
LOCK PREDICTION TO REDUCE THE OVERHEAD OF

SYNCHRONIZATION PRIMITIVES

A Thesis

by

ANUSHA SHANKAR

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Paul V Gratz
Co-Chair of Committee, Riccardo Bettati
Committee Member, Nancy Amato
Head of Department, Dilma Da Silva

December 2014

Major Subject: Computer Science

Copyright 2014 Anusha Shankar

ABSTRACT

The advent of chip multi-processors has led to an increase in computational per-

formance in recent years. Employing efficient parallel algorithms has become impor-

tant to harness the full potential of multiple cores. One of the major productivity

limitation in parallel programming arises due to use of Synchronization Primitives.

The primitives are used to enforce mutual exclusion on critical section data. Most

shared-memory multi-processor architectures provide hardware support for mutually

exclusive access on shared data structures using lock and unlock operations. These

operations are implemented in hardware as a set of instructions that atomically read

and then write to a single memory location. Good synchronization techniques should

try to reduce network bandwidth, have low access time in acquiring locks and be fair

in granting requests.

In a typical directory controller based locking scheme, each thread communicates

with the directory controller for lock request and lock release. The overhead of this

design includes communication with the directory controller for each step of lock

acquisition, and this causes high latency transactions. Thus, a significant amount of

time is spent in communication as compared to the actual operation.

Previous works have focused on reducing the communication to home node through

various techniques. One such technique of interest is the Implicit Queue on Lock Bit

Technique (IQOLB). In this technique, the lock is forwarded directly to the requestor

from the thread currently holding the lock without communication through the home

node. Limitations of the method include the following: the forwarding operation can

take place only after the current thread holding the lock has received information

about the new lock requestor from the home node and also modification to cache co-

ii

herence protocol to distinguish a regular memory read request and a synchronization

request.

Very little research has been performed in the area of lock prediction. We believe

based on data analysis that lock communication is predictable and the prediction can

improve performance significantly. This research focuses on predicting the sequence

in which locks are acquired so that the thread currently holding the lock can preemp-

tively invalidate the locked cache line and forward the same to subsequent requestors

and hence reduce the time taken to acquire a lock. The predictor is adaptive: when-

ever a lock is biased towards a thread, it will remain in the cache of that particular

thread, and invalidation will not take place. The benefits of the technique include

reduction in the number of messages exchanged with the home node without any

modification to the cache coherence protocol (does not distinguish a regular memory

read request and synchronization request). The results of the evaluation of lock pre-

dictor on PARSEC benchmark suite shows an improvement in overall performance

by an average of 9 % over the base case.

iii

DEDICATION

To my family

iv

ACKNOWLEDGEMENTS

I am very thankful to my advisor, Dr.Paul.V.Gratz for providing the opportunity

to work under him. His continuous guidance and support helped me proceed in the

right direction. His expertise in the field facilitated the progress in my research.

I would like to express my gratitude to my co-chair Dr.Riccardo Bettati and

my committee member Dr.Nancy Amato for agreeing to be on my committee and

providing me valuable feedback.

I would also like to thank Dibakar Gope, who initially worked with me on this

topic for a course project.

I would like to thank my family members for their love, support and encourage-

ment all through my life.

I would finally like to thank the Texas A&M university and Department of Com-

puter science for providing me an opportunity to pursue my research.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

1. INTRODUCTION . 1

1.1 Thesis Statement . 9
1.2 Thesis Contributions . 9
1.3 Thesis Organization . 10

2. BACKGROUND AND MOTIVATION . 11

2.1 Background . 11
2.1.1 Modern Chip Multi-Processor Architecture 11
2.1.2 Cache Hierarchies . 12
2.1.3 Cache Coherence . 12
2.1.4 Instruction Set Architecture (ISA) Support for Locks 15

2.2 Motivation . 17

3. PRIOR WORK . 20

3.1 Implementations of Locking Mechanisms 20
3.1.1 Ticket Locks . 20
3.1.2 MCS Locks . 21
3.1.3 Centralized Hardware Locking Mechanism 21
3.1.4 Distributed Hardware Locking Mechanism 21
3.1.5 Hardware Locking for System-On-Chip 22
3.1.6 Fair Reader-Writer Locking Mechanism 23

3.2 Implementations of Lock Speculation Techniques 24
3.2.1 Implicit Queue On Lock Bit 24
3.2.2 Speculative Lock Elision . 25
3.2.3 Lock Prediction . 25

4. DESIGN AND IMPLEMENTATION . 28

4.1 Overview of Lock Predictor Design 28

vi

4.2 Implementation of Lock Predictor Design 29
4.3 Working Example . 32

5. EVALUATION . 37

5.1 Methodology . 37
5.2 Results and Analysis . 38

5.2.1 Impact on Performance . 38

6. CONCLUSION AND FUTURE WORK 41

REFERENCES . 42

vii

LIST OF FIGURES

FIGURE Page

1.1 Speed-up Vs P for Large N . 1

1.2 Speed-up for N=1, 2, 4, 8 Threads on PARSEC Workloads 2

1.3 Control Flow of POSIX API Call . 3

1.4 Lock Address is Present in Private L1 Cache of the Processor 4

1.5 Lock address is Present in Shared L2 Cache 5

1.6 Lock Address is Not Present in L1 or L2 Cache 6

1.7 Locked Cache Line is Present in Private L1 Cache of Another Processor 7

1.8 Distribution of LL Execution Time 8

1.9 LL When Lock is Held and SC Fail 9

2.1 Chip Multi-Processor . 12

2.2 MOESI Cache Coherence Transition 14

2.3 Implementation of Lock Using LL-SC Instruction.[7] 15

2.4 Sharing Pattern of Locks Based on Next Acquirer 18

2.5 Histogram of Sharing Pattern . 19

4.1 Predictor Table . 29

4.2 Base Directory Controller Based Locking 33

4.3 Implicit Queue on Lock Bit . 34

4.4 Lock Prediction Mechanism . 36

5.1 Overall Speed-up With Lock Prediction Mechanism 38

5.2 Predictor Efficiency . 40

viii

1. INTRODUCTION

The theoretical or ideal speed-up that can be achieved in a multi-processor system

is defined by Amdahl’s law, which states that the sequential portion of the code limits

the speed-up of a parallel program. The limitation can be quantified as follows:For

a program running on N processors, if P is the fraction of the program that can be

parallelized, the overall speed-up in given by

Speedup = 1/((1 − P) + (P/N)) (1.1)

For a given P less than 1, as N grows to infinity, the maximum speed-up that

can be achieved approaches 1/(1 − P). Thus, it can be seen that the limiting factor

for speed-up is the serial portion of the program. This is illustrated graphically for

large N in Figure 1.1.

