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ABSTRACT

In many industries, including the retail industry, the profits of a supply chain

primarily come from the revenue determined by pricing decisions, while the costs of

a supply chain are mainly determined by production and inventory decisions. Lack of

coordination between the involved parties concerning pricing and inventory decisions

may cost all parties in the supply chain system. Historically, contracts have been

viewed and served as effective mechanisms to achieve supply chain coordination. In

particular, a coordination contract is such that the total profit of the entities under

the contract is equal to the optimal supply chain profit (a.k.a., system profit) under

centralized control. Hence, profit potential of each entity is in fact maximized under

a coordination contract. Also, a coordination contract is said to achieve the so-called

channel coordination objective.

In this context, we consider supplier-buyer (e.g., manufacturer-retailer) systems

and take into account a recent trend shifting the leadership in contract design from

the supplier to the buyer. In particular, we are interested in powerful entities (e.g.,

mass retailers or government) leading contractual efforts in various practical settings.

We consider two classes of problems related to such powerful entities.

We first study coordination efforts through contracts in single- and multi-product

settings from the supplier- and buyer-driven perspectives by considering supplier-

and buyer-driven contracts. Previous literature on the leadership shift focuses on

the single-product setting while overlooking general buyer-driven contracts under

full information. We propose more general buyer-driven contracts and provide a

comparison of supplier- and buyer-driven settings in terms of the realized profit and

prices while taking into account for not only the supplier’s and buyer’s but also the

ii



consumers’ perspectives. Our results lead to a new buyer-driven contract called the

generic contract: a simple, general, effective, and practical coordination contract

which is amenable to generalization for handling multi-product, multi-supplier, and

multi-buyer settings. Also, the generic contract offers room for negotiation between

the buyer and supplier because even when the supplier is the more powerful entity.

Last but not least, the generic contract is advantageous not only for the buyer and

the supplier but also for the consumers.

We next study a newsvendor problem for a private retailer where government

interventions are implemented to induce the retailer to make socially optimal deci-

sions. Very limited literature has studied the social welfare issue for public interest

goods with random price-dependent demand, especially in the multiplicative form.

We develop a model and methodology for designing government intervention mecha-

nisms that improve/maximize the expected social welfare and analyze the impact of

demand uncertainty on coordination performance. We consider two new government

regulatory mechanisms, and a new market intervention along with two existing mar-

ket interventions. Our results demonstrate that government regularity mechanisms

are effective in improving the expected social welfare and using any combination of

two market interventions achieves the optimal expected social welfare.
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1. INTRODUCTION

In many industries, including the retail industry, the profits of a supply chain

primarily come from the revenue determined by pricing decisions, while the costs of

a supply chain are mainly determined by production and inventory decisions. Lack

of coordination between the involved parties concerning pricing and inventory deci-

sions may lead to inefficiencies in terms of costs and profits. Historically, contracts

are viewed as facilitators of “long-term partnerships by delineating mutual conces-

sions that favor the persistence of the business relationship, as well as specifying

penalties for non-cooperative behavior” (Tsay et al. (1999)). Hence, contracts have

served as effective mechanisms, when designed and implemented carefully, for achiev-

ing supply chain coordination. In this dissertation, we consider supplier-buyer (e.g.

manufacturer-retailer) systems and investigate coordination efforts through contracts

in supplier- and buyer-driven channels. In the supplier-driven channel the supplier

moves first to specify a contract and then the buyer makes decisions accordingly.

Likewise, in the buyer-driven channel the buyer moves first to specify a contract and

then the supplier makes decisions accordingly (Liu and Çetinkaya (2009)).

Liu and Çetinkaya (2009) argue that “In the context of supply contract design,

the more powerful party usually has the ability to assume the leadership position.

Traditionally, the supplier (e.g., manufacturer) has been more powerful, and, hence,

the existing literature in the area emphasizes supplier-driven contracts”. They also

note that “in some current markets, such as the B2B grocery channel, the power has

shifted to the buyer (e.g., retailer)”. Other powerful buyers include the government

and military. With these current trends in mind, we also focus on supply chain

contracts that are of interest for powerful entities leading contractual efforts and
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aiming for coordination in the context of four closely related problem settings:

Setting 1. The basic bilateral monopolistic contractual setting under price-

sensitive demand (shown in Chapter 3),

Setting 2. Multi-product generalization of Setting 1 (shown in Chapter 4),

Setting 3. The exclusive dealer contractual setting under price-sensitive de-

mand (shown in Chapter 5),

Setting 4. The newsvendor problem setting for a private retailer where contrac-

tual government interventions are implemented for social welfare maximization

(shown in Chapter 6).

The first three settings consider deterministic demand and full information while

the last setting takes into account for stochastic demand. Of particular interest is

the case where reservation profits are modeled explicitly for the contractual enti-

ties involved. The underlying contractual problems are modeled using the principles

of leader-follower games which are also known as Stackelberg games (Tirole (1988)

and Fudenberg and Tirole (1991)). Stackelberg game is proposed by von Stackel-

berg (1934). It represents a sequential leader-follower game, in which, one player,

the Stackelberg leader, moves first, and then the other player, the Stackelberg fol-

lower, moves sequentially after observing the leader’s choice (Vardy (2004)). Also,

see Chapter 3, Section 1 in Fudenberg and Tirole (1991) for discussion of Stackelberg

game. Since reservation profits are modeled explicitly, the resulting models are pre-

sented formally as non-linear programming formulations. Based on a careful account

of the existing literature,

• Both supplier- and buyer-driven contracts are investigated in the context of

Settings 1, 2, and 3, while
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• Alternative government interventions, including regularity interventions and

market interventions, are investigated in Setting 4.

Of particular interest in the supplier-driven setting is the wholesale price con-

tract (e.g., Bresnahan and Reiss (1985), Choi (1991), Lee and Staelin (1997), and

Corbett and Tang (1999)). In the buyer-driven setting, a comprehensive account

of existing contracts are summarized and a new contract called the generic con-

tract is introduced. Significant advantages of the generic contract are established

in Settings 1, 2, and 3 through a careful analysis of the underlying game-theoretic

non-linear programming formulations. The new interventions targeting coordina-

tion for Setting 4 include price and quantity regulations along with a tax cut

mechanism. The goal in all four settings is to establish methods for achieving con-

tractual coordination and realizing the ideal performance as implied by centralized

system-wide profit (Settings 1, 2, and 3) or expected social welfare (Setting 4).

We next proceed with an overview of each one of the four settings introduced

above. It is worthwhile to note that the complete analysis for these settings is

presented in Chapters 3, 4, 5, and 6.

1.1 Setting 1. The basic bilateral monopolistic contractual setting

This setting built on the results developed by Liu and Çetinkaya (2009) who

compare the supplier- and buyer-driven channels in the single-product setting under

price-sensitive demand. Our eventual goal is to extend Setting 1 to consider multiple

products and price competition explicitly. Following Liu and Çetinkaya (2009), an

accompanying goal is to provide a comparison of supplier- and buyer-driven settings.

To this end, we review the existing results on the supplier-driven wholesale price

contract, as well as the buyer-driven margin-only and multiplier-only contracts that

appear in the previous literature (e.g., Ingene and Parry (2004), Ertek and Griffin
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(2002), and Liu and Çetinkaya (2009)). As noted earlier, of particular interest is the

case where reservation profits are modeled explicitly. Based on a detailed account

of existing literature, we propose the new generic contract and demonstrate that it

is a generalization of both the margin-only and multiplier-only contracts. Hence,

it increases the so-called contract flexibility for the single-product setting analyzed.

While the idea of contract flexibility has been investigated in the previous literature by

Liu and Çetinkaya (2009) in the context of buyer-driven contracts and by Corbett and

Tang (1999) and Corbett et al. (2004) in the context of supplier-driven contracts, the

focus of the earlier work on contract flexibility is addressing information asymmetry.

Our goal is to explore fully the case of complete information by offering a more

general contract that is also amenable to generalization so that it is effective in

multi-product, multi-supplier, and multi-buyer settings. A careful investigation of

Setting 1 considering the single-product case is useful to demonstrate these potential

benefits of the generic contract and to justify its value.

In a nutshell, in Setting 1, we demonstrate that the generic contract is a sim-

ple, general, effective, and practical coordination contract which is amenable to

generalization. We also demonstrate that it offers room for negotiation between the

buyer and supplier because even when the supplier is the more powerful entity. Last

but not least, the generic contract is advantageous not only for the buyer and the

supplier but also for the consumers.

1.2 Setting 2. Multi-product generalization of Setting 1

This setting is a straightforward generalization of Setting 1 to consider multiple

symmetric and asymmetric substitutable products, referred as the multi-product

setting. While the multi-product problems of interest here have been investigated

in the context of supplier-driven channel under wholesale price contract, there is
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no previous work considering the buyer-driven channel. Our results document the

conditions under which the generic contract remains to be a simple, yet, effective

contract when multiple substitutable products are considered.

1.3 Setting 3. The exclusive dealer contractual setting

This setting deals with the exclusive dealer channel with two suppliers (e.g., man-

ufacturers) and two buyers (e.g., dealers), where each supplier produces one product

and each buyer sells one supplier’s product exclusively. Here, we are interested in the

generic contract under the fully asymmetric assumption with an emphasis on explor-

ing generality and practicality of the generic contract relative to the buyer-driven

contracts examined in the prior literature.

It is worthwhile to note that while there is previous work (Lee and Staelin (1997),

Trivedi (1998), and Zhang et al. (2012)) examining buyer-driven contracts in this

setting, existing studies only consider the margin-only contract under symmetric as-

sumptions and ignore reservation profits for all entities. In this dissertation, we study

a more general contract than the margin-only contract under the fully asymmetric

assumption where reservation profits for suppliers are considered explicitly.

Though there is also previous work (e.g., McGuire and Staelin (1983), Choi

(1996), and Wu and Mallik (2010)) examining this setting under the wholesale price

contract from supplier-driven perspective, the prior work considers Bertrand com-

petition (Bertrand (1883)) between buyers. That is, “In the Bertrand model, firms

simultaneously choose prices and then must produce enough output to meet demand

after the price choices become known” (Fudenberg and Tirole (1991)). Another com-

monly used competition strategy is Cournot competition (Cournot (1838)). That is,

“In the Cournot model, firms simultaneously choose the quantities they will produce,

which they then sell at the market-clearing price” (Fudenberg and Tirole (1991)).
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Considering these two strategies, in the supplier-driven channel, as the channel fol-

lower, the buyers are free of competing on quantities or prices after observing the

suppliers’ wholesale prices. However, either Cournot or Bertrand competition is not

involved in the buyer-driven channel. It is because after observing the suppliers’

wholesale prices, the buyers’ retail prices and quantities are determined by the con-

tract and committed by the buyers due to the nature of buyer-driven contract.

1.4 Setting 4. The newsvendor problem setting under social welfare objective

A large body of literature exists on the price-setting newsvendor problem (Khouja

(1999) and Cachon (2003)). The bulk of existing work takes the viewpoint of a seller

who aims to maximize the expected profit. When the product at hand is of public

interest, e.g., a safety/health related product and an energy efficient appliance, its

“production and consumption imposes an indirect involuntary benefits or costs on

other economic agents who are outside the market place for that good” (Ovchinnikov

and Raz (2014)). Hence, social welfare, the total benefits or costs for all entities

involved in the society should be considered explicitly. Setting 4 deals with the ques-

tion how the government should intervene in the seller’s decisions on the retail price

and the order quantity to maximize the expected social welfare in the context of the

newsvendor problem dealing with a public interest good. The problem at hand is

based on the analysis presented by Ovchinnikov and Raz (2014) who consider the

same problem with the exception that they focus on the case of stochastic addi-

tive demand while our focus is on the stochastic multiplicative demand. Our

goal is also the same in the sense that we are interested in alternative intervention

mechanisms achieving contractual coordination.

To this end, extending the results presented by Ovchinnikov and Raz (2014), we

propose alternative interventions, including regulatory and market interventions, to
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align the seller’s decisions with the socially optimal ones. We consider two new regu-

latory interventions, including the maximum price and the minimum quantity, and a

new market intervention called the tax cut along with the two market interventions,

i.e., the cost subsidy and the consumer rebate, considered by Ovchinnikov and Raz

(2014). We demonstrate that simultaneously applying

• Two regulatory interventions together or

• Any combination of two market interventions

allows the government to achieve coordination. Considering the empirical and theo-

retical importance of multiplicative demand in the welfare analysis, our results extend

the knowledge on contractual coordination under the social welfare objective.

The remainder of this dissertation is organized as follows: In Chapter 3, we study

the basic bilateral monopolistic setting and focus on the development of the generic

contract. In Chapter 4, we focus on the multiple product generalizations for the

basic bilateral monopolistic setting, and we present the relation of optimal contracts

in the basic and multi-product bilateral monopolistic settings. In Chapter 5, we

study the exclusive dealer setting by examining and comparing supplier- and buyer-

driven channels. In Chapter 6, we study a newsvendor setting with social welfare

objective and propose alternative intervention mechanisms for channel coordination.
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2. RELATED LITERATURE

Four streams of closely related work are reviewed in this chapter, and they are

organized as follows:

• Literature related to Setting 1, i.e., supplier- and buyer-driven contracts in the

basic bilateral monopolistic setting under price-sensitive demand for a single

product.

• Literature related to Setting 2, i.e., multiple product generalizations consider-

ing the bilateral monopolistic setting under price-sensitive demand.

• Literature related to Setting 3, i.e., multiple product generalizations consider-

ing the exclusive dealer setting under price-sensitive demand.

• Literature related to Setting 4, i.e., quantitative work related to inventory pric-

ing models as they relate to newsvendor problem under social welfare objective.

2.1 Literature related to Setting 1

In the single-product setting, the buyer’s price-sensitive demand function is given

by q = a− bp (a, b > 0), where q and p denote the demand quantity and retail price,

respectively. The decisions of interest to the buyer are p and q. Clearly, q dictates

the buyer’s order quantity which, in turn, is filled by the supplier at wholesale price,

denoted by w. Hence, the decision of interest to the supplier is w.

This setting has a long history since Cournot (1838). Machlup and Taber (1960)

review the early work. They indicate that if the supplier decides w and the buyer

decides p and q under the wholesale price contract, then p would exceed the
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retail price under vertical integration. Jeuland and Shugan (1983) emphasize chan-

nel coordination between the two entities, i.e., supplier and buyer, through various

mechanisms, e.g., joint ownership, transfer pricing schemes, and contracts.

Also, this setting has appeared in recent literature (e.g., Corbett and Tang (1999),

Ertek and Griffin (2002), Corbett et al. (2004), and Liu and Çetinkaya (2009)). Of

particular interest for us are the results presented by Liu and Çetinkaya (2009) who

examine the counterpart supplier- and buyer-driven contracts arising in the single-

product setting.

Liu and Çetinkaya (2009) build on Corbett and Tang (1999) and Corbett et al.

(2004) who assume the supplier-driven channel where the supplier moves first to

specify a contract and then the buyer makes decisions accordingly. In particular,

Corbett and Tang (1999) and Corbett et al. (2004) consider three general types of

supplier-driven contracts: the one-part linear contract, the two-part linear contract,

and the two-part nonlinear contract. We note that the two-part nonlinear contract

is introduced to handle the case of asymmetric information which is out the scope of

this dissertation. Under the supplier-driven one-part linear contract (also, known as

the wholesale price contract), the supplier specifies w independent of q; under

the supplier-driven two-part linear (nonlinear) contract, the supplier specifies both

w and a fixed lump-sum side payment independent (dependent) of q.

In contrast, Liu and Çetinkaya (2009) develop the counterpart buyer-driven

contracts corresponding to these three contracts. While related buyer-driven con-

tracts have been studied (e.g., Ertek and Griffin (2002) and Ingene and Parry (2004)),

the counterpart buyer-driven contracts are different and nontrivial as we discuss next.

For example, consider the counterpart buyer-driven contract corresponding to the

wholesale price contract. As noted by Liu and Çetinkaya (2009), when the buyer

moves first and announces q and p, the supplier would respond with a very high w
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which is equal to p. Then, the buyer would not gain any profit. If the buyer is at the

liberty of choosing w first, however, the buyer would set w equal to the supplier’s

product cost. Then, the supplier would not make any profit. Therefore, designing a

meaningful counterpart contracting scheme requires a careful thought process. That

is, announcing the values of w, q, or p does not lead to a meaningful counterpart

buyer-driven contract.

Liu and Çetinkaya (2009) demonstrate that a meaningful scheme can be con-

structed by considering the buyer’s optimal response for a given w. It is easy to

verify that, for a given w, the buyer’s optimal q is given by q = a − θw − ξ, where

θ = b/2, ξ = a/2 + bc/2 (see (2) on p. 690 of Liu and Çetinkaya (2009)), and c is

the buyer’s unit distribution cost. Then, under the counterpart buyer-driven con-

tract, the buyer moves first and announces the relationship q = a − θw − ξ with

sensitivity parameters θ and ξ (θ, ξ ≥ 0). Next, the supplier announces w. For

any w announced by the supplier as the follower, the buyer’s optimal q is uniquely

determined by q = a− θw − ξ, and, hence, the buyer has no incentive to deviate.

Under this buyer-driven contract, it is optimal for the buyer to set ξ = 0 (see

Liu and Çetinkaya (2009), p. 691, Remark 1), i.e., q = a − θw. Interestingly, Liu

and Çetinkaya (2009) also show that this scheme (q = a − θw) is equivalent to

having the buyer decide a non-negative price multiplier k = θ/b ≥ 0 and commit

the market pricing mechanism p = kw. Hence, while Liu and Çetinkaya (2009)

call this contract as the buyer-driven one-part linear contract, we refer to it as the

multiplier-only contract. It is worthwhile to note that Liu and Çetinkaya (2009)

extend this contract to generate buyer-driven two-part linear and two-part nonlinear

contracts in the spirit of the supplier-driven counterparts examined by Corbett and

Tang (1999) as well as Corbett et al. (2004). Also, it is worthwhile to note that the

analysis presented by Liu and Çetinkaya (2009) and Corbett et al. (2004) considers
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reservation profits explicitly while Corbett and Tang (1999) ignore this practical

consideration.

The pricing scheme p = kw is also considered by Ertek and Griffin (2002) in the

context of designing a buyer-driven contract without a specific focus on a compar-

ative analysis of counterpart supplier- and buyer-driven contracts. While Liu and

Çetinkaya (2009) address the credibility issue that the buyer cannot deviate from

the contractual retail price after obtaining supply, Ertek and Griffin (2002) do not.

Liu and Çetinkaya (2009) demonstrate that leadership benefits the leader in both

supplier- and buyer-driven channels and leadership creates more value for the leader

under more general contract types (such as the two-part linear contracts) if infor-

mation is complete. However, with this finding, Liu and Çetinkaya (2009) move on

to examining the case of asymmetric information, and, hence, do not explore other

potentially more general contracts which is the focus of this dissertation.

Building on Liu and Çetinkaya (2009)’s results summarized above, in contrast

to considering p = kw, we allow a more general pricing scheme p = kw +m in the

single-product setting. We propose a new contract, called the generic contract,

under which the buyer decides on the values of k, k ∈ ℜ, and m, m ∈ ℜ, while also

committing that the retail price would be set such that p = kw +m and the order

quantity would be set such that q = a−bp = a−b(kw+m). Next, the supplier decides

w. Here m can be positive or negative representing a margin (mark-up) or rebate

(mark-down) and k is allowed to be positive or negative for the sake of generality.

However, it is shown later that due to the natural and practical assumptions of the

problem setting at hand, k and m have upper and lower bounds.

Obviously, the pricing scheme p = kw considered by Ertek and Griffin (2002)

and Liu and Çetinkaya (2009) is a special case of the pricing scheme in the generic

contract. It has been called the multiplier-only contract (k ≥ 1 is required to gain
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a nonnegative profit for the buyer). Another special case with p = w +m is called

the margin-only contract (m ≥ 0 is required to gain a nonnegative profit for the

buyer), which has been studied by Ingene and Parry (2004) and Lau et al. (2007)

previously in the setting we analyze here. Ingene and Parry (2004) show that the

system profit is the same under the wholesale price and margin-only contracts, and

Lau et al. (2007) show that the buyer’s profit under the margin-only contract is twice

of that under the wholesale price contract.

Table 2.1 provides a classification of the three buyer-driven contracts mentioned

so far. The relations between q and w for the generic and margin-only contracts are

derived by considering the relation between p and w as well as the relation between

q and p. An overview of all the contracts of interest for a comparative analysis is

given in Table 2.2.

Table 2.1: Buyer-driven contracts of interest in the single-product setting.

Relation of Relation of Relation of Contract parameters
q and p p and w q and w (Buyer’s decision)

Multiplier-only q = a− bp p = kw
q = a− θw k ≥ 1
(θ = bk) or θ ≥ b

Generic q = a− bp p = kw +m
q = a− θw − ξ k,m ∈ (−∞,+∞)
(θ = bk, ξ = bm) or θ, ξ ∈ (−∞,+∞)

Margin-only q = a− bp p = w +m
q = a− θw − ξ m ≥ 0
(θ = b, ξ = bm) or ξ ≥ 0, θ is fixed

Note that both the multiplier-only and generic contracts incorporate the price

multiplier decision. This decision plays an important role in supply contracting

problems mainly from two aspects:

1. Assigning the multiplier provides the decision maker an opportunity to realize
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Table 2.2: Summary of entities’ decisions under the basic supplier- and buyer-driven
contracts in the single-product setting.

Leader Contract Supplier’s decision Buyer’s decision
Supplier Wholesale price Wholesale price w Quantity q

Buyer
Margin-only Wholesale price w Margin m

Multiplier-only Wholesale price w Multiplier k
Generic Wholesale price w Multiplier k and Margin m

more profit (Irmen (1997)a, Tyagi (2005)b, Ertek and Griffin (2002), and Liu

and Çetinkaya (2009)c); and

2. The multiplier represents a practicable profit-driven measure (Liu and Çetinkaya

(2009)) commonly used in the retail industry. In the retail industry, the buyer’s

multiplier p/w and its variants have been commonly used as practicable profit-

driven measures for buyers, according to surveys and articles on industry ap-

plications (e.g., Steiner (1973) and Hall et al. (1997)). The variants of the

multiplier include gross profit margin percentage (GPMP), which is defined as

(unit price- unit purchasing cost)/unit price = (p− w)/p = 1− w/p (Liu and

Çetinkaya (2009)), and the percentage price margin (Tyagi (2005)).

Overall, we consider the basic bilateral monopolistic setting and propose a new

aIrmen (1997) investigates the single-product setting under Nash competition (Fudenberg and
Tirole (1991)), under which the supplier and buyer move and make decisions simultaneously. The
author proves that the retail price is lower and the buyer’s profit is higher if both entities compete
on the percentage price margins (i.e., the price multiplier minus one) than if they compete on the
price margins.

bTyagi (2005) considers a multi-product channel where multiple suppliers sell multiple products
through a common buyer. The author considers a buyer-driven contract under which the buyer
decides the percentage price margin, i.e., (unit retail price - unit wholesale price)/unit wholesale
price = (p− w)/w = p/w − 1. The contract is obviously equivalent to the multiplier-only contract
under which the buyer decides the multiplier, i.e., p/w. Tyagi (2005) shows that it is better for the
buyer to decide the percentage price margin than to decide the price margin m = p−w. However,
the paper does not show how to derive the optimal contract.

cErtek and Griffin (2002) and Liu and Çetinkaya (2009) demonstrate that the buyer is better
off by assigning the price multiplier than the price margin decision in single-product channels.
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contract in the buyer-driven channel called the generic contract. The contract has

a more general pricing scheme than the two existing buyer-driven contracts in the

literature: the margin-only and the multiplier-only contracts. The generic contract

reduces to the margin-only contract when k = 1 and it reduces to the multiplier-only

contract when m = 0. We compare the generic contract with other buyer-driven

contracts in the literature and provide evidence that the generic contract has better

contractual performance than others from several aspects. We demonstrate that the

generic contract is not only optimal for the system and the buyer, it also benefits

consumers and even the supplier.

2.2 Literature related to Setting 2

In the multi-products setting, the supplier’s decisions pertain to the wholesale

prices w1 and w2, and the buyer’s decisions pertain to the order quantities q1 and q2

and the retail prices p1 and p2. The order quantities are dictated by the more general

demand function that depends linearly on the retail prices following qi = a−αpi+βpj

(α > β ≥ 0, i, j = 1, 2, and i ̸= j), where a, α, and β are the parameters of the

demand function.

This type of demand function has been frequently used in the literature on price

competition (e.g., McGuire and Staelin (1983), Choi (1991), Choi (1996), Trivedi

(1998), Pan et al. (2010), and Wu et al. (2012)). In the multi-product setting of

interest, price competition between the substitutable products results from cross-

price effects, where each product’s demand depends on both products’ retail prices.

Hence, the demand function is known as the “symmetric linear demand function

with cross-price effects”, which is the special case of the generalized “linear demand

function with cross-price effects” (e.g., Pashigian (1961), Ingene and Parry (1995),

Tyagi (2005), and Yang and Zhou (2006)). The symmetry assumption for products’
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demands has been widely adopted in the literature on channel management to keep

the problem formulation simple.

In the supplier-driven multi-product setting, Bresnahan and Reiss (1985) and

Yang and Zhou (2006) consider the wholesale price contract. Bresnahan and Reiss

(1985) make the first attempt to extend the single-product setting by considering

one supplier selling multiple substitutable products to one buyer. Although they

show a property that the buyer’s profit is one-half the supplier’s profit if demand is

linear, they do not characterize the optimal contract explicitly as we do. Yang and

Zhou (2006) consider a similar setting to ours with the exceptions that the supplier’s

wholesale price is not differentiated by products and they do not consider the buyer’s

distribution cost. More importantly, both studies only analyze the channel from the

supplier’s perspective and do not consider any buyer-driven channel.

