�𝑛−1−�̅�𝑛−1)}
𝑛
𝑡=2

∑ {(�̂�1𝑋𝑡−1−𝑌𝑡−1)−(�̂�1�̅�𝑛−1−�̅�𝑛−1)}
2𝑛

𝑡=2

  

and 

�̂�1 =
−(�̂�𝑋𝑋−�̂�𝑌𝑌)+√(�̂�𝑋𝑋−�̂�𝑌𝑌)2+4�̂�𝑋𝑌

2

2�̂�𝑋𝑌
, 

where 

�̂�𝑋𝑋 = ∑ {(𝑋𝑡 − �̂�𝑋𝑡−1) − (�̅�𝑛 − �̂��̅�𝑛−1)}
2𝑛

𝑡=2 , 

�̂�𝑌𝑌 = ∑ {(𝑌𝑡 − �̂�𝑌𝑡−1) − (�̅�𝑛 − �̂��̅�𝑛−1)}
2𝑛

𝑡=2   

and 

�̂�𝑋𝑌 = ∑ {(𝑋𝑡 − �̂�𝑋𝑡−1) − (�̅�𝑛 − �̂��̅�𝑛−1)}{(𝑌𝑡 − �̂�𝑌𝑡−1) − (�̅�𝑛 − �̂��̅�𝑛−1)}
𝑛
𝑡=2 . 

The expressions for �̂�1 and �̂� are used to obtain numerical solutions for the MLEs of 𝛽1 

and 𝜌. Therefore, the likelihood ratio test statistic for 𝐻0: 𝜌 = 0 is 
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𝑇𝐿𝑅𝑇,𝑓,𝜌 = 2(ℓ𝑓(�̂�) − ℓ𝑓(�̃�)) = −2(𝑛 − 1)(𝑙𝑜𝑔�̂�
2 − 𝑙𝑜𝑔�̃�2)  (2.19) 

2.3.2.3 Efficient score test of 𝐻0: (𝛽0, 𝛽1) = (𝑏0, 𝑏1) versus 𝐻𝑎: (𝛽0, 𝛽1) ≠ (𝑏0, 𝑏1) 

Again, we take the first derivative of the functional case log likelihood, ℓ𝑓 , with 

respect to 𝑥2, 𝑥3, … , 𝑥𝑛 , and set these derivatives equal to zero. Under the null 

hypothesis, 𝐻0: (𝛽0, 𝛽1) = (𝑏0, 𝑏1), we can the solve for the nuisance parameter, 𝜆𝑡, to 

obtain 

�̈�𝑡 =
(𝑋𝑡−�̈�𝑋𝑡−1)+𝑏1(𝑌𝑡−�̈�𝑌𝑡−1)−𝑏0𝑏1(1−�̈�)

1+𝑏1
2                   𝑡 = 2,3, … , 𝑛. 

Upon taking the first derivative of ℓ𝑓, with respect to 𝜌, and substituting the nuisance 

parameter estimator into it, we find that 

�̈� =
∑ (𝑏1𝑋𝑡−𝑌𝑡+𝑏0)(𝑏1𝑋𝑡−1−𝑌𝑡−1+𝑏0)
𝑛
𝑡=2

∑ (𝑏1𝑋𝑡−1−𝑌𝑡−1+𝑏0)2
𝑛
𝑡=2

. 

Similarly taking the first derivative of ℓ𝑓, with respect to 𝜎2 gives us 

�̈�2 =
1

2(𝑛−1)
∑ {(𝑋𝑡 − �̈�𝑡 − �̈�𝑋𝑡−1)

2
+ (𝑌𝑡 − �̈�𝑡 − �̈�𝑌𝑡−1)

2}𝑛
𝑡=2 . 

The score vector is formed by evaluating the first derivative of ℓ𝑓 with respect to 

𝜑 = (𝜆2, 𝜆3, … , 𝜆𝑛, 𝛽0, 𝛽1, 𝜎
2, 𝜌) at �̈� = (�̈�2, �̈�3, … , �̈�𝑛, 𝑏0, 𝑏1, �̈�

2, �̈�). The first derivative 

again is taken with respect to 𝜆𝑡 instead of 𝑥𝑡 because the inverse of the corresponding 

information matrix is easier to derive for 𝜆𝑡 than for 𝑥𝑡. Thus, the score vector is 

𝑈(�̈�) = (0,0, … ,0,
𝜕ℓ𝑓

𝜕𝛽0
|
𝛽=𝑏

,
𝜕ℓ𝑓

𝜕𝛽1
|
𝛽=𝑏

, 0,0)

𝑇

, 

where 

𝜕ℓ𝑓

𝜕𝛽0
|
𝛽=𝑏

= �̈�−2∑ {(𝑌𝑡 − �̈�𝑡 − �̈�𝑌𝑡−1)(1 − �̈�)}
𝑛
𝑡=2   
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and 

𝜕ℓ𝑓

𝜕𝛽1
|
𝛽=𝑏

= �̈�−2∑ {(𝑌𝑡 − �̈�𝑡 − �̈�𝑌𝑡−1)�̈�𝑡}
𝑛
𝑡=2 . 

The information matrix is of dimension (𝑛 + 3) × (𝑛 + 3). In order to form our test 

statistic, we require only the 2 × 2 diagonal sub-block of the inverse information matrix 

that corresponds to 𝛽0 and 𝛽1. This sub-block is (see Appendix D) 

𝐼(�̈�)2×2
−1 =

�̈�2(1+𝑏1
2)

(1−�̈�)2{(𝑛−1)∑ �̈�𝑡
2𝑛

𝑡=2 −(∑ �̈�𝑡
𝑛
𝑡=2 )

2
}
[

∑ �̈�𝑡
2𝑛

𝑡=2 −(1 − �̈�)∑ �̈�𝑡
𝑛
𝑡=2

−(1 − �̈�) ∑ �̈�𝑡
𝑛
𝑡=2 (𝑛 − 1)(1 − �̈�)2

]. 

Thus, the score test statistic for testing 𝐻0: (𝛽0, 𝛽1) = (𝑏0, 𝑏1)  versus 𝐻a: (𝛽0, 𝛽1) ≠

(𝑏0, 𝑏1) in the functional case is 

𝑇𝐸𝑆,𝑓,𝛽 = 𝑈(�̈�)
𝑇𝐼(�̈�)2×2

−1 𝑈(�̈�)                (2.20) 

2.3.2.4 Likelihood ratio test of 𝐻0: (𝛽0, 𝛽1) = (𝑏0, 𝑏1) versus 𝐻𝑎: (𝛽0, 𝛽1) ≠ (𝑏0, 𝑏1) 

The MLEs under the null hypothesis and the MLEs under the alternative hypothesis 

were derived in section 2.3.2.3 and 2.3.2.2, respectively. Substituting these estimators 

into the log likelihood function, ℓ𝑓, completes the likelihood ratio test statistic in this 

functional case: 

𝑇𝐿𝑅𝑇,𝑓,𝛽 = 2(ℓ𝑓(�̂�) − ℓ𝑓(�̈�)) = −2(𝑛 − 1)(𝑙𝑜𝑔�̂�
2 − 𝑙𝑜𝑔�̈�2).  (2.21) 
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3. PRELIMINARY THEORIES 

 

We present without proof in this section known results that we use to derive 

properties of our estimators and test statistics. Section 3.1 reviews some large sample 

convergence properties. Various central limit theorems are presented in Section 3.2. 

These theorems will be used to find the asymptotic distributions of our test statistics. 

Section 3.3 contains additional useful mathematical and statistical tools, including 

relationships among normal and chi-squared distributions, derivatives for implicit 

functions, and Satterthwaite approximations. 

3.1 Convergence Properties 

To investigate the consistency of the maximum likelihood estimators and their large 

sample distributions, we need the following results. 

Theorem 3.1 Let 𝑋1, 𝑋2, … and 𝑋 be random vectors, and g is a continuous function. 

Then 

𝑋𝑛
𝑝
→𝑋 ⇒ 𝑔(𝑋𝑛)

𝑝
→ 𝑔(𝑋), 

and 

𝑋𝑛
𝑑
→𝑋 ⇒ 𝑔(𝑋𝑛)

𝑑
→ 𝑔(𝑋). 

Proof: (Serfling, 1980). 

Thus, e.g., we know that if 𝑋𝑛
𝑑
→𝑁(0,1), then 𝑋𝑛

2  
𝑑
→ 𝜒1

2 . Furthermore, if 𝑋𝑛  → 𝑋 in 

probability or in distribution, and 𝐴 and 𝐵 are two matrices with correct dimensions, we 

then have that 
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𝐴𝑋𝑛  → 𝐴𝑋 and 𝑋𝑛
𝑇𝐵𝑋𝑛 → 𝑋𝑇𝐵𝑋, 

in the same way of convergence as 𝑋𝑛. A useful corollary of Theorem 3.1 is given below 

(Serfling 1980). 

Corollary 3.2 If 𝑋𝑛
𝑑
→𝑁(𝜇, Σ), and 𝐴 is a matrix, then 𝐴𝑋𝑛

𝑑
→𝑁(𝐴𝜇, 𝐴𝑇Σ𝐴). 

The following theorem presents a weak law of large numbers for uncorrelated, but not 

necessarily independent, random variable. 

Theorem 3.3 (Chebyshev Theorem) Let 𝑋1, 𝑋2, … be a sequence of random variables 

with means 𝜇1 , 𝜇2 , … and variances 𝜎1
2 , 𝜎2

2 , …. Suppose 𝑐𝑜𝑣(𝑋𝑡, 𝑋𝑠) = 0, 𝑡 ≠ 𝑠 . If 

lim𝑛→∞
∑ 𝜎𝑡

2𝑛
𝑡=1

𝑛2
= 0, then 

∑ 𝑋𝑡
𝑛
𝑡=1

𝑛
−
∑ 𝜇𝑡
𝑛
𝑡=1

𝑛

𝑝
→ 0. 

Proof: (Rao, 1973). 

3.2 Central Limit Theorems 

The classical Lindeberg central limit theorem is for a sequence of independent and 

identically distributed (i.i.d.) random variables with finite variance. A useful extension 

(Theorem 3.4 below) was proposed by Rao (1973) for random variables with different 

means and perhaps different covariance matrices. Although Rao’s extension relaxes the 

assumptions of the variables having the same means and variances, independence 

between variables is still required. 

Theorem 3.4 Let 𝑋1 , 𝑋2 , … be independent random vectors with mean 𝜇1 , 𝜇2 , …, 

covariances Σ1, Σ2, …, and distribution functions 𝐹1, 𝐹2, …. If 

lim𝑛→∞
Σ1+Σ2+⋯+Σ𝑛

𝑛
= Σ, 
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and 

lim𝑛→∞
1

𝑛
∑ ∫ ‖𝑥 − 𝜇𝑡‖

2𝑑𝐹𝑡(𝑥)‖𝑥−𝜇𝑡‖> √𝑛
𝑛
𝑡=1 = 0, ∀휀 > 0. 

Then 

∑ 𝑋𝑡
𝑛
𝑡=1

𝑛
 ~ 𝐴𝑁 (

∑ 𝜇𝑡
𝑛
𝑡=1

𝑛
,
Σ

𝑛
). 

However, in our derivations of the asymptotic distributions of the test statistics, we will 

encounter dependent variables. Therefore, we need a theorem for dependent variables. 

First, we define m-dependence following the definition and theorem by DasGupta 

(2008). 

Definition 3.1 A stationary sequence 𝑋1, 𝑋2, … is called 𝑚-dependent if (𝑋1, 𝑋2, … , 𝑋𝑖) 

and (𝑋𝑖+𝑗, 𝑋𝑖+𝑗+1, … ) are independent whenever 𝑗 > 𝑚 (DasGupta, 2008). 

Theorem 3.5 Let 𝑋1, 𝑋2, … be a stationary 𝑚-dependent sequence with 𝐸(𝑋𝑡) = 𝜇 and 

𝑉𝑎𝑟(𝑋𝑡) = 𝜎2 < ∞. Then 

√𝑛(�̅�𝑛 − 𝜇)
ℒ
→𝑁(0, 𝜏2), 

where 

𝜏2 = 𝜎2 + 2∑ 𝑐𝑜𝑣(𝑋1, 𝑋1+𝑖)
𝑚
𝑖=1 . 

Proof: (Lehmann, 1999). 

Another useful result is the Cramer-Wold theorem as presented by Athreya and Lahiri 

(2006). 

Theorem 3.6 (Cramer-Wold) Let 𝑋1, 𝑋2, … be a sequence of p-dimensional random 

vectors and X be a p-dimensional random vector. 𝑋𝑛
𝑑
→𝑋 if and only if 𝑎𝑋𝑛

𝑑
→ 𝑎𝑋 for all 

𝑎 ∈ ℛ𝑝. 
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Proof: (Athreya and Lahiri, 2006). 

It will be shown in section 4 that the test statistics are functions of various sample 

moments. For those without explicit solutions, we use Taylor’s series expansions to find 

the large sample distribution of test statistics. These expansions are moment expansions, 

i.e., expansions taken with respect to sample moments. Consequently, we require the 

large sample, distributions for these sample moments. The following two theorems are 

central limit theorems for sample moments. As shown by Fuller (1987), Theorems 3.7 

and 3.8 present limiting distributions of sample moments in structural and functional 

case, respectively. 

Theorem 3.7 Let 𝑋1, 𝑋2, … be a sequence of independent identically distributed 𝑘-

dimensional random vectors with mean 𝜇 , covariance matrix Σ , and finite fourth 

moments. Let �̅� denote the sample mean, and 𝑀 = (𝑚𝑖𝑗) the sample covariance matrix. 

Define the vector half of 𝑀 and Σ to be 

vech𝑀 = (𝑚11, 𝑚21, … ,𝑚𝑘1; 𝑚22, 𝑚32, … ,𝑚𝑘2; … ;𝑚(𝑘−1)(𝑘−1), 𝑚𝑘(𝑘−1); 𝑚𝑘𝑘)
𝑇
, 

vechΣ = (𝜎11, 𝜎21, … , 𝜎𝑘1; 𝜎22, 𝜎32, … , 𝜎𝑘2; … ; 𝜎(𝑘−1)(𝑘−1), 𝜎𝑘(𝑘−1); 𝜎𝑘𝑘)
𝑇
, 

𝑦𝑡 = (𝑋𝑡 − 𝜇, [vech{(𝑋𝑡 − 𝜇)
𝑇(𝑋𝑡 − 𝜇) − Σ}]

𝑇), 

and Ω = 𝐸(𝑦𝑡𝑦𝑡
𝑇). Then 

𝑛1 2⁄ (�̅� − 𝜇, [vech{𝑀 − Σ}]𝑇)𝑇
ℒ
→𝑁(0, Ω). 

Proof: (Fuller, 1987). 
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Theorem 3.8 Let 𝑋𝑡 = 𝑥𝑡 + 휀𝑡 , where 휀𝑡  are independent identically distributed 𝑘 -

dimensional random row vectors with zero mean vector, positive definite covariance 

matrix Σ, and finite fourth moments. Let 𝑥1, 𝑥2, … be a fixed sequence satisfying 

lim𝑛→∞ �̅� = 𝜇𝑥, 

lim𝑛→∞𝑀 = lim𝑛→∞ ∑ (𝑥𝑡 − �̅�)
𝑇(𝑥𝑡 − �̅�)

𝑛
𝑡=1 (𝑛 − 1)⁄ = �̅�. 

Let 𝜃 = (�̅�, (vech𝑀)𝑇)𝑇 and 𝜃𝑛 = (�̅�, (vech{𝑀 + Σ})𝑇)𝑇, where the vech operators are 

defined analogously to those in Theorem 3.7. Then 

Ω𝑛
−1 2⁄ ( 𝜃 − 𝜃𝑛)

ℒ
→𝑁(0, 𝐼), 

where Ω𝑛 the covariances matrix of 𝜃, and 

𝑐𝑜𝑣 (�̅�𝑖, (�̅�𝑗, 𝑀𝑗𝑘)) = 𝑛
−1 (𝐸(휀𝑖휀𝑗), 𝐸(휀𝑖휀𝑗휀𝑘)), 

𝑐𝑜𝑣(𝑀𝑖𝑗, 𝑀𝑘𝑙) =
𝑀𝑖𝑘𝐸( 𝑙 𝑗)+𝑀𝑖𝑙𝐸( 𝑘 𝑗)+𝑀𝑗𝑘𝐸( 𝑙 𝑖)+𝑀𝑗𝑙𝐸( 𝑘 𝑖)+𝐸[ 𝑖 𝑗−𝐸( 𝑖 𝑗)][ 𝑘 𝑙−𝐸( 𝑘 𝑙)]

𝑛−1
  

+𝑂(𝑛−2). 

Proof: (Fuller, 1987). 

3.3 Other Useful Methods 

Relationships between normal and chi-squared distributions are helpful in deriving 

the large sample distributions of our estimators and test statistics. We know that if a 

random variable 𝑋 is normally distributed with mean 𝜇 and variance 𝜎2, then 𝑋2 𝜎2⁄  has 

a noncentral chi-squared distribution with one degree of freedom and noncentrality 

parameter 𝜇2 𝜎2⁄ . It is well known that the distribution of a sum of squares of k 

independent standard normal random variables 𝑋1 , 𝑋2 , …, 𝑋𝑘 , is chi-squared with k 
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degrees of freedom. A more general theorem relating multivariate normal random 

variables to chi-square distribution is provided by the following theorem (Serfling 1980). 

Theorem 3.9 Let 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑘) be a multivariate variable normally distributed 

with mean vector 𝜇  and covariance matrix Σ . Let 𝐴  be a 𝑘 × 𝑘  symmetric matrix. 

Suppose for 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑘), 

𝜃Σ = 0 ⇒ 𝜃𝜇𝑇 = 0. 

Then 𝑋𝐴𝑋𝑇 has a chi-squared distribution if and only if 

𝛴𝐴𝛴𝐴𝛴𝐴 = 𝛴𝐴𝛴, 

the degrees of freedom is the trace of 𝐴𝛴 and the noncentrality parameter is 𝜇𝐴𝜇𝑇. 

Proof: (Serfling, 1980). 

Some of the maximum likelihood estimators shown in next section do not have 

explicit expressions. We obtain derivatives for these estimators using the implicit 

function theorem (Krantz and Parks, 2002). Suppose we have a differentiable function 

𝐹(𝑦1, 𝑥1, 𝑥2, … , 𝑥𝑘) = 0  

and 𝑦 is an implicit function of 𝑥, i.e., 𝑦 = 𝑦(𝑥1, 𝑥2, … , 𝑥𝑘). Subject to certain conditions 

(Krantz and Parks, 2002), then for each 𝑖 = 1,2, … , 𝑘 application of the chain rule yields 

𝜕𝑦

𝜕𝑥𝑖
= −

𝜕𝐹 𝜕𝑥𝑖⁄

𝜕𝐹 𝜕𝑦⁄
. 

Applying the chain rule again, we can get the second order derivatives of 𝑦 with respect 

to 𝑥 by using the equation below, 

𝜕𝐹

𝜕𝑦

𝜕2𝑦

𝜕𝑥𝑖𝜕𝑥𝑗
+ (

𝜕2𝐹

𝜕𝑦2
𝜕𝑦

𝜕𝑥𝑗
+

𝜕2𝐹

𝜕𝑦𝜕𝑥𝑗
)
𝜕𝑦

𝜕𝑥𝑖
+

𝜕2𝐹

𝜕𝑥𝑖𝜕𝑦

𝜕𝑦

𝜕𝑥𝑗
+

𝜕2𝐹

𝜕𝑥𝑖𝜕𝑥𝑗
= 0. 
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This is for the situation where function 𝑦 only has one variable 𝑥. For our case, in which 

we have three implicit functions of several variables, it is more complicated to get first 

and second order partial derivatives using this technique. For example, suppose we have 

three differentiable functions 

𝐺𝑖(𝑦1, 𝑦2, 𝑦3, 𝑥1, 𝑥2, … , 𝑥𝑘) = 0, 

and three implicit functions 𝑦𝑖 = 𝑦𝑖(𝑥1, 𝑥2, … , 𝑥𝑘), 𝑖 = 1,2,3 . To find the first order 

derivatives of 𝑦 with respect to 𝑥𝑖, we need to derive the set of equations, 

𝜕𝐺1

𝜕𝑦1

𝜕𝑦1

𝜕𝑥𝑖
+
𝜕𝐺1

𝜕𝑦2

𝜕𝑦2

𝜕𝑥𝑖
+
𝜕𝐺1

𝜕𝑦3

𝜕𝑦3

𝜕𝑥𝑖
+
𝜕𝐺1

𝜕𝑥𝑖
= 0, 

𝜕𝐺2

𝜕𝑦1

𝜕𝑦1

𝜕𝑥𝑖
+
𝜕𝐺2

𝜕𝑦2

𝜕𝑦2

𝜕𝑥𝑖
+
𝜕𝐺2

𝜕𝑦3

𝜕𝑦3

𝜕𝑥𝑖
+
𝜕𝐺2

𝜕𝑥𝑖
= 0, 

𝜕𝐺3

𝜕𝑦1

𝜕𝑦1

𝜕𝑥𝑖
+
𝜕𝐺3

𝜕𝑦2

𝜕𝑦2

𝜕𝑥𝑖
+
𝜕𝐺3

𝜕𝑦3

𝜕𝑦3

𝜕𝑥𝑖
+
𝜕𝐺3

𝜕𝑥𝑖
= 0. 

Applying the chain rule again to these equations, we derive the second order derivatives 

of 𝑦 with respect to 𝑥𝑖 as shown below, 𝑘 = 1,2,3, 

0 =
𝜕𝑦1

𝜕𝑥𝑖
(
𝜕2𝐺𝑘

𝜕𝑦1
2

𝜕𝑦1

𝜕𝑥𝑗
+

𝜕2𝐺𝑘

𝜕𝑦1𝜕𝑦2

𝜕𝑦2

𝜕𝑥𝑗
+

𝜕2𝐺𝑘

𝜕𝑦1𝜕𝑦3

𝜕𝑦3

𝜕𝑥𝑗
+

𝜕2𝐺𝑘

𝜕𝑦1𝜕𝑥𝑗
) +

𝜕𝐺𝑘

𝜕𝑦1

𝜕2𝑦1

𝜕𝑥𝑖𝜕𝑥𝑗
  

+
𝜕𝑦2

𝜕𝑥𝑖
(
𝜕2𝐺𝑘

𝜕𝑦1𝜕𝑦2

𝜕𝑦1

𝜕𝑥𝑗
+
𝜕2𝐺𝑘

𝜕𝑦2
2

𝜕𝑦2

𝜕𝑥𝑗
+

𝜕2𝐺𝑘

𝜕𝑦2𝜕𝑦3

𝜕𝑦3

𝜕𝑥𝑗
+

𝜕2𝐺𝑘

𝜕𝑦2𝜕𝑥𝑗
) +

𝜕𝐺𝑘

𝜕𝑦2

𝜕2𝑦2

𝜕𝑥𝑖𝜕𝑥𝑗
  

+
𝜕𝑦3

𝜕𝑥𝑖
(
𝜕2𝐺𝑘

𝜕𝑦1𝜕𝑦3

𝜕𝑦1

𝜕𝑥𝑗
+

𝜕2𝐺𝑘

𝜕𝑦2𝜕𝑦3

𝜕𝑦2

𝜕𝑥𝑗
+
𝜕2𝐺𝑘

𝜕𝑦3
2

𝜕𝑦3

𝜕𝑥𝑗
+

𝜕2𝐺𝑘

𝜕𝑦3𝜕𝑥𝑗
) +

𝜕𝐺𝑘

𝜕𝑦3

𝜕2𝑦3

𝜕𝑥𝑖𝜕𝑥𝑗
  

+
𝜕2𝐺𝑘

𝜕𝑥𝑖𝜕𝑦1

𝜕𝑦1

𝜕𝑥𝑗
+

𝜕2𝐺𝑘

𝜕𝑥𝑖𝜕𝑦2

𝜕𝑦2

𝜕𝑥𝑗
+

𝜕2𝐺𝑘

𝜕𝑥𝑖𝜕𝑦3

𝜕𝑦3

𝜕𝑥𝑗
+

𝜕2𝐺𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
. 

This system of equations appears to be quite complicated. However, in our application of 

these results, many of the terms are zero. 
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In our derivations we encounter sums of weighted independent chi-squared random 

variables. In these cases, we employ Satterthwaite approximation (Satterthwaite, 1946). 

Suppose we have 𝑘  independent chi-square random variables 𝑋1 , 𝑋2 , …, 𝑋𝑘  with 

degrees of freedom 𝜐1, 𝜐2, …, 𝜐𝑘 respectively. Let 

𝑋 = 𝑐1𝑋1 + 𝑐2𝑋2 +⋯+ 𝑐𝑘𝑋𝑘. 

Then 𝜐𝑋 𝐸(𝑋)⁄  is asymptotically distributed as a chi-square distribution with degrees of 

freedom 𝜐 where 

𝜐 =
𝑋2

∑ {(𝑐𝑖𝑋𝑖)
2 𝜐𝑖⁄ }𝑘

𝑖=1

. 
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4. DISTRIBUTIONS OF TEST STATISTICS 

 

As we have shown in Section 2, there are two models which are structural and 

functional simple linear measurement error models. For each model, we are interested in 

testing the hypothesis of 𝐻0: 𝜌 = 0, and 𝐻0: 𝛽 = 𝑏. We derive the likelihood ratio test 

statistic and efficient score test statistic for every scenario. In this section, we will 

investigate the consistency of the maximum likelihood estimators and the asymptotic 

distribution for test statistics. 

4.1 Consistency for Parameter Estimators 

As stated in section 2.2.1, the likelihood function is shown in (2.13). After that, the 

maximum likelihood estimators for structural model and functional model under two 

different null hypothesis are derived respectively. Also, the MLE without any constraint 

is derived in each case. Below, we are going to show the consistency of these parameter 

estimators. 

4.1.1 Structural case 

In structural model, we have the relationship 𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡 and, 

(
𝑋𝑡
𝑌𝑡
) = (

𝑥𝑡
𝑦𝑡
) + (

𝑒𝑡
𝑢𝑡
)  ,                𝑡 = 1,2, … , 𝑛. 

The main difference from a functional model is that 𝑥𝑡 is a unobservable random sample 

from 𝑁(𝜇𝑥, 𝜎𝑥
2). Under the null hypothesis of 𝐻0: 𝜌 = 0, 𝑒𝑡 and 𝑢𝑡 are two independent 

variables distributed as 𝑁(0, 𝜎2). Therefore, under the null hypothesis, the consistency 

of MLE (𝜇𝑥, �̃�𝑥
2, 𝛽0, 𝛽1, �̃�

2) can be shown as follows. 
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From the set up in Section 2, we know that 

�̅�𝑛 = ∑ 𝑋𝑡
𝑛
𝑡=2 (𝑛 − 1)⁄   

and 

𝑋𝑡 = 𝑥𝑡 + 𝑒𝑡,  𝑡 = 1,2, … , 𝑛. 

Therefore, 

𝑝lim𝜇𝑥 = 𝑝lim�̅�𝑛 = 𝑝lim∑ 𝑥𝑡
𝑛
𝑡=2 (𝑛 − 1)⁄ + 𝑝lim∑ 𝑒𝑡

𝑛
𝑡=2 (𝑛 − 1)⁄ = 𝜇𝑥. 

Thus, the MLE for mean of the distribution where 𝑥𝑡 comes from is consistent. Since 𝑥𝑡, 

𝑒𝑡  and 𝑢𝑡  are independent with one another, the consistency for other parameter 

estimators is easy to show. Remember that for 𝑡 = 1,2, … , 𝑛, 

�̃�𝑡 = 𝑋𝑡 − �̅�𝑛 = 𝑥𝑡 + 𝑒𝑡 − �̅�𝑛 − �̅�𝑛  

and 

�̃�𝑡 = 𝑌𝑡 − �̅�𝑛 = 𝛽0 + 𝛽1𝑥𝑡 + 𝑢𝑡 − 𝛽0 − 𝛽1�̅�𝑛 − �̅�𝑛 = 𝛽1𝑥𝑡 + 𝑢𝑡 − 𝛽1�̅�𝑛 − �̅�𝑛. 

First, by independency of 𝑥𝑡, 𝑒𝑡 and 𝑢𝑡 for any 𝑡 = 1,2, … , 𝑛, we have, 

𝑝lim∑ (𝑥𝑡 − �̅�𝑛)(𝑒𝑡 − �̅�𝑛)
𝑛
𝑡=2 (𝑛 − 1)⁄ = 0, 

𝑝lim∑ (𝑥𝑡 − �̅�𝑛)(𝑢𝑡 − �̅�𝑛)
𝑛
𝑡=2 (𝑛 − 1)⁄ = 0, 

𝑝lim∑ (𝑒𝑡 − �̅�𝑛)(𝑢𝑡 − �̅�𝑛)
𝑛
𝑡=2 (𝑛 − 1)⁄ = 0. 

Also, 

𝑝lim∑ (𝑥𝑡 − �̅�𝑛)
2𝑛

𝑡=2 (𝑛 − 1)⁄ = 𝜎𝑥
2. 

Therefore, substituting the above relationships we have, 

𝑝lim∑ �̃�𝑡�̃�𝑡
𝑛
𝑡=2 (𝑛 − 1)⁄ = 𝛽1𝑝lim

∑ (𝑥𝑡−�̅�𝑛)
2𝑛

𝑡=2

(𝑛−1)
= 𝛽1𝜎𝑥

2.               (4.1) 

Furthermore, since 
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𝑝lim∑ (𝑒𝑡 − �̅�𝑛)
2𝑛

𝑡=2 (𝑛 − 1)⁄ = 𝑝lim∑ (𝑢𝑡 − �̅�𝑛)
2𝑛

𝑡=2 (𝑛 − 1)⁄ = 𝜎2, 

then 

𝑝lim∑ (�̃�𝑡
2 − �̃�𝑡

2)𝑛
𝑡=2 (𝑛 − 1)⁄ = 𝑝lim∑

(𝑥𝑡−�̅�𝑛+𝑒𝑡−�̅�𝑛)
2−(𝛽1𝑥𝑡−𝛽1�̅�𝑛+𝑢𝑡−�̅�𝑛)

2

(𝑛−1)
𝑛
𝑡=2   

= 𝑝lim∑
((1−𝛽1

2)(𝑥𝑡−�̅�𝑛)
2+(𝑒𝑡−�̅�𝑛)

2−(𝑢𝑡−�̅�𝑛)
2)

(𝑛−1)
𝑛
𝑡=2   

= (1 − 𝛽1
2)𝜎𝑥

2.                   (4.2) 

Substituting these two quantities (4.1) and (4.2) into the estimators for 𝛽0 and 𝛽1, we can 

see the consistency of 𝛽0 and 𝛽1. 

𝑝lim𝛽1 = 𝑝lim
−∑ (�̃�𝑡

2−�̃�𝑡
2)𝑛

𝑡=2 +√(∑ (�̃�𝑡
2−�̃�𝑡

2)𝑛
𝑡=2 )

2
+4(∑ �̃�𝑡�̃�𝑡

𝑛
𝑡=2 )

2

2∑ �̃�𝑡�̃�𝑡
𝑛
𝑡=2

  

=
−(1−𝛽1

2)𝜎𝑥
2+√((1−𝛽1

2)𝜎𝑥
2)
2
+4(𝛽1𝜎𝑥

2)
2

2𝛽1𝜎𝑥
2 =

−(1−𝛽1
2)𝜎𝑥

2+(1+𝛽1
2)𝜎𝑥

2

2𝛽1𝜎𝑥
2 = 𝛽1  

And thereafter, 

𝑝lim𝛽0 = 𝑝lim(�̅�𝑛 − 𝛽1�̅�𝑛) = 𝑝lim {
∑ (𝛽0+𝛽1𝑥𝑡+𝑢𝑡)
𝑛
𝑡=2

(𝑛−1)
− 𝛽1

∑ (𝑥𝑡+𝑒𝑡)
𝑛
𝑡=2

(𝑛−1)
}  

= 𝛽0 + 𝛽1𝜇𝑥 − 𝛽1𝜇𝑥 = 𝛽0  

From the above derivation, we can see that MLE for (𝛽0, 𝛽1) are consistent estimators. 

Similarly, we can check the consistency of the variance estimators below. For the 

variance estimator of 𝜎𝑥
2, from (4.1), we have 

𝑝lim�̃�𝑥
2 = 𝑝lim

∑ (�̃�𝑡�̃�𝑡)
𝑛
𝑡=2

(𝑛−1)�̃�1
= 𝜎𝑥

2. 

For the variance estimator of 𝜎2, we have 

𝑝lim�̃�2 = 𝑝lim
∑ (�̃�1�̃�𝑡−�̃�𝑡)

2𝑛
𝑡=2

(𝑛−1)(1+�̃�1
2)

= 𝑝lim
∑ (�̃�1(𝑥𝑡−�̅�𝑛+𝑒𝑡−�̅�𝑛)−(𝛽1𝑥𝑡−𝛽1�̅�𝑛+𝑢𝑡−�̅�𝑛))

2
𝑛
𝑡=2

(𝑛−1)(1+�̃�1
2)
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= 𝑝lim
∑ (�̃�1

2(𝑥𝑡−�̅�𝑛)
2+�̃�1

2(𝑒𝑡−�̅�𝑛)
2−2�̃�1

2(𝑥𝑡−�̅�𝑛)
2+�̃�1

2(𝑥𝑡−�̅�𝑛)
2+(𝑢𝑡−𝑢𝑛)

2)𝑛
𝑡=2

(𝑛−1)(1+�̃�1
2)

  

= 𝑝lim
∑ (�̃�1

2(𝑒𝑡−�̅�𝑛)
2+(𝑢𝑡−𝑢𝑛)

2)𝑛
𝑡=2

(𝑛−1)(1+�̃�1
2)

=
𝛽1
2𝜎2+𝜎2

(1+𝛽1
2)
= 𝜎2  

Then, the MLE for the variance of covariate 𝑥𝑡 and error terms are consistent estimators. 

From the above results, all the MLE estimators under the null hypothesis of 𝐻0: 𝜌 = 0 in 

a structural model are consistent. Now, we consider the MLE’s consistency under the 

null hypothesis of 𝐻0: 𝛽0 = 𝑏0, 𝛽1 = 𝑏1. To get the MLE in this scenario, we have solve 

the two equations (2.17C’’) and (2.17D’’) numerically as shown in Section 2.3.1.3. 

Therefore, to see the consistency of �̇� and �̇�0, we have to look into those two equations 

simultaneously. Then (4.3) and (4.4) as shown below should be satisfied for any pair of 

�̇� and �̇�0. 

𝑝lim{

1−�̇�2�̇�0
2

(1−�̇�2)�̇�0

∑ (�̇�𝑡−�̇��̇�𝑡−1)
2𝑛

𝑡=2

(𝑛−1)
−
∑ (�̃̇�𝑡−�̇��̇�0�̃̇�𝑡−1)

2𝑛
𝑡=2

(𝑛−1)

+
4�̇��̇�0(1−�̇�

2�̇�0
2)

1+�̇�2�̇�0
2

∑ (�̃̇�𝑡−�̇��̇�0�̃̇�𝑡−1)�̇�𝑡−1
𝑛
𝑡=2

(𝑛−1)

} = 0                 (4.3) 

𝑝lim {
∑ (�̇�𝑡−�̇��̇�𝑡−1)�̇�𝑡−1
𝑛
𝑡=2

(𝑛−1)
+ �̇�0

2 (1+�̇�2)

1+�̇�2�̇�0
2

∑ (�̃̇�𝑡−�̇��̇�0�̃̇�𝑡−1)�̇�𝑡−1
𝑛
𝑡=2

(𝑛−1)
} = 0            (4.4) 

First, we consider each term in the above equations separately. We know that 𝑒𝑡 and 𝑢𝑡 

are independent and both of them are from first order autoregressive process. Then 

𝑝lim
∑ 𝑒𝑡−1

2𝑛
𝑡=2

(𝑛−1)
= 𝑝lim

∑ 𝑢𝑡−1
2𝑛

𝑡=2

(𝑛−1)
=

𝜎2

1−𝜌2
, 

𝑝lim
∑ 𝜐𝑡

2𝑛
𝑡=2

(𝑛−1)
= 𝑝lim

∑ 𝛿𝑡
2𝑛

𝑡=2

(𝑛−1)
= 𝜎2. 

Suppose that 

𝑝lim�̇� = 𝜌1 and 𝑝lim�̇�0 = 𝛼01. 
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From the model setup, 𝜐𝑡 and 𝑒𝑡 are independent and 𝛿𝑡 and 𝑢𝑡−1 are independent. Thus, 

for the first summation term in (2.17C’’), we have 

𝑝lim
∑ (�̇�𝑡−�̇��̇�𝑡−1)

2𝑛
𝑡=2

(𝑛−1)
= 𝑝lim

∑ (𝑏1𝑋𝑡−(𝑌𝑡−𝑏0)−�̇�𝑏1𝑋𝑡−1+�̇�(𝑌𝑡−1−𝑏0))
2𝑛

𝑡=2

(𝑛−1)
  

= 𝑝lim
∑ (𝑏1𝑒𝑡−𝑢𝑡−�̇�𝑏1𝑒𝑡−1+�̇�𝑢𝑡−1)

2𝑛
𝑡=2

(𝑛−1)
  

= 𝑝lim
∑ (𝑏1(𝜌−�̇�)𝑒𝑡−1+𝑏1𝜐𝑡−(𝜌−�̇�)𝑢𝑡−1−𝛿𝑡)

2𝑛
𝑡=2

(𝑛−1)
  

= 𝑝lim
∑ (𝑏1

2(𝜌−�̇�)2𝑒𝑡−1
2 +𝑏1

2𝜐𝑡
2+(𝜌−�̇�)2𝑢𝑡−1

2 +𝛿𝑡
2)𝑛

𝑡=2

(𝑛−1)
  

= (1 + 𝑏1
2)(𝜌 − 𝜌1)

2 𝜎2

1−𝜌2
+ (1 + 𝑏1

2)𝜎2  

= (1 + 𝑏1
2)𝐷0((𝜌 − 𝜌1)

2 + (1 − 𝜌2))𝛼0  

where 𝐴 =
𝜎2

1−𝜌2
, 𝐷0 = (1 + 𝑏1

2)𝜎𝑥
2 + 𝐴, and 𝛼0 =

𝐴

𝐷0
. 

For the second summation term in (2.17C’’), recall that for 𝑡 = 1,2, … , 𝑛 

�̃̇�𝑡 = �̇�𝑡 − �̅̇�𝑛 = 𝑋𝑡 − �̅�𝑛 + 𝑏1(𝑌𝑡 − �̅�𝑛)  

= (1 + 𝑏1
2)(𝑥𝑡 − �̅�𝑡) + (𝑒𝑡 − �̅�𝑡) + 𝑏1(𝑢𝑡 − �̅�𝑡)  

= (1 + 𝑏1
2)�̃�𝑡 + �̃�𝑡 + 𝑏1�̃�𝑡. 

Then 

𝑝lim
∑ (�̃̇�𝑡−�̇��̇�0�̃̇�𝑡−1)

2𝑛
𝑡=2

(𝑛−1)
= 𝑝lim

∑ ((1+𝑏1
2)�̃�𝑡+�̃�𝑡+𝑏1𝑢𝑡−�̇��̇�0(1+𝑏1

2)�̃�𝑡−1−�̇��̇�0�̃�𝑡−1−�̇��̇�0𝑏1𝑢𝑡−1)
2

𝑛
𝑡=2

(𝑛−1)
  

= 𝑝lim
∑ ((1+𝑏1

2)(�̃�𝑡−�̇��̇�0�̃�𝑡−1)+�̃�𝑡+𝑏1�̃�𝑡+(𝜌−�̇��̇�0)(�̃�𝑡−1+𝑏1�̃�𝑡−1))
2

𝑛
𝑡=2

(𝑛−1)
  

= (1 + 𝑏1
2) [(1 + 𝑏1

2)𝜎𝑥
2(1 + 𝜌1

2𝛼01
2 ) + 𝜎2 + (𝜌 − 𝜌1𝛼01)

2 𝜎2

1−𝜌2
]  

= (1 + 𝑏1
2)𝐷0((1 + 𝜌1

2𝛼01
2 ) − 2𝜌𝛼0𝜌1𝛼01). 
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Similarly, for the third term in equation (2.17C’’), 

𝑝lim
∑ (�̃̇�𝑡−�̇��̇�0�̃̇�𝑡−1)�̇�𝑡−1
𝑛
𝑡=2

(𝑛−1)
= 𝑝lim

∑ ((1+𝑏1
2)
2
(�̃�𝑡−�̇��̇�0�̃�𝑡−1)�̃�𝑡−1+(𝜌−�̇��̇�0)(�̃�𝑡−1

2 +𝑏1
2𝑢𝑡−1

2 ))𝑛
𝑡=2

(𝑛−1)
  

= (1 + 𝑏1
2)𝐷0(−𝜌1𝛼01 + 𝜌𝛼0). 

The last one is the first term in (2.17D’’) which is 

𝑝lim
∑ (�̇�𝑡−�̇��̇�𝑡−1)�̇�𝑡−1
𝑛
𝑡=2

(𝑛−1)
= 𝑝lim

∑ (𝑏1(𝜌−�̇�)𝑒𝑡−1+𝑏1𝜐𝑡−(𝜌−�̇�)𝑢𝑡−1−𝛿𝑡)(𝑏1𝑒𝑡−1−𝑢𝑡−1)
𝑛
𝑡=2

(𝑛−1)
  

= (1 + 𝑏1
2)𝐷0(𝜌 − 𝜌1)𝛼0. 

Using the results of those four terms, equations (4.3) and (4.4) become 

{

1−𝜌1
2𝛼01

2

(1−𝜌1
2)𝛼01

((𝜌 − 𝜌1)
2 + (1 − 𝜌2))𝛼0 − (1 + 𝜌1

2𝛼01
2 )

+2𝜌𝛼0𝜌1𝛼01 + 4𝜌1𝛼01
1−𝜌1

2𝛼01
2

1+𝜌1
2𝛼01

2 (−𝜌1𝛼01 + 𝜌𝛼0)
} = 0,    (4.5) 

(𝜌 − 𝜌1)𝛼0 +
(𝛼01

2 +𝜌1
2𝛼01

2 )

1+𝜌1
2𝛼01

2 (−𝜌1𝛼01 + 𝜌𝛼0) = 0.                   (4.6) 

Now we need to show that 𝜌1 = 𝜌  and 𝛼01 = 𝛼0 . Since −1 < 𝜌, 𝜌1 < 1 , and 0 <

𝛼0, 𝛼01 < 1, then 

0 <
(𝛼01

2 +𝜌1
2𝛼01

2 )

1+𝜌1
2𝛼01

2 < 1. 

Assume 𝜌1 ≠ 𝜌 and 𝛼01 ≠ 𝛼0, we will show there is a contradiction. From (4.6) we have 

0 <
(𝛼01

2 +𝜌1
2𝛼01

2 )

1+𝜌1
2𝛼01

2 =
𝜌𝛼0−𝜌1𝛼0

𝜌1𝛼01−𝜌𝛼0
< 1. 

If 𝜌𝜌1 < 0, then there is no solution. If 0 ≤ 𝜌1 < 𝜌, then 𝜌𝛼0 < 𝜌1𝛼01, 𝛼0 < 𝛼01 and  

2𝜌𝛼0 < 𝜌1𝛼0 + 𝜌1𝛼01 . If 𝜌1 < 𝜌 < 0 , then 𝜌𝛼0 < 𝜌1𝛼01 , 𝛼0 > 𝛼01  and  2𝜌𝛼0 <

𝜌1𝛼0 + 𝜌1𝛼01. If 0 ≤ 𝜌 < 𝜌1, then 𝜌𝛼0 > 𝜌1𝛼01, 𝛼0 > 𝛼01 and 2𝜌𝛼0 > 𝜌1𝛼0 + 𝜌1𝛼01. 
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If 𝜌 < 𝜌1 < 0 , then 𝜌𝛼0 > 𝜌1𝛼01 , 𝛼0 < 𝛼01  and 2𝜌𝛼0 > 𝜌1𝛼0 + 𝜌1𝛼01 . Consider the 

first case where 0 ≤ 𝜌1 < 𝜌, the left hand side of (4.5) becomes 

{

1−𝜌1
2𝛼01

2

(1−𝜌1
2)𝛼01

(1 − 2𝜌1𝜌 + 𝜌1
2)𝛼0 − (1 + 𝜌1

2𝛼01
2 )

+2𝜌𝛼0𝜌1𝛼01 + 4𝜌1𝛼01
1−𝜌1

2𝛼01
2

1+𝜌1
2𝛼01

2 (−𝜌1𝛼01 + 𝜌𝛼0)
}  

<
1−𝜌1

2𝛼01
2

(1−𝜌1
2)𝛼01

(1 − 2𝜌1𝜌 + 𝜌1
2)𝛼0 − (1 + 𝜌1

2𝛼01
2 ) + 2𝜌𝛼0𝜌1𝛼01  

<
1−𝜌1

2𝛼01
2

(1−𝜌1
2)𝛼01

(1 − 2𝜌1
2 + 𝜌1

2)𝛼01 − (1 + 𝜌1
2𝛼01

2 ) + 2𝜌1
2𝛼01

2 = 0  

Thus, the left hand side of (4.5) is less than zero which contradicts the right hand side of 

(4.5) which equals 0. This holds for the other three situations. Therefore, the assumption 

of 𝜌1 ≠ 𝜌  and 𝛼01 ≠ 𝛼0  is not correct. Thus, 𝜌1 = 𝜌 , or 𝛼01 = 𝛼0 , or 𝜌1 = 𝜌  and 

𝛼01 = 𝛼0. From (4.6), it is obvious that if 𝜌1 = 𝜌 then 𝛼01 = 𝛼0 and vice versa. So we 

can conclude that 𝜌1 = 𝜌 and 𝛼01 = 𝛼0. This means that MLE �̇� and �̇�0 are consistent 

estimators. Also, 

𝑝lim�̇�0 = 𝑝lim
1

(1+𝑏1
2)
{

1

1−�̇�2�̇�0
2

∑ (�̃̇�𝑡−�̇��̇�0�̃̇�𝑡−1)
2𝑛

𝑡=2

(𝑛−1)
−

2�̇��̇�0

1+�̇�2�̇�0
2

∑ (�̃̇�𝑡−�̇��̇�0�̃̇�𝑡−1)�̇�𝑡−1
𝑛
𝑡=2

(𝑛−1)
}  

=
1

(1+𝑏1
2)
{

1

1−𝜌2𝛼0
2 ((1 + 𝑏1

2)𝐷0(1 − 𝜌
2𝛼0

2))} = 𝐷0. 