Figure 1.1: Speed-up Vs P for Large N

As can be seen from the graph, for large N , in order to achieve a 10x speedup,

90% of the target program needs to be parallelizable. In other words, this is the

maximum attainable speed-up in the theoretical case without all the synchronization

1

and communication overheads.

A characterization of the PARSEC benchmark suite in Figure 1.2 below shows

that the speed-up does not scale linearly as the number of processors increase. This

is due to the synchronization overhead present in multi-processors.

Figure 1.2: Speed-up for N=1, 2, 4, 8 Threads on PARSEC Workloads

In a multi-threaded environment, a portion of the program can be executed in

parallel by all the threads at the same time. Some portion of the program needs to

be executed by all the threads sequentially. This is referred to as a ”critical section”.

A critical section is a piece of code that can be executed by only one thread at any

given point in time. Synchronization primitives are used to achieve mutual exclu-

sion while executing a critical section. Based on the application, various kinds of

synchronization primitives can be used. These include mutexes, barriers and condi-

tional variables. In C/C++ based programs, pthreads are commonly used to ensure

mutual exclusion. The POSIX library provides an API for implementation of var-

2

ious synchronization primitives. It uses ’load-linked and store-conditional (LL-SC)’

or ’compare-and swap’ (cmpxchg) atomic primitive at the assembly level. A typical

control flow of POSIX API call can be depicted as in Figure 1.3

Figure 1.3: Control Flow of POSIX API Call

Various schemes have been proposed to reduce the time spent in acquiring ex-

clusive access to a lock in order to execute the critical section and also optimize the

time spent by other threads to check if the lock has been released. In order to better

understand the overhead of locking mechanism, that is, the process of acquiring and

releasing a lock, various examples are provided below.

In the examples below, there are 4 processors namely, P1, P2, P3, P4. Each

processor has its own private L1 cache. Each cache line maintains a state of the

data such as Exclusive (E), Modified (M), Shared (S). Exclusive state means that

the data is present only in this cache and no other processor has a copy of the data

and data is consistent with the memory. Modified state indicates that the data is

present only in this cache and no other processor has a copy of the data but the data

3

is different from the data in memory. Shared state indicates that the data is present

in other caches too and data is consistent with the memory. In the example below,

0x8000 is the lock address, and each processor tries to obtain exclusive access to this

lock address. L2 cache is shared between processors. The coherency amongst various

processors is maintained using the directory controller.

In the first case as shown in Figure 1.4, processor P1 tries to execute the critical

section by trying to obtain the lock address 0x8000. This address is present in the

private L1 cache of processor P1 in exclusive state. Hence, no additional clock cycles

are consumed in acquiring the lock. This is the ideal case and there is no overhead

in acquiring the lock.

Processors

0x8000 E

0x7936 M

0x7968 E

0x7904 S

0x7904 S

0x7904 S

0x7872 E

P1 P2 P3 P4

 L1 cache of each processor

Figure 1.4: Lock Address is Present in Private L1 Cache of the Processor

In the second case as show in Figure 1.5, the lock address, 0x8000 is present in

shared L2 cache. The control flow of Figure 1.5 is as follows: The locked cache line

is not present in private cache of any of the processors and is present only in shared

4

L2 cache. Hence, the data is sent from L2 cache to L1 cache in exclusive state for

further operations. In this case, the overhead of acquiring is the lock is the sum of

clock cycles needed to send request to the shared L2 cache and L2 cache responding

to the request by sending the lock address in exclusive state.

 L2 cache

0x8000

0x7968

0x7936

0x7936 M

0x7968 E

0x7904 S

0x7904 S

0x7904 S

0x7872 E

P1 P2 P3 P4

 L1 cache of each processor

Processors

Figure 1.5: Lock address is Present in Shared L2 Cache

In the third case as shown in Figure 1.6, the lock address, 0x8000 is not present

in L1 or L2 cache. The control flow is as follows: Initially, the data is searched in

L1 cache. The data is not present in L1 cache and hence a request is sent to L2

cache. The data is also not present in L2 cache. At this point, L2 sends a request

to directory to fetch the data. Once the directory receives the data from memory, it

5

notifies L2 which subsequently sends the data to L1 in exclusive state. In this case,

majority of the time is spent in acquiring the lock from the memory.

 L2 cache

0x7968

0x7936

Memory

0x7936 M

0x7904 S

0x7904 S

0x7904 S

0x7872 E

P1 P2 P3 P4

 L1 cache of each processor

Processors

Figure 1.6: Lock Address is Not Present in L1 or L2 Cache

In the fourth case as shown in Figure 1.7, the lock address is present in private

L1 cache of another processor (P2). The control flow of Figure 1.7 is as follows: the

locked cache line is held in modified state by P2. L2 cache line state indicates that a

local exclusive copy of data exists. L2 cache forwards the request to the local owner

(in this case, P2) and local owner invalidates its copy of cached line and the locked

cache line is provided in exclusive state to requestor. In this case, the overhead of

6

acquiring the lock is the request being forwarded from L2 to L1 cache and the L1

cache releasing the access to the lock. This could have been avoided had the local

owner preemptively invalidated its copy of cached line. The goal of this thesis is to

reduce the number of cycles taken to acquire a lock.

 L2 cache

0x8000

0x7968

0x7936

0x7936 M

0x8000 M

0x7904 S

0x7904 S

0x7904 S

0x7872 E

P1 P2 P3 P4

 L1 cache of each processor

 Processors

Figure 1.7: Locked Cache Line is Present in Private L1 Cache of Another Processor

We performed a study on the PARSEC benchmark suite [3] by observing the

number of unique lock addresses present in each benchmark. We also compared the

time taken by load locked instructions to acquire the lock. They fell into four buck-

ets namely, lock present in L1 cache (Figure 1.4), lock address present in L2 cache

7

(Figure 1.5), lock address present in L1 cache of another processor (Figure 1.7) and

lock address present in memory (Figure 1.6). This data as shown in Figure 1.8 was

used in understanding the benefit of lock prediction scheme.