In this dissertation we take the wholesale price contract as the benchmark supplier-

driven contract when we compare supplier- and buyer-driven contracts, because it has

been widely applied in the supplier-driven price competition models (e.g., McGuire

and Staelin (1983), Ingene and Parry (1995), Saggi and Vettas (2002), Yang and

Zhou (2006), and Adida and DeMiguel (2011)), as well as used as a benchmark to

evaluate buyer-driven contracts (e.g., Choi (1991), Trivedi (1998), Ertek and Griffin

(2002), Tyagi (2005), Pan et al. (2010), and Wu et al. (2012)). Its prevalence is

mainly due to the less cost than other contracts, e.g., the revenue-sharing contract

(Pan et al. (2010)) and the quantity discount contract (Jeuland and Shugan (1983)),

which require more information exchanged between entities.

To the best of our knowledge, the buyer-driven channel has not been analyzed

in the multi-product setting of interest. Several existing papers on buyer-driven

channels have considered the margin-only contract as summarized in Table 2.3 that

provides an overview of the related work on the contract considering multiple prod-
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ucts. However, the papers in Table 2.3 consider different multi-product problem

settings than ours, i.e., with either multiple suppliers and/or multiple buyers, and

their results cannot be directly applied to our setting. Also, although all the pa-

pers in Table 2.3 make an attempt to investigate the benefit of leadership, they do

not consider the generic and multiplier-only contracts with the exception of Tyagi

(2005)b.

Table 2.3: Related work on the margin-only contract considering multiple products.

Our work (one-supplier-one-buyer) One-supplier-multi-buyer

N/A
Pan et al. (2010)
Wu et al. (2012)

Multi-supplier-one-buyer Multi-supplier-multi-buyer
Choi (1991)

Lee and Staelin (1997)
Tyagi (2005)

Pan et al. (2010)

Choi (1996)
Lee and Staelin (1997)

Trivedi (1998)

Overall, we consider three different scenarios in the multi-product setting: sym-

metric two-product, symmetric n-product (n ≥ 2), and asymmetric two-product

scenarios. We focus on analyzing the generic contract in the multi-product setting

with three different scenarios while also consider the wholesale price contract by in-

corporating the buyer’s reservation profit. We show that the optimal generic contract

is easy to calculate even in the asymmetric two-product setting. Furthermore, we

prove that a contractual problem in a symmetric n-product (n ≥ 2) setting can be

reduced to a single-product setting. Hence, in the multi-product setting of interest,

without solving an n-product contractual problem, one can directly use the results

derived in Setting 1 to identify the optimal contract of interest in Setting 2.
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2.3 Literature related to Setting 3

In practice, the exclusive dealer setting can be seen in many industries. It is par-

ticularly applicable in the automobile industry, where an automobile manufacturer

usually distributes products through its own dealer (Bresnahan and Reiss (1985))

and the manufacturer-dealer pairs in different brands compete on substitutable ve-

hicles. This channel structure also represents other numerous diverse markets, e.g.,

sewing machines, agricultural machinery, and gasoline (Ridgway (1969)).

The comparative analysis of supplier- and buyer-driven contracts on the exclu-

sive dealer setting also has practical importance. It is because in this setting two

manufacturer-dealer pairs distribute two products exclusively and compete with each

other on retail prices and quantities. Each manufacturer-dealer pair forms a vertical

strategic alliance that the manufacturer provides a product to the dealer exclusively

(Bresnahan and Reiss (1985)). Due to the exclusiveness, selecting the right partner

to become a pair is especially important for both entities, and, hence, leadership

and contract settings between the two entities are obviously also important to their

profitabilities. Hence, the comparison of the supplier- and buyer-driven channels is

important due to the simultaneous existence of vertical strategic alliance and hori-

zontal competition.

Next, we proceed with a detailed discussion of the literature on the exclusive

dealer setting and on related contracts in the following two streams:

1. Work related to this setting classified by leadership and entities’ decisions, and

2. Literature that supports the use of the wholesale price contract with Cournot

competition as the benchmark supplier-driven contract.

In the first stream, Table 2.4 lists the most related work to the exclusive dealer

setting classified by leadership and entities’ decisions under a contract. The main
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Table 2.4: Most closely related work in Setting 3 classified by leadership and entities’
decision.

Leadership Work Supplier’s decision Buyer’s decision

Supplier-driven

McGuire and Staelin (1983) Wholesale price Retail price
Lee and Staelin (1997) Margin Margin

Trivedi (1998) Wholesale price Margin
Wu and Mallik (2010) Wholesale price Retail price

Buyer-driven
Choi (1996) Wholesale price Margin

Lee and Staelin (1997) Margin Margin
Trivedi (1998) Wholesale price Margin

Zhang et al. (2012) Wholesale price Margin

difference between contracts relies in the different decisions. As we can see, all the

studies in Table 2.4 assume decisions of interest for entities are related to prices.

That is, suppliers decide either the wholesale prices or the manufacture margins

(i.e., difference of the wholesale price and the production cost), and buyers decide

either the retail prices or the price margins (i.e., difference of the retail price and the

wholesale price). While McGuire and Staelin (1983), Lee and Staelin (1997), Trivedi

(1998), and Zhang et al. (2012) study the exclusive dealer setting, Choi (1996) and

Wu and Mallik (2010) consider two-supplier-two-buyer settings different than ours:

Choi (1996) considers the duopoly common retailer channel, where each supplier sells

a product to both buyers with cross sales. Wu and Mallik (2010) consider a setting

where one retailer is owned by one manufacturer under vertical integration and the

other retailer is privately owned.

In fact, McGuire and Staelin (1983) point out that margin decisions can be easily

rescaled to price decisions. Therefore, all the buyer-driven contracts in Table 2.4

are equivalent to the margin-only contract in terms of the equilibrium outcomes.

Specifically, Lee and Staelin (1997), Trivedi (1998), and Zhang et al. (2012) study the

margin-only contract under symmetric assumptions in this setting. All the supplier-

driven contracts in Table 2.4 are equivalent to the wholesale price contract with
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Bertrand competition, under which the suppliers decide the wholesale prices and then

the buyers decide the retail prices, recalling the definition of Bertrand competition

in Section 1.3.

Regarding the comparative analysis between leaderships, Lee and Staelin (1997)

and Trivedi (1998) demonstrate that each entity is better off to possess leadership.

Lee and Staelin (1997) show that the retail prices and system profits under different

leaderships are the same, i.e., the system efficiency is independent of whether the

suppliers or the buyers play as channel leaders. Lee and Staelin (1997) also claim

that the suppliers and buyers’ profits are symmetric under different leaderships, i.e.,

the leaders’ profits are the same under both leaderships and so as the followers’

profits. Focusing on the duopoly common retailer channel, Choi (1996) shows that

each entity is better off to possess leadership.

In the second stream, as a classic economic model, Bertrand competition de-

scribes a competition structure in which entities decide prices simultaneously, as we

mentioned earlier. Another commonly used economic model, Cournot competition,

describes interactions between entities that set quantities simultaneously. Recall that

the seminal work of Cournot and Bertrand competition goes back to the nineteenth

century by Cournot (1838) and Bertrand (1883), respectively.

A comparison of Cournot and Bertrand competition (i.e., Bertrand-Cournot com-

parison) appears since Singh and Vives (1984) on a one-tier channel. Singh and Vives

(1984) demonstrate the standard conclusion in regard to the comparison. The con-

clusion is that higher prices, lower quantities, and higher profits are obtained in

Cournot than Bertrand and mixed Cournot-Bertrand competition for duopolies if

products are substitutes with linear demand functions. Using a geometric approach,

Cheng (1985) confirms that it is better for duopoly entities to choose a quantity strat-

egy (Cournot competition) than a price strategy (Bertrand competition) if goods are
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substitutes with given costs (i.e., wholesale prices). Vives (1985) extends the stan-

dard conclusion to oligopolies with arbitrary numbers of entities and more general

demand functions in a symmetric setting. The robustness of the standard conclusion

has been intensely investigated in the economic literature by considering variations of

problem settings, e.g., cost asymmetries, quality difference (Hackner (2000)), mixed

duopolies between private and public firms (Matsumura and Ogawa (2012)).

Although all the literature mentioned above focuses on one-tier channels, the

standard conclusion can be applied to the two-tier channel in the following way. In

a two-tier supplier-buyer channel, after wholesale prices are determined by the sup-

plier(s), the buyers face the same problem as that in a one-tier channel, and, hence,

it is always better for the buyers to compete on quantities (i.e., Cournot compe-

tition) according to the standard conclusion assuming that the buyers are rational

decision makers. Since the buyers are followers who are at the liberty of choosing

a competition strategy after observing wholesale prices, Cournot competition would

be always implemented. Limited work explicitly examines two-tier channels. Man-

asakis and Vlassis (2014) consider the exclusive dealer setting with a more general

objective function for the suppliers. Consistent with the results in one-tierm chan-

nels, they show that Cournot competition is the equilibrium strategy between the

buyers while Bertrand competition can never be an equilibrium strategy. This result

directly supports the use of the wholesale price contract with Cournot competition

as the benchmark contract in the supplier-driven channel.

As we can see, Cournot-Bertrand comparison in one-tier channels has been fully

examined in prior literature, and the comparison under the wholesale price contract

based on downstream entities’ profits in two-tier channels can be also derived ac-

cordingly. However, how the competition strategy adopted by downstream entities

(i.e., buyers) affects upstream entities’ profits (i.e., supplier-tier profit) and system
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efficiency has not been paid enough attention.

Overall, we currently focus on the buyer-driven channel. While only the margin-

only contract under symmetric assumptions has been studied in the exclusive dealer

setting, we examine the more general contract (the generic contract) under the fully

asymmetric assumption.

2.4 Literature related to Setting 4

We consider a price-setting newsvendor facing stochastic multiplicative demand

in the social welfare setting. Two streams of literature provide background for our

work:

• The empirical work (e.g., Tellis (1988), Mulhern and Lenone (1991), and Hoch

et al. (1995)) supporting the wide applicability of multiplicative demand, and

• The quantitative work on inventory pricing models.

The existing quantitative work on inventory pricing models can be roughly clas-

sified by the optimization objective and by the demand, as shown in Table 2.5. In

the interest of brevity, our emphasis is on previous work that motivates our problem

setting (social welfare and multiplicative demand) by omitting details of less rela-

tive work, such as profit-maximization models under deterministic demand, on the

bottom left hand side of Table 2.5. We refer readers to review papers in this area,

including Cachon (1998) and Vives (2001). In the sequel, we will first review both

the empirical and quantitative work that supports the application of multiplicative

demand, and then review the exiting work focusing on social welfare problems.

Substantial evidence for the importance of multiplicative demand is provided by

the empirical work (e.g., Tellis (1988), Mulhern and Lenone (1991), and Hoch et al.

(1995)). Specifically, Tellis (1988) reviews 424 models from 42 studies on estimating
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the effect of price on market share using actual observations. The author finds that

the number of models using the multiplicative demand function is as twice as the

number of models using the additive demand function. Especially, for products that

are commonly considered for their social welfare issue, such as pharmaceutical and

other health-related products, Tellis (1988) points out that consumers pay more

attention to their effectiveness than to the price. Thus, the multiplicative demand

function is more appropriate, as the price elasticity intends to be consistent for

different prices in this case. The reason that Mulhern and Lenone (1991) prefer

to multiplicative demand is that, the additive model, referred as the linear model,

presents unacceptable price elasticity when prices are discounted. Furthermore, Hoch

et al. (1995) suggest that multiplicative demand is more appropriate in representing

the effect of price on demand after analyzing data of 18 product categories from 83

supermarkets.

Table 2.5: Quantitative work related to inventory pricing models.

Deterministic Stochastic

Social
Welfare

Chick et al. (2008)
Deo and Corbett (2009)

Cho (2010)
Arifolu et al. (2012)
Adida et al. (2013)

Mamani et al. (2012)
Levi et al. (2013)

Bell (2001)
Taylor and Yadav (2011)

Ovchinnikov and Raz (2014)

Profit
Review papers
(Cachon (1998)
Vives (2001))

Review papers (Yano and Gilbert (2003)
Chan et al. (2004)

Chen and Simchi-Levi (2012))
Polatoglu and Sahin (2000)

Chen and Simchi-Levi (2004a)
Chen and Simchi-Levi (2004b)

Song et al. (2009)
Cohen et al. (2014)

Taylor and Xiao (2014)
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On the bottom right hand side of Table 2.5, the literature on inventory pricing

models using stochastic demand functions is vast. The work in this area has been

reviewed by Yano and Gilbert (2003), Chan et al. (2004), and Chen and Simchi-Levi

(2012). The models in this stream can be divided into two groups based on how the

uncertainty is modeled in the demand function, using additive demand and multi-

plicative demand. A large number of studies consider multiplicative demand (e.g.,

Polatoglu and Sahin (2000), Chen and Simchi-Levi (2004a), Chen and Simchi-Levi

(2004b), Song et al. (2009), and Taylor and Xiao (2014)). Though these papers are

devoted to profit maximization problems, they definitely support the use of multi-

plicative demand. In addition, the empirical importance of multiplicative demand

has also been noticed by other analytical work, such as Cachon and Kok (2007),

Driver and Valletti (2003), and Huang and Van Mieghem (2013). Specifically, Ca-

chon and Kok (2007) argue that the multiplicative function, especially in the forms

of D(p, ξ) = x(ξ)αp−β and D(p, ξ) = x(ξ)αe−βp, fits actual data better than the

additive demand function. In the continuous discussion on which function is more

realistic, Driver and Valletti (2003) prefer to the multiplicative demand, as the price

elasticity of demand remains constant to any demand realization. This favor is also

supported by Huang and Van Mieghem (2013). Cohen et al. (2014) consider both

additive and multiplicative demand in a problem where a retailer sells a public in-

terest good and the government applies the rebate mechanism to stimulate the sale

to achieve a given target level. They examine how demand uncertainty (additive

and multiplicative) impacts optimal decisions of the government, industry, and con-

sumers. Our work is different with Cohen et al. (2014)’s work in that we consider

impacts of demand uncertainty on decisions maximizing social welfare, while they

consider the impacts on decisions on achieving a given target sales level.
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Besides its applicability, the theoretical importance of the multiplicative demand

cannot be ignored as well. Several commonly-used demand functions in stochas-

tic models are multiplicative, e.g., the willingness-to-pay model (e.g., Kocabiyikoglu

and Popescu (2011)), referred as the reservation-price model (e.g., Van Ryzin (2005)).

The reservation-price model is critical in representing demand for a new product or

an existing product using demand forecasts (e.g., Kalish (1985)). Argued by Ko-

cabiyikoglu and Popescu (2011), both the exponential model d(p) = e(z−bp) and the

semilogarithmic function popularly used in the marketing literature, are classified as

or can be transformed into the multiplicative specification. In addition, managerial

insights are usually different respective of demand function, and some of the insights

are even contrasting (e.g., Driver and Valletti (2003), and Salinger and Ampudia

(2011)). To complement the existing work on additive demand and for the com-

parative analysis, it is necessary to study multiplicative demand and investigate the

impact of demand uncertainty on decisions in the social welfare setting.

As this dissertation concentrates on the operational issues in the social welfare

setting, we proceed with a detailed review on existing work in the operation man-

agement area, while the fundamental work on the social welfare in economics (e.g.,

Arrow (1950) and Andersen (1977)) will be not our emphasis. In the social welfare

setting of interest, the newsvendor model is considered by Taylor and Yadav (2011)

and Ovchinnikov and Raz (2014). Taylor and Yadav (2011) consider both the price-

fixed and price-setting newsvendor problems with the additive demand, and Ovchin-

nikov and Raz (2014) also consider the additive demand. With different objectives,

Ovchinnikov and Raz (2014) aim to maximize the expected social welfare, while Tay-

lor and Yadav (2011) are interested in maximizing both the donor’s expected profit

and the expected social welfare. Bell (2001) incorporates the demand uncertainty in

another way by assuming demand depending on consumers’ expected surplus. Prior
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work on social welfare issues assuming deterministic demand is comparatively rich,

as shown in Table 2.6. Most of the work concentrates in the vaccine market with the

random production yield and deterministic demand of vaccine, while assuming dif-

ferent problem settings. For example, Cho (2010) considers a multi-period problem,

Arifolu et al. (2012) incorporate the consumption externality, and Adida et al. (2013)

consider the effect of network and the consumers’ purchase preference. Mamani et al.

(2012) assume the deterministic demand depending on both price and coverage of

the product.

Table 2.6: Most closely related work considering social welfare classified by demand.

Deterministic
demand

Chick et al. (2008) (random production yield)
Deo and Corbett (2009) (random production yield)

Cho (2010) (random production yield)
Arifolu et al. (2012) (random production yield)
Adida et al. (2013) (random production yield)

Mamani et al. (2012) (demand depending on price and coverage)
Levi et al. (2013) (random production yield)

Stochastic
demand

Bell (2001) (demand depending on consumers’ surplus)
Taylor and Yadav (2011) (price-fixed/setting and additive)

Ovchinnikov and Raz (2014) (price-setting and additive)
Our work (price-setting and multiplicative)

As intervention mechanisms play an important role in coordinating the price and

quantity decisions for a public interest good, the work related to social welfare can be

also classified based on the type of intervention, as shown in Table 2.7. Specifically,

Taylor and Yadav (2011), Adida et al. (2013), and Ovchinnikov and Raz (2014)

employ the subsidies (cost subsidies and purchase subsidies), the rebates (consumer

rebates and sales subsidies) and their combination. Mamani et al. (2012) adopt

the taxes, the subsidies, and their combination. Regards to the effectiveness of a

single intervention, Ovchinnikov and Raz (2014) observe that the consumer rebate
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is better than the cost subsidy in terms of the less social welfare loss when either

price or quantity is coordinated. Taylor and Yadav (2011) have a similar result

that the sales subsidy is better for both donors and the whole society under specific

conditions. Respect to joint interventions, Adida et al. (2013), Mamani et al. (2012)

and Ovchinnikov and Raz (2014) all prove combinations of interventions achieving

the system coordination and maximizing the expected social welfare. We summarize

the most related work to our work in Table 2.7 by emphasizing our differences on

intervention mechanisms of interest.

Table 2.7: Most closely related work classified by intervention mechanism.

Regulation Market intervention
Taxes Subsidies Rebates

Ovchinnikov and Raz (2014) ✓ ✓
Taylor and Yadav (2011) ✓ ✓

Adida et al. (2013) ✓ ✓
Mamani et al. (2012) ✓ ✓

Our work ✓ ✓ ✓ ✓

Realizing the empirical and theoretical importance of the multiplicative demand

and the significance of social welfare for marketing a public interest good, to the best

of our knowledge, this dissertation is the first to combine the two characteristics and

to investigate government intervention mechanisms that maximize the expected so-

cial welfare. As mentioned earlier, we prove that the multiplicative demand function

is feasible in modeling the social welfare. The proof is built on results by Krishnan

(2010) and Mas-Colell et al. (1995).

Overall, we revisit Ovchinnikov and Raz (2014) by considering a social welfare

setting, in which a public interest good is distributed by a newsvendor-type seller to
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consumers with stochastic demand depending on retail price under the multiplicative

demand function. We propose two new government regularity intervention and one

new market intervention for channel coordination to maximize the expected social

welfare. We investigate contractual performance under various interventions in terms

of effectiveness, efficiency and the government cost.
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3. PRELIMINARIES AND THE GENERIC CONTRACT

3.1 Setting 1. The basic bilateral monopolistic contractual setting (a.k.a.

single-product setting)

We consider the basic bilateral monopolistic setting, i.e., the supplier-buyer

channel, with a single product and price-sensitive deterministic demand illustrated in

Figure 3.1 and referred as the single-product setting here. The buyer’s price-sensitive

demand function is given by

q = a− bp, (3.1)

where q and p denote the demand quantity and retail price, respectively. Naturally,

0 ≤ p ≤ a/b, so that q ≥ 0. Parameter a, a > 0, represents the market potential

which is the demand when price approaches zero (Swartz and Iacobucci (2000)).

Hence, a also represents the part of demand that is not affected by price (Adida

and Perakis (2010)). Parameter b, b > 0, represents the sensitivity of demand with

respect to price (Ingene and Parry (2004) and Adida and Perakis (2010)). Hence, b

measures how the demand is affected by price. The decisions of interest to the buyer

are q and p. Clearly, q dictates the buyer’s order quantity, which in turn, is filled by

the supplier at wholesale price, denoted by w, so that the decision of interest to the

supplier is w. The notation introduced so far and used frequently in the remainder

of this chapter is summarized in Table 3.1.

BuyerSupplier
q = a � bp

w p

Figure 3.1: The basic bilateral monopolistic contractual setting.
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We are interested in studying contractual settings related to the buyer’s decisions

(i.e., p and q) as well as the supplier’s decision (i.e., w) in this setting. Of particular

interest is an explicit comparison of buyer- and supplier-driven contracts as discussed

in the next section.

3.2 Supplier- and buyer-driven contracts

In the supplier-driven channel, the supplier moves first to specify a contract and

then the buyer makes decisions accordingly. In contrast, in the buyer-driven channel,

the buyer moves first to specify a contract and then the supplier makes decisions

accordingly (Liu and Çetinkaya (2009)).

For an explicit comparison of buyer- and supplier-driven channels, we consider

four specific contracts. Namely, we consider the wholesale price contract, denoted by

s1, in the supplier-driven channel, and the margin-only, multiplier-only, and generic

contracts, denoted by b1, b2, and b3, respectively, in the buyer-driven channel:

s1. Under the wholesale price contract, the supplier decides w and then the buyer

decides p.

b1. Under the margin-only contract, the buyer decides the price margina, denoted

by m, m ≥ 0, representing the difference between the retail and wholesale

prices, while also committing that the retail price would be set such that p =

w+m and the order quantity would be set such that q = a−bp = a−b(w+m)b.

Next, the supplier decides w.

b2. Under the multiplier-only contract, the buyer decides the price multiplierc, de-

aThe term price margin is used because m ≥ 0 adds a per unit profit to the wholesale price. As
shown later, under b1, m satisfies (3.22).

bAlthough we mention that the buyer commits on both relationships for p and q, we will show
later that it suffices for the buyer to commit only on the latter relationship regarding q so that
there is no credibility issue under this contract.

cThe term price multiplier is used because k ≥ 1 marks up the wholesale price through multi-
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noted by k, k ≥ 1, representing the ratio of the retail and wholesale prices,

while also committing that the retail price would be set such that p = kw and

the order quantity would be set such that q = a − bp = a − bkwb. Next, the

supplier decides w.

b3. Under the generic contract, the buyer decides on the valuesd of k, k ∈ ℜ, and

m, m ∈ ℜ, while also committing that the retail price would be set such that

p = kw + m and the order quantity would be set such that q = a − bp =

a− b(kw +m)b. Next, the supplier decides w.

Contracts s1, b1, and b2 are commonly utilized in practice and analyzed in pre-

vious literaturee. Contract b3 is inspired by b1 and b2 in an attempt to propose a

more general pricing scheme and analyzed here for the sake of generality. We are

interested in computing the optimal contract parameters under s1, b1, b2, and b3.

To this end, we develop basic optimization models, and we utilize the principles of

Stackelberg games because the contracting processes are representative of sequential

leader-follower games (see Chapter 3 of Fudenberg and Tirole (1991)).

3.3 Profit functions

In the single-product setting, using (3.1), the supplier’s profit function is given

by

πs = (w − s)q = (w − s)(a− bp), (3.2)

plication. As shown later, under b2, k also satisfies (3.49).
dObserve that, under b3, m can be positive or negative representing a margin (mark-up) or

rebate (mark-down). Likewise, under b3, k is allowed to be positive or negative for the sake of
generality. However, it is shown later that due to the natural and practical assumptions of the
problem setting at hand (e.g., see assumption (3.5)), k and m are such that (3.60) and (3.71) hold.
Also, the optimal value of k satisfies k ≥ 1.

eFor example, s1 has been studied by Corbett et al. (2004) among others; b1 has been studied
by Lau et al. (2007) among others; and b2 has been studied by Liu and Çetinkaya (2009) among
others. The details of earlier work on these contracts as they apply to our work are given in Sections
3.4 and 3.2.
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where s is the supplier’s unit production cost, s ≥ 0. The buyer’s profit function is

given by

πb = (p− w − c)q = (p− w − c)(a− bp), (3.3)

where c is the buyer’s unit distribution cost, c ≥ 0. The system profit function is

given by

Π = πs + πb = (p− s− c)q = (p− s− c)(a− bp). (3.4)

Recalling (3.1), (3.2), and (3.3), in order to guarantee q ≥ 0, πb ≥ 0, and πs ≥ 0, we

assume p ≤ a/b, w ≥ s, and p ≥ w + c so that

s+ c ≤ w + c ≤ p ≤ a

b
. (3.5)

We pay particular attention to ensure that the contractual problems at hand

lead to nonnegative profits πb, πs, and Π for the sake of practical realism. We

also incorporate the notion of reservation profits, denoted by π−
b ≥ 0 for the buyer

and π−
s ≥ 0 for the supplier, so that not only the profits are nonnegative but also

they exceed minimum expectations of the entities involved. Then, considering the

fact that s1 is a supplier-driven contract, the buyer would not accept s1 unless the

buyer’s corresponding profit exceeds π−
b . Likewise, considering the fact that b1 (b2

and b3) is a buyer-driven contract, the supplier would not accept b1 (b2 and b3)

unless the supplier’s corresponding profit exceeds π−
s .

We are primarily interested in the more general case where all external model

parameters, i.e., a, b, s, c, π−
b , and π−

s , are positive. However, when appropriate

or necessary, we comment on the cases where s = 0, π−
b = 0, and π−

s = 0 for three

specific reasons to include

• These cases have appeared in the literature (e.g., Corbett and Tang (1999)
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ignore π−
b ≥ 0 under s1 and Lau et al. (2007) assume π−

s = 0 under b1),

• They make practical sense (e.g., the case s = 0 is applicable if the supplier is a

wholesale distributer, i.e., not a manufacturer. Raju and Zhang (2005) assume

s = 0 in a channel with a supplier, a dominant retailer and multiple fringe

retailers.), and

• The technical derivations of optimal contract parameters are different (e.g., see

the derivations under b2 for s = 0 and s > 0).

3.3.1 Centralized problem

Under centralized control, p is decided by the central planner to maximize the

system profit Π in (3.4). This is a hypothetical assumption but it is useful to obtain

an upper bound on the system profit so that we have a benchmark on the overall

performance under the contracts of interest. Hence, using (3.4) and assumption (3.5),

the centralized optimization problem can be stated as

(Pc) : max
s+c≤p≤a/b

Π = (p− s− c)q = (p− s− c)(a− bp).