Then 

𝑝lim�̇�2 = 𝑝lim(1 − �̇�2)�̇�0�̇�0 = 𝜎2, 

𝑝lim�̇�𝑥
2 = 𝑝lim

1−�̇�0

(1+𝑏1
2)
�̇�0 = 𝜎𝑥

2, 

𝑝lim�̇�𝑥 = 𝑝lim
(�̅̇�𝑛−�̇��̇�0�̅̇�𝑛−1)

(1+𝑏1
2)(1−�̇��̇�0)

=
1

(1+𝑏1
2)(1−𝜌𝛼0)

(1 + 𝑏1
2)𝜇𝑥(1 − 𝜌𝛼0) = 𝜇𝑥. 
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Thus, under the null hypothesis of 𝐻0: 𝛽0 = 𝑏0, 𝛽1 = 𝑏1, all the MLEs (�̇�𝑥, �̇�𝑥
2, �̇�2, �̇�) are 

consistent estimators in structural case. 

At this point, we have shown that for a structural model the maximum likelihood 

estimators under the two different null hypotheses are all consistent. In the same manner, 

the consistency of the MLEs under 𝐻0: 𝛽0 = 𝑏0, 𝛽1 = 𝑏1  can be shown. Also, the 

consistency of the MLEs without any constraints can be shown as well. 

4.1.2 Functional case 

In a functional model, {𝑥𝑡: 𝑡 = 1,2, … , 𝑛}  is a sequence of fixed value with 

assumptions (2.5) and (2.6). Therefore, it is treated as a sequence of nuisance parameters 

that must be estimated. One of the consequences of fixed 𝑥𝑡 is that the usual MLE may 

not be consistent. Now, let us consider the MLEs under 𝐻0: 𝜌 = 0 and 𝐻0: 𝛽0 = 𝑏0, 𝛽1 =

𝑏1 respectively. 

The MLEs under the null hypothesis of 𝐻0: 𝜌 = 0 were derived in section 2.3.2.1. 

We notice that 

(𝑆𝑋𝑋 − 𝑆𝑌𝑌) (𝑛 − 1)⁄ = ∑ (𝑋𝑡 − �̅�)
2𝑛

𝑡=2 (𝑛 − 1)⁄ − ∑ (𝑌𝑡 − �̅�)
2𝑛

𝑡=2 (𝑛 − 1)⁄   

=
∑ 𝑋𝑡

2𝑛
𝑡=2 −�̅�2−∑ 𝑌𝑡

2𝑛
𝑡=2 +�̅�2

(𝑛−1)
  

=
∑ ((𝑥𝑡+𝑒𝑡)

2−(�̅�𝑛+�̅�𝑛)
2)𝑛

𝑡=2 −∑ ((𝑦𝑡+𝑢𝑡)
2−(�̅�𝑛+�̅�𝑛)

2)𝑛
𝑡=2

(𝑛−1)
. 

Since 𝑒𝑡 and 𝑢𝑡 are from normal distribution with mean 0 and variance 𝜎2 under 

𝐻0: 𝜌 = 0 and 𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡, then 

𝑝lim (𝑆𝑋𝑋 − 𝑆𝑌𝑌) (𝑛 − 1)⁄ =
∑ 𝑥𝑡

2𝑛
𝑡=2

(𝑛−1)
+ 𝜎2 − �̅�𝑛

2 −
∑ 𝑦𝑡

2𝑛
𝑡=2

(𝑛−1)
− 𝜎2 + �̅�𝑛

2  
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=
∑ (𝑥𝑡−�̅�𝑛)

2𝑛
𝑡=2

(𝑛−1)
−
∑ (𝑦𝑡−�̅�𝑛)

2𝑛
𝑡=2

(𝑛−1)
  

= (1 − 𝛽1
2)𝑝lim

∑ (𝑥𝑡−�̅�𝑛)
2𝑛

𝑡=2

(𝑛−1)
. 

Similarly, 

𝑆𝑋𝑌 (𝑛 − 1)⁄ =
∑ (𝑋𝑡−�̅�)(𝑌𝑡−�̅�)
𝑛
𝑡=2

(𝑛−1)
=

∑ (𝑥𝑡+𝑒𝑡)(𝑦𝑡+𝑢𝑡)
𝑛
𝑡=2

(𝑛−1)
− (�̅�𝑛 + �̅�𝑛)(�̅�𝑛 + �̅�𝑛), 

and 

𝑝lim 𝑆𝑋𝑌 (𝑛 − 1)⁄ = 𝑝lim {
∑ 𝑥𝑡𝑦𝑡
𝑛
𝑡=2

(𝑛−1)
− �̅�𝑛�̅�𝑛} = 𝑝lim𝛽1

∑ (𝑥𝑡−�̅�𝑛)
2𝑛

𝑡=2

(𝑛−1)
. 

Therefore, the MLE for 𝛽1 is a consistent estimator as shown below. 

𝑝lim�̃�1 = 𝑝lim
−(𝑆𝑋𝑋−𝑆𝑌𝑌)+√(𝑆𝑋𝑋−𝑆𝑌𝑌)2+4𝑆𝑋𝑌

2

2𝑆𝑋𝑌
  

= 𝑝lim
−
(1−𝛽1

2)∑ (𝑥𝑡−�̅�𝑛)
2𝑛

𝑡=2
(𝑛−1)

+√[
(1−𝛽1

2)∑ (𝑥𝑡−�̅�𝑛)
2𝑛

𝑡=2
(𝑛−1)

]

2

+4[
𝛽1∑ (𝑥𝑡−�̅�𝑛)

2𝑛
𝑡=2
(𝑛−1)

]

2

2𝛽1
∑ (𝑥𝑡−�̅�𝑛)

2𝑛
𝑡=2

(𝑛−1)

  

=
−(1−𝛽1

2)+√(1−𝛽1
2)
2
+4𝛽1

2

2𝛽1
= 𝛽1  

Following the consistency of the estimator for 𝛽1, the consistency of 𝛽0 can be shown as 

𝑝lim𝛽0 = 𝑝lim(�̅� − 𝛽1�̅�) = 𝑝lim(𝛽0 + 𝛽1�̅�𝑛 − 𝛽1�̅�𝑛) = 𝛽0. 

For the nuisance parameters, we have 

𝑝lim�̃�𝑡 = 𝑝lim
(𝑌𝑡−�̃�0)�̃�1+𝑋𝑡

1+�̃�1
2 = 𝑥𝑡 +

𝛽1𝑢𝑡+𝑒𝑡

1+𝛽1
2      𝑡 = 1, 2, … , 𝑛. 

Thus, under the null hypothesis the MLE (�̃�1, �̃�2, … , �̃�𝑛, 𝛽0, 𝛽1) are consistent estimators. 

However, the estimator for 𝜎2 is inconsistent because 

𝑝lim�̃�2 = 𝑝lim
1

2(𝑛−1)
∑ {(𝑋𝑡 − �̃�𝑡)

2 + (𝑌𝑡 − �̃�𝑡)
2}𝑛

𝑡=2   
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= 𝑝lim

∑ {(𝑥𝑡+𝑒𝑡−𝑥𝑡−
𝛽1𝑢𝑡+𝑒𝑡

1+𝛽1
2 )

2

+(𝛽1𝑥𝑡+𝑢𝑡−𝛽1𝑥𝑡−𝛽1
𝛽1𝑢𝑡+𝑒𝑡

1+𝛽1
2 )

2

}𝑛
𝑡=2

2(𝑛−1)
  

= 𝑝lim

∑ {(𝑒𝑡−
𝛽1𝑢𝑡+𝑒𝑡

1+𝛽1
2 )

2

+(𝑢𝑡−𝛽1
𝛽1𝑢𝑡+𝑒𝑡

1+𝛽1
2 )

2

}𝑛
𝑡=2

2(𝑛−1)
  

= 𝑝lim

∑ {(
𝛽1
2

1+𝛽1
2𝑒𝑡−

𝛽1

1+𝛽1
2𝑢𝑡)

2

+(
1

1+𝛽1
2𝑢𝑡−

𝛽1

1+𝛽1
2𝑒𝑡)

2

}𝑛
𝑡=2

2(𝑛−1)
  

= 𝑝lim

1

(1+𝛽1
2)
∑ (𝛽1𝑒𝑡−𝑢𝑡)

2𝑛
𝑡=2

2(𝑛−1)
=

𝜎2

2
. 

The MLE of 𝜎2 is a consistent estimator for 𝜎2 2⁄ . For the case  𝐻0: (𝛽0, 𝛽1) = (𝑏0, 𝑏1), 

the inconsistency problem will be shown to be the same as the above. In section 2.3.2.3, 

the maximum likelihood estimators are derived for all parameters including the nuisance 

parameters. For the MLE of 𝜌, we have 

𝑝lim�̈� = 𝑝lim
∑ (𝑏1𝑋𝑡−𝑌𝑡+𝑏0)(𝑏1𝑋𝑡−1−𝑌𝑡−1+𝑏0)
𝑛
𝑡=2

∑ (𝑏1𝑋𝑡−1−𝑌𝑡−1+𝑏0)2
𝑛
𝑡=2

  

= 𝑝lim
∑ (𝑏1𝑒𝑡−𝑢𝑡)(𝑏1𝑒𝑡−1−𝑢𝑡−1)
𝑛
𝑡=2

∑ (𝑏1𝑒𝑡−1−𝑢𝑡−1)2
𝑛
𝑡=2

  

= 𝑝lim
∑ (𝑏1

2𝑒𝑡𝑒𝑡−1+𝑢𝑡𝑢𝑡−1)
𝑛
𝑡=2

∑ (𝑏1
2𝑒𝑡−1

2 +𝑢𝑡−1
2 )

2𝑛
𝑡=2

  

= 𝑝lim {𝜌 +
∑ (𝑏1

2𝑒𝑡−1𝜐𝑡+𝑢𝑡−1𝛿𝑡)
𝑛
𝑡=2

∑ (𝑏1
2𝑒𝑡−1

2 +𝑢𝑡−1
2 )

2𝑛
𝑡=2

} = 𝜌. 

The second equality is because the independence of 𝑢𝑡 and 𝑒𝑡 for any 𝑡 = 1,2, … , 𝑛. The 

last equality is because 𝑒𝑡−1 and 𝜐𝑡 are independent, and also 𝑢𝑡−1 is independent with 

𝛿𝑡. Similarly, the limit for nuisance parameters would be 

𝑝lim�̈�𝑡 = 𝑝lim
(𝑋𝑡−�̈�𝑋𝑡−1)+𝑏1(𝑌𝑡−�̈�𝑌𝑡−1)−𝑏0𝑏1(1−�̈�)

1+𝑏1
2   
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= 𝑝lim
(𝑥𝑡−𝜌𝑥𝑡−1+𝜐𝑡)+𝑏1

2(𝑥𝑡−𝜌𝑥𝑡−1)+𝑏1𝛿𝑡

1+𝑏1
2   

= 𝜆𝑡 +
𝜐𝑡+𝑏1𝛿𝑡

1+𝑏1
2    𝑡 = 1,2, … , 𝑛. 

Then with these two results, the inconsistency of �̈�2 can be shown as 

𝑝lim�̈�2 = 𝑝lim
1

2(𝑛−1)
∑ {(𝑋𝑡 − �̈�𝑡 − �̈�𝑋𝑡−1)

2
+ (𝑌𝑡 − �̈�𝑡 − �̈�𝑌𝑡−1)

2}𝑛
𝑡=2   

= 𝑝lim
1

2(𝑛−1)
∑ {(𝜐𝑡 −

𝜐𝑡+𝑏1𝛿𝑡

1+𝑏1
2 )

2

+ (𝛿𝑡 − 𝑏1
𝜐𝑡+𝑏1𝛿𝑡

1+𝑏1
2 )

2

}𝑛
𝑡=2   

= 𝑝lim
1

2(𝑛−1)(1+𝑏1
2)
2∑ {𝑏1

2(𝛿𝑡 − 𝑏1𝜐𝑡)
2 + (𝛿𝑡 − 𝑏1𝜐𝑡)

2}𝑛
𝑡=2   

=
1

2(1+𝑏1
2)
(𝜎2 + 𝑏1

2𝜎2) =
𝜎2

2
. 

Thus, we have shown that �̈�2 is an inconsistent MLE estimator for 𝜎2 but the MLEs for 

the other parameters are consistent. 

The maximum likelihood estimators for 𝜌 and 𝛽1 without any constraint are obtained 

by solving an equation system iteratively. Thus, 

𝑝lim�̂� = 𝑝lim
∑ {(�̂�1𝑋𝑡−𝑌𝑡)−(�̂�1�̅�𝑛−�̅�𝑛)}{(�̂�1𝑋𝑡−1−𝑌𝑡−1)−(�̂�1�̅�𝑛−1−�̅�𝑛−1)}
𝑛
𝑡=2

∑ {(�̂�1𝑋𝑡−1−𝑌𝑡−1)−(�̂�1�̅�𝑛−1−�̅�𝑛−1)}
2𝑛

𝑡=2

≝ 𝜌0, 

𝑝lim�̂�1 = 𝑝lim
−(�̈�𝑋𝑋−�̈�𝑌𝑌)+√(�̈�𝑋𝑋−�̈�𝑌𝑌)2+4�̈�𝑋𝑌

2

2�̈�𝑋𝑌
≝ 𝛽10. 

Because the terms in �̂�1 have limits as shown below, 

𝑝lim �̂�𝑋𝑋 (𝑛 − 1)⁄ = 𝑝lim
∑ {(𝑋𝑡−�̂�𝑋𝑡−1)−(�̅�𝑛−�̂��̅�𝑛−1)}

2𝑛
𝑡=2

(𝑛−1)
  

= 𝑝lim
∑ (�̃�𝑡+�̃�𝑡−𝜌0�̃�𝑡−1−𝜌0�̃�𝑡−1)

2𝑛
𝑡=2

(𝑛−1)
  

= (1 + 𝜌0
2)𝜎𝑥

2 + (1 + 𝜌0
2)

𝜎2

1−𝜌2
− 2𝜌0𝜌

𝜎2

1−𝜌2
, 
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and 

𝑝lim �̂�𝑌𝑌 (𝑛 − 1)⁄ = 𝑝lim
∑ {(𝑌𝑡−�̂�𝑌𝑡−1)−(�̅�𝑛−�̂��̅�𝑛−1)}

2𝑛
𝑡=2

(𝑛−1)
  

= 𝛽1
2(1 + 𝜌0

2)𝜎𝑥
2 + (1 + 𝜌0

2)
𝜎2

1−𝜌2
− 2𝜌0𝜌

𝜎2

1−𝜌2
, 

and also, 

𝑝lim �̂�𝑋𝑌 (𝑛 − 1)⁄ = 𝑝lim
∑ {(𝑋𝑡−�̂�𝑋𝑡−1)−(�̅�𝑛−�̂��̅�𝑛−1)}{(𝑌𝑡−�̂�𝑌𝑡−1)−(�̅�𝑛−�̂��̅�𝑛−1)}
𝑛
𝑡=2

(𝑛−1)
  

= 𝛽1(1 + 𝜌0
2)𝜎𝑥

2, 

then �̂�1 is a consistent estimator for 𝛽1, 

𝑝lim�̂�1 = 𝑝lim
−(�̈�𝑋𝑋−�̈�𝑌𝑌)+√(�̈�𝑋𝑋−�̈�𝑌𝑌)2+4�̈�𝑋𝑌

2

2�̈�𝑋𝑌
= 𝛽1. 

Furthermore, the limits of terms in �̂� are, 

𝑝lim
∑ {(�̂�1𝑋𝑡−𝑌𝑡)−(�̂�1�̅�𝑛−�̅�𝑛)}{(�̂�1𝑋𝑡−1−𝑌𝑡−1)−(�̂�1�̅�𝑛−1−�̅�𝑛−1)}
𝑛
𝑡=2

(𝑛−1)
  

= 𝑝lim
∑ (𝛽1�̃�𝑡−�̃�𝑡)(𝛽1�̃�𝑡−1−�̃�𝑡−1)
𝑛
𝑡=2

(𝑛−1)
= (1 + 𝛽1

2)𝜌
𝜎2

1−𝜌2
, 

and 

𝑝lim
∑ {(�̂�1𝑋𝑡−1−𝑌𝑡−1)−(�̂�1�̅�𝑛−1−�̅�𝑛−1)}

2𝑛
𝑡=2

(𝑛−1)
= 𝑝lim

∑ (𝛽1�̃�𝑡−1−𝑢𝑡−1)
2𝑛

𝑡=2

(𝑛−1)
= (1 + 𝛽1

2)
𝜎2

1−𝜌2
. 

Therefore, 

𝑝lim�̂� = 𝑝lim
∑ {(�̂�1𝑋𝑡−𝑌𝑡)−(�̂�1�̅�𝑛−�̅�𝑛)}{(�̂�1𝑋𝑡−1−𝑌𝑡−1)−(�̂�1�̅�𝑛−1−�̅�𝑛−1)}
𝑛
𝑡=2

∑ {(�̂�1𝑋𝑡−1−𝑌𝑡−1)−(�̂�1�̅�𝑛−1−�̅�𝑛−1)}
2𝑛

𝑡=2

= 𝜌. 

That is, the estimator for 𝜌 is also consistent. Because of the consistency of �̂� and �̂�1, we 

have 

𝑝lim�̂�0 = 𝑝lim
(�̅�𝑛−�̂��̅�𝑛−1)−�̂�1(�̅�𝑛−�̂��̅�𝑛−1)

1−�̂�
=

(𝛽0+𝛽1�̅�𝑛−𝜌𝛽0−𝜌𝛽1�̅�𝑛−1)−𝛽1(�̅�𝑛−𝜌�̅�𝑛−1)

1−𝜌
= 𝛽0, 
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𝑝lim�̂�𝑡 = 𝑝lim
(𝑋𝑡−�̂�𝑋𝑡−1)+�̂�1(𝑌𝑡−�̂�𝑌𝑡−1)−�̂�0�̂�1(1−�̂�)

1+�̂�1
2 = 𝑥𝑡 − 𝜌𝑥𝑡−1 +

𝜐𝑡+𝛽1𝛿𝑡

1+𝛽1
2      𝑡 = 2,3, … , 𝑛 

𝑝lim�̂�2 = 𝑝lim
1

2(𝑛−1)
∑ {(𝑋𝑡 − �̂�𝑡 − �̂�𝑋𝑡−1)

2
+ (𝑌𝑡 − 𝛾𝑡 − �̂�𝑌𝑡−1)

2}𝑛
𝑡=2   

= 𝑝lim
1

2(𝑛−1)
∑ {(𝜐𝑡 −

𝜐𝑡+𝛽1𝛿𝑡

1+𝛽1
2 )

2

+ (𝛿𝑡 − 𝛽1
𝜐𝑡+𝛽1𝛿𝑡

1+𝛽1
2 )

2

}𝑛
𝑡=2 =

𝜎2

2
. 

Therefore, all MLE parameter estimators are consistent except �̂�2 which converges to 

𝜎2 2⁄  instead of 𝜎2. 

4.2 Property of Test Statistics for Structural Model 

4.2.1 Efficient score test statistic under 𝑯𝟎: 𝝆 = 𝟎 

In section 4.1, it was shown that all the MLE estimators are consistent estimators. In 

this section, the large sample distribution for the efficient score test statistic under the 

null hypothesis will be derived. Because of the consistency of each estimator, we have 

1

√𝑛−1
𝑝lim

𝜕ℓ𝑠

𝜕𝜌
|
𝜌=0

=
𝜎2

(1+𝛽1
2)[(1+𝛽1

2)𝜎𝑥
2+𝜎2]

2

1

√𝑛−1
𝑝lim∑ (�̃�𝑡 + 𝛽1�̃�𝑡)(�̃�𝑡−1 + 𝛽1�̃�𝑡−1)

𝑛
𝑡=2   

+
1

(1+𝛽1
2)𝜎2

𝑝lim
∑ [𝛽1𝑋𝑡−(𝑌𝑡−𝛽0)][𝛽1𝑋𝑡−1−(𝑌𝑡−1−𝛽0)]
𝑛
𝑡=2

√𝑛−1
  

= 𝑝lim
𝜎2∑ [(1+𝛽1

2)(𝑥𝑡−𝜇𝑥)+𝑒𝑡+𝛽1𝑢𝑡][(1+𝛽1
2)(𝑥𝑡−1−𝜇𝑥)+𝑒𝑡−1+𝛽1𝑢𝑡−1]

𝑛
𝑡=2

(1+𝛽1
2)[(1+𝛽1

2)𝜎𝑥
2+𝜎2]

2
√𝑛−1

  

+𝑝lim
1

(1+𝛽1
2)𝜎2

∑ (𝛽1
2𝑒𝑡𝑒𝑡−1−𝛽1𝑒𝑡−1𝑢𝑡−𝛽1𝑒𝑡𝑢𝑡−1+𝑢𝑡𝑢𝑡−1)

𝑛
𝑡=2

√𝑛−1
. 

Let 

𝑊𝑠1𝑡 =
[(1+𝛽1

2)(𝑥𝑡−𝜇𝑥)+𝑒𝑡+𝛽1𝑢𝑡][(1+𝛽1
2)(𝑥𝑡−1−𝜇𝑥)+𝑒𝑡−1+𝛽1𝑢𝑡−1]

𝜎−2(1+𝛽1
2)𝐷1

2 +
(𝛽1𝑒𝑡−𝑢𝑡)(𝛽1𝑒𝑡−1−𝑢𝑡−1)

(1+𝛽1
2)𝜎2

. 

where 𝐷1 = (1 + 𝛽1
2)𝜎𝑥

2 + 𝜎2. 

Then, 
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1

√𝑛−1
𝑝lim

𝜕ℓ𝑠

𝜕𝜌
|
𝜌=0

=
1

√𝑛−1
∑ 𝑊𝑠1𝑡
𝑛
𝑡=2 . 

It is obvious that the random variable 𝑊𝑠1𝑡  is 1-dependent. Further, notice that the 

expectation of 𝑊𝑠1𝑡 is 

𝐸(𝑊𝑠1𝑡) = 0, 

and the variance of 𝑊𝑠1𝑡 is 

𝑉𝑎𝑟(𝑊𝑠1𝑡) = 1 +
𝜎4

𝐷1
2. 

Then the covariance of 𝑊𝑠12 and 𝑊𝑠13 is, 

𝑐𝑜𝑣(𝑊𝑠12,𝑊𝑠13) = 0. 

Thus, according to Theorem 3.5 in section 3, we have 

1

√𝑛−1
∑ 𝑊𝑠1𝑡
𝑛
𝑡=2

𝑑
→𝑁 (0,1 +

𝜎4

𝐷0
2). 

Therefore, the score element with respect to 𝜌 is asymptotically normally distributed 

with mean 0 and variance 1 +
𝜎4

𝐷1
2. 

Because all the estimators are consistent, the efficient score test statistic for testing 

𝜌 = 0 will satisfy 

𝑝lim𝑇𝐸𝑆,𝑠,𝜌 = (1 +
𝜎4

𝐷1
2)
−1

(
1

√𝑛−1
∑ 𝑊𝑠1𝑡
𝑛
𝑡=2 )

2

, 

which is the square of an asymptotically normally distributed random variable with 

mean zero and variance one. Therefore, 

𝑇𝐸𝑆,𝑠,𝜌
𝑑
→𝜒1

2. 

That is, the distribution of the efficient score test statistic under the null hypothesis of 

𝜌 = 0 converges to a chi-squared distribution with one degree of freedom. 
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4.2.2 Likelihood ratio test statistic under 𝑯𝟎: 𝝆 = 𝟎 

There is no explicit expression for the MLEs in this case. The Taylor expansion will 

be useful in determining the large sample distribution for the test statistic. To simplify 

the notation, we need to define some variables first. Let 

�̂� = (�̂�𝑋 , �̂�𝑌, �̂�𝑋2 , �̂�𝑌2 , �̂�𝑋𝑌, �̂�𝑋𝑌1, �̂�𝑋1𝑌, �̂�𝑋𝑋 , �̂�𝑌𝑌) 

where 

�̂�𝑋 = �̅�, �̂�𝑌 = �̅�, �̂�𝑋2 =
1

𝑛−1
∑ (𝑋𝑡 − �̅�)

2𝑛
𝑡=2 , �̂�𝑌2 =

1

𝑛−1
∑ (𝑌𝑡 − �̅�)

2𝑛
𝑡=2 , 

�̂�𝑋𝑌 =
1

𝑛−1
∑ (𝑋𝑡 − �̅�)(𝑌𝑡 − �̅�)
𝑛
𝑡=2 ,  

�̂�𝑋𝑌1 =
1

𝑛−1
∑ (𝑋𝑡 − �̅�)(𝑌𝑡−1 − �̅�)
𝑛
𝑡=2 , �̂�𝑋1𝑌 =

1

𝑛−1
∑ (𝑋𝑡−1 − �̅�)(𝑌𝑡 − �̅�)
𝑛
𝑡=2 , 

�̂�𝑋𝑋 =
1

𝑛−1
∑ (𝑋𝑡 − �̅�)(𝑋𝑡−1 − �̅�)
𝑛
𝑡=2 , �̂�𝑌𝑌 =

1

𝑛−1
∑ (𝑌𝑡 − �̅�)(𝑌𝑡−1 − �̅�)
𝑛
𝑡=2 . 

All the estimators are functions of these new variables. Thus, the test statistic is a 

complicated function of the new variables. Next we expand the test statistic about �̂�. 

Under the null hypothesis, �̂�  converges to 𝜓 = (𝜇𝑥, 𝛽0 + 𝛽1𝜇𝑥, 𝜎𝑥
2 + 𝜎2, 𝛽1

2𝜎𝑥
2 +

𝜎2, 𝛽1𝜎𝑥
2, 0,0,0,0). It is obvious that the first order derivatives of the test statistic are all 

zero. 

The second order derivatives of the test statistic can be found using the implicit function 

theorem and the chain rule because we do not have an explicit expression for each 

variable. The second order derivatives of the test statistic is generally expressed as, 

𝜕2𝑇𝐿𝑅𝑇,𝑠,𝜌

𝜕�̂�𝑇𝜕�̂�
= −(𝑛 − 1) (−

1

|Σ̂𝑠|
2

𝜕|Σ̂𝑠|

𝜕�̂�𝑇

𝜕|Σ̂𝑠|

𝜕�̂�
+

1

|Σ̃𝑠|
2

𝜕|Σ̃𝑠|

𝜕�̂�𝑇

𝜕|Σ̃𝑠|

𝜕�̂�
+

1

|Σ̂𝑠|

𝜕2|Σ̂𝑠|

𝜕�̂�𝑇𝜕�̂�
−

1

|Σ̃𝑠|

𝜕2|Σ̃𝑠|

𝜕�̂�𝑇𝜕�̂�
). 
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The second order derivatives of |Σ̃𝑠| is easy to obtain and the non-zero part of it is given 

by 

𝜕2|Σ̃𝑠|

𝜕(�̂�𝑋2 ,�̂�𝑌2 ,�̂�𝑋𝑌)
𝑇
𝜕(�̂�𝑋2 ,�̂�𝑌2 ,�̂�𝑋𝑌)

=

(

 
 

−
2𝛽1

2

(1+𝛽1
2)
2

𝜎2

𝜎𝑥
2 2

𝛽1
2

(1+𝛽1
2)
2

𝜎2

𝜎𝑥
2 + 1 0

2
𝛽1
2

(1+𝛽1
2)
2

𝜎2

𝜎𝑥
2 + 1 0 0

0 0 𝑐33)

 
 

  

where 

𝑐33 = −
(1−𝛽1

2)
2

(1+𝛽1
2)
2

𝜎2

𝜎𝑥
2 −

8𝛽1
2(1−𝛽1

2)

(1+𝛽1
2)
2 −

2(1−𝛽1
2)
2

(1+𝛽1
2)
2 . 

However, the second order derivatives for |Σ̂𝑠| is very complicated. After we obtain all 

the derivatives, we know the asymptotical distribution for this test statistic is chi-squared 

with one degree of freedom. The large sample distribution for the test statistics used to 

test the intercept and slope can be achieved using the same idea since the central limit 

theorem works for weakly dependent data. 

4.3 Property of Test Statistics for Functional Model 

4.3.1 Efficient score test statistic under 𝑯𝟎: 𝝆 = 𝟎 

Now we are going to determine the large sample distribution of the efficient score 

test statistic under the null hypothesis. In section 2.3.2.1, the efficient score test statistic 

for the null hypothesis 𝐻0: 𝜌 = 0 is derived as 

𝑇𝐸𝑆,𝑓,𝜌 =
1

2(𝑛−1)
(
𝜕ℓ𝑓

𝜕𝜌
|
𝜌=0

)

2

  

where 
𝜕ℓ𝑓

𝜕𝜌
|
𝜌=0

=
1

�̃�2
∑ {(𝑋𝑡 − �̃�𝑡)(𝑋𝑡−1 − �̃�𝑡−1) + (𝑌𝑡 − �̃�𝑡)(𝑌𝑡−1 − �̃�𝑡−1)}
𝑛
𝑡=2 . 
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Notice that the MLE estimator for 𝜎2 is inconsistent and converges to 𝜎2 2⁄ . This 

has been shown in section 4.2. Also, 

𝑝lim�̃�𝑡 = 𝑥𝑡 +
𝛽1𝑢𝑡+𝑒𝑡

1+𝛽1
2        𝑡 = 1,2, … , 𝑛. 

Using the relationships derived in section 4.2, we consider the first derivative with 

respect to 𝜌 under the null hypothesis. Therefore, 

𝑝lim
𝜕ℓ𝑓

𝜕𝜌
|
𝜌=0

= 𝑝lim
1

�̃�2
∑ {(𝑋𝑡 − �̃�𝑡)(𝑋𝑡−1 − �̃�𝑡−1) + (𝑌𝑡 − �̃�𝑡)(𝑌𝑡−1 − �̃�𝑡−1)}
𝑛
𝑡=2   

=
2

𝜎2
∑ (𝑒𝑡 −

𝛽1𝑢𝑡+𝑒𝑡

1+𝛽1
2 ) (𝑒𝑡−1 −

𝛽1𝑢𝑡−1+𝑒𝑡−1

1+𝛽1
2 )𝑛

𝑡=2   

+
2

𝜎2
∑ (𝑢𝑡 − 𝛽1

𝛽1𝑢𝑡+𝑒𝑡

1+𝛽1
2 ) (𝑢𝑡−1 − 𝛽1

𝛽1𝑢𝑡−1+𝑒𝑡−1

1+𝛽1
2 )𝑛

𝑡=2   

=
2∑ {(𝛽1

2𝑒𝑡−𝛽1𝑢𝑡)(𝛽1
2𝑒𝑡−1−𝛽1𝑢𝑡−1)+(𝑢𝑡−𝛽1𝑒𝑡)(𝑢𝑡−1−𝛽1𝑒𝑡−1)}

𝑛
𝑡=2

(1+𝛽1
2)
2
𝜎2

  

=
2∑ (𝛽1𝑒𝑡−𝑢𝑡)(𝛽1𝑒𝑡−1−𝑢𝑡−1)

𝑛
𝑡=2

(1+𝛽1
2)𝜎2

. 

From the assumption of the model, 𝑒𝑡 and 𝑢𝑡 are independent for any 𝑡 = 1,2, … , 𝑛. 

And furthermore, under the null hypothesis of 𝜌 = 0, we have 

(
𝑒𝑡
𝑢𝑡
) ~ 𝑖. 𝑖. 𝑑. 𝑁(0, 𝜎2𝐼)        𝑡 = 1,2, … , 𝑛. 

Therefore, 

𝛽1𝑒𝑡 − 𝑢𝑡 = (𝛽1, −1) (
𝑒𝑡
𝑢𝑡
)  

 ~ 𝑖. 𝑖. 𝑑. 𝑁(0, (1 + 𝛽1
2)𝜎2)         𝑡 = 1,2, … , 𝑛. 

Thus, after standardizing, 

𝑍𝑡 ≝
𝛽1𝑒𝑡−𝑢𝑡

√(1+𝛽1
2)𝜎2

 ~ 𝑖. 𝑖. 𝑑. 𝑁(0,1)         𝑡 = 1,2, … , 𝑛. 
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And the limit of first derivative with respect to 𝜌 becomes, 

𝑝lim
𝜕ℓ𝑓

𝜕𝜌
|
𝜌=0

= 2∑ 𝑍𝑡𝑍𝑡−1
𝑛
𝑡=2 . 

Let 𝑊𝑡 = 𝑍𝑡𝑍𝑡−1, 𝑡 = 2,3, … , 𝑛. It is noticed that 𝑊𝑡 is a 1-dependent random variable 

since 𝑊𝑡  and 𝑊𝑡+2  are independent. The expectation and variance of this random 

variable would be 

𝐸(𝑊𝑡) = 0, 

and 

𝑉𝑎𝑟(𝑊𝑡) = 𝐸(𝑍𝑡
2𝑍𝑡−1

2 ) = 𝐸(𝑍𝑡
2)𝐸(𝑍𝑡−1

2 ) = 1. 

Then by the central limit theorem for m-dependent random variables discussed in 

Section 3, we have 

√𝑛 − 1
∑ 𝑊𝑡
𝑛
𝑡=2

𝑛−1

𝑑
→𝑁(0, 𝜏𝑊

2 )  

where 𝜏𝑊
2 = 1 + 2𝑐𝑜𝑣(𝑊2,𝑊3). 

Because 

𝑐𝑜𝑣(𝑊2,𝑊3) = 𝐸(𝑊2𝑊3) − 𝐸(𝑊2)𝐸(𝑊3) = 𝐸(𝑍1𝑍2
2𝑍3) = 𝐸(𝑍1)𝐸(𝑍2

2)𝐸(𝑍3) = 0, 

𝜏𝑊
2 = 1. 

The limit of first derivative with respect to 𝜌 can be expressed as 

𝑝lim
𝜕ℓ𝑓

𝜕𝜌
|
𝜌=0

= 2∑ 𝑊𝑡
𝑛
𝑡=2 = 2√𝑛 − 1(√𝑛 − 1

∑ 𝑊𝑡
𝑛
𝑡=2

𝑛−1
). 

And then the limit of test statistic can be expressed as 

𝑝lim𝑇𝐸𝑆,𝑓,𝜌 =
1

2(𝑛−1)
{2√𝑛 − 1 (√𝑛 − 1

∑ 𝑊𝑡
𝑛
𝑡=2

𝑛−1
)}
2

= 2 {(√𝑛 − 1
∑ 𝑊𝑡
𝑛
𝑡=2

𝑛−1
)}
2 𝑑
→ 2𝜒1

2. 
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Thus, the asymptotic distribution for the efficient score test statistic under the null 

hypothesis 𝜌 = 0 is two times the chi-square distribution with one degree of freedom. 

This phenomenon must be due to the inconsistency of the variance estimator which is 

the denominator of the test statistic and converges to a half of the true variance. 

4.3.2 Likelihood ratio test statistic under 𝑯𝟎: 𝝆 = 𝟎 

The lack of clear expression for the MLEs causes some difficulty in finding the 

asymptotic distribution for the likelihood ratio test statistic under this scenario. We are 

going to use the Taylor expansion to solve this problem similar to the development in 

section 4.2. 

The first step is to take the first order derivative of the test statistic with respect to �̂� 

which is defined in section 4.2.2. and evaluate it under the null hypothesis 𝜌 = 0. The 

first order derivatives are  

𝜕𝑇𝐿𝑅𝑇,𝑓,𝜌

𝜕�̂�
= −2(𝑛 − 1) (

1

�̂�2
𝜕�̂�2

𝜕�̂�
−

1

�̃�2
𝜕�̃�2

𝜕�̂�
). 

Because 

�̃�2 =
1

2(𝑛−1)

1

(1+�̃�1
2)
∑ {�̃�1

2(𝑋𝑡 − �̅�)
2 − 2𝛽1(𝑋𝑡 − �̅�)(𝑌𝑡 − �̅�) + (𝑌𝑡 − �̅�)

2}𝑛
𝑡=2   

=
1

2(1+�̃�1
2)
(𝛽1

2�̂�𝑋2 − 2𝛽1�̂�𝑋𝑌 + �̂�𝑌2), 

𝛽1 =
−(�̂�

𝑋2
−�̂�

𝑌2
)+√(�̂�𝑋2−�̂�𝑌2)

2
+4�̂�𝑋𝑌

2

2�̂�𝑋𝑌
, 

and 
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𝜕�̃�1

𝜕�̂�
=

[
 
 
 
 

0,0,

(�̂�
𝑋2

−�̂�
𝑌2

)

√(�̂�
𝑋2

−�̂�
𝑌2

)
2
+4�̂�𝑋𝑌

2
−1

2�̂�𝑋𝑌
,

1−
(�̂�
𝑋2

−�̂�
𝑌2

)

√(�̂�
𝑋2

−�̂�
𝑌2

)
2
+4�̂�𝑋𝑌

2

2�̂�𝑋𝑌
,

−(�̂�
𝑋2

−�̂�
𝑌2

)
2

√(�̂�
𝑋2

−�̂�
𝑌2

)
2
+4�̂�𝑋𝑌

2
+(�̂�

𝑋2
−�̂�

𝑌2
)

2�̂�𝑋𝑌
2 , 0,0,0,0

]
 
 
 
 

. 

Then the second term of the first order derivative can be easily obtained as 

𝜕�̃�2

𝜕�̂�
= (0,0,

𝜕�̃�2

𝜕�̂�𝑋2
,
𝜕�̃�2

𝜕�̂�𝑌2
,
𝜕�̃�2

𝜕�̂�𝑋𝑌
, 0,0,0,0)  

where 

𝜕�̃�2

𝜕�̂�𝑋2
=

2[�̃�1�̂�𝑋2−(1−�̃�1
2)�̂�𝑋𝑌−�̃�1�̂�𝑌2]

𝜕�̃�1
𝜕�̂�

𝑋2
+�̃�1

2(1+�̃�1
2)

2(1+�̃�1
2)
2 , 

𝜕�̃�2

𝜕�̂�𝑌2
=

2[�̃�1�̂�𝑋2−(1−�̃�1
2)�̂�𝑋𝑌−�̃�1�̂�𝑌2]

𝜕�̃�1
𝜕�̂�

𝑌2
+(1+�̃�1

2)

2(1+�̃�1
2)
2 , 

𝜕�̃�2

𝜕�̂�𝑋𝑌
=

[�̃�1�̂�𝑋2−(1−�̃�1
2)�̂�𝑋𝑌−�̃�1�̂�𝑌2]

𝜕�̃�1
𝜕�̂�𝑋𝑌

−�̃�1(1+�̃�1
2)

(1+�̃�1
2)
2 . 

The first order derivatives for �̂�2 are complicated to obtain because it does not have 

an explicit expression and involves an implicit function. Before starting, we define 

𝐹𝑓 = �̂�𝑋𝑌�̂�1
2 + (�̂�𝑋𝑋 − �̂�𝑌𝑌)�̂�1 + �̂�𝑋𝑌 = 0, 

�̂�𝑓 =
∑ {(�̂�1𝑋𝑡−𝑌𝑡)−(�̂�1�̅�𝑛−�̅�𝑛)}{(�̂�1𝑋𝑡−1−𝑌𝑡−1)−(�̂�1�̅�𝑛−1−�̅�𝑛−1)}
𝑛
𝑡=2

𝑛−1
, 

and 

�̂�𝑓 =
∑ {(�̂�1𝑋𝑡−1−𝑌𝑡−1)−(�̂�1�̅�𝑛−1−�̅�𝑛−1)}

2𝑛
𝑡=2

𝑛−1
. 

Then 

�̂� = �̂�𝑓 �̂�𝑓⁄ . 
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Applying the rules for derivatives of an implicit function given in Section 3, we can find 

the first order derivatives of �̂�1 as 

𝜕�̂�1

𝜕�̂�
= −

𝜕𝐹𝑓 𝜕�̂�⁄

𝜕𝐹𝑓 𝜕�̂�1⁄
. 

Then we have the first order derivatives of �̂�2 as 

𝜕�̂�2

𝜕�̂�
= −

2�̂�1

1+�̂�1
2

𝜕�̂�1

𝜕�̂�
�̂�2 +

1

2(1+�̂�1
2)
{(1 + �̂�2)

𝜕�̂�𝑓

𝜕�̂�
− 2�̂�

𝜕�̂�𝑓

𝜕�̂�
}, 

where 
𝜕�̂�1

𝜕�̂�
, 
𝜕�̂�𝑓

𝜕�̂�
, and 

𝜕�̂�𝑓

𝜕�̂�
 are vectors of the first order derivatives. 

After deriving the first order derivatives, we have to find the second order 

derivatives. For the second order derivatives of 𝛽1, we have 

𝜕2�̃�1
2

𝜕�̂�𝑋𝜕�̂�
=

𝜕2�̃�1
2

𝜕�̂�𝑌𝜕�̂�
=

𝜕2�̃�1
2

𝜕�̂�𝑋𝑌1𝜕�̂�
=

𝜕2�̃�1
2

𝜕�̂�𝑋1𝑌𝜕�̂�
=

𝜕2�̃�1
2

𝜕�̂�𝑋𝑋𝜕�̂�
=

𝜕2�̃�1
2

𝜕�̂�𝑌𝑌𝜕�̂�
= 0, 

𝜕2�̃�1
2

𝜕�̂�
𝑋2
2 =

𝜕2�̃�1
2

𝜕�̂�
𝑌2
2 = −

𝜕2�̃�1
2

𝜕�̂�𝑋2𝜕�̂�𝑌2
=

2�̂�𝑋𝑌

[(�̂�𝑋2−�̂�𝑌2)
2
+4�̂�𝑋𝑌

2 ]
3 2⁄ , 

𝜕2�̃�1
2

𝜕�̂�𝑋2𝜕�̂�𝑋𝑌
= −

𝜕2�̃�1
2

𝜕�̂�𝑌2𝜕�̂�𝑋𝑌
= −2

(�̂�
𝑋2
−�̂�

𝑌2
)

[(�̂�𝑋2−�̂�𝑌2)
2
+4�̂�𝑋𝑌

2 ]
3 2⁄ −

(�̂�
𝑋2
−�̂�

𝑌2
)

2�̂�𝑋𝑌
2 √(�̂�𝑋2−�̂�𝑌2)

2
+4�̂�𝑋𝑌

2
+

1

2�̂�𝑋𝑌
2 , 

𝜕2�̃�1
2

𝜕�̂�𝑋𝑌
2 = 2

(�̂�
𝑋2
−�̂�

𝑌2
)
2

�̂�𝑋𝑌[(�̂�𝑋2−�̂�𝑌2)
2
+4�̂�𝑋𝑌

2 ]
3 2⁄ +

(�̂�
𝑋2
−�̂�

𝑌2
)
2

�̂�𝑋𝑌
3 √(�̂�𝑋2−�̂�𝑌2)

2
+4�̂�𝑋𝑌

2
−
(�̂�
𝑋2
−�̂�

𝑌2
)

�̂�𝑋𝑌
3 . 

Therefore, the second order derivatives for �̃�2 would be 

𝜕2�̃�2

𝜕�̂�𝑋𝜕�̂�
=

𝜕2�̃�2

𝜕�̂�𝑌𝜕�̂�
=

𝜕2�̃�2

𝜕�̂�𝑋𝑌1𝜕�̂�
=

𝜕2�̃�2

𝜕�̂�𝑋1𝑌𝜕�̂�
=

𝜕2�̃�2

𝜕�̂�𝑋𝑋𝜕�̂�
=

𝜕2�̃�2

𝜕�̂�𝑌𝑌𝜕�̂�
= 0, 

𝜕2�̃�2

𝜕�̂�
𝑋2
2 =

𝜕2�̃�2

𝜕�̂�
𝑌2
2 =

[�̃�1(�̂�𝑋2−�̂�𝑌2)−(1−�̃�1
2)�̂�𝑋𝑌]

𝜕2�̃�1
2

𝜕�̂�
𝑋2
2 +2�̃�1

𝜕�̃�1
𝜕�̂�

𝑋2

(1+�̃�1
2)
2   

+
[(1−3�̃�1

2)(�̂�
𝑋2
−�̂�

𝑌2
)+2�̃�1(3−�̃�1

2)�̂�𝑋𝑌](
𝜕�̃�1
𝜕�̂�

𝑋2
)

2

(1+�̃�1
2)
3 , 
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𝜕2�̃�2

𝜕�̂�𝑋2𝜕�̂�𝑌2
=

[�̃�1(�̂�𝑋2−�̂�𝑌2)−(1−�̃�1
2)�̂�𝑋𝑌]

𝜕2�̃�1
𝜕�̂�

𝑋2
𝜕�̂�

𝑌2
−�̃�1(

𝜕�̃�1
𝜕�̂�

𝑋2
−
𝜕�̃�1
𝜕�̂�

𝑌2
)

(1+�̃�1
2)
2   

+
[(1−3�̃�1

2)(�̂�
𝑋2
−�̂�

𝑌2
)+2�̃�1(3−�̃�1

2)�̂�𝑋𝑌]
𝜕�̃�1
𝜕�̂�

𝑋2

𝜕�̃�1
𝜕�̂�

𝑌2

(1+�̃�1
2)
3 , 

𝜕2�̃�2

𝜕�̂�𝑋2𝜕�̂�𝑋𝑌
= −

𝜕2�̃�2

𝜕�̂�𝑌2𝜕�̂�𝑋𝑌
=

[�̃�1(�̂�𝑋2−�̂�𝑌2)−(1−�̃�1
2)�̂�𝑋𝑌]

𝜕2�̃�1
𝜕�̂�

𝑋2
𝜕�̂�𝑋𝑌

+�̃�1
𝜕�̃�1
𝜕�̂�𝑋𝑌

−(1−�̃�1
2)

𝜕�̃�1
𝜕�̂�

𝑋2

(1+�̃�1
2)
2   

+
[(1−3�̃�1

2)(�̂�
𝑋2
−�̂�

𝑌2
)+2�̃�1(3−�̃�1

2)�̂�𝑋𝑌]
𝜕�̃�1
𝜕�̂�

𝑋2

𝜕�̃�1
𝜕�̂�𝑋𝑌

(1+�̃�1
2)
3 , 

𝜕2�̃�2

𝜕�̂�𝑋𝑌
2 =

[�̃�1[�̂�𝑋2−�̂�𝑌2]−[1−�̃�1
2]�̂�𝑋𝑌]

𝜕2�̃�1

𝜕�̂�𝑋𝑌
2 −2(1−�̃�1

2)
𝜕�̃�1
𝜕�̂�𝑋𝑌

(1+�̃�1
2)
2 +

[(1−3�̃�1
2)(�̂�

𝑋2
−�̂�

𝑌2
)+2�̃�1(3−�̃�1

2)�̂�𝑋𝑌][
𝜕�̃�1
𝜕�̂�𝑋𝑌

]
2

(1+�̃�1
2)
3 . 