Figure 1.8: Distribution of LL Execution Time

Even though, the number of LL instructions that had a miss in L1 cache (and

was present in L1 cache of another processor) is less, the number of cycles it takes to

fetch data from L1 cache of another processor is more than the former case.In this

thesis, we focus on fetching the data from private L1 cache of each processor.

Next, we present a distribution of try lock (executing LL when lock is held) and

failed store conditional instructions in PARSEC benchmarks in Figure 1.9.

8

Figure 1.9: LL When Lock is Held and SC Fail

1.1 Thesis Statement

This thesis proposes an adaptive hardware lock predictor to minimize the latency

in acquiring a lock. The predictor stores the most recent lock addresses and the

subsequent thread that might acquire this lock. Thus, the goal of this thesis to

establish evidence that lock prediction is effective in parallel programs and can be

used for data pre-fetch of critical section.

1.2 Thesis Contributions

In this thesis, we propose a lock predictor that aims at improving the performance

of multi-threaded applications. So far, most of the work on locking mechanism have

focused on optimizing the performance by delaying the release of lock or avoiding

the use of locks for critical sections. The area that has not been explored include

predictability of lock acquiring sequence, that is, the ability to identify which thread

will acquire a lock.

9

1.3 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 provides the motivation

for this thesis work, Chapter 3 presents the prior work performed in this area, Chapter

4 presents the architecture and detailed description of the components that make up

the lock prediction scheme, Chapter 5 discusses the implementation methodology

and Chapter 6 provides conclusion and future work.

10

2. BACKGROUND AND MOTIVATION

This chapter provides the background and motivation behind the proposed ap-

proach.

2.1 Background

This chapter presents an overview of chip multi-processor, cache hierarchies, cache

coherence and instruction set architecture support for locking mechanism.

2.1.1 Modern Chip Multi-Processor Architecture

In earlier days, performance improvement in processor design was achieved by

increasing the frequency of the chip but this has been limited by the memory wall

and power wall. The memory access time has not decreased in correspondence to

processor compute time and this difference has led to memory wall. The increase in

frequency comes at the cost of rise in power consumption and heat dissipation and

this limitation is referred to as power wall. In recent days, the number of parallel

applications and also the need to run many applications concurrently have increased.

This provides an opportunity to exploit thread level parallelism. Multiple processors

running at the same time can use thread level parallelism to achieve the performance

speed-up. With the shrinking process technology, we have been able to design Chip

multi-processors (CMP) [17] without much increase in area. One variant of CMP is

the shared memory multi-processor. In this model, the memory system is distributed

physically, that is, it is present at various locations to provide faster access to data.

The memory access time is further improved by using cache. Caching is a technique

in which a copy of the data in main memory is present in a smaller sized memory unit

so that data can be searched and fetched quickly. Since, we create copies of data, it

11

is important to maintain coherence between the various copies so that we maintain

memory consistency. The mechanism used for this is called cache coherence.

A typical layout of a CMP is shown below in Figure 2.1:

Figure 2.1: Chip Multi-Processor

2.1.2 Cache Hierarchies

The L1 cache is the first memory system that is searched to look-up for data

when the processor needs to execute an instruction. The L1 cache maintains the

state of each of its cache line using cache coherency described in the section below.

When the data is not present in the L1 cache, a look-up is performed in the next

level of cache called the L2 cache. L1 cache can communicate only with the L2 cache

present in the same chip. Size of L1 cache is smaller than the size of L2 cache. The

L2 cache is the second fastest memory module in cache hierarchy. If data is present

in L2 cache, it sends the data to the corresponding L1 cache. If the data is not

present in L2 cache, it sends a request to the memory to fetch the data.

2.1.3 Cache Coherence

Cache is a key component of memory systems. It enables the reduction of memory

access time. A Chip Multi Processor system (CMP) is composed of one or more chips.

12

Each processor in the chip consists of a private L1 cache and each chip contains

one shared L2 cache. The same copy of data can exist in multiple caches. When

data is updated in one cache, the older copies of the data in other caches need to

be invalidated/updated. This process is called cache coherence. There are various

protocols available to implement cache coherence, namely, MSI, MOSI, MESI and

MOESI. In the next subsection, we describe the working of MOESI cache coherence

protocol.

1. MOESI cache coherence protocol

The MOESI protocol [2] has five states as shown in Figure 2.2 to denote the

status of data in each cache line. The formal definitions of the transition states

are as follows:

Modified - The data is present in only one cache and it does not match the

data in the main memory.

Owner - The data is present in more than one cache and it does not match

the data in the main memory. Owner flag indicates that it has exclusive rights

for updating the cache line data and reading of this cache line data by other

caches does not require any change in the status flag.

Exclusive - The data is present in only one cache and it matches the data in

the main memory.

Shared - The data is present in more than one cache and it matches the data

in the main memory.

Invalid - The data is obsolete and does not match the data in the main memory.

When a new data is fetched from the main memory, it is flagged as exclusive.

When the data is updated, the status is changed to modified. When a modified

13

cache line is read by another cache, the status is changed to owner and the data

is shared amongst other caches.

The advantage of MOESI protocol is that the number of times the memory is

being accessed to read data is reduced. The flags also clearly indicate whether

the data matches the data in the main memory or not.

Figure 2.2: MOESI Cache Coherence Transition

2. Directory Controller

In a bus based architecture, snoopy cache coherence protocol, mentioned as

above is typically used. Since this technique uses the broadcasting mechanism

for communication, it does not scale well. The other type of cache coherence

that is in use is directory based cache coherence.

Directory-based protocols [5, 6, 8, 1] use point-to-point communication and

hence this is widely used in CMP. It does not use the broadcast technique and

so the network traffic is much lower in this method. The directory controller is

14

used to maintain coherence between the various chips on the die. The directory

tracks the status of modified data present in various processors. It marks the

processor that modified the data as the owner of the cache line. The main

benefit of using a directory controller is that it sends a message only to the

processor that requires the data or whose data needs to be invalidated. This

mechanism can scale well as the number of processors increase.

2.1.4 Instruction Set Architecture (ISA) Support for Locks

In a parallel program, some sections of the code are performed on shared data.