Clearly, w is immaterial for Π in (3.4), and, hence, by assumption (3.5), we are only

interested in p values that satisfy

s+ c ≤ p ≤ a

b
. (3.6)

We refer to (3.6) as the main constraint on the decision variable p of the central-

ized problem. Now, recalling (3.1) and considering (3.6), we note that

0 ≤ q ≤ a− b(s+ c). (3.7)
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Also, we note that (3.6) as well as (3.7) assure that Π in (3.4) is nonnegative. In

fact, this is the leastf the centralized decision maker should target.

Using (3.4), note that

dΠ

dp
= a− 2bp+ b(s+ c) and (3.8)

d2Π

dp2
= −2b < 0.

It is easy to see that Π is concave in p and setting dΠ/dp = 0 in (3.8) leads to

pc =
a+ b(s+ c)

2b
. (3.9)

Observe that pc defined in (3.9) is the centralized optimal retail price. This

is because by assumption (3.5),

a

b
− pc =

a− b(s+ c)

2b
≥ 0 and

pc − (s+ c) =
a− b(s+ c)

2b
≥ 0,

so that pc in (3.9) is realizable over the region (3.6). Using (3.1) and (3.9), the

centralized optimal order quantity is given by

qc =
a− b(s+ c)

2
. (3.10)

Clearly, by assumption (3.5),

a− b(s+ c)− qc =
a− b(s+ c)

2
≥ 0,

fAs we have noted earlier, when we develop optimization models for the contracts of interest,
we eventually incorporate the notion of reservation profits so that not only the profits are positive
but also they exceed minimum expectations of the entities involved.
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so that qc defined in (3.10) lies over the region (3.7). Substituting (3.9) in (3.4), the

centralized optimal system profit, denoted by Πc, is given by

Πc =
[a− b(s+ c)]2

4b
. (3.11)

It is important to note that (Pc) is also solved by Lau et al. (2007) leading to pc

in (3.9) and Πc in (3.11) (see the expressions in (2) on p. 850 of Lau et al. (2007)).

Ingene and Parry (2004) also consider a variant of (Pc) but allowing a more general

cost structure where each entity has a per unit cost as well as a fixed cost. By

setting the fixed costs equal zero, their problem (see the problem in (2.3.2) on p. 35

of Ingene and Parry (2004)) is reduced to (Pc) leading to pc in (3.9) and Πc in (3.11)

(see (2.3.4) on p. 35 and (2.3.6) on p. 36 of Ingene and Parry (2004)).

3.4 Contract-based optimization problems

3.4.1 Wholesale price contract s1

As we have noted in Section 3.2, under s1, the supplier decides w first and then

the buyer decides p. By assumption (3.5), under s1, we are only interested in w and

p values that satisfy

s ≤ w ≤ a

b
− c and (3.12)

w + c ≤ p ≤ a

b
. (3.13)

Also, recalling (3.1) and considering (3.13), we have

0 ≤ q ≤ a− b(w + c). (3.14)

We refer to (3.12) as the main constraint on the decision variable w of the contract
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design problem under s1. Also, we note that (3.13) as well as (3.14) assure πb in (3.3)

is nonnegative. In fact, this is the leastf the supplier should consider in designing

the supplier-driven contract s1.

For a given w that satisfies (3.12), using (3.3), we have

πb = (p− w − c)(a− bp),

so that

dπb

dp
= a− 2bp+ b(w + c) and (3.15)

d2πb

dp2
= −2b < 0.

Clearly, πb is concave in p and setting dπb/dp = 0 in (3.15) leads to

ps1(w) =
a+ b(w + c)

2b
. (3.16)

Observe that for any w such that (3.12) is true, ps1(w) defined in (3.16) is the

buyer’s optimal response, i.e., the optimal retail price, under s1. This is

because w satisfies (3.12) so that

a

b
− ps1(w) =

a− b(w + c)

2b
≥ 0 and

ps1(w)− (w + c) =
a− b(w + c)

2b
≥ 0.

Hence, ps1(w) in (3.16) is realizable over the region (3.13). Substituting (3.16) in

(3.1), the buyer’s optimal order quantity under s1 for a given w that satisfies
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(3.12) can be written as

qs1(w) =
a− b(w + c)

2
. (3.17)

Again, since w satisfies (3.12),

a− b(w + c)− qs1(w) =
a− b(w + c)

2
≥ 0,

so that qs1(w) defined in (3.17) lies over the region (3.14).

Also, given the main constraint (3.12) on the decision variable w, it is easy to

verify that assumption (3.5) holds true for p = ps1(w), where ps1(w) is as defined

in (3.16). Hence, the buyer’s optimal price-quantity response tuple (ps1(w), qs1(w))

does not violate the fundamental assumptions of the problem at hand.

Using (3.16) and (3.17) in (3.2) and (3.3), we have

πs =
(w − s)[a− b(w + c)]

2
and

πb =
[a− b(w + c)]2

4b
.

As noted earlier, considering the fact that s1 is a supplier-driven contract, the buyer

would not accept s1 unless the buyer’s corresponding profit exceeds π−
b . Then, recall-

ing (3.12) and considering the two above expressions for πs and πb, the supplier’s

optimization problem under s1 can be stated as

(Ps1) : max
s≤w≤a/b−c

πs =
(w − s)[a− b(w + c)]

2
(3.18)

s.t. πb =
[a− b(w + c)]2

4b
≥ π−

b . (3.19)

Clearly, (Ps1) makes sense only for reasonable values of π−
b . That is, a natural
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upper bound on π−
b is given by

0 ≤ π−
b ≤ Πc =

[a− b(s+ c)]2

4b
, (3.20)

where Πc is the optimal centralized system profit in (3.11). Hence, we assume (3.20)

holds and, otherwise, (Ps1) does not have a feasible solution.

Now that we have the complete formulation of (Ps1), it is easy to see that the

main constraint (3.12) assures that πs in (3.18) is nonnegative, i.e., under (3.12),

the numerator of (3.18) is nonnegative because w − s ≥ 0 and a− b(w + c) ≥ 0.

It is important to note that (Ps1) is studied by Corbett et al. (2004) (see Case

F1 defined in Section 4 on p. 552 of Corbett et al. (2004)). That is, Corbett et al.

(2004) consider the formulation of (Ps1) given by (3.18) and (3.19) and derive ps1(w)

in (3.16) and qs1(w) in (3.17) (see the expressions in (6) on p. 552 of Corbett et al.

(2004)).

3.4.2 Margin-only contract b1

As noted in Section 3.2, under b1, the buyer announces that p would be set

depending on w according to

p = w +m, (3.21)

where m ≥ 0 is the price margin. Then, the buyer moves first and specifies m and the

supplier selects the optimal w. By assumption (3.5), under b1, we are only interested

in m, w, and p values that satisfy

c ≤ m ≤ a

b
− s, (3.22)

s ≤ w ≤ a

b
−m, and (3.23)

s+m ≤ p ≤ a

b
. (3.24)
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Also, recalling (3.1) and considering (3.24), we have

0 ≤ q ≤ a− b(s+m). (3.25)

We refer to (3.22) as the main constraint on the decision variablem of the contract

design problem under b1. Also, we note that (3.23) along with (3.24)–(3.25) assure

that πs in (3.2) is nonnegative. In fact, this is the leastf the buyer should consider

in designing the buyer-driven contract b1.

For a given m that satisfies (3.22), using (3.21), πs in (3.2) can be rewritten as

πs = (w − s)q = (w − s)(a− bp) = (w − s)[a− b(w +m)]

so that

dπs

dw
= a− 2bw + b(s−m) and (3.26)

d2πs

dw2
= −2b < 0. (3.27)

Clearly, πs is concave in w and setting dπs/dw = 0 in (3.26) leads to

wb1(m) =
a+ b(s−m)

2b
. (3.28)

Observe that for any m such that (3.22) is true, wb1(m) defined in (3.28) is the

supplier’s optimal response, i.e., the optimal wholesale price, under b1.

This is because m satisfies (3.22) so that

a

b
−m− wb1(m) =

a− b(s+m)

2b
≥ 0 and

wb1(m)− s =
a− b(s+m)

2b
≥ 0.
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Hence, wb1(m) in (3.28) is realizable over the region (3.23). Substituting (3.28) in

(3.21) and using (3.1), the corresponding retail price and order quantity for

a given m that satisfies (3.22) are given by

pb1(m) =
a+ b(s+m)

2b
and (3.29)

qb1(m) =
a− b(s+m)

2
, (3.30)

respectively. Again, since m satisfies (3.22),

a

b
− pb1(m) =

a− b(s+m)

2b
≥ 0 and

pb1(m)− (s+m) =
a− b(s+m)

2b
≥ 0,

so that pb1(m) defined in (3.29) lies over the region (3.24). Likewise,

a− b(s+m)− qb1(m) =
a− b(s+m)

2
≥ 0,

so that qb1(m) defined in (3.30) lies over the region (3.25).

Also, given the main constraint (3.22) on the decision variable m, it is easy

to verify that assumption (3.5) holds true for w = wb1(m), where wb1(m) is as

defined in (3.28). Hence, the supplier’s optimal response wb1(m) does not violate the

fundamental assumptions of the problem at hand.

Using (3.28), (3.29), and (3.30) in (3.2) and (3.3), we have

πs =
[a− b(s+m)]2

4b
and

πb =
(m− c)[a− b(s+m)]

2
.
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As noted earlier, considering the fact that b1 is a buyer-driven contract, the supplier

would not accept b1 unless the supplier’s corresponding profit exceeds π−
s . Hence, we

have the constraint πs ≥ π−
s . Then, recalling (3.22) and considering the two above

expressions for πs and πb, the buyer’s optimization problem under b1 can be

stated as

(Pb1) : max
c≤m≤a/b−s

πb =
(m− c)[a− b(s+m)]

2
(3.31)

s.t. πs =
[a− b(s+m)]2

4b
≥ π−

s . (3.32)

Clearly, (Pb1) makes sense only for reasonable values of π−
s . That is, a natural

upper bound on π−
s is given by

0 ≤ π−
s ≤ Πc =

[a− b(s+ c)]2

4b
, (3.33)

where Πc is the optimal centralized system profit in (3.11). Hence, we assume (3.33)

holds and, otherwise, (Pb1) does not have a feasible solution.

Now that we have the complete formulation of (Pb1), it is easy to see that the

main constraint (3.22) assures that πb in (3.31) is nonnegative, i.e., under (3.22),

the numerator of (3.31) is nonnegative because m− c ≥ 0 and a− b(s+m) ≥ 0.

It is important to note that (Pb1) is studied by Lau et al. (2007) who assume

π−
s = 0. That is, Lau et al. (2007) consider πb in (3.31) and derive wb1(m) in (3.28)

(see the expression in (5) on p. 852 of Lau et al. (2007)). Ingene and Parry (2004)

also consider a variant of (Pb1) again assuming π−
s = 0 but allowing a more general

cost structure, where each entity has a per unit cost as well as a fixed cost. By setting

the buyer’s fixed cost equal zero, their problem (see the problem in (2.3.29) on p.

39 of Ingene and Parry (2004)) is reduced to (Pb1) with π−
s = 0. Hence, qb1(m) in
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(3.30) is also derived by Ingene and Parry (2004) (see the expression in (2.3.28) on

p. 39 of Ingene and Parry (2004)).

3.4.3 Multiplier-only contract b2

As noted in Section 3.2, under b2, the buyer announces that p would be set

depending on w according to

p = kw, (3.34)

where k ≥ 1 is the price multiplier. Then, the buyer moves first and specifies k and

the supplier selects the optimal w. Substituting (3.34) in (3.1), we have

q = a− bp = a− bkw ≥ 0. (3.35)

By assumption (3.5), we have w ≥ s. Hence, using (3.35),

a− bsk ≥ a− bkw ≥ 0.

Then, under b2, we are only interested in k and w values that satisfy

1 ≤ k ≤ a

bs
and (3.36)

s ≤ w ≤ a

bk
. (3.37)

Also, using (3.34) in (3.37), we have

sk ≤ p ≤ a

b
. (3.38)
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Then, recalling (3.1) and considering (3.38) leads to

0 ≤ q ≤ a− bsk. (3.39)

We refer to (3.36) as the main constraint on the decision variable k of the contract

design problem under b2. However, unlike in the case of b1, the main constraint (3.36)

along with the accompanying constraints (3.42)–(3.44) do not assure that πb in (3.3)

is nonnegativeg under b2. We address this concern momentarily once we compute

the supplier’s optimal response.

For a given k that satisfies (3.36), using (3.34), πs in (3.2) can be rewritten as

πs = (w − s)q = (w − s)(a− bp) = (w − s)(a− bkw),

so that

dπs

dw
= a+ bsk − 2bkw and (3.40)

d2πs

dw2
= −2bk < 0. (3.41)

Clearly, πs is concave in w and setting dπs/dw = 0 in (3.40) leads to

wb2(k) =
a+ bsk

2bk
. (3.42)

Observe that for any k such that (3.36) is true, wb2(k) defined in (3.42) is the

supplier’s optimal response, i.e., the optimal wholesale price, under b2.

gThis is simply because the lower limit of k in (3.36) is specified as k ≥ 1 so that p = kw ≥ w.
However, the lower limit k ≥ 1 alone does not assure p = kw ≥ w+ c which is in fact the condition
assuring that πb in (3.3) is nonnegative. We momentarily ignore this more strict lower limit on
k but later we establish its equivalent (see (3.46)) and incorporate it in our analysis.
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This is because k satisfies (3.36) so that

a

bs
− wb2(k) =

a− bsk

2bk
≥ 0 and

wb2(k)− s =
a− bsk

2bk
≥ 0.

Hence, wb2(k) in (3.42) is realizable over the region (3.37). Substituting (3.42) in

(3.34) and using (3.1), the corresponding retail price and order quantity for

a given k that satisfies (3.36) are given by

pb2(k) =
a+ bsk

2b
and (3.43)

qb2(k) =
a− bsk

2
, (3.44)

respectively. Again, since k satisfies (3.36),

a

b
− pb2(k) =

a− bsk

2b
≥ 0 and

pb2(k)− sk =
a− bsk

2b
≥ 0,

so that pb2(k) defined in (3.43) lies over the region (3.38). Likewise,

a− bsk − qb2(k) =
a− bsk

2
≥ 0,

so that qb2(k) defined in (3.44) lies over the region (3.39).

Now, as before, we need to verify that assumption (3.5) holds true for w = wb2(k),

where wb2(k) is as defined in (3.42). Unlike in the case of b1, the main constraint

(3.36) on the decision variable k is not sufficienth for this verification under b2. For

hAlso, see footnote g.
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this reason, rewriting assumption (3.5) while using (3.42), we need to ensure

s+ c ≤ a+ bsk

2bk
+ c ≤ p =

a+ bsk

2b
≤ a

b
(3.45)

holds true. Examining the above inequalities, it is easy to validate that if the lower

limit of (3.36) is revised such that

k ≥ 1 +
2bck

a+ bsk

then (3.45) is ensured. Hence, the main constraint (3.36) needs to be replaced with

1 +
2bck

a+ bsk
≤ k ≤ a

bs
, (3.46)

so that assumption (3.5) holds true for w = wb2(k).

For obvious reasons, we now refer to (3.46) as the main constraint on the decision

variable k of the contract design problem under b2. Using the newly established lower

limit of k in (3.46), we note that

1 +
2bck

a+ bsk
= k

is equivalent to f(k) = 0 where f(k) is defined as

f(k) = bsk2 + (a− bs− 2bc)k − a. (3.47)

Observe that

df(k)

dk
= 2bsk + a− bs− 2bc and

d2f(k)

dk2
= 2bs.
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Hence, f(k) is convex in k. Also, limk→+∞ f(k) → +∞ and f(0) = −a < 0. Function

f(k) is illustrated in Figures 3.2 and 3.3 when the minimizer k∗
f of f(k) is positive

and negative, respectively. It is easy to verify that

k∗
f = −a− bs− 2bc

2bs
(3.48)

so that k∗
f ≥ 0 if a − bs − 2bc ≤ 0 and k∗

f < 0 if a − bs − 2bc > 0. As illustrated

in Figures 3.2 and 3.3, for both cases, there exists a unique positive kl such that

f(kl) = 0 so that (3.46) can be rewritten as

kl ≤ k ≤ a

bs
. (3.49)

It then follows that, given the final main constraint (3.49) on the decision variable

k, assumption (3.5) holds true for w = wb2(k).

lk
a−

)(kf

bs

bcbsa
k f 2

2* −−−= k
0

Figure 3.2: An illustration of f(k) in (3.47) when a− bs− 2bc < 0.
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lk
a−

)(kf

bs

bcbsa
k f 2

2* −−−= k

0

Figure 3.3: An illustration of f(k) in (3.47) when a− bs− 2bc > 0.

Using (3.42), (3.43), and (3.44) in (3.2) and (3.3), we have

πs =
(a− bsk)2

4bk
and

πb =
(a− bsk)[a(k − 1) + bk(sk − s− 2c)]

4bk
.

Then, recalling (3.49) and considering the two above expressions for πs and πb, the

buyer’s optimization problem under b2 can be stated as

(Pb2) : max
kl≤k≤a/(bs)

πb =
(a− bsk)[a(k − 1) + bk(sk − s− 2c)]

4bk
(3.50)

s.t. πs =
(a− bsk)2

4bk
≥ π−

s . (3.51)

Now that we have the complete formulation of (Pb2), it is easy to see that the

main constraint (3.49) assures that πb in (3.50) is nonnegative. This is because

• The first term a − bsk that appears in the numerator of (3.50) is such that

a− bsk ≥ 0 under (3.49), and

• By definition of kl and the properties of f(k) discussed above, the next term
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that appears in the numerator of (3.50) is such that

a(k − 1) + bk(sk − s− 2c) = bsk2 + (a− bs− 2bc)k − a ≥ 0

under (3.49).

It is important to note that (Pb2) is formulated and solved by Liu and Çetinkaya

(2009) (see (BPBF1) on p. 692 of Liu and Çetinkaya (2009)). That is, they also

derive wb2(k) in (3.42) (see the expression in (4) on p. 691 of Liu and Çetinkaya

(2009)) along with (3.50) and (3.51) (see expressions in (BPBF1) on p. 692 of Liu

and Çetinkaya (2009)).

It is worthwhile to note that the lower limit of k in the main constraint (3.49)

is omitted by Liu and Çetinkaya (2009) as they implicitly assume that π−
b = 0 by

arguing that the buyer will not trade if the resulting profit is negative, whereas

we provide the region of k given in (3.49) that guarantees the resulting profit is

nonnegative. As wee have noted earlier (see footnote f), we pay particular attention

to ensure that the contractual problems at hand lead to nonnegative profits for both

entities for the sake of practical realism.

3.4.4 Generic contract b3

As noted in Section 3.2, under b3, the buyer announces that p would be set

depending on w according to

p = kw +m, (3.52)

where k ∈ ℜ is the unconstrained multiplier and m ∈ ℜ is the unconstrained value

representing a margin (mark-up) or rebate (mark-down). Then, the buyer moves

first and decides k and m and the supplier selects the optimal w.

It is important to note that here k ∈ ℜ and m ∈ ℜ are defined as unconstrained
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values for the sake of generality because the purpose of this contract is to capture

a more general pricing scheme than implied by b1 and b2. As we demonstrate next,

k and m are subject to constraints as in the case of the parameters of the other

contracts (e.g., see the upper/lower bounds given by (3.22) under b1 and given by

(3.49) under b2.)

Substituting (3.52) in (3.1), we have

q = a− bp = a− b(kw +m) ≥ 0, (3.53)

and, hence,

kw +m ≤ a

b
. (3.54)

Also, by assumption (3.5), we have

s ≤ w ≤ a

b
− c and (3.55)

s+ c ≤ p ≤ a

b
. (3.56)

Then, recalling (3.1) and considering (3.56),

0 ≤ q ≤ a− b(s+ c). (3.57)

Given (3.54)–(3.57), for reasons that will become apparent momentarily, let us

consider the cases k ≤ 0 and k > 0, separately:

• If k ≤ 0 then (3.54) and (3.55) imply that k and m should satisfy

k
(a
b
− c
)
+m ≤ a

b
, (3.58)
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while w, p, and q should satisfy (3.55), (3.56), and (3.57), respectively.

• If k > 0 then (3.54) and (3.55) imply that

sk +m ≤ kw +m ≤ a

b
. (3.59)

Using (3.59) along with (3.55) and (3.56), we then conclude that k, m, w, and

p should be such that

sk +m ≤ a

b
(3.60)

s ≤ w ≤ a

bk
− m

k
, and (3.61)

sk +m ≤ p ≤ a

b
. (3.62)

Also, recalling (3.1) and considering (3.62), for the case k > 0, we have

0 ≤ q ≤ a− b(sk +m). (3.63)

We then conclude that the natural constraints on the decision variables and

parameters of interest are given

• By (3.55), (3.56), (3.57), and (3.58) if k < 0, and

• By (3.60), (3.61), (3.62), and (3.63) if k > 0.

Initially, we refer to (3.58) and (3.60) as the main constraints on the decision

variables k and m of the contract design problem under b3. Clearly, (3.58) applies

to the case k ≤ 0 whereas (3.60) applies to the case k > 0. Similar to the case of

b2, under b3, (3.58) or (3.60) alone does not assure that πb in (3.3) is nonnegative.
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We proceed with addressing this concern by first computing the supplier’s optimal

response under b3.

To this end, let us examine πs in (3.2) under b3. For given values of k ∈ ℜ and

m ∈ ℜ, using (3.52), πs in (3.2) can be rewritten as

πs = (w − s)q = (w − s)(a− bp) = (w − s)[a− b(kw +m)], (3.64)

so that

dπs

dw
= [a− b(kw +m)]− bk(w − s) and (3.65)

d2πs

dw2
= −2bk. (3.66)

For reasons that will become apparent shortly, this end, let us again consider the

cases k ≤ 0 and k > 0, separately:

Case 1: k ≤ 0

In this case, considering (3.66) and using (3.53) and (3.55) in (3.65), it can be

easily verified that πs is convex and increasing in w over the region (3.55). For given

values of k ≤ 0 and m ∈ ℜ such that (3.58) holds, the maximizer of πs in (3.64) is

then given by a/b − c which is the upper limit of (3.55). In turn, using (3.1) and

substituting w = a/b− c in (3.3),

πb = (p− w − c)q =
(
p− a

b

)
(a− bp) = −(a− bp)2

b
≤ 0,

regardless of the value of p. Therefore, if k ≤ 0 then the buyer does not make any

profit. Hence, we can discard the case k ≤ 0 and restrict our attention to

the case k > 0.

50



Case 2: k > 0

In this case, it follows from (3.66) that πs is concave in w. Setting dπs/dw = 0

in (3.65) leads to

wb3(k,m) =
a+ b(sk −m)

2bk
. (3.67)

Now, observe that for given values of k > 0 and m ∈ ℜ such that (3.60) is true,

we have

( a

bk
− m

k

)
− wb3(k,m) =

a− b(sk +m)

2bk
≥ 0 and

wb3(k,m)− s =
a− b(sk +m)

2bk
≥ 0.

Then, wb3(k,m) defined in (3.67) is the supplier’s optimal response, i.e., the

optimal wholesale price, under b3 because it is realizable over the region (3.61).

Substituting (3.67) in (3.52) and using (3.1), the corresponding retail price and

order quantity for given values of k > 0 and m ∈ ℜ that satisfy (3.60) are

given by

pb3(k,m) =
a+ b(sk +m)

2b
and (3.68)

qb3(k,m) =
a− b(sk +m)

2
, (3.69)

respectively. Again, since we assume (3.60),

a

b
− pb3(k,m) =

a− b(sk +m)

2b
≥ 0 and

pb3(k,m)− (sk +m) =
a− b(sk +m)

2b
≥ 0,
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so that pb3(k,m) defined in (3.68) lies over the region (3.62). Likewise,

a− b(sk +m)− qb3(k,m) =
a− b(sk +m)

2
≥ 0,

so that qb3(k,m) defined in (3.69) lies over the region (3.63).

Last but not least, we need to verify that assumption (3.5) holds true for w =

wb3(k,m), where wb3(k,m) is as defined in (3.67). Similar to the case of b2, the main

constraint (3.60) derived earlier is not sufficient to verify this under b3. For this

reason, recalling assumption (3.5) and using (3.67), we need to ensure

s+ c ≤ a+ b(sk −m)

2bk
+ c ≤ p =

a+ b(sk −m)

2b
+m ≤ a

b
(3.70)

holds true. Examining the above inequalities, if

[a+ b(sk −m)](k − 1)

2bk
+m ≥ c

then (3.70) is ensured. Obviously, the above inequality is equivalent to

bsk2 + [a+ b(m− s− 2c)]k − a+ bm ≥ 0. (3.71)

Hence, (3.60) and (3.71) are the main constraints of the problem at hand. Under

these two main constraints, assumption (3.5) holds true under b3, too, as in the cases

of b1 and b2.

Using (3.67), (3.68), and (3.69) in (3.2) and (3.3), we have

πs =
[a− b(sk +m)]2

4bk
and

πb =
[a− b(sk +m)][a(k − 1) + b(km+m+ sk2 − sk − 2ck)]

4bk
.
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Finally, recalling (3.60) and (3.71) and considering the above expressions for πs,

πb and the constraint k > 0, the buyer’s optimization problem under b3 can

be stated as

(Pb3) :

max
k>0,m∈ℜ

πb =
[a− b(sk +m)][a(k − 1) + b(km+m+ sk2 − sk − 2ck)]

4bk
(3.72)

s.t. bsk2 + [a+ b(m− s− 2c)]k − a+ bm ≥ 0,

sk +m ≤ a

b
,

πs =
[a− b(sk +m)]2

4bk
≥ π−

s . (3.73)

Now that we have the complete formulation of (Pb3), it is easy to see that the

main constraints (3.60) and (3.71) together also assure that πb in (3.72) is nonneg-

ative. That is,

• The first term in square brackets that appears in the numerator of (3.72) is

such that a− b(sk +m) ≥ 0 under (3.60), and

• The next term in square brackets that appears in the numerator of (3.72) is

such that

a(k−1)+b(km+m+sk2−sk−2ck) = bsk2+[a+b(m−s−2c)]k−a+bm ≥ 0

under (3.71).