The second order derivatives of �̂�2 can be obtained by using the method for implicit 

functions as well. The first thing is to find the second order derivatives for 𝐹𝑓, �̂�𝑓, and 

�̂�𝑓. Then we can figure out the second order derivatives of �̂�1 after that. By the rule of 

derivatives for implicit functions, we have 

𝜕2�̂�1

𝜕�̂�𝑇𝜕�̂�
= −

1

𝜕𝐹𝑓 𝜕�̂�1⁄
{
𝜕2𝐹𝑓

𝜕�̂�1
2

𝜕�̂�1

𝜕�̂�𝑇
𝜕�̂�1

𝜕�̂�
+

𝜕2𝐹𝑓

𝜕�̂�1𝜕�̂�𝑇
𝜕�̂�1

𝜕�̂�
+

𝜕2𝐹𝑓

𝜕�̂�1𝜕�̂�

𝜕�̂�1

𝜕�̂�𝑇
+
𝜕2𝐹𝑓

𝜕�̂�1
2 }. 

Finally, we can get the second order derivatives for �̂�2  by substituting these values. 

Therefore, 

𝜕2�̂�2

𝜕�̂�𝑇𝜕�̂�
=

1

2(1+�̂�1
2)
{(1 + �̂�2)

𝜕2�̂�𝑓

𝜕�̂�𝑇𝜕�̂�
− 2�̂�

𝜕2�̂�𝑓

𝜕�̂�𝑇𝜕�̂�
−

2

�̂�𝑓
(
𝜕�̂�𝑓

𝜕�̂�𝑇
− �̂�

𝜕�̂�𝑓

𝜕�̂�𝑇
) (

𝜕�̂�𝑓

𝜕�̂�
− �̂�

𝜕�̂�𝑓

𝜕�̂�
)}  

+
2�̂�2

(1+�̂�1
2)
2 {(3�̂�1

2 − 1)
𝜕�̂�1

𝜕�̂�𝑇
𝜕�̂�1

𝜕�̂�
− �̂�1(1 + �̂�1

2)
𝜕2�̂�1

𝜕�̂�𝑇𝜕�̂�
}  

−
�̂�1

(1+�̂�1
2)
2 {

𝜕�̂�1

𝜕�̂�𝑇
[(1 + �̂�2)

𝜕�̂�𝑓

𝜕�̂�
− 2�̂�

𝜕�̂�𝑓

𝜕�̂�
] + [(1 + �̂�2)

𝜕�̂�𝑓

𝜕�̂�𝑇
− 2�̂�

𝜕�̂�𝑓

𝜕�̂�𝑇
]
𝜕�̂�1

𝜕�̂�
}. 

Other second order derivatives are obtained using the same operations as these two 
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Under the null hypothesis of 𝜌 = 0, we have the limit of �̂� as 

�̂� → 𝜓 = (𝜇𝑥, 𝛽0 + 𝛽1𝜇𝑥, 𝜎𝑥
2 + 𝜎2, 𝛽1

2𝜎𝑥
2 + 𝜎2, 𝛽1𝜎𝑥

2, 0,0,0,0). 

Therefore, substituting 𝜓 into these derivatives, we have the first order derivatives of 𝛽1 

and �̃�2 at 𝜓 as 

𝜕�̃�1

𝜕�̂�
|
𝜓
= [0,0, −

𝛽1

(1+𝛽1
2)𝜎𝑥

2 ,
𝛽1

(1+𝛽1
2)𝜎𝑥

2 ,
1−𝛽1

2

(1+𝛽1
2)𝜎𝑥

2 , 0,0,0,0], 

and 

𝜕�̃�2

𝜕�̂�
|
𝜓
= (0,0,

𝛽1
2

2(1+𝛽1
2)
,

1

2(1+𝛽1
2)
, −

𝛽1

(1+𝛽1
2)
, 0,0,0,0). 

The first order derivatives of �̂�1, �̂�𝑓, and �̂�𝑓 are 

𝜕�̂�1

𝜕�̂�
|
𝜓
= (0,0, −

𝛽1

(1+𝛽1
2)𝜎𝑥

2 ,
𝛽1

(1+𝛽1
2)𝜎𝑥

2 ,
1−𝛽1

2

(1+𝛽1
2)𝜎𝑥

2 , 0,0,0,0), 

𝜕�̂�𝑓

𝜕�̂�
|
𝜓
= (0,0, 𝛽1

2 −
2𝛽1

2𝜎2

(1+𝛽1
2)𝜎𝑥

2 ,
2𝛽1

2𝜎2

(1+𝛽1
2)𝜎𝑥

2 + 1,2𝛽1
(1−𝛽1

2)𝜎2

(1+𝛽1
2)𝜎𝑥

2 − 2𝛽1, 0,0,0,0), 

𝜕�̂�𝑓

𝜕�̂�
|
𝜓
= (0,0,0,0,0,−𝛽1, −𝛽1, 𝛽1

2, 1). 

Therefore, the first order derivatives of �̂�2 at 𝜓 would be 

𝜕�̂�2

𝜕�̂�
|
𝜓
= (0,0,

𝛽1
2

2(1+𝛽1
2)
,

1

2(1+𝛽1
2)
, −

𝛽1

(1+𝛽1
2)
, 0,0,0,0). 

Then we have the first order derivatives of test statistic evaluated at 𝜓, 

𝜕𝑇𝐿𝑅𝑇,𝑓,𝜌

𝜕�̂�
|
𝜓
= −2(𝑛 − 1) (

1

�̂�2
𝜕�̂�2

𝜕�̂�
−

1

�̃�2
𝜕�̃�2

𝜕�̂�
) = 01×9. 

In order to find the second order derivatives of the test statistic evaluate at 𝜓, we 

need to find the second order derivatives of �̃�2 and �̂�2 respectively. For �̃�2, because 
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𝜕2�̃�1
2

𝜕�̂�
𝑋2
2 |

𝜓

=
𝜕2�̃�1

2

𝜕�̂�
𝑌2
2 |

𝜓

= −
𝜕2�̃�1

2

𝜕�̂�𝑋2𝜕�̂�𝑌2
|
𝜓

=
2𝛽1

(1+𝛽1
2)
3
𝜎𝑥
4
, 

𝜕2�̃�1
2

𝜕�̂�𝑋2𝜕�̂�𝑋𝑌
|
𝜓

= −
𝜕2�̃�1

2

𝜕�̂�𝑌2𝜕�̂�𝑋𝑌
|
𝜓

= −2
(1−𝛽1

2)

(1+𝛽1
2)
3
𝜎𝑥
4
+

1

(1+𝛽1
2)𝜎𝑥

4, 

𝜕2�̃�1
2

𝜕�̂�𝑋𝑌
2 |

𝜓
= 2

(1−𝛽1
2)
2

𝛽1(1+𝛽1
2)
3
𝜎𝑥
4
− 2

(1−𝛽1
2)

𝛽1(1+𝛽1
2)𝜎𝑥

4, 

we have 

𝜕2�̃�2

𝜕�̂�
𝑋2
2 |

𝜓

=
𝜕2�̃�2

𝜕�̂�
𝑌2
2 |

𝜓

= −
𝜕2�̃�2

𝜕�̂�𝑋2𝜕�̂�𝑌2
= −

𝛽1
2

(1+𝛽1
2)
3
𝜎𝑥
2
, 

𝜕2�̃�2

𝜕�̂�𝑋2𝜕�̂�𝑋𝑌
|
𝜓

= −
𝜕2�̃�2

𝜕�̂�𝑌2𝜕�̂�𝑋𝑌
=

𝛽1(1−𝛽1
2)

(1+𝛽1
2)
3
𝜎𝑥
2
, 

𝜕2�̃�2

𝜕�̂�𝑋𝑌
2 |

𝜓
= −

(1−𝛽1
2)
2

(1+𝛽1
2)
3
𝜎𝑥
2
. 

Other second order derivatives of �̃�2 are all zero as shown above. The second order 

derivatives of �̂�2 evaluated at 𝜓 are, 

𝜕2�̂�2

𝜕�̂�𝑇𝜕�̂�
|
𝜓
= (

02×2 02×3 02×4
03×2 𝐴𝜓 03×4
04×2 04×3 𝐵𝜓

), 

where 

𝐴𝜓 =
1

(1+𝛽1
2)
3
𝜎𝑥
2
(

−𝛽1
2 𝛽1

2 𝛽1(1 − 𝛽1
2)

𝛽1
2 −𝛽1

2 −𝛽1(1 − 𝛽1
2)

𝛽1(1 − 𝛽1
2) −𝛽1(1 − 𝛽1

2) −(1 − 𝛽1
2)2

), 

𝐵𝜓 =
1

(1+𝛽1
2)
2
𝜎2

(

 
 

−𝛽1
2 −𝛽1

2

−𝛽1
2 −𝛽1

2

𝛽1
3 𝛽1
𝛽1
3 𝛽1

𝛽1
3 𝛽1

3

𝛽1 𝛽1

−𝛽1
4 −𝛽1

2

−𝛽1
2 −1 )

 
 

. 



 

58 

 

Notice that the second order derivative for the likelihood ratio test statistic can be 

expressed as following, 

𝜕2𝑇𝐿𝑅𝑇,𝑓,𝜌

𝜕�̂�𝑇𝜕�̂�
= −2(𝑛 − 1) (−

1

�̂�4
𝜕�̂�2

𝜕�̂�𝑇
𝜕�̂�2

𝜕�̂�
+

1

�̃�4
𝜕�̃�2

𝜕�̂�𝑇
𝜕�̃�2

𝜕�̂�
+

1

�̂�2
𝜕2�̂�2

𝜕�̂�𝑇𝜕�̂�
−

1

�̃�2
𝜕2�̃�2

𝜕�̂�𝑇𝜕�̂�
). 

Therefore, substituting the values of the first and the second order derivatives for �̃�2 and 

�̂�2 at 𝜓, we have 

𝜕2𝑇𝐿𝑅𝑇,𝑓,𝜌

𝜕�̂�𝑇𝜕�̂�
|
𝜓
= −

4(𝑛−1)

𝜎2
(
05×4 05×4
04×5 𝐵𝜓

). 

Let row vectors, 𝑍𝜌𝑡 = (𝑋𝑡, 𝑋𝑡−1, 𝑌𝑡, 𝑌𝑡−1) , 𝑧𝜌𝑡 = (𝑥𝑡, 𝑥𝑡−1, 𝑦𝑡 , 𝑦𝑡−1) , and 휀𝜌𝑡 =

(𝑒𝑡, 𝑒𝑡−1, 𝑢𝑡 , 𝑢𝑡−1), then 

𝑍𝜌𝑡 = 𝑧𝜌𝑡 + 휀𝜌𝑡  𝑡 = 2,3, … , 𝑛. 

Under the null hypothesis, 휀𝜌𝑡  are independent identically distributed random vector 

with mean vector 0 and covariance matrix Σ = 𝜎2𝐼. Define 

�̂� = (�̅�𝑛, �̅�𝑛−1, �̅�𝑛, �̅�𝑛−1, �̂�𝑋2 , �̂�𝑋𝑋 , �̂�𝑋𝑌, �̂�𝑋𝑌1, �̂�𝑋12 , �̂�𝑋1𝑌, �̂�𝑋1𝑌1, �̂�𝑌2 , �̂�𝑌𝑌, �̂�𝑌12)
𝑇. 

Then applying Theorem 3.8 in Section 3, we have 

�̂� → 𝐴𝑁(𝜔𝑛, 𝐺𝜔𝑛), 

where 

𝜔𝑛 = (𝑧�̅�, (vech𝑚𝑧𝑧 + vechΣ )𝑇)
𝑇
, 

and 𝐺𝜔𝑛 is the variance covariance matrix for �̂�. From the second order derivatives of 

test statistic at 𝜓, we know that only the last four elements in �̂� have non-zero second 

order derivatives. These four elements 𝛾 = (�̂�𝑋𝑌1, �̂�𝑋1𝑌, �̂�𝑋𝑋 , �̂�𝑌𝑌)
𝑇  are a subset of �̂� . 

The corresponding variance covariance matrix would be 
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𝐺𝛾𝑛 =
1

(𝑛−1)
(
𝐺𝛾𝑛11 𝐺𝛾𝑛12
𝐺𝛾𝑛21 𝐺𝛾𝑛22

), 

where 

𝐺𝛾𝑛11 = (
(1 + 𝛽1

2)𝜎𝑥
2𝜎2 + 𝜎4 0

0 (1 + 𝛽1
2)𝜎𝑥

2𝜎2 + 𝜎4
), 

𝐺𝛾𝑛12 = 𝐺𝛾𝑛21 = 𝛽1𝜎𝑥
2𝜎2𝐼2×2, 

𝐺𝛾𝑛22 = (
2𝜎𝑥

2𝜎2 + 𝜎4 0

0 2𝛽1
2𝜎𝑥

2𝜎2 + 𝜎4
). 

That is, 𝛾 is asymptotic normally distributed with mean vector 𝛾𝑛 and covariance matrix 

𝐺𝛾𝑛. 

Because the first order derivatives of the test statistic at 𝜓  are all zero, and the 

second order derivatives of the test statistic at 𝜓  are also zero, except those 

corresponding to �̂�𝑋𝑌1 , �̂�𝑋1𝑌 , �̂�𝑋𝑋 , and �̂�𝑌𝑌 , the Taylor expansion of the test statistic 

would be, 

𝑇𝐿𝑅𝑇,𝑓,𝜌 ≐ 𝑇𝐿𝑅𝑇,𝑓,𝜌|𝜓
+
𝜕𝑇𝐿𝑅𝑇,𝑓,𝜌

𝜕�̂�
|
𝜓
(�̂� − 𝜓)

𝑇
+
1

2
(�̂� − 𝜓)

𝜕2𝑇𝐿𝑅𝑇,𝑓,𝜌

𝜕�̂�𝜕�̂�𝑇
|
𝜓
(�̂� − 𝜓)

𝑇
  

=
1

2
(𝛾 − 𝛾)

𝜕2𝑇𝐿𝑅𝑇,𝑓,𝜌

𝜕�̂�𝜕�̂�𝑇
|
𝛾
(�̂� − 𝛾)𝑇 = 2(𝛾 − 𝛾)𝐶𝜌(𝛾 − 𝛾)

𝑇  

where 

𝐶𝜌 =
1

(1+𝛽1
2)
2

(𝑛−1)

𝜎4

(

 
 

𝛽1
2 𝛽1

2

𝛽1
2 𝛽1

2

−𝛽1
3 −𝛽1

−𝛽1
3 −𝛽1

−𝛽1
3 −𝛽1

3

−𝛽1 −𝛽1

𝛽1
4 𝛽1

2

𝛽1
2 1 )

 
 

. 

Then 
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𝐺𝛾𝑛𝐶𝜌𝐺𝛾𝑛 = 𝐺𝛾𝑛𝐶𝜌𝐺𝛾𝑛𝐶𝜌𝐺𝛾𝑛 =
1

(1+𝛽1
2)
2

𝜎4

(𝑛−1)

(

 
 

𝛽1
2 𝛽1

2

𝛽1
2 𝛽1

2

−𝛽1
3 −𝛽1

−𝛽1
3 −𝛽1

−𝛽1
3 −𝛽1

3

−𝛽1 −𝛽1

𝛽1
4 𝛽1

2

𝛽1
2 1 )

 
 

, 

and 

𝐶𝜌𝐺𝛾𝑛 =
1

(1+𝛽1
2)
2

(

 
 

𝛽1
2 𝛽1

2

𝛽1
2 𝛽1

2

−𝛽1
3 −𝛽1

−𝛽1
3 −𝛽1

−𝛽1
3 −𝛽1

3

−𝛽1 −𝛽1

𝛽1
4 𝛽1

2

𝛽1
2 1 )

 
 

. 

Notice that the trace of 𝐶𝜌𝐺𝛾𝑛 is 1. Therefore, according to Theorem 3.9 in Section 3, the 

distribution of (𝛾 − 𝛾)𝐶𝜌(𝛾 − 𝛾)
𝑇  converges to a chi-squared distribution with one 

degree of freedom. Thus, under the null hypothesis of 𝜌 = 0, 

𝑇𝐿𝑅𝑇,𝑓,𝜌
𝑑
→ 2𝜒1

2. 

This result is the same as the efficient score test statistic for testing 𝜌 = 0 under the null 

hypothesis as shown in section 4.3.1. The coefficient 2 before chi-squared distribution 

must be due to the inconsistent estimator for 𝜎2. 

4.3.3 Efficient score test statistic under 𝑯𝟎: (𝜷𝟎, 𝜷𝟏) = (𝒃𝟎, 𝒃𝟏) 

In section 2.3, the efficient score test statistic for the test hypothesis 𝐻0: (𝛽0, 𝛽1) =

(𝑏0, 𝑏1) has been derived. The large sample distribution for the test statistic will be 

derived in this section. As shown in (2.20), the test statistic is 

𝑇𝐸𝑆,𝑓,𝛽 = 𝑈𝛽(�̈�)
𝑇𝐼(�̈�)2×2

−1 𝑈𝛽(�̈�)  

where 

𝑈𝛽(�̈�) = (
∑ {(𝑌𝑡−�̈�𝑡−�̈�𝑌𝑡−1)(1−�̈�)}
𝑛
𝑡=2

�̈�2
,
∑ {(𝑌𝑡−�̈�𝑡−�̈�𝑌𝑡−1)�̈�𝑡}
𝑛
𝑡=2

�̈�2
)
𝑇

, 
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𝐼(�̈�)2×2 =
1

�̈�2(1+𝑏1
2)
[
(𝑛 − 1)(1 − �̈�)2 (1 − �̈�)∑ �̈�𝑡

𝑛
𝑡=2

(1 − �̈�)∑ �̈�𝑡
𝑛
𝑡=2 ∑ �̈�𝑡

2𝑛
𝑡=2

], 

and 𝐼(�̈�)2×2
−1  is the inverse of the information matrix. 

Under the null hypothesis, we have 𝛽0 = 𝑏0 and 𝛽1 = 𝑏1. In section 4.1, we have 

investigated the consistency for each parameter estimator and we know that �̈�  is a 

consistent estimator and �̈�2  converges to 𝜎2 2⁄  though inconsistent. By using those 

results, the first term of 𝑈𝛽(�̈�) would have a limit as 

𝑝lim
∑ (𝑌𝑡−�̈�𝑡−�̈�𝑌𝑡−1)(1−�̈�)
𝑛
𝑡=2

�̈�2√𝑛−1
= 𝑝lim

2(1−𝜌)∑ {𝑏1𝑥𝑡+𝑢𝑡−𝑏1(𝑥𝑡−𝜌𝑥𝑡−1+
𝜐𝑡+𝑏1𝛿𝑡

1+𝑏1
2 )−𝜌(𝑏1𝑥𝑡−1+𝑢𝑡−1)}

𝑛
𝑡=2

𝜎2√𝑛−1
  

= 2(1 − 𝜌)
1

𝜎2(1+𝑏1
2)
𝑝lim

1

√𝑛−1
∑ (𝛿𝑡 − 𝑏1𝜐𝑡)
𝑛
𝑡=2   

= 2(1 − 𝜌)√
1

𝜎2(1+𝑏1
2)
𝑝lim

1

√𝑛−1
∑

(𝛿𝑡−𝑏1𝜐𝑡)

√𝜎2(1+𝑏1
2)

𝑛
𝑡=2   

Let 

𝑍1𝑡 =
(𝛿𝑡−𝑏1𝜐𝑡)

√𝜎2(1+𝑏1
2)

  

and 

𝑍1 =
1

√𝑛−1
∑ 𝑍1𝑡
𝑛
𝑡=2    for 𝑡 = 2,3, … , 𝑛. 

Thus, 

𝑝lim
∑ (𝑌𝑡−�̈�𝑡−�̈�𝑌𝑡−1)
𝑛
𝑡=2

√𝑛−1
= 2√

1

𝜎2(1+𝑏1
2)
𝑝lim𝑍1. 

Considering the second non-zero element in the score vector, its probability limit would 

be 
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𝑝lim
∑ {(𝑌𝑡−�̈�𝑡−�̈�𝑌𝑡−1)�̈�𝑡}
𝑛
𝑡=2

�̈�2√𝑛−1
= 2

1

𝜎2(1+𝑏1
2)
𝑝lim

∑ {(𝛿𝑡−𝑏1𝜐𝑡)(𝑥𝑡−𝜌𝑥𝑡−1+
𝜐𝑡+𝑏1𝛿𝑡

1+𝑏1
2 )}𝑛

𝑡=2

√𝑛−1
  

= 2√
1

𝜎2(1+𝑏1
2)
𝑝lim

1

√𝑛−1
∑

(𝛿𝑡−𝑏1𝜐𝑡)

√𝜎2(1+𝑏1
2)

(𝑥𝑡 − 𝜌𝑥𝑡−1)
𝑛
𝑡=2   

+2
1

1+𝑏1
2 𝑝lim

1

√𝑛−1
∑

(𝛿𝑡−𝑏1𝜐𝑡)

√𝜎2(1+𝑏1
2)

(𝜐𝑡+𝑏1𝛿𝑡)

√𝜎2(1+𝑏1
2)

𝑛
𝑡=2 . 

Let 

𝑍2𝑡 =
(𝛿𝑡−𝑏1𝜐𝑡)

√𝜎2(1+𝑏1
2)

(𝑥𝑡 − 𝜌𝑥𝑡−1), 

𝑍2 =
1

√𝑛−1
∑ 𝑍2𝑡
𝑛
𝑡=2 , 

and 

𝑍3𝑡 =
(𝛿𝑡−𝑏1𝜐𝑡)

√𝜎2(1+𝑏1
2)

(𝜐𝑡+𝑏1𝛿𝑡)

√𝜎2(1+𝑏1
2)

  

𝑍3 =
1

√𝑛−1
∑ 𝑍3𝑡
𝑛
𝑡=2   for 𝑡 = 2,3, … , 𝑛. 

Then we have 

𝑝lim
∑ {(𝑌𝑡−�̈�𝑡−�̈�𝑌𝑡−1)�̈�𝑡}
𝑛
𝑡=2

�̈�2√𝑛−1
= 2√

1

𝜎2(1+𝑏1
2)
𝑝lim𝑍2 + 2

1

1+𝑏1
2 𝑝lim𝑍3. 

Since (𝜐𝑡, 𝛿𝑡)  is an i.i.d. normally distributed random vector according to 

assumptions of the model, then 𝑍1𝑡  is i.i.d. normally distributed with mean 0 and 

variance 1. Therefore, 𝑍1 is distributed as a normal random variable with mean 0 and 

variance 1. Next, we will determine the expectations and covariance for 𝑍1𝑡, 𝑍2𝑡 and 𝑍3𝑡. 

For 𝑍2𝑡, we have 

𝐸(𝑍2𝑡) = 0, 
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and 

𝑉𝑎𝑟(𝑍2𝑡) = (𝑥𝑡 − 𝜌𝑥𝑡−1)
2𝑉𝑎𝑟(𝑍1𝑡) = (𝑥𝑡 − 𝜌𝑥𝑡−1)

2     𝑡 = 2,3, … , 𝑛. 

For 𝑍3𝑡, we have 

𝐸(𝑍3𝑡) = 𝐸
(𝛿𝑡−𝑏1𝜐𝑡)(𝜐𝑡+𝑏1𝛿𝑡)

𝜎2(1+𝑏1
2)

= 0, 

and 

𝑉𝑎𝑟(𝑍3𝑡) = 𝑉𝑎𝑟
(𝛿𝑡−𝑏1𝜐𝑡)(𝜐𝑡+𝑏1𝛿𝑡)

𝜎2(1+𝑏1
2)

=
𝐸((1−𝑏1

2)𝛿𝑡𝜐𝑡−𝑏1𝜐𝑡
2+𝑏1𝛿𝑡

2)
2

𝜎4(1+𝑏1
2)
2   

=
𝐸((1−𝑏1

2)
2
𝛿𝑡
2𝜐𝑡
2+𝑏1

2𝜐𝑡
4+𝑏1

2𝛿𝑡
4−2𝑏1(1−𝑏1

2)𝛿𝑡𝜐𝑡
3+2𝑏1(1−𝑏1

2)𝛿𝑡
3𝜐𝑡−2𝑏1

2𝛿𝑡
2𝜐𝑡
2)

𝜎4(1+𝑏1
2)
2   

=
(1−𝑏1

2)
2
𝜎4+3𝑏1

2𝜎4+3𝑏1
2𝜎4−2𝑏1

2𝜎4

𝜎4(1+𝑏1
2)
2   

= 1. 

The covariance among 𝑍1𝑡, 𝑍2𝑡, and 𝑍3𝑡 would be 

𝑐𝑜𝑣(𝑍1𝑡, 𝑍2𝑡) = 𝐸(𝑍1𝑡𝑍2𝑡) − 𝐸(𝑍1𝑡)𝐸(𝑍2𝑡)  

= 𝐸
(𝛿𝑡−𝑏1𝜐𝑡)

√𝜎2(1+𝑏1
2)

(𝛿𝑡−𝑏1𝜐𝑡)

√𝜎2(1+𝑏1
2)

(𝑥𝑡 − 𝜌𝑥𝑡−1)  

= 𝑥𝑡 − 𝜌𝑥𝑡−1, 

𝑐𝑜𝑣(𝑍1𝑡, 𝑍3𝑡) = 𝐸(𝑍1𝑡𝑍3𝑡) − 𝐸(𝑍1𝑡)𝐸(𝑍3𝑡) = 𝐸(𝑍1𝑡𝑍1𝑡𝑍2𝑡)  

= 𝐸
(𝛿𝑡
2𝜐𝑡−2𝑏1𝛿𝑡𝜐𝑡

2+𝑏1
2𝜐𝑡

3+𝑏1𝛿𝑡
3−2𝑏1

2𝛿𝑡
2𝜐𝑡+𝑏1

3𝛿𝑡𝜐𝑡
2)

𝜎2(1+𝑏1
2)√𝜎2(1+𝑏1

2)
= 0, 

and 

𝑐𝑜𝑣(𝑍2𝑡, 𝑍3𝑡) = 𝐸(𝑍2𝑡𝑍3𝑡) − 𝐸(𝑍2𝑡)𝐸(𝑍3𝑡) = 𝐸(𝑍2𝑡𝑍1𝑡𝑍2𝑡)  

= 𝐸
(𝜐𝑡
2𝛿𝑡+2𝑏1𝛿𝑡

2𝜐𝑡+𝑏1
2𝛿𝑡

3−𝑏1𝜐𝑡
3−2𝑏1

2𝛿𝑡𝜐𝑡
2−𝑏1

3𝛿𝑡
2𝜐𝑡)(𝑥𝑡−𝜌𝑥𝑡−1)

2

𝜎2(1+𝑏1
2)√𝜎2(1+𝑏1

2)
= 0. 
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Therefore, we have the mean and covariance structure of this random vector for any 

value 𝑡 = 2,3, … , 𝑛 as 

𝑍𝑡 =

(

 
(1 − 𝜌)√

1

𝜎2(1+𝑏1
2)
𝑍1𝑡

√
1

𝜎2(1+𝑏1
2)
𝑍2𝑡 +

1

1+𝑏1
2 𝑍3𝑡)

 ~ [(
0
0
) , (

𝜎𝑈11𝑡 𝜎𝑈12𝑡
𝜎𝑈21𝑡 𝜎𝑈22𝑡

)]  

where 

𝜎𝑈11𝑡 = (1 − 𝜌)
2 1

𝜎2(1+𝑏1
2)

, 

𝜎𝑈12𝑡 = 𝜎𝑈21𝑡 = 𝑐𝑜𝑣 ((1 − 𝜌)√
1

𝜎2(1+𝑏1
2)
𝑍1𝑡, √

1

𝜎2(1+𝑏1
2)
𝑍2𝑡 +

1

1+𝑏1
2 𝑍3𝑡)  

= (1 − 𝜌)
1

𝜎2(1+𝑏1
2)
(𝑥𝑡 − 𝜌𝑥𝑡−1), 

and 

𝜎𝑈22𝑡 =
1

𝜎2(1+𝑏1
2)
(𝑥𝑡 − 𝜌𝑥𝑡−1)

2 +
1

(1+𝑏1
2)
2. 

It is noticed that 𝜎𝑈11𝑡 does not depend on 𝑡, and 

∑ 𝜎𝑈12𝑡
𝑛
𝑡=2

𝑛−1
=

∑ 𝜎𝑈21𝑡
𝑛
𝑡=2

𝑛−1
= (1 − 𝜌)

1

𝜎2(1+𝑏1
2)

∑ (𝑥𝑡−𝜌𝑥𝑡−1)
𝑛
𝑡=2

𝑛−1
→

𝜎2

1+𝑏1
2 (1 − 𝜌)

2𝜇𝑥, 

∑ 𝜎𝑈22𝑡
𝑛
𝑡=2

𝑛−1
=

1

𝜎2(1+𝑏1
2)

∑ (𝑥𝑡−𝜌𝑥𝑡−1)
2𝑛

𝑡=2

𝑛−1
+

1

(1+𝑏1
2)
2  

→
1

𝜎2(1+𝑏1
2)
((1 + 𝜌2)𝜎𝑥

2 + (1 − 𝜌)2𝜇𝑥
2) +

1

(1+𝑏1
2)
2. 

For any 𝑎 = (𝑎1, 𝑎2) ∈ ℛ
2, we have 

𝑎𝑍𝑡 = 𝑎1(1 − 𝜌)√
1

𝜎2(1+𝑏1
2)
𝑍1𝑡 + 𝑎2√

1

𝜎2(1+𝑏1
2)
𝑍2𝑡 + 𝑎2

1

1+𝑏1
2 𝑍3𝑡. 

Its expectation and variance are 

𝐸𝑎𝑍𝑡 = 0, 
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and  

𝑉𝑎𝑟(𝑎𝑍𝑡) =
𝑎1
2(1−𝜌)2

𝜎2(1+𝑏1
2)
+ 𝑎2

2 (𝑥𝑡−𝜌𝑥𝑡−1)
2

𝜎2(1+𝑏1
2)

+ 𝑎2
2 1

(1+𝑏1
2)
2 + 2𝑎1𝑎2

(1−𝜌)(𝑥𝑡−𝜌𝑥𝑡−1)

𝜎2(1+𝑏1
2)

. 

Thus, 

lim𝑛→∞
∑ 𝑉𝑎𝑟(𝑎𝑍𝑡)
𝑛
𝑡=2

𝑛−1
= (𝑎1 + 𝑎2𝜇𝑥)

2 (1−𝜌)2

𝜎2(1+𝑏1
2)
+ 𝑎2

2 (1+𝜌
2)𝜎𝑥

2

𝜎2(1+𝑏1
2)
+ 𝑎2

2 1

(1+𝑏1
2)
2. 

For any 휀 > 0, 

lim𝑛→∞
1

𝑛−1
∑ ∫ (𝑎𝑍𝑡)

2𝑑𝐹𝑡(𝑎𝑍𝑡)|𝑎𝑍𝑡|> √𝑛−1
𝑛
𝑡=2   

= lim𝑛→∞
1

𝑛−1
∑ 𝐸{(𝑎𝑍𝑡)

2𝐼(|𝑎𝑍𝑡| > 휀√𝑛 − 1)}
𝑛
𝑡=2   

≤ lim𝑛→∞𝑚𝑎𝑥{(𝑎𝑍𝑡)
2𝐼(|𝑎𝑍𝑡| > 휀√𝑛 − 1)} = 0, 

conditions (2.5) and (2.6) are sufficient to ensure the inequality holds and then the result 

is followed by dominated convergence theorem since 𝐸(𝑎𝑍𝑡)
2 < ∞. 

Therefore, by theorem 3.4 in section 3, we have 

∑ 𝑎𝑍𝑡
𝑛
𝑡=2

𝑛−1

𝑑
→𝑁(0,

(𝑎1+𝑎2𝜇𝑥)
2 (1−𝜌)2

𝜎2(1+𝑏1
2)
+𝑎2

2(1+𝜌
2)𝜎𝑥

2

𝜎2(1+𝑏1
2)
+𝑎2

2 1

(1+𝑏1
2)
2

𝑛−1
) = 𝑎𝑍, 

where 

𝑍 = 𝑁 [(
0
0
) ,

1

𝜎2(1+𝑏1
2)
(
(1 − 𝜌)2 (1 − 𝜌)2𝜇𝑥

(1 − 𝜌)2𝜇𝑥 (1 + 𝜌2)𝜎𝑥
2 + (1 − 𝜌)2𝜇𝑥

2 +
𝜎2

1+𝑏1
2

)]. 

Then, by Cramer-Wold theorem, 

∑ 𝑍𝑡
𝑛
𝑡=2

𝑛−1

𝑑
→ 𝑍. 

Therefore, 
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𝑝lim
𝑈𝛽(�̈�)

√𝑛−1
= 𝑝lim (

(1−�̈�)

�̈�2√𝑛−1
∑ (𝑌𝑡 − �̈�𝑡 − �̈�𝑌𝑡−1)
𝑛
𝑡=2 ,

1

�̈�2√𝑛−1
∑ {(𝑌𝑡 − �̈�𝑡 − �̈�𝑌𝑡−1)�̈�𝑡}
𝑛
𝑡=2 )

𝑇

  

= 2𝑝lim((1 − 𝜌)√
1

𝜎2(1+𝑏1
2)
𝑍1, √

1

𝜎2(1+𝑏1
2)
𝑍2 +

1

1+𝑏1
2 𝑍3)

𝑇

  

𝑑
→𝑁 [(

0
0
) ,

4

𝜎2(1+𝑏1
2)
(
(1 − 𝜌)2 (1 − 𝜌)2𝜇𝑥

(1 − 𝜌)2𝜇𝑥 (1 + 𝜌2)𝜎𝑥
2 + (1 − 𝜌)2𝜇𝑥

2 +
𝜎2

1+𝑏1
2

)]. 

We have looked into the property of the score vector in the test statistic. Now we will 

consider the terms in the information matrix. There are two summation terms in that 

matrix. For the average of the nuisance variable, we have 

𝑝lim
∑ �̈�𝑡
𝑛
𝑡=2

𝑛−1
= 𝑝lim

∑ (𝑥𝑡−𝜌𝑥𝑡−1+
𝜐𝑡+𝑏1𝛿𝑡

1+𝑏1
2 )𝑛

𝑡=2

𝑛−1
= (1 − 𝜌)𝜇𝑥. 

For the second sample moments of the nuisance variable, we have 

𝑝lim
∑ �̈�𝑡

2𝑛
𝑡=2

𝑛−1
= 𝑝lim

∑ (𝑥𝑡−𝜌𝑥𝑡−1+
𝜐𝑡+𝑏1𝛿𝑡

1+𝑏1
2 )

2
𝑛
𝑡=2

𝑛−1
  

= 𝑝lim
∑ ((𝑥𝑡−𝜌𝑥𝑡−1)

2+2(𝑥𝑡−𝜌𝑥𝑡−1)
𝜐𝑡+𝑏1𝛿𝑡

1+𝑏1
2 +(

𝜐𝑡+𝑏1𝛿𝑡

1+𝑏1
2 )

2

)𝑛
𝑡=2

𝑛−1
  

= (1 + 𝜌2)𝜎𝑥
2 + (1 − 𝜌)2𝜇𝑥

2 +
𝜎2

1+𝑏1
2. 

Therefore, 

𝑝lim
𝐼(�̈�)2×2

(𝑛−1)
= 𝑝lim

1

�̈�2(1+𝑏1
2)
[

(1 − �̈�)2 (1 − �̈�)
∑ �̈�𝑡
𝑛
𝑡=2

(𝑛−1)

(1 − �̈�)
∑ �̈�𝑡
𝑛
𝑡=2

(𝑛−1)

∑ �̈�𝑡
2𝑛

𝑡=2

(𝑛−1)

]  

=
2

𝜎2(1+𝑏1
2)
[
(1 − 𝜌)2 (1 − 𝜌)2𝜇𝑥

(1 − 𝜌)2𝜇𝑥 (1 + 𝜌2)𝜎𝑥
2 + (1 − 𝜌)2𝜇𝑥

2 +
𝜎2

1+𝑏1
2

]. 

Thus, for the test statistic, 
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𝑝lim𝑇𝐸𝑆,𝑓,𝛽 = 𝑝lim𝑈𝛽(�̈�)
𝑇 (𝑛 − 1)⁄ (𝐼(�̈�)2×2 (𝑛 − 1)⁄ )−1𝑈𝛽(�̈�) (𝑛 − 1)⁄  

= 2𝑝lim

(

 
√

𝜎2

1+𝑏1
2 𝑍1

√
𝜎2

1+𝑏1
2 𝑍2 +

𝜎2

1+𝑏1
2 𝑍3)

 

𝑇

Σ𝛽
−1

(

 
√

𝜎2

1+𝑏1
2 𝑍1

√
𝜎2

1+𝑏1
2 𝑍2 +

𝜎2

1+𝑏1
2 𝑍3)

 , 

where 

Σ𝛽
−1 =

4

(1+𝑏1
2)𝜎2

(
(1 − 𝜌)2 (1 − 𝜌)2𝜇𝑥

(1 − 𝜌)2𝜇𝑥 (1 + 𝜌2)𝜎𝑥
2 + (1 − 𝜌)2𝜇𝑥

2 +
𝜎2

1+𝑏1
2

)  

which is the same with the covariance matrix for 𝑝lim
𝑈𝛽(�̈�)

√𝑛−1
. 

Therefore, by Theorem 3.9 in Section 3, 

𝑇𝐸𝑆,𝑓,𝛽
𝑑
→ 2𝜒2

2. 

After the detailed derivation, it is found that the efficient score test statistic for 

testing 𝐻0: (𝛽0, 𝛽1) = (𝑏0, 𝑏1) under the null hypothesis has asymptotic distribution as 

two times a chi-square distribution with two degrees of freedom. The coefficient of two 

before the chi-square distribution is probably due to the inconsistent estimate of 𝜎2 that 

converges to one half of the true value. 

4.3.4 Likelihood ratio test statistic under 𝑯𝟎: (𝜷𝟎, 𝜷𝟏) = (𝒃𝟎, 𝒃𝟏) 

This is the most complicated situation since there is no explicit expression for the 

maximum likelihood estimator with no constraint. Furthermore, even under the null 

hypothesis, we still face the fact that the correlation coefficient 𝜌 is non-zero and the 

data are dependent. We will investigate the large sample distribution using the technique 

of Taylor expansion in the same way with that for test statistic of testing 𝜌 = 0 as shown 

in section 4.3.2. 
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All the maximum likelihood estimators and the test statistic can be implicitly or 

explicitly expressed as a function of �̂� defined in section 4.3.2. Therefore, firstly, we 

consider the first order derivatives, 

𝜕𝑇𝐿𝑅𝑇,𝑓,𝛽

𝜕�̂�
= −2(𝑛 − 1) (

1

�̂�2
𝜕�̂�2

𝜕�̂�
−

1

�̈�2
𝜕�̈�2

𝜕�̂�
). 

The first order derivatives of �̈�2 are 

𝜕�̈�2

𝜕�̂�
= (

𝑏1�̂�𝑍(1−�̈�)
2

1+𝑏1
2 , −

�̂�𝑍(1−�̈�)
2

1+𝑏1
2 ,

𝑏1
2(1+�̈�2)

2(1+𝑏1
2)
,
(1+�̈�2)

2(1+𝑏1
2)
, −

𝑏1(1+�̈�
2)

1+𝑏1
2 ,

𝑏1�̈�

1+𝑏1
2 ,

𝑏1�̈�

1+𝑏1
2 , −

𝑏1
2�̈�

(1+𝑏1
2)
, −

�̈�

1+𝑏1
2)  

where 

�̂�𝑍 = 𝑏0 + 𝑏1�̂�𝑋 − �̂�𝑌. 

However, the first order derivative of �̂�2  can only be obtained using the method for 

implicit function. It can be expressed as 

𝜕�̂�2

𝜕�̂�
= −

2�̂�1

1+�̂�1
2

𝜕�̂�1

𝜕�̂�
�̂�2 +

1

2(1+�̂�1
2)
{(1 + �̂�2)

𝜕�̂�𝑓

𝜕�̂�
− 2�̂�

𝜕�̂�𝑓

𝜕�̂�
}  

where �̂�𝑓  and �̂�𝑓  are defined in section 4.3.2. The way to calculate the first order 

derivative of �̂�1 is also described in section 4.3.2. The first order derivatives for �̂�𝑓 and 

�̂�𝑓 are 

𝜕�̂�𝑓

𝜕�̂�
= 2(�̂�1�̂�𝑋2 − �̂�𝑋𝑌)

𝜕�̂�1

𝜕�̂�
+ (0,0, �̂�1

2, 1, −2�̂�1, 0,0,0,0), 

𝜕�̂�𝑓

𝜕�̂�
= {2�̂�1�̂�𝑋𝑋 − (�̂�𝑋𝑌1 + �̂�𝑋1𝑌)}

𝜕�̂�1

𝜕�̂�
+ (0,0,0,0,0,−�̂�1, −�̂�1, �̂�1

2, 1). 

The second order derivative of the test statistic is, 

𝜕2𝑇𝐿𝑅𝑇,𝑓,𝛽

𝜕�̂�𝑇𝜕�̂�
= −2(𝑛 − 1) (−

1

�̂�4
𝜕�̂�2

𝜕�̂�𝑇
𝜕�̂�2

𝜕�̂�
+

1

�̈�4
𝜕�̈�2

𝜕�̂�𝑇
𝜕�̈�2

𝜕�̂�
+

1

�̂�2
𝜕2�̂�2

𝜕�̂�𝑇𝜕�̂�
−

1

�̈�2
𝜕2�̈�2

𝜕�̂�𝑇𝜕�̂�
). 
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To calculate this, we have to find the second order derivatives for �̈�2 and �̂�2 first. In 

section 4.3.2, we have shown how to obtain the second order derivatives of �̂�2. Now we 

focus on the second order derivatives of �̈�2. Let 

�̈�𝑓 = 𝑏1
2�̂�𝑋𝑋 − 𝑏1(�̂�𝑋𝑌1 + �̂�𝑋1𝑌) + �̂�𝑌𝑌 + �̂�𝑍

2, 

�̈�𝑓 = 𝑏1
2�̂�𝑋2 + �̂�𝑌2 − 2𝑏1�̂�𝑋𝑌 + �̂�𝑍

2. 

Then �̈� can be expressed as 

�̈� = �̈�𝑓 �̈�𝑓⁄ . 

After some derivations, the second order derivatives of �̈�2 would be 

𝜕2�̈�2

𝜕�̂�𝑇𝜕�̂�
= (

�̈� �̈�𝑇�̈�

�̈�𝑇�̈� −
1

1 + 𝑏1
2

1

�̈�𝑓
�̈�𝑇�̈�) 

where 

�̈�𝑓 = (−
4(1−�̈�)2

1+𝑏1
2

�̂�𝑍
2

�̈�
+
(1−�̈�)2

1+𝑏1
2 ) (

𝑏1
2 −𝑏1

−𝑏1 1
), 

�̈� = (−𝑏1
2�̈�, −�̈�, 2𝑏1�̈�, −𝑏1, −𝑏1, 𝑏1

2, 1), 

�̈� =
2(1−�̈�)

1+𝑏1
2

�̂�𝑍

�̈�𝑓
(−𝑏1, 1). 

Under the null hypothesis, we know that (𝛽0, 𝛽1) = (𝑏0, 𝑏1), and 

�̂� → 𝜓𝛽 = (𝜇𝑥, 𝑏0 + 𝑏1𝜇𝑥, 𝜎𝑥
2 +

𝜎2

1−𝜌2
, 𝑏1
2𝜎𝑥

2 +
𝜎2

1−𝜌2
, 𝑏1𝜎𝑥

2, 0,0, 𝜌
𝜎2

1−𝜌2
, 𝜌

𝜎2

1−𝜌2
). 

Then the first order derivatives of �̈�2 under the null hypothesis at 𝜓𝛽 would be 

𝜕�̈�2

𝜕�̂�
|
𝜓𝛽

= (0,0,
𝑏1
2(1+𝜌2)

2(1+𝑏1
2)
,
(1+𝜌2)

2(1+𝑏1
2)
, −

𝑏1(1+𝜌
2)

1+𝑏1
2 ,

𝑏1𝜌

1+𝑏1
2 ,

𝑏1𝜌

1+𝑏1
2 , −

𝑏1
2𝜌

(1+𝑏1
2)
, −

𝜌

1+𝑏1
2). 

The first order derivatives of �̂�2 at 𝜓𝛽 become 
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𝜕�̂�2

𝜕�̂�
|
𝜓𝛽

= (0,0,
𝑏1
2(1+𝜌2)

2(1+𝑏1
2)
,
(1+𝜌2)

2(1+𝑏1
2)
, −

𝑏1(1+𝜌
2)

1+𝑏1
2 ,

𝑏1𝜌

1+𝑏1
2 ,

𝑏1𝜌

1+𝑏1
2 , −

𝑏1
2𝜌

(1+𝑏1
2)
, −

𝜌

1+𝑏1
2). 

It is obvious that 
𝜕�̈�2

𝜕�̂�
|
𝜓𝛽

 and 
𝜕�̂�2

𝜕�̂�
|
𝜓𝛽

 are equal. Therefore, the first order derivatives for 

the test statistic are all zero. That is, 

𝜕𝑇𝐿𝑅𝑇,𝑓,𝛽

𝜕�̂�
|
𝜓𝛽

= 01×9. 

Furthermore, at 𝜓𝛽, we have 

�̈�𝑓|𝜓𝛽
= (1 + 𝑏1

2)
𝜎2

1−𝜌2
. 

Then the second order derivatives of �̈�2 under the null hypothesis at 𝜓𝛽 would be 

𝜕2�̈�2

𝜕�̂�𝑇𝜕�̂�
|
𝜓𝛽

= (
𝐴𝜓𝛽 02×7

07×2 𝑎𝛽
𝑇𝑏𝛽

), 

where 

𝐴𝜓𝛽 =
𝑏1

1+𝑏1
2 (1 − 𝜌)

2 (
𝑏1 −1
−1 1

), 

𝑎𝛽 = −
1

(1+𝑏1
2)
2

1−𝜌2

𝜎2
𝑏𝛽, 

𝑏𝛽 = (−𝑏1
2𝜌,−𝜌, 2𝑏1𝜌,−𝑏1, −𝑏1, 𝑏1

2, 1). 

Though complicated, we can derive the second order derivatives of 𝐹𝑓, �̂�𝑓, �̂�𝑓, and �̂�1
2. 

And then, the second order derivatives of �̂�2 at 𝜓𝛽 can be obtained as 

𝜕2�̂�2

𝜕�̂�𝑇𝜕�̂�
|
𝜓𝛽

= (
02×2 02×7
07×2 𝐵𝜓𝛽

), 

where 

𝐵𝜓𝛽 = 𝑐𝛽
𝑇𝑑𝛽 + 𝑎𝛽

𝑇𝑏𝛽. 
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In the definition of 𝐵𝜓𝛽, 𝑎𝛽 and 𝑏𝛽 have been defined above. And 

𝑑𝛽 = (−𝑏1, 𝑏1, (1 − 𝑏1
2), −

(1−𝑏1
2)𝜌

(1+𝜌2)
, −

(1−𝑏1
2)𝜌

(1+𝜌2)
,
2𝑏1𝜌

(1+𝜌2)
, −

2𝑏1𝜌

(1+𝜌2)
), 

𝑐𝛽 = −
(1+𝜌2)

(1+𝑏1
2)
3
𝜎𝑥
2
𝑑𝛽. 