In such cases, access to the shared data is serialized. Each processor must obtain

exclusive access to the data in order to safely operate on it. The processor performs

a comparison of the value in locked address with zero to ensure that the lock is avail-

able. In order to avoid a race condition, the processor obtains exclusive access via the

cache coherence. The processor then reads the value in the locked address. A value of

0 indicates the lock is available. A value of 1 indicates the lock is unavailable. Once

the processor has ensured that the lock is available, a store conditional instruction

is used to set the locked address value to 1, marking the lock as unavailable to other

threads. This ensures that only one thread can execute the critical section at any

given point of time. Above sequence of reading the lock address and obtaining the

lock can be implemented using LL-SC instruction.

Try:: LL R2, (R1) / -- read lock

ORI R3, R2, 1

BEQ R3, R2, try

SC R3, (R1) /-- acquire lock

BEQ R3,0,try

/*--critical section---*/

SW R2, (R1) /-- release lock

Figure 2.3: Implementation of Lock Using LL-SC Instruction.[7]

15

Figure 2.3 illustrates how a lock can be implemented using a LL-SC instruction

pair. The LL-SC instruction works as follows: two threads may load the value of

0 to a register but only one will succeed in updating the memory location to a

value of 1. The other thread will not be able to update the lock address since an

intervening store has occurred. If a thread reads a lock address that is already held by

another lock, it keeps reading the lock variable until it is available. This constitutes

the first branch in the above code. The second branch resolves races when two

processes read the lock variable as available simultaneously. In an Alpha architecture

[9] based multi-processor system, each processor has a lock flag. Whenever one of

the processors succeed in executing the SC instruction ahead of others, the cache

coherency mechanism updates the lock flags of the remaining processors and ensures

the mutual exclusiveness of shared memory.

In the x86 architecture, the reading and setting of the lock variable is atomic.

The lock/unlock mechanism is implemented using Compare-and-Swap instruction

(cmpxchg). It works as follows:

1. The lock address is acquired by comparing the existing value with the expected

value.

2. If they are equal, the lock is set to 1.

3. If they are not equal, the existing value is returned.

In this way, the value at the memory location is returned for both the scenarios

(lock acquired by one thread and lock not acquired by the other thread) and each

thread obtains knowledge of its ability to acquire the lock.

Finally, after the execution of the critical section the lock is released by writing 0

to the lock address. At this point, another thread can enter the critical section and

perform the required operation.

16

2.2 Motivation

We perform an analysis of dynamic instruction trace of multi-threaded bench-

marks such as PARSEC [3]. Based on the analysis, it was observed that the locks

were acquired amongst the threads in a more repetitive pattern or a lock was biased

towards a particular thread or there was no predictable pattern in the lock acqui-

sition. The repetitive pattern of lock acquisition motivated the design of hardware

lock predictor.

The sequence in which the locks were acquired by various processors in PARSEC

benchmarks are shown below. Here 1 refers to Processor 1 and 2 refers to Processor

2 and so on.

1. 1, 2, 1, 2, 1, 2

2. 1, 2, 3, 4, 1, 2, 3, 4

3. 1, 2, 1, 1, 1

4. 1, 2, 1, 2, 1, 4

5. 2, 2, 2, 2, 2, 2, 2

The pattern observed in #1 and #2 is the ideal pattern for a lock predictor.

In the first case, if thread 1 and thread 2 forwards the lock without any request,

time taken to acquire lock will be greatly reduced. The pattern observed in #3 and

#4 will lead to unnecessary hand-offs. In the third case, lock is shared but biased

towards one thread. In the fourth case, lock is biased towards one thread but many

other threads also acquire the lock once. In the fifth case, lock is not shared at all

The graph below in Figure 2.4 shows the percentage of locks that were shared

amongst various threads in a predictable (case 1 and 2) and unpredictable manner

17

(case 3 and 4).

Figure 2.4: Sharing Pattern of Locks Based on Next Acquirer

As can be seen from Figure 2.4, more than 50% of locks are shared between

threads in most of the benchmarks. This data shows that a lock predictor can be

used to reduce the time taken to acquire a lock.

The sharing pattern can be predictable or unpredictable. The histogram in Figure

2.5 below shows the distribution of locks that were shared in a predictable pattern,

locks shared in an unpredictable pattern and locks not being shared at all for a given

benchmark. In the last case, the lock is biased towards one thread.

18

0%

20%

40%

60%

80%

100%

120%

L
o
c
k
 s

h
a
ri

n
g
 a

s
 %

PARSEC Benchmarks

locks not
shared

locks shared in
unpredicatble
pattern

locks shared in
predictable
pattern

Figure 2.5: Histogram of Sharing Pattern

19

3. PRIOR WORK

Before elaborating on the proposed technique, this section attempts to provide

an overview of the various techniques that have been proposed to improve the per-

formance of synchronization primitives.

3.1 Implementations of Locking Mechanisms

In this section, we describe the various implementations of locks in software and

hardware. The widely used techniques for implementing locks in software without

the overhead of spinlock include ticket locks [12] and queue-based MCS locks [11]. In

directory-based shared multi processors, implementing locking mechanism requires

minimal hardware modification.

3.1.1 Ticket Locks

A ticket-based locking system is implemented using two variables, namely, the

turn variable and ticket value. Each processor selects a unique ticket value to enter

the critical section. The ticket value chosen by a given processor at any given time is

higher than the ticket value of all other processes which hold the ticket. The process

of acquiring a ticket value is atomic to avoid race conditions. The ticket value is

compared with the turn to identify which process can enter the critical section.

The turn value is copied to local cache by each process and the read/compare is

performed. Hence, when the turn value changes, all the copies need to be invalidated

and this significantly increases the number of invalidations performed. This locking

mechanism works well only under low contention since it can obtain exclusive access

to turn variable.

20

3.1.2 MCS Locks

A queue based locking system such as MCS lock is implemented using a software

distributed queue instead of a global counter. Each node in the queue has a next

pointer which is updated when a new process requests for a lock. If there are no other

processes waiting to acquire the lock, the next pointer is marked as null. Hence, to

acquire a lock, a process has to request for the lock and update the queue. The

queue structure adds additional overhead during periods of low contention. The

key features of MCS lock include FIFO ordering, spinning on local lock variable

and scalability. FIFO ordering is ensured by the presence of instructions such as

’compare-and-swap’. Since it spins on local variables, it works on both coherent and

non-coherent caches.