Hence, πb in (3.72) is nonnegative.

A visual investigation of (Pb3) given by (3.72), (3.71), (3.60), and (3.73) reveals

that b3 is a generalization of both b1 and b2. Hence, (Pb3) reduces to (Pb1) when

k = 1 and to (Pb2) when m = 0.
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3.5 Optimal contract parameters

In this section, we present the optimal solutions of (Ps1), (Pb1), (Pb2), and

(Pb3) formulated in the previous section. These optimal solutions represent optimal

contract parameters under each one of the four contracts of interest.

3.5.1 Optimal solution of (Ps1)

Recall (Ps1) given by (3.18) and (3.19). Using (3.18), observe that

dπs

dw
=

a− 2bw + b(s− c)

2
and (3.74)

d2πs

dw2
= −b < 0.

Hence, πs in (3.18) is concave in w. Letting ws1+ denote the solution for dπs/dw = 0

in (3.74), we have

ws1+ =
a+ b(s− c)

2b
. (3.75)

Using assumption (3.5) it can be easily verified that

a

b
− c− ws1+ =

a− b(s+ c)

2b
≥ 0 and

ws1+ − s =
a− b(s+ c)

2b
≥ 0.

Hence, ws1+ defined in (3.75) is realizable over the region (3.12) which appears in

(3.18). Substituting (3.75) in (3.19), the corresponding buyer’s profit is then given

by

πs1+
b =

[a− b(s+ c)]2

16b
=

Πc

4
, (3.76)
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where Πc is the optimal centralized system profit in (3.11). Next, we need to consider

πs1+
b given by (3.76) in relation to constraint (3.19) in (Ps1).

• If πs1+
b ≥ π−

b then (3.19) is satisfied for ws1+ so that the optimal wholesale

price under s1, denoted by ws1, is simply given by ws1+ in (3.75).

• Otherwise, i.e., πs1+
b < π−

b , w
s1 occurs at the boundary of (3.19). That is, it

follows from (3.19) that ws1 is dictated by the solution of the polynomial

[a− b(w + c)]2 − 4bπ−
b = 0,

whose roots are given by

ws1− =
a− 2

√
bπ−

b

b
− c and

a+ 2
√
bπ−

b

b
− c. (3.77)

Now, observe that the latter root is eliminated because it violates (3.12) for

π−
b > 0 and it is equal to the former root for π−

b = 0. Since π−
b satisfies (3.20),

using assumption (3.5) it is easy to verify that

a

b
− c− ws1− =

2
√
bπ−

b

b
≥ 0, and

ws1− − s =
a− b(s+ c)

b
− 2

√
π−
b

b

≥ a− b(s+ c)

b
−
√

[a− b(s+ c)]2

b2
= 0,

so that ws1− is realizable over the region (3.12) which appears in (3.18). There-

fore, ws1 is given by ws1− in (3.77) and the corresponding buyer’s profit is then

given by π−
b .
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Using πb in (3.19), we have

dπb

dw
= −[a− b(w + c)],

and, hence, πb is decreasing in w over the region (3.12). That is,

• πb ≥ π−
b only for those w such that w ≤ ws1−, and

• If πs1+
b < π−

b then ws1− < ws1+.

Consequently, recalling (3.75) and (3.77), we have

ws1 = min{ws1−, ws1+} = min

{
a− 2

√
bπ−

b

b
− c,

a+ b(s− c)

2b

}
. (3.78)

Recalling (3.20), we have π−
b ∈ [0,Πc] by assumption. Then, considering (3.76)

and (3.78), it is easy to show that the optimal solution of (Ps1) depends on the value

of π−
b . That is,

• Case 1: ws1 = ws1+. If π−
b ∈ [0,Πc/4] then ws1+ ≤ ws1− so that ws1 = ws1+,

and

• Case 2: ws1 = ws1−. If π−
b ∈ [Πc/4,Πc] then ws1+ ≥ ws1− so that ws1 = ws1−.

Note that the above range in terms of π−
b in Case 1: ws1 = ws1+ is equivalent to

c ≤ a− 4
√

bπ−
b

b
− s, (3.79)

and the above range in terms of π−
b in Case 2: ws1 = ws1− is equivalent to

a− 4
√
bπ−

b

b
− s ≤ c ≤ a− 2

√
bπ−

b

b
− s. (3.80)
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Cases 1 and 2 discussed above are illustrated in Figures 3.4 and 3.5, respectively.

In Case 1, the buyer’s reservation profit is relatively small so that the unconstrained

maximizer ws1+ of the supplier’s profit satisfies the constraint on the buyer’s resulting

profit. Hence, the optimal wholesale price ws1 is such that the constraint is not

binding leading to ws1 = ws1+. However, in Case 2, the buyer’s reservation profit is

relatively large so that ws1+ violates the constraint. Hence, the optimal wholesale

price is dictated by the binding constraint so that ws1 = ws1−.

c
b

a −ws +1s ws −1

wsw −≤ 1π s

w

π 1s

s

Figure 3.4: An illustration of πs1
s in Case 1: ws1 = ws1+.
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c
b

a −ws +1s ws −1

wsw −≤ 1π s

w

π 1s

s

Figure 3.5: An illustration of πs1
s in Case 2: ws1 = ws1−.

Recalling (3.16), (3.17), (3.18), and (3.19) and using (3.78), the corresponding

retail price, order quantity, supplier’s, buyer’s and system profits under

the optimal s1 are given by

ps1 = min

{
a−

√
bπ−

b

b
,
3a+ b(s+ c)

4b

}
,

qs1 = max

{√
bπ−

b ,
a− b(s+ c)

4

}
,

πs1
s =


[
a−b(s+c)−2

√
bπ−

b

]√
bπ−

b

b
if π−

b ∈ [Πc/4,Πc]

[a−b(s+c)]2

8b
= Πc

2
if π−

b ∈ [0,Πc/4]

, (3.81)

πs1
b = max

{
π−
b ,

[a− b(s+ c)]2

16b

}
, and

Πs1 =


[
a−b(s+c)−

√
bπ−

b

]√
bπ−

b

b
if π−

b ∈ [Πc/4,Πc]

3[a−b(s+c)]2

16b
if π−

b ∈ [0,Πc/4]

.

As noted previously, (Ps1) is solved by Corbett et al. (2004) leading to the

optimal wholesale price in (3.78) and the supplier’s optimal profit in (3.81) (see the
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expressions of Proposition 1 on p. 553 of Corbett et al. (2004)). Corbett et al. (2004)

also derive the ranges in terms of c given by (3.79) and (3.80) (see Proposition 1 on

p. 553 of Corbett et al. (2004)).

3.5.2 Optimal solution of (Pb1)

Recall (Pb1) given by (3.31) and (3.32). Using (3.31), observe that

dπb

dm
=

a− 2bm− b(s− c)

2
and (3.82)

d2πb

dm2
= −b < 0.

Hence, πb in (3.31) is concave in m. Letting mb1+ denote the solution for dπb/dm = 0

in (3.82), we have

mb1+ =
a− b(s− c)

2b
. (3.83)

Using assumption (3.5) it can be easily verified that

a

b
− s−mb1+ =

a− b(s+ c)

2b
≥ 0 and

mb1+ − c =
a− b(s+ c)

2b
≥ 0.

Hence, mb1+ defined in (3.83) is realizable over the region (3.22). Substituting (3.83)

in (3.32), the corresponding supplier’s profit is given by

πb1+
s =

[a− b(s+ c)]2

16b
. (3.84)

Next, we need to consider πb1+
s given by (3.84) in relation to constraint (3.32) in

(Pb1).

• If πb1+
s ≥ π−

s then (3.32) is satisfied for mb1+ so that the optimal price
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margin under b1, denoted by mb1, is given by mb1 = mb1+ defined in (3.83).

• Otherwise, i.e., πb1+
s < π−

s , m
b1 occurs at the boundary of (3.32). That is, it

follows from (3.32) that mb1 is dictated by the solution of the polynomial

[a− b(s+m)]2 − 4bπ−
s = 0,

whose roots are given by

mb1− ≡
a− 2

√
bπ−

s

b
− s and

a+ 2
√

bπ−
s

b
− s. (3.85)

Now, observe that the latter root is eliminated because it violates (3.22) for

π−
s > 0 and it is equal to the former root for π−

s = 0. Since π−
s satisfies (3.33),

using assumption (3.5) it is easy to verify that

a

b
− s−mb1− =

2
√

bπ−
s

b
≥ 0 and

mb1− − c =
a− b(s+ c)

b
− 2

√
π−
s

b

≥ a− b(s+ c)

b
−
√

[a− b(s+ c)]2

b2
= 0,

so that mb1− is realizable over the region (3.22) which appears in (3.31). There-

fore, mb1 is given by mb1− in (3.85) and the corresponding supplier’s profit is

then given by π−
s .

Using πs in (3.32), we have dπs/dm = −[a−b(s+m)], and, hence, πs is decreasing

in m over the region (3.22). That is,

• πs ≥ π−
s only for those m such that m ≤ mb1−, and

• πb1+
s < π−

s then mb1− < mb1+.
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Consequently, recalling (3.83) and (3.85), we have

mb1 = min{mb1−,mb1+} = min

{
a− 2

√
bπ−

s

b
− s,

a− b(s− c)

2b

}
. (3.86)

Recalling (3.33), we have π−
s ∈ [0,Πc] by assumption. Then, considering (3.86),

it is easy to show that the optimal solution of (Pb1) depends on the value of π−
s .

That is,

• Case 1: mb1 = mb1+. If π−
s ∈ [0,Πc/4] then mb1+ ≤ mb1− so that mb1 = mb1+,

and

• Case 2: mb1 = mb1−. If π−
s ∈ [Πc/4,Πc] then mb1+ ≥ mb1− so that mb1 =

mb1−.

Cases 1 and 2 discussed above are illustrated in Figures 3.6 and 3.7, respectively.

In Case 1, the supplier’s reservation profit is relatively small so that the unconstrained

maximizermb1+ of the buyer’s profit satisfies the constraint on the supplier’s resulting

profit. Hence, the optimal price margin mb1 is such that the constraint is not binding

leading to mb1 = mb1+. However, in Case 2, the supplier’s reservation profit is

relatively large so that mb1+ violates the constraint. Hence, the optimal price margin

is dictated by the binding constraint so that mb1 = mb1−.
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Figure 3.6: An illustration of πb1
b in Case 1: mb1 = mb1+.

s
b

a −mb +1c mb −1

mbm −≤ 1
π b

m

π 1b

b

Figure 3.7: An illustration of πb1
b in Case 2: mb1 = mb1−.

Recalling (3.28), (3.29), (3.30), (3.31), and (3.32) and using (3.86), the corre-

sponding wholesale price, retail price, order quantity, supplier’s, buyer’s, and system

62



profits under the optimal b1 are given by

wb1 = max

{
s+

√
π−
s

b
,
a+ b(3s− c)

4b

}
, (3.87)

pb1 = min

{
a−

√
bπ−

s

b
,
3a+ b(s+ c)

4b

}
, (3.88)

qb1 = max

{√
bπ−

s ,
a− b(s+ c)

4

}
,

πb1
s = max

{
π−
s ,

[a− b(s+ c)]2

16b

}
, (3.89)

πb1
b =


[
a−b(s+c)−2

√
bπ−

s

]√
bπ−

s

b
if π−

s ∈ [Πc/4,Πc]

[a−b(s+c)]2

8b
if π−

s ∈ [0,Πc/4]

, and (3.90)

Πb1 =


[
a−b(s+c)−

√
bπ−

s

]√
bπ−

s

b
if π−

s ∈ [Πc/4,Πc]

3[a−b(s+c)]2

16b
if π−

s ∈ [0,Πc/4]

. (3.91)

As noted previously, (Pb1) is solved by Lau et al. (2007) by assuming π−
s = 0

leading to the optimal margin in (3.83), retail price in (3.88), and resulting profits

in (3.89), (3.90), and (3.91) with π−
s = 0 (see the expressions in Table 1 on p. 851 of

Lau et al. (2007)).

3.5.3 Optimal solution of (Pb2)

Recall (Pb2) given by (3.50) and (3.51). Using (3.50), observe that

dπb

dk
=

(a− bsk)2

4bk2
+

s[a− b(sk − c)k]

2k
and (3.92)

d2πb

dk2
= −a2 + k3s2b2

2bk3
< 0. (3.93)
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Hence, πb in (3.50) is concave over k > 0. Using (3.92), it is easy to verify that

dπb

dk
= 0 ⇒ g(k) ≡ 2s2b2k3 − s(s+ 2c)b2k2 − a2 = 0. (3.94)

If s = 0 then g(k) < 0 regardless of the value of k, i.e., there does not exist a solution

for g(k) = 0. For this reason, let us consider the cases s = 0 and s > 0, separately.

Case 1: s = 0.

Substituting s = 0 in (3.51) and (3.92), we have

πs =
a2

4bk
≥ π−

s ⇒ k ≤ a2

4bπ−
s

and (3.95)

dπb

dk
=

a2

4bk2
> 0. (3.96)

It then follows that πs is decreasing while πb is increasing over k > 0. Letting kb2−

denote the value of k such that the reservation profit constraint (3.51) is tight, we

have

kb2− =
a2

4bπ−
s

. (3.97)

It then follows that if kb2− is realizable over the region (3.49) (also referred as the

main constraint) of (Pb2) then it is also optimal. Using s = 0 in the definition of kl

(i.e., kl is the root of f(k) in (3.47)), it is easy to see that (3.49) reduces to

k ≥ a

a− 2bc
. (3.98)

Hence, we refer (3.98) as the main constraint of (Pb2) for the case s = 0. This

constraint is sufficient to ensure that the buyer’s profit πb in (3.50) is nonnegative

for the case s = 0.
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Using (3.97), it can be easily seen that kb2− is realizable over the region (3.98)

only if

π−
s ≤ a2 − 2abc

4b
. (3.99)

Recalling (3.33), we have π−
s ∈ [0, [a− b(s+ c)]2/(4b)] by assumption, so that when

s = 0

π−
s ∈

[
0,

a2 − 2abc+ b2c2

4b

]
.

Clearly, the original upper limit of π−
s in the above equation is higher than the upper

limit of π−
s in (3.99). Hence, kb2− is realizable over the region (3.98) only if

π−
s ∈

[
0,

a2 − 2abc

4b

]
.

As a result, we have the following conclusions.

• Case 1.1: s = 0, kb2 = kb2−. If π−
s ∈ [0, (a2 − 2abc)/(4b)] then the buyer’s

optimal k under b2, denoted by kb2, is given by kb2 = kb2− as defined in

(3.97). Furthermore,

– Case 1.1.a: If π−
s ∈ (0, (a2 − 2abc)/(4b)] then kb2 is given by (3.97), and

– Case 1.1.b: If π−
s = 0 then kb2 is unbounded, i.e., limπ−

s →0 k
b2 → +∞.

Then, we say that b2 does not offer a meaningful solution. Nonetheless,

this case (both s = 0 and π−
s = 0) does not make practical sense, and,

hence, can be safely omitted.

• Case 1.2: s = 0, infeasible setting. If π−
s ∈ ((a2 − 2abc)/(4b)], (a2 − 2abc+

b2c2)/(4b)] then there does not exist a feasible solution for (Pb2). While this

case makes practical sense (π−
s is relatively large, say due to fixed costs), b2

does not offer a feasible solution. We revisit this result shortly (see Case
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2.3 below) and discuss how the buyer may proceed when b2 does not offer a

practical solution.

Cases 1.1.a and 1.2 discussed above are illustrated in Figures 3.8 and 3.9, respec-

tively. In Case 1.1, the supplier’s reservation profit is relatively small so that the

optimal price multiplier kb2 is such that the constraint on the supplier’s resulting

profit is tight leading to kb2 = kb2−. However, in Case 1.2, the supplier’s reservation

profit is relatively large so that kb2− violates the constraint (3.98) that ensures the

buyer’s resulting profit is nonnegative. Hence, there does not exist a feasible solution

for (Pb2).

k
b −2

0

π b

k

Π 2b

πb
a

s

bkk
4

2

2
−

− =≤

π 2b

b

bca

a
k

2−
≥

bca

a

2−

Figure 3.8: An illustration of πb2
b in Case 1.1.a: s = 0, kb2 = kb2−.
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Figure 3.9: An illustration of πb in Case 1.2: s = 0, infeasible setting.

Recalling (3.42), (3.43), (3.44), (3.50), and (3.95) and using (3.97), the corre-

sponding wholesale price, retail price, order quantity, supplier’s, buyer’s,

and system profits under the optimal b2 for s = 0 and π−
s ∈ (0, (a2−2abc)/(4b)]

are given by

wb2 =
2π−

s

a
,

pb2 =
a

2b
,

qb2 =
a

2
,

πb2
s = π−

s ,

πb2
b =

a2

4b
− ac

2
− π−

s , and

Πb2 =
a2

4b
− ac

2
.

For the case s = 0, if π−
s ̸∈ (0, (a2 − 2abc)/(4b)] then either the setting (i.e. as in

Case 1.1.b) or the contract (i.e., as in Case 1.2) is impractical.
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Case 2: s > 0.

Recalling (3.94), it is easy to verify that

g(0) < 0 and limk→+∞g(k) = +∞,

as well as

dg(k)

dk
= 6s2b2k2 − 2s(s+ 2c)b2k. (3.100)

It then follows that there are two stationary points k0
1 and k0

2 of g(k) such that k0
1 = 0

and 0 < k0
2 = (s + 2c)/(3s) < +∞. Function g(k) as defined in (3.94) is illustrated

in Figure 3.10, where k0 denotes the reflection point such that

d2g(k)

dk2
= 12s2b2k − 2s(s+ 2c)b2 = 0 (3.101)

for k = k0. As we can see from Figure 3.94, g(k) has a unique positive root, denoted

by kb2+, such that

g(kb2+) = 0. (3.102)

s

cs
k

3

20
2

+=
2a−

)(kg

k00
1 =k

+2bk

s

cs
k

6
20 +=

Figure 3.10: An illustration of g(k) in (3.94).
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Let us verify if kb2+ is realizable over the region (3.49) which appears in (3.50). We

know from the development of (Pb2) that this verification is equivalent to ensuring

that πb in (3.50) is nonnegative for k = kb2+, i.e., it suffices to verify that

πb |k=kb2+ ≥ 0.

To this end,

• Recall that πb is concave (by (3.93)),

• Note that

dπb

dk

∣∣∣∣
k= a

bs

= −s[a− b(s+ c)]

2
≤ 0 (by (3.92) and assumption (3.5)), and

• Note that

πb

∣∣
k= a

bs
= 0 (by (3.50)).

Hence, πb is not only decreasing but also it reaches zero at k = a/(bs). It then follows

from the concavity of πb and the definition of kb2+i that πb ≥ 0 for kb2+ ≤ k ≤ a/(bs).

Hence, kb2+ is realizable over the region (3.49).

Substituting k = kb2+ in (3.51), the corresponding supplier’s profit is given by

πb2+
s =

(
a− bskb2+

)2
4bkb2+

. (3.103)

Next, we need to consider πb2+
s given by (3.103) in relation to constraint (3.51)

in (Pb2).

• If πb2+
s ≥ π−

s then (3.51) is satisfied for kb2+ so that the optimal price

ii.e., kb2+ is the unique positive stationary point of πb in (3.50).
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multiplier under b2, denoted by kb2, is given by kb2 = kb2+, which is the

unique positive solution for g(kb2+) = 0 as defined in (3.102).

• Now, consider the case πb2+
s < π−

s so that kb2+ violates (3.51). Hence, let us

examine the polynomial implied by (3.51)

(a− bsk)2 − 4bkπ−
s = 0, (3.104)

whose roots are given by

kb2− ≡
as+ 2π−

s −
√
(as+ 2π−

s )
2 − a2s2

bs2
and (3.105)

as+ 2π−
s +

√
(as+ 2π−

s )
2 − a2s2

bs2
.

Now, observe that the latter root is eliminated because it violates the upper

limit of k in (3.49) for π−
s > 0, and it is equal to the former root for π−

s = 0.

Next, we examine the conditions under which kb2− defined in (3.105) is realiz-

able over the region (3.49) which appears in (3.50). Using (3.105),

kb2− ≤ a

bs
,

so that kb2− satisfies the upper limit of (3.49). Then, we simply proceed with

examining the conditions under which the lower limit of (3.49) is satisfied.

Using (3.105), we have

dkb2−

dπ−
s

=
2
[√

(as+ 2π−
s )

2 − a2s2 − (as+ 2π−
s )
]

√
(as+ 2π−

s )
2 − a2s2

< 0, (3.106)

i.e., kb2− in (3.105) is decreasing in π−
s . It then follows that there exists a
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threshold value of π−
s such that if π−

s is greater than the threshold value then

kb2− ≤ kl. Letting πkl
s denote this threshold value and using (3.104) along with

(3.33),

πkl
s =

(a− bskl)
2

4bkl
≤ Πc, (3.107)

so that

– If π−
s ∈ [0, πkl

s ] then kb2− ≥ kl and

– If π−
s ∈ (πkl

s ,Π
c] then kb2− < kl.

Hence, kb2− lies over the region (3.49) if π−
s ∈ [0, πkl

s ]. Otherwise, if π−
s ∈

(πkl
s ,Π

c], there does not exist a feasible solution for (PB2).

Using πs in (3.51), we have

dπs

dk
=

−2bs(a− bsk)k − (a− bsk)2

4bk2
= −(a− bsk)(a+ bsk)

4bk2
. (3.108)

Hence, πs is decreasing in k over the region (3.49). That is,

• πs ≥ π−
s only for those k such that k ≤ kb2−, and

• If πb2+
s < π−

s then kb2− < kb2+.

Consequently, when π−
s ∈ [0, πkl

s ], where πkl
s is defined in (3.107), recalling kb2+

defined in (3.102) and kb2− defined in (3.105),

kb2 = min{kb2−, kb2+} = min

{
as+ 2π−

s −
√

(as+ 2π−
s )

2 − a2s2

bs2
, kb2+

}
. (3.109)

Recalling (3.42), (3.43), (3.44), (3.50), and (3.51), the corresponding whole-

sale price, retail price, order quantity, supplier’s, buyer’s, and system
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profits under the optimal b2 for s > 0 and π−
s ∈ [0, πkl

s ] are given by

wb2 =
a+ bskb2

2bkb2
= max

s+

√
(as+ 2π−

s )
2 − a2s2 − 2π−

s

2
(
as+ 2π−

s −
√
(as+ 2π−

s )
2 − a2s2

) , a+ bskb2+

2bkb2+

 ,

pb2 =
a+ bskb2

2b
= min

{
2as+ 2π−

s −
√

(as+ 2π−
s )

2 − a2s2

2bs
,
a+ bskb2+

2b

}
, (3.110)

qb2 =
a− bskb2

2
= max

{√
(as+ 2π−

s )
2 − a2s2 − 2π−

s

2s
,
a− bskb2+

2

}
,

πb2
s =

(a− bskb2)2

4bkb2
= max

{
π−
s ,

(a− bskb2+)2

4bkb2+

}
,

πb2
b =

(a− bskb2)[a(kb2 − 1) + bkb2(skb2 − s− 2c)]

4bkb2
, and

Πb2 =
(a− bskb2){a+ b[skb2 − 2(s+ c)]}

4b
.

Also, recalling (3.33), we have π−
s ∈ [0,Πc] by assumption. Then, considering

(3.103), (3.109) and the conditions on π−
s under which πb2−

b defined in (3.105) is

realizable, we conclude that the optimal solution of (Pb2) depends on the value of

π−
s :

• Case 2.1: s > 0, kb2 = kb2+. If π−
s ∈ [0, πb2+

s ] then kb2+ ≤ kb2− so that

kb2 = kb2+,

• Case 2.2: s > 0, kb2 = kb2−. If π−
s ∈ [πb2+

s , πkl
s ] then kb2+ ≥ kb2− so that

kb2 = kb2−, and

• Case 2.3: s > 0, infeasible setting. If π−
s ∈ (πkl

s ,Π
c] then there does not

exist a feasible solution for (Pb2). As for Case 1.2 above, while this case also

makes practical sense (perhaps, due to high profit expectation), b2 does not

offer a feasible solution. Note that this issue does not arise under b1 which

offers a meaningful solution for the buyer for all π−
s such that π−

s ∈ [0,Πc].

72



Hence, the buyer can turn to b1 when π−
s is relatively large. However, there is

a clear need for the buyer to pursue a more general contract than b1 and b2. As

we will show in the next section, the more general form of the generic contract

b3 does not only provide a practical solution but also it allows the buyer to

obtain more profit for π−
s ∈ [0,Πc].

The three cases discussed above are illustrated in Figures 3.11, 3.12, and 3.13

respectively. In Case 1, the supplier’s reservation profit is relatively small so that

the unconstrained maximizer kb2+ of the buyer’s profit satisfies the constraint on the

supplier’s resulting profit. Hence, the optimal price multiplier kb2 is such that the

constraint is not binding leading to kb2 = kb2+. In Case 2, the buyer’s reservation

profit is relatively large so that kb2+ violates the constraint. Hence, the optimal price

multiplier is dictated by the binding constraint so that kb2 = kb2−. However, in Case,

the supplier’s reservation profit is very high, unlike b1 under which (Pb1) always has

a feasible solution for π−
s ∈ [0,Πc], under b2, (Pb2) does not have a feasible solution

for π−
s ∈ (πkl

s ,Π
c].

bs

a

kb +2k l kb −2

kbk −≤ 2π b

k

π 2b

b

Figure 3.11: An illustration of πb2
b in Case 2.1: s > 0, kb2 = kb2+.
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bs

a

kb +2k l kb −2

kbk −≤ 2π b

k

π 2b

b

Figure 3.12: An illustration of πb2
b in Case 2.2: s > 0, kb2 = kb2−.

bs

a
kb +2k l k b −2

kbk −≤ 2
π b

k

Figure 3.13: An illustration of πb in Case 2.3: s > 0, infeasible setting.

As noted previously, (Pb2) is solved by Liu and Çetinkaya (2009) who assume

s > 0. Hence, Liu and Çetinkaya (2009) also derive an equation that is used to

solve kb2 for s > 0 (see (6) in Proposition 2 on p. 692 of Liu and Çetinkaya (2009)).