Then substituting the second order derivatives of �̈�2  and �̂�2  at 𝜓𝛽 , the second order 

derivatives of the test statistic at 𝜓𝛽 would be 

𝜕2𝑇𝐿𝑅𝑇,𝑓,𝛽

𝜕�̂�𝑇𝜕�̂�
|
𝜓𝛽

= 4(𝑛 − 1)
1

𝜎2
(
𝐴𝜓𝛽 02×7

07×2 −𝑐𝛽
𝑇𝑑𝛽

). 

Therefore, the second order Taylor expansion of the test statistic would be 

𝑇𝐿𝑅𝑇,𝑓,𝛽 ≐ 𝑇𝐿𝑅𝑇,𝑓,𝛽|𝜓𝛽
+
𝜕𝑇𝐿𝑅𝑇,𝑓,𝛽

𝜕�̂�
|
𝜓𝛽

(�̂� − 𝜓𝛽)
𝑇
+
1

2
(�̂� − 𝜓𝛽)

𝜕2𝑇𝐿𝑅𝑇,𝑓,𝛽

𝜕�̂�𝑇𝜕�̂�
|
𝜓𝛽

(�̂� − 𝜓𝛽)
𝑇
  

= 2(𝑛 − 1)
1

𝜎2
(�̂� − 𝜓𝛽) (

𝐴𝜓𝛽 02×7

07×2 −𝑐𝛽
𝑇𝑑𝛽

) (�̂� − 𝜓𝛽)
𝑇

. 

To apply Theorem 3.8 in Section 3, we need to make some variable transformations 

first. Let 

𝑈1 = √1 − 𝜌2𝑋1, 

𝑈𝑡 = 𝑋𝑡 − 𝜌𝑋𝑡−1 = 𝑥𝑡 − 𝜌𝑥𝑡−1 + 𝜐𝑡  𝑡 = 2,3, … , 𝑛, 

and 

𝑉1 = √1 − 𝜌2𝑉1, 

𝑉𝑡 = 𝑌𝑡 − 𝜌𝑌𝑡−1 = 𝑦𝑡 − 𝜌𝑦𝑡−1 + 𝛿𝑡  𝑡 = 2,3, … , 𝑛. 

Furthermore, let 

𝑍𝛽𝑡 = (𝑈𝑡, 𝑉𝑡), 
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𝑧𝛽𝑡 = (𝑥𝑡 − 𝜌𝑥𝑡−1, 𝑦𝑡 − 𝜌𝑦𝑡−1), 

휀𝛽𝑡 = (𝜐𝑡, 𝛿𝑡). 

Then 

𝑍𝛽𝑡 = 𝑧𝛽𝑡 + 휀𝛽𝑡, 

and 𝑍𝛽𝑡 is an independent random vector. The sample covariance matrix of 𝑍𝛽𝑡 becomes 

𝑚𝛽𝑧𝑧 =
1

𝑛−1
(

∑ (𝑈𝑡 − �̅�)
2𝑛

𝑡=2 ∑ (𝑈𝑡 − �̅�)(𝑉𝑡 − �̅�)
𝑛
𝑡=2

∑ (𝑈𝑡 − �̅�)(𝑉𝑡 − �̅�)
𝑛
𝑡=2 ∑ (𝑉𝑡 − �̅�)

2𝑛
𝑡=2

). 

Let the sample mean and sample covariance be given as follows, 

𝜃𝛽 = (𝜃𝛽1
𝑇 , 𝜃𝛽2

𝑇 )
𝑇
, 

where 

𝜃𝛽1 = (�̅�, �̅�)𝑇, 

𝜃𝛽2 = (
1

𝑛−1
∑ (𝑈𝑡 − �̅�)

2𝑛
𝑡=2 ,

1

𝑛−1
∑ (𝑈𝑡 − �̅�)(𝑉𝑡 − �̅�)
𝑛
𝑡=2 ,

1

𝑛−1
∑ (𝑉𝑡 − �̅�)

2𝑛
𝑡=2 )

𝑇

. 

Following Theorem 3.8 in Section 3, we know that the new vector 𝜃𝛽 is asymptotically 

distributed as a normal distribution with mean 

𝜃𝛽𝑛 = (𝜃𝛽𝑛1
𝑇 , 𝜃𝛽𝑛2

𝑇 )
𝑇
, 

where 

𝜃𝛽𝑛1 = (�̅�𝑛 − 𝜌�̅�𝑛−1, �̅�𝑛 − 𝜌�̅�𝑛−1)
𝑇, 

𝜃𝛽𝑛2 =

(

 
 

∑ (𝑥𝑡−𝜌𝑥𝑡−1−�̅�𝑛+𝜌�̅�𝑛−1)
2𝑛

𝑡=2

𝑛−1
+ 𝜎2

∑ (𝑥𝑡−𝜌𝑥𝑡−1−�̅�𝑛+𝜌�̅�𝑛−1)(𝑦𝑡−𝜌𝑦𝑡−1−�̅�𝑛+𝜌�̅�𝑛−1)
𝑛
𝑡=2

𝑛−1

∑ (𝑦𝑡−𝜌𝑦𝑡−1−�̅�𝑛+𝜌�̅�𝑛−1)
2𝑛

𝑡=2

𝑛−1
+ 𝜎2 )

 
 

, 

and covariance matrix 
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𝐺𝛽𝑛 = (
𝐺𝛽𝑛1 02×3
03×2 𝐺𝛽𝑛2

), 

where 

𝐺𝛽𝑛1 =
1

𝑛−1
𝜎2𝐼2×2, 

𝐺𝛽𝑛2 =
4𝜎2

𝑛−1

(

  
 

∑ (𝑥𝑡−�̅�𝑛)
2𝑛

𝑡=2

𝑛−1
+ 𝜎2

∑ (𝑥𝑡−�̅�𝑛)(𝑦𝑡−�̅�𝑛)
𝑛
𝑡=2

2(𝑛−1)
0

∑ (𝑥𝑡−�̅�𝑛)(𝑦𝑡−�̅�𝑛)
𝑛
𝑡=2

2(𝑛−1)

∑ [(𝑥𝑡−�̅�𝑛)
2+(𝑦𝑡−�̅�𝑛)

2]𝑛
𝑡=2

4(𝑛−1)
+
𝜎2

4

∑ (𝑥𝑡−�̅�𝑛)(𝑦𝑡−�̅�𝑛)
𝑛
𝑡=2

2(𝑛−1)

0
∑ (𝑥𝑡−�̅�𝑛)(𝑦𝑡−�̅�𝑛)
𝑛
𝑡=2

2(𝑛−1)

∑ (𝑦𝑡−�̅�𝑛)
2𝑛

𝑡=2

𝑛−1
+ 𝜎2)

  
 

. 

It is obvious that there is some relationships between 𝜃𝛽  and �̂�  and we can make a 

transformation to obtain 𝜃𝛽 from �̂�. That is, 

𝜃𝛽 = 𝐷𝛽�̂�, 

where 

𝐷𝛽 =

(

 
 

1 − 𝜌
0
0
0
0

0
1 − 𝜌
0
0
0

0
0

1 + 𝜌2

0
0

0
0
0
0

1 + 𝜌2

0
0
0

1 + 𝜌2

0

0
0
0
−𝜌
0

0
0
0
−𝜌
0

0
0
−2𝜌
0
0

0
0
0
0
−2𝜌)

 
 

. 

One of the generalized inverse matrices of 𝐷 that satisfies the equality of 𝐷𝛽𝐷𝛽𝐼𝐷𝛽 = 𝐷𝛽 

is 

𝐷𝛽𝐼 = (

𝐷𝛽𝐼1 03×2
02×3 𝐷𝛽𝐼2
04×3 04×2

), 

where 

𝐷𝛽𝐼1 = (

(1 − 𝜌)−1 0 0

0 (1 − 𝜌)−1 0

0 0 (1 + 𝜌2)−1
), 
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𝐷𝛽𝐼2 = (
0 (1 + 𝜌2)−1

(1 + 𝜌2)−1 0
). 

Therefore, 

𝐵𝛽 = 𝐷𝛽𝐼
𝑇 𝜕2𝑇𝐿𝑅𝑇,𝑓,𝛽

𝜕�̂�𝑇𝜕�̂�
|
𝜓𝛽

𝐷𝛽𝐼 = (
𝐵𝛽11 02×3
03×2 𝐵𝛽22

), 

where 

𝐵𝛽11 = 4(𝑛 − 1)
1

(1−𝜌)2𝜎2
𝐴𝜓𝛽 , 

𝐵𝛽22 = 4(𝑛 − 1)
1

𝜎2
1

(1+𝑏1
2)
3
𝜎𝑥
2(1+𝜌2)

(

𝑏1
2 −𝑏1(1 − 𝑏1

2) −𝑏1
2

−𝑏1(1 − 𝑏1
2) (1 − 𝑏1

2)2 𝑏1(1 − 𝑏1
2)

−𝑏1
2 𝑏1(1 − 𝑏1

2) 𝑏1
2

). 

After some calculations, we find that 

𝜕2𝑇𝐿𝑅𝑇,𝑓,𝛽

𝜕�̂�𝑇𝜕�̂�
|
𝜓𝛽

= 𝐷𝛽
𝑇𝐵𝛽𝐷𝛽. 

Substituting these equations into the Taylor expansion of the test statistic, we have 

the expansion after variable transformation, 

𝑇𝐿𝑅𝑇,𝑓,𝛽 ≐
1

2
(�̂� − 𝜓𝛽)

𝜕2𝑇𝐿𝑅𝑇,𝑓,𝛽

𝜕�̂�𝑇𝜕�̂�
|
𝜓𝛽

(�̂� − 𝜓𝛽)
𝑇
=

1

2
(�̂� − 𝜓𝛽)𝐷𝛽

𝑇𝐵𝛽𝐷𝛽(�̂� − 𝜓𝛽)
𝑇
  

=
1

2
(𝜃𝛽 − 𝜃𝛽)𝐵𝛽(𝜃𝛽 − 𝜃𝛽)

𝑇
  

=
1

2
(𝜃𝛽1 − 𝜃𝛽1)𝐵𝛽11(𝜃𝛽1 − 𝜃𝛽1)

𝑇
+
1

2
(𝜃𝛽2 − 𝜃𝛽2)𝐵𝛽22(𝜃𝛽2 − 𝜃𝛽2)

𝑇
. 

Then the Taylor expansion of the test statistic becomes a summation of two parts. We 

will consider the two parts separately. First of all, from the structure of the covariance 

matrix, we can see that the mean of 𝑍𝛽𝑡 , 𝜃𝛽1 , and the covariance elements, 𝜃𝛽2 , are 

independent. Furthermore, since 𝜃𝛽 − 𝜃𝛽  is asymptotically normally distributed with 
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mean zero and covariance matrix 𝐺𝛽𝑛, then 𝜃𝛽1 − 𝜃𝛽1 and 𝜃𝛽2 − 𝜃𝛽2 are asymptotically 

independently normally distributed with mean zero, 

𝜃𝛽1 − 𝜃𝛽1 → 𝐴𝑁(0, 𝐺𝛽𝑛1), 

𝜃𝛽2 − 𝜃𝛽2 → 𝐴𝑁(0, 𝐺𝛽𝑛2). 

For the first term in the expansion, we notice that, 

𝐵𝛽11

4
𝐺𝛽𝑛1

𝐵𝛽11

4
=

𝐵𝛽11

4
. 

Therefore, according to Theorem 3.9 in Section 3, 
1

4
(𝜃𝛽1 − 𝜃𝛽1)𝐵𝛽11(�̂�𝛽1 − 𝜃𝛽1)

𝑇
 

converges to a chi-squared distribution with one degree of freedom. The reason why the 

degree of freedom is one is that the rank of 𝐵𝛽11𝐺𝛽𝑛1 is one. For the second term in the 

expansion, we have 

𝐵𝛽22

4𝑘
𝐺𝛽𝑛2

𝐵𝛽22

4𝑘
=

𝐵𝛽22

4𝑘
, 

where 

𝑘 =
1

(1+𝑏1
2)(1+𝜌2)𝜎𝑥

2 {
∑ [(𝑥𝑡−�̅�𝑛)

2+(𝑦𝑡−�̅�𝑛)
2]𝑛

𝑡=2

(𝑛−1)
+ 𝜎2 +

4𝑏1
2

(1+𝑏1
2)
𝜎2}. 

Therefore, following Theorem 3.9, we have 
1

4𝑘
(𝜃𝛽2 − 𝜃𝛽2)𝐵𝛽22(𝜃𝛽2 − 𝜃𝛽2)

𝑇
 

asymptotically distributed as a chi-squared random variable with one degree of freedom. 

It is one degree of freedom because the rank of 𝐵𝛽22𝐺𝛽𝑛2 is one. Then the test statistic is 

a summation of two independent chi-squared random variables with both having one 

degree of freedom. Let 

𝑇1𝑓 =
1

4
(𝜃𝛽1 − 𝜃𝛽1)𝐵𝛽11(𝜃𝛽1 − 𝜃𝛽1)

𝑇
, 

𝑇2𝑓 =
1

4𝑘
(𝜃𝛽2 − 𝜃𝛽2)𝐵𝛽22(𝜃𝛽2 − 𝜃𝛽2)

𝑇
. 
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Then, 

𝑇𝐿𝑅𝑇,𝑓,𝛽 ≐ 2(𝜃𝛽1 − 𝜃𝛽1)
𝐵𝛽11

4
(𝜃𝛽1 − 𝜃𝛽1)

𝑇
+ 2𝑘(𝜃𝛽2 − 𝜃𝛽2)

𝐵𝛽22

4𝑘
(𝜃𝛽2 − 𝜃𝛽2)

𝑇
  

= 2𝑇1𝑓 + 2𝑘𝑇2𝑓. 

Notice that the two chi-squared distributed random variables, 𝑇1𝑓 and 𝑇2𝑓 are multiplied 

by constants which are not equal. Thus, using the Satterthwaite approximation, we know 

that 
𝜈𝑇𝐿𝑅𝑇,𝑓,𝛽

𝐸(𝑇𝐿𝑅𝑇,𝑓,𝛽)
 is asymptotically distributed as a chi-squared random variable with degree 

of freedom equal to 

𝜈 =
(2𝑇1𝑓+2𝑘𝑇2𝑓)

2

(2𝑇1𝑓)
2
+(2𝑘𝑇2𝑓)

2. 

Since the value of degree of freedom depends on the variance estimators, it makes this 

scenario complicated to investigate and the simulation result is not ideal especially when 

the absolute value of the correlation coefficient is large. 
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5. SIMULATION STUDIES 

 

Simulation studies are used to examine the small sample behavior of our 

estimators and test statistics. The results presented are a representative subset of results 

taken from a much larger simulation study. Section 5.1 investigates the empirical biases 

of parameter estimators for both structural and function models as the ratio 𝜎𝑥
2/𝜎2 

varies. Abdul-Salam (1996) showed that when 𝜌 = 0 this ratio played a crucial role in 

the small sample behavior of parameter estimators and test statistics in the structural and 

functional models. Assessment of sample sizes needed to achieve adequate 

approximations to the distributions of our test statistics by the limiting null distributions 

is presented in Section 5.2. Empirical type I error rates are studied in Section 5.3. Power 

studies conclude the empirical investigation of our test statistics in Section 5.4. 

5.1 Empirical Bias and Consistency of Maximum Likelihood Estimates 

5.1.1 Empirical bias and consistency under the structural model 

Simulated trivariate normal data (𝑥𝑡, 𝛿𝑡, 𝜐𝑡)
𝑇  with mean (𝜇𝑥, 0,0)

𝑇  and diagonal 

covariance matrix 𝑑𝑖𝑎𝑔(𝜎𝑥
2, 𝜎2, 𝜎2)   are generated using the R package MASS.  Values 

of 𝑒𝑡 = 𝜌𝑒𝑡−1 + 𝛿𝑡  and 𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝜐𝑡  are calculated and used to compute the 

simulated (𝑋𝑡, 𝑌𝑡)  values, with 𝑋𝑡 = 𝑥𝑡 + 𝑒𝑡  and 𝑌𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 𝑢𝑡 = 𝑦𝑡 + 𝑢𝑡 .  

Empirical biases of parameter estimators are investigated for varying sample sizes given 

in tables 5.1-5.7.  Three sets of parameter conditions are considered: 1) 𝜌 = 0 ; 2) 

(𝛽0, 𝛽1) = (𝑏0, 𝑏1) , where (𝑏0, 𝑏1) is known; and, 3) no parameter constraints.  The 

number of simulated data sets is 𝑁 = 2000  for each parameter configuration listed 
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below.  Empirical bias is calculated as the true parameter value subtracted from the 

sample mean of the 𝑁 = 2000 parameter estimates. 

 

Table 5.1 Consistency for MLE under 𝝆 = 𝟎 with (𝜷𝟎, 𝜷𝟏, 𝝈
𝟐, 𝝁𝒙) = (𝟎, 𝟏, 𝟒, 𝟏) in structural model 

Sample 

Size 

Parameter 

Value 

�̃�𝑥 �̃�𝑥
2 �̃�2 �̃�0 �̃�1 

n=10 𝜎𝑥
2 = 1 -0.0123 (0.0171) 0.9903 (0.0449) -1.5773 (0.0279) -0.9419 (1.4852) 1.8207 (1.7709) 

𝜎𝑥
2 = 4 0.0018 (0.0209) 0.3345 (0.0772) -1.1871 (0.0322) -0.8198 (0.4467) 0.4886 (0.3397) 

𝜎𝑥
2 = 16 -0.0326 (0.0332) -1.2217 (0.1934) -0.9099 (0.0375) -0.0735 (0.0386) 0.0472 (0.0181) 

n=20 𝜎𝑥
2 = 1 -0.0061 (0.0113) 0.5832 (0.0309) -0.8542 (0.0226) 1.0764 (2.2048) -0.5804 (1.8951) 

𝜎𝑥
2 = 4 -0.0209 (0.0141) 0.1096 (0.0544) -0.5511 (0.0272) -0.1157 (0.0455) 0.1008 (0.0424) 

𝜎𝑥
2 = 16 -0.0006 (0.0227) -0.5108 (0.1414) -0.4549 (0.0270) -0.0187 (0.0154) 0.0165 (0.0045) 

n=30 𝜎𝑥
2 = 1 0.0031 (0.0093) 0.3854 (0.0254) -0.6060 (0.0191) 0.3325 (0.4370) -0.3735 (0.4057) 

𝜎𝑥
2 = 4 -0.0180 (0.0116) 0.0744 (0.0448) -0.3407 (0.0223) -0.0755 (0.0206) 0.0943 (0.0153) 

𝜎𝑥
2 = 16 -0.0160 (0.0187) -0.3431 (0.1158) -0.2804 (0.0232) 0.0059 (0.0127) 0.0063 (0.0035) 

n=50 𝜎𝑥
2 = 1 -0.0051 (0.0073) 0.2591 (0.0206) -0.3471 (0.0160) 0.1287 (0.4676) -0.1881 (0.4731) 

𝜎𝑥
2 = 4 0.0128 (0.0090) 0.0593 (0.0349) -0.2288 (0.0178) -0.0428 (0.0117) 0.0370 (0.0065) 

𝜎𝑥
2 = 16 0.0094 (0.0137) -0.2612 (0.0892) -0.1630 (0.0178) -0.0061 (0.0094) 0.0034 (0.0025) 

n=100 𝜎𝑥
2 = 1 -0.0004 (0.0051) 0.1210 (0.0154) -0.1603 (0.0118) -0.0408 (0.4253) 0.0864 (0.3397) 

𝜎𝑥
2 = 4 -0.0028 (0.0066) -0.0104 (0.0256) -0.1058 (0.0130) -0.0246 (0.0079) 0.0218 (0.0043) 

𝜎𝑥
2 = 16 0.0074 (0.0100) -0.0780 (0.0631) -0.0833 (0.0126) -0.0054 (0.0067) 0.0008 (0.0017) 

n=500 𝜎𝑥
2 = 1 0.0003 (0.0022) 0.0331 (0.0070) -0.0435 (0.0057) -0.0224 (0.0062) 0.0221 (0.0056) 

𝜎𝑥
2 = 4 0.0017 (0.0028) -0.0187 (0.0114) -0.0041 (0.0056) -0.0084 (0.0033) 0.0038 (0.0017) 

𝜎𝑥
2 = 16 -0.0092 (0.0045) -0.0154 (0.0295) -0.0179 (0.0057) 0.0018 (0.0029) -0.0008 (0.0007) 

n=1000 𝜎𝑥
2 = 1 0.0009 (0.0016) 0.0133 (0.0049) -0.0199 (0.0039) -0.0165 (0.0042) 0.1535 (0.0036) 

𝜎𝑥
2 = 4 0.0033 (0.0020) -0.0043 (0.0079) -0.0124 (0.0040) -0.0053 (0.0023) 0.0023 (0.0013) 

𝜎𝑥
2 = 16 -0.0020 (0.0032) -0.0089 (0.0202) -0.0021 (0.0040) -0.0017 (0.0020) 0.0000 (0.0005) 

* In each cell, the numbers are in the form of bias (standard error). 
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Table 5.2 Consistency for MLE under 𝛒 = 𝟎 with (𝛃𝟎, 𝛃𝟏, 𝛔
𝟐, 𝛍𝐱) = (𝟏, 𝟑, 𝟒, 𝟏) in structural model 

Sample 

Size 

Parameter 

Value 
�̃�𝑥 �̃�𝑥

2 �̃�2 �̃�0 �̃�1 

n=10 𝜎𝑥
2 = 1 0.0254 (0.0167) 0.5854 (0.0384) -1.1309 (0.0333) 3.0140 (2.0899) -1.7296 (1.1940) 

𝜎𝑥
2 = 4 -0.0069 (0.0216) -0.0099 (0.0708) -0.9002 (0.0362) 1.3810 (1.7351) -0.8165 (1.1580) 

𝜎𝑥
2 = 16 -0.0435 (0.0337) -1.2335 (0.1939) -0.8519 (0.0375) -0.1481 (0.0681) 0.1696 (0.0224) 

n=20 𝜎𝑥
2 = 1 0.0047 (0.0114) 0.2677 (0.0262) -0.5228 (0.0260) -0.5260 (1.1511) 0.9116 (0.8526) 

𝜎𝑥
2 = 4 -0.0066(0.0145) 0.0568 (0.0501) -0.4503 (0.0262) -0.3309 (0.0823) 0.2802 (0.0523) 

𝜎𝑥
2 = 16 -0.0053 (0.0234) -0.5174 (0.1425) -0.4045 (0.0270) -0.0579 (0.0361) 0.0473 (0.0096) 

n=30 𝜎𝑥
2 = 1 0.0084 (0.0095) 0.1182 (0.0204) -0.3310 (0.0227) 0.5735 (1.2321) -0.2704 (1.0006) 

𝜎𝑥
2 = 4 0.0057 (0.0117) 0.0297 (0.0397) -0.2801 (0.0230) 0.0052 (0.1254) 0.0384 (0.1102) 

𝜎𝑥
2 = 16 -0.0162 (0.0188) -0.4580 (0.1110) -0.2822 (0.0224) 0.0058 (0.0280) 0.0335 (0.0072) 

n=50 𝜎𝑥
2 = 1 0.0099 (0.0070) 0.1003 (0.0159) -0.2012 (0.0177) -0.1664 (0.2482) 0.0738 (0.2373) 

𝜎𝑥
2 = 4 0.0155 (0.0090) -0.0258 (0.0317) -0.1971 (0.0176) -0.1099 (0.0244) 0.0892 (0.0125) 

𝜎𝑥
2 = 16 -0.0223 (0.0146) -0.1960 (0.0885) -0.1744 (0.0177) -0.0229 (0.0216) 0.0171 (0.0054) 

n=100 𝜎𝑥
2 = 1 -0.0006 (0.0050) 0.0585 (0.0116) -0.1067 (0.0126) -0.1962 (0.0298) 0.2113 (0.0262) 

𝜎𝑥
2 = 4 -0.0042 (0.0064) -0.0092 (0.0225) -0.0884 (0.0123) -0.0174 (0.0167) 0.0342 (0.0079) 

𝜎𝑥
2 = 16 0.0147 (0.0103) -0.0650 (0.0625) -0.0927 (0.0125) -0.0137 (0.0150) 0.0041 (0.0037) 

n=500 𝜎𝑥
2 = 1 0.0028 (0.0022) 0.0153 (0.0052) -0.0208 (0.0058) -0.0416 (0.0102) 0.0323 (0.0081) 

𝜎𝑥
2 = 4 -0.0052(0.0029) 0.0114 (0.0102) -0.0207 (0.0056) 0.0079 (0.0070) 0.0016 (0.0034) 

𝜎𝑥
2 = 16 0.0042 (0.0045) -0.0533 (0.0285) -0.0167 (0.0055) 0.0026 (0.0064) 0.0024 (0.0016) 

n=1000 𝜎𝑥
2 = 1 -0.0019 (0.0016) 0.0040 (0.0035) -0.0130 (0.0040) -0.0161 (0.0072) 0.0190 (0.0055) 

𝜎𝑥
2 = 4 0.0003 (0.0020) -0.0033 (0.0072) -0.0096 (0.0040) -0.0018 (0.0051) 0.0051 (0.0024) 

𝜎𝑥
2 = 16 0.0023 (0.0031) -0.0288 (0.0196) -0.0047 (0.0040) -0.0044 (0.0046) 0.0010 (0.0011) 

* In each cell, the numbers are in the form of empirical bias (standard error). 

 

In tables 5.1 and Table 5.2, both the empirical bias and the standard error of the 

empirical bias for each estimator decrease as sample size increases.  As the ratio of 

𝜎𝑥
2/𝜎2 increases, empirical biases of the estimators for 𝜇𝑥, 𝜎𝑥

2, and 𝜎2 tend to increase 

somewhat, whereas the empirical biases and standard errors for intercept and slope 
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estimators tend to decrease.  Except in cases of substantial measurement error, viz., 

𝜎𝑥
2/𝜎2  = 0.25 or 𝜎𝑥

2/𝜎2  = 1, empirical biases fall well within two standard errors of 

zero for sample sizes greater than 𝑛 = 30. In general, the values of intercept and slope 

appear to have little effect on the empirical biases of the estimators. 

 

Table 5.3 Consistency for MLE under (𝜷𝟎, 𝜷𝟏) = (𝟎, 𝟏) with (𝝈𝟐, 𝝁𝒙, 𝝆) = (𝟒, 𝟏, 𝟎) in structural 

model 

Sample 

Size 

Parameter 

Value 
�̇�𝑥 �̇�𝑥

2 �̇�2 �̇� 

n=10 𝜎𝑥
2 = 1 0.0084 (0.0129) 0.5282 (0.0273) -0.9410 (0.0307) -0.0356 (0.0062) 

𝜎𝑥
2 = 4 0.0031 (0.0181) -0.3052 (0.0584) -0.4501 (0.0370) -0.0436 (0.0066) 

𝜎𝑥
2 = 16 -0.0515 (0.0318) -2.0202 (0.1850) -0.2464 (0.0417) -0.0133 (0.0068) 

n=20 𝜎𝑥
2 = 1 -0.0064 (0.0087) 0.2629 (0.0200) -0.4823 (0.0237) -0.0185 (0.0046) 

𝜎𝑥
2 = 4 0.0034 (0.0126) -0.2422 (0.0434) -0.1581 (0.0289) -0.0166 (0.0048) 

𝜎𝑥
2 = 16 0.0170 (0.0217) -1.0942 (0.1255) -0.1705 (0.0290) 0.0006 (0.0050) 

n=30 𝜎𝑥
2 = 1 -0.0046 (0.0073) 0.1938 (0.0175) -0.3629 (0.0202) -0.0107 (0.0036) 

𝜎𝑥
2 = 4 -0.0172 (0.0103) -0.2685 (0.0365) -0.1119 (0.0232) -0.0130 (0.0040) 

𝜎𝑥
2 = 16 -0.0002 (0.01772) -0.5649 (0.1063) -0.0855 (0.0231) -0.0010(0.0040) 

n=50 𝜎𝑥
2 = 1 -0.0135 (0.0055) 0.0770 (0.0144) -0.1545 (0.0166) -0.0073 (0.0029) 

𝜎𝑥
2 = 4 -0.0125 (0.0079) -0.1118 (0.0286) -0.0508 (0.0179) -0.0076 (0.0030) 

𝜎𝑥
2 = 16 -0.0309 (0.0138) -0.4708 (0.0797) -0.0438 (0.0178) -0.0035 (0.0031) 

n=100 𝜎𝑥
2 = 1 -0.0025 (0.0055) -0.0296 (0.0160) -0.0171 (0.0180) -0.0025 (0.0027) 

𝜎𝑥
2 = 4 -0.0035 (0.0075) -0.1329 (0.0290) -0.0011 (0.0183) -0.0002 (0.0029) 

𝜎𝑥
2 = 16 0.0130 (0.0134) -0.3078 (0.0879) -0.1045 (0.0181) -0.0009 (0.0034) 

n=500 𝜎𝑥
2 = 1 -0.0004 (0.0025) -0.0034 (0.0071) -0.0095 (0.0080) 0.0001 (0.0012) 

𝜎𝑥
2 = 4 0.0034 (0.0035) -0.0167 (0.0123) -0.0054 (0.0081) 0.0009 (0.0013) 

𝜎𝑥
2 = 16 -0.0080 (0.0061) -0.0476 (0.0363) 0.0017 (0.0078) -0.0021 (0.0014) 

n=1000 𝜎𝑥
2 = 1 0.0010 (0.0017) -0.0067 (0.0051) 0.0103 (0.0056) 0.0000 (0.0008) 

𝜎𝑥
2 = 4 0.0011 (0.0024) -0.0023 (0.0090) -0.0060 (0.0057) -0.0006 (0.0009) 

𝜎𝑥
2 = 16 -0.0073 (0.0044) -0.0259 (0.0256) -0.0088 (0.0058) -0.0004 (0.0009) 

* In each cell, the numbers are in the form of empirical bias (standard error). 
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Table 5.3 - 5.5 summarize behaviors of empirical biases of estimators when 

(𝛽0, 𝛽1) = (𝑏0, 𝑏1) is known, but values of 𝜌 vary. 

 

Table 5.4 Consistency for MLE under (𝜷𝟎, 𝜷𝟏) = (𝟎, 𝟏) with (𝝈𝟐, 𝝁𝒙, 𝝆) = (𝟒, 𝟏, 𝟎. 𝟓) in structural 

model 

Sample Size Parameter Value �̇�𝑥 �̇�𝑥
2 �̇�2 �̇� 

n=10 𝜎𝑥
2 = 1 -0.0338 (0.0214) 0.5009 (0.0267) -0.9239 (0.0312) -0.1594 (0.0060) 

𝜎𝑥
2 = 4 0.0254 (0.0263) -0.1671 (0.0594) -0.5017 (0.0382) -0.1862 (0.0062) 

𝜎𝑥
2 = 16 -0.0189 (0.0364) -1.7710 (0.1784) -0.4048 (0.0431) -0.1532 (0.0065) 

n=20 𝜎𝑥
2 = 1 -0.0170 (0.0149) 0.2386 (0.0190) -0.4448 (0.0245) -0.0741 (0.0038) 

𝜎𝑥
2 = 4 0.0098 (0.0170) -0.2443 (0.0431) -0.2148 (0.0277) -0.0935 (0.0043) 

𝜎𝑥
2 = 16 0.0406 (0.0250) -0.7067 (0.1301) -0.1730 (0.0290) -0.0650 (0.0043) 

n=30 𝜎𝑥
2 = 1 -0.0011 (0.0122) 0.1457 (0.0154) -0.2858 (0.0205) -0.0518 (0.0030) 

𝜎𝑥
2 = 4 0.0140 (0.0141) -0.1390 (0.0369) -0.1346 (0.0231) -0.0441 (0.0034) 

𝜎𝑥
2 = 16 -0.0235 (0.0205) -0.6571 (0.1061) -0.1429 (0.0226) -0.0479 (0.0037) 

n=50 𝜎𝑥
2 = 1 0.0035 (0.0094) 0.0617 (0.0127) -0.1353 (0.0162) -0.0227 (0.0023) 

𝜎𝑥
2 = 4 0.0094 (0.0110) -0.0429 (0.0273) -0.0809 (0.0175) -0.0252 (0.0025) 

𝜎𝑥
2 = 16 -0.0166 (0.0158) -0.4303 (0.0837) -0.0879 (0.0174) -0.0243 (0.0029) 

n=100 𝜎𝑥
2 = 1  0.0090 (0.0067) 0.0074 (0.0092) -0.0610 (0.0118) -0.0123 (0.0016) 

𝜎𝑥
2 = 4 0.0006 (0.0078) -0.0196 (0.0194) -0.0731 (0.0122) -0.0115 (0.0018) 

𝜎𝑥
2 = 16 -0.0068 (0.0108) -0.0285 (0.0583) -0.0349 (0.0123) -0.0139 (0.0019) 

n=500 𝜎𝑥
2 = 1 0.0008 (0.0030) 0.0004 (0.0042) -0.0092 (0.0054) -0.0026 (0.0007) 

𝜎𝑥
2 = 4 -0.0015 (0.0035) -0.0239 (0.0088) -0.0043 (0.0055) -0.0016 (0.0008) 

𝜎𝑥
2 = 16 0.0062 (0.0048) -0.0298 (0.0260) -0.0037 (0.0056) -0.0017 (0.0009) 

n=1000 𝜎𝑥
2 = 1 0.0035 (0.0021) -0.0003 (0.0030) -0.0063 (0.0039) -0.0013 (0.0005) 

𝜎𝑥
2 = 4 -0.0025 (0.0025) -0.0011 (0.0063) -0.0053 (0.0040) 0.0010 (0.0006) 

𝜎𝑥
2 = 16 0.0019 (0.0035) -0.0025 (0.0187) -0.0042 (0.0040) -0.0008 (0.0006) 

* In each cell, the numbers are in the form of empirical bias (standard error). 
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Table 5.5 Consistency for MLE under (𝜷𝟎, 𝜷𝟏) = (𝟎, 𝟏) with (𝝈𝟐, 𝝁𝒙, 𝝆) = (𝟒, 𝟏, 𝟎. 𝟗) in structural 

model 

Sample Size Parameter Value �̇�𝑥 �̇�𝑥
2 �̇�2 �̇� 

n=10 𝜎𝑥
2 = 1 0.0466 (0.0911) 0.3251 (0.0314) -1.0845 (0.0415) -0.3317 (0.0076) 

𝜎𝑥
2 = 4 -0.0470 (0.0712) -0.0141 (0.0689) -0.7137 (0.0436) -0.3509 (0.0072) 

𝜎𝑥
2 = 16 -0.1012 (0.0631) -1.2225 (0.1999) -0.3973 (0.0582) -0.3129 (0.0064) 

n=20 𝜎𝑥
2 = 1 -0.0078 (0.0731) 0.2213 (0.0253) -0.5238 (0.0355) -0.1869 (0.0048) 

𝜎𝑥
2 = 4 0.0912 (0.0600) 0.0892 (0.0571) -0.3467 (0.0310) -0.1976 (0.0039) 

𝜎𝑥
2 = 16 -0.0089 (0.0562) -0.2220 (0.1442) -0.3694 (0.0304) -0.1871 (0.0037) 

n=30 𝜎𝑥
2 = 1 0.0055 (0.0696) 0.3714 (0.1586) -0.3238 (0.0326) -0.1394 (0.0038) 

𝜎𝑥
2 = 4 -0.0213 (0.0613) 0.0934 (0.0488) -0.2726  0.0289) -0.1450 (0.0032) 

𝜎𝑥
2 = 16 -0.1578 (0.0529) 0.2621 (0.1276) -0.3677 (0.0240) -0.1410 (0.0028) 

n=50 𝜎𝑥
2 = 1 0.0405 (0.0776) 0.3683 (0.3116) -0.1482 (0.0327) -0.0867 (0.0038) 

𝜎𝑥
2 = 4 0.0676 (0.0617) 0.2241 (0.0729) -0.2440 (0.0246) -0.0937 (0.0026) 

𝜎𝑥
2 = 16 -0.0442 (0.0478) 0.6130 (0.1050) -0.2107 (0.0199) -0.1018 (0.0020) 

n=100 𝜎𝑥
2 = 1 0.0070 (0.0327) 0.0225 (0.0081) -0.0804 (0.0127) -0.0275 (0.0009) 

𝜎𝑥
2 = 4 -0.0325 (0.0302) 0.0247 (0.0188) -0.0949 (0.0125) -0.0232(0.0009) 

𝜎𝑥
2 = 16 0.0245 (0.0301) -0.0401(0.0611) -0.0780 (0.0128) -0.0239 (0.0009) 

n=500 𝜎𝑥
2 = 1 0.0100 (0.0151) 0.0111 (0.0036) -0.0172 (0.0058) -0.0063 (0.0004) 

𝜎𝑥
2 = 4 -0.0173 (0.0136) 0.0146 (0.0087) -0.0139(0.0054) -0.0051 (0.0004) 

𝜎𝑥
2 = 16 0.0109 (0.0143) -0.0623 (0.0285) -0.0244 (0.0056) -0.0048 (0.0004) 

n=1000 𝜎𝑥
2 = 1 0.0061 (0.0106) 0.0073 (0.0026) -0.0089 (0.0042) -0.0033 (0.0002) 

𝜎𝑥
2 = 4 0.0025 (0.0103) 0.0089 (0.0059) -0.0144 (0.0039) -0.0024 (0.0002) 

𝜎𝑥
2 = 16 -0.0101 (0.0101) -0.0037 (0.0208) -0.0028 (0.0038) -0.0021 (0.0003) 

* In each cell, the numbers are in the form of empirical bias (standard error). 

 

As in tables 5.1 and 5.2, the empirical biases of the estimators decrease when either the 

sample size or the signal to noise ratio increases shown in Table 5.3-5.5. In contrast, the 

empirical biases increase as 𝜌  increases and other parameters remain constant. 

Substantially larger sample sizes or signal to noise ratios are required to offset the 
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empirical biases in the presence of significant correlation. Also, empirical biases for 

estimators of 𝜇𝑥 and 𝜎𝑥
2 increase as the signal to noise ratio increases. 

Tables 5.6 and Table 5.7 show empirical biases and standard errors of the empirical 

biases when there are no constraints on either (𝛽0, 𝛽1) or 𝜌. 

 

Table 5.6 Consistency of MLE without constraints with 𝝆 = 𝟎 in structural model 

Sample 
Size 

𝜎𝑥
2 �̂�𝑥 

(𝜇𝑥 = 1) 

�̂�𝑥
2 �̂�2 

(𝜎2 = 4) 
�̂�0 

(𝛽0 = 0) 

�̂�1 

(𝛽1 = 1) 

�̂� 

(𝜌 = 0) 

n=10 1 -0.0012(0.0166) -0.4431(0.0234) -0.2043(0.0383) 0.4401(0.0279) -0.4762(0.0188) -0.1082(0.0058) 

4 -0.0189(0.0215) -0.8868(0.0652) 0.1202(0.0526) 0.1806(0.0332) -0.1662(0.0201) -0.1548(0.0072) 

16 0.1045(0.0329) -1.7229(0.1789) 0.3244(0.0832) -0.0079(0.0288) -0.0247(0.0113) -0.1233(0.0072) 

n=20 1 0.0035(0.0114) -0.2248(0.0228) -0.1548(0.0292) 0.3946(0.0374) -0.4045(0.0419) -0.0725(0.0044) 

4 -0.0052(0.0147) -0.1709(0.0500) -0.1457(0.0334) 0.0172(0.0226) -0.0181(0.0141) -0.0782(0.0051) 

16 0.0190(0.0224) -0.1565(0.1299) -0.2500(0.0446) 0.0175(0.0165) 0.0101(0.0065) -0.0535(0.0053) 

n=30 1 0.0038(0.0094) -0.0951(0.0219) -0.1096(0.0240) 0.2296(0.0227) -0.2415(0.0181) -0.0488(0.0036) 

4 0.0104(0.0120) 0.0340(0.0449) -0.1947(0.0274) 0.0097(0.0157) -0.0192(0.0098) -0.0511(0.0041) 

16 0.0217(0.0183) -0.2262(0.1127) -0.1894(0.0366) 0.0155(0.0132) -0.0062(0.0043) -0.0355(0.0041) 

n=50 1 -0.0039(0.0075) 0.0245(0.0194) -0.1085(0.0193) 0.1823(0.0184) -0.1748(0.0154) -0.0280(0.0027) 

4 0.0070(0.0091) -0.0980(0.0369) -0.0939(0.0227) 0.0097(0.0124) -0.0138(0.0081) -0.0283(0.0032) 

16 0.0163(0.0142) -0.1157(0.0885) -0.1903(0.0219) -0.0036(0.0096) 0.0016(0.0029) -0.0209(0.0032) 

n=100 1 0.0108(0.0061) -0.0092(0.0187) -0.0297(0.0181) 0.1203(0.0188) -0.1317(0.0165) -0.0106(0.0023) 

4 0.0041(0.0065) 0.0175(0.0277) -0.0743(0.0157) -0.0011(0.0083) -0.0008(0.0052) -0.0127(0.0022) 

16 0.0054(0.0102) -0.1261(0.0632) -0.1044(0.0139) -0.0048(0.0066) 0.0011(0.0018) -0.0089(0.0022) 

n=500 1 -0.0005(0.0023) -0.0032(0.0084) -0.0010(0.0070) 0.0283(0.0077) -0.0281(0.0071) -0.0017(0.0009) 

4 -0.0027(0.0030) -0.0143(0.0113) -0.0274(0.0056) -0.0092(0.0034) 0.0061(0.0018) -0.0023(0.0010) 

16 -0.0058(0.0045) -0.0386(0.0282) -0.0273(0.0056) -0.0032(0.0030) 0.0018(0.0007) -0.0042(0.0010) 

n=1000 1 -0.0009(0.0016) 0.0080(0.0055) -0.0137(0.0045) 0.0046(0.0049) -0.0039(0.0044) -0.0006(0.0006) 

4 -0.0014(0.0020) 0.0113(0.0082) -0.0209(0.0040) -0.0004(0.0024) 0.0012(0.0013) -0.0015(0.0007) 

16 -0.0017(0.0032) -0.0126(0.0205) -0.0122(0.0039) -0.0001(0.0021) 0.0010(0.0005) -0.0002(0.0007) 

* In each cell, the numbers are in the form of empirical bias (standard error). 
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Table 5.7 Consistency of MLE without constraints with 𝛒 = 𝟎. 𝟓 in structural model 

Sample 

Size 

𝜎𝑥
2 �̂�𝑥 

(𝜇𝑥 = 1) 

�̂�𝑥
2 �̂�2 

(𝜎2 = 4) 

�̂�0 

(𝛽0 = 0) 

�̂�1 

(𝛽1 = 1) 

�̂� 

(𝜌 = 0.5) 

n=10 1 -0.0216(0.0312) -0.2540(0.0272) -0.3475(0.0359) 0.3517(0.0504) -0.3108(0.0209) -0.2857(0.0064) 

4 0.0128(0.0333) -0.2014(0.0658) -0.4607(0.0439) -0.0136(0.0540) -0.0018(0.0181) -0.3154(0.0072) 

16 -0.0266(0.0413) -0.9191(0.1776) -0.1272(0.0737) -0.0121(0.0500) -0.0130(0.0124) -0.2970(0.0076) 

n=20 1 -0.0318(0.0208) 0.0518(0.0255) -0.2726(0.0272) 0.1595(0.0368) -0.1372(0.0204) -0.1360(0.0043) 

4 0.0031(0.0229) 0.1657(0.0501) -0.3967(0.0307) -0.0513(0.0341) 0.0184(0.0113) -0.1659(0.0050) 

16 -0.0215(0.0292) 0.0161(0.1310) -0.2881(0.0462) -0.0063(0.0324) -0.0047(0.0076) -0.1307(0.0050) 

n=30 1 0.0027(0.0171) 0.1475(0.0222) -0.2478(0.0220) -0.0010(0.0325) -0.0179(0.0172) -0.0885(0.0035) 

4 -0.0142(0.0181) 0.2352(0.0435) -0.2775(0.0268) -0.0185(0.0255) 0.0101(0.0087) -0.0982(0.0039) 

16 0.0180(0.0229) 0.1403(0.1108) -0.2813(0.0352) -0.0136(0.0241) -0.0074(0.0036) -0.0831(0.0041) 

n=50 1 -0.0047(0.0133) 0.0985(0.0180) -0.1409(0.0181) -0.0090(0.0254) -0.0234(0.0154) -0.0493(0.0025) 

4 0.0098(0.0137) 0.1358(0.0337) -0.2059(0.0202) 0.0082(0.0197) 0.0045(0.0079) -0.0503(0.0028) 

16 -0.0136(0.0189) -0.1456(0.0875) -0.2083(0.0228) 0.0153(0.0188) 0.0038(0.0027) -0.0481(0.0029) 

n=100 1 0.0038(0.0101) 0.0207(0.0140) -0.0845(0.0155) 0.0054(0.0226) -0.0201(0.0150) -0.0242(0.0019) 

4 0.0245(0.0100) 0.0950(0.0243) -0.1201(0.0139) -0.0159(0.0134) 0.0077(0.0039) -0.0213(0.0019) 

16 0.0026(0.0125) -0.0961(0.0652) -0.1314(0.0141) 0.0045(0.0125) -0.0027(0.0017) -0.0248(0.0020) 

n=500 1 -0.0026(0.0042) 0.0100(0.0063) -0.0216(0.0061) -0.0012(0.0077) 0.0022(0.0050) -0.0035(0.0008) 

4 0.0042(0.0045) -0.0021(0.0105) -0.0287(0.0056) -0.0085(0.0058) 0.0037(0.0015) -0.0043(0.0008) 

16 0.0095(0.0057) 0.0054(0.0282) -0.0278(0.0056) -0.0069(0.0057) 0.0005(0.0007) -0.0039(0.0009) 

n=1000 1 -0.0013(0.0030) 0.0071(0.0041) -0.0131(0.0039) -0.0033(0.0050) 0.0083(0.0029) -0.0009(0.0005) 

4 -0.0045(0.0032) 0.0008(0.0075) -0.0115(0.0039) 0.0006(0.0043) 0.0017(0.0010) -0.0022(0.0006) 

16 0.0002(0.0040) 0.0272(0.0201) -0.0181(0.0040) -0.0024(0.0040) 0.0000(0.0005) -0.0019(0.0006) 

* In each cell, the numbers are in the form of empirical bias (standard error). 