3.1.3 Centralized Hardware Locking Mechanism

One of the simplest implementations of hardware locking mechanism involves

maintaining a lock bit vector for each one of the cache lines in the directory con-

troller. Whenever a lock is requested for a particular cache line, the lock is granted

immediately if no other process holds the lock. If a lock is held by any other pro-

cess, the bit vector is updated with the request. Once a process releases the lock, a

random process from the bit vector is chosen as the next acquirer and correspond-

ing message is sent to that particular process. The disadvantage of this technique

includes starvation and lack of FIFO ordering.

3.1.4 Distributed Hardware Locking Mechanism

The distributed hardware locking mechanism is similar to MCS locks (uses dis-

tributed queuing model). When a process tries to acquire a lock, it sends a lock

request message to the directory controller. If the lock is available, the request is

21

granted immediately else the tail pointer of the queue is updated with the new re-

quest and the request is also forwarded to the process holding the lock . Once a

process releases a lock, it forwards it to the next requestor if it had received the

message. By this method, the number of communications to the directory controller

is reduced and this results in reduced network traffic.

Since the centralized locking mechanism works well during periods of low con-

tention and distributed mechanism during periods of high contention, an adaptive

locking mechanism was designed. In this scheme, as long as the number of processes

requesting lock is less than four, centralized scheme is used. Once lock contention

begins, a distributed locking scheme is used and when a process next pointer is not

updated during release of a lock, it implies the system is under low contention and

system switches back to centralized scheme. The overall performance of all of the

schemes was comparable and hence based on the available hardware, corresponding

design can be chosen.

3.1.5 Hardware Locking for System-On-Chip

A hardware based locking mechanism was proposed for System-on-chip architec-

ture [15]. In this technique, an additional hardware unit has been added to store

the lock addresses. This unit also includes decoder and control logic. Each entry

in the lock address indicates whether a lock has been held or not. It also indicates

the requestors for the lock. This technique avoids the usage of LL-SC to implement

locking mechanisms. Hence, the technique can be ported across architectures. To

acquire a lock, the process sends a lock request and the hardware unit checks if the

lock bit of the address is not set. If so, the lock is automatically granted. If the lock

bit is set for that particular address, the request is updated in the unit. Thus, it

avoids the use of LL-SC and there is no need to store a value of 1 in the location

22

to indicate unavailability of a lock. This step has basically bee taken care of by the

hardware unit

During release of a lock, the hardware unit wakes up the next process on line

using an interrupt. A FIFO/priority encoder is used to select the process from the

lock request queue.

The disadvantage of the technique includes the presence of an additional hardware

unit and the use of interrupt to wake up a process from sleep. Even though, the

process state need not be saved during interrupt (the execution starts from the

instruction before lock), it is still an expensive process.

3.1.6 Fair Reader-Writer Locking Mechanism

In fair reader-writer locking mechanism [16], each lock request is associated with

its thread id. By this mechanism, locking will work efficiently even during thread

migration. Each core has a lock control unit (LCU). Each memory controller has a

Lock Reservation Table (LRT). The LRT maintains a lock queue. Two new instruc-

tions called acquire and release need to be added to the instruction set architecture

for this scheme. The return values of these instructions are true or false. The argu-

ments of the instruction include address to the lock, thread id, read or write mode.

If a lock is un-contended, it will be removed from the lock queue. Each lock entry

associated with a thread is placed in LCU. Each core communicates with its LCU to

acquire and release lock. Based on the address obtained from LCU, the request is

sent to LRT. LRT maintains the list of lock requests and updates the queue on new

request. To avoid starvation, if a lock is not acquired within a given time frame, lock

is released.

Besides the above two techniques, various other hardware locking mechanisms

have been proposed. Even though the hardware locking mechanisms outperform the

23

software locking mechanism, time take to acquire and release the lock, all of them

require additional hardware support and modification of ISA for implementation.

Hence, in a few cases the disadvantages outweigh the performance.

3.2 Implementations of Lock Speculation Techniques

In this section, we look at various techniques that have been proposed to speculate

synchronization.

3.2.1 Implicit Queue On Lock Bit

In implicit queue on lock bit (QOLB) [14], throughput of synchronization is

improved by the insertion of delays. The key advantage of the technique is the lack of

additional software support needed and using the existing ISA. To perform efficient

synchronization, it speculates the program access patterns and delays coherency

actions. Initially, a process acquires an exclusive access to a cache line, to perform

critical section execution. While executing the critical section, other processes may

read the lock variable and hence the cache line state changes from exclusive to shared.

Hence, when this process releases the lock, it has to again obtain exclusive access to

the lock. In this technique, during LL operation, an exclusive copy of cache line is

obtained, assuming this will be followed by SC operation. After this, any subsequent

request to that cache line is delayed for a short period of time assuming SC will be

successful. If the SC operation does not occur within a finite period of time, the

cache line requests are serviced. A priority technique is used to differentiate normal

loads from LL operation. If it is a LL operation, the length of the delay mentioned

above can be longer. The goal is to wait till the lock is released by a process and then

serve subsequent requests to the cache line. This is referred to as delayed response

scheme. It is designed for bus based architecture. Since it is based on LL-SC, it is

not clear whether the same technique will work for compare and swap instruction.

24

3.2.2 Speculative Lock Elision

In speculative lock elision [13], critical sections are executed without the use of a

lock. For example, to update a hash table, locks are not required. Thus, a processor

needs to identify an operation as lock to avoid unnecessary loads and stores. During

lock operation, a store operation is performed. This is followed by another store to

release the lock. Since, both the stores are performed on the same location, processor

can identify this sequence and predict it as a lock operation. In this technique, we

predict that memory operations in critical sections will occur atomically and elide

lock acquire. The critical sections are executed speculatively and results are buffered.

If the above sequence was not performed atomically, a mis-speculation is triggered

and a roll back is performed and portion of code is re-executed with lock. This

technique is currently implemented in processors designed by Intel.

The key features of the design include lack of: instruction set architecture changes,

compiler support, cache coherence changes. Since the Speculative Lock Elision

scheme automatically detects and removes unnecessary instances of synchronization,

performance is not degraded by the presence of synchronization. As it is a micro-

architectural change, it can be incorporated into any system without depending on

coherence protocols or system design issues.