They implicitly assume that the buyer will not trade if the resulting profit πb is
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negative, while we provide the region of π−
s that guarantees πb is nonnegative under

the optimal b2.

3.5.4 Optimal solution of (Pb3)

We believe that there is a clear need to examine the optimal b3 for three reasons:

• Contract b3, inspired by b1 and b2, proposes a more general pricing scheme.

• Contract b2 does not offer a practical solution for the buyer when the supplier’s

reservation profit is relatively high. We propose b3 in order to overcome this

issue while improving on the profit potential for the buyer (i.e., as another

alternative contract for the buyer).

• As we show momentarily, b3 is a coordination contract (see Cachon (2003)

and Tsay et al. (1999) for a formal discussion of coordination contracts). This

is because the total profit of the two entities is equal to the optimal centralized

system profit Πc so that profit potential of each party is in fact maximized

under b3. A coordination contract is said to achieve the so-called chan-

nel coordination objective (a phrase coined in the marketing literature as

indicated by Tsay et al. (1999)).

Recall (Pb3) given by (3.72) and (3.73). We present two approaches for deriving

the optimal solution of (Pb3). In the first approach, we examine the optimal solution

for the unconstrained problem associated with (Pb3) and then we incorporate

the main constraints (3.60) and (3.71) as well as the supplier’s reservation profit

constraint in (3.73). In the second approach, we establish an upper bound on the

objective function given by (3.72) and develop a feasible solution such that the ob-

jective function value of this solution achieves the upper bound. Hence, the feasible

solution at hand is also optimal.
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Approach 1:

Using (3.72), for any given value of k > 0, observe that

∂πb

∂m
=

a− b(km+m+ k2s− kc)

2k
and (3.111)

∂2πb

∂m2
= −b(k + 1)

2k
< 0,

i.e., πb in (3.72) is concave in m for any k > 0. Letting m(k) denote the solution for

dπb/dm = 0 in (3.111), we have

m(k) =
a+ b(kc− k2s)

b(k + 1)
. (3.112)

Substituting (3.112) in (3.71) and (3.60) and using assumption (3.5), it can be

easily verified that

[a+ b(sk −m(k))](k − 1)

2bk
+m(k) =

a+ bc− bs

2b
≥ c and

sk +m(k) = sk +
a+ b(kc− k2s)

b(k + 1)
=

a+ bk(s+ c)

b(k + 1)
≤ a

b
.

Hence, for any given k > 0, k and the corresponding m(k) in (3.112) satisfy the main

constraints (3.60) and (3.71) which appear in (Pb3).

Substituting (3.112) in (3.72), the buyer’s profit is given by

πb =
k[a− b(s+ c)]2

4b(k + 1)
=

[a− b(s+ c)]2

4b
− [a− b(s+ c)]2

4b(k + 1)
, (3.113)

which is increasing over k > 0. Hence, the maximizer of πb in (3.113) is unbounded
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and πb reaches its maximum at k → +∞, i.e.,

lim
k→+∞

πb =
[a− b(s+ c)]2

4b
.

Substituting (3.112) in (3.73), the corresponding supplier’s profit is given by

k[a− b(s+ c)]2

4b(k + 1)2
,

which clearly goes to zero as k → +∞.

Hence, considering this result in relation to constraint (3.73) in (Pb3), it is clear

that (3.73) is violated unless π−
s = 0. That is, obviously, the unconstrained

solution associated with (Pb3) cannot be the optimal solution for the more general

and practical case of interest here, i.e., the case π−
s > 0.

Now, we consider the case π−
s > 0. Note that (3.73) is violated so that the

optimal contract parameters under b3, denoted by kb3 and mb3, occur at the

boundary of (3.73). Hence, let us examine the polynomial implied by (3.73)

[a− b(sk +m)]2

4bk
− π−

s = 0,

which leads to

sk +m =
a− 2

√
bkπ−

s

b
and (3.114)

sk +m =
a+ 2

√
bkπ−

s

b
.

Now, observe that the latter case is eliminated because it violates the main constraint

(3.60) of (Pb3).
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Substituting (3.114) in (3.72), the buyer’s profit is given by

πb =

√
bkπ−

s

[
a−

√
bkπ−

s − b(s+ c)
]

b
− π−

s . (3.115)

Then, we solve the optimal k that maximizes πb in the above equation. Letting

x =
√
bkπ−

s , πb in the above equation can be rewritten as a function of x such that

πb =
x[a− x− b(s+ c)]

b
− π−

s . (3.116)

It is equivalent for the buyer to solving the optimal x in (3.116) and solving the

optimal k in (3.115). Using (3.116), observe that

dπb

dx
=

a− 2x− b(s+ c)

b
and

d2πb

dx2
= −2

b
< 0.

Hence, πb in (3.116) is concave and letting dπb/dx = 0 leads to x = [a− b(s+ c)]/2.

Substituting x = [a− b(s+ c)]/2 in
√
bkπ−

s = x and using (3.11) and (3.114), we

have

kb3 =
[a− b(s+ c)]2

4bπ−
s

=
Πc

π−
s

and (3.117)

mb3 = s+ c− s
[a− b(s+ c)]2

4bπ−
s

= c− s

(
Πc

π−
s

− 1

)
. (3.118)

Let us verify if kb3 and mb3 defined in (3.117) and (3.118) satisfy the main con-

straints (3.60) and (3.71) in (Pb3). We know from the development of (Pb3) that

this verification is equivalent to ensuring that πb in (3.72) is nonnegative for k = kb3
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and m = mb3, i.e., it suffices to verify that

πb

∣∣
k=kb3,m=mb3 ≥ 0.

Using (3.72), we have

πb

∣∣
k=kb3,m=mb3 = Πc − π−

s ≥ 0

for π−
s ∈ (0,Πc] in (3.33) by assumption. Hence, kb3 and mb3 defined in (3.117) and

(3.118) satisfy the main constraints (3.60) and (3.71) in (Pb3) for π−
s ∈ (0,Πc].

Using (3.72) and (3.73), the corresponding supplier’s, buyer’s and system

profits under the optimal b3 for π−
s ∈ (0,Πc] are given by

πb3
b = Πc − π−

s ,

πb3
s = π−

s , and

Πb3 = Πc. (3.119)

The case π−
s > 0 discussed above is illustrated in Figure 3.14. Since the buyer’s

profit is increasing in k, the optimal k for (Pb3) is such that the constraint on the

supplier’s resulting profit is tight.
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Figure 3.14: An illustration of πb under b3.

In summary, the optimal contract parameters for b3 are given by (3.117) and

(3.118) leading to a coordination contract as indicated by (3.119). It is easy to

see from (3.117) and (3.118) that the case π−
s = 0 leads to an unbounded solution

as we have also demonstrated through an examination of the unconstrained so-

lution associated with (Pb3). As noted earlier, unlike the previous literature, we

pay particular attention to ensure all resulting profits are positive. Hence, in the re-

mainder of the discussion, we focus on the case π−
s > 0 and say b3 is defined only for

this case. Also, unlike b2 under which there does not exist a feasible solution when

π−
s is large (see Cases 1.2 and 2.3 in Section 3.5.3), b3 always provides a meaningful

solution for π−
s ∈ (0,Πc].

Approach 2:

Using (3.72) and (3.73), the system profit given in (3.4) can be rewritten as

Π = πs + πb =
[a− b(sk +m)]{a+ b[sk +m− 2(s+ c)]}

4b
(3.120)
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for k > 0 and m ∈ ℜ. Obviously, Π ≤ Πc always holds true, where Πc is the optimal

centralized system profit given in (3.11). Therefore, using (3.120), we observe that

πb = Π− πs =
[a− b(sk +m)]{a+ b[sk +m− 2(s+ c)]}

4b
− πs ≤ Πc − π−

s ,(3.121)

so that the best profit the buyer can achieve under b3 is given by Πc − π−
s .

Next, we will provide a feasible solution of k and m such that πb = Πc − π−
s is

true. Then, the feasible solution is also optimal under b3. Letting sk +m = x, the

system profit given in (3.120) can be written as

Π =
(a− bx){a+ b[x− 2(s+ c)]}

4b
, (3.122)

so that

dΠ

dx
=

b(s+ c− x)

2
and

d2Π

dx2
= − b

2
.

Hence, Π is concave in x. The maximizer of Π is given by x = s + c by solving

dΠ/dx = 0. It is easy to verify that Π = Πc at x = s+ c. Therefore, the equality in

(3.121) holds true if sk +m = s+ c and πs = π−
s .

Next, we will show a feasible solution for k and m that satisfy these two equations

above. Substituting sk +m = s+ c in (3.73) and using (3.11), we have

πs =
[a− b(sk +m)]2

4bk
=

[a− b(s+ c)]2

4bk
=

Πc

k
. (3.123)
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It can be easily verified that πs = π−
s holds true if k = kb3, where

kb3 =
Πc

π−
s

, (3.124)

and sk +m = s+ c holds true if m = mb3, where

mb3 = s+ c− skb3 = c− s

(
Πc

π−
s

− 1

)
. (3.125)

Let us verify if kb3 and mb3 satisfy the main constraints (3.60) and (3.71) of

(Pb3). We know that the development of (Pb3) that this verification is equivalent

to ensuring that πb in (3.72) is nonnegative for k = kb3 and m = mb3. Recalling

πs = π−
s and sk +m = s+ c for k = kb3 and m = mb3, we have

πb = Πc − π−
s ≥ 0. (3.126)

It is because π−
s ∈ [0,Πc] by assumption given by (3.33). Hence, kb3 and mb3 satisfy

the main constraints (3.60) and (3.71) of (Pb3). Since kb3 and mb3 are feasible, they

are also optimal as noted earlier.

Therefore, the optimal contract parameters under b3 are given by kb3 and

mb3 defined in (3.124) and (3.125), respectively. Using (3.67), (3.68), (3.69), (3.72),

and (3.73), the corresponding wholesale price, retail price, order quantity,
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supplier’s, buyer’s and system profits under the optimal b3 are given by

wb3 =
[a− b(s+ c)]π−

s

2bΠc
+ s (3.127)

pb3 =
a+ b(s+ c)

2b
, (3.128)

qb3 =
a− b(s+ c)

2
,

πb3
s = π−

s , (3.129)

πb3
b = Πc − π−

s , and (3.130)

Πb3 = Πc. (3.131)

Last but not least, using (3.131), we reiterate that b3 is a coordination con-

tract. Hence, b3 is optimal from the system perspective.

3.6 Discussion and insights regarding b3

Now that we have developed the optimal contracts j under s1, b1, b2, and b3, we

provide a general discussion of these contracts while first emphasizing the advantages

of b3.

3.6.1 Advantages of b3 relative to b1, b2, b4, and b5

First, we note that while b3 has never been studied previously, two other coordi-

nation contracts have been investigated in the context of the buyer-driven channel

of interest here. These include the following two contracts:

b4. Under the buyer-driven two-part linear contract, the buyer decides the value of

k, k > 0, and the value of a lump-sum side payment, denoted by L, L ∈ ℜ,

while also committing that the retail price would be set such that p = kw and

the order quantity would be set such that q = a − bp = a − bkw. Next, the

jA summary of all formal results regarding these contracts is shown in Tables 3.2 and 3.3.
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supplier decides w. Note that if L > 0 then a payment is transferred from

the supplier to the buyer, and if L < 0 then a payment is transferred from

the buyer to the supplier. This contract has been investigated by Liu and

Çetinkaya (2009) who demonstrate that b4 is a coordination contract for

the buyer-driven channel analyzed here.

b5. Under the buyer-driven revenue-sharing contract, the buyer proposes ϕ, ϕ ∈

[0, 1], and commits to share a portion (1 − ϕ) of the selling revenue with the

supplier. Next, in return the supplier commits to set a wholesale price lower

than the supplier’s unit cost, i.e., w = ϕs. This contract was studied by Pan

et al. (2010). In fact, it was inspired by Cachon and Lariviere (2005) who

illustrate some conditions under which it is a coordination contract.

Note that while b3 merely specifies a unit wholesale price, b4 and b5 involve both

a wholesale and a lump-sum side payment. Hence, we argue that b3 is a simpler,

yet, general, effective and practical contract:

• We say that b3 is simpler than b4 and b5 because of the following reason: In

a widely cited review paper, Cachon (2003) argues that “the contract designer

may actually prefer to offer a simple contract even if that contract does not

optimize the supply chain’s performance. A simple contract is particularly de-

sirable if the contract’s efficiency is high (the ratio of supply chain profit with

the contract to the supply chains optimal profit) and if the contract designer

captures the lions share of supply chain profit.” Under b3, once the optimal

contract parameters are computed and the contract is signed, the only trans-

action between the supplier and the buyer is based on the wholesale price. Also,

the contract’s efficiency under the optimal b3 is one. While more sophisticated

contracts, e.g., a contract with a side payment such as b4 or a revenue sharing
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contract such as b5, are expected to offer increased flexibility for coordination,

b3 achieves channel coordination via a single transaction. We refer to Cor-

bett and Tang (1999) for a detailed discussion of progressively sophisticated

contracts.

• We say that b3 is more general than not only b1 and b2 but also b5 because of

two specific reasons:

– The formulation in (Pb3) is such that b3 is a generalization of both b1 and

b2, i.e., (Pb3) reduces to (Pb1) when k = 1 and to (Pb2) when m = 0.

– The idea of revenue sharing in a contractual setting is first introduced

by Cachon and Lariviere (2005) who treat ϕ as an external parameter.

They examine both the single-product setting of interest in Figure 3.1 and

the more general newsvendor setting while they ignore reservation profits.

They are able to prove that b5 is a coordination contract if the distribution

cost c is negligible, i.e., c = 0. Since their results do not immediately

extend to the case with explicit reservation profits and distribution cost

c, we demonstrate that b5 is not a coordination contract unless c = 0

(see Appendix A). Pan et al. (2010) analyze b5 explicitly in two different

settings with two products:

∗ One-supplier-two-buyer setting, and

∗ Two-supplier-one-buyer setting

with linear price-sensitive deterministic demand functions. They also ig-

nore reservation profits and assume that the distribution costs of the buy-

ers are negligible. Since b5 is not a coordination contract neither for the

problem settings analyzed by Pan et al. (2010) nor for our problem setting
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with explicit reservation profits and distribution cost c, we argue that b3

is a more promising coordination contract amenable to generalization.

• We say that b3 is effective because of the following two reasons:

– Only if π−
s = Πc, the optimal b3 is equivalent to optimal b1 (see footnote

k).

– Only if π−
s = sΠc/(s+ c), the optimal b3 is equivalent to optimal b2 (see

footnote l).

That is, it is very unlikely for b1 or b2 to be optimal in general while the optimal

b3 is system optimal as it is a coordination contract. Hence, we argue that

b3 is an effective contract, and

• We say that b3 is practical because: b3 offers a practical solution for all realistic

levels of the supplier’s reservation profit while for example b2 may fail to do so

(see Cases 1.2 and 2.3 in Section 3.5.3).

Next, in Section 3.6.2, we also argue that b3 offers flexibility for negotiation

between the supplier and the buyer. That is, not only b3 beats s1, b1, and b2 in

terms of the system-wide profit and the buyer’s profit, b3 can be utilized to create an

environment for negotiation when the supplier is the dominant party. Last but not

least, in Section 3.6.4, we also prove that b3 benefits consumers in terms of generating

a low retail price.

kSuppose π−
s = Πc. Using (3.86), the optimal m under b1 is given by mb1 = c. Using (3.124)

and (3.125), the optimal k and m under b3 are given by kb3 = 1 and mb3 = c. Recalling k = 1
under b1, the optimal contracts under b1 and b3 are equivalent if π−

s = Πc.
lSuppose π−

s = sΠc/(s + c). Using (3.109), it can be shown that the optimal k under b2 is
given by kb2 = (s + c)/s. Using (3.124) and (3.125), the optimal k and m under b3 are given by
kb3 = (s+ c)/s and mb3 = 0. Recalling m = 0 under b2, the optimal contracts under b2 and b3 are
equivalent if π−

s = sΠc/(s+ c).
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3.6.2 Conditions under which b3 is superior to s1 for the supplier

We next show that b3 is superior to s1 not only for the buyer but also for the

supplier under a specific condition on the supplier’s reservation profit. This specific

condition is an important finding we wish to elaborate on because Liu and Çetinkaya

(2009) argue that leadership is always beneficial for the lead in both supplier and

buyer-driven channels when reservation profits are assumed to be equal to zero.

We proceed with comparing s1 and b3 to identify the condition. First, observe

that b3 is superior to s1 for the supplier if the supplier has an opportunity to set

π−
s ≥ πs1

s , where π−
s ∈ [0,Πc] is the supplier’s reservation profit under b3 and πs1

s

is the supplier’s optimal profit under s1 given by (3.81). Using πs1
s in (3.81) and

Figures 3.4 and 3.5 and considering Cases 1 and 2 discussed in Section 3.5.1, it is

easy to see that

• πs1
s = Πc/2 if π−

b ∈ [0,Πc/4] and

• πs1
s ≤ Πc/2 if π−

b ∈ [Πc/4,Πc].

It then follows that

πs1
s ≤ Πc

2

for all π−
b ∈ [0,Πc]. Then, if the supplier has an opportunity to set

Πc

2
≤ π−

s ≤ Πc (3.132)

under b3, b3 is superior to s1 from the supplier’s perspective, too.

Next, observe that the buyer would hold on to b3 if

πb3
b ≥ πs1

b (3.133)
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for the given level of π−
s in (3.132), where πs1

b here is given by (3.76) and it is the

buyer’s corresponding profit when the supplier achieves the maximum profit under

s1, i.e., πs1
b = Πc/4. Clearly, for the given level of π−

s in (3.132), we have

πb3
b = Πc − π−

s .

Then, using the above equation in (3.133) and combining (3.133) with (3.132), we

have

Πc

2
≤ π−

s ≤ 3Πc

4
, (3.134)

which ensures that b3 is superior to s1 for the supplier. That is, the maximum profit

the supplier can achieve under s1 is 3Πc/4. In particular,

• As a rational decision maker, the supplier should set π−
s = 3Πc/4 under b3. In

this case, πb3
b = Πc/4, and, hence, the buyer is indifferent between s1 and b3.

• If the supplier sets π−
s = Πc/2 then πb3

b = Πc/2. In this case, the supplier is

indifferent between s1 and b3, while the buyer obtains the best profit among

all cases when the supplier agrees to switch from s1 to b3.

Now that we have established the condition in (3.134) under which b3 is superior

to s1 for the supplier, we question if b4 (i.e., the other buyer-driven coordination

contract) is ever superior to s1 perhaps under a condition similar to (3.134). We

do not raise this question for b5 because b5 is not a coordination contract for our

problem setting with explicit reservation profits and distribution cost c.
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3.6.3 Conditions under which b4 is superior to s1 for the supplier

Using the results derived by Liu and Çetinkaya (2009) (see expressions in (8) and

(9) of Proposition 3 in Liu and Çetinkaya (2009)), the optimal b4 is characterized by

kb4 =
s+ c

s
,

Lb4 = −π−
s +

sΠc

s+ c
, (3.135)

wb4 =
as

2b(s+ c)
+

s

2
, (3.136)

πb4
s = π−

s , and (3.137)

πb4
b = Πc − π−

s , (3.138)

where superscript for b4 is used in an obvious fashion.

Using (3.129), (3.130), (3.137), and (3.138), we observe that channel performance

under b3 and b4 in terms of entities’ resulting profits are the same. Therefore, using

the same approach discussed above for b3, we can easily show that b4 is also superior

to s1 for the supplier under the condition given by (3.134).

Clearly, the transactions between the supplier and the buyer have different struc-

tures under b3 and b4. Under b3, the transaction is only based on the wholesale price

given by (3.127) which depends on π−
s . Under b4, the transaction is

• Based on the wholesale price given by (3.136) which is fixed, as well as,

• Based on the lump-sum side payment given by (3.135) which depends on π−
s .

In particular, under b4, using (3.135), we observe that

• If π−
s > sΠc/(s + c) then Lb4 < 0 and the buyer makes a payment to the

supplier,

• If π−
s = sΠc/(s+ c) then Lb4 = 0 and there is no lump-sum side payment, and
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• If π−
s < sΠc/(s + c) then Lb4 > 0 and the supplier makes a payment to the

buyer.

3.6.4 Contract b3 is beneficial from consumers’ perspectives

We prove that b3 generates the lowest wholesale and retail prices among s1, b1,

b2, and b3, when π−
s = π−

b = 0 and s > 0. Hence, b3 is beneficial from both buyer’s

and consumers’ perspectives in terms of the low prices. In particular, we show that

when π−
s = π−

b = 0 and s > 0,

• wb3 ≤ wb2 ≤ wb1 ≤ ws1 and

• pb3 ≤ pb2 ≤ pb1 = ps1.

Since we do not have closed-form expressions for wb2 and pb2, we first prove that

• wb3 ≤ wb1 ≤ ws1 and

• pb3 ≤ pb1 = ps1.

Recalling (3.78) and (3.81), when π−
b = 0, we have

ws1 =
a+ b(s− c)

2b
and ps1 =

3a+ b(s+ c)

4b
,

recalling (3.87) and (3.88), when π−
s = 0, we have

wb1 =
a+ b(3s− c)

4b
and pb1 =

3a+ b(s+ c)

4b
,

and recalling (3.127) and (3.128), when π−
s = 0, we have

wb3 = w and pb3 =
a+ b(s+ c)

2b
. (3.139)
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Using the above equations, we have

ws1 − wb1 =
a− b(s+ c)

4b
≥ 0, wb1 − wb3 =

a− b(s+ c)

4b
≥ 0,

ps1 − pb1 = 0, and pb1 − pb3 =
a− b(s+ c)

4b
≥ 0

using assumption (3.5). Hence we obtain

wb3 ≤ wb1 ≤ ws1 and pb3 ≤ pb1 = ps1. (3.140)

Next, we need to prove that

• wb3 ≤ wb2 ≤ wb1 and

• pb3 ≤ pb2 ≤ pb1.

To this end, recall (3.2) and note that the optimal wholesale price satisfies

dπs

dw
=

[
q + (w − s)

dq

dp

dp

dw

]
= 0 (3.141)

under b1 and b2 according to (3.27) and (3.41), respectively. Note that under b1,

deciding on w is equivalent to deciding on p = w +m using (3.21) for the supplier

given m. Also, under b2, deciding on w is equivalent to deciding on p = kw using

(3.34) given k. Then, the optimal retail price satisfies

dπs

dp
=

dw

dp
q + (w − s)

dq

dp
+ (w − s)

dq

dp
= 0. (3.142)

1. Proof of wb3 ≤ wb2 ≤ wb1.
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Under b1, p = w +m implies dp/dw = 1. Then, dπs/dw in (3.141) becomes

▽b1
w =

[
q + (w − s)

dq

dp

]
.

Under b2, p/w = k implies dp/dw = k ≥ 1 and dπs/dw in (3.141) becomes

▽b2
w =

[
q + k(w − s)

dq

dp

]
.

From ▽b1
w and ▽b2

w we observe that the optimal wholesale price wb1 under b1

that satisfies ▽b1
w = 0 would result in ▽b2

w ≤ 0, since k ≥ 1 and q ≥ 0 by

assumption. Recalling that πs is concave in w under b1 using (3.27) and under

b2 using (3.41), we have wb1 ≥ wb2. Also, ▽b2
w = 0 implies wb2 ≥ s = wb3.

Then, we conclude wb3 ≤ wb2 ≤ wb1.

2. Proof of pb3 ≤ pb2 ≤ pb1.

Under b1, w = p−m implies dw/dp = 1 and dπs/dp in (3.142) becomes

▽b1
p =

[
q + (w − s)

dq

dp

]
.

Under b2, w/p = 1/k implies dw/dp = 1/k ≤ 1 and dπs/dp in (3.142) becomes

▽b2
p =

[
q

k
+ (w − s)

dq

dp

]
.

From ▽b1
p and ▽b2

p we observe that the optimal retail price pb1 under b1 that

satisfies ▽b1
p = 0 would result in ▽b2

p ≤ 0, since k ≥ 1 and q ≥ 0 by assumption.

Hence, pb2 ≤ pb1.

Next, we need to show pb2 ≥ pb3. Using (3.110), when π−
s = 0 and s > 0, we
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have

pb2 =
a+ bskb2

2b
. (3.143)

In order to show pb2 ≥ pb3, using (3.139) and (3.143), we need to show that

kb2 ≥ (s + c)/s. Under b2, using (3.93), πb in (3.50) is concave in k and

kb2 satisfies the first-order condition of πb if π−
s = 0 and s > 0. Note that

πb = Π − πs, where Π is the system profit. Using (3.50) and (3.51), under b2,

we have

Π =
(a− bsk){a+ b[sk − 2(s+ c)]}

4b
and

dΠ

dk
=

sb(s+ c− sk)

2
⇒ dΠ

dk

∣∣∣∣
k=(s+c)/s

= 0.

By (3.108), dπs/dk ≤ 0 at k = (s + c)/s by assumption (3.5). Therefore, we

have

dπb

dk

∣∣∣∣
k=(s+c)/s

=
dΠ

dk

∣∣∣∣
k=(s+c)/s

− dπs

dk

∣∣∣∣
k=(s+c)/s

≥ 0.

Due to the concavity of πb shown in (3.93), kb2 ≥ (s+c)/s. Therefore, pb2 ≥ pb3.

Then, we conclude pb3 ≤ pb2 ≤ pb1.

In summary, not only b3 beats s1, b1, and b2 in terms of the system-wide profit,

the buyer’s profit, and the supplier’s profit, it is also beneficial from the consumers’

perspectives. Also, the optimal wholesale and retail prices under buyer-driven con-

tracts, b1, b2, and b3, are not more than those under the supplier-driven contract

s1. The buyer-driven contracts regardless of contract type is more efficient than s1,

since they mitigate the double marginalization problem (Spengler (1950) and Tirole

(1988)) which raises the retail price and harms the system profit. The reason why the

buyer-driven channel is more efficient is explained by Liu and Çetinkaya (2009): “In

the supplier-driven channel, the buyer is the follower and responds to the suppliers
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wholesale price. Since the supplier seeks to maximize the profit, the buyer is pushed

to select a higher than system optimal retail price which limits the market demand.