 

In general, the empirical biases of the unconstrained maximum likelihood estimators 

decrease as sample size increases. Also, the empirical bias of these estimators increases 

as the correlation gets stronger. The empirical bias of estimator of 𝜎2 is generally larger 

than those of other estimators. 
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5.1.2 Empirical biases and consistency under the functional model 

Bivariate normal data (𝛿𝑡, 𝜐𝑡)
𝑇 with mean vector (0,0)𝑇 and covariance matrix 𝜎2𝐼 

are generated using the MASS package in R and 𝑒𝑡 = 𝜌𝑒𝑡−1 + 𝛿𝑡 and 𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝜐𝑡 

are computed. A set of 𝑥𝑡 values is independently generated from a normal distribution 

with mean 𝜇𝑥 and variance 𝜎𝑥
2. This set of 𝑥𝑡 values is held fixed for each of the 2000 

simulated data sets for a given parameter configuration. Simulated data for the functional 

model are computed as 𝑋𝑡 = 𝑥𝑡 + 𝑒𝑡 , 𝑦𝑡 , 𝑌𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 𝑢𝑡 = 𝑦𝑡 + 𝑢𝑡 . Remaining 

parameter settings are identical to those for the structural model simulations used to 

generate results reported tables 5.1-5.7. The empirical biases and standard errors of the 

empirical biases for all parameter estimates (except the 𝑥𝑡 are displayed in tables 5.8-

5.14. As shown in Section 4, the estimator of 𝜎2 converges to a half of its true value. 

Therefore, these empirical biases are calculated by subtracting the value of 𝜎2 2⁄  from 

the average of the 2000 simulated variance estimates for each set of parameters. 

Empirical biases and standard errors of the empirical biases decrease as sample size 

increase for each estimator in tables 5.8 and 5.9. As the ratio of 𝜎𝑥
2 to 𝜎2 increases, the 

empirical biases of the estimates of 𝜇𝑥, 𝜎𝑥
2, and 𝜎2 increase slightly, whereas the biases 

and standard errors for the intercept and slope estimates decrease. As the signal to noise 

ratio increases, empirical biases of the regression coefficients decrease. We note that the 

values of the intercept and slope appeared to have little effect on the empirical biases of 

these estimators. 
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Table 5.8 Consistency for MLE under 𝛒 = 𝟎 with (𝛃𝟎, 𝛃𝟏, 𝛔
𝟐, 𝛍𝐱) = (𝟎, 𝟏, 𝟒, 𝟏) in functional model 

Sample 

Size 

Parameter Value �̃�2 �̃�0 �̃�1 

n=10 𝜎𝑥
2 = 1 -0.8406 (0.0128) 2.9287 (1.7575) -4.4115 (2.9132) 

𝜎𝑥
2 = 4 -0.5564 (0.0168) 0.8522 (0.8090) -1.3816 (1.3689) 

𝜎𝑥
2 = 16 -0.4608 (0.0192) -0.0136 (0.0232) 0.0527 (0.0071) 

n=20 𝜎𝑥
2 = 1 -0.4181 (0.0114) -0.1121 (0.2782) 0.0291 (0.3838) 

𝜎𝑥
2 = 4 -0.2798 (0.0129) -0.0799 (0.0231) 0.1356 (0.0239) 

𝜎𝑥
2 = 16 -0.2029 (0.0135) 0.0235 (0.0152) 0.0229 (0.0041) 

n=30 𝜎𝑥
2 = 1 -0.3231 (0.0095) 1.6682 (0.7671) -1.3280 (0.5660) 

𝜎𝑥
2 = 4 -0.1656 (0.0112) -0.1146 (0.0195) 0.0738 (0.0107) 

𝜎𝑥
2 = 16 -0.1573 (0.0112) -0.0214 (0.0127) 0.0058 (0.0027) 

n=50 𝜎𝑥
2 = 1 -0.1468 (0.0084) -0.3370 (0.0892) 0.3805 (0.1026) 

𝜎𝑥
2 = 4 -0.1007 (0.0087) -0.0297 (0.0123) 0.0345 (0.0063) 

𝜎𝑥
2 = 16 -0.0833 (0.0089) -0.0015 (0.0093) 0.0051 (0.0022) 

n=100 𝜎𝑥
2 = 1 -0.0913 (0.0059) -0.1681 (0.0460) 0.1954 (0.0537) 

𝜎𝑥
2 = 4 -0.0559 (0.0062) -0.0244 (0.0084) 0.0172 (0.0042) 

𝜎𝑥
2 = 16 -0.0433 (0.0063) 0.0038 (0.0073) 0.0032 (0.0018) 

n=500 𝜎𝑥
2 = 1 -0.0183 (0.0029) -0.0339 (0.0061) 0.0324 (0.0056) 

𝜎𝑥
2 = 4 -0.0175 (0.0028) -0.0037 (0.0035) 0.0017 (0.0017) 

𝜎𝑥
2 = 16 -0.0043 (0.0028) -0.0027 (0.0029) 0.0010 (0.0008) 

n=1000 𝜎𝑥
2 = 1 -0.0092 (0.0020) -0.0115 (0.0039) 0.0125 (0.0037) 

𝜎𝑥
2 = 4 -0.0019 (0.0020) -0.0038 (0.0024) 0.0016 (0.0013) 

𝜎𝑥
2 = 16 -0.0053 (0.0020) 0.0011 (0.0021) 0.0004 (0.0005) 

* In each cell, the numbers are in the form of empirical bias (standard error). 
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Table 5.9 Consistency for MLE under 𝛒 = 𝟎 with (𝛃𝟎, 𝛃𝟏, 𝛔
𝟐, 𝛍𝐱) = (𝟏, 𝟑, 𝟒, 𝟏) in functional model 

Sample Size Parameter Value �̃�2 �̃�0 �̃�1 

n=10 𝜎𝑥
2 = 1 -0.5095 (0.0176) -5.8508 (3.9770) 6.0422 (7.3714) 

𝜎𝑥
2 = 4 -0.4482 (0.0188) 3.2476 (3.3543) -0.9426 (1.4153) 

𝜎𝑥
2 = 16 -0.4493 (0.0186) -0.0590 (0.0519) 0.1094 (0.0132) 

n=20 𝜎𝑥
2 = 1 -0.2018 (0.0140) -4.1158 (3.3853) 4.5791 (3.9877) 

𝜎𝑥
2 = 4 -0.2090 (0.0136) -0.1342 (0.0400) 0.1096 (0.0166) 

𝜎𝑥
2 = 16 -0.2191 (0.0137) -0.0861 (0.0332) 0.0337 (0.0076) 

n=30 𝜎𝑥
2 = 1 -0.1823 (0.0112) -0.1134 (2.0318) 0.9668 (2.3900) 

𝜎𝑥
2 = 4 -0.1387 (0.0112) -0.1208 (0.0318) 0.1017 (0.0136) 

𝜎𝑥
2 = 16 -0.1358 (0.0114) -0.0054 (0.0273) 0.0223 (0.0067) 

n=50 𝜎𝑥
2 = 1 -0.0923 (0.0088) -0.6026 (0.0896) 0.6257 (0.0891) 

𝜎𝑥
2 = 4 -0.0815 (0.0087) -0.0741 (0.0237) 0.0894 (0.0141) 

𝜎𝑥
2 = 16 -0.0545 (0.0089) -0.0421 (0.0206) 0.0207 (0.0056) 

n=100 𝜎𝑥
2 = 1 -0.0489 (0.0063) -0.1641 (0.0238) 0.1884 (0.0199) 

𝜎𝑥
2 = 4 -0.0443 0.0063) -0.0457 (0.0166) 0.0409 (0.0081) 

𝜎𝑥
2 = 16 -0.0454 (0.0063) -0.0185 (0.0149) 0.0104 (0.0037) 

n=500 𝜎𝑥
2 = 1 -0.0039 (0.0028) -0.0356 (0.0098) 0.0317 (0.0071) 

𝜎𝑥
2 = 4 -0.0099 (0.0028) -0.0093 (0.0071) 0.0048 (0.0033) 

𝜎𝑥
2 = 16 -0.0113 (0.0028) -0.0023 (0.0065) 0.0047 (0.0016) 

n=1000 𝜎𝑥
2 = 1 -0.0022 (0.0020) -0.0182 (0.0073) 0.0164 (0.0054) 

𝜎𝑥
2 = 4 -0.0052 (0.0020) -0.0138 (0.0052) 0.0053 (0.0025) 

𝜎𝑥
2 = 16 -0.0037 (0.0020) -0.0079 (0.0047) 0.0004 (0.0011) 

* In each cell, the numbers are in the form of empirical bias (standard error). 
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Table 5.10 Consistency for MLE under (𝛃𝟎, 𝛃𝟏) = (𝟎, 𝟏) with (𝛔𝟐, 𝛍𝐱) = (𝟒, 𝟏) in functional model 

Sample 
Size 

𝜎𝑥
2 �̈�2 

(𝜌 = 0) 

�̈� 

(𝜌 = 0) 

�̈�2 

(𝜌 = 0.5) 

�̈� 

(𝜌 = 0.5) 

�̈�2 

(𝜌 = 0.9) 

�̈� 

(𝜌 = 0.9) 

n=10 1 -0.1713(0.0205) 0.0024(0.0071) -0.2069(0.0193) -0.0908(0.0068) -0.2219(0.0206) -0.1464(0.0063) 

4 -0.1882(0.0196) -0.0038(0.0069) -0.1944(0.0192) -0.0821(0.0067) -0.2203(0.0199) -0.1393(0.0061) 

16 -0.1768(0.0202) 0.0107(0.0070) -0.2046(0.0192) -0.0777(0.0067) -0.1571(0.0208) -0.1381(0.0060) 

n=20 1 -0.1165(0.0140) 0.0059(0.0050) -0.0829(0.0142) -0.0401(0.0045) -0.0968(0.0143) -0.0791(0.0034) 

4 -0.0996(0.0136) 0.0012(0.0049) -0.0773(0.0144) -0.0415(0.0045) -0.0983(0.0140) -0.0759(0.0035) 

16 -0.0834(0.0139) -0.0006(0.0047) -0.0961(0.0140) -0.0372(0.0044) -0.1157(0.0142) -0.0867(0.0036) 

n=30 1 -0.0611(0.0115) -0.0022(0.0040) -0.0592(0.0117) -0.0346(0.0036) -0.0718(0.0113) -0.0538(0.0025) 

4 -0.0558(0.0115) 0.0053(0.0040) -0.0526(0.0117) -0.0310(0.0035) -0.0613(0.0119) -0.0563(0.0026) 

16 -0.0664(0.0116) 0.0056(0.0040) -0.0710(0.0113) -0.0380(0.0037) -0.0549(0.0113) -0.0510(0.0026) 

n=50 1 -0.0423(0.0089) 0.0025(0.0031) -0.0295(0.0090) -0.0206(0.0029) -0.0476(0.0091) -0.0331(0.0018) 

4 -0.0313(0.0090) -0.0006(0.0031) -0.0368(0.0091) -0.0204(0.0028) -0.0272(0.0090) -0.0332(0.0018) 

16 -0.0462(0.0087) 0.0043(0.0032) -0.0286(0.0090) -0.0191(0.0028) -0.0487(0.0088) -0.0347(0.0018) 

n=100 1 -0.0135(0.0062) 0.0038(0.0022) -0.0173(0.0063) -0.0145(0.0020) -0.0239(0.0065) -0.0182(0.0012) 

4 -0.0256(0.0065) 0.0032(0.0022) -0.0155(0.0064) -0.0117(0.0019) -0.0179(0.0063) -0.0173(0.0011) 

16 -0.0276(0.0063) -0.0011(0.0022) -0.0177(0.0065) -0.0094(0.0019) -0.0310(0.0063) -0.0187(0.0011) 

n=500 1 -0.0044(0.0029) 0.0007(0.0010) -0.0048(0.0027) -0.0023(0.0009) -0.0069(0.0028) -0.0041(0.0005) 

4 -0.0008(0.0029) 0.0006(0.0010) -0.0067(0.0028) -0.0014(0.0009) -0.0050(0.0029) -0.0032(0.0005) 

16 -0.0016(0.0028) -0.0019(0.0010) 0.0003(0.0028) -0.0026(0.0009) -0.0022(0.0029) -0.0036(0.0005) 

n=1000 1 -0.0008(0.0020) 0.0014(0.0007) -0.0014(0.0020) -0.0009(0.0006) -0.0023(0.0020) -0.0020(0.0003) 

4 -0.0026(0.0021) -0.0008(0.0007) -0.0019(0.0020) -0.0012(0.0006) -0.0051(0.0020) -0.0020(0.0003) 

16 -0.0048(0.0020) 0.0009(0.0007) 0.0023(0.0020) -0.0007(0.0006) -0.0036(0.0020) -0.0024(0.0003) 

* In each cell, the numbers are in the form of empirical bias (standard error). 

 

Table 5.10 summarizes behavior of the estimates derived under the null hypothesis 

that (𝛽0, 𝛽1) = (𝑏0, 𝑏1). The first pair of columns, labeled �̈�2 and �̈�, are estimates of 𝜎2 

and 𝜌, respectively, when the correlation is 𝜌 = 0. The second and third pair of columns 

correspond to cases in which 𝜌 = 0.5 and 𝜌 = 0.9, respectively. As expected, empirical 



 

89 

 

biases are reduced for larger sample sizes. Unlike the signal to noise ratio, the value of 𝜌 

seems to affect empirical biases of the estimators. Larger correlations require larger 

sample sizes to reduce empirical biases to levels observed for smaller (or no) correlation. 

 

Table 5.11 Consistency for MLE without constraints with (𝛔𝟐, 𝛃𝟎, 𝛃𝟏, 𝛒) = (𝟒, 𝟎, 𝟏, 𝟎) in functional 

model 

Sample 

Size 

Parameter 

Value 
�̂�2 �̂�0 �̂�1 �̂� 

n=10 𝜎𝑥
2 = 1 -0.8301 (0.0152) 0.1194 (1.8599) 0.1346 (1.0725) -0.1265 (0.0086) 

𝜎𝑥
2 = 4 -0.7632 (0.0158) -0.1230 (0.1902) 0.0552 (0.1731) -0.1223 (0.0086) 

𝜎𝑥
2 = 16 -0.7145 (0.0165) 0.1316 (0.1038) 0.0605 (0.0116) -0.1706 (0.0078) 

n=20 𝜎𝑥
2 = 1 -0.5784 (0.0107) 0.4309 (0.7813) -0.9904 (0.9473) -0.0697 (0.0058) 

𝜎𝑥
2 = 4 -0.3706 (0.0129) -0.1369 (0.0287) 0.1468 (0.0228) -0.0591 (0.0056) 

𝜎𝑥
2 = 16 -0.3244 (0.0132) -0.0282 (0.0151) 0.0307 (0.0061) -0.0 538 (0.0054) 

n=30 𝜎𝑥
2 = 1 -0.4128 (0.0094) 0.4262 (0.3435) 0.6258 (0.7988) -0.0604 (0.0048) 

𝜎𝑥
2 = 4 -0.2392 (0.0109) -0.0285 (0.0141) 0.0384 (0.0065) -0.0385 (0.0043) 

𝜎𝑥
2 = 16 -0.2253 (0.0112) -0.0709 (0.0158) 0.0178 (0.0034) -0.0501 (0.0043) 

n=50 𝜎𝑥
2 = 1 -0.2236 (0.0080) -0.1738 (0.1964) 0.2906 (0.2555) -0.0144 (0.0035) 

𝜎𝑥
2 = 4 -0.1574 (0.0084) -0.0399 (0.0122) 0.0519 (0.0079) -0.0202 (0.0033) 

𝜎𝑥
2 = 16 -0.1370 (0.0086) 0.0102 (0.0089) 0.0071 (0.0022) -0.0229 (0.0033) 

n=100 𝜎𝑥
2 = 1 -0.1095 (0.0060) -0.1894 (0.0710) 0.1891 (0.0726) -0.0104 (0.0024) 

𝜎𝑥
2 = 4 -0.0707 (0.0061) -0.0116 (0.0070) 0.0156 (0.0040) -0.0078 (0.0023) 

𝜎𝑥
2 = 16 -0.0706 (0.0061) 0.0046 (0.0067) 0.0043 (0.0017) -0.0137 (0.0023) 

n=500 𝜎𝑥
2 = 1 -0.0238 (0.0028) -0.0428 (0.0066) 0.0434 (0.0059) -0.0013 (0.0010) 

𝜎𝑥
2 = 4 -0.0115 (0.0028) -0.0045 (0.0034) 0.0033 (0.0018) -0.0026 (0.0010) 

𝜎𝑥
2 = 16 -0.0155 (0.0029) 0.0005 (0.0029) 0.0015 (0.0008) -0.0027 (0.0010) 

n=1000 𝜎𝑥
2 = 1 -0.0099 (0.0020) -0.0074 (0.0044) 0.0089 (0.0037) -0.0009 (0.0007) 

𝜎𝑥
2 = 4 -0.0069 (0.0020) -0.0002 (0.0024) 0.0012 (0.0012) -0.0011 (0.0007) 

𝜎𝑥
2 = 16 -0.0108 (0.0019) 0.0007 (0.0020) -0.0004 (0.0005) -0.0005 (0.0007) 

* In each cell, the numbers are in the form of empirical bias (standard error). 
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Tables 5.11-5.13 show empirical biases of the unconstrained MLEs when 𝜌 =0, 0.5, 

and 0.9. 

 

Table 5.12 Consistency for MLE without constraints with (𝝈𝟐, 𝜷𝟎, 𝜷𝟏, 𝝆) = (𝟒, 𝟎, 𝟏, 𝟎. 𝟓) in 

functional model 

Sample Size Parameter 

Value 
�̂�2 �̂�0 �̂�1 �̂� 

n=10 𝜎𝑥
2 = 1 -0.9873 (0.0131) 1.1360 (0.6339) -0.6777 (0.4593) -0.3741 (0.0087) 

𝜎𝑥
2 = 4 -0.6508 (0.0168) 0.1818 (0.0779) 0.0674 (0.0083) -0.2430 (0.0076) 

𝜎𝑥
2 = 16 -0.6984 (0.0165) -0.1435 (0.1278) 0.0939 (0.0135) -0.2952 (0.0085) 

n=20 𝜎𝑥
2 = 1 -0.3921 (0.0125) 0.1461 (0.1728) -0.0253 (0.1119) -0.1574 (0.0059) 

𝜎𝑥
2 = 4 -0.4020 (0.0122) -0.0568 (0.1399) 0.3982 (0.2312) -0.1652 (0.0059) 

𝜎𝑥
2 = 16 -0.3368 (0.0131) -0.0118 (0.0293) 0.0286 (0.0051) -0.1364 (0.0052) 

n=30 𝜎𝑥
2 = 1 -0.3254 (0.0103) -0.4438 (0.2880) 0.8320 (0.3082) -0.1320 (0.0047) 

𝜎𝑥
2 = 4 -0.2472 (0.0109) -0.0204 (0.0410) 0.0405 (0.0272) -0.0912 (0.0042) 

𝜎𝑥
2 = 16 -0.2193 (0.0112) -0.0282 (0.0243) 0.0126 (0.0035) -0.0887 (0.0041) 

n=50 𝜎𝑥
2 = 1 -0.2069 (0.0081) 0.6064 (0.5529) -0.8502 (0.7458) -0.0691 (0.0033) 

𝜎𝑥
2 = 4 -0.1368 (0.0090) -0.0443 (0.0223) 0.0350 (0.0070) -0.0500 (0.0030) 

𝜎𝑥
2 = 16 -0.1310 (0.0089) 0.0043 (0.0183) 0.0014 (0.0017) -0.0422 (0.0029) 

n=100 𝜎𝑥
2 = 1 -0.0911 (0.0059) -0.1854 (0.0468) 0.1673 (0.0382) -0.0298 (0.0021) 

𝜎𝑥
2 = 4 -0.0676 (0.0062) 0.0210 (0.0129) 0.0116 (0.0036) -0.0242 (0.0020) 

𝜎𝑥
2 = 16 -0.0649 (0.0063) 0.0095 (0.0127) 0.0029 (0.0016) -0.0243 (0.0020) 

n=500 𝜎𝑥
2 = 1 -0.0189 (0.0028) -0.0154 (0.0074) 0.0145 (0.0043) -0.0052 (0.0009) 

𝜎𝑥
2 = 4 -0.0146 (0.0028) -0.0108 (0.0061) 0.0039 (0.0016) -0.0049 (0.0009) 

𝜎𝑥
2 = 16 -0.0168 (0.0028) -0.0085 (0.0057) 0.0015 (0.0006) -0.0048 (0.0009) 

n=1000 𝜎𝑥
2 = 1 -0.0089 (0.0020) -0.0176 (0.0051) 0.0146 (0.0030) -0.0026 (0.0006) 

𝜎𝑥
2 = 4 -0.0073 (0.0020) 0.0059 (0.0042) -0.0010 (0.0011) -0.0031 (0.0006) 

𝜎𝑥
2 = 16 -0.0060 (0.0021) 0.0020 (0.0040) -0.0003 (0.0005) -0.0027 (0.0006) 

* In each cell, the numbers are in the form of empirical bias (standard error). 
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Table 5.13 Consistency for MLE without constraints with (𝝈𝟐, 𝜷𝟎, 𝜷𝟏, 𝝆) = (𝟒, 𝟎, 𝟏, 𝟎. 𝟗) in 

functional model 

Sample 
Size 

Parameter 
Value 

�̂�2 �̂�0 �̂�1 �̂� 

n=10 𝜎𝑥
2 = 1 -0.9943 (0.0132) -0.3859 (0.6506) -0.2462 (0.2714) -0.5546 (0.0090) 

𝜎𝑥
2 = 4 -0.8267 (0.0159) 0.0217 (0.9975) 0.4389 (0.2504) -0.5149 (0.0092) 

𝜎𝑥
2 = 16 -0.8147 (0.0160) 0.7169 (0.8859) 0.0210 (0.0046) -0.4834 (0.0089) 

n=20 𝜎𝑥
2 = 1 -0.5031 (0.0115) -0.9249 (6.1703) -0.2449 (0.1964) -0.2943 (0.0060) 

𝜎𝑥
2 = 4 -0.4137 (0.0131) 0.5156 (0.3488) 0.0607 (0.0118) -0.2439 (0.0049) 

𝜎𝑥
2 = 16 -0.3804 (0.0128) -0.0752 (0.1644) 0.0020 (0.0031) -0.2297 (0.0044) 

n=30 𝜎𝑥
2 = 1 -0.3313 (0.0106) -0.4371 (0.3813) -0.2340 (0.4471) -0.1809 (0.0041) 

𝜎𝑥
2 = 4 -0.2767 (0.0110) 0.2810 (0.4263) 0.0456 (0.0070) -0.1638 (0.0035) 

𝜎𝑥
2 = 16 -0.2670 (0.0110) 0.3687 (0.3803) 0.0042 (0.0021) -0.1538 (0.0033) 

n=50 𝜎𝑥
2 = 1 -0.1878 (0.0081) -0.0490 (1.3443) 0.3391 (0.2514) -0.1032 (0.0026) 

𝜎𝑥
2 = 4 -0.1536 (0.0087) 0.0897 (0.1085) 0.0130 (0.0043) -0.0904 (0.0022) 

𝜎𝑥
2 = 16 -0.1488 (0.0088) -0.0137 (0.0995) 0.0020 (0.0015) -0.0846 (0.0022) 

n=100 𝜎𝑥
2 = 1 -0.0988 (0.0060) 0.0969 (0.1607) 0.0027 (0.0475) -0.0436 (0.0014) 

𝜎𝑥
2 = 4 -0.0781 (0.0062) -0.0646 (0.0652) 0.0093 (0.0028) -0.0424 (0.0013) 

𝜎𝑥
2 = 16 -0.0701 (0.0062) -0.0576 (0.0622) 0.0025 (0.0014) -0.0403 (0.0013) 

n=500 𝜎𝑥
2 = 1 -0.0179 (0.0028) 0.0042 (0.0286) -0.0018 (0.0033) -0.0071 (0.0005) 

𝜎𝑥
2 = 4 -0.0157 (0.0028) 0.0077 (0.0293) 0.0006 (0.0012) -0.0083 (0.0005) 

𝜎𝑥
2 = 16 -0.0135 (0.0028) -0.0273 (0.0281) 0.0005 (0.0005) -0.0082 (0.0005) 

n=1000 𝜎𝑥
2 = 1 -0.0099 (0.0019) -0.0129 (0.0197) 0.0028 (0.0023) -0.0042 (0.0003) 

𝜎𝑥
2 = 4 -0.0078 (0.0019) -0.0156 (0.0202) 0.0003 (0.0009) -0.0036 (0.0003) 

𝜎𝑥
2 = 16 -0.0065 (0.0020) 0.0216 (0.0196) -0.0004 (0.0004) -0.0034 (0.0003) 

n=104 𝜎𝑥
2 = 1 -0.0007 (0.0006) 0.0033 (0.0063) 0.0005 (0.0007) -0.0004 (0.0001) 

𝜎𝑥
2 = 4 -0.0012 (0.0006) -0.0038 (0.0062) 0.0003 (0.0003) -0.0004 (0.0001) 

𝜎𝑥
2 = 16 -0.0011 (0.0006) -0.0037 (0.0063) 0.0001 (0.0001) -0.0002 (0.0001) 

* In each cell, the numbers are in the form of empirical bias (standard error). 

 



 

92 

 

Comparing tables 5.11, 5.12 and 5.13, we again see that stronger correlations require 

larger samples to achieve comparable levels of empirical biases, while larger signal to 

noise ratios have the effect of reducing empirical biases. 

In summary, increasing sample size or the signal to noise ratio reduces the empirical 

bias. Consistency of the estimators is apparent, with empirical biases of most estimators 

less than 0.01 for sample sizes of 1000 or greater. Correlated data generally appear to 

have slower convergence and require larger sample sizes to reduce empirical bias. 

5.2 Large Sample Distributions of Test Statistics 

Simulations in this section mimic those of Section 5.1, but focus on the behavior of 

the test statistics. Sample sizes and parameter values vary to examine the effects on the 

test statistics developed in Section 2 under various scenarios. 

5.2.1 Small sample and asymptotic behavior of test statistics under the structural 

model 

Anderson-Darling (A-D) goodness of fit (GOF) tests and quantile vs. quantile (Q-Q) 

plots are used to exam the large sample distribution of the test statistics under the null 

hypotheses. P-value is obtained by comparing 1000 values of test statistics with chi-

square distributions. Repeat this procedure 1000 times. Recall from section 4 for the 

structural model, the score test statistic is asymptotically distributed as chi-square with 

degree of freedom 1 under the null hypothesis 𝜌 = 0. Table 5.14 shows empirical p-

values for A-D GOF tests of the score test statistic for different sets of parameter values. 

Figure 5.1 displays sets of Q-Q plots for empirical score test statistic quantiles plotted 

against quantiles from the chi-square distribution with one degree of freedom. 
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Table 5.14 illustrates the general trend that varying values of (𝛽0, 𝛽1)  has little 

impact on the behavior of the score test statistic. Consequently, subsequent tables in this 

section are we only show the Q-Q for the primary interest, (𝛽0, 𝛽1) = (0,1). Sample 

sizes of 20 or greater, combined with relatively large signal to noise ratios, appear to be 

sufficient for the distribution of the score test statistic to be well approximated by the 

chi-square distributed with one degree of freedom. As sample sizes reach about 50, even 

with low signal to noise ratio, the score test statistic behaves much like a chi-square 

random variable with one degree of freedom. 

 

Table 5.14 A-D test p-values* for score test statistic under 𝝆 = 𝟎 in structural model 

Sample 

Size 

Parameter 

(𝛽0, 𝛽1, 𝜎
2, 𝜇𝑥) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 (0,1,4,1) 0.0444 (0.2820,0.5210,0.6440) 0.0668 (0.2470,0.4510,0.5830) 0.0994 (0.1790,0.3700,0.5010) 

(1,1,4,1) 0.0419 (0.2910,0.5290,0.6400) 0.0584 (0.2550,0.4720,0.6000) 0.1046 (0.1790,0.3670,0.4920) 

(1,3,4,1) 0.0704 (0.2410,0.4430,0.5620) 0.1205 (0.1780,0.3530,0.46450 0.1348 (0.1640,0.3400,0.4440) 

n=20 (0,1,4,1) 0.4319 (0.0150,0.0700,0.1180) 0.4570 (0.0110,0.0480,0.1100) 0.4641 (0.0150,0.0510,0.1050) 

(1,1,4,1) 0.4199 (0.0110,0.0680,0.1330) 0.4524 (0.0140,0.0570,0.1125) 0.4658 (0.0110,0.0510,0.1040) 

(1,3,4,1) 0.4223 (0.0170,0.0620,0.1200) 0.4255 (0.0120,0.0650,0.1290) 0.4414 (0.0110,0.0610,0.1240) 

n=50 (0,1,4,1) 0.4776 (0.0090,0.0580,0.1050) 0.5104 (0.0040,0.0520,0.0930) 0.5026 (0.0100,0.0490,0.1020) 

(1,1,4,1) 0.4913 (0.0130,0.0560,0.1030) 0.4705 (0.0110,0.0510,0.1040) 0.4822 (0.0090,0.0510,0.1020) 

(1,3,4,1) 0.4933 (0.0180,0.0670,0.1110) 0.4513 (0.0120,0.0570,0.1140) 0.4708 (0.0110,0.0550,0.1100) 

n=100 (0,1,4,1) 0.5169 (0.0090,0.0480,0.1000) 0.4824 (0.0080,0.0480,0.0980) 0.5122 (0.0090,0.0490,0.0970) 

(1,1,4,1) 0.4764 (0.0080,0.0520,0.1000) 0.5040 (0.0110,0.0500,0.1050) 0.4913 (0.0090,0.0480,0.1040) 

(1,3,4,1) 0.5131 (0.0080,0.0430,01020) 0.5001 (0.0110,0.0510,0.1090) 0.5166 (0.0090,0.0490,0.0920) 

*p-values are calculated by comparing one half of test statistic with 𝜒1
2. Each cell has the form of median of 2000 p-values, rejection 

probabilities with 3 different significance level (𝛼 = 0.01,0.05,0.1). 
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Figure 5.1 Q-Q plot of score test statistic under 𝝆 = 𝟎 versus 𝝌𝟏

𝟐. (𝜷𝟎, 𝜷𝟏, 𝝈
𝟐, 𝝁𝒙) = (𝟎, 𝟏, 𝟒, 𝟏) 

 

From the Q-Q plots in Figure 5.1, small sample sizes are tend to produce longer-

tailed distributions than the chi-square distribution having one degree of freedom. As 

sample size increases, the Q-Q plots suggest convergence of the score test statistic null 

distribution to a chi-square distribution with one degree of freedom. 
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Table 5.15  A-D test p-values* for LRT test statistic under 𝛒 = 𝟎 in structural model 

Sample 

Size 

Parameter 

(𝛽0, 𝛽1, 𝜎
2, 𝜇𝑥) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=50 (0,1,4,1) 0.0625 (0.260,0.43,0.590) 0.2593 (0.110,0.180,0.300) 0.2535 (0.070,0.210,0.310) 

(1,1,4,1) 0.0818 (0.140,0.440,0.550) 0.2557 (0.070,0.200,0.280) 0.2618 (0.050,0.170,0.270) 

(1,3,4,1) 0.2737 (0.060,0.170,0.300) 0.3355 (0.020,0.110,0.220) 0.3870 (0.030,0.070,0.200) 

n=100 (0,1,4,1) 0.3118 (0.100,0.230,0.320) 0.4302 (0.016,0.080,0.130) 0.4686 (0.030,0.050,0.112) 

(1,1,4,1) 0.2729 (0.070,0.200,0.280) 0.4496 (0.014,0.070,0.120) 0.4483 (0.014,0.060,0.124) 

(1,3,4,1) 0.2930 (0.080,0.220,0.300) 0.4174 (0.012,0.060,0.092) 0.4719 (0.012,0.0540,0.094) 

n=500 (0,1,4,1) 0.4423 (0.030,0.084,0.130) 0.5831 (0.014,0.040,0.090) 0.4853 (0.010,0.052,0.094) 

(1,1,4,1) 0.4244 (0.022,0.082,0.100) 0.4551 (0.020,0.058,0.080) 0.5540 (0.012,0.048,0.092) 

(1,3,4,1) 0.4446 (0.034,0.084,0.150) 0.5048 (0.016,0.060,0.110) 0.5226 (0.010,0.090,0.100) 

*p-values are calculated by comparing one half of test statistic with 𝜒1
2. Each cell has the form of median of 500 p-values, reject 

probabilities with 3 different significance level (𝛼 = 0.01,0.05,0.1). 

 

Table 5.15 lists empirical p-values of the A-D GOF test statistics for the LRT test 

statistic under the null hypothesis of 𝜌 = 0. The corresponding Q-Q plots are shown in 

Figure 5.2 for the parameter setting (𝛽0, 𝛽1, 𝜎
2, 𝜇𝑥) = (0,1,4,1). Again, larger ratios of 

𝜎𝑥
2 to 𝜎2 require smaller sample sizes for the distribution of the LRT test statistics to be 

well-approximated by the chi-square distribution with one degree of freedom. Sample 

sizes of 100 or greater appear to be sufficient for the distribution of the LRT test statistic 

to be well-approximated by the chi-square with one degree of freedom, even when 

smaller signal to noise ratios are used. 
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Figure 5.2 Q-Q plot of LRT test statistic under 𝝆 = 𝟎 versus 𝝌𝟏

𝟐. (𝜷𝟎, 𝜷𝟏, 𝝈
𝟐, 𝝁𝒙) = (𝟎, 𝟏, 𝟒, 𝟏) 

 

The score test statistic for testing the null hypothesis of (𝛽0, 𝛽1) = (0,1)  is 

asymptotically distributed as a chi-square distribution with two degrees of freedom. The 

A-D GOF p-values in Table 5.16 indicate reasonable goodness of fit for sample sizes of 

50 or greater, except when 𝜌 = 0.9. The Q-Q plots of the score test statistic empirical 

quantiles versus quantiles of the chi-square distribution with two degrees of freedom are 

shown in Figure 5.3 for the case 𝜌 = 0.5. 
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Table 5.16 A-D test p-values* for score test statistic under (𝜷𝟎, 𝜷𝟏) = (𝟎, 𝟏) in structural model 

Sample 

Size 

Parameter Value 

(𝜇𝑥, 𝜎
2, 𝜌) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=50 (1,4,0) 0.3718 (0.026,0.086,0.160) 0.3592 (0.014,0.076,0.152) 0.3591 (0.012,0.062,0.150) 

(1,4,0.5) 0.2489 (0.064,0.208,0.304) 0.1918 (0.056,0.228,0.340) 0.2139 (0.052,0.160,0.274) 

(1,4,0.9) 0.0000 (1.000,1.00,1.000) 0.0000 (1.000,1.000,1.000) 0.0000 (1.000,1.000,1.000) 

n=100 (1,4,0) 0.4660 (0.022,0.062,0.122) 0.4665 (0.012,0.068,0.120) 0.4625 (0.012,0.058,0.116) 

(1,4,0.5) 0.3973 (0.022,0.088,0.146) 0.4108 (0.018,0.076,0.156) 0.4255 (0.022,0.080,0.150) 

(1,4,0.9) 0.0003 (0.866,0.954,0.972) 0.0000 (0.980,0.996,0.998) 0.0000 (0.926,0.984,0.990) 

n=500 (1,4,0) 0.5245 (0.010,0.046,0.088) 0.4791 (0.008,0.058,0.104) 0.5011 (0.010,0.058,0.090) 

(1,4,0.5) 0.4802 (0.002,0.056,0.116) 0.4869 (0.008,0.048,0.094) 0.5001 (0.012,0.050,0.110) 

(1,4,0.9) 0.2091 (0.070,0.180,0.356) 0.2951 (0.084,0.142,0.340) 0.2965 (0.070,0.122,0.280) 

*p-values are calculated by comparing one half of test statistic with 𝜒2
2. Each cell has the form of median of 1000 p-values, reject 

probabilities with 3 different significance level (𝛼 = 0.01,0.05,0.1). 

 

From Table 5.16 and Figure 5.3, when ratio of 𝜎𝑥
2  over 𝜎2  is large and there is no 

correlation, the distribution of score test statistic behaves like a chi-square distribution 

with sample size is only 50. As sample size increases, the distribution is more and more 

like chi-square distribution. High correlation among data requires more samples to 

achieve asymptotic distribution. And so does low ratio of 𝜎𝑥
2 over 𝜎2. When there is 

moderate correlation, the sample size should be above 500 to make the test statistic like 

chi-square distribution for low signal to noise ratio. When high correlation exists, it 

needs more samples. 
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Figure 5.3 Q-Q plot of score test statistic under (𝜷𝟎, 𝜷𝟏) = (𝟎, 𝟏) versus 𝝌𝟐

𝟐. (𝝆, 𝝈𝟐, 𝝁𝒙) = (𝟎. 𝟓, 𝟒, 𝟏) 
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Table 5.17 A-D test p-values* for LRT test statistic under (𝛃𝟎, 𝛃𝟏) = (𝟎, 𝟏) in structural model 

Sample 

Size 

Parameter Value 

(𝜇𝑥, 𝜎
2, 𝜌) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=50 (1,4,0) 0.0000 (0.980,1.000,1.000) 0.0874 (0.230,0.410,0.530) 0.4788 (0.020,0.090,0.140) 

(1,4,0.5) 0.0013 (0.750,0.930,0.970) 0.0950 (0.150,0.340,0.510) 0.1678 (0.070,0.270,0.380) 

(1,4,0.9) 0.0000 (1.000,1.000,1.000) 0.0000 (1.000,1.000,1.000) 0.0001 (0.090,0.980,1.000) 

n=100 (1,4,0) 0.0000 (0.980,0.990,1.000) 0.2169 (0.130,0.290,0.350) 0.4267 (0.020,0.140,0.200) 

(1,4,0.5) 0.0005 (0.780,0.950,0.960) 0.3505 (0.090,0.230,0.330) 0.3713 (0.000,0.030,0.120) 

(1,4,0.9) 0.0000 (1.000,1.000,1.000) 0.0000 (1.000,1.000,1.000) 0.0001 (0.090,0.980,1.000) 

n=500 (1,4,0) 0.4036 (0.000,0.070,0.180) 0.4842 (0.012,0.058,0.120) 0.5633 (0.010,0.050,0.090) 

(1,4,0.5) 0.0079 (0.510,0.750,0.850) 0.4522 (0.014,0.060,0.140) 0.4551 (0.010,0.040,0.100) 

(1,4,0.9) 0.0001 (0.930,0.980,1.000) 0.0887 (0.160,0.370,0.530) 0.1343 (0.090,0.290,0.400) 

n=1000 (1,4,0) 0.4432 (0.000,0..080,0.130) 0.4849 (0.008,0.048,0.090) 0.5819 (0.010,0.050,0.102) 

(1,4,0.5) 0.0673 (0.190,0.470,0.570) 0.4899 (0.010,0.046,0.080) 0.5235 (0.010,0.052,0.094) 

(1,4,0.9) 0. 0012 (0.800,0.890,0.960) 0.2609 (0.060,0.220,0.260) 0.2535 (0.020,0.170,0.300) 

*p-values are calculated by comparing one half of test statistic with 𝜒2
2. Each cell has the form of median of 500 p-values, reject 

probabilities with 3 different significance level (𝛼 = 0.01,0.05,0.1). 

 

Table 5.17 shows the results of goodness of fit tests for LRT test statistic under 

(𝛽0, 𝛽1) = (0,1) and Figure 5.4 shows the corresponding Q-Q plots with 𝜌 = 0.5. It is 

noticed that when signal to noise ratio is ¼ which is low, even 1000 samples cannot 

make the test statistic chi-square distributed. 
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Figure 5.4 Q-Q plot of LRT test statistic under (𝜷𝟎, 𝜷𝟏) = (𝟎, 𝟏) versus 𝝌𝟐

𝟐. (𝝆, 𝝈𝟐, 𝝁𝒙) = (𝟎. 𝟓, 𝟒, 𝟏) 

 

Generally speaking, when sample size is large enough, all these four test statistics for 

structural model are approximately chi-square distributed with either one or two degrees 

of freedom, depending on which hypotheses are tested. Likelihood ratio test statistics 
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accuracy of approximation. Lower correlation and higher ratio of 𝜎𝑥
2 over 𝜎2 improve 

the performance of all four test statistics. 

5.2.2 Small sample and asymptotic behavior of test statistics under the functional 

model 

Simulation parameters in this section replicate those of section 5.2.1, except now 

data are generated using the functional model as described at the beginning of section 

5.1.2. Table 5.18 lists p-values of the A-D GOF test for the score test statistic under the 

constraint 𝜌 = 0. As in the structural case, varying the value of 𝛽 does not seem to affect 

the results. Consequently, Q-Q plots in Figure 5.5 are shown only for the case of primary 

interest, (𝛽0, 𝛽1) = (0,1). 

 

Table 5.18 A-D test p-values* for score test statistic under 𝝆 = 𝟎 in functional model 

Sample 

Size 

Parameter 

(𝛽0, 𝛽1, 𝜎
2, 𝜇𝑥) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 (0,1,4,1) 0.0342 (0.3550,0.5450,0.6390) 0.0602 (0.3360,0.4760,0.5740) 0.0547 (0.3540,0.4920,0.5780) 

(1,1,4,1) 0.0332 (0.3820,0.5650,0.6670) 0.0702 (0.3300,0.4680,0.5320) 0.0514 (0.3800,0.4990,0.5710) 

(1,3,4,1) 0.0784 (0.3220,0.4490,0.5340) 0.0673 (0.3390,0.4740,0.5540) 0.0585 (0.3730,0.4270,0.6050) 

n=20 (0,1,4,1) 0.2709 (0.0410,0.1100,0.1780) 0.3692 (0.0280,0.1010,0.1700) 0.3982 (0.0160,0.0880,0.1700) 

(1,1,4,1) 0.3559 (0.0370,0.1220,0.1950) 0.3680 (0.0320,0.1060,0.1840) 0.3695 (0.0200,0.0690,0.1500) 

(1,3,4,1) 0.3534 (0.0300,0.1210,0.2110) 0.3607 (0.0310,0.1120,0.2040) 0.3555 (0.0190,0.0980,0.1720) 

n=50 (0,1,4,1) 0.4640 (0.0100,0.0590,0.1260) 0.4799 (0.0100,0.0630,0.1230) 0.4937 (0.0110,0.0580,0.1110) 

(1,1,4,1) 0.4756 (0.0190,0.0660,0.1210) 0.4948 (0.0090,0.0480,0.1170) 0.5188 (0.0070,0.0480,0.0880) 

(1,3,4,1) 0.4901 (0.0140,0.0530,0.1030) 0.4943 (0.0050,0.0520,0.0940) 0.5093 (0.0070,0.0430,0.1080) 

n=100 (0,1,4,1) 0.4986 (0.0080,0.0520,0.1150) 0.4907 (0.0090,0.0470,0.0910) 0.5191 (0.0070,0.0480,0.0980) 

(1,1,4,1) 0.4734 (0.0120,0.0550,0.1100) 0.4960 (0.0080,0.0480,0.1060) 0.4838 (0.0100,0.0510,0.1000) 

(1,3,4,1) 0.4867 (0.0100,0.0570,0.1130) 0.4944 (0.0110,0.0470,0.1110) 0.5045 (0.0100,0.0490,0.0910) 

*p-values are calculated by comparing one half of test statistic with 𝜒1
2. Each cell has the form of median of 1000 p-values, reject 

probabilities with 3 different significance level (𝛼 = 0.01,0.05,0.1). 
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Figure 5.5 Q-Q plot of a half of score test statistic under 𝛒 = 𝟎 versus 𝛘𝟏

𝟐. (𝛃𝟎, 𝛃𝟏, 𝛔
𝟐, 𝛍𝐱) =

(𝟎, 𝟏, 𝟒, 𝟏) 
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Sample sizes of 50 or greater appear to be sufficient for the score test statistics to be 

reasonably well-approximated by a chi-square distribution with one degree of freedom. 

In particular, sample sizes as small as 20 seem to be sufficient for large sample 

approximations to be useful when no correlation exist in the data as shown in Figure 5.5 

and Table 5.18. 

The A-D GOF test results for LRT test statistic when 𝜌 = 0 are shown in Table 5.19. 

In contrast to other cases discussed, values of (𝛽0, 𝛽1) appear to affect the behaviors of 

the LRT test statistics. Larger values of 𝛽1 result in somewhat better performance of the 

LRT test statistic. Sample sizes 100 or greater result in A-D test statistic p-values greater 

than 0.40 when 𝛽1 = 3. Again, larger signal to noise ratios also improve the simulated 

performance of the LRT test statistic. 

 

Table 5.19 A-D test p-values* for LRT test statistic under 𝝆 = 𝟎 in functional model 

Sample 

Size 

Parameter Value 

(𝛽0, 𝛽1, 𝜎
2, 𝜇𝑥) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=50 (0,1,4,1) 0.0661 (0.236,0.457,0.566) 0.1413 (0.147,0.312,0.427) 0.3890 (0.031,0.118,0.203) 

(1,1,4,1) 0.0534 (0.259,0.490,0.614) 0.1086 (0.154,0.358,0.476) 0.2911 (0.064,0.184,0.274) 

(1,3,4,1) 0.1919 (0.078,0.208,0.338) 0.2768 (0.060,0.164,0.266) 0.2429 (0.086,0.222,0.316) 

n=100 (0,1,4,1) 0.2858 (0.084,0.188,0.280) 0.3945 (0.046,0.136,0.198) 0.4695 (0.010,0.069,0.140) 

(1,1,4,1) 0.2909 (0.075,0.199,0.305) 0.4388 (0.020,0.081,0.137) 0.4343 (0.016,0.072,0.148) 

(1,3,4,1) 0.4268 (0.024,0.092,0.164) 0.4438 (0.016,0.070,0.117) 0.4850 (0.014,0.061,0.105) 

n=500 (0,1,4,1) 0.4257 (0.014,0.080,0.132) 0.5048 (0.014,0.054,0.096) 0.5044 (0.012,0.064,0.102) 

(1,1,4,1) 0.4796 (0.016,0.084,0.126) 0.4905 (0.008,0.052,0.110) 0.4998 (0.012,0.050,0.102) 

(1,3,4,1) 0.4424 (0.014,0.066,0.122) 0.5040 (0.014,0.060,0.092) 0.4809 (0.010,0.046,0.100) 

*p-values are calculated by comparing one half of test statistic with 𝜒1
2. Each cell has the form of median of 1000 p-values, reject 

probabilities with 3 different significance level (𝛼 = 0.01,0.05,0.1). 
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Table 5.20 shows A-D GOF test results for the score test statistic for testing the null 

hypothesis (𝛽0, 𝛽1) = (0,1) in the functional case. These results are similar to those 

observed in the structural case. Increasing either the sample size or the signal to noise 

ratio results in a better approximation of the small sample distribution of the score test 

statistic by a chi-square distribution with two degrees of freedom. Furthermore, little or 

no correlation also improves the chi-square distribution approximation. 