3.2.3 Lock Prediction

So far, most of the work on locking mechanisms have focused on optimizing the

performance by delaying the response to a lock address once a lock is held or avoiding

the use of locks for critical sections. The other aspects that will enable enhanced

performance of locks include predictability of locks, that is, the ability to identify

which thread will acquire a lock and also the type of synchronization that a thread

might acquire [10].

25

If we are able to predict the next thread that will acquire a lock, which may turn

out to be current thread, it will eliminate the use of synchronization primitive. Lock

prediction will also enable efficient scheduling by the OS, allowing it to prioritize this

thread. Similarly, the cache line for the lock can be prefetched and this will reduce

the number of cache misses.

The lock prediction can be performed based on first-to-acquire, last-to-acquire,

frequent-acquirer and frequent transition. The first-to-acquire scheme works well

for programs in which a lock is local to a single thread. The last-to-acquire also

works on the same principle. the most-frequent acquirer works by monitoring the

number of times each thread has acquired a given lock and predict the next lock

acquirer as the frequent one. Since this technique looks into the entire history of

locks, it is more robust to temporary deviations as compared to other schemes. The

frequent-transition scheme uses the frequency of lock handoff for prediction. For

each lock, a weighted graph containing nodes (threads) and edges (handoff) was

maintained. The weight of edge is calculated based on the frequency of handoff. For

each thread, the next acquirer is predicted as the edge containing maximum weight.

The frequent-acquirer technique outperformed other schemes. This technique does

involve storage overhead but since the amount of information stored is small (thread

id), in most cases, it does not become a significant overhead. This technique can be

further modified to add bias towards a particular type of predictor. This scheme can

be modified to add aliasing. In aliasing, instead of assigning unique lock names, the

locks are re-used. By re-suing locks, the time spent on cold-start can be significantly

reduced. Aliasing can also be added to thread. Thus, the paper compared the

accuracy of various prediction scheme that can be used to predict a lock sequence in

a program and improve performance.

In this scheme, a dynamic instruction trace (for 8 threads) was fed was to the

26

various predictors and accuracy was calculated. Hence, this technique is a study of

PARSEC benchmarks and not an adaptive technique.

So far, we have discussed the various hardware and software locking mechanisms.

We have also examined the various schemes to improve the performance of synchro-

nization through speculation and insertion of delays. While most of the work on

performance improvement has focused on speculating the execution of critical sec-

tion, limited work has been conducted on predicting the sequence of lock acquisition

and execute the critical section correspondingly. The previous section focused on the

accuracy of prediction based on analysis of trace and not the actual implementation

of prediction using these schemes. This research will focus on extending the con-

cept of lock prediction by implementing an adaptive predictor into lock acquisition

sequence.

27

4. DESIGN AND IMPLEMENTATION

This chapter presents the design of our proposed lock predictor. It provides

detailed description of the building blocks of the design.

4.1 Overview of Lock Predictor Design

When a processor needs to execute a critical section, it sends a lock request to

the memory. The request is initially sent to the private L1 cache of the processor. If

the data is present in L1, it responds to the request by sending the data. If the data

is not present in L1, the request is forwarded to L2 cache. The L2 cache receives

request for data from L1 cache. The state of L2 indicates if it is present in present in

L1 cache of any one of the processors on the same chip or not. Based on the outcome,

L2 will send a message to the corresponding processor and obtain the data or send

a request to the directory controller. L1 cache of another processor can also receive

request for data from L2. In this case, the processor holding the lock forwards the

data to L1 requestor. The goal of the thesis is to perform optimization such that

the lock address is present in the L1 cache of the requesting processor for majority

of the time.

In our design, we predict the next acquirer of a given lock address based on

history of the lock address. Instead of forwarding the lock after a request is made,

the processor holding the lock, performs a look-up on the predictor table to find

the next acquirer of the lock and forwards the lock address without any request

after it has completed the execution of critical section by releasing the lock. By this

method, the subsequent processor can find the lock address in its own L1 cache and

this reduces the time taken to acquire a lock.

28

• Predictor Table: Each processor maintains a prediction table. The prediction

table is a map of the lock addresses and thread id of the subsequent acquirer.

It records the lock address and the subsequent requestor during the dynamic

execution of instructions. This table is updated every time a mis-prediction

of next acquirer of lock address is made. This is the new block that has been

added to the existing design.

Figure 4.1: Predictor Table

4.2 Implementation of Lock Predictor Design

In this section, we describe the implementation/working details of the various

building blocks of lock predictor.

For our design, we use MOESI cache coherency protocol with a directory con-

troller. Each processor has it own L1 cache. L1 cache can communicate only with

the L2 cache present in the same chip. The L2 cache is shared among processors on

the same chip. If data is present in L2 cache, it sends the data to the corresponding

29

L1 cache. If the data is not present in L2 cache, it sends a request to the directory

controller.

We perform a comparison of the basic directory controller scheme, implicit queue

on lock bit scheme and our lock prediction. Each one of the schemes is described

below:

In basic directory controller based scheme, L2 receives response from L1 that

was holding the lock. L2 cache subsequently forwards the lock to requestor. As can

be seen from this implementation, the number of messages exchanged and latency

associated is higher in this case.

In Implicit queue on lock bit, on receiving a forward request, by referring to the

lock queue, the L1 cache that was holding the lock forwards the request directly to the

requestor bypassing the controller. This reduces the number of messages exchanged.

In our lock prediction scheme, by performing a look-up of the predictor table, L1

that was holding the lock forwards the request directly to the requestor.

• Directory Controller:When directory controller receives a request to obtain

the data in exclusive state, it performs a look-up. If the data is present in a

processor, it sends a forwarding request to the owner. The owner transfers the

block to the requestor and the state of directory controller is updated corre-

spondingly. If the data is not present in any one of the caches (indicated by the

state), a memory fetch request is initiated. On receiving a writeback request,

data is written to memory and acknowledgement is sent to the corresponding

processor. For Direct Memory Aceess (DMA) requests, invalidations are sent

to the processors that contains the data.

The aim of this thesis is to minimize the misses in both L1 and L2 and avoid

reference to the memory for lock address.