On the other hand, when the buyer is the leader, she selects the k value (determines

the quantity-price relation first) before the supplier declares the wholesale price, and

thus, the buyer has more freedom to warrant a higher market demand by choosing

a relatively smaller retail price which is closer to the system optimal retail price.”

3.7 Conclusion

In this chapter, we consider the basic bilateral monopolistic setting and propose

a new contract in the buyer-driven channel. The new contract referred as the generic

contract, b3, has a more general pricing scheme than the two existing buyer-driven

contracts in the literature: the margin-only and the multiplier-only contracts, i.e., b1

and b2. Considering the reservation profit for the supplier, we formulate the buyer’s

optimization problem (Pb3) under b3. We show that (Pb3) reduces to (Pb1) (the

problem under b1) when k = 1 and to (Pb2) (the problem under b2) when m = 0.

Examining (Pb1), (Pb2), and (Pb3), we study the optimal contracts under b1, b2,

and b3. Our work attempts to contribute the literature regarding the following:

• Contract b3 has never been studied previously;

• We incorporate the supplier’s reservation profit consideration under b1;

• We consider both cases s = 0 and s > 0 under b2 and provide the conditions

on the supplier’s reservation profit under which b2 is practical.

Finally, we provide an explicit comparison of the buyer- and supplier-driven chan-

nels by considering the wholesale price contract s1 in the supplier-driven channel,

and b1, b2, b3, as well as, existing coordination contracts in the buyer-driven channel:

the buyer-driven two-part linear contract, b4, and the buyer-driven revenue-sharing
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contract, b5. We demonstrate that b3 is not only optimal for the system and the

buyer, it also benefits consumers and even the supplier. In summary,

• Contract b3 is a coordination contract and it is effective than b1 and b2.

• Contract b3 is more general than b1, b2, and b5.

• Contract b3 is simpler to implement than b4 and b5.

• Contract b3 is even superior to s1 for the supplier under a specific condition.

• Contract b3 benefits consumers by generating the lowest retail price among the

contracts of interest. It also solves the double marginalization problem.
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Table 3.1: Summary of notation in the single-product setting.

Symbol Explanation
p the retail price
q the order quantity, q = a− bp
w the wholesale price
s the supplier’s unit production cost, s ≥ 0
c the buyer’s unit distribution cost, c ≥ 0
k the price multiplier, k > 0
m the price margin
πs the supplier’s profit function
πb the buyer’s profit function
Π the system profit function, Π = πs + πb

s1 index representing the wholesale price contract in the supplier-driven channel
b1 index representing the margin-only contract in the buyer-driven channel
b2 index representing the multiplier-only contract in the buyer-driven channel
b3 index representing the generic contract in the buyer-driven channel
Πc the centralized optimal system profit
pc the centralized optimal retail price
qc the centralized optimal order quantity

ps1(w) the optimal retail price under s1 for a given w
qs1(w) the optimal order quantity under s1 for a given w
wb1(m) the optimal wholesale price under b1 for a given m
pb1(m) the corresponding retail price under b1 for a given m
qb1(m) the corresponding order quantity under b1 for a given m
wb2(k) the optimal wholesale price under b2 for a given k
pb2(k) the corresponding retail price under b2 for a given k
qb2(k) the corresponding order quantity under b2 for a given k

wb3(k,m) the optimal wholesale price under b3 for given k and m
pb3(k,m) the corresponding retail price under b3 for given k and m
qb3(k,m) the corresponding order quantity under b3 for given k and m

kl the optimal k under contract l = b2, b3
ml the optimal m under contract l = b1, b3
wl the optimal wholesale price under contract l = s1, b1, b2, b3
pl the optimal retail price under contract l = s1, b1, b2, b3
πl
s the supplier’s profit under the optimal contract l = s1, b1, b2, b3

πl
b the buyer’s profit under the optimal contract l = s1, b1, b2, b3

Πl the system profit under the optimal contract l = s1, b1, b2, b3
π−
s the supplier’s reservation profit, π−

s ≥ 0
π−
b the buyer’s reservation profit, π−

b ≥ 0
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Table 3.2: Summary of results under s1 and b1 in the single-product setting.

Contract Decisions

Wholesale price
Contract

(π−
b ∈ [0,Πc])

ws1 = min{ws1−, ws1+} = min

{
a−2

√
bπ−

b

b
− c, a+b(s−c)

2b

}
ps1 = min

{
a−
√

bπ−
b

b
, 3a+b(s+c)

4b

}
qs1 = max

{√
bπ−

b ,
a−b(s+c)

4

}
πs1
s =


[
a−b(s+c)−2

√
bπ−

b

]√
bπ−

b

b
if π−

b ∈ [Πc/4,Πc]
[a−b(s+c)]2

8b
if π−

b ∈ [0,Πc/4]

πs1
b = max

{
π−
b ,

[a−b(s+c)]2

16b

}
Πs1 =


[
a−b(s+c)−

√
bπ−

b

]√
bπ−

b

b
if π−

b ∈ [Πc/4,Πc]
3[a−b(s+c)]2

16b
if π−

b ∈ [0,Πc/4]

Margin-only
Contract

(π−
s ∈ [0,Πc])

mb1 = min{mb1−,mb1+} = min

{
a−2

√
bπ−

s

b
− s, a−b(s−c)

2b

}
wb1 = max

{
s+

√
π−
s

b
, a+b(3s−c)

4b

}
pb1 = min

{
a−
√

bπ−
s

b
, 3a+b(s+c)

4b

}
qb1 = max

{√
bπ−

s ,
a−b(s+c)

4

}
πb1
s = max

{
π−
s ,

[a−b(s+c)]2

16b

}
πb1
b =


[
a−b(s+c)−2

√
bπ−

s

]√
bπ−

s

b
if π−

s ∈ [Πc/4,Πc]
[a−b(s+c)]2

8b
if π−

b ∈ [0,Πc/4]

Πb1 =


[
a−b(s+c)−

√
bπ−

s

]√
bπ−

s

b
if π−

s ∈ [Πc/4,Πc]
3[a−b(s+c)]2

16b
if π−

b ∈ [0,Πc/4]
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Table 3.3: Summary of results under b2 and b3 in the single-product setting.

Contract Decisions

Multiplier-only
Contract
(s = 0,

π−
s ∈ (0, a

2−2abc
4b

]
)

kb2 = a2

4bπ−
s

wb2 = 2π−
s

a

pb2 = a
2b

πb2
s = π−

s

πb2
b = a2

4b
− ac

2
− π−

s

Πb2 = a2

4b
− ac

2

Multiplier-only
Contract
(s > 0,

π−
s ∈ [0, πkl

s ])

kb2 = min{kb2−, kb2+}

kb2− =
as+2π−

s −
√

(as+2π−
s )2−a2s2

bs2

2s2b2{kb2+}3 − s(s+ 2c)b2{kb2+}2 − a2 = 0

wb2 = max

{
s+

√
(as+2π−

s )2−a2s2−2π−
s

2
(
as+2π−

s −
√

(as+2π−
s )2−a2s2

) , a+bskb2+

2bkb2+

}
pb2 = min

{
2as+2π−

s −
√

(as+2π−
s )2−a2s2

2bs
, a+bskb2+

2b

}
qb2 = max

{√
(as+2π−

s )2−a2s2−2π−
s

2s
, a−bskb2+

2

}
πb2
s = max

{
π−
s ,

(a−bskb2+)2

4bkb2+

}
πb2
b = (a−bskb2)[a(kb2−1)+bkb2(skb2−s−2c)]

4bkb2

Πb2 = (a−bskb2){a+b[skb2−2(s+c)]}
4b

Generic
Contract

(π−
s ∈ (0,Πc])

kb3 = Πc

π−
s

mb3 = c− s
(

Πc

π−
s
− 1
)

wb3 = [a−b(s+c)]π−
s

2bΠc + s

pb3 = a+b(s+c)
2b

qb3 = a−b(s+c)
2

πb3
s = π−

s

πb3
b = Πc − π−

s

Πb3 = Πc
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4. THE GENERIC CONTRACT IN THE CASE OF MULTIPLE PRODUCTS

4.1 Setting 2. The multi-product bilateral monopolistic setting

We extend the basic bilateral monopolistic setting (the single-product set-

ting) by considering the more general multi-product bilateral monopolistic set-

ting referred as the two-product setting in Figure 4.1. Suppose that the two products

are substitutable. The supplier’s decisions pertain to the wholesale prices w1 and

w2, and the buyer’s decisions pertain to the order quantities q1 and q2 and the retail

prices p1 and p2. The order quantities are dictated by the general demand function

that depends linearly on the retail prices following

 q1

q2

 =

 a1

a2

−

 α1 −β1

−β2 α2


 p1

p2

 . (4.1)

Price competition occurs between the two substitutable products and it results

from cross-price effects (Ingene and Parry (2004)), i.e., each product’s demand de-

pends on both products’ retail prices. The demand function in (4.1) is the generalized

”linear demand function with cross-price effects” (e.g., Pashigian (1961), Ingene and

Parry (1995), Tyagi (2005), and Yang and Zhou (2006)). In (4.1), ai, αi, and βi are

parameters, i = 1, 2. Parameter ai can be considered as the maximum demand of

product i in market when prices for both products are zero (McGuire and Staelin

(1983)). Parameter αi represents the sensitivity of demand of product i to its own re-

tail price and βi represents the sensitivity of demand of product i to the substitutable

product’s retail price (Ingene and Parry (2004)), i = 1, 2.

Let si and ci denote the supplier’s unit production cost and the buyer’s unit

distribution cost, respectively, for product i, i = 1, 2. The notation introduced so far
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and used frequently in the remainder of this document is summarized in Table 4.1.

BuyerSupplier

w1

w2

p1, q1 = a� - α�p1 + ��p2

p2, q2 = a� - α�p2 + β�p1

Figure 4.1: The multi-product bilateral monopolistic setting.

Table 4.1: Summary of notation in the multi-product setting.

Symbol Explanation
i the index of a product, i = 1, 2
pi the retail price for product i
qi the order quantity for product i, qi = ai − αipi + βipj, j = 1, 2, j ̸= i
αi the sensitivity of demand of product i to pi
βi the sensitivity of demand of product i to pj, j = 1, 2 and j ̸= i
wi the wholesale price for product i
si the supplier’s unit production cost for product i
ci the buyer’s unit distribution cost for product i
ki the price multiplier for product i, ki > 0
mi the price margin for product i, mi ∈ ℜ

We focus on the examination of the wholesale price contract in the supplier-driven

channel and the generic contract in the buyer-driven channel, denoted by s1 and b3,

respectively:

s1. Under the wholesale price contract, the supplier decides w1 and w2 and then

the buyer decides p1 and p2.

b3. Under the generic contract, the buyer decides on the values of ki, ki ∈ ℜ and

mi, mi ∈ ℜ, while also committing that the retail price for product i would be
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set such that pi = kiwi +mi and the order quantity for product i would be set

such that qi = ai − αi(kiwi +mi) + βi(kjwj +mj), i, j = 1, 2 and j ̸= i. Next,

the supplier decides wi, i = 1, 2.

4.2 Modeling the case of symmetric two products

We start the analysis by considering the so-called symmetric setting (Choi (1991))

for the two products. In the symmetric setting, ai = a, αi = α, βi = β, si = s, and

ci = c, i = 1, 2. Then, the demand function in (4.1) for product i can be rewritten

as

qi = a− αpi + βpj, (4.2)

i, j = 1, 2 and j ̸= i. Hence, (4.2) is known as the “symmetric linear demand function

with cross-price effects”, which is the special case of the generalized “linear demand

function with cross-price effects” as shown in (4.1). The symmetry assumption for

products’ demands as applied in (4.2) has been widely adopted in the literature on

channel management to keep the problem formulation simple (e.g., McGuire and

Staelin (1983), Choi (1991), Choi (1996), Trivedi (1998), Pan et al. (2010), and Wu

et al. (2012)).

Due to the nature of price competition between substitutable products, α > 0

and β ≥ 0 are required, i.e., each product’s demand decreases in its own price and

increases in its competitor’s price. Assuming a product’s demand impacted by its

own price more heavily than by its competitor’s price, we set α > β (e.g., McGuire

and Staelin (1983), Choi (1991), Choi (1996), Trivedi (1998), Pan et al. (2010), and

Wu et al. (2012)). Hence, we assume α and β such that

α > β ≥ 0. (4.3)
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In the following, we first examine the symmetric two-product setting. Next, we

generalize the symmetric two-product setting to the symmetric n-product setting,

n ≥ 2, and the asymmetric two-product setting. We analyze b3 in these two settings

in Sections 4.3 and 4.5. We conclude by summarizing the relations of these settings

to the single-product setting in Section 4.4.

4.2.1 Profit functions

In the symmetric two-product setting, using (4.2), the supplier’s profit function

is given by

πs =
∑
i=1,2

(wi − s)qi =
∑

i,j=1,2,j ̸=i

(wi − s)(a− αpi + βpj). (4.4)

The buyer’s profit function is given by

πb =
∑
i=1,2

(pi − wi − c)qi =
∑

i,j=1,2,j ̸=i

(pi − wi − c)(a− αpi + βpj). (4.5)

The centralized profit function is given by

Π =
∑
i=1,2

(pi − s− c)qi =
∑

i,j=1,2,j ̸=i

(pi − s− c)(a− αpi + βpj). (4.6)

Note that using (4.2), pi can be written as a function of order quantities such that

pi =
a

α− β
− αqi

α2 − β2
− βqj

α2 − β2
, (4.7)

i, j = 1, 2 and j ̸= i.

Recalling (4.4), (4.5), (4.6), and (4.7), in order to guarantee qi ≥ 0 and the

supplier’s and buyer’s profits on product i are nonnegative, we assume pi ≤ a/(α−
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β), wi ≥ s, and pi ≥ wi + c so that

s+ c ≤ wi + c ≤ pi ≤
a

α− β
, (4.8)

i = 1, 2. We pay particular attention to ensure that the contractual problems at

hand lead to nonnegative profits πs, πb, and Π for the sake of practical realism. The

inequalities in (4.8) are proposed to guarantee the nonnegative profits.

4.2.2 Centralized problem

Using (4.6) and assumption (4.8), the centralized optimization problem in the

symmetric two-product setting can be stated as

(Pc− 2s) : max
p1,p2∈[s+c,a/(α−β)]

Π =
∑

i,j=1,2,j ̸=i

(pi − s− c)(a− αpi + βpj).

Clearly, wi is immaterial for Π in (4.6), and, hence, by assumption (4.8), we are only

interested in pi values that satisfy

s+ c ≤ pi ≤
a

α− β
, (4.9)

i = 1, 2.

Using (4.6), note that

∂Π

∂pi
= a− 2αpi + 2βpj + (α− β)(s+ c), (4.10)

i, j = 1, 2 and j ̸= i, and the Hessian matrix of Π is given by

 ∂2Π
∂p21

∂2Π
∂p1∂p2

∂2Π
∂p2∂p1

∂2Π
∂p22

 =

 −2α 2β

2β −2α

 .
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The determinant of the Hessian matrix is given by 4α2−4β2 > 0 using (4.3). Hence,

Π in (4.6) is negative-definite. Setting ∂Π/∂pi = 0 in (4.10) for i = 1, 2 leads to

pci =
a+ (α− β)(s+ c)

2(α− β)
. (4.11)

Observe that pci defined in (4.11) is the centralized optimal retail price for

product i, i = 1, 2. This is because by assumption (4.8),

a

α− β
− pci =

a− (α− β)(s+ c)

2(α− β)
≥ 0 and

pci − (s+ c) =
a− (α− β)(s+ c)

2(α− β)
≥ 0,

so that pci defined in (4.11) is realizable over the region (4.9), i = 1, 2. Using (4.11)

in (4.2), the centralized optimal order quantity for product i is given by

qci =
a− (α− β)(s+ c)

2
, (4.12)

i = 1, 2. Substituting (4.11) in (4.6), the centralized optimal system profit is

given by

Πc =
[a− (α− β)(s+ c)]2

2(α− β)
. (4.13)

It is important to note that the optimal retail prices and order quantities given

by (4.11) and (4.12) for both products are the same, i.e., free of the index i, i = 1, 2.

It is because the two products are symmetric and it does not make sense to make

different decisions for them.

Ingene and Parry (2004) consider a variant of (Pc−2s) by allowing a more general

cost structure where each entity has a per unit cost as well as a fixed cost for each

product and using a more general demand function where a1 ̸= a2 is possible. By
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setting the fixed costs equal zero and letting a1 = a2, their problem (see the problem

in (5.3.1) on p. 199 of Ingene and Parry (2004)) is reduced to (Pc − 2s) leading to

pc in (4.11) (see (5.3.2) on p. 199 of Ingene and Parry (2004)).

4.2.3 Wholesale price contract s1

Under s1, the supplier decides w1 and w2 first and then the buyer decides p1 and

p2. By assumption (4.8), we are only interested in wi and pi values that satisfy

s ≤ wi ≤
a

α− β
− c and (4.14)

wi + c ≤ pi ≤
a

α− β
, (4.15)

i = 1, 2. We refer to (4.14) as the main constraint on the decision variables of the

contract design problem under s1.

4.2.3.1 Formulation of (Ps1− 2s)

For a given wi, i = 1, 2, such that (4.14) is true, using (4.5), we have

∂πb

∂pi
= a− 2αpi + 2βpj + αwi − βwj + (α− β)c, (4.16)

i, j = 1, 2 and j ̸= i, and the Hessian matrix of πb in (4.5) is given by

 ∂2πb

∂p21

∂2πb

∂p1∂p2

∂2πb

∂p2∂p1

∂2πb

∂p22

 =

 −2α 2β

2β −2α

 .

The determinant of the Hessian matrix is given by 4α2−4β2 > 0 using (4.3). Hence,

πb in (4.5) is negative-definite. Setting ∂πb/∂pi = 0 in (4.16) for i = 1, 2 leads to

ps1−2s
i (wi) =

a+ (α− β)(wi + c)

2(α− β)
. (4.17)
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Observe that for any wi such that (4.14) is true, ps1−2s
i (wi) defined in (4.17) is

the buyer’s optimal response, i.e., the optimal retail price for product i,

i = 1, 2. This is because wi satisfies (4.14) so that

a

α− β
− ps1−2s

i (wi) =
a− (α− β)(wi + c)

2(α− β)
≥ 0 and

ps1−2s
i (wi)− (wi + c) =

a− (α− β)(w + c)

2(α− β)
≥ 0,

i = 1, 2. Hence, ps1−2s
i (wi) in (4.17) is realizable over the region (4.15), i = 1, 2.

Using (4.2), the buyer’s optimal order quantity for product i is given by

qs1−2s
i (wi, wj) =

a− αwi + βwj − (α− β)c

2
, (4.18)

i, j = 1, 2 and j ̸= i.

Using (4.17) in (4.4) and (4.5), we have

πs =
∑

i,j=1,2,j ̸=i

(wi − s)[a− αwi + βwj − (α− β)c]

2
and

πb =
∑

i,j=1,2,j ̸=i

[a− (α− β)(wi + c)][a− αwi + βwj − (α− β)c]

4(α− β)
.

Considering the main constraint (4.14) and the buyer’s reservation profit π−
b

and using the two above expressions for πs and πb, the supplier’s optimization
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problem under s1 in the symmetric two-product setting can be stated as

(Ps1− 2s) :

max
s≤w1,w2≤a/(α−β)−c

πs =
∑

i,j=1,2,j ̸=i

(wi − s)[a− αwi + βwj − (α− β)c]

2
(4.19)

s.t. πb =
∑

i,j=1,2,j ̸=i

[a− (α− β)(wi + c)][a− αwi + βwj − (α− β)c]

4(α− β)

≥ π−
b . (4.20)

Clearly, (Ps1 − 2s) makes sense only for reasonable values of π−
b . That is, a

natural upper bound on π−
b is given by

0 ≤ π−
b ≤ Πc =

[a− (α− β)(s+ c)]2

2(α− β)
, (4.21)

where Πc is the optimal centralized system profit in (4.13).

It is important to note that a variant of (Ps1− 2s) is studied by Yang and Zhou

(2006). They consider a channel where a supplier sells a single product with cross-

price effects to two buyers who collude to make retail price decisions. The supplier’s

problem in their work can be considered as a variant of (Ps1−2s), where the supplier

makes only one wholesale price decision. Also, they assume π−
b = 0 and c = 0 (see

Section 3.2 on p. 108 of Yang and Zhou (2006)). That is, setting w1 = w2 = w, πb in

(4.20) and ps1−2s
i (wi) in (4.17) also appear in their work (see expressions (11), (12),

and (13) on p. 108 of Yang and Zhou (2006)) with c = 0, i = 1, 2 .

4.2.3.2 Optimal solution of (Ps1− 2s)

Next, we present two approaches to identify the optimal solution for (Ps1− 2s)

given by (4.19) and (4.20). In the first approach, we prove that the optimal solution is

the same as that for (Ps1−2s) in the single-product setting. In the second approach,

107



we apply the method of Lagrange Multiplier to directly solve this problem.

Approach 1

Using (4.19), we have

πs =
1

2

∑
i=1,2

{(wi − s)[a− αwi − (α− β)c]− βswi}+ βw1w2. (4.22)

Note that

2w1w2 ≤ w2
1 + w2

2 (4.23)

for w1, w2 ∈ ℜ, where the equality holds true if w1 = w2. Using (4.22), we have

πs ≤ 1

2

∑
i=1,2

{(wi − s)[a− αwi − (α− β)c]− βswi}+
β

2
(w2

1 + w2
2)

=
∑
i=1,2

(wi − s)[a− (α− β)(wi + c)]

2
=
∑
i=1,2

f(wi), (4.24)

where the equality holds true if w1 = w2 and

f(x) =
(x− s)[a− (α− β)(x+ c)]

2
. (4.25)
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Using (4.20) and (4.23), we have

πb =
1

4(α− β)
·∑

i=1,2

{[a− (α− β)(wi + c)][a− αwi − (α− β)c] + [a− (α− β)c]βwi}

−(α− β)βw1w2

2(α− β)

≥ 1

4(α− β)
·∑

i=1,2

{[a− (α− β)(wi + c)][a− αwi − (α− β)c] + [a− (α− β)c]βwi}

−(α− β)β(w2
1 + w2

2)

4(α− β)

=
∑
i=1,2

[a− (α− β)(wi + c)]2

4(α− β)
=
∑
i=1,2

g(wi), (4.26)

where the equality holds true if w1 = w2 and

g(x) =
[a− (α− β)(x+ c)]2

4(α− β)
. (4.27)

Clearly, if

g(wi) ≥ π−
b /2

for i = 1, 2 then using (4.26)

πb ≥
∑
i=1,2

g(wi) ≥ π−
b .

Recalling (4.24), we have

πs ≤
∑
i=1,2

f(wi) ≤ max
w1,w2

∑
i=1,2

f(wi) =
∑
i=1,2

max
wi

f(wi), (4.28)
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where πs =
∑

i=1,2 f(wi) if w1 = w2. Hence, the upper bound of πs in (4.19) when

πb ≥ π−
b is satisfied is given by

∑
i=1,2

max
wi

f(wi)

s.t. g(wi) ≥
π−
b

2
, i = 1, 2.

Let w∗
i denote the optimal solution to the above optimization problem, i = 1, 2.

Since this problem is separable based on wi, we have w∗
i = w∗, i = 1, 2, where w∗ is

the optimal solution to the following optimization problem

max
w

f(w) =
(w − s)[a− (α− β)(w + c)]

2

s.t. g(w) =
[a− (α− β)(w + c)]2

4(α− β)
≥ π−

b

2
,

using (4.25) and (4.27). It is important to note that this optimization problem is

the same as (Ps1) in the single-product setting, when b = α− β and the buyer’s

reservation profit is given by π−
b /2, where π−

b is the buyer’s reservation profit in the

symmetric two-product setting.

Since w1 = w2 = w∗, using (4.28), πs = f(w∗) + f(w∗) =
∑

i=1,2maxwi
f(wi) =

2maxw f(w). In this case, πs achieves its upper bound. Hence, the optimal whole-

sale price for product i under s1 in the symmetric two-product setting is given by

ws1−2s
i = w∗, i = 1, 2, where w∗ is the optimal solution to (Ps1) in the single-product

setting with b = α− β and the buyer’s reservation profit is given by π−
b /2.
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Approach 2

Using (4.19), observe that

∂πs

∂wi

=
(a− 2αwi + 2βwj + (α− β)(s− c))

2
, (4.29)

i, j = 1, 2 and j ̸= i, and the Hessian matrix of πs in (4.19) is given by

 ∂2πs

∂w2
1

∂2πs

∂w1∂w2

∂2πs

∂w2∂w1

∂2πs

∂w2
2

 =

 −α β

β −α

 .

Hence, the Hessian matrix is negative-definite using (4.3). Letting ws1+
i denote the

solution for ∂πs/∂wi = 0 in (4.29), we have

ws1+
i = ws1+ ≡ a+ (α− β)(s− c)

2(α− β)
, (4.30)

i = 1, 2. Note that ws1+
i is free of the index i, i = 1, 2. Hence, the subscript can be

omitted. Using assumption (4.8), it can be easily verified that ws1+
i defined in (4.30)

is realizable over the region (4.14) which appears in (4.19), i = 1, 2. Substituting

(4.30) in (4.20), the corresponding buyer’s profit is the given by

πs1+
b =

[a− (α− β)(s+ c)]2

8(α− β)
. (4.31)

Next, we need to consider πs1+
b given by (4.31) in relation to constraint (4.20) in

(Ps1− 2s).

• If πs1+
b ≥ π−

b then (4.20) is satisfied for wi = ws1+ so that the optimal

wholesale price for product i under s1, denoted by ws1−2s
i , is simply given

by ws1+ in (4.30), i = 1, 2.
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• Otherwise, i.e., πs1+
b < π−

b , w
s1−2s
i occurs at the boundary of (4.20), i = 1, 2.

Then, we solve for ws1−2s
i using the method of Lagrange multiplier, i = 1, 2.