 

Table 5.20 A-D test p-values* for score test statistic under (𝛃𝟎, 𝛃𝟏) = (𝟎, 𝟏) in functional model 

Sample 

Size 

Parameter 

(𝜇𝑥, 𝜎
2, 𝜌) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=30 (1,4,0) 0.1240 (0.0770,0.2720,0.4410) 0.1288 (0.0690,0.2520,0.4230) 0.1196 (0.0700,0.2810,0.4400) 

(1,4,0.5) 0.0183 (0.3500,0.7660,0.9100) 0.0230 (0.3050,0.7020,0.8710) 0.0229 (0.2950,0.7120,0.8780) 

(1,4,0.9) 0.0000 (1.0000,1.0000,1.0000) 0.0000 (1.0000,1.0000,1.0000) 0.0000 (1.0000,1.0000,1.0000) 

n=50 (1,4,0) 0.3006 (0.0240,0.1130,0.1960) 0.3105 (0.0240,0.0990,0.1910) 0.3222 (0.0170,0.0840,0.1650) 

(1,4,0.5) 0.1206 (0.0580,0.2650,0.4510) 0.1370 (0.0480,0.2230,0.4040) 0.1487 (0.0610,0.2080,0.3720) 

(1,4,0.9) 0.0000 (1.0000,1.0000,1.0000) 0.0000 (1.0000,1.0000,1.0000) 0.0000 (1.0000,1.0000,1.0000) 

n=100 (1,4,0) 0.4604 (0.0050,0.0480,0.0960) 0.4494 (0.0110,0.0570,0.1000) 0.4435 (0.0110,0.04200,0.1070) 

(1,4,0.5) 0.3550 (0.0200,0.0850,0.1580) 0.3487 (0.0130,0.0870,0.1630) 0.3302 (0.0140,0.0790,0.1440) 

(1,4,0.9) 0.0041 (0.7070,0.9620,0.9930) 0.0040 (0.7320,0.9630,0.9900) 0.0051 (0.6630,0.9480,0.9830) 

n=500 (1,4,0) 0.4963 (0.0110,0.0510,0.0980) 0.5273 (0.0110,0.0560,0.1090) 0.4946 (0.0100,0.0460,0.0960) 

(1,4,0.5) 0.5140 (0.0070,0.0550,0.1010) 0.4931 (0.0110,0.0550,0.0780) 0.5283 (0.0110,0.0475,0.0910) 

(1,4,0.9) 0.4046 (0.0170,0.0663,0.1300) 0.3768 (0.0075,0.0650,0.1250) 0.3926 (0.0130,0.0763,0.1510) 

n=1000 (1,4,0) 0.5030 (0.0110,0.0520,0.1000) 0.5134 (0.0080,0.0460,0.0880) 0.4736 (0.0100,0.0480,0.1000) 

(1,4,0.5) 0.5080 (0.0120,0.0540,0.0960) 0.5206 (0.0090,0.0480,0.0980) 0.4674 (0.0090,0.0520,0.1060) 

(1,4,0.9) 0.4476 (0.0140,0.0560,0.0880) 0.4740 (0.0080,0.0520,0.1100) 0.5042 (0.0140,0.0480,0.0940) 

*p-values are calculated by comparing one half of test statistic with 𝜒2
2. Each cell has the form of median of 1000 p-values, reject 

probabilities with 3 different significance level (𝛼 = 0.01,0.05,0.1). 
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In general, larger sample sizes are required to achieve adequate approximations 

when there is correlation among data. And also, more samples are needed if signal to 

noise ratio is low. When the correlation is strong and/or the signal to noise ratio is low, 

sample size of 500, even 1000 is required. 

5.3 Empirical Type I Error Rate for Test Statistics 

Empirical Type I error rates of each test statistic are studied in this section. For each 

estimated Type I error rate, three types of standard errors are calculated and recorded in 

tables below. The first standard error is a conservative standard error calculated as 

√𝛼(1 − 𝛼) 𝑁⁄  with 𝛼 = 0.5. The second standard error is calculated using the nominal 

type I error rate. The third standard error is calculated using the estimate of 𝛼 from the 

simulated data. The number of data sets simulated to estimate each type I error rate is 

𝑁 = 5,000. 

5.3.1 Empirical type I error rates for the structural model test statistics 

Tables 5.21-5.23 show estimated type I error rates and their three types of estimated 

standard errors for score test statistics of 𝜌 = 0 with various values of parameters.  

Tables 5.21 and 5.22 show that for a nominal type I error rates of 0.01 and 0.05, the 

estimated type I error rates generally do not differ significantly from the nominal rates 

when the signal to noise ratio is one or greater and sample size is greater than 50 using 

estimated standard error. But when signal to noise ratio is 0.25, hundreds of samples are 

needed to reach the nominal type I error rate. If we use conservative standard error, 

sample size of 10 seems enough. 

 



 

106 

 

Table 5.21 Empirical type I error rates for the structural model score test of the null hypothesis 

𝛒 = 𝟎 using a nominal type I error rate of 𝛂 = 𝟎. 𝟎𝟏 

Sample 

Size 

Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.01  

(conservative S.E.=0.0071, nominal S.E.=0.0014) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 (𝛽0 , 𝛽1) = (0,1) 0.0134 (0.0016) 0.0104 (0.0014) 0.0119 (0.0016) 

(𝛽0 , 𝛽1) = (1,1) 0.0138 (0.0016) 0.0114 (0.0015) 0.0112 (0.0015) 

(𝛽0 , 𝛽1) = (1,3) 0.0100 (0.0014) 0.0102 (0.0014) 0.0110 (0.0015) 

n=20 (𝛽0 , 𝛽1) = (0,1) 0.0077 (0.0013) 0.0061 (0.0011) 0.0064 (0.0011) 

(𝛽0 , 𝛽1) = (1,1) 0.0060 (0.0011) 0.0082 (0.0013) 0.0058 (0.0011) 

(𝛽0 , 𝛽1) = (1,3) 0.0076 (0.0012) 0.0084 (0.0013) 0.0078 (0.0012) 

n=50 (𝛽0 , 𝛽1) = (0,1) 0.0070 (0.0011) 0.0067 (0.0011) 0.0098 (0.0014) 

(𝛽0 , 𝛽1) = (1,1) 0.0074 (0.0012) 0.0072 (0.0012) 0.0090 (0.0013) 

(𝛽0 , 𝛽1) = (1,3) 0.0070 (0.0012) 0.0076 (0.0012) 0.0090 (0.0013) 

n=100 (𝛽0 , 𝛽1) = (0,1) 0.0082 (0.0013) 0.0091 (0.0013) 0.0095 (0.0014) 

(𝛽0 , 𝛽1) = (1,1) 0.0086 (0.0013) 0.0100 (0.0014) 0.0084 (0.0013) 

(𝛽0 , 𝛽1) = (1,3) 0.0094 (0.0014) 0.0082 (0.0013) 0.0080 (0.0013) 

n=500 (𝛽0 , 𝛽1) = (0,1) 0.0117 (0.0016) 0.0089 (0.0013) 0.0094 (0.0014) 

(𝛽0 , 𝛽1) = (1,1) 0.0112 (0.0015) 0.0098 (0.0014) 0.0096 (0.0014) 

(𝛽0 , 𝛽1) = (1,3) 0.0092 (0.0014) 0.0084 (0.0013) 0.0114 (0.0015) 

n=1000 (𝛽0 , 𝛽1) = (0,1) 0.0095 (0.0014) 0.0109 (0.0015) 0.0095 (0.0014) 

(𝛽0 , 𝛽1) = (1,1) 0.0100 (0.0014) 0.0110 (0.0015) 0.0124 (0.0016) 

(𝛽0 , 𝛽1) = (1,3) 0.0096 (0.0014) 0.0132 (0.0016) 0.0126 (0.0016) 

*Test statistic is compared with 𝜒1
2. Each cell has value of the form estimated type I error (estimated S.E.). Red indicates significant 

difference from nominal rate using estimated S.E. and blue for using conservative S.E. 
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Table 5.22 Empirical type I error rates for the structural model score test of the null hypothesis 

𝝆 = 𝟎 using a nominal type I error rate of 𝜶 = 𝟎. 𝟎𝟓 

Sample 

Size 

Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.05 (conservative S.E.=0.0071, nominal S.E.=0.0031) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 (𝛽0, 𝛽1) = (0,1) 0.0601 (0.0034) 0.0532 (0.0031) 0.0516 (0.0031) 

(𝛽0, 𝛽1) = (1,1) 0.0590 (0.0033) 0.0600 (0.0034) 0.0548 (0.0032) 

(𝛽0, 𝛽1) = (1,3) 0.0566 (0.0033) 0.0486 (0.0030) 0.0524 (0.0032) 

n=20 (𝛽0, 𝛽1) = (0,1) 0.0497 (0.0031) 0.0434 (0.0028) 0.0455 (0.0030) 

(𝛽0, 𝛽1) = (1,1) 0.0426 (0.0029) 0.0484 (0.0030) 0.0462 (0.0030) 

(𝛽0, 𝛽1) = (1,3) 0.0460 (0.0030) 0.0490 (0.0031) 0.0402 (0.0028) 

n=50 (𝛽0, 𝛽1) = (0,1) 0.0459 (0.0030) 0.0451 (0.0030) 0.0490 (0.0031) 

(𝛽0, 𝛽1) = (1,1) 0.0444 (0.0029) 0.0456 (0.0030) 0.0484 (0.0030) 

(β0, β1) = (1,3) 0.0478 (0.0030) 0.0474 (0.0030) 0.0470 (0.0030) 

n=100 (𝛽0, 𝛽1) = (0,1) 0.0511 (0.0031) 0.0481 (0.0030) 0.0502 (0.0031) 

(𝛽0, 𝛽1) = (1,1) 0.0552 (0.0032) 0.0490 (0.0031) 0.0476 (0.0030) 

(𝛽0, 𝛽1) = (1,3) 0.0528 (0.0032) 0.0476 (0.0030) 0.0466 (0.0030) 

n=500 (𝛽0, 𝛽1) = (0,1) 0.0503 (0.0031) 0.0508 (0.0031) 0.0473 (0.0030) 

(𝛽0, 𝛽1) = (1,1) 0.0510 (0.0031) 0.0492 (0.0031) 0.0464 (0.0030) 

(𝛽0, 𝛽1) = (1,3) 0.0470 (0.0030) 0.0464 (0.0030) 0.0504 (0.0031) 

n=1000 (𝛽0, 𝛽1) = (0,1) 0.0490 (0.0031) 0.0479 (0.0030) 0.0501 (0.0031) 

(𝛽0, 𝛽1) = (1,1) 0.0514 (0.0031) 0.0506 (0.0031) 0.0526 (0.0032) 

(𝛽0, 𝛽1) = (1,3) 0.0462 (0.0030) 0.0554 (0.0032) 0.0550 (0.0032) 

*Test statistic is compared with 𝜒1
2. Each cell has value of estimated type I error (estimated S.E.). Red indicates significant difference 

from the nominal rate using estimated S.E. and blue for conservative S.E. 

 

Table 5.23 shows that for type I error rates 0.1, the estimated type I error rate is close 

to the nominal even when sample size is as small as 20 using either estimated standard 

error or conservative standard error. 
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Table 5.23 Empirical type I error rates for the structural model score test of the null hypothesis 

𝝆 = 𝟎 using a nominal type I error rate of 𝜶 = 𝟎. 𝟏 

Sample 

Size 

Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.1 (conservative S.E.=0.0071, nominal S.E.=0.0042) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 (𝛽0, 𝛽1) = (0,1) 0.1124 (0.0045) 0.1119 (0.0045) 0.1100 (0.0044) 

(𝛽0, 𝛽1) = (1,1) 0.1132 (0.0045) 0.1168 (0.0045) 0.1120 (0.0045) 

(𝛽0, 𝛽1) = (1,3) 0.1124 (0.0045) 0.1100 (0.0044) 0.1054 (0.0043) 

n=20 (𝛽0, 𝛽1) = (0,1) 0.0961 (0.0041) 0.0949 (0.0041) 0.0953 (0.0041) 

(𝛽0, 𝛽1) = (1,1) 0.0970 (0.0042) 0.1040 (0.0043) 0.0984 (0.0042) 

(𝛽0, 𝛽1) = (1,3) 0.0968 (0.0042) 0.1048 (0.0043) 0.0976 (0.0042) 

n=50 (𝛽0, 𝛽1) = (0,1) 0.0970 (0.0042) 0.0929 (0.0041) 0.0996 (0.0042) 

(𝛽0, 𝛽1) = (1,1) 0.0928 (0.0041) 0.0940 (0.0042) 0.0990 (0.0042) 

(β0, β1) = (1,3) 0.0960 (0.0042) 0.1002 (0.0042) 0.1016 (0.0043) 

n=100 (𝛽0, 𝛽1) = (0,1) 0.0997 (0.0042) 0.0988 (0.0042) 0.0965 (0.0042) 

(𝛽0, 𝛽1) = (1,1) 0.1018 (0.0043) 0.0928 (0.0041) 0.0962 (0.0042) 

(𝛽0, 𝛽1) = (1,3) 0.1052 (0.0043) 0.0978 (0.0042) 0.0958 (0.0042) 

n=500 (𝛽0, 𝛽1) = (0,1) 0.0968 (0.0042) 0.1009 (0.0042) 0.0978 (0.0042) 

(𝛽0, 𝛽1) = (1,1) 0.0980 (0.0042) 0.0956 (0.0042) 0.0928 (0.0041) 

(𝛽0, 𝛽1) = (1,3) 0.0926 (0.0041) 0.0992 (0.0042) 0.1044 (0.0043) 

n=1000 (𝛽0, 𝛽1) = (0,1) 0.0956 (0.0041) 0.0951 (0.0041) 0.1034 (0.0043) 

(𝛽0, 𝛽1) = (1,1) 0.0998 (0.0042) 0.0990 (0.0042) 0.1038 (0.0043) 

(𝛽0, 𝛽1) = (1,3) 0.0986 (0.0042) 0.1022 (0.0043) 0.1050 (0.0043) 

*Test statistic is compared with 𝜒1
2. Each cell has value of estimated type I error (estimated S.E.). Red indicates significant difference 

from nominal rate using estimated S.E. and blue for conservative S.E. 

 

Tables 5.24-5.26 show estimated type I error rates and their three types of estimated 

standard errors for LRT tests of the null hypothesis 𝜌 = 0  using various values of 

parameters. In general, increasing the sample size will increase the accuracy of the 

empirical type I error rate. 
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Table 5.24 Empirical type I error rates for the structural model likelihood ratio test of the null 

hypothesis 𝛒 = 𝟎 using a nominal type I error rate of 𝛂 = 𝟎. 𝟎𝟏 

Sample Size Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.01 (conservative S.E.=0.0071, nominal S.E.=0.0014) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 (𝛽0, 𝛽1) = (0,1) 0.0226 (0.0021) 0.0174 (0.0018) 0.0097 (0.0014) 

(𝛽0, 𝛽1) = (1,1) 0.0169 (0.0018) 0.0197 (0.0020) 0.0122 (0.0016) 

(𝛽0, 𝛽1) = (1,3) 0.0181 (0.0019) 0.0074 (0.0012) 0.0057 (0.0011) 

n=20 (𝛽0, 𝛽1) = (0,1) 0.0235 (0.0021) 0.0147 (0.0017) 0.0125 (0.0016) 

(𝛽0, 𝛽1) = (1,1) 0.0194 (0.0019) 0.0154 (0.0017) 0.0118 (0.0015) 

(𝛽0, 𝛽1) = (1,3) 0.0149 (0.0017) 0.0099 (0.0014) 0.0101 (0.0014) 

n=50 (𝛽0, 𝛽1) = (0,1) 0.0119 (0.0015) 0.0131 (0.0016) 0.0128 (0.0016) 

(𝛽0, 𝛽1) = (1,1) 0.0129 (0.0016) 0.0128 (0.0016) 0.0112 (0.0015) 

(β0, β1) = (1,3) 0.0103 (0.0014) 0.0122 (0.0016) 0.0120 (0.0015) 

n=100 (𝛽0, 𝛽1) = (0,1) 0.0079 (0.0013) 0.0116 (0.0015) 0.0116 (0.0015) 

(𝛽0, 𝛽1) = (1,1) 0.0106 (0.0015) 0.0094 (0.0014) 0.0130 (0.0016) 

(𝛽0, 𝛽1) = (1,3) 0.0084 (0.0013) 0.0108 (0.0015) 0.0114 (0.0015) 

n=500 (𝛽0, 𝛽1) = (0,1) 0.0119 (0.0015) 0.0106 (0.0014) 0.0114 (0.0015) 

(𝛽0, 𝛽1) = (1,1) 0.0102 (0.0014) 0.0096 (0.0014) 0.0104 (0.0014) 

(𝛽0, 𝛽1) = (1,3) 0.0100 (0.0014) 0.0130 (0.0016) 0.0092 (0.0014) 

n=1000 (𝛽0, 𝛽1) = (0,1) 0.0106 (0.0014) 0.0082 (0.0013) 0.0116 (0.0015) 

(𝛽0, 𝛽1) = (1,1) 0.0102 (0.0014) 0.0122 (0.0016) 0.0094 (0.0014) 

(𝛽0, 𝛽1) = (1,3) 0.0130 (0.0016) 0.0094 (0.0014) 0.0120 (0.0015) 

*Test statistic is compared with 𝜒1
2. Each cell has value of estimated type I error (estimated S.E.). Red indicates significant difference 

from the nominal rate using estimated S.E. and blue for conservative S.E. 
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Table 5.25 Empirical type I error rates for the structural model likelihood ratio test of the null 

hypothesis 𝝆 = 𝟎 using a nominal type I error rate of 𝜶 = 𝟎. 𝟎𝟓 

Sample 

Size 

Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.05 (conservative S.E.=0.0071, nominal S.E.=0.0031) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 (𝛽0, 𝛽1) = (0,1) 0.0797 (0.0038) 0.0847 (0.0039) 0.0438 (0.0029) 

(𝛽0, 𝛽1) = (1,1) 0.0889 (0.0040) 0.0772 (0.0038) 0.0527 (0.0032) 

(𝛽0, 𝛽1) = (1,3) 0.0841 (0.0039) 0.0475 (0.0030) 0.0343 (0.0026) 

n=20 (𝛽0, 𝛽1) = (0,1) 0.0798 (0.0038) 0.0698 (0.0036) 0.0594 (0.0033) 

(𝛽0, 𝛽1) = (1,1) 0.0700 (0.0036) 0.0727 (0.0037) 0.0588 (0.0033) 

(𝛽0, 𝛽1) = (1,3) 0.0609 (0.0034) 0.0555 (0.0032) 0.0483 (0.0030) 

n=50 (𝛽0, 𝛽1) = (0,1) 0.0596 (0.0033) 0.0602 (0.0034) 0.0558 (0.0032) 

(𝛽0, 𝛽1) = (1,1) 0.0576 (0.0033) 0.0538 (0.0032) 0.0548 (0.0032) 

(β0, β1) = (1,3) 0.0531 (0.0032) 0.0538 (0.0032) 0.0528 (0.0032) 

n=100 (𝛽0, 𝛽1) = (0,1) 0.0543 (0.0032) 0.0608 (0.0034) 0.0512 (0.0031) 

(𝛽0, 𝛽1) = (1,1) 0.0577 (0.0033) 0.0526 (0.0032) 0.0522 (0.0032) 

(𝛽0, 𝛽1) = (1,3) 0.0472 (0.0030) 0.0556 (0.0032) 0.0526 (0.0032) 

n=500 (𝛽0, 𝛽1) = (0,1) 0.0552 (0.0032) 0.0522 (0.0031) 0.0486 (0.0030) 

(𝛽0, 𝛽1) = (1,1) 0.0458 (0.0030) 0.0504 (0.0031) 0.0468 (0.0030) 

(𝛽0, 𝛽1) = (1,3) 0.0472 (0.0030) 0.0536 (0.0032) 0.0510 (0.0031) 

n=1000 (𝛽0, 𝛽1) = (0,1) 0.0538 (0.0032) 0.0472 (0.0030) 0.0494 (0.0031) 

(𝛽0, 𝛽1) = (1,1) 0.0472 (0.0030) 0.0550 (0.0032) 0.0456 (0.0030) 

(𝛽0, 𝛽1) = (1,3) 0.0494 (0.0031) 0.0516 (0.0031) 0.0502 (0.0031) 

*Test statistic is compared with 𝜒1
2. Each cell has value of estimated type I error (estimated S.E.). Red indicates significant difference 

from the nominal rate using estimated S.E. and blue for conservative S.E. 

 

Table 5.24 shows that sample sizes of 50 or greater make the empirical type I error 

rates generally not differ significantly from the nominal rate 0.01 using estimated 

standard error. But a small sample size of 10 is needed using conservative standard error. 

Table 5.25 shows that big sample size of 500 is required to make the empirical type I 
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error rates not differ significantly from the nominal rate 0.05 using estimated standard 

error, however, only size of 50 is needed using conservative standard error. 

 

Table 5.26 Empirical type I error rates for the structural model likelihood ratio test of the null 

hypothesis 𝝆 = 𝟎 using a nominal type I error rate of 𝜶 = 𝟎. 𝟏 

Sample Size Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.1 (conservative S.E.=0.0071, nominal S.E.=0.0042) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 (𝛽0, 𝛽1) = (0,1) 0.1531 (0.0051) 0.1421 (0.0049) 0.0944 (0.0041) 

(𝛽0, 𝛽1) = (1,1) 0.1523 (0.0051) 0.1314 (0.0048) 0.1077 (0.0044) 

(𝛽0, 𝛽1) = (1,3) 0.1488 (0.0050) 0.1038 (0.0043) 0.0868 (0.0040) 

n=20 (𝛽0, 𝛽1) = (0,1) 0.1438 (0.0050) 0.1309 (0.0048) 0.1145 (0.0045) 

(𝛽0, 𝛽1) = (1,1) 0.1213 (0.0046) 0.1274 (0.0047) 0.1142 (0.0045) 

(𝛽0, 𝛽1) = (1,3) 0.1281 (0.0047) 0.1079 (0.0044) 0.0990 (0.0042) 

n=50 (𝛽0, 𝛽1) = (0,1) 0.1192 (0.0046) 0.1240 (0.0047) 0.1114 (0.0044) 

(𝛽0, 𝛽1) = (1,1) 0.1114 (0.0044) 0.1224 (0.0046) 0.1152 (0.0045) 

(β0, β1) = (1,3) 0.1020 (0.0043) 0.1080 (0.0044) 0.1088 (0.0044) 

n=100 (𝛽0, 𝛽1) = (0,1) 0.1084 (0.0044) 0.1094 (0.0044) 0.1038 (0.0043) 

(𝛽0, 𝛽1) = (1,1) 0.1133 (0.0045) 0.1058 (0.0043) 0.1046 (0.0045) 

(𝛽0, 𝛽1) = (1,3) 0.1021 (0.0043) 0.1098 (0.0044) 0.1070 (0.0044) 

n=500 (𝛽0, 𝛽1) = (0,1) 0.1059 (0.0044) 0.0968 (0.0042) 0.0992 (0.0042) 

(𝛽0, 𝛽1) = (1,1) 0.0912 (0.0041) 0.0962 (0.0042) 0.0962 (0.0042) 

(𝛽0, 𝛽1) = (1,3) 0.0986 (0.0042) 0.1054 (0.0043) 0.1020 (0.0043) 

n=1000 (𝛽0, 𝛽1) = (0,1) 0.0999 (0.0042) 0.0952 (0.0042) 0.1058 (0.0043) 

(𝛽0, 𝛽1) = (1,1) 0.0918 (0.0041) 0.0994 (0.0042) 0.0980 (0.0042) 

(𝛽0, 𝛽1) = (1,3) 0.1014 (0.0043) 0.1004 (0.0043) 0.1006 (0.0043) 

*Half of test statistic is compared with 𝜒1
2. Each cell has value of estimated type I error (estimated S.E.). Red indicates significant 

difference from nominal rate using estimated S.E. and blue for conservative S.E. 

 

Table 5.26 shows that sample size greater than 500 is needed generally for the 

empirical type I error rates not significantly different from the nominal rate 0.1 using 
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either estimated standard error or conservative standard error. When signal to noise ratio 

is large, sample size of 100 is enough. 

 

Table 5.27 Empirical type I error rates for the structural model score test of the null hypothesis 

(𝜷𝟎, 𝜷𝟏) = (𝟎, 𝟏) using a nominal type I error rate of 𝜶 = 𝟎. 𝟎𝟏 

Sample Size Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.01 (conservative S.E.=0.0071, nominal S.E.=0.0014) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 𝜌 = 0 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 

𝜌 = 0.5 0.0008 (0.0004) 0.0004 (0.0003) 0.0014 (0.0005) 

𝜌 = 0.9 0.0036 (0.0008) 0.0022 (0.0007) 0.0026 (0.0007) 

n=20 𝜌 = 0 0.0028 (0.0007) 0.0012 (0.0005) 0.0020 (0.0006) 

𝜌 = 0.5 0.0024 (0.0007) 0.0022 (0.0007) 0.0026 (0.0007) 

𝜌 = 0.9 0.0030 (0.0008) 0.0074 (0.0012) 0.0054 (0.0010) 

n=50 𝜌 = 0 0.0054 (0.0010) 0.0068 (0.0012) 0.0058 (0.0011) 

𝜌 = 0.5 0.0060 (0.0011) 0.0066 (0.0011) 0.0046 (0.0010) 

𝜌 = 0.9 0.0078 (0.0012) 0.0080 (0.0013) 0.0092 (0.0014) 

n=100 𝜌 = 0 0.0060 (0.0011) 0.0092 (0.0014) 0.0088 (0.0013) 

𝜌 = 0.5 0.0084 (0.0013) 0.0090 (0.0013) 0.0088 (0.0013) 

𝜌 = 0.9 0.0088 (0.0013) 0.0134 (0.0016) 0.0092 (0.0014) 

n=500 𝜌 = 0 0.0094 (0.0014) 0.0104 (0.0014) 0.0114 (0.0015) 

𝜌 = 0.5 0.0098 (0.0014) 0.0088 (0.0013) 0.0100 (0.0014) 

𝜌 = 0.9 0.0104 (0.0014) 0.0114 (0.0015) 0.0118 (0.0015) 

n=1000 𝜌 = 0 0.0084 (0.0013) 0.0108 (0.0015) 0.0078 (0.0012) 

𝜌 = 0.5 0.0092 (0.0014) 0.0110 (0.0015) 0.0092 (0.0014) 

𝜌 = 0.9 0.0102 (0.0014) 0.0090 (0.0013) 0.0128 (0.0016) 

*Test statistic is compared with 𝜒2
2. Each cell has value of the form estimated type I error (estimated S.E.). Red indicates significant 

difference from the nominal rate using estimated S.E. and blue for using conservative S.E. 

 

Tables 5.27-5.29 show estimated type I error rates and their three types of estimated 

standard errors for score tests of the null hypothesis (𝛽0, 𝛽1) = (0,1)  using various 
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values of parameters. In general, increasing the sample size will increase the accuracy of 

the empirical type I error rate.  

 

Table 5.28 Empirical type I error rates for the structural model score test of the null hypothesis 

(𝛃𝟎, 𝛃𝟏) = (𝟎, 𝟏) using a nominal type I error rate of 𝛂 = 𝟎. 𝟎𝟓 

Sample Size Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.05 (conservative S.E.=0.0071, nominal S.E.=0.0031) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 𝜌 = 0 0.0138 (0.0016) 0.0126 (0.0016) 0.0124 (0.0016) 

𝜌 = 0.5 0.0232 (0.0021) 0.0216 (0.0021) 0.0244 (0.0022) 

𝜌 = 0.9 0.0438 (0.0029) 0.0458 (0.0030) 0.0530 (0.0032) 

n=20 𝜌 = 0 0.0322 (0.0025) 0.0284 (0.0023) 0.0256 (0.0022) 

𝜌 = 0.5 0.0366 (0.0027) 0.0340 (0.0026) 0.0288 (0.0024) 

𝜌 = 0.9 0.0472 (0.0030) 0.0652 (0.0035) 0.0592 (0.0033) 

n=50 𝜌 = 0 0.0432 (0.0029) 0.0410 (0.0028) 0.0424 (0.0028) 

𝜌 = 0.5 0.0416 (0.0028) 0.0438 (0.0029) 0.0390 (0.0027) 

𝜌 = 0.9 0.0488 (0.0030) 0.0702 (0.0036) 0.0612 (0.0034) 

n=100 𝜌 = 0 0.0448 (0.0029) 0.0466 (0.0030) 0.0456 (0.0030) 

𝜌 = 0.5 0.0476 (0.0030) 0.0440 (0.0029) 0.0446 (0.0029) 

𝜌 = 0.9 0.0582 (0.0033) 0.0688 (0.0036) 0.0560 (0.0033) 

n=500 𝜌 = 0 0.0502 (0.0031) 0.0488 (0.0030) 0.0540 (0.0032) 

𝜌 = 0.5 0.0484 (0.0030) 0.0496 (0.0031) 0.0518 (0.0031) 

𝜌 = 0.9 0.0586 (0.0033) 0.0570 (0.0033) 0.0566 (0.0043) 

n=1000 𝜌 = 0 0.0470 (0.0030) 0.0480 (0.0030) 0.0464 (0.0030) 

𝜌 = 0.5 0.0488 (0.0030) 0.0474 (0.0030) 0.0518 (0.0031) 

𝜌 = 0.9 0.0506 (0.0031) 0.0500 (0.0031) 0.0534 (0.0032) 

*Test statistic is compared with 𝜒2
2. Each cell has value of the form estimated type I error (estimated S.E.). Red indicates significant 

difference from the nominal rate using estimated S.E. and blue for using conservative S.E. 

 

From Table 5.27, we observe that the estimated type I error is close to nominal when 

sample size is greater than 100 and use estimated standard error. Sample size of 10 
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seems enough when using conservative standard error. Table 5.28 shows that when 

sample size is 100 or greater, the estimated type I error rate is close to the nominal error 

rate 0.05 with large signal to noise ratio. Using estimated standard error, large sample 

size greater than 500 is needed for low signal to noise ratio and high correlation. Using 

conservative standard error, sample size greater than 100 is enough. 

 

Table 5.29 Empirical type I error rates for the structural model score test of the null hypothesis 

(𝜷𝟎, 𝜷𝟏) = (𝟎, 𝟏) using a nominal type I error rate of 𝜶 = 𝟎. 𝟏 

Sample Size Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.1 (conservative S.E.=0.0071, nominal S.E.=0.0042) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 𝜌 = 0 0.0624 (0.0034) 0.0570 (0.0033) 0.0534 (0.0032) 

𝜌 = 0.5 0.0804 (0.0038) 0.0776 (0.0038) 0.0742 (0.0037) 

𝜌 = 0.9 0.1222 (0.0046) 0.1320 (0.0048) 0.1320 (0.0048) 

n=20 𝜌 = 0 0.0781 (0.0042) 0.0768 (0.0038) 0.0744 (0.0037) 

𝜌 = 0.5 0.0918 (0.0041) 0.0908 (0.0041) 0.0728 (0.0037) 

𝜌 = 0.9 0.1224 (0.0046) 0.1542 (0.0051) 0.1384 (0.0049) 

n=50 𝜌 = 0 0.0966 (0.0042) 0.0944 (0.0041) 0.0918 (0.0041) 

𝜌 = 0.5 0.0990 (0.0042) 0.0956 (0.0042) 0.0927 (0.0041) 

𝜌 = 0.9 0.1232 (0.0046) 0.1526 (0.0051) 0.1378 (0.0049) 

n=100 𝜌 = 0 0.0982 (0.0042) 0.0994 (0.0042) 0.0918 (0.0041) 

𝜌 = 0.5 0.0970 (0.0042) 0.0918 (0.0041) 0.0919 (0.0041) 

𝜌 = 0.9 0.1182 (0.0046) 0.1400 (0.0049) 0.1206 (0.0046) 

n=500 𝜌 = 0 0.1016 (0.0043) 0.1014 (0.0043) 0.1014 (0.0043) 

𝜌 = 0.5 0.0970 (0.0042) 0.1004 (0.0043) 0.1050 (0.0043) 

𝜌 = 0.9 0.1152 (0.0045) 0.1124 (0.0045) 0.1030 (0.0043) 

n=1000 𝜌 = 0 0.0982 (0.0042) 0.0919 (0.0041) 0.0918 (0.0041) 

𝜌 = 0.5 0.1000 (0.0042) 0.0996 (0.0042) 0.1042 (0.0043) 

𝜌 = 0.9 0.0964 (0.0042) 0.1000 (0.0042) 0.1088 (0.0044) 

*Test statistic is compared with 𝜒2
2. Each cell has value of the form estimated type I error (estimated S.E.). Red indicates significant 

difference from the nominal rate using estimated S.E. and blue for using conservative S.E. 
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Table 5.29 shows that generally sample size of 1000 or greater is needed to make 

estimated type I error rates not differ from the nominal error rate 0.1 using either 

estimated standard error or conservative standard error. Notice that for moderate or no 

correlation, sample size of 50 is enough. 

 

Table 5.30 Empirical type I error rates for the structural model likelihood ratio test of the null 

hypothesis (𝜷𝟎, 𝜷𝟏) = (𝟎, 𝟏) using a nominal type I error rate of 𝜶 = 𝟎. 𝟎𝟏 

Sample Size Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.01 (conservative S.E.=0.0071, nominal S.E.=0.0014) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 𝜌 = 0 0.0113 (0.0015) 0.0087 (0.0013) 0.0102 (0.0014) 

𝜌 = 0.5 0.0215 (0.0021) 0.0252 (0.0022) 0.0236 (0.0021) 

𝜌 = 0.9 0.0523 (0.0031) 0.0850 (0.0039) 0.0791 (0.0038) 

n=20 𝜌 = 0 0.0065 (0.0011) 0.0067 (0.0012) 0.0148 (0.0017) 

𝜌 = 0.5 0.0135 (0.0016) 0.0134 (0.0016) 0.0108 (0.0015) 

𝜌 = 0.9 0.0545 (0.0032) 0.0014 (0.0038) 0.0698 (0.0036) 

n=50 𝜌 = 0 0.0045 (0.0009) 0.0112 (0.0015) 0.0086 (0.0013) 

𝜌 = 0.5 0.0067 (0.0012) 0.0140 (0.0017) 0.0124 (0.0016) 

𝜌 = 0.9 0.0307 (0.0024) 0.0423 (0.0028) 0.0416 (0.0028) 

n=100 𝜌 = 0 0.0077 (0.0012) 0.0078 (0.0012) 0.0102 (0.0014) 

𝜌 = 0.5 0.0088 (0.0013) 0.0082 (0.0013) 0.0092 (0.0014) 

𝜌 = 0.9 0.0198 (0.0020) 0.0308 (0.0024) 0.0282 (0.0023) 

n=500 𝜌 = 0 0.0076 (0.0012) 0.0090 (0.0013) 0.0128 (0.0016) 

𝜌 = 0.5 0.0048 (0.0010) 0.0112 (0.0015) 0.0116 (0.0015) 

𝜌 = 0.9 0.0100 (0.0014) 0.0172 (0.0018) 0.0154 (0.0017) 

n=1000 𝜌 = 0 0.0090 (0.0013) 0.0098 (0.0014) 0.0110 (0.0015) 

𝜌 = 0.5 0.0080 (0.0013) 0.0122 (0.0016) 0.0092 (0.0014) 

𝜌 = 0.9 0.0090 (0.0013) 0.0130 (0.0016) 0.0129 (0.0016) 

*Test statistic is compared with 𝜒2
2. Each cell has value of the form estimated type I error (estimated S.E.). Red indicates significant 

difference from the nominal rate using estimated S.E. and blue for using conservative S.E. 
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Tables 5.30-5.32 show estimated type I error rates and their three types of estimated 

standard errors for score tests of the null hypothesis (𝛽0, 𝛽1) = (0,1)  using various 

values of parameters.  In general, increasing the sample size will increase the accuracy 

of the empirical type I error rate. 

 

Table 5.31 Empirical type I error rates for the structural model likelihood ratio test of the null 

hypothesis (𝜷𝟎, 𝜷𝟏) = (𝟎, 𝟏) using a nominal type I error rate of 𝜶 = 𝟎. 𝟎𝟓 

Sample Size Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.05 (conservative S.E.=0.0071, nominal S.E.=0.0031) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 𝜌 = 0 0.0374 (0.0027) 0.0414 (0.0028) 0.0488 (0.0030) 

𝜌 = 0.5 0.0785 (0.0038) 0.0951 (0.0041) 0.0973 (0.0042) 

𝜌 = 0.9 0.1731 (0.0053) 0.2252 (0.0059) 0.2366 (0.0060) 

n=20 𝜌 = 0 0.0256 (0.0022) 0.0402 (0.0028) 0.0528 (0.0032) 

𝜌 = 0.5 0.0541 (0.0032) 0.0624 (0.0034) 0.0602 (0.0034) 

𝜌 = 0.9 0.1581 (0.0052) 0.2073 (0.0057) 0.1998 (0.0057) 

n=50 𝜌 = 0 0.0353 (0.0026) 0.0510 (0.0031) 0.0546 (0.0032) 

𝜌 = 0.5 0.0398 (0.0028) 0.0568 (0.0033) 0.0566 (0.0033) 

𝜌 = 0.9 0.0992 (0.0042) 0.1324 (0.0048) 0.1308 (0.0048) 

n=100 𝜌 = 0 0.0352 (0.0026) 0.0412 (0.0028) 0.0576 (0.0033) 

𝜌 = 0.5 0.0395 (0.0028) 0.0440 (0.0029) 0.0562 (0.0033) 

𝜌 = 0.9 0.0750 (0.0037) 0.0924 (0.0041) 0.1000 (0.0042) 

n=500 𝜌 = 0 0.0384 (0.0027) 0.0492 (0.0031) 0.0556 (0.0032) 

𝜌 = 0.5 0.0356 (0.0026) 0.0496 (0.0031) 0.0500 (0.0031) 

𝜌 = 0.9 0.0486 (0.0030) 0.0684 (0.0036) 0.0652 (0.0035) 

n=1000 𝜌 = 0 0.0446 (0.0029) 0.0492 (0.0031) 0.0484 (0.0030) 

𝜌 = 0.5 0.0442 (0.0029) 0.0530 (0.0032) 0.0488 (0.0030) 

𝜌 = 0.9 0.0460 (0.0030) 0.0538 (0.0032) 0.0560 (0.0033) 

*Test statistic is compared with 𝜒2
2. Each cell has value of the form estimated type I error (estimated S.E.). Red indicates significant 

difference from the nominal rate using estimated S.E. and blue for using conservative S.E.  
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Table 5.30 shows that sample size of 100 or greater makes estimated type I error 

rates not differ significantly from the nominal error rate 0.01 when there is a moderate or 

no correlation using either estimated standard error or conservative standard error. 

However, in the situation of high correlation, sample size of 1000 is needed using 

estimated standard error and 500 is needed using conservative standard error. 

 

Table 5.32 Empirical type I error rates for the structural model likelihood ratio test of the null 

hypothesis (𝜷𝟎, 𝜷𝟏) = (𝟎, 𝟏) using a nominal type I error rate of 𝜶 = 𝟎. 𝟏 

Sample Size Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.1 (conservative S.E.=0.0071, nominal S.E.=0.0042) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 𝜌 = 0 0.0695 (0.0036) 0.0895 (0.0040) 0.1030 (0.0043) 

𝜌 = 0.5 0.1349 (0.0048) 0.1594 (0.0052) 0.1704 (0.0053) 

𝜌 = 0.9 0.2802 (0.0064) 0.3371 (0.0067) 0.3560 (0.0068) 

n=20 𝜌 = 0 0.0535 (0.0032) 0.0892 (0.0040) 0.0974 (0.0042) 

𝜌 = 0.5 0.0919 (0.0041) 0.1164 (0.0045) 0.1202 (0.0046) 

𝜌 = 0.9 0.2363 (0.0060) 0.3027 (0.0065) 0.2998 (0.0065) 

n=50 𝜌 = 0 0.0670 (0.0035) 0.0978 (0.0042) 0.1056 (0.0043) 

𝜌 = 0.5 0.0809 (0.0039) 0.1006 (0.0043) 0.1032 (0.0043) 

𝜌 = 0.9 0.1652 (0.0053) 0.2056 (0.0057) 0.2136 (0.0058) 

n=100 𝜌 = 0 0.0711 (0.0036) 0.0882 (0.0040 0.1060 (0.0044) 

𝜌 = 0.5 0.0811 (0.0039) 0.0824 (0.0039) 0.1080 (0.0044) 

𝜌 = 0.9 0.1286 (0.0047) 0.1510 (0.0051) 0.1690 (0.0053) 

n=500 𝜌 = 0 0.0816 (0.0039) 0.0982 (0.0042) 0.1056 (0.0043) 

𝜌 = 0.5 0.0740 (0.0037) 0.1026 (0.0043) 0.1002 (0.0042) 

𝜌 = 0.9 0.1024 (0.0043) 0.1294 (0.0047) 0.1190 (0.0046) 

n=1000 𝜌 = 0 0.0922 (0.0041) 0.1020 (0.0043) 0.0984 (0.0042) 

𝜌 = 0.5 0.0936 (0.0042) 0.1022 (0.0043) 0.1000 (0.0042) 

𝜌 = 0.9 0.0976 (0.0042) 0.1076 (0.0044) 0.1080 (0.0044) 

*Test statistic is compared with 𝜒2
2. Each cell has value of the form estimated type I error (estimated S.E.). Red indicates significant 

difference from the nominal rate using estimated S.E. and blue for using conservative S.E. 
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Tables 5.31 and 5.32 show that sample size of 1000 or greater is needed to make 

estimated error rate not differ significantly from the nominal error rate 0.05 using either 

estimated standard error or conservative standard error. 

Generally speaking, the signal to noise ratio and correlation has impact on type I 

error besides the sample size. Large signal to noise ratio makes type I error close to 

nominal even when sample size is small. Strong correlation results in the estimated type 

I error to deviate from the nominal value. A sample size of 100 is large enough to 

produce estimated error rates close to nominal for most of the cases when testing 𝜌 = 0, 

however, a large sample size of 1000 or greater is required when testing (𝛽0, 𝛽1) =

(𝑏0, 𝑏1). 

5.3.2 Empirical type I error rates for the functional model test statistics 

Tables 5.33-5.35 show estimated type I error rates and their three types of estimated 

standard errors for functional model score tests of the null hypothesis 𝐻0: 𝜌 = 0 using 

various values of parameters. 

Table 5.33 shows that when using conservative standard error, sample size of 10 is 

enough for no significant difference between estimated type I error rates and nominal 

error rate of 0.01. However, sample size of 500 is needed when using estimated standard 

error. Table 5.34 shows that sample size of 20 is enough for the estimated error rates not 

different from the nominal 0.05 when using conservative standard error and sample size 

of 100 is needed when using estimated standard error. 
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Table 5.33 Empirical type I error rates for the functional model score test of the null hypothesis 

𝝆 = 𝟎 using a nominal type I error rate of 𝜶 = 𝟎. 𝟎𝟏 

Sample Size Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.01 

(conservative S.E.=0.0071, nominal S.E.=0.0014) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 (𝛽0, 𝛽1) = (0,1) 0.0122 (0.0016) 0.0110 (0.0015) 0.0094 (0.0014) 

(𝛽0, 𝛽1) = (1,1) 0.0132 (0.0016) 0.0128 (0.0016) 0.0082 (0.0013) 

(𝛽0, 𝛽1) = (1,3) 0.0088 (0.0013) 0.0114 (0.0015) 0.0130 (0.0016) 

n=20 (𝛽0, 𝛽1) = (0,1) 0.0084 (0.0013) 0.0052 (0.0010) 0.0096 (0.0014) 

(𝛽0, 𝛽1) = (1,1) 0.0074 (0.0012) 0.0064 (0.0011) 0.0104 (0.0014) 

(𝛽0, 𝛽1) = (1,3) 0.0078 (0.0012) 0.0058 (0.0011) 0.0076 (0.0012) 

n=50 (𝛽0, 𝛽1) = (0,1) 0.0076 (0.0012) 0.0108 (0.0015) 0.0108 (0.0015) 

(𝛽0, 𝛽1) = (1,1) 0.0084 (0.0013) 0.0076 (0.0012) 0.0088 (0.0013) 

(β0, β1) = (1,3) 0.0072 (0.0012) 0.0086 (0.0013) 0.0084 (0.0013) 

n=100 (𝛽0, 𝛽1) = (0,1) 0.0074 (0.0012) 0.0074 (0.0012) 0.0084 (0.0013) 

(𝛽0, 𝛽1) = (1,1) 0.0078 (0.0012) 0.0108 (0.0015) 0.0084 (0.0013) 

(𝛽0, 𝛽1) = (1,3) 0.0136 (0.0016) 0.0070 (0.0012) 0.0112 (0.0015) 

n=500 (𝛽0, 𝛽1) = (0,1) 0.0100 (0.0014) 0.0110 (0.0015) 0.0124 (0.0016) 

(𝛽0, 𝛽1) = (1,1) 0.0076 (0.0012) 0.0080 (0.0013) 0.0106 (0.0014) 

(𝛽0, 𝛽1) = (1,3) 0.0104 (0.0014) 0.0092 (0.0014) 0.0112 (0.0015) 

n=1000 (𝛽0, 𝛽1) = (0,1) 0.0102 (0.0014) 0.0090 (0.0013) 0.0078 (0.0012) 

(𝛽0, 𝛽1) = (1,1) 0.0092 (0.0014) 0.0102 (0.0014) 0.0088 (0.0013) 

(𝛽0, 𝛽1) = (1,3) 0.0132 (0.0016) 0.0088 (0.0013) 0.0104 (0.0014) 

*One half of test statistic is compared with 𝜒1
2. Each cell has value of the form estimated type I error  (estimated S.E.). Red indicates 

significant difference from the nominal rate using estimated S.E. and blue for using conservative S.E. 
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Table 5.34 Empirical type I error rates for the functional model score test of the null hypothesis 

𝝆 = 𝟎 using a nominal type I error rate of 𝜶 = 𝟎. 𝟎𝟓 

Sample Size Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.05 

(conservative S.E.=0.0071, nominal S.E.=0.0031) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 (𝛽0, 𝛽1) = (0,1) 0.0534 (0.0032) 0.0524 (0.0032) 0.0508 (0.0031) 

(𝛽0, 𝛽1) = (1,1) 0.0588 (0.0033) 0.0550 (0.0032) 0.0456 (0.0030) 

(𝛽0, 𝛽1) = (1,3) 0.0512 (0.0031) 0.0524 (0.0032) 0.0646 (0.0035) 

n=20 (𝛽0, 𝛽1) = (0,1) 0.0464 (0.0030) 0.0440 (0.0029) 0.0518 (0.0031) 

(𝛽0, 𝛽1) = (1,1) 0.0424 (0.0028) 0.0430 (0.0029) 0.0526 (0.0032) 

(𝛽0, 𝛽1) = (1,3) 0.0466 (0.0030) 0.0446 (0.0029) 0.0474 (0.0030) 

n=50 (𝛽0, 𝛽1) = (0,1) 0.0512 (0.0031) 0.0496 (0.0031) 0.0442 (0.0029) 

(𝛽0, 𝛽1) = (1,1) 0.0484 (0.0030) 0.0430 (0.0029) 0.0406 (0.0028) 

(β0, β1) = (1,3) 0.0446 (0.0029) 0.0466 (0.0030) 0.0420 (0.0028) 

n=100 (𝛽0, 𝛽1) = (0,1) 0.0444 (0.0029) 0.0442 (0.0029) 0.0484 (0.0030) 

(𝛽0, 𝛽1) = (1,1) 0.0482 (0.0030) 0.0492 (0.0031) 0.0494 (0.0031) 

(𝛽0, 𝛽1) = (1,3) 0.0548 (0.0032) 0.0480 (0.0030) 0.0494 (0.0031) 

n=500 (𝛽0, 𝛽1) = (0,1) 0.0478 (0.0030) 0.0536 (0.0032) 0.0518 (0.0031) 

(𝛽0, 𝛽1) = (1,1) 0.0443 (0.0029) 0.0474 (0.0030) 0.0486 (0.0030) 

(𝛽0, 𝛽1) = (1,3) 0.0522 (0.0031) 0.0524 (0.0032) 0.0514 (0.0031) 

n=1000 (𝛽0, 𝛽1) = (0,1) 0.0482 (0.0030) 0.0564 (0.0033) 0.0524 (0.0032) 

(𝛽0, 𝛽1) = (1,1) 0.0482 (0.0030) 0.0556 (0.0032) 0.0452 (0.0029) 

(𝛽0, 𝛽1) = (1,3) 0.0526 (0.0032) 0.0474 (0.0030) 0.0550 (0.0032) 

*One half of test statistic is compared with 𝜒1
2. Each cell has value of the form estimated type I error  (estimated S.E.). Red indicates 

significant difference from the nominal rate using estimated S.E. and blue for using conservative S.E. 