30

• Lock Predictor Table Implementation: Whenever the L1 cache receives

a lock request, the lock prediction table entry is created. Initially the next

requestor is marked as NULL. When the controller sends a request to the

cache, to forward the cache line to subsequent requestor, the predictor table is

updated with the next acquirer for this lock address. Initial study has shown

that the number of unique lock addresses are limited. Hence, we maintain a

optimal size of 8 entries in the prediction table. This size was sufficient for

performing a look-up in the table.

In order to identify that the load request was a load locked request, following

scheme is used. In ALPHA architecture, LD and ST instructions maintain a 16

bit decode field. One of the bits (HW LDST LOCK) indicate if it is a LL/SC

instruction. When the processor receives a request, it checks if the bit field

is set and instruction is load instruction. If this is the case, the instruction is

identified as load locked instruction. In ALPHA architecture, each processor

maintains a lock flag and lock address register. These values are updated as true

and the corresponding address respectively when a instruction is decoded as

locked instruction. When one processor sets the flag, it sends a message to other

processors and their flag is invalidated. By this mechanism, we ensure that only

one processor is holding the lock, the remaining processors cannot acquire the

lock. When the processor sends request to the memory, this information is

passed along with the request for data. Thus, we can identify if the request

was a locked address request and update the table correspondingly.

The lock prediction works as follows: initially the table is empty. Each proces-

sor creates its own unique entry when a load locked request is received. When

the controller forwards a L1 request, the predictor table is updated. When a

31

subsequent locked request is encountered, a look-up of the table is performed.

If there is a match, the processor on releasing the lock, auto-invalidates its

cached copy and sends an exclusive copy of the locked address to the subse-

quent requestor. Thus, we do not wait for the controller to forward the request

and we try to maximize the number of times, a locked address is available in

the cache.

• Prediction Mechanism: The prediction mechanism is based on recording

the past history of the lock handoff sequence. The prediction accuracy is based

on the repetitive patterns of lock handoff from one thread to the other. Since

the number of unique addresses recorded is not very large (based on initial

limit study), this mechanism works efficiently. This technique is adaptive, in

the sense, if a lock is biased towards a particular thread, the map will have the

next acquirer marked as NULL. The downside to this method is mis-prediction.

An implementation of this method shows that the overhead of mis-prediction

outweighs the number of clock cycles saved through prediction.

4.3 Working Example

In a base directory controller based locking method, each processor communicates

to the directory controller for lock request and release. The figures (4.2, 4.3, 4.4)

described below shows the transactions between three processors and the directory

controller with respect to a cache line containing lock variable. The arrows represent

the requests and the responses between the processors and the directory controller.

Numbers on each arrow represent the order of action. Each arrow is enumerated and

described below.

Figure 4.2 provides an illustration of the requests and responses in the base

directory controller based locking.

32

Figure 4.2: Base Directory Controller Based Locking

1. Processor P1 sends a lock request to the directory controller. The lock is not

being held by any other processor.

2. So, the controller grants the lock.

3. Subsequently, P2 tries to enter the same critical section.

4. The directory controller sends a message to P1 and when P1 has released the

lock, its copy of locked cache line is invalidated.

5. At this point, P2 is provided exclusive access.

6. P2 releases the lock.

7. P3 requests lock access.

8. Since no other process holds the lock, the request is granted immediately.

9. P3 releases the lock

33

In this technique every processor has to communicate to the home node for ac-

quiring and releasing a lock. The overhead of the design includes communication

with the directory controller for every operation.

A related technique called Implicit Queue on Lock Bit as shown in Figure 4.3

has been used for comparison in this thesisI.It maintains a queue of lock requestors

in hardware.

Figure 4.3: Implicit Queue on Lock Bit

1. Processor P1 sends a request for a lock.

2. Since no other processor is holding the lock, the lock is granted immediately.

3. Processor P2 sends the request for same lock address and this is added to lock

queue.

4. Directory controller forwards the request to P1 along with the address of the

requestor.

34

5. P1 releases the lock.

6. P1 forwards the lock to P2.

7. While P2 is holding the lock, P3 places a request for same lock address.

8. Directory controller forwards the request to P2.

9. P2 releases the lock.

10. P2 forwards the lock to P3.

11. P3 on executing the critical section, releases the lock.

This technique improves performance by reducing network traffic, however the

requestor must still ask for the cache line directly before it is forwarded.

In the above techniques, the processor which initially acquires the lock, will hold

exclusive status until further request. As was seen from the motivation study, this

does cost a few cycles when a subsequent thread needs to enter the critical section.

The goal of this thesis is to explore if this scenario can be altered and made beneficial

to the lock/unlock process as shown in Figure 4.4.

1. P1 initially acquires the lock, it adds the lock address to the map and marks

the subsequent acquirer as ’none’

2. P1 is granted access.

3. P1 releases the lock and performs a look-up of the lock address in the prediction

table.

4. If the lock address is found, P1 forwards the lock to the next thread without

any request from the controller.

35

5. When P2 needs the lock, the lock address is already present in its L1 cache

6. P2 releases the locks and performs a similar look-up and forwards the lock to

P3

7. P3 obtains exclusive access to lock.

8. P3 requests lock access.

9. P3 does not forward the lock since there is no next acquirer for that lock address

in the prediction table.

Figure 4.4: Lock Prediction Mechanism

By this prediction method, we will be able to reduce the time taken to acquire a

lock.

36

5. EVALUATION

In this chapter, we elaborate on the simulation methodology used to implement

the design mentioned in the previous chapter. We evaluate the effectiveness of lock

predictor by comparing it with two schemes, namely, base scheme and Implicit Queue

on Lock Bit.

5.1 Methodology

All experiments were performed using the gem5 [4] full system simulator. The

use of a functional simulator has the same effect as if a cycle-accurate model were

used with a perfect cache, branch predictor, TLB, pipeline (1-issue, in-order), in-

terconnect, and coherence. The purpose of using a simple functional simulator was

to determine the lower bound. Assuming perfect communication across the cache

hierarchy and interconnect, program performance is bounded by the serial code re-

gions, OS interaction, and synchronization overheads. Synchronization overheads

are based upon the ordering imposed by the benchmark algorithm as well as costs

incurred within the pthreads library. Each processor has a 2-way set associative 256

KB L1 private cache. The system also has 2MB of shared L2 cache.