Let

f(·) = πs + λ(πb − π−
b ),

where πs and πb are given by (4.19) and (4.20), λ ≥ 0 is the Lagrange multiplier,

and f(·) is a simplified notation for f(w1, w2, λ). Setting △wi,λf(·) = 0 leads

to

∂f(·)
∂wi

=
∂πs

∂wi

+
λ∂πb

∂wi

=
(1− λ)[a− (α− β)c] + (λ− 2)(αwi − βwj) + (α− β)s

2
= 0,(4.32)

∂f(·)
∂λ

= πb − π−
b = 0, (4.33)

i, j = 1, 2 and j ̸= i. Then, (4.32) leads to

wi =
(λ− 1)[a− (α− β)c]− (α− β)s

(λ− 2)(α− β)
,

i = 1, 2. It is obvious that w1 = w2 by the above equation. Hence, ws1−2s
1 =

ws1−2s
2 and let ws1−2s

i = ws1−2s, i = 1, 2. Letting wi = w, i = 1, 2, in (4.20) and

(4.33), we have

[a− (α− β)(w + c)]2 − 2(α− β)π−
b = 0.

Therefore, ws1−2s is dictated by the solution of the above polynomial. The root

of the polynomial are given by

ws1− =
a−

√
2(α− β)π−

b

α− β
− c and

a+
√
2(α− β)π−

b

α− β
− c. (4.34)
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Now, observe that the latter root is eliminated because it violates (4.14) for

π−
b > 0 and it is equal to the former root for π−

b = 0. Since π−
b satisfies (4.21),

using assumption (4.8), it is easy to verify that

a

α− β
− c− ws1− =

2
√
(α− β)π−

b

α− β
≥ 0, and

ws1− − s =
a− (α− β)(s+ c)

α− β
− 2

√
π−
b

α− β

≥ a− (α− β)(s+ c)

α− β
−

√
[a− (α− β)(s+ c)]2

(α− β)2
= 0,

so that ws1−
i for ws1−

i = ws1− defined in (4.34) is realizable over the region

(4.14), i = 1, 2. Therefore, ws1−
i = ws1−, i = 1, 2, and the corresponding

buyer’s profit is then given by π−
b .

Substituting wi = w, i = 1, 2, in (4.20), we have

πb =
[a− (α− β)(w + c)]2

2(α− β)

and

dπb

dw
= −[a− (α− β)(w + c)].

Hence, πb is decreasing in w over the region (4.14). That is,

– πb ≥ π−
b only for those w ≤ ws1− and

– If πs1+
b < π−

b then ws1− < ws1+.
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Consequently, recalling (4.30) and (4.34), we have

ws1−2s
i = min{ws1−, ws1+}

= min

{
a−

√
2(α− β)π−

b

α− β
− c,

a+ (α− β)(s− c)

2(α− β)

}
. (4.35)

Recalling (4.21), we have π−
b ∈ [0,Πc] by assumption. Then, considering (4.31)

and (4.35), it is easy to show that the optimal solution of (Ps1− 2s) depends on the

value of π−
b . That is,

• Case 1: ws1−2s
i = ws1+. If π−

b ∈ [0,Πc/4] then ws1+ ≤ ws1− so that ws1−2s
i =

ws1+, and

• Case 2: ws1−2s
i = ws1−. If π−

b ∈ [Πc/4,Πc] then ws1+ ≥ ws1− so that ws1−2s
i =

ws1−, i = 1, 2.

Recalling (4.17), (4.18), (4.19), and (4.20) and using (4.35), the corresponding

retail price, order quantity, supplier’s, buyer’s and system profits under
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the optimal contract s1 are given by

ps1−2s
i = min

{
2a−

√
2(α− β)π−

b

2(α− β)
,
3a+ (α− β)(s+ c)

4(α− β)

}
, (4.36)

qs1−2s
i = max

{√
(α− β)π−

b

2
,
a− (α− β)(s+ c)

4

}
,

πs1−2s
s =


[
a−(α−β)(s+c)−

√
2(α−β)π−

b

]√
2(α−β)π−

b

α−β
if π−

b ∈ [Πc/4,Πc]

[a−(α−β)(s+c)]2

4(α−β)
= Πc

2
if π−

b ∈ [0,Πc/4]

, (4.37)

πs1−2s
b = max

{
π−
b ,

[a− (α− β)(s+ c)]2

8(α− β)

}
, and (4.38)

Πs1−2s =


[
a−(α−β)(s+c)−

√
(α−β)π−

b /2
]√

2(α−β)π−
b

α−β
if π−

b ∈ [Πc/4,Πc]

3[a−(α−β)(s+c)]2

8(α−β)
if π−

b ∈ [0,Πc/4]

.(4.39)

As noted previously, (Ps1− 2s) is solved by Yang and Zhou (2006) by assuming

π−
b = 0 and c = 0 leading to the optimal wholesale price in (4.35), retail price in

(4.36), resulting profits in (4.37), (4.38), and (4.39) with π−
b = 0 and c = 0 (see the

expressions in Table 1 on p. 110 of Yang and Zhou (2006)).

4.2.4 Generic contract b3

Under b3, the buyer announces that pi would be set depending on wi according

to

pi = kiwi +mi, (4.40)

where ki ∈ ℜ is the unconstrained multiplier and mi ∈ ℜ is the unconstrained value

representing a margin (mark-up) or rebate (mark-down), i = 1, 2. Then, the buyer

moves first and decides ki and mi and the supplier selects the optimal wi, i = 1, 2.

In the single-product setting, we show that if the unconstrained multiplier

for the single product is non-positive, i.e., k ≤ 0, then the buyer does not make any
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profit. Hence, we restrict our attention to the case k > 0 under b3. It is natural

to argue the same result in the symmetric/assymetric two-product setting as well as

the symmetric n-product setting. Hence, we focus on ki > 0 under b3, i = 1, 2.

Substituting (4.40) in assumption (4.8), we have

s+ c ≤ wi + c ≤ pi = kiwi +mi ≤
a

α− β
,

i = 1, 2. Since wi ≥ s and ki > 0,

kis+mi ≤ kiwi +mi,

i = 1, 2. Hence, using the above inequalities, we conclude that ki, mi, wi, and pi

should be such that

kis+mi ≤
a

α− β
, (4.41)

s ≤ wi ≤
a

α− β
− c, and (4.42)

s+ c ≤ pi ≤
a

α− β
, (4.43)

i = 1, 2.

Let us examine πs in (4.4) under b3. For given ki > 0 and mi ∈ ℜ, i = 1, 2, using

(4.40), πs in (4.4) can be rewritten as

πs =
∑

i,j=1,2,i ̸=j

(wi − s)[a− αkiwi + βkjwj − (αmi − βmj)]. (4.44)

Note that

∂πs

∂wi

= a− 2αkiwi + β(ki + kj)wj + (α− β)kis− (αmi − βmj), (4.45)
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i, j = 1, 2 and j ̸= i, and the Hessian matrix of πs in (4.44) is given by

 ∂2πs

∂w2
1

∂2πs

∂w1∂w2

∂2πs

∂w2∂w1

∂2πs

∂w2
2

 =

 −2αk1 β(k1 + k2)

β(k1 + k2) −2αk2

 .

The determinant of the Hessian matrix is given by

4α2k1k2 − β2(k1 + k2)
2.

Here, we momentarily assume this quantity is greater than zero, and, hence, the

Hessian matrix is negative-definite. Later, we will show that under the optimal

contract the buyer would set k1 = k2, so that determinant of the Hessian matrix

reduces to

4(α2 − β2)k2
1 > 0,

since k1 > 0 by definition and (4.3).

Setting ∂πs/∂wi = 0 for i = 1, 2 in (4.45) leads to

wb3−2s
i (·) = [(kimi + kjmi − k2

j s− kjkis)β
2 + (kjmj − kimj − kikjs+ k2

j s)αβ

+(2kikjs− 2mikj)α
2 + (ki + kj)aβ + 2akjα] ·

1

4kikjα2 − (ki + kj)2β2
, (4.46)

where wb3−2s
i (·) is a simplified notation for wb3−2s

i (k1,m1, k2,m2), i, j = 1, 2 and j ̸= i.

Let us verify if wb3−2s
i (·) is realizable over the region (4.42), i = 1, 2. We know

from the development of (4.42) that this verification is equivalent to ensuring that

πs in (4.44) is nonnegative for wi = wb3−2s
i (·), i = 1, 2. Since wi = s, i = 1, 2, is

obviously a feasible solution under which πs = 0. Therefore, using the definition of
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wb3−2s
i , πs ≥ 0 is true for wi = wb3−2s

i (·), i = 1, 2. Then, wb3−2s
i defined in (4.46) is the

supplier’s optimal response, i.e., the optimal wholesale price for product

i, under b3 because it is realizable over the region (4.42). Substituting (4.46) in

(4.40) and using (4.2), the corresponding retail price and order quantity for

product i for given values of ki > 0 and mi ∈ ℜ that satisfy (4.41) are given by

pb3−2s
i (·) = ki[(kimi + kjmi − k2

j s− kjkis)β
2 + (kjmj − kimj − kikjs+ k2

j s)αβ

+(2kikjs− 2mikj)α
2 + (ki + kj)aβ + 2akjα]/[4kikjα

2 − (ki + kj)
2β2]

+mi and (4.47)

qb3−2s
i (·) = a− αpb3−2s

i (·) + βpb3−2s
j (·), (4.48)

i, j = 1, 2 and j ̸= i.

As noted in the single-product setting, (4.41), (4.42), and (4.43) are not sufficient

to guarantee πb ≥ 0 in (4.5). In order to guarantee πb ≥ 0, recalling assumption

(4.8) and using (4.46) and (4.47), we need to ensure

wb3−2s
i (·) + c ≤ pb3−2s

i (·), (4.49)

i = 1, 2. Hence, we refer to (4.41) and (4.49) as the main constraints for the problem

at hand.

Using (4.4) and (4.5), we have

πs =
∑
i=1,2

[
wb3−2s

i (·)− s
]
qb3−2s
i (·) and

πb =
∑
i=1,2

[
pb3−2s
i (·)− wb3−2s

i (·)− c
]
qb3−2s
i (·),

where wb3−2s
i (·), pb3−2s

i (·), and qb3−2s
i (·) are given by (4.46), (4.47), and (4.48), i = 1, 2.
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Finally, considering (4.41), (4.49), the above expressions for πs and πb, and the

constraint ki > 0, the buyer’s optimization problem under b3 for the sym-

metric two-product setting can be stated as

(Pb3− 2s) : max
ki>0,mi∈ℜ

πb =
∑
i=1,2

[
pb3−2s
i (·)− wb3−2s

i (·)− c
]
qb3−2s
i (·) (4.50)

s.t. pb3−2s
i (·)− wb3−2s

i (·)− c ≥ 0

ski +mi ≤
a

α− β

πs =
∑
i=1,2

[
wb3−2s

i (·)− s
]
qb3−2s
i (·) ≥ π−

s , (4.51)

where wb3−2s
i (·), pb3−2s

i (·), and qb3−2s
i (·) are given by (4.46), (4.47), and (4.48), re-

spectively, i = 1, 2.

Clearly, (Pb3 − 2s) makes sense only for reasonable values of π−
s . That is, a

natural upper bound on π−
s is given by

0 ≤ π−
s ≤ Πc =

[a− (α− β)(s+ c)]2

2(α− β)
, (4.52)

where Πc is the optimal centralized system profit in (4.13).

Next, we identify the optimal solution to (Pb3− 2s) given by (4.50) and (4.51).

To this end, we establish an upper bound on the objective function given by (4.50)

and develop a feasible solution such that the objective function value of this solution

achieves the upper bound. Hence, the feasible solution at hand is also optimal.

Using (4.50) and (4.51), the system profit under b3 is given by Π = πs + πb.

Obviously, Π ≤ Πc always holds true, where Πc is the optimal centralized system

profit given in (4.13). Therefore, under b3, we have

πb = Π− πs ≤ Πc − π−
s ,
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so that the best profit the buyer can achieve under b3 is given by Πc − π−
s .

Next, we provide a feasible solution of ki and mi such that πb = Πc − πs is true,

i = 1, 2. To this end, inspired by the optimal contract under b3 in the single-product

setting, we consider the tuple (kb3−2s
i ,mb3−2s

i ) such that

kb3−2s
i =

Πc

π−
s

and (4.53)

mb3−2s
i = s+ c− sΠc

π−
s

, (4.54)

i = 1, 2.

Next, we need to show that the tuple is a feasible solution that satisfies the main

constraints (4.41) and (4.49). We know from the development of (Pb3−2s) that this

verification is equivalent to ensuring that πb in (4.50) is nonnegative for ki = kb3−2s
i

and mi = mb3−2s
i , i = 1, 2. In order to calculate πb, first, substituting (4.53) and

(4.54) in (4.46), (4.47) and (4.48), the corresponding wholesale price, retail price,

and order quantity are given by

wb3−2s
i =

[a− (α− β)(s+ c)] π−
s

2(α− β)Πc
+ s,

pb3−2s
i =

a+ (α− β)(s+ c)

2(α− β)
, and

qb3−2s
i =

a− (α− β)(s+ c)

2
,

i = 1, 2. Then, using (4.50) and (4.51), we have

πb3−2s
s = π−

s ,

πb3−2s
b =

[a− (α− β)(s+ c)]2

2(α− β)
− π−

s = Πc − π−
s , and (4.55)

Πb3−2s = πb3−2s
s + πb3−2s

b =
[a− (α− β)(s+ c)]2

2(α− β)
= Πc.
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Using (4.55), it is easy to verify that πb3−2s
b ≥ 0 since π−

s ≤ Πc in (4.52). Hence

the tuple (kb3−2s
i , mb3−2s

i ) defined in (4.53) and (4.54), i = 1, 2, is a feasible solution,

under which the upper bound of the objective function in (4.50) is achieved, i.e.,

πb = Πc − π−
s . Hence, it is also optimal.

It is important to note that the optimal contract parameters given by (4.53)

and (4.54) for the two products are the same, i.e., free of the index i, i = 1, 2. It is

because the two products are symmetric and it does not make sense to make different

decisions for them.

4.3 Modeling the case of symmetric n products

Now that we have illustrated specific approaches simplifying the symmetric two-

product problems (Ps1−2s) and (Pb3−2s) in Section 4.2, we utilize the approaches

to derive the symmetric n-product problems (Ps1− ns) and (Pb3− ns), n ≥ 2.

In the symmetric n-product setting, we assume the order quantity for product i

is given by

qi = a− αpi +
β

n− 1

∑
j=1,··· ,n,j ̸=i

pj, (4.56)

i = 1, · · · , n (Bresnahan and Reiss (1985)). Note that when n = 2, the demand

function in (4.56) is reduced to the demand function in (4.2) in the symmetric two-

product setting.

Profit functions:

In the symmetric n-product setting, the supplier’s profit function is given by

πs =
∑

i=1,··· ,n

(wi − s)qi =
∑

i=1,··· ,n

(wi − s)

(
a− αpi +

β

n− 1

∑
j=1,··· ,n,j ̸=i

pj

)
. (4.57)
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The buyer’s profit function is given by

πb =
∑

i=1,··· ,n

(pi − wi − c)qi

=
∑

i=1,··· ,n

(pi − wi − c)

(
a− αpi +

β

n− 1

∑
j=1,··· ,n,j ̸=i

pj

)
. (4.58)

Following the symmetric two-product setting, we also assume α > β ≥ 0.

4.3.1 Wholesale price contract s1

Under s1, the supplier decides wi, i = 1, · · · , n, first and then the buyer decides

pi, i = 1, · · · , n. Similar to the symmetric two-product setting, we are only interested

in wi and pi values that satisfy

s ≤ wi ≤
a

α− β
− c and (4.59)

wi + c ≤ pi ≤
a

α− β
, (4.60)

i = 1, · · · , n. We refer to (4.59) as the main constraint on the decision variables of

the contract design problem under s1 in the symmetric n-product setting.

4.3.1.1 Formulation of (Ps1− ns)

For a given wi, i = 1, · · · , n, such that (4.59) is true, using (4.58), we have

∂πb

∂pi
= a− 2αpi +

2β

n− 1

∑
j=1,··· ,n,j ̸=i

pj

+αwi −
β

n− 1

∑
j=1,··· ,n,j ̸=i

wj + (α− β)c, (4.61)
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i, j = 1, · · · , n and j ̸= i, and the Hessian matrix of πb in (4.58) is given by


∂2πb

∂p21
· · · ∂2πb

∂p1∂pn

...
. . .

...

∂2πb

∂pn∂p1
· · · ∂2πb

∂p2n

 =


−2α · · · 2β

...
. . .

...

2β · · · −2α

 .

The determinant of the Hessian matrix is given by (2α)n− (2β)n > 0 by assumption.

Hence, πb in (4.58) is negative-definite. Setting ∂πb/∂pi = 0 in (4.61) for i = 1, · · · , n

leads to

ps1−ns
i (wi) =

a+ (α− β)(wi + c)

2(α− β)
. (4.62)

Observe that for any wi such that (4.59) is true, ps1−ns
i (wi) defined in (4.62) is

the buyer’s optimal response, i.e., the optimal retail price for product i,

i = 1, · · · , n. This is because wi satisfies (4.59) so that

a

α− β
− ps1−ns

i (wi) =
a− (α− β)(wi + c)

2(α− β)
≥ 0 and

ps1−ns
i (wi)− (wi + c) =

a− (α− β)(w + c)

2(α− β)
≥ 0,

i = 1, · · · , n. Hence, ps1−ns
i (wi) in (4.62) is realizable over the region (4.60), i =

1, · · · , n. Using (4.56), the buyer’s optimal order quantity for product i is

given by

qs1−ns
i (w1, · · · , wn) =

a− αwi +
β

n−1

∑
j=1,··· ,n,j ̸=iwj − (α− β)c

2
, (4.63)

i, j = 1, · · · , n and j ̸= i.
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Using (4.62) in (4.57) and (4.58), we have

πs =
∑

i=1,··· ,n

(wi − s)[a− αwi +
β

n−1

∑
j=1,··· ,n,j ̸=i wj − (α− β)c]

2
and

πb =
∑

i=1,··· ,n

[a− (α− β)(wi + c)][a− αwi +
β

n−1

∑
j=1,··· ,n,j ̸=i wj − (α− β)c]

4(α− β)
.

Considering the main constraint (4.59) and the buyer’s reservation profit π−
b

and using the two above expressions for πs and πb, the supplier’s optimization

problem under s1 in the symmetric n-product setting can be stated as

(Ps1− ns) :

max
s≤wi≤a/(α−β)−c,i=1,··· ,n

πs =
∑

i=1,··· ,n

(wi − s)[a− αwi +
β

n−1

∑
j=1,··· ,n,j ̸=iwj − (α− β)c]

2
(4.64)

s.t. πb =
∑

i=1,··· ,n

[a− (α− β)(wi + c)][a− αwi +
β

n−1

∑
j=1,··· ,n,j ̸=i wj − (α− β)c]

4(α− β)

≥ π−
b . (4.65)

Clearly, (Ps1 − ns) makes sense only for reasonable values of π−
b . That is, a

natural upper bound on π−
b is given by

0 ≤ π−
b ≤ Πc−n (4.66)
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where Πc−n is the centralized optimal system profit, which can be calculated by

Πc−n = max
pi∈[s+c,a/(α−β)],i=1,··· ,n

Π

=
∑

i=1,··· ,n

(pi − s− c)

(
a− αpi +

β

n− 1

∑
j=1,··· ,n,j ̸=i

pj

)
. (4.67)

4.3.1.2 Optimal solution of (Ps1− ns)

Using (4.64), we have

πs =
1

2

∑
i=1,··· ,n

{
(wi − s)[a− αwi − (α− β)c]− βswi +

β

n− 1
wi

∑
j=1,··· ,n,j ̸=i

wj

}
.

(4.68)

Note that

2wiwj ≤ w2
i + w2

j (4.69)

for wi, wj ∈ ℜ, where the equality holds true if wi = wj, i, j = 1, · · · , n, i ̸= j. Using

(4.68), we have

πs

≤ 1

2

∑
i=1,··· ,n

{
(wi − s)[a− αwi − (α− β)c]− βswi +

β

2
w2

i +
β

2(n− 1)

∑
j=1,··· ,n,j ̸=i

w2
j

}

=
∑

i=1,··· ,n

(wi − s)[a− (α− β)(wi + c)]

2
=

∑
i=1,··· ,n

f(wi), (4.70)

where the equality holds true if w1 = · · · = wn and

f(x) =
(x− s)[a− (α− β)(x+ c)]

2
. (4.71)
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Using (4.65) and (4.69), we have

πb

=
1

4(α− β)

∑
i=1,··· ,n

{[a− (α− β)(wi + c)][a− αwi − (α− β)c] + [a− (α− β)c]βwi}

−
∑

i=1,··· ,n

(α− β)βwi

∑
j=1,··· ,n,j ̸=iwj

4(n− 1)(α− β)

≥ 1

4(α− β)

∑
i=1,··· ,n

{[a− (α− β)(wi + c)][a− αwi − (α− β)c] + [a− (α− β)c]βwi}

−
∑

i=1,··· ,n

(α− β)βw2
i

4(α− β)

=
∑

i=1,··· ,n

[a− (α− β)(wi + c)]2

4(α− β)
=

∑
i=1,··· ,n

g(wi), (4.72)

where the equality holds true if w1 = · · · = wn and

g(x) =
[a− (α− β)(x+ c)]2

4(α− β)
. (4.73)

Clearly, if

g(wi) ≥ π−
b /n

for i = 1, · · · , n then using (4.72), we have

πb ≥
∑

i=1,··· ,n

g(wi) ≥ π−
b .

Recalling (4.70), we have

πs ≤
∑

i=1,··· ,n

f(wi) ≤ max
w1,··· ,wn

∑
i=1,··· ,n

f(wi) =
∑

i=1,··· ,n

max
wi

f(wi), (4.74)

where πs =
∑

i=1,··· ,n f(wi) if w1 = · · · = wn. Hence, the upper bound of πs in (4.64)
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when πb ≥ π−
b is satisfied is given by

∑
i=1,··· ,n

max
wi

f(wi)

s.t. g(wi) ≥
π−
b

n
, i = 1, · · · , n.

Let w∗
i denote the optimal solution to the above optimization problem, i = 1, · · · , n.

Since this problem is separable based on wi, we have w∗
i = w∗, i = 1, · · · , n, where

w∗ is the optimal solution to the following optimization problem

max
w

f(w) =
(w − s)[a− (α− β)(w + c)]

2
(4.75)

s.t. g(w) =
[a− (α− β)(w + c)]2

4(α− β)
≥ π−

b

n
, (4.76)

using (4.71) and (4.73). It is important to note that this optimization problem is

the same as (Ps1) in the single-product setting, when b = α− β and the buyer’s

reservation profit is π−
b /n.

Since wi = w∗, i = 1, · · · , n, using (4.74), πs = nf(w∗) =
∑

i=1,··· ,nmaxwi
f(wi) =

nmaxw f(w). In this case, πs achieves its upper bound. Hence, the optimal whole-

sale price for product i under s1 in the symmetric n-product setting is given

by

ws1−ns
i = w∗, (4.77)

i = 1, · · · , n, where w∗ is the optimal solution to (Ps1) in the single-product setting

with b = α− β and the buyer’s reservation profit is π−
b /n.

4.3.2 Generic contract b3

Since the symmetric n-product setting is a generalization of the symmetric two-

product setting, the procedure of derivation for the optimal b3 should be the same.
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One of the main differences in the derivation is to extend the ranges of indices

i, j = 1, 2 and j ̸= i to i, j = 1, · · · , n and j ̸= i. To avoid repetition, we summarize

the main results without presenting the details.

The expression of πs:

For given ki > 0 and mi ∈ ℜ, i = 1, · · · , n, using (4.40), the supplier’s profit πs

can be written as

πs =
∑

i=1,··· ,n

(wi − s)

[
a− α(kiwi +mi) +

β

n− 1

∑
j=1,··· ,n,j ̸=i

(kjwj +mj)

]
. (4.78)

The buyer’s optimization problem:

The buyer’s optimization problem under b3 for the symmetric n-product

setting can be stated as

(Pb3− ns) : max
ki>0,mi∈ℜ

πb =
∑

i=1,··· ,n

[
pb3−ns
i (·)− wb3−ns

i (·)− c
]
qb3−ns
i (·) (4.79)

s.t. pb3−ns
i (·)− wb3−ns

i (·)− c ≥ 0,

siki +mi ≤
a

α− β
,

πs =
∑

i=1,··· ,n

[
wb3−ns

i (·)− s
]
qb3−ns
i (·) ≥ π−

s , (4.80)

where wb3−ns
i (·), pb3−ns

i (·), and qb3−ns
i (·) are the supplier’s optimal response, i.e.,

the optimal wholesale price and the corresponding retail price and order

quantity for product i, i = 1, · · · , n and they are parameterized on ki and mi,

i = 1, · · · , n. In particular, wb3−ns
i (·) can be computed by setting ∂πs/∂wi = 0 for

i = 1, · · · , n using (4.78), and pb3−ns
i (·) and qb3−ns

i (·) can be then computed using

(4.40) and (4.56).
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The optimal b3:

Inspired by the symmetric two-product setting and using the same approach, we

can show that the optimal contract parameters under b3 in the symmetric

n-product setting is such that

kb3−ns
i =

Πc−n

π−
s

and (4.81)

mb3−ns
i = s+ c− sΠc−n

π−
s

(4.82)

for i = 1, · · · , n. Note that Πc−n is the centralized optimal system profit defined in

(4.67).

Then, substituting (4.81) and (4.82) in (4.79) and (4.80), we have

πb3−ns
s = π−

s ,

πb3−ns
b = Πc−n − π−

s , and

Πb3−ns = Πc−n.

Note that in the symmetric n-product setting, the optimal contracts parameters

are also free of the index i for i = 1, · · · , n. Once the centralized optimal system profit

Πc−n and the supplier’s reservation profit π−
s are computed, the optimal contract

parameters can be decided using (4.81) and (4.82).

4.4 Relation between the multi-product and single-product contractual settings

In Section (4.3.1), we show that in the symmetric n-product setting, n ≥ 2, the

optimal wholesale prices for n products under s1 are the same as shown in (4.77).