 

Table 5.35 shows that sample size of 20 is enough for the estimated error rates close 

to the nominal error rate 0.10 using conservative error rate and sample size of 100 is 

required using estimated error rate. 
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Table 5.35 Empirical type I error rates for the functional model score test of the null hypothesis 

𝝆 = 𝟎 using a nominal type I error rate of 𝜶 = 𝟎. 𝟏 

Sample Size Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.1 

(conservative S.E.=0.0071, nominal S.E.=0.0042) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 (𝛽0, 𝛽1) = (0,1) 0.1132 (0.0045) 0.1092 (0.0044) 0.1116 (0.0045) 

(𝛽0, 𝛽1) = (1,1) 0.1112 (0.0044) 0.1082 (0.0044) 0.0934 (0.0041) 

(𝛽0, 𝛽1) = (1,3) 0.1046 (0.0043) 0.1088 (0.0044) 0.1294 (0.0047) 

n=20 (𝛽0, 𝛽1) = (0,1) 0.0984 (0.0042) 0.0922 (0.0041) 0.1086 (0.0044) 

(𝛽0, 𝛽1) = (1,1) 0.0940 (0.0041) 0.0966 (0.0042) 0.1096 (0.0044) 

(𝛽0, 𝛽1) = (1,3) 0.1022 (0.0043) 0.0948 (0.0041) 0.1022 (0.0043) 

n=50 (𝛽0, 𝛽1) = (0,1) 0.0910 (0.0041) 0.0984 (0.0042) 0.0986 (0.0042) 

(𝛽0, 𝛽1) = (1,1) 0.0906 (0.0041) 0.0982 (0.0042) 0.0946 (0.0041) 

(β0, β1) = (1,3) 0.0958 (0.0042) 0.0970 (0.0042) 0.0982 (0.0042) 

n=100 (𝛽0, 𝛽1) = (0,1) 0.0924 (0.0041) 0.0924 (0.0041) 0.0984 (0.0042) 

(𝛽0, 𝛽1) = (1,1) 0.0914 (0.0041) 0.1036 (0.0043) 0.0984 (0.0042) 

(𝛽0, 𝛽1) = (1,3) 0.1026 (0.0043) 0.0990 (0.0042) 0.1020 (0.0043) 

n=500 (𝛽0, 𝛽1) = (0,1) 0.0992 (0.0042) 0.1002 (0.0042) 0.1012 (0.0043) 

(𝛽0, 𝛽1) = (1,1) 0.0910 (0.0041) 0.0960 (0.0042) 0.1000 (0.0042) 

(𝛽0, 𝛽1) = (1,3) 0.1022 (0.0043) 0.1014 (0.0043) 0.1026 (0.0043) 

n=1000 (𝛽0, 𝛽1) = (0,1) 0.1026 (0.0043) 0.1062 (0.0044) 0.1016 (0.0043) 

(𝛽0, 𝛽1) = (1,1) 0.1002 (0.0042) 0.1082 (0.0044) 0.0972 (0.0042) 

(𝛽0, 𝛽1) = (1,3) 0.1072 (0.0044) 0.1002 (0.0042) 0.1038 (0.0043) 

*One half of test statistic is compared with 𝜒1
2. Each cell has value of the form estimated type I error (estimated S.E.). Red indicates 

significant difference from the nominal rate using estimated S.E. and blue for using conservative S.E. 

 

Tables 5.36-5.38 show estimated type I error rates and their three types of estimated 

standard errors for functional model likelihood ratio tests of the null hypothesis 𝐻0: 𝜌 =

0 using various values of parameters. 
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Table 5.36 Empirical type I error rates for the functional model likelihood ratio test of the null 

hypothesis 𝝆 = 𝟎 using a nominal type I error rate of 𝜶 = 𝟎. 𝟎𝟏 

Sample Size Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.01 

(conservative S.E.=0.0071, nominal S.E.=0.0014) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 (𝛽0, 𝛽1) = (0,1) 0.0281 (0.0023) 0.0264 (0.0023) 0.0214 (0.0020) 

(𝛽0, 𝛽1) = (1,1) 0.0246 (0.0022) 0.0372 (0.0027) 0.0230 (0.0021) 

(𝛽0, 𝛽1) = (1,3) 0.0208 (0.0020) 0.0260 (0.0023) 0.0262 (0.0023) 

n=20 (𝛽0, 𝛽1) = (0,1) 0.0182 (0.0019) 0.0156 (0.0018) 0.0160 (0.0018) 

(𝛽0, 𝛽1) = (1,1) 0.0180 (0.0019) 0.0144 (0.0017) 0.0158 (0.0018) 

(𝛽0, 𝛽1) = (1,3) 0.0135 (0.0016) 0.0150 (0.0017) 0.0166 (0.0018) 

n=50 (𝛽0, 𝛽1) = (0,1) 0.0138 (0.0016) 0.0124 (0.0016) 0.0121 (0.0015) 

(𝛽0, 𝛽1) = (1,1) 0.0136 (0.0016) 0.0132 (0.0016) 0.0119 (0.0015) 

(β0, β1) = (1,3) 0.0134 (0.0016) 0.0122 (0.0016) 0.0108 (0.0015) 

n=100 (𝛽0, 𝛽1) = (0,1) 0.0132 (0.0016) 0.0134 (0.0016) 0.0124 (0.0016) 

(𝛽0, 𝛽1) = (1,1) 0.0106 (0.0014) 0.0120 (0.0015) 0.0132 (0.0016) 

(𝛽0, 𝛽1) = (1,3) 0.0108 (0.0015) 0.0098 (0.0014) 0.0110 (0.0015) 

n=500 (𝛽0, 𝛽1) = (0,1) 0.0118 (0.0015) 0.0110 (0.0015) 0.0098 (0.0014) 

(𝛽0, 𝛽1) = (1,1) 0.0078 (0.0012) 0.0092 (0.0014) 0.0128 (0.0016) 

(𝛽0, 𝛽1) = (1,3) 0.0110 (0.0015) 0.0106 (0.0014) 0.0110 (0.0015) 

n=1000 (𝛽0, 𝛽1) = (0,1) 0.0102 (0.0014) 0.0114 (0.0015) 0.0096 (0.0014) 

(𝛽0, 𝛽1) = (1,1) 0.0102 (0.0014) 0.0102 (0.0014) 0.0094 (0.0014) 

(𝛽0, 𝛽1) = (1,3) 0.0118 (0.0015) 0.0102 (0.0014) 0.0098 (0.0014) 

*One half of test statistic is compared with 𝜒1
2. Each cell has value of the form estimated type I error (estimated S.E.). Red indicates 

significant difference from the nominal rate using estimated S.E. and blue for using conservative S.E. 

 

Table 5.36 shows that sample size of 20 is enough for estimated type I error rates 

close to the nominal error rate 0.01 when using conservative standard error and sample 

size of 100 is needed using estimated standard error. Table 5.37 shows that sample size 

of 50 is enough for estimated type I error rates close to the nominal error rate 0.05 using 

conservative standard error and sample size of 500 is needed using estimated standard 
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error. Table 5.38 shows that sample size greater than 100 is needed using either 

estimated standard error or conservative standard error. 

 

Table 5.37 Empirical type I error rates for the functional model likelihood ratio test of the null 

hypothesis 𝝆 = 𝟎 using a nominal type I error rate of 𝜶 = 𝟎. 𝟎𝟓 

Sample Size Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.05 

(conservative S.E.=0.0071, nominal S.E.=0.0031) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 (𝛽0, 𝛽1) = (0,1) 0.1010 (0.0043) 0.0884 (0.0040) 0.0882 (0.0040) 

(𝛽0, 𝛽1) = (1,1) 0.0991 (0.0042) 0.1178 (0.0046) 0.0862 (0.0040) 

(𝛽0, 𝛽1) = (1,3) 0.0865 (0.0040) 0.0900 (0.0040) 0.1002 (0.0042) 

n=20 (𝛽0, 𝛽1) = (0,1) 0.0802 (0.0038) 0.0644 (0.0035) 0.0664 (0.0035) 

(𝛽0, 𝛽1) = (1,1) 0.0722 (0.0037) 0.0666 (0.0035) 0.0730 (0.0037) 

(𝛽0, 𝛽1) = (1,3) 0.0658 (0.0035) 0.0618 (0.0034) 0.0654 (0.0035) 

n=50 (𝛽0, 𝛽1) = (0,1) 0.0586 (0.0033) 0.0590 (0.0033) 0.0604 (0.0034) 

(𝛽0, 𝛽1) = (1,1) 0.0632 (0.0034) 0.0606 (0.0034) 0.0632 (0.0034) 

(β0, β1) = (1,3) 0.0600 (0.0034) 0.0566 (0.0033) 0.0578 (0.0033) 

n=100 (𝛽0, 𝛽1) = (0,1) 0.0588 (0.0033) 0.0616 (0.0034) 0.0502 (0.0031) 

(𝛽0, 𝛽1) = (1,1) 0.0610 (0.0034) 0.0494 (0.0031) 0.0546 (0.0032) 

(𝛽0, 𝛽1) = (1,3) 0.0498 (0.0031) 0.0532 (0.0032) 0.0532 (0.0032) 

n=500 (𝛽0, 𝛽1) = (0,1) 0.0562 (0.0033) 0.0486 (0.0030) 0.0510 (0.0031) 

(𝛽0, 𝛽1) = (1,1) 0.0508 (0.0031) 0.0502 (0.0031) 0.0564 (0.0033) 

(𝛽0, 𝛽1) = (1,3) 0.0486 (0.0030) 0.0512 (0.0031) 0.0496 (0.0031) 

n=1000 (𝛽0, 𝛽1) = (0,1) 0.0476 (0.0030) 0.0512 (0.0031) 0.0514 (0.0031) 

(𝛽0, 𝛽1) = (1,1) 0.0508 (0.0031) 0.0530 (0.0032) 0.0490 (0.0031) 

(𝛽0, 𝛽1) = (1,3) 0.0538 (0.0032) 0.0524 (0.0032) 0.0482 (0.0030) 

*One half of test statistic is compared with 𝜒1
2. Each cell has value of the form estimated type I error (estimated S.E.). Red indicates 

significant difference from the nominal rate using estimated S.E. and blue for using conservative S.E. 
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Table 5.38 Empirical type I error rates for the functional model likelihood ratio test of the null 

hypothesis 𝝆 = 𝟎 using a nominal type I error rate of 𝜶 = 𝟎. 𝟏𝟎 

Sample Size Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.10 

(conservative S.E.=0.0071, nominal S.E.=0.0042) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 (𝛽0, 𝛽1) = (0,1) 0.1682 (0.0053) 0.1564 (0.0051) 0.1486 (0.0050) 

(𝛽0, 𝛽1) = (1,1) 0.1697 (0.0053) 0.1917 (0.0056) 0.1590 (0.0052) 

(𝛽0, 𝛽1) = (1,3) 0.1535 (0.0051) 0.1596 (0.0052) 0.1700 (0.0053) 

n=20 (𝛽0, 𝛽1) = (0,1) 0.1419 (0.0049) 0.1246 (0.0047) 0.1252 (0.0047) 

(𝛽0, 𝛽1) = (1,1) 0.1312 (0.0048) 0.1274 (0.0047) 0.1300 (0.0048) 

(𝛽0, 𝛽1) = (1,3) 0.1256 (0.0047) 0.1178 (0.0046) 0.1192 (0.0046) 

n=50 (𝛽0, 𝛽1) = (0,1) 0.1204 (0.0046) 0.1126 (0.0045) 0.1148 (0.0045) 

(𝛽0, 𝛽1) = (1,1) 0.1139 (0.0045) 0.1158 (0.0045) 0.1160 (0.0045) 

(β0, β1) = (1,3) 0.1162 (0.0045) 0.1126 (0.0045) 0.1100 (0.0044) 

n=100 (𝛽0, 𝛽1) = (0,1) 0.1110 (0.0044) 0.1104 (0.0044) 0.0968 (0.0042) 

(𝛽0, 𝛽1) = (1,1) 0.1188 (0.0046) 0.1024 (0.0043) 0.1046 (0.0043) 

(𝛽0, 𝛽1) = (1,3) 0.1032 (0.0043) 0.1022 (0.0043) 0.1026 (0.0043) 

n=500 (𝛽0, 𝛽1) = (0,1) 0.1080 (0.0044) 0.0998 (0.0042) 0.1002 (0.0042) 

(𝛽0, 𝛽1) = (1,1) 0.1018 (0.0043) 0.1030 (0.0043) 0.1034 (0.0043) 

(𝛽0, 𝛽1) = (1,3) 0.1010 (0.0043) 0.0992 (0.0042) 0.1014 (0.0043) 

n=1000 (𝛽0, 𝛽1) = (0,1) 0.1018 (0.0043) 0.0994 (0.0042) 0.1054 (0.0043) 

(𝛽0, 𝛽1) = (1,1) 0.0998 (0.0042) 0.1022 (0.0043) 0.0968 (0.0042) 

(𝛽0, 𝛽1) = (1,3) 0.0992 (0.0042) 0.1078 (0.0044) 0.0960 (0.0042) 

*One half of test statistic is compared with 𝜒1
2. Each cell has value of the form estimated type I error  (estimated S.E.). Red indicates 

significant difference from the nominal rate using estimated S.E. and blue for using conservative S.E. 

 

Tables 5.39-5.41 show estimated type I error rates and their three types of estimated 

standard errors for functional model score tests of the null hypothesis 𝐻0: (𝛽0, 𝛽1) =

(0,1) using various values of parameters. 
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Table 5.39 Empirical type I error rates for the functional model score test of the null hypothesis 

(𝜷𝟎, 𝜷𝟏) = (𝟎, 𝟏) using a nominal type I error rate of 𝜶 = 𝟎. 𝟎𝟏 

Sample Size Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.01 

(conservative S.E.=0.0071, nominal S.E.=0.0014) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 𝜌 = 0 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 

𝜌 = 0.5 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 

𝜌 = 0.9 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 

n=20 𝜌 = 0 0.0016 (0.0006) 0.0018 (0.0006) 0.0028 (0.0007) 

𝜌 = 0.5 0.0016 (0.0006) 0.0014 (0.0005) 0.0014 (0.0005) 

𝜌 = 0.9 0.0020 (0.0006) 0.0012 (0.0005) 0.0010 (0.0004) 

n=50 𝜌 = 0 0.0048 (0.0010) 0.0064 (0.0011) 0.0068 (0.0012) 

𝜌 = 0.5 0.0034 (0.0008) 0.0036 (0.0008) 0.0046 (0.0010) 

𝜌 = 0.9 0.0032 (0.0008) 0.0022 (0.0007) 0.0042 (0.0010) 

n=100 𝜌 = 0 0.0062 (0.0011) 0.0108 (0.0015) 0.0084 (0.0013) 

𝜌 = 0.5 0.0068 (0.0012) 0.0056 (0.0011) 0.0066 (0.0011) 

𝜌 = 0.9 0.0032 (0.0008) 0.0048 (0.0010) 0.0060 (0.0011) 

n=500 𝜌 = 0 0.0116 (0.0015) 0.0094 (0.0014) 0.0086 (0.0013) 

𝜌 = 0.5 0.0098 (0.0014) 0.0094 (0.0014) 0.0074 (0.0012) 

𝜌 = 0.9 0.0064 (0.0011) 0.0078 (0.0012) 0.0050 (0.0010) 

n=1000 𝜌 = 0 0.0088 (0.0013) 0.0090 (0.0013) 0.0108 (0.0015) 

𝜌 = 0.5 0.0078 (0.0012) 0.0098 (0.0014) 0.0098 (0.0014) 

𝜌 = 0.9 0.0086 (0.0013) 0.0080 (0.0013) 0.0088 (0.0013) 

*One half of test statistic is compared with 𝜒2
2. Each cell has value of the form estimated type I error  (estimated S.E.). Red indicates 

significant difference from the nominal rate using estimated S.E. and blue for using conservative S.E. 

 

Table 5.39 shows that sample size of 1000 is needed to make estimated type I error 

rates significantly different from the nominal error rate 0.01 when using estimated 

standard error and it seems that sample size of 10 is enough using conservative standard 

error. Tables 5.40 and 5.41 show that sample size of 1000 is required for estimated type I 

error rates to be close to the nominal error rate 0.05 when using estimated standard error 
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and sample size of 500 is needed using conservative standard error. Table 5.41 shows 

that  

 

Table 5.40 Empirical type I error rates for the functional model score test of the null hypothesis 

(𝜷𝟎, 𝜷𝟏) = (𝟎, 𝟏) using a nominal type I error rate of 𝜶 = 𝟎. 𝟎𝟓 

Sample Size Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.05 

(conservative S.E.=0.0071, nominal S.E.=0.0031) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 𝜌 = 0 0.0104 (0.0014) 0.0124 (0.0016) 0.0144 (0.0017) 

𝜌 = 0.5 0.0120 (0.0015) 0.0128 (0.0016) 0.0126 (0.0016) 

𝜌 = 0.9 0.0126 (0.0016) 0.0104 (0.0014) 0.0134 (0.0016) 

n=20 𝜌 = 0 0.0274 (0.0023) 0.0262 (0.0023) 0.0330 (0.0025) 

𝜌 = 0.5 0.0228 (0.0021) 0.0214 (0.0020) 0.0230 (0.0021) 

𝜌 = 0.9 0.0218 (0.0021) 0.0202 (0.0020) 0.0180 (0.0019) 

n=50 𝜌 = 0 0.0402 (0.0028) 0.0408 (0.0028) 0.0396 (0.0028) 

𝜌 = 0.5 0.0372 (0.0027) 0.0328 (0.0025) 0.0340 (0.0026) 

𝜌 = 0.9 0.0210 (0.0020) 0.0230 (0.0021) 0.0268 (0.0023) 

n=100 𝜌 = 0 0.0440 (0.0029) 0.0480 (0.0030) 0.0472 (0.0030) 

𝜌 = 0.5 0.0400 (0.0028) 0.0472 (0.0030) 0.0406 (0.0028) 

𝜌 = 0.9 0.0254 (0.0022) 0.0288 (0.0024) 0.0364 (0.0026) 

n=500 𝜌 = 0 0.0542 (0.0032) 0.0518 (0.0031) 0.0472 (0.0030) 

𝜌 = 0.5 0.0496 (0.0031) 0.0504 (0.0031) 0.0480 (0.0030) 

𝜌 = 0.9 0.0400 (0.0028) 0.0432 (0.0029) 0.0420 (0.0028) 

n=1000 𝜌 = 0 0.0510 (0.0031) 0.0536 (0.0032) 0.0496 (0.0031) 

𝜌 = 0.5 0.0506 (0.0031) 0.0524 (0.0032) 0.0540 (0.0032) 

𝜌 = 0.9 0.0464 (0.0030) 0.0470 (0.0030) 0.0446 (0.0029) 

*One half of test statistic is compared with 𝜒2
2. Each cell has value of the form estimated type I error (estimated S.E.). Red indicates 

significant difference from the nominal rate using estimated S.E. and blue for using conservative S.E. 
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Table 5.41 Empirical type I error rates for the functional model score test of the null hypothesis 

(𝜷𝟎, 𝜷𝟏) = (𝟎, 𝟏) using a nominal type I error rate of 𝜶 = 𝟎. 𝟏𝟎 

Sample Size Parameter Value 

(𝜎2, 𝜇𝑥) = (4,1) 

Type I Error 𝛼 = 0.10 

(conservative S.E.=0.0071, nominal S.E.=0.0042) 

𝜎𝑥
2 = 1 𝜎𝑥

2 = 4 𝜎𝑥
2 = 16 

n=10 𝜌 = 0 0.0608 (0.0034) 0.0578 (0.0033) 0.0510 (0.0031) 

𝜌 = 0.5 0.0542 (0.0032) 0.0516 (0.0031) 0.0506 (0.0031) 

𝜌 = 0.9 0.0556 (0.0032) 0.0502 (0.0031) 0.0472 (0.0030) 

n=20 𝜌 = 0 0.0814 (0.0039) 0.0780 (0.0038) 0.0890 (0.0040) 

𝜌 = 0.5 0.0632 (0.0034) 0.0618 (0.0034) 0.0660 (0.0035) 

𝜌 = 0.9 0.0562 (0.0033) 0.0510 (0.0031) 0.0508 (0.0031) 

n=50 𝜌 = 0 0.0904 (0.0041) 0.0934 (0.0041) 0.0914 (0.0041) 

𝜌 = 0.5 0.0820 (0.0039) 0.0800 (0.0038) 0.0802 (0.0038) 

𝜌 = 0.9 0.0580 (0.0033) 0.0550 (0.0032) 0.0644 (0.0035) 

n=100 𝜌 = 0 0.0910 (0.0041) 0.1074 (0.0044) 0.0950 (0.0041) 

𝜌 = 0.5 0.0910 (0.0041) 0.1004 (0.0043) 0.0934 (0.0041) 

𝜌 = 0.9 0.0636 (0.0035) 0.0680 (0.0036) 0.0774 (0.0038) 

n=500 𝜌 = 0 0.1036 (0.0043) 0.1048 (0.0043) 0.0978 (0.0042) 

𝜌 = 0.5 0.0976 (0.0042) 0.1030 (0.0043) 0.1016 (0.0043) 

𝜌 = 0.9 0.0954 (0.0042) 0.0910 (0.0041) 0.0886 (0.0040) 

n=1000 𝜌 = 0 0.1008 (0.0043) 0.1014 (0.0043) 0.0974 (0.0042) 

𝜌 = 0.5 0.1004 (0.0043) 0.1008 (0.0043) 0.0990 (0.0042) 

𝜌 = 0.9 0.0964 (0.0042) 0.0922 (0.0041) 0.0922 (0.0041) 

*One half of test statistic is compared with 𝜒2
2. Each cell has value of the form estimated type I error (estimated S.E.). Red indicates 

significant difference from the nominal rate using estimated S.E. and blue for using conservative S.E. 

 

From all the above tables in this section, we observe that the estimated type I error 

rate for our test statistics is affected by sample size, correlation and signal to noise ratio. 

The bias of the estimated type I error rate from the nominal error rate decreases as 

sample size or signal to noise ratio increases and increases as correlation increases. In 

general, the sample size needed to make the estimated type I error rates close to the 
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nominal is larger using estimated standard error than that using conservative standard 

error. 

5.4 Power of the Test Statistics 

We examine the empirical power of each test statistic for both structural and 

functional cases and gauge the effects of varying parameter values on of the empirical 

power. For testing the null hypothesis 𝜌 = 0, relationships between empirical power and 

the value of 𝜌 are studied for varying parameter values. However, when testing the null 

hypothesis (𝛽0, 𝛽1) = (𝑏0, 𝑏1), relationships between power and values of 𝛽0 and 𝛽0 are 

investigated by varying parameters using the following scheme. Fayes (1996) showed 

analytically for the structural model and demonstrated via simulation studies for the 

functional model, that power of his likelihood-based test statistics is minimized when 

𝛽0 = 𝑏0 − 𝜇𝑥(𝛽1 − 𝑏1). Simulation studies in this section are therefore performed under 

this “worst case” scenario, i.e., by setting the intercept parameters equal to 𝑏0 −

𝜇𝑥(𝛽1 − 𝑏1). 

Empirical power of score test statistic for testing 𝜌 = 0 is shown in Figure 5.6. In 

each simulation, 𝜎2 = 4 and the null hypothesis is 𝜌 = 0. Three pairs of (𝛽0, 𝛽1) are 

used: (0,1), (1,1), and (1,3). For each (𝛽0, 𝛽1), values of 𝜎𝑥
2 are 1, 4, and 16. 
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Figure 5.6 Empirical power for score test statistic 𝑻𝒔,𝑬𝑺,𝝆=𝟎 
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From Figure 5.6 graphs the empirical power curve for the score test statistic for 

testing we observe that change of 𝛽0 does not seem to change the power of the test 

statistic. Larger value of 𝜎𝑥
2  may have more power. As 𝛽1  increases, the difference 

between different values of 𝜎𝑥
2 becomes ignorable. Next, the power of LRT test statistic 

for testing 𝜌 = 0 is similarly shown in Figure 5.7. 

Comparing Figure 5.7 with Figure 5.6, we notice that they are similar with each 

other. The empirical power curve for LRT test statistic is very like that for score test 

statistic. Therefore, the properties are more or less the same. If 𝛽1 is increased, there is 

almost no difference among power curves with different values of 𝜎𝑥
2. From the first two 

plots, the empirical power curves are close to each other when signal to noise ratio is 

moderate to high, but very different from that with low signal to noise ratio. 
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Figure 5.7 Empirical power for LRT test statistic 𝑻𝒔,𝑳𝑹𝑻,𝝆=𝟎 
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Figure 5.8 Empirical power for score test statistic 𝑻𝒇,𝑬𝑺,𝝆=𝟎, n=200 

 

Figures 5.8 and 5.9 are empirical power curves for functional score test and LRT test 

statistics, respectively. As with the structural cases, these two sets of power curves look 
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similar to each other. Both seem to not vary greatly with the changes in parameter 

values. 

 

 

 

 
Figure 5.9 Empirical power for LRT test statistic 𝑻𝒇,𝑳𝑹𝑻,𝝆=𝟎, n=200 
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Empirical power curves the score test statistic in structural model 𝑇𝑠,𝐸𝑆,𝛽=𝑏 , are 

plotted in Figure 5.10. The null hypothesis tested is (𝛽0, 𝛽1) = (𝑏0, 𝑏1) = (0,1), and 

𝜎2 = 4  and 𝜇𝑥 = 1  are held constant in these simulated power curves. Within each 

column of graphs, values of 𝛽1 are 0.9, 1.0 and 1.1 from top to bottom, respectively. 

Recall that values of 𝛽0  equal 𝑏0 − 𝜇𝑥(𝛽1 − 𝑏1) = −(𝛽1 − 1)  in these simulations 

present the “worst-case” scenario for power. Values of correlation coefficients are 0, 0.5 

and 0.9 going left to right in each row of graphs. Empirical power of the LRT test 

statistic is poor when the correlation equals 0.9. The first column of graphs, wherein 

correlation equals zero, corroborates the finding of Abdul-Salam (1996) that power is 

minimized when 𝛽0 equals −(𝛽1 − 1), or 0.1, 0, and -0.1, respectively, as you descend 

from the top graph. When 𝛽1 equals 𝑏1, power seems not to depend on the variance ratio, 

except in the case of the strongest correlation. Otherwise, power is adversely affected by 

increases in the variance ratio. 

Empirical power curves in Figure 5.11 use the same parameter combinations as those 

in Figure 5.9 for the functional case score test statistic 𝑇𝑓,𝐸𝑆,𝛽=𝑏. 
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Figure 5.10 Empirical power for score test statistic 𝑻𝒔,𝑬𝑺,𝜷=𝒃, n=200 
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Figure 5.11 Empirical power for score test statistic 𝑻𝒇,𝑬𝑺,𝜷=𝒃, n=200 

 

Figure 5.11 illustrates how empirical power decreases as correlation increases for the 

functional score test statistic. Again, when correlation equals zero, power is minimized 

when  𝛽0 equals −(𝛽1 − 1), or 0.1, 0 and -0.1. Also, when the true value of 𝛽1 differs 

from 𝑏1, the power of the test statistic depends the variance ratio 𝜎𝑥
2/𝜎2. 

We investigate the relationship between power and 𝛽1 also for functional score test 

statistic next. Typical results are shown in Figure 5.12. 
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Figure 5.12 Empirical power for score test statistic 𝑻𝒇,𝑬𝑺,𝜷=𝒃, n=200 

 

The null hypothesis is (𝑏0, 𝑏1) = (0,10). The value 𝛽1 = 10  is chosen simply to 

provide a clearer picture of the anomalous loss of power in regions of the alternative 

hypothesis parameter space. The loss of power in these regions is exacerbated by 
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decreasing the signal to noise ratio. Although not shown in Figure 5.12, as values of 𝛽1 

tend toward zero, the anomalous region becomes closer to the hypothesized null value of 

𝛽1. In particular, when the null hypothesis of interest is (𝛽0, 𝛽1) = (0,1), the loss of 

power could become problematic. Abdul-Salam (1996) showed that the point in the 

alternative parameter space for which power of the LRT test statistic is minimized when 

no correlation is present occurs when 𝛽0 = 𝑏0 − 𝜇𝑥(𝛽1 − 𝑏1). 

In general, for all of the test statistics, increasing sample size or signal to noise ratio 

increases the empirical power. Stronger correlations among the data reduce empirical 

power and require larger sample sizes to achieve the results similar to those for more 

weakly correlated data. 
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6. CONCLUSION 

 

6.1 Conclusion 

In this work, we derived the likelihood based test statistics for several different 

scenarios. According to the properties of covariate 𝑥𝑡, we define two models. One model 

is called structural model with 𝑥𝑡  a random variable, and the other model is called 

functional model with 𝑥𝑡 fixed constants. For each of the two models, we set up two 

kinds of tests of hypotheses. The null hypotheses are 𝜌 = 0  and (𝛽0, 𝛽1) = (𝑏0, 𝑏1) 

respectively. And for each set of hypothesis, we calculate the maximum likelihood 

estimator and derive the likelihood ratio test statistic and score test statistic. 

After careful derivation, we have eight different test statistics and six sets of 

parameter estimators. For each set of estimators, the consistency problem is discussed. 

Both theoretical and simulation results show that these estimators are consistent. The 

bias of these estimators generally decreases as sample size increases. Correlation among 

data and low ratio of 𝜎𝑥
2 over 𝜎2 needs more samples to get the same level of bias. For 

the test statistics, the asymptotic distributions are derived and the corresponding 

simulation results are shown. The test statistics for testing null hypothesis 𝜌 = 0 are 

approximately distributed as a chi-square distribution with one degree of freedom. Those 

for testing null hypothesis (𝛽0, 𝛽1) = (𝑏0, 𝑏1) are distributed as a chi-square distribution 

with two degrees of freedom approximately. A-D GOF test and Q-Q plot is used to 

compare the distribution of test statistic with chi-square distribution. Small sample size 

is enough if correlation is weak and signal to noise ratio is large. 
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The power of these test statistics is also investigated. Simulation results show how 

the power curves change as one or several parameters change. For the four test statistics 

of testing 𝜌 = 0 , power seems not heavily depend on parameter (𝛽0, 𝛽1)  and the 

variance ratio especially for functional cases. The score test statistic and likelihood ratio 

test statistic behaves similar when both are from the same model and test the same null 

hypothesis. For the test statistics of testing the null hypothesis (𝛽0, 𝛽1) = (𝑏0, 𝑏1), the 

minimum value of power occurs when (𝛽0 − 𝑏0) + 𝜇𝑥(𝛽1 − 𝑏1) = 0 is satisfied. And if 

the true value of 𝛽1 is the same with 𝑏1, then power is stable with change of the variance 

ratio. If 𝛽1 is different from 𝑏1, the variance ratio has a great impact on power. Also, 

power is usually decreased as the correlation among data increases. When plotting power 

curve against 𝛽1, we find that there are two valleys in the power curve for test statistics 

of testing (𝛽0, 𝛽1) = (𝑏0, 𝑏1). This may cause some problem if the value of 𝛽1 is not 

very positive or very negative. However, for those with values much larger or smaller 

than zero, we still can get good power using the test statistics. Behaviors of the 

functional score test statistic and functional LRT test statistic are usually similar. 

According to all the work done, increasing sample size can help get better estimators 

and increase power. Once we have better estimators, the asymptotic behavior of the test 

statistics would get better. So is the power of the test statistics. Notice that, the signal to 

noise ratio is an important variable that affects large sample properties and power of the 

test statistics. The correlation among data is also an important variable that matters. 
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6.2 Future Work 

One of the extensions of this research would be to find a better adjustment for the 

LRT test statistic of testing (𝛽0, 𝛽1) = (𝑏0, 𝑏1) in functional case. Another one is to 

derive the results for multivariate case. Further, only AR(1) process is considered in this 

work. Other popular correlation structures can also be learned and the corresponding test 

statistics may be derived. 
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APPENDIX A 

DERIVATION OF STRUCTURAL LIKELIHOOD FUNCTION 

 

From the assumption when introducing the structural model, we know that for any 

𝑡 = 2,… , 𝑛 

𝑍 ≝ (𝑥𝑡−1, 𝑢𝑡−1, 𝑒𝑡−1)
𝑇~𝑁(𝜇, Σ), 

where 

𝜇 = (𝜇𝑥, 0,0)
𝑇, 

and 

Σ =

(

 
 

𝜎𝑥
2 0 0

0
𝜎2

1−𝜌2
0

0 0
𝜎2

1−𝜌2)

 
 

. 

Then after variable transformation, we have 

(
𝑋𝑡−1
𝑌𝑡−1

) = (
0
𝛽0
) + (

1 1 0
𝛽1 0 1

)𝑍~𝑁(𝜇1, Σ1), 

where 

𝜇1 = (
𝜇𝑥

𝛽0 + 𝛽1𝜇𝑥
), 

and 

Σ1 = (
𝜎𝑥
2 +

𝜎2

1−𝜌2
𝛽1𝜎𝑥

2

𝛽1𝜎𝑥
2 𝛽1

2𝜎𝑥
2 +

𝜎2

1−𝜌2

). 

Since the corresponding Jacobian coefficient is 1, then 

𝑓(𝑥𝑡−1, 𝑋𝑡−1, 𝑌𝑡−1) = 1 × 𝑓(𝑥𝑡−1, 𝑋𝑡−1 − 𝑥𝑡−1, 𝑌𝑡−1 − 𝑦𝑡−1). 
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Let 𝑍2 = (𝑥𝑡−1, 𝑋𝑡−1 − 𝑥𝑡−1, 𝑌𝑡−1 − 𝑦𝑡−1)
𝑇, we know that 

𝑔(𝑥𝑡−1|𝑋𝑡−1, 𝑌𝑡−1) =
𝑓(𝑥𝑡−1,𝑋𝑡−1,𝑌𝑡−1)

𝑓(𝑋𝑡−1,𝑌𝑡−1)
=

1

√(2𝜋)3|Σ|
𝑒𝑥𝑝(−

1

2
(𝑍2−𝜇)

𝑇Σ−1(𝑍2−𝜇))

1

√(2𝜋)2|Σ1|

𝑒𝑥𝑝(−
1

2
(𝑍1−𝜇1)𝑇Σ1

−1(𝑍1−𝜇1))
  

=
𝑒𝑥𝑝(−

1

2
{(𝑍2−𝜇)

𝑇Σ−1(𝑍2−𝜇)−(𝑍1−𝜇1)
𝑇Σ1

−1(𝑍1−𝜇1)})

√2𝜋𝜎𝑥
2(

𝜎2

1−𝜌2
)/((1+𝛽1

2)𝜎𝑥
2+

𝜎2

1−𝜌2
)

. 

Since 

(𝑍2 − 𝜇)
𝑇Σ−1(𝑍2 − 𝜇) =

(𝑥𝑡−1−𝜇𝑥)
2

𝜎𝑥
2 + (1 − 𝜌2)

(𝑋𝑡−1−𝑥𝑡−1)
2

𝜎2
+ (1 − 𝜌2)

(𝑌𝑡−1−𝛽0−𝛽1𝑥𝑡−1)
2

𝜎2
  

=
𝐴(𝑥𝑡−1−𝜇𝑥)

2+𝜎𝑥
2(𝑋𝑡−1−𝑥𝑡−1)

2+𝜎𝑥
2(𝑌𝑡−1−𝛽0−𝛽1𝑥𝑡−1)

2

𝜎𝑥
2𝐴

  

=
𝐷𝑥𝑡−1

2 −2{𝐴𝜇𝑥+𝜎𝑥
2[𝑋𝑡−1+𝛽1(𝑌𝑡−1−𝛽0)]}𝑥𝑡−1+{𝐴𝜇𝑥

2+𝜎𝑥
2[𝑋𝑡−1

2 +(𝑌𝑡−1−𝛽0)
2]}

𝜎𝑥
2𝐴

  

=
𝐷

𝜎𝑥
2𝐴
{𝑥𝑡−1 −

(𝐴𝜇𝑥+𝜎𝑥
2(𝑋𝑡−1+𝛽1(𝑌𝑡−1−𝛽0)))

𝐷
}

2

  

−
{𝐴𝜇𝑥+𝜎𝑥

2(𝑋𝑡−1+𝛽1(𝑌𝑡−1−𝛽0))}
2

𝜎𝑥
2𝐴𝐷

+
𝐴𝜇𝑥

2+𝜎𝑥
2(𝑋𝑡−1

2 +(𝑌𝑡−1−𝛽0)
2)

𝜎𝑥
2𝐴

  

and 

(𝑍1 − 𝜇1)
𝑇Σ1

−1(𝑍1 − 𝜇1) =
(𝛽1

2𝜎𝑥
2+𝐴)

𝐴𝐷
(𝑋𝑡−1 − 𝜇𝑥)

2 +
(𝜎𝑥

2+𝐴)

𝐴𝐷
[𝑌𝑡−1 − (𝛽0 + 𝛽1𝜇𝑥)]

2  

−
2𝛽1𝜎𝑥

2

𝐴𝐷
(𝑋𝑡−1 − 𝜇𝑥)[𝑌𝑡−1 − (𝛽0 + 𝛽1𝜇𝑥)]  

=
1

𝐴𝐷
𝜎𝑥
2(𝛽1𝑋𝑡−1 − (𝑌𝑡−1 − 𝛽0))

2
+

1

𝐷
(𝑋𝑡−1 − 𝜇𝑥)

2  

+
1

𝐷
(𝑌𝑡−1 − (𝛽0 + 𝛽1𝜇𝑥))

2
, 

then 

(𝑍2 − 𝜇)
𝑇Σ−1(𝑍2 − 𝜇) − (𝑍1 − 𝜇1)

𝑇Σ1
−1(𝑍1 − 𝜇1)  
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=
𝐷[𝑥𝑡−1−

𝐴𝜇𝑥+𝜎𝑥
2(𝑋𝑡−1+𝛽1(𝑌𝑡−1−𝛽0))

𝐷
]

2

𝜎𝑥
2𝐴

−
[𝐴𝜇𝑥+𝜎𝑥

2(𝑋𝑡−1+𝛽1(𝑌𝑡−1−𝛽0))]
2

𝜎𝑥
2𝐴𝐷

+
𝐴𝜇𝑥

2+𝜎𝑥
2(𝑋𝑡−1

2 +(𝑌𝑡−1−𝛽0)
2)

𝜎𝑥
2𝐴

  

−
1

𝐴
{
𝜎𝑥
2(𝛽1𝑋𝑡−1−(𝑌𝑡−1−𝛽0))

2

𝐷
+ 𝐴

((𝑋𝑡−1−𝜇𝑥)
2+(𝑌𝑡−1−(𝛽0+𝛽1𝜇𝑥))

2
)

𝐷
}  

=
𝐷

𝜎𝑥
2𝐴
{𝑥𝑡−1 −

𝐴𝜇𝑥+𝜎𝑥
2(𝑋𝑡−1+𝛽1(𝑌𝑡−1−𝛽0))

𝐷
}
2

, 

where 𝐴 =
𝜎2

1−𝜌2
, 𝐷 = (1 + 𝛽1

2)𝜎𝑥
2 + 𝐴. 

By substituting the above equation into 𝑔(𝑥𝑡−1|𝑋𝑡−1, 𝑌𝑡−1), we have 

𝑔(𝑥𝑡−1|𝑋𝑡−1, 𝑌𝑡−1) =

𝑒𝑥𝑝{−
1

2𝜎𝑥
2𝐴/𝐷

{𝑥𝑡−1−
𝐴𝜇𝑥+𝜎𝑥

2(𝑋𝑡−1+𝛽1(𝑌𝑡−1−𝛽0))

𝐷
}

2

}

√2𝜋𝜎𝑥
2𝐴/𝐷

  

which follows a normal density function. 

Therefore, the conditional distribution of 𝑥𝑡−1 given (𝑋𝑡−1, 𝑌𝑡−1) is 

𝑥𝑡−1|(𝑋𝑡−1, 𝑌𝑡−1)
𝑇~𝑁 (

𝐴𝜇𝑥+𝜎𝑥
2(𝑋𝑡−1+𝛽1(𝑌𝑡−1−𝛽0))

𝐷
,
𝜎𝑥
2𝐴

𝐷
). 
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APPENDIX B 

DERIVATIVES AND INFORMATION MATRIX IN STRUCTURAL CASE 

 

The first derivatives of the structural case log-likelihood function taken with respect 

to (𝜇𝑥, 𝜎𝑥
2, 𝜎2, 𝛽0, 𝛽1, 𝜌) are 

𝜕ℓ

𝜕𝜇𝑥
=

1

2|Σ|
{2𝜎2 (1 − 𝜌

𝐴

𝐷
)∑ [(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)]

𝑛
𝑡=2 }, 

𝜕ℓ

𝜕𝜎𝑥
2 = −(𝑛 − 1)

(1+𝛽1
2)𝜎2

2|Σ|
(1 + 𝜌2 (

𝐴

𝐷
)
2

) − 𝜌
𝜎2𝐴

|Σ|𝐷2
∑ {((𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2))𝐺𝑡−1}
𝑛
𝑡=2   

+
1

2|Σ|2
𝜎4 (1 + 𝜌2 (

𝐴

𝐷
)
2

)∑ {((𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2))
2
}𝑛

𝑡=2 , 

𝜕ℓ

𝜕𝜎2
= −(𝑛 − 1)

𝐶(1+
𝜌2𝐴

𝐷
+
𝜌2𝐴𝐶

𝐷2
)+2𝜎2

2|Σ|
+
𝜎2(𝜌2

𝐴𝐶2

𝐷2
+𝜎2)

2|Σ|2(1+𝛽1
2)
∑ {((𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2))

2
}𝑛

𝑡=2   

+
1

2(1+𝛽1
2)𝜎4

∑ {𝛽1(𝑋𝑡 − 𝜇1) − (𝑌𝑡 − 𝜇2)}
2𝑛

𝑡=2 +
𝜌𝐴𝜎𝑥

2 ∑ {(𝑋𝑡−𝜇1)+𝛽1(𝑌𝑡−𝜇2)}𝐺𝑡−1
𝑛
𝑡=2

|Σ|𝐷2
, 

𝜕ℓ

𝜕𝛽0
=

𝛽1𝜎
2

(1+𝛽1
2)|Σ|

(1 − 𝜌
𝐴

𝐷
)∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}

𝑛
𝑡=2   

−
(1−𝜌)

(1+𝛽1
2)𝜎2

∑ {𝛽1(𝑋𝑡 − 𝜇1) − (𝑌𝑡 − 𝜇2)}
𝑛
𝑡=2 , 

𝜕ℓ

𝜕𝛽1
= −(𝑛 − 1)

1

|Σ|
𝛽1𝜎𝑥

2𝜎2 (1 + 𝜌2 (
𝐴

𝐷
)
2

) +
𝛽1

(1+𝛽1
2)
2
𝜎2
∑ {𝛽1(𝑋𝑡 − 𝜇1) − (𝑌𝑡 − 𝜇2)}

2𝑛
𝑡=2   

+
𝛽1𝜎

2

(1+𝛽1
2)
2
|Σ|2

{|Σ| + 𝐶𝜎2 (1 + 𝜌2 (
𝐴

𝐷
)
2

)} ∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}
2𝑛

𝑡=2   

−
1

(1+𝛽1
2)𝜎2

∑ {𝛽1(𝑋𝑡 − 𝜇1) − (𝑌𝑡 − 𝜇2)}(𝑋𝑡 − 𝜌𝑋𝑡−1)
𝑛
𝑡=2   

−
𝜎2 ∑ {(𝑋𝑡−𝜇1)+𝛽1(𝑌𝑡−𝜇2)}{(𝑌𝑡−𝛽0)−𝜌

𝐴

𝐷
(𝑌𝑡−1−𝛽0)+2𝛽1𝜌

𝐴

𝐷

(𝐴𝜇𝑥+𝜎𝑥
2𝐸𝑡−1)

𝐷
−2𝛽1𝜇𝑥}

𝑛
𝑡=2

(1+𝛽1
2)|Σ|

, 
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𝜕ℓ

𝜕𝜌
= −(𝑛 − 1)

1

|Σ|
𝜌
𝐴2𝐶(𝐶+𝜎2)

𝐷2
+

1

1+𝛽1
2 𝜎

2𝜌
𝐴2𝐶(𝐶+𝜎2)

𝐷2|Σ|2
∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}

2𝑛
𝑡=2   

+
1

1+𝛽1
2 𝜎

2 (
𝐴

𝐷
+

2𝜌2

(1−𝜌2)

𝐴𝐶

𝐷2
)
1

|Σ|
∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}𝐺𝑡−1
𝑛
𝑡=2   

+
1

(1+𝛽1
2)𝜎2

∑ {𝛽1(𝑋𝑡 − 𝜇1) − (𝑌𝑡 − 𝜇2)}𝐹𝑡−1
𝑛
𝑡=2 . 