We run 8 benchmarks of the PARSEC benchmark suite [3]. The PARSEC suite

presents a good model of the multi-threaded workload that is present in the real time

environment. The results presented are for the parallel portion of the work load.

The simulator was modified to incorporate the lock prediction structure to the

existing design. The simulation was run in the detailed (out-of-order) mode for this

workload.

37

5.2 Results and Analysis

5.2.1 Impact on Performance

We present three cases, baseline, Solando et all’s delayed lock scheme [14] and

our proposed lock prediction scheme.

Next, we compared the base case with lock prediction scheme. We observed

speed-up in the overall execution of the program. The following graph provides the

corresponding results.

Figure 5.1: Overall Speed-up With Lock Prediction Mechanism

In the figure, we see that the lock prediction scheme generally provides a ben-

efit of 9% versus baseline. In nearly all cases, it outperforms the delay scheme.

Bodytrack and Canneal use synchronization primitives less than 1% of the execu-

tion time. Hence, the lock prediction scheme did not provide any improvement for

38

these two benchmarks. X264 had patterns that involved unnecessary hand-off. This

resulted in scenario of unnecessary hand-off outweighing useful forwarding. In all

other benchmarks, the lock access patterns were a combination of useful forwarding

and unnecessary hand-offs.

The following example elaborates the situation where unnecessary handoff is per-

formed: A given locked address has a lock access pattern as follows 1, 1, 2, 1, 1. In

this case, thread 1 forwards the lock to thread 2 during lock release. But, the subse-

quent acquirer of that lock is thread 1. Hence, thread 1 performs an invalidation and

subsequently acquires the lock in exclusive state. This is referred to as unnecessary

hand-off. In typical schemes, the locked address would remain in exclusive/modified

state in thread 32 and it would have acquired the lock without any overhead. This

is the downside to this design.

Finally, we analyze the amount of useful forwarding that was performed compared

to the total number of forwardings that was performed by the predictor. The graph

below presents the predictor efficiency

39

Figure 5.2: Predictor Efficiency

In X264, due to unwanted forwarding, the predictor efficiency was pretty low. In

the remaining benchmarks, the predictor efficiency was above 60%.

40

6. CONCLUSION AND FUTURE WORK

In this thesis, we proposed a new lock prediction scheme to reduce the overhead of

synchronization in multi-threaded programs. In this design, we exploit the repetitive

pattern in the lock acquisition process and also the bias of lock addresses towards

a single thread. Using this scheme, we observed an average speed up of 9% in the

overall execution of the program.

This prediction scheme can be further extended to perform prefetch of data in

the critical section and thus we can minimize the cache miss during execution of

critical section. We can also try to predict the next lock address of thread since

similar handoff techniques were observed across lock addresses

This scheme has also focused on ALPHA architecture. A similar prediction

scheme can also be implemented for x86 architecture. Since the technique is focusing

only on lock access patterns, the design/implementation of predictor would remain

the same across architectures. Modification will be required only in identifying a

given memory operation as lock acquisition.

41

REFERENCES

[1] Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz. An eval-

uation of directory schemes for cache coherence. 15th Annual International

Symposium on Computer Architecture, pages 280–289, 1988.

[2] AMD. Amd64 architecture programmers manual volume 2: System program-

ming, edition 3:14. Publication 24593, September 2007.

[3] Christian Bienia, Sanjeev Kumar, and Kai Li. The parsec benchmark suite:

Characterization and architectural implications. 17th International Conference

On Parallel Applications, Ontario, Canada, October 2008.

[4] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaparva Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, So-

mayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,

Mark D. Hill, and David A. Wood. The gem5 simulator. ACM SIGARCH

Computer Architecture News, May 2011.

[5] Lucien M. Censier and Paul Feautrier. A new solution to coherence problems

in multicache systems. IEE Transactions on Computers,vol. 27, no.12, pages

1112–1118, December 1978.

[6] Noel Eisley, Li-Shiuan Peh, and Li Shang. In-network cache coherence. 39th

Annual IEEE/ACM International Symposium on Microarchitecture, pages 32–

332, 2006.

[7] Chen-Chi Kuo John B. Carter and Ravindra Kuramkote. A comparison of soft-

ware and hardware synchronization mechanisms for distributed shared memory

42

multiprocessors. Tech. Rep. UUCS-96-011, University of Utah, Salt Lake City,

UT, USA, Sept 1996.

[8] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John

Hennessy. The directory-based cache coherence protocol fro the dash multipro-

cessor. 17th Annual International Symposium on Computer Architecture, pages

148–159, 1990.

[9] Richard L.Sites. Aplha architecture reference manual. Digital Press, Burlington,

Massachusetts, 1992.

[10] Brandon Lucia, Joseph Devietti, Tom Bregan, Luis Ceze, and Dan Grossman.

Lock prediction. 2nd USENIX worksop on Hot Topics in Parallelism, Berkeley,

CA, June 2010.

[11] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable syn-

chronization on shared-memory multiprocessors. ACM transactions on Com-

puter Systems, Feb 1991.

[12] Maged M. Michael and Michael L. Scott. Scalability of atomic primitives on dis-

tributed shared memory multiprocessors. Technical Report TR528, University

of Rochester, Computer Science Department, July 1994.

[13] Ravi Rajwar and James R. Goodman. Speculative lock elision:enabling highly

concurrent multithreaded execution. 34th International Symposium on Microar-

chitecture, Dec 2001.

[14] Ravi Rajwar, Alain Kagi, and James R. Goodman. Improving the throughput

of synchronization by insertion of delays. Sixth IEEE Symposium on High-

Performance Computer Architecture, pages 168–179, Jan 2000.

43

[15] Bilge E. Saglam and Vincent J. Monney III. System-on-a-chip processor syn-

chronization support in hardware. Processor Design Automation and Test, pages

633–639, 2001.

[16] Enrique Vallejo, Ramon Beivide, Adrian Cristal, Tim Harris, Fernandi Vallejo,

Osman Unsal, and Mateo Valero. Architectural support for fair reader-writer

locking. 43rd MICRO, Atlanta,USA, pages 275–286, Dec 2010.

[17] David Wentzlaff, Patrick Griffin, Henry Hoffman, Liewei Bao, Bruce Edwards,

Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F.Brown III, and Anant

Agarwal. On-chip interconnection architecture of the tile processor. Micro IEEE

Vol 27 No.5, pages 15–31, September 2007.

44