Therefore, taking the derivatives again of 
𝜕ℓ

𝜕𝜇𝑥
, we have second order partial derivatives 

shown below 

𝜕2ℓ

𝜕𝜇𝑥
2 = −(𝑛 − 1)

𝜎2

|Σ|
(1 + 𝛽1

2) (1 − 𝜌
𝐴

𝐷
)
2

, 

𝜕2ℓ

𝜕𝜇𝑥𝜕𝜎𝑥
2 =

(1+𝛽1
2)𝜎2{𝜌

𝐴

𝐷2
−
𝜎2

|Σ|
(1+𝜌2(

𝐴

𝐷
)
2
)(1−𝜌

𝐴

𝐷
)}

|Σ|
∑ {𝐸𝑡 − 𝜌

𝐴

𝐷
𝐸𝑡−1 − (1 + 𝛽1

2) (1 −
𝜌𝐴

𝐷
)𝜇𝑥}

𝑛
𝑡=2   

+(1 + 𝛽1
2)

𝜎2

|Σ|
(1 − 𝜌

𝐴

𝐷
) 𝜌

𝐴

𝐷2
∑ (𝐸𝑡−1 − (1 + 𝛽1

2)𝜇𝑥)
𝑛
𝑡=2 , 

𝜕2ℓ

𝜕𝜇𝑥𝜕𝜎2
= −

{
𝜎2

|Σ|
(𝜌2

𝐴𝐶2

𝐷2
+𝜎2)(1−𝜌

𝐴

𝐷
)+𝜌

𝐴𝐶

𝐷2
}

|Σ|
∑ {𝐸𝑡 − 𝜌

𝐴

𝐷
𝐸𝑡−1 − (1 + 𝛽1

2) (1 − 𝜌
𝐴

𝐷
) 𝜇𝑥}

𝑛
𝑡=2   

−
1

|Σ|
𝜌
𝐴𝐶

𝐷2
(1 − 𝜌

𝐴

𝐷
)∑ {𝐸𝑡−1 − (1 + 𝛽1

2)𝜇𝑥}
𝑛
𝑡=2 , 

𝜕2ℓ

𝜕𝜇𝑥𝜕𝛽0
= −(𝑛 − 1)𝛽1

𝜎2

|Σ|
(1 − 𝜌

𝐴

𝐷
)
2

, 

𝜕2ℓ

𝜕𝜇𝑥𝜕𝛽1
= 2

𝛽1𝜎𝑥
2𝜎2{𝜌

𝐴

𝐷2
−
𝜎2

|Σ|
(1+𝜌2(

𝐴

𝐷
)
2
)(1−𝜌

𝐴

𝐷
)}

|Σ|
∑ {𝐸𝑡 − 𝜌

𝐴

𝐷
𝐸𝑡−1 − (1 + 𝛽1

2) (1 − 𝜌
𝐴

𝐷
) 𝜇𝑥}

𝑛
𝑡=2   

+
𝜎2(1−𝜌

𝐴

𝐷
)∑ {(𝑌𝑡−𝛽0)−𝜌

𝐴

𝐷
(𝑌𝑡−1−𝛽0)+2

𝛽1𝜎𝑥
2𝜌𝐴

𝐷2
𝐸𝑡−1−2𝛽1[1−𝜌(

𝐴

𝐷
)
2
]𝜇𝑥}

𝑛
𝑡=2

|Σ|
, 

𝜕2ℓ

𝜕𝜇𝑥𝜕𝜌
=

𝜎2

|Σ|

𝐴{−
2𝜌𝐶

|Σ|
(𝐶+𝜎2)

𝐴

𝐷
(1−

𝜌𝐴

𝐷
)−(1+

2𝜌2

1−𝜌2
𝐶

𝐷
)}

𝐷
∑ {𝐸𝑡 −

𝜌𝐴

𝐷
𝐸𝑡−1 − (1 + 𝛽1

2) (1 −
𝜌𝐴

𝐷
) 𝜇𝑥}

𝑛
𝑡=2   

−
𝜎2

|Σ|

𝐴

𝐷
(1 − 𝜌

𝐴

𝐷
) (1 +

2𝜌2

1−𝜌2
𝐶

𝐷
)∑ (𝐸𝑡−1 − (1 + 𝛽1

2)𝜇𝑥)
𝑛
𝑡=2 . 
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Taking derivatives of 
𝜕ℓ

𝜕𝜎𝑥
2, we have 

𝜕2ℓ

𝜕(𝜎𝑥
2)
2 = (𝑛 − 1)

1

2|Σ|2
(1 + 𝛽1

2)2𝜎2 {𝜎2 (1 + 𝜌2 (
𝐴

𝐷
)
2

)
2

+ 2|Σ|𝜌2
𝐴2

𝐷3
}  

−
(1+𝛽1

2)𝜎4{𝜎2(1+𝜌2(
𝐴

𝐷
)
2
)
2

+|Σ|𝜌2
𝐴2

𝐷3
}

|Σ|3
∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}

2𝑛
𝑡=2   

+2
(1+𝛽1

2)𝜎4𝜌
𝐴

𝐷2
{1+𝜌2(

𝐴

𝐷
)
2
+
1

𝐷

|Σ|

𝜎2
}

|Σ|2
∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}𝐺𝑡−1
𝑛
𝑡=2   

−(1 + 𝛽1
2)𝜎2𝜌2

𝐴2

𝐷4
1

|Σ|
∑ 𝐺𝑡−1

2𝑛
𝑡=2 , 

𝜕2ℓ

𝜕𝜎𝑥
2𝜕𝜎2

= (𝑛 − 1)(1 + 𝛽1
2)

1

2|Σ|
{
𝜎2

|Σ|
(1 + 𝜌2 (

𝐴

𝐷
)
2

) (𝜌2
𝐴𝐶2

𝐷2
+ 𝜎2) − 2𝜌2 (

𝐴

𝐷
)
2 𝐶

𝐷
}  

−
𝜎4{𝐶(1+𝜌2

𝐴𝐶2

𝐷3
)+𝜎2(1+𝜌2(

𝐴

𝐷
)
3
)}

|Σ|3
∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}

2𝑛
𝑡=2   

+2
𝜌𝜎2

𝐴

𝐷2
(
𝐴

𝐷
𝜎2−

𝐶2

𝐷
)

|Σ|2
∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}𝐺𝑡−1
𝑛
𝑡=2 +

𝜌2𝐴2𝐶

|Σ|𝐷4
∑ 𝐺𝑡−1

2𝑛
𝑡=2 , 

𝜕2ℓ

𝜕𝜎𝑥
2𝜕𝛽0

=
𝜎2

|Σ|
𝛽1 [𝜌

𝐴

𝐷2
−

𝜎2

|Σ|
(1 + 𝜌2 (

𝐴

𝐷
)
2

) (1 − 𝜌
𝐴

𝐷
)]∑ ((𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2))

𝑛
𝑡=2   

+
𝜎2

|Σ|
𝛽1𝜌

𝐴

𝐷2
(1 − 𝜌

𝐴

𝐷
)∑ 𝐺𝑡−1

𝑛
𝑡=2 , 

𝜕2ℓ

𝜕𝜎𝑥
2𝜕𝛽1

= (𝑛 − 1)𝛽1
𝜎4

|Σ|2
{𝜌2

𝐴𝐶2

𝐷2
(2

𝐴

𝐷
− 1 + 𝜌2 (

𝐴

𝐷
)
2

) − 𝜎2 (1 + 𝜌2 (
𝐴

𝐷
)
2

− 2𝜌2 (
𝐴

𝐷
)
2 𝐶

𝐷
)}  

−2𝛽1𝜎𝑥
2 𝜎6

|Σ|3
{(1 + 𝜌2 (

𝐴

𝐷
)
2

)
2

+ 𝜌2
𝐴2

𝐷3

|Σ|

𝜎2
}∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}

2𝑛
𝑡=2   

+2𝛽1𝜎𝑥
2𝜌

𝐴

𝐷2
𝜎4

|Σ|2
{1 + 𝜌2 (

𝐴

𝐷
)
2

+ 2
|Σ|

𝜎2
1

𝐷
}∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}𝐺𝑡−1

𝑛
𝑡=2   

+
𝜎4{1+𝜌2(

𝐴

𝐷
)
2
}∑ {(𝑋𝑡−𝜇1)+𝛽1(𝑌𝑡−𝜇2)}{𝜌𝐴

(𝑌𝑡−1−𝛽0)𝐷−2𝛽1(𝐴𝜇𝑥+𝜎𝑥
2𝐸𝑡−1)

𝐷2
+(𝑌𝑡−𝛽0)−2𝛽1𝜇𝑥}

𝑛
𝑡=2

|Σ|2
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−
1

|Σ|
𝜎2𝜌

𝐴

𝐷2
∑ {𝜌𝐴

(𝑌𝑡−1−𝛽0)𝐷−2𝛽1(𝐴𝜇𝑥+𝜎𝑥
2𝐸𝑡−1)

𝐷2
+ (𝑌𝑡 − 𝛽0) − 2𝛽1𝜇𝑥}𝐺𝑡−1

𝑛
𝑡=2   

−
1

|Σ|
𝜎2𝜌

𝐴

𝐷2
∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}{(𝑌𝑡−1 − 𝛽0) − 2𝛽1𝜇𝑥}
𝑛
𝑡=2 , 

𝜕2ℓ

𝜕𝜎𝑥
2𝜕𝜌

= (𝑛 − 1)(1 + 𝛽1
2)𝜌

𝐴2

𝐷2
𝜎2

|Σ|2
{𝐶(𝐶 + 𝜎2) (1 + 𝜌2 (

𝐴

𝐷
)
2

) − |Σ| (1 +
2𝜌2

1−𝜌2
𝐶

𝐷
)}  

+
𝜌
𝐴2

𝐷2
𝜎4{−2𝐶(𝐶+𝜎2)(1+𝜌2(

𝐴

𝐷
)
2
)+|Σ|(1+

2𝜌2

1−𝜌2
𝐶

𝐷
)}

|Σ|3
∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}

2𝑛
𝑡=2   

+

𝐴𝜎2

𝐷
{
𝜌2𝐴2𝜎2

𝐷2
−{
2𝜌2𝐴𝐶2

𝐷2
+(

𝜌2𝐴𝐶

𝐷2
+1)𝜎2}(

𝐶

𝐷
+1)−

𝜎4

𝐷
−
4𝜌4𝐴3𝐶2

𝐷4
}∑ {(𝑋𝑡−𝜇1)+𝛽1(𝑌𝑡−𝜇2)}𝐺𝑡−1

𝑛
𝑡=2

|Σ|2
  

+
𝜎2

|Σ|
𝜌
𝐴

𝐷2
(
𝐴

𝐷
+

2𝜌2

(1−𝜌2)

𝐴𝐶

𝐷2
)∑ 𝐺𝑡−1

2𝑛
𝑡=2 . 

Similarly, we have other second order partial derivatives with respect to 𝜎2 as 

𝜕2ℓ

𝜕(𝜎2)2
= (𝑛 − 1)

1

2|Σ|2
{𝐶 (1 + 𝜌2

𝐴

𝐷
+ 𝜌2

𝐴𝐶

𝐷2
) + 2𝜎2}

2

−
1

|Σ|
(𝑛 − 1) (

𝜌2

1−𝜌2
𝐶3

𝐷3
+ 1)  

−
1

1+𝛽1
2

1

𝜎6
∑ {𝛽1(𝑋𝑡 − 𝜇1) − (𝑌𝑡 − 𝜇2)}

2𝑛
𝑡=2 −

1

|Σ|
𝜎𝑥
2 𝜌2

1−𝜌2
𝐴𝐶

𝐷4
∑ 𝐺𝑡−1

2𝑛
𝑡=2   

−
1

|Σ|2
1

1+𝛽1
2 {
𝜎2

|Σ|
(𝜌2

𝐴𝐶2

𝐷2
+ 𝜎2)

2

+ 𝜌2
𝐴2𝐶2

𝐷3
}∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}

2𝑛
𝑡=2   

−
1

|Σ|

2𝜌𝜎𝑥
2𝐴

𝐷2
{

1

1−𝜌2
1

𝐷
+

1

|Σ|
(𝜌2

𝐴𝐶2

𝐷2
+ 𝜎2)}∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}𝐺𝑡−1

𝑛
𝑡=2 , 

𝜕2ℓ

𝜕𝜎2𝜕𝛽0
=

1

|Σ|
(1 − 𝜌) [𝜎𝑥

2 (
1

𝜎2
+

𝜌2

1−𝜌2
1

𝐷
) +

1

1+𝛽1
2]∑ (𝛽1(𝑋𝑡 − 𝜇1) − (𝑌𝑡 − 𝜇2))

𝑛
𝑡=2   

−
𝛽1

1+𝛽1
2

𝜎2

|Σ|2
{(𝜌2

𝐴𝐶2

𝐷2
+ 𝜎2) (1 − 𝜌

𝐴

𝐷
) +

|Σ|

𝜎2
𝜌𝐴𝐶

𝐷2
}∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}

𝑛
𝑡=2   

−
1

|Σ|
𝜌𝛽1𝜎𝑥

2 𝐴

𝐷2
(1 − 𝜌

𝐴

𝐷
)∑ 𝐺𝑡−1

𝑛
𝑡=2   

𝜕2ℓ

𝜕𝜎2𝜕𝛽1
= (𝑛 − 1)𝛽1𝜎𝑥

2 𝜎2

|Σ|2
{(1 + 𝜌2 (

𝐴

𝐷
)
2

) [
|Σ|

𝜎2
+ (𝜌2

𝐴𝐶2

𝐷2
+ 𝜎2)] −

|Σ|

𝜎2
𝜌2

𝐴2

𝐷2
(1 + 2

𝐶

𝐷
)}  

−
𝛽1

(1+𝛽1
2)
2

1

𝜎4
∑ {𝛽1(𝑋𝑡 − 𝜇1) − (𝑌𝑡 − 𝜇2)}

2𝑛
𝑡=2   
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+
𝛽1{

2𝜌2𝐴2𝐶2

𝐷3
|Σ|

𝜎2
−(

𝜌2𝐴𝐶2

𝐷2
+𝜎2){

|Σ|

𝜎2
−2𝐶(1+𝜌2(

𝐴

𝐷
)
2
)}}

(1+𝛽1
2)
2

𝜎4

|Σ|3
∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}

2𝑛
𝑡=2   

−2
𝐴

𝐷2
𝜌𝛽1𝜎𝑥

4

|Σ|2
{2

|Σ|

𝐷
+ 𝜎2 (1 + 𝜌2 (

𝐴

𝐷
)
2

)} ∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}𝐺𝑡−1
𝑛
𝑡=2   

+
1

1+𝛽1
2

1

𝜎4
∑ {𝛽1(𝑋𝑡 − 𝜇1) − (𝑌𝑡 − 𝜇2)}(𝑋𝑡 − 𝜌𝑋𝑡−1)
𝑛
𝑡=2   

+
𝜎2

|Σ|2

(
𝜌2𝐴𝐶2

𝐷2
+𝜎2)∑ {(𝑋𝑡−𝜇1)+𝛽1(𝑌𝑡−𝜇2)}{

𝜌𝐴[(𝑌𝑡−1−𝛽0)𝐷−2𝛽1(𝐴𝜇𝑥+𝜎𝑥
2𝐸𝑡−1)]

𝐷2
+𝑌𝑡−𝛽0−2𝛽1𝜇𝑥}

𝑛
𝑡=2

1+𝛽1
2   

+
1

|Σ|
𝜌𝜎𝑥

2 𝐴

𝐷2
∑ {𝜌𝐴

(𝑌𝑡−1−𝛽0)𝐷−2𝛽1(𝐴𝜇𝑥+𝜎𝑥
2𝐸𝑡−1)

𝐷2
+ (𝑌𝑡 − 𝛽0) − 2𝛽1𝜇𝑥}𝐺𝑡−1

𝑛
𝑡=2   

+
1

|Σ|
𝜌𝜎𝑥

2 𝐴

𝐷2
∑ ((𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2))((𝑌𝑡−1 − 𝛽0) − 2𝛽1𝜇𝑥)
𝑛
𝑡=2 , 

𝜕2ℓ

𝜕𝜎2𝜕𝜌
= (𝑛 − 1)𝜌

𝐴𝐶

𝐷

1

|Σ|
{

1

1−𝜌2

(𝐶+𝜎2)

𝐷
+ 2

𝜌2

1−𝜌2
𝐴𝐶

𝐷2
− (1 +

𝐶

𝐷
) + (𝜌2

𝐴𝐶2

𝐷2
+ 𝜎2)

1

|Σ|

𝐴(𝐶+𝜎2)

𝐷
}  

+𝜌
𝐴𝐶

𝐷2
𝜎2

|Σ|2

{𝐶(1+
𝜌2

1−𝜌2
𝐷−2𝐴

𝐷
)−2

1

|Σ|
(𝐶+𝜎2)𝐴(𝜌2

𝐴𝐶2

𝐷2
+𝜎2)}

1+𝛽1
2 ∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}

2𝑛
𝑡=2   

+

𝐴

𝐷
{
𝐶2

𝐷
𝜎2−

2𝜌2𝐴2𝐶(𝐷+𝐶)

𝐷3
𝜎2−

2𝜌2𝐴2𝐶2

𝐷2
|Σ|

𝜎2
−
𝐴

𝐷
𝜎4}

(1+𝛽1
2)|Σ|2

∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}𝐺𝑡−1
𝑛
𝑡=2   

−
1

|Σ|
[𝜎𝑥

2 (
1

𝜎2
+

𝜌2

1−𝜌2
1

𝐷
) +

1

1+𝛽1
2]∑ (𝛽1(𝑋𝑡 − 𝜇1) − (𝑌𝑡 − 𝜇2))𝐹𝑡−1

𝑛
𝑡=2   

−
1

|Σ|
𝜌𝜎𝑥

2 𝐴

𝐷2
(
𝐴

𝐷
+

2𝜌2

(1−𝜌2)

𝐴𝐶

𝐷2
)∑ 𝐺𝑡−1

2𝑛
𝑡=2 . 

Other second order partial derivatives are 

𝜕2ℓ

𝜕(𝛽0)2
= −

1

|Σ|
(𝑛 − 1) {

1

1+𝛽1
2

|Σ|

𝜎2
(1 − 𝜌)2 +

𝛽1
2

1+𝛽1
2 𝜎

2 (1 − 𝜌
𝐴

𝐷
)
2

}  

𝜕2ℓ

𝜕𝛽0𝜕𝛽1
= 2

𝛽1

(1+𝛽1
2)
2

(1−𝜌)

𝜎2
∑ {𝛽1(𝑋𝑡 − 𝜇1) − (𝑌𝑡 − 𝜇2)}
𝑛
𝑡=2 −

1

1+𝛽1
2

(1−𝜌)

𝜎2
∑ (𝑋𝑡 − 𝜌𝑋𝑡−1)
𝑛
𝑡=2   

+
𝜎4{

|Σ|

𝜎2
[(1−𝛽1

2)(1−𝜌
𝐴

𝐷
)+2𝛽1

2𝜌
𝐴𝐶

𝐷2
]−2𝛽1

2𝐶(1+𝜌2(
𝐴

𝐷
)
2
)(1−𝜌

𝐴

𝐷
)}∑ {(𝑋𝑡−𝜇1)+𝛽1(𝑌𝑡−𝜇2)}

𝑛
𝑡=2

(1+𝛽1
2)
2
|Σ|2
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+
𝜎2

|Σ|

𝛽1

1+𝛽1
2 (1 − 𝜌

𝐴

𝐷
)∑ {

𝜌𝐴[(𝑌𝑡−1−𝛽0)𝐷−2𝛽1(𝐴𝜇𝑥+𝜎𝑥
2𝐸𝑡−1)]

𝐷2
+ 𝑌𝑡 − 𝛽0 − 2𝛽1𝜇𝑥}

𝑛
𝑡=2 , 

𝜕2ℓ

𝜕𝛽0𝜕𝜌
= −

𝛽1

1+𝛽1
2

𝐴

𝐷

{2𝜎2
𝜌𝐴𝐶(𝐶+𝜎2)(1−𝜌

𝐴
𝐷
)

𝐷
+𝜎2|Σ|+2𝜌2

𝐴𝐶

𝐷
|Σ|}

|Σ|2
∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}
𝑛
𝑡=2   

+(1 − 𝜌)
1

1+𝛽1
2

1

𝜎2
∑ 𝐹𝑡−1
𝑛
𝑡=2 +

1

1+𝛽1
2

1

𝜎2
∑ {𝛽1(𝑋𝑡 − 𝜇1) − (𝑌𝑡 − 𝜇2)}
𝑛
𝑡=2   

−
1

|Σ|

𝛽1

1+𝛽1
2 𝜎

2 (
𝐴

𝐷
+

2𝜌2

(1−𝜌2)

𝐴𝐶

𝐷2
) (1 − 𝜌

𝐴

𝐷
)∑ 𝐺𝑡−1

𝑛
𝑡=2 , 

𝜕2ℓ

𝜕(𝛽1)2
= (𝑛 − 1)𝜎𝑥

2𝜎2
1

|Σ|
{
1

|Σ|
2𝛽1

2𝜎𝑥
2𝜎2 (1 + 𝜌2 (

𝐴

𝐷
)
2

)
2

− (1 + 𝜌2 (
𝐴

𝐷
)
2

− 4𝛽1
2𝜎𝑥

2𝜌2
𝐴2

𝐷3
)}  

+
(1−3𝛽1

2)

(1+𝛽1
2)
3
𝜎2
∑ (𝛽1(𝑋𝑡 − 𝜇1) − (𝑌𝑡 − 𝜇2))

2𝑛
𝑡=2 −

1

1+𝛽1
2

1

𝜎2
∑ (𝑋𝑡 − 𝜌𝑋𝑡−1)

2𝑛
𝑡=2   

+

𝜎4{(1−3𝛽1
2){𝐶(1+𝜌2(

𝐴

𝐷
)
2
)+

|Σ|

𝜎2
}−4𝛽1

2𝐶2{
𝜎2

|Σ|
(1+𝜌2(

𝐴

𝐷
)
2
)
2

+𝜌2
𝐴2

𝐷3
}}∑ {((𝑋𝑡−𝜇1)+𝛽1(𝑌𝑡−𝜇2))

2
}𝑛

𝑡=2

(1+𝛽1
2)
3
|Σ|2

  

+4𝛽1
1

(1+𝛽1
2)
2
𝜎2
∑ {𝛽1(𝑋𝑡 − 𝜇1) − (𝑌𝑡 − 𝜇2)}(𝑋𝑡 − 𝜌𝑋𝑡−1)
𝑛
𝑡=2   

+
4𝛽1∑ {(𝑋𝑡−𝜇1)+𝛽1(𝑌𝑡−𝜇2)}{

𝜌𝐴[(𝑌𝑡−1−𝛽0)𝐷−2𝛽1(𝐴𝜇𝑥+𝜎𝑥
2𝐸𝑡−1)]

𝐷2
+𝑌𝑡−𝛽0−2𝛽1𝜇𝑥}

𝑛
𝑡=2

(1+𝛽1
2)
2
|Σ|𝜎−2{

𝜎2

|Σ|
𝐶[1+𝜌2(

𝐴

𝐷
)
2
]+1}

−1   

−
1

1+𝛽1
2

𝜎2

|Σ|
∑ {

𝜌𝐴[(𝑌𝑡−1−𝛽0)𝐷−2𝛽1(𝐴𝜇𝑥+𝜎𝑥
2𝐸𝑡−1)]

𝐷2
+ 𝑌𝑡 − 𝛽0 − 2𝛽1𝜇𝑥}

2
𝑛
𝑡=2   

−2
𝜎2 ∑ {(𝑋𝑡−𝜇1)+𝛽1(𝑌𝑡−𝜇2)}{(1−

4𝛽1
2𝜎𝑥
2

𝐷
)
𝜌𝐴(𝐴𝜇𝑥+𝜎𝑥

2𝐸𝑡−1)

𝐷2
+
2𝜌𝛽1𝜎𝑥

2𝐴(𝑌𝑡−1−𝛽0)

𝐷2
−𝜇𝑥}

𝑛
𝑡=2

(1+𝛽1
2)|Σ|

, 

𝜕2ℓ

𝜕𝛽1𝜕𝜌
= 2(𝑛 − 1)𝜌𝛽1𝜎𝑥

2 {
1

|Σ|2
𝜎2 (1 + 𝜌2 (

𝐴

𝐷
)
2

) 𝐶(𝐶 + 𝜎2)
𝐴2

𝐷2
−

1

|Σ|
𝐴2 (2

𝐴𝐶

𝐷3
+ 𝜎2

𝐷−2𝐶

𝐷3
)}  

+
2𝜌𝛽1𝐴

2𝜎2𝜎𝑥
4{−2

𝜎2

|Σ|
(1+𝜌2(

𝐴

𝐷
)
2
)
(𝐶+𝜎2)

𝐷2
+
𝐷−2(𝐶+𝜎2)

𝐷3
}

|Σ|2
∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}

2𝑛
𝑡=2   
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−2𝛽1
1

𝜎2
1

(1+𝛽1
2)
2∑ (𝛽1(𝑋𝑡 − 𝜇1) − (𝑌𝑡 − 𝜇2))𝐹𝑡−1

𝑛
𝑡=2   

−2
𝛽1𝜎

4𝐴

𝐷
{
|Σ|

𝜎2
(1+

𝐶

𝐷
+

4𝜌2

(1−𝜌2)

𝐶2

𝐷2
)+𝐶(1+𝜌2(

𝐴

𝐷
)
2
)(1+

2𝜌2

(1−𝜌2)

𝐶

𝐷
)}∑ ((𝑋𝑡−𝜇1)+𝛽1(𝑌𝑡−𝜇2))𝐺𝑡−1

𝑛
𝑡=2

(1+𝛽1
2)
2
|Σ|2

  

+
2𝜌𝐴2(𝐶+𝜎2)𝜎2𝜎𝑥

2∑ {(𝑋𝑡−𝜇1)+𝛽1(𝑌𝑡−𝜇2)}{
𝜌𝐴[(𝑌𝑡−1−𝛽0)𝐷−2𝛽1(𝐴𝜇𝑥+𝜎𝑥

2𝐸𝑡−1)]

𝐷2
+𝑌𝑡−𝛽0−2𝛽1𝜇𝑥}

𝑛
𝑡=2

𝐷2|Σ|2
  

+
1

1+𝛽1
2

1

𝜎2
∑ (𝑋𝑡 − 𝜌𝑋𝑡−1)𝐹𝑡−1
𝑛
𝑡=2 +

1

1+𝛽1
2

1

𝜎2
∑ {𝛽1(𝑋𝑡 − 𝜇1) − (𝑌𝑡 − 𝜇2)}𝑋𝑡−1
𝑛
𝑡=2   

+
1

1+𝛽1
2

𝐴

𝐷
(𝜎2 +

2𝜌2𝐴𝐶

𝐷
)
∑ {

𝜌𝐴[(𝑌𝑡−1−𝛽0)𝐷−2𝛽1(𝐴𝜇𝑥+𝜎𝑥
2𝐸𝑡−1)]

𝐷2
+𝑌𝑡−𝛽0−2𝛽1𝜇𝑥}𝐺𝑡−1

𝑛
𝑡=2

|Σ|
  

+
1

|Σ|

1

1+𝛽1
2

𝐴

𝐷
(𝜎2 +

2𝜌2𝐴𝐶

𝐷
)∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}{(𝑌𝑡−1 − 𝛽0) − 2𝛽1𝜇𝑥}

𝑛
𝑡=2 , 

𝜕2ℓ

𝜕𝜌2
= (𝑛 − 1)𝐶(𝐶 + 𝜎2) (

𝐴

𝐷
)
2

{
1

|Σ|2
2𝜌2𝐶(𝐶 + 𝜎2) (

𝐴

𝐷
)
2

−
1

|Σ|
(1 + 4

𝜌2

1−𝜌2
𝐶

𝐷
)}  

+
𝜎2𝜎𝑥

2

|Σ|2

𝐴2(𝐶+𝜎2)

𝐷2
{
4𝜌2𝐴𝐶

𝐷|Σ|
(
|Σ|

𝜎2
−
𝐴(𝐶+𝜎2)

𝐷
) + 1}∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}

2𝑛
𝑡=2   

+2
𝜌𝐴2

𝐷2

𝜎𝑥
2{
|Σ|

𝜎2
(𝜎2+2(1+𝜌2)𝐴−

4𝜌2𝐴2

𝐷
)−

2𝐴(𝐶+𝜎2)

𝐷
(𝜎2+

2𝜌2𝐴𝐶

𝐷
)}∑ {(𝑋𝑡−𝜇1)+𝛽1(𝑌𝑡−𝜇2)}𝐺𝑡−1

𝑛
𝑡=2

|Σ|2
  

−
1

1+𝛽1
2

1

𝜎2
∑ 𝐹𝑡−1

2𝑛
𝑡=2 −

1

|Σ|

1

1+𝛽1
2 𝜎

2 (
𝐴

𝐷
+

2𝜌2

(1−𝜌2)

𝐴𝐶

𝐷2
)
2

∑ 𝐺𝑡−1
2𝑛

𝑡=2 . 

According to the assumptions of the model, the expectations of terms in the above 

second order partial derivatives are 

𝐸
∑ {𝛽1(𝑋𝑡−𝜇1)−(𝑌𝑡−𝜇2)}
𝑛
𝑡=2

𝑛−1
= 𝐸

∑ {(𝑋𝑡−𝜇1)+𝛽1(𝑌𝑡−𝜇2)}
𝑛
𝑡=2

𝑛−1
= 0, 

𝐸
1

𝑛−1
∑ {𝛽1(𝑋𝑡 − 𝜇1) − (𝑌𝑡 − 𝜇2)}

2𝑛
𝑡=2 = (1 + 𝛽1

2)𝜎2, 

𝐸
1

𝑛−1
∑ {(𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2)}

2𝑛
𝑡=2 = (1 + 𝛽1

2)
|Σ|

𝜎2
, 

𝐸
∑ {(𝑋𝑡−𝜇1)+𝛽1(𝑌𝑡−𝜇2)}𝐺𝑡−1
𝑛
𝑡=2

𝑛−1
= 𝐸

1

𝑛−1
∑ (𝑌𝑡 − 𝜇2)𝐺𝑡−1
𝑛
𝑡=2 = 0, 
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𝐸
1

𝑛−1
∑ 𝐺𝑡−1

2𝑛
𝑡=2 = 𝐸

1

𝑛−1
∑ 𝐸𝑡−1𝐺𝑡−1
𝑛
𝑡=2 = (1 + 𝛽1

2)𝐷, 

𝐸
∑ ((𝑋𝑡−𝜇1)+𝛽1(𝑌𝑡−𝜇2))(𝑌𝑡−1−𝛽0)
𝑛
𝑡=2

𝑛−1
= 𝐸

∑ ((𝑋𝑡−𝜇1)+𝛽1(𝑌𝑡−𝜇2))𝐸𝑡−1
𝑛
𝑡=2

𝑛−1
= 0, 

𝐸
∑ (𝛽1(𝑋𝑡−𝜇1)−(𝑌𝑡−𝜇2))𝑋𝑡−1
𝑛
𝑡=2

𝑛−1
= 𝐸

∑ (𝛽1(𝑋𝑡−𝜇1)−(𝑌𝑡−𝜇2))𝐸𝑡−1
𝑛
𝑡=2

𝑛−1
= 0, 

𝐸
1

𝑛−1
∑ ((𝑋𝑡 − 𝜇1) + 𝛽1(𝑌𝑡 − 𝜇2))(𝑌𝑡 − 𝜇2)
𝑛
𝑡=2 = 𝛽1

|Σ|

𝜎2
, 

𝐸
1

𝑛−1
∑ (𝑌𝑡−1 − 𝛽0)𝐺𝑡−1
𝑛
𝑡=2 = 𝛽1𝐷, 

𝐸
1

𝑛−1
∑ (𝛽1(𝑋𝑡 − 𝜇1) − (𝑌𝑡 − 𝜇2))𝐹𝑡−1
𝑛
𝑡=2 = 𝐸

1

𝑛−1
∑ (𝑋𝑡 − 𝜌𝑋𝑡−1)𝐹𝑡−1
𝑛
𝑡=2 = 0, 

𝐸
1

𝑛−1
∑ (𝛽1(𝑋𝑡 − 𝜇1) − (𝑌𝑡 − 𝜇2))(𝑋𝑡 − 𝜇1)
𝑛
𝑡=2 = 𝛽1𝜎

2, 

𝐸
1

𝑛−1
∑ 𝐹𝑡−1

2𝑛
𝑡=2 = (1 + 𝛽1

2)𝐴, 

𝐸
1

𝑛−1
∑ (𝑋𝑡 − 𝜌𝑋𝑡−1)

2𝑛
𝑡=2 = (1 + 𝜌2)𝜎𝑥

2 + (1 − 𝜌)2𝜇𝑥
2 + 𝜎2, 

𝐸
1

𝑛−1
∑ (

𝜌𝐴[(𝑌𝑡−1−𝛽0)𝐷−2𝛽1(𝐴𝜇𝑥+𝜎𝑥
2𝐸𝑡−1)]

𝐷2
+ 𝑌𝑡 − 𝛽0 − 2𝛽1𝜇𝑥)

2
𝑛
𝑡=2   

= 𝛽1
2𝜎𝑥

2 + 𝜌2 (
𝐴𝐶2

𝐷2
+ 𝛽1

2 𝐴
2

𝐷2
𝜎𝑥
2 + 4𝛽1

2 𝐴
2𝐶

𝐷3
𝜎𝑥
2) + 𝜎2 + 𝛽1

2 (1 − 𝜌
𝐴

𝐷
)
2

𝜇𝑥
2. 

By substituting these into second order partial derivatives and setting 𝜌 equal to zero, we 

have information matrix under 𝐻0: 𝜌 = 0 as 

𝐼(𝜃) = (
𝑀 0

0 (𝑛 − 1) (1 +
𝜎4

𝐷0
2)
), 

where 

𝐷0 = (1 + 𝛽1
2)𝜎𝑥

2 + 𝜎2, 

𝑀 = (
𝑀11 𝑀12
𝑀12
𝑇 𝑀22

), 
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𝑀11 = (𝑛 − 1)

(

 
 
 

(1+𝛽1
2)

𝐷0
0 0

0
(1+𝛽1

2)
2

2𝐷0
2

(1+𝛽1
2)

2𝐷0
2

0
(1+𝛽1

2)

2𝐷0
2

1

2
(
1

𝜎4
+

1

𝐷0
2))

 
 
 

, 

𝑀12 = (𝑛 − 1)

(

  
 

𝛽1

𝐷0

𝛽1

𝐷0
𝜇𝑥

0
𝛽1𝐶

𝐷0
2

0
𝛽1𝜎𝑥

2

𝐷0
2 )

  
 

, 

and 

𝑀22 = (𝑛 − 1)(

𝜎𝑥
2+𝜎2

𝜎2𝐷0

𝜎𝑥
2+𝜎2

𝜎2𝐷0
𝜇𝑥

𝜎𝑥
2+𝜎2

𝜎2𝐷0
𝜇𝑥

1

|Σ0|
{𝜎𝑥

4 + 2𝛽1
2 𝜎

4𝜎𝑥
4

|Σ0|
+ (𝜎𝑥

2 + 𝜎2)𝜇𝑥}
). 
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APPENDIX C 

DERIVATIVES AND INFORMATION MATRIX IN FUNCTIONAL CASE 

FOR 𝐻0: 𝜌 = 0 

 

Taking the second order partial derivatives of functional case log-likelihood function 

with respect to 𝜓 = (𝑥1, 𝑥2, … , 𝑥𝑛, 𝛽0, 𝛽1, 𝜎
2, 𝜌) and setting 𝜌 equal to zero, we have 

𝜕2ℓ

𝜕𝑥𝑡
2 = −𝜎−2(1 + 𝛽1

2), 𝑡 = 2,… , 𝑛 

𝜕2ℓ

𝜕𝑥𝑡𝜕𝛽0
= −𝜎−2𝛽1,  𝑡 = 2,… , 𝑛 

𝜕2ℓ

𝜕𝑥𝑡𝜕𝛽1
= 𝜎−2(𝑌𝑡 − 𝑦𝑡 − 𝛽1𝑥𝑡), 𝑡 = 2,… , 𝑛 

𝜕2ℓ

𝜕𝑥𝑡𝜕𝜎2
= −𝜎−4{(𝑋𝑡 − 𝑥𝑡) + 𝛽1(𝑌𝑡 − 𝑦𝑡)},  𝑡 = 2,… , 𝑛 

𝜕2ℓ

𝜕𝑥𝑡𝜕𝜌
= −

{(𝑋𝑡−1−𝑥𝑡−1)+𝛽1(𝑌𝑡−1−𝑦𝑡−1)+(𝑋𝑡+1−𝑥𝑡+1)+𝛽1(𝑌𝑡+1−𝑦𝑡+1)}

𝜎2
,  𝑡 = 2,… , 𝑛 − 1 

𝜕2ℓ

𝜕𝑥𝑛𝜕𝜌
= −𝜎−2{(𝑋𝑛−1 − 𝑥𝑛−1) + 𝛽1(𝑌𝑛−1 − 𝑦𝑛−1)}, 

𝜕2ℓ

𝜕𝛽0
2 = −(𝑛 − 1)𝜎

−2, 

𝜕2ℓ

𝜕𝛽0𝜕𝛽1
= −𝜎−2∑ 𝑥𝑡

𝑛
𝑡=2 , 

𝜕2ℓ

𝜕𝛽0𝜕𝜎2
= −𝜎−4∑ (𝑌𝑡 − 𝑦𝑡)

𝑛
𝑡=2 , 

𝜕2ℓ

𝜕𝛽0𝜕𝜌
= −𝜎−2∑ {(𝑌𝑡−1 − 𝑦𝑡−1) + (𝑌𝑡 − 𝑦𝑡)}

𝑛
𝑡=2 , 

𝜕2ℓ

𝜕𝛽1
2 = −𝜎

−2∑ 𝑥𝑡
2𝑛

𝑡=2 , 
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𝜕2ℓ

𝜕𝛽1𝜕𝜎2
= −𝜎−4∑ (𝑌𝑡 − 𝑦𝑡)𝑥𝑡

𝑛
𝑡=2 , 

𝜕2ℓ

𝜕𝛽1𝜕𝜌
= −𝜎−2∑ {(𝑌𝑡−1 − 𝑦𝑡−1)𝑥𝑡 + (𝑌𝑡 − 𝑦𝑡)𝑥𝑡−1}

𝑛
𝑡=2 , 

𝜕2ℓ

𝜕(𝜎2)2
= −𝜎−6{∑ [(𝑋𝑡 − 𝑥𝑡)

2 + (𝑌𝑡 − 𝑦𝑡)
2]𝑛

𝑡=2 − (𝑛 − 1)𝜎2}, 

𝜕2ℓ

𝜕𝜎2𝜕𝜌
= −𝜎−4∑ {(𝑋𝑡 − 𝑥𝑡)(𝑋𝑛−1 − 𝑥𝑛−1) + (𝑌𝑡 − 𝑦𝑡)(𝑌𝑡−1 − 𝑦𝑡−1)}

𝑛
𝑡=2 , 

and 

𝜕2ℓ

𝜕𝜌2
= −𝜎−4∑ {(𝑋𝑡−1 − 𝑥𝑡−1)

2 + (𝑌𝑡−1 − 𝑦𝑡−1)
2}𝑛

𝑡=2 . 

Therefore, the Hessians matrix under the null hypothesis is 

𝐻(𝜓)|𝜌=0 = (
𝐷 𝐵
𝐵𝑇 𝐴

), 

where 

 
 

 

 
 

 

   

 

 

 

22 2 2
1 1

12

22 2 2 2
1 1

2

2 2

2

2

2 2 42 2

1
( 1)

1

1

11 1

n n n t t
t t tt t t

t t

n n n n t t t
t t t t tt t t t

t t t

n t t

t
t t

n n

t t t t tt t

Y y
n x Y y

Y y

Y y x
x x Y y x

Y y x

X x

A Y y X

n
Y y Y y x








  

  
 



   
 



 

 
   

   
 

  
   

  
  
   
    
 
   

 

  

   



 

   

   

 

 

 

 

   

     

 

1 1

2
1 1

2

1 1

22
1 11 1 1

22 2 2 2
1 1 1 1 1 1

n t t t t

t
t t t t

n t t t t

t
n n nt t t tt t t t t t t

t t t
t t t t t t t

x X x

Y y Y y

X x X x

Y y Y yY y Y y x X x

Y y Y y x Y y





 


 

 


   

  
     












  
 
    




  
 

                
              




  


















 
 
 
 

, 

   

     
   

   

         

2 2 2 2 1

1 1 1 1 12
1 2 1 2 2 2 2 2 2 1

2 3 3 3 3 1

2
1 1 1 1 1 1 1 1

0 0 0

1

n n n n n n n n n n n

X x Y y

X x Y y
x Y y X x Y y

B X x Y y

x Y y X x Y y X x Y y




   




    




   

      
                         

 
                   

, 

and 
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1 1

2 2
1 ( 1) ( 1)1 1

0 0

0 1

n

n nn

D
I 

 


   

 
 

  
 

. 

Taking the expectation of the Hessians matrix, we have 

( )E D D , 

1 2 12

1 1

0 0 0 0

0 0
( )

0 0

0 0n

x
E B

x

 


 



 
 
  
 
 
 

, 

and 

 

 

2

2
2

2 2

2

2

1 0 0

0 0
( )

0 0 1 0

0 0 0 2 1

n

tt

n n

t tt t

n x

x x
E A

n

n










 



 


 
 
 

   
 
 
  



  . 

Thus, the information matrix is 

𝐼(𝜓)|𝜌=0 = −(
𝐸(𝐷) 𝐸(𝐵)

𝐸(𝐵𝑇) 𝐸(𝐴)
). 
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APPENDIX D 

DERIVATIVES AND INFORMATION MATRIX IN FUNCTIONAL CASE 

FOR 𝐻0: (𝛽0, 𝛽1) = (𝑏0, 𝑏1) 

 

Taking the second order derivatives of functional case log-likelihood function with 

respect to (𝜆2, … , 𝜆𝑛, 𝛽0, 𝛽1, 𝜎
2, 𝜌) and setting (𝛽0, 𝛽1) = (𝑏0, 𝑏1), we have 

 
2

2 2
12

1
b

t

b





 


  


,  2,...,t n  

2

1

0
b

t t



 








 
, 

   
2

22

2
0

1 1
b

n


 


 


   


, 

 
2

2
1

0

1
b

t

b


 
 

 


  
 

, 2,...,t n  

2
2 2

2 2
1

nb
tt


 



 




 


 , 

 
2

2

2
0 1

1
nb

tt


  

 

 




  

 
 , 

  
2

2
1 1

1

b
t t t t

t

Y Y b


   
 

 



   

 
, 2,...,t n  

 
      

2
2 24 6

1 12 2
2

1
nb

t t t t t tt
n X X Y Y


     



  
 


       


 , 

    
2

4
1 1 12

b
t t t t t t

t

X X b Y Y


    
 

 
 


      

 
,  2,...,t n  
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2

4
12 2

0

1
nb

t t tt
Y Y


   

 

 



    

 
 , 

  
2

4
12 2

1

nb
t t t tt

Y Y


   
 

 



   

 
 , 

    
2

2 22
1 1 1 12 2

nb
t t t tt

X x Y y





 
   


    


 , 

    
2

2
1 1 1 1 1

b
t t t t

t

x X b y Y



 

 
   


   

 
,  2,...,t n  

     
2

2 2
1 1 12 2

0

1
n nb

t t t t tt t
Y Y y Y


    

 

  
   


      

 
  , 

      
2

2
1 1 1 12

1

nb
t t t t t t tt

y Y Y Y x


   
 

 
   


     

 
 , 

and 

        
2

4
1 1 1 1 1 12 2

nb
t t t t t t t t t tt

X X X x Y Y Y y


    
 

 
     


        

 
 . 

The information matrix which is the expectation of negative of Hessians matrix is 

𝐼 = (
𝐴 𝐵
𝐵𝑇 𝐶

), 

where 

𝐴 = 𝜎−2(1 + 𝑏1
2)𝐼(𝑛−1)×(𝑛−1), 

𝐵 = (

𝑏1𝜎
−2(1 − 𝜌) 𝑏1𝜎

−2𝜆2
⋮ ⋮

0 0
⋮ ⋮

𝑏1𝜎
−2(1 − 𝜌) 𝑏1𝜎

−2𝜆𝑛−1
𝑏1𝜎

−2(1 − 𝜌) 𝑏1𝜎
−2𝜆𝑛

0 0
0 0

), 

and 
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𝐶 =

(

  
 

(𝑛 − 1)𝜎−2(1 − 𝜌)2 (1 − 𝜌)
∑ 𝜆𝑡
𝑛
𝑡=2

𝜎2

(1 − 𝜌)
∑ 𝜆𝑡
𝑛
𝑡=2

𝜎2

∑ 𝜆𝑡
2𝑛

𝑡=2

𝜎2

0                          0
0                          0

        

            
0                                0
0                                0

            
(𝑛 − 1)𝜎−4 0

0 2(𝑛 − 1)(1 − 𝜌2)−1)

  
 

. 

There portion of inverse of information matrix corresponding to (𝛽0, 𝛽1, 𝜎
2, 𝜌) is 

(𝐶 − 𝐵𝑇𝐴−1𝐵)−1 =

[
 
 
 
 
 
(𝑛−1)(1−𝜌)2

(1+𝑏1
2)𝜎2

(1−𝜌)∑ 𝜆𝑡
𝑛
𝑡=2

(1+𝑏1
2)𝜎2

(1−𝜌)∑ 𝜆𝑡
𝑛
𝑡=2

(1+𝑏1
2)𝜎2

∑ 𝜆𝑡
2𝑛

𝑡=2

(1+𝑏1
2)𝜎2

0                          0
0                          0

        

       
0                0
0                0

          
(𝑛 − 1)𝜎−4 0

0 2(𝑛 − 1)(1 − 𝜌2)−1]
 
 
 
 
 
−1

  

=

[
 
 
 
 
 
 

∑ 𝜆𝑡
2𝑛

𝑡=2

𝐷

−(1−𝜌)∑ 𝜆𝑡
𝑛
𝑡=2

𝐷

−(1−𝜌)∑ 𝜆𝑡
𝑛
𝑡=2

𝐷

(𝑛−1)(1−𝜌)2

𝐷

    
0    0
0    0

        

       
0                0
0                0

          

𝜎4

(𝑛−1)
0

0
(1−𝜌2)

2(𝑛−1) ]
 
 
 
 
 
 
−1

, 

where 

𝐷 =
(1−𝜌)2

(1+𝑏1
2)𝜎2

{(𝑛 − 1)∑ 𝜆𝑡
2𝑛

𝑡=2 − (∑ 𝜆𝑡
𝑛
𝑡=2 )2}. 