The optimal wholesale price for each product can be solved using the optimization

problem given by (4.75) and (4.76). Recalling (Ps1) (the supplier’s problem under
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s1) in the single-product setting, we find that the optimization problem given by

(4.75) and (4.76) is the same as (Ps1) when

• b = α − β, where b is the price sensitivity parameter in the demand function

q = a− bp in the single-product setting, and

• The buyer’s reservation profit in the single-product setting is given by π−
b /n,

where π−
b is the buyer’s reservation profit in the symmetric n-product setting.

Therefore, instead of solving a symmetric n-product problem, we can solve the corre-

sponding single-product problem and then the optimal decisions and resulting profits

for the former one can be easily obtained.

This fact is due to the symmetry of decisions for different products in the sym-

metric n-product setting. Letting wi = w, pi = p and qi = q, i = 1, · · · , n, the

demand function in (4.56) and the supplier’s and buyer’s profits in (4.57) and (4.58)

in the symmetric n-product setting can be reduced to

q = a− (α− β)p,

πs = n(w − s)[a− (α− β)p], and

πb = n(p− w − c)[a− (α− β)p].

From the above equations, we can see that the demand function in (4.56) becomes

the the single-product demand function, and both entities’ profits are n times their

profit on one product. Hence, the symmetric n-product problem becomes the single-

product problem.

Note that the demand function and the entities’ profits are only dependent on the

product substitution given by α − β and they are independent of individual values

of α and β. Recall that α represents the price sensitivity of demand, β represents
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the price sensitivity of demand to a substitutable product in (4.56). Therefore, in

the symmetric n-product setting, we should focus on the difference of products’ price

sensitivities rather than the price sensitivity for each product individually.

In sum, using the results in the single-product setting under s1, we can solve a

symmetric n-product problem with the demand function in (4.56) and the buyer’s

reservation profit π−
b in the following way:

• Consider a single-product setting with the demand function q = a− bp and the

buyer’s reservation profit π−0
b . Set b = α− β and set π−0

b = π−
b /n, n ≥ 2.

• Derive the optimal wholesale price under s1 in the single-product setting and

calculating the resulting profits for the supplier and the buyer.

• Then, in the symmetric n-product setting, the optimal wholesale price for each

product is the same as that in the single-product setting, while the supplier

(buyer)’s profit is n times that in the single-product setting, n ≥ 2.

In Section (4.3.2), we also show that the optimal decisions under b3 are same

for n products in the symmetric n-product setting. Hence, the symmetric n-product

problem under b3 can be also reduced to the single-product problem, and, hence,

the existing results in the single-product setting can be utilized in the symmetric

n-product setting under b3.

4.5 Modeling the case of asymmetric two products

We next examine b3 in the asymmetric two-product setting. The procedure of

derivation for the optimal b3 is the same as that in the symmetric two-product setting

discussed previously. To avoid repetition, we summarize the main steps and the main

results in asymmetric two-product setting.
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Profit functions:

In the asymmetric two-product setting, the supplier’s profit function is given by

πs =
∑
i=1,2

(wi − si)qi =
∑

i,j=1,2,i ̸=j

(wi − si)(ai − αipi + βipj). (4.83)

The buyer’s profit function is given by

πb =
∑
i=1,2

(pi − wi − ci)qi =
∑

i,j=1,2,j ̸=i

(pi − wi − ci)(ai − αipi + βipj). (4.84)

We assume αi and βi are such that

αi > βi ≥ 0 and 4α1α2 − (β1 + β2)
2 > 0, (4.85)

i = 1, 2. The first inequality in (4.85) is assumed based on the nature of price

competition, i.e., a product’s demand impacted by its own price more heavily than

by its competitor’s price. The second inequality ensures a property of πs as we

demonstrate next.

The expression of πs:

For given ki > 0 and mi ∈ ℜ, i = 1, 2, using (4.40), πs in (4.83) can be rewritten

as

πs =
∑

i,j=1,2,i̸=j

(wi − si)[ai − αikiwi + βikjwj − (αimi − βimj)]. (4.86)
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Compute the supplier’s optimal response:

Note that the Hessian matrix of πs in (4.86) is given by

 ∂2πs

∂w2
1

∂2πs

∂w1∂w2

∂2πs

∂w2∂w1

∂2πs

∂w2
2

 =

 −2α1k1 β1k2 + β2k1

β2k1 + β1k2 −2α2k2

 .

The determinant of the Hessian matrix is given by

4α1α2k1k2 − (β1k2 + β2k1)
2.

Here, we momentarily assume this quantity is greater than zero, and, hence, the

Hessian matrix is negative-definite. Later, we will show that under the optimal

contract the buyer would set k1 = k2, so that the determinant above reduces to

[
4α1α2 − (β1 + β2)

2
]
k2
1 > 0,

since k1 > 0 by definition and (4.85).

Setting ∂πs/∂wi = 0 for i = 1, 2, we obtain the supplier’s optimal optimal

response, i.e., the optimal wholesale price for product i under b3, denoted

by

wb3−2a
i (·). (4.87)

Using (4.40) and (4.1), the corresponding retail price and order quantity for

product i are given by

pb3−2a
i (·) = kiw

b3−2a
i (·) +mi and (4.88)

qb3−2a
i (·) = ai − αip

b3−2a
i (·) + βip

b3−2a
j (·), (4.89)
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i, j = 1, 2 and j ̸= i.

The buyer’s optimization problem:

Note that using (4.1), pi can be written as a function of order quantities such

that

pi =
aiαj + ajβi

α1α2 − β1β2

− αjqi
α1α2 − β1β2

− βiqj
α1α2 − β1β2

, (4.90)

i, j = 1, 2 and j ̸= i.

Using (4.83), (4.84), and (4.90), in order to guarantee qi ≥ 0 and the sup-

plier’s and buyer’s profits on product i are nonnegative, we assume pi ≤ (aiαj +

ajβi)/(α1α2 − β1β2), wi ≥ si, and pi ≥ wi + ci so that

siki +mi ≤ kiwi +mi = pi ≤
aiαj + ajβi

α1α2 − β1β2

and pb3−2a
i (·)− wb3−2a

i (·)− ci ≥ 0,(4.91)

i = 1, 2. We refer to (4.91) as the main constraint on the decision variables of the

contract design problem under b3 in the asymmetric two-product setting.

Then, the buyer’s optimization problem under b3 for the asymmetric

two-product setting can be stated as

(Pb3− 2a) : max
ki>0,mi∈ℜ

πb =
∑
i=1,2

[
pb3−2a
i (·)− wb3−2a

i (·)− ci
]
qb3−2a
i (·) (4.92)

s.t. pb3−2a
i (·)− wb3−2a

i (·)− ci ≥ 0

siki +mi ≤
aiαj + ajβi

α1α2 − β1β2

πs =
∑
i=1,2

[
wb3−2a

i (·)− si
]
qb3−2a
i (·) ≥ π−

s , (4.93)

where wb3−2a
i (·), pb3−2a

i (·), and qb3−2a
i (·) are given by (4.87), (4.88), and (4.89), i =
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1, 2.

The optimal b3:

We apply the same approach as that in the symmetric two-product setting to

identify the optimal contract parameters in the asymmetric two-product setting.

Inspired by the optimal contract in the symmetric two-product setting, we consider

the tuple (kb3−2a
i ,mb3−2a

i ) such that

kb3−2a
i =

Πc−2a

π−
s

and (4.94)

mb3−2a
i = si + ci −

siΠ
c−2a

π−
s

, (4.95)

i = 1, 2. Note that Πc−2a is the centralized optimal system profit, which can be

calculated by

Πc−2a = max
pi∈

[
si+ci,

aiαj+ajβi
α1α2−β1β2

]
,i=1,2

Π =
∑

i,j=1,2,j ̸=i

(pi − si − ci)(ai − αipi + βipj).

Then, substituting (4.94) and (4.95) in (4.92) and (4.93), we have

πb3−2a
s = π−

s ,

πb3−2a
b = Πc−2a − π−

s , and (4.96)

Πb3−2a = πb3−2a
s + πb3−2a

b = Πc−2a.

We have πb3−2a
b ≥ 0 in (4.96) for π−

s ∈ [0,Πc−2a]. Hence, the tuple given by (4.94)

and (4.95) is a feasible solution under which the buyer obtains the upper bound of

the objective function in (4.92). Therefore, the tuple is also optimal.

It is important to note that in the asymmetric two-product setting, we have
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kb3−2a
1 = kb3−2a

2 while mb3−2a
1 ̸= mb3−2a

2 is possible using (4.94) and (4.95). Although

one may expect that the asymmetric two-product problem is difficult to solve, as

we can see, the optimal contract parameters under b3 are easy to calculate. Since

the transaction between the supplier and the buyer is only based on the wholesale

payment, the contract is also easy to implement.

4.6 Conclusion

In this chapter, we generalize the basic single-product setting to consider multiple

symmetric and asymmetric substitutable products. Since there is no previous work

on the buyer-driven channel in this setting, we focus on examine the buyer-driven

generic contract b3 in the two-product symmetric case, n-product symmetric case,

and two-product asymmetric case. Our results document the conditions under which

the generic contract remains to be a simple, yet, effective contract when multiple

substitutable products are considered.
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5. THE GENERIC CONTRACT IN THE EXCLUSIVE DEALER SETTING

5.1 Setting 3. The exclusive dealer contractual setting

This chapter revisits the two-product channel with two suppliers and two buy-

ers, where each supplier (e.g., manufacturer) produces one product and each buyer

(e.g., dealer) sells one supplier’s product exclusively. This channel, referred as the

exclusive dealer setting (Choi (1996)) here, is illustrated in Figure 5.1. Supplier

i’s decision pertains to the wholesale price wi, and buyer i’s decisions pertain to the

order quantity qi and retail price pi for product i, i = 1, 2. We assume a generalized

linear demand function for product i given by

qi = ai − αipi + βipj, (5.1)

i, j = 1, 2, and i ̸= j. As in Chapter 4, ai presents the maximum demand of product

i when prices for both products approach zero (McGuire and Staelin (1983)), and αi

and βi represent the sensitivity of demand for product i to its retail price and to the

substitutable product’s retail price (Ingene and Parry (2004)), respectively, i = 1, 2.

Let si and ci denote supplier i’s unit production cost and buyer i’s unit distribution

cost, respectively, i = 1, 2. The notation introduced so far and used frequently in

the remainder of this chapter is summarized in Table 5.1. Note that we consider the

generalized asymmetric case. It is the case where all parameters in (5.1) and costs of

different products are different, i.e., a1 ̸= a2, α1 ̸= α2, β1 ̸= β2, s1 ̸= s2, and c1 ̸= c2.

5.2 Supplier- and buyer-driven contracts

In Chapter 3, we have studied three buyer-driven contracts and a supplier-driven

contract in the basic single-product setting. Now, we are interested in the same
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Buyer 1Supplier 1 w1

w2

p1, q1 = a1 � α1p1 + �1p2

p2, q2 = a2 – α2p2 + β2p1

Supplier 2 Buyer 2

Figure 5.1: The exclusive dealer contractual setting.

Table 5.1: Summary of notation in the exclusive dealer setting.

Symbol Explanation
i the index of a product, i = 1, 2
pi the retail price for product i
qi the demand for product i, qi = ai − αipi + βipj, j = 1, 2, j ̸= i
αi the sensitivity of qi to pi
βi the sensitivity of qi to pj, j = 1, 2, j ̸= i
wi the wholesale price for product i
si supplier i’s unit production cost
ci buyer i’s unit distribution cost
ki the price multiplier for product i, ki > 0
mi the price margin for product i, mi ∈ ℜ

contracts in the exclusive dealer setting as follows:

b1. Under the margin-only contract, buyer i decides the price margin of product

i, denoted by mi, mi ≥ 0, representing the difference between the retail and

wholesale prices of product i, i = 1, 2. Also, buyer i commits that the retail

price of product i would be set such that pi = wi +mi and its order quantity

would be set such that qi = a − αpi + βpj = a − α(wi + mi) + β(wj + mj),

i, j = 1, 2 and j ̸= i. Next, supplier i decides wi, i = 1, 2.

b2. Under the multiplier-only contract, buyer i decides the price multiplier of prod-

uct i, denoted by ki, ki ≥ 1, representing the ratio of the retail and wholesale
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prices of product i, i = 1, 2. Also, buyer i commits that the retail price of

product i would be set such that pi = kiwi and its order quantity would be set

such that qi = a− αpi + βpj = a− αkiwi + βkjwj, i, j = 1, 2 and j ̸= i. Next,

supplier i decides wi, i = 1, 2.

b3. Under the generic contract, buyer i decides on the valuesa of ki and mi, ki > 0

and mi ∈ ℜ, while also committing that the retail price of product i would

be set such that pi = kiwi +mi and its order quantity would be set such that

qi = a − αpi + βpj = a − α(kiwi +mi) + β(kjwj +mj), i, j = 1, 2 and j ̸= i.

Next, supplier i decides wi, i = 1, 2.

s1. Under the wholesale price contract with Cournot competition, supplier i decides

wi and then buyer i decides qi, i = 1, 2.

We are interested in computing the optimal contract parameters under these

contracts. To this end, we develop optimization models and examine the contracts

in the buyer-driven channel using the following approach:

• (Vertical Stackelberg game) the buyer tier takes the lead and offers a contract

first and then the supplier tier follows. See the definition of Stackelberg game

in Chapter 1.

• (Horizontal Nash game) the two entities in a tier have the same negotiation

power and make decisions simultaneously. See the discussion of Horizontal

Nash game given by Ingene and Parry (2004).

aObserve that, under b3, mi can be positive or negative representing a margin (mark-up) or
rebate (mark-down). Likewise, under b3, ki is allowed to be positive or negative for the sake of
generality. However, in the basic single-product setting in Chapter 3, we already show that the
optimal multiplier is positive due to the natural and practical assumptions of the contractual setting
at hand. Hence, we only consider ki > 0 in the exclusive dealer setting.
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The exclusive dealer setting of interest has appeared in the literature (e.g., McGuire

and Staelin (1983), Lee and Staelin (1997), Trivedi (1998), Zhang et al. (2012), Li

et al. (2013), and Feng and Lu (2013)). Of particular interest for us are the results

presented by Lee and Staelin (1997), Trivedi (1998), and Zhang et al. (2012) who

examine the same approach as ours in the buyer-driven channel.

Lee and Staelin (1997) consider a buyer-driven contract under which the buyers

decide the price margins (the difference of pi and wi), i.e., pi − wi, simultaneously,

first, and then the suppliers decide the manufacture margins (the difference of wi and

si), i.e., wi−si, simultaneously, i = 1, 2. Lee and Staelin (1997) assume a symmetric

demand function between the two products satisfying that “demand for a product

is decreasing in its own retail price and increasing in or independent of other retail

prices” (Lee and Staelin (1997)). They also assume symmetric costs for the suppliers

and ignore the buyers’ costs, i.e., s1 = s2 and c1 = c2 = 0.

Lee and Staelin (1997) compare the buyer-driven contract with a supplier-driven

contract under which the suppliers decide the manufacture margins first and then the

buyers decide the price margins. They demonstrate that each entity is better off to

possess leadership. They also show that suppliers’ and buyers’ profits are symmetric

under different leaderships, i.e., the leaders (followers)’ profits are the same under

both leaderships. In addition, the retail prices and the system profits under different

leaderships are the same, i.e., the system efficiency is independent of whether the

suppliers or the buyers play as channel leaders.

Trivedi (1998) considers a buyer-driven contract under which the buyers decide

the price margins, i.e., pi − wi, simultaneously, first, and then the suppliers decide

wi simultaneously, i = 1, 2. The demand function in the paper is a special case

of (5.1) where a1 = a2 = 1 and α1 = α2 = 1, and all costs are ignored, i.e.,

s1 = s2 = c1 = c2 = 0. Trivedi (1998) compares the buyer-driven contract with
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a supplier-driven contract under which the suppliers decide wholesale prices first

and then the buyers decide the price margins. Trivedi (1998) also conclude that

leadership is always beneficial.

Zhang et al. (2012) generalize Trivedi (1998) by using a linear demand function

with one asymmetric parameter. The demand function is still a special case of (5.1)

where ai = (Ai − θAj)/(1− θ2), α1 = α2 = 1/(1− θ2), and β1 = β2 = θ/(1− θ2), Ai,

Aj, and θ are constants defined in Zhang et al. (2012), i, j = 1, 2 and j ̸= i. They

derive the optimal solutions for the supplier- and buyer-driven contracts assuming

the asymmetric parameter Ai, i = 1, 2, and compare the two contracts under the

symmetric case when A1 = A2. Similar to Trivedi (1998), Zhang et al. (2012)

also show that leadership is always beneficial. They also demonstrate that which

leadership results in more system profit depends on the product substitutability.

Note that all the three papers that use the same approach as ours consider a

buyer-driven contract under which the buyers announce the price margins first and

then the suppliers decide wi, or equivalently, wi−si, i = 1, 2. This contract is referred

to as the margin-only contract here. However, the current literature does not concern

whether deciding on margins is optimal for the buyers and generally overlooks other

buyer-driven contracts. Also, they either consider the fully symmetric case or have

symmetric assumptions. Moreover, they do not take into account reservation profits

for entities. To extend the current literature, in this chapter, we study a more general

buyer-driven contract (i.e., the generic contract) in the generalized asymmetric case

based on the following consideration:

• A general contract with more contract flexibility may improve the profit po-

tential for the buyers, and

• The consideration of the generalized asymmetric case provides an extension of
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the symmetric case that is commonly assumed in the current literature.

In the following sections, we will first present entities’ profit functions, formulate

each buyer’s optimization problem under the generic contract, and then solve for the

optimal decision in the generalized asymmetric case.

5.3 Profit functions

In this section, we present entities’ profit functions and generate conditions that

ensure nonnegative quantities and profits. In the exclusive dealer setting, using (5.1),

supplier i’s profit function is given by

πsi = (wi − si)qi, (5.2)

and buyer i’s profit function is given by

πbi = (pi − wi − ci)qi, (5.3)

i = 1, 2. Using (5.1), the inverse demand function is given by

pi =
aiαj + ajβi − αjqi − βiqj

α1α2 − β1β2

,

i, j = 1, 2 and j ̸= i. In order to guarantee qi, πsi , πbi ≥ 0, we assume pi ≤ (aiαj +

ajβi − βiqj)/(α1α2 − β1β2), wi ≥ si, and pi ≥ wi + ci so that

si + ci ≤ wi + ci ≤ pi ≤
aiαj + ajβi − βiqj

α1α2 − β1β2

, (5.4)
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i, j = 1, 2 and j ̸= i. We assume when retail prices for both products are set at their

lower bounds, i.e., p1 = s1 + c1 and p2 = s2 + c2, we have q1, q2 ≥ 0 so that

ai − αi(si + ci) + βi(sj + cj) ≥ 0 (5.5)

using (5.1), i, j = 1, 2 and j ̸= i. Following Chapter 4, we assume αi > βi ≥ 0,

i = 1, 2.

5.4 The generic contract in the generalized asymmetric case

Recall that under b3, buyer i announces that pi would be set depending on wi

according to

pi = kiwi +mi, (5.6)

where ki > 0 and mi ∈ ℜ is the unconstrained value representing a margin (mark-

up) or rebate (mark-down), i = 1, 2. Then, the buyers move first and decide ki and

mi, and the suppliers select optimal wi, i = 1, 2. Next, we proceed with a formal

formulation of each buyer’s optimization problem given the other buyer’s decision

under b3.

5.4.1 Formulation of (Pb3− ai)

In the sequential leader-follower game, the buyers make decisions by predict-

ing the suppliers’ best responses. In order to formulate each buyer’s optimization

problem, we need to examine the suppliers’ best responses on w1 and w2 for given

k1, k2 > 0 and m1,m2 ∈ ℜ.

For given k1, k2 > 0 and m1,m2 ∈ ℜ, supplier i decides the optimal wi corre-

sponding to wj and then pi and qi are determined by wi, i, j = 1, 2 and j ̸= i. We

first need to identify the conditions on wi, pi, and qi that ensure nonnegative profit

for supplier i for given wj, k1, k2 > 0 and m1,m2 ∈ ℜ, i, j = 1, 2 and j ̸= i. After
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obtaining the suppliers’ best responses and the corresponding pi and qi, we need to

verify the conditions are satisfied and then identify the constraint on k1, k2, m1, and

m2 for the verification.

Then, considering the suppliers’ best responses, buyer i decides the optimal ki

and mi, for given kj > 0 and mj ∈ ℜ, i, j = 1, 2 and j ̸= i. To formulate buyer i’s

problem, we also need to identify the constraint on ki and mi for given kj > 0 and

mj ∈ ℜ that ensure nonnegative profit for buyer i, i, j = 1, 2 and j ̸= i.

Following this logic, now, we start with identifying the conditions on wi, pi, and

qi for given wj, k1, k2 > 0 and m1,m2 ∈ ℜ, i, j = 1, 2 and j ̸= i. Substituting (5.6)

in (5.1), we have

qi = ai − αi(kiwi +mi) + βi(kjwj +mj) ≥ 0,

and, hence,

kiwi +mi ≤
ai + βi(kjwj +mj)

αi

, (5.7)

i, j = 1, 2 and j ̸= i.

Since ki > 0, by assumption (5.4), (5.7) implies

siki +mi ≤ wiki +mi ≤
ai + βi(kjwj +mj)

αi

, (5.8)

i, j = 1, 2 and j ̸= i. Using (5.8) along with (5.7), we then conclude that ki, mi, wi,
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and pi should be such that

siki +mi ≤
ai + βi(kjwj +mj)

αi

, (5.9)

si ≤ wi ≤
ai + βi(kjwj +mj)

αiki
− mi

ki
, and (5.10)

siki +mi ≤ pi ≤
ai + βi(kjwj +mj)

αi

, (5.11)

i, j = 1, 2 and j ̸= i. Note that if (5.11) is true then (5.9) is true. Also, recalling

(5.1) and assumption (5.4), we have

0 ≤ qi ≤ ai − αi(si + ci) + βi(kjwj +mj), (5.12)

i, j = 1, 2 and j ̸= i.

Next, we derive the suppliers’ best responses. Let us examine πsi in (5.2) under

b3, i = 1, 2. For given values of k1, k2 > 0 and m1,m2 ∈ ℜ, using (5.1) and (5.6), πsi

in (5.2) can be rewritten as

πsi = (wi − si)qi = (wi − si)[ai − αikiwi + βikjwj − (αimi − βimj)], (5.13)

so that

dπsi

dwi

= ai − 2αikiwi + βikjwj − (αimi − βimj) + kiαisi and (5.14)

d2πsi

dw2
i

= −2αiki < 0,

i, j = 1, 2 and j ̸= i. Hence, πsi in (5.13) is concave in wi, i = 1, 2. Setting
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dπs1/dw1 = dπs2/dw2 = 0 in (5.14) leads to

wb3
i (·) =

2aiαj + ajβi + 2α1α2(siki −mi) + β1β2mi + αjβi(sjkj +mj)

(4α1α2 − β1β2)ki
, (5.15)

where wb3
i (·) which is parameterized on k1, k2, m1, and m2 is a simplified notation

for wb3
i (k1, k2,m1,m2), i, j = 1, 2 and j ̸= i.

Now, we verify whether wb3
i (·) is realizable over the region (5.10). Observe that

for given k1, k2 > 0, m1,m2 ∈ ℜ, we have

ai + βi(kjw
b3
j (·) +mj)

αiki
− mi

ki
− wb3

i (·) = wb3
i (·)− si =

Wi

(4α1α2 − β1β2)ki
,

where

Wi = 2aiαj + ajβi − (2α1α2 − β1β2)(siki +mi) + αjβi(sjkj +mj), (5.16)

i, j = 1, 2 and j ̸= i. Hence, if

Wi ≥ 0 (5.17)

then wb3
i (·) defined in (5.15) is supplier i’s optimal response, i.e., the optimal

wholesale price, under b3, for given values of k1, k2 > 0 and m1,m2 ∈ ℜ, because

it is realizable over the region (5.10), i, j = 1, 2 and j ̸= i. Substituting (5.15) in

(5.6) and using (5.1), the corresponding retail price and order quantity for
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product i for given values of k1, k2 > 0 and m1,m2 ∈ ℜ are given by

pb3i (·) = kiw
b3
i (·) +mi

=
2aiαj + ajβi + αjβi(sjkj +mj) + 2α1α2(siki +mi)

4α1α2 − β1β2

and (5.18)

qb3i (·) = ai − αi[kiw
b3
i (·) +mi] + βi[kjw

b3
j (·) +mj]

=
αiWi

4α1α2 − β1β2

, (5.19)

respectively, where pb3i (·) and qb3i (·) are also parameterized on k1, k2, m1, and m2,

and Wi is given by (5.16), i, j = 1, 2 and j ̸= i. Again, since we assume (5.17),

ai + βi(kjw
b3
j (·) +mj)

αi

− pb3i (·) =
Wi

4α1α2 − β1β2

≥ 0 and

pb3i (·)− siki −mi =
Wi

4α1α2 − β1β2

≥ 0,

so that pb3i (·) defined in (5.18) lies over the region (5.11), where Wi is defined in

(5.16), i, j = 1, 2 and j ̸= i. Likewise,

ai − αi(si + ci) + βi(kjw
b3
j (·) +mj)− qb3i (·) =

αiWi

4α1α2 − β1β2

≥ 0,

so that qb3i (·) defined in (5.19) lies over the region (5.12), i, j = 1, 2 and j ̸= i.

Last but not least, we need to verify that assumption (5.4) holds true for wb3
i (·),

where wb3
i (·) is as defined in (5.15), i = 1, 2. Similar to the generic contract in the

single-product setting, the constraint (5.17) derived earlier is not sufficient to verify

this under b3. For this reason, recalling assumption (5.4) and using (5.6) and (5.15),

we need to ensure

si + ci ≤ wb3
i (·) + ci ≤ kiw

b3
i (·) +mi ≤

aiαj + ajβi − βiqj
α1α2 − β1β2

(5.20)
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holds true. Examining the above inequalities, if (5.17) is true and

(ki − 1)wb3
i (·) +mi − ci ≥ 0

then (5.20) is ensured, i = 1, 2. Obviously, the inequality above is equivalent to

(ki − 1)[2aiαj + ajβi + 2α1α2(siki −mi) + β1β2mi + αjβi(sjkj +mj)]

(4α1α2 − β1β2)ki
+mi− ci ≥ 0,

(5.21)

i, j = 1, 2 and j ̸= i. Hence, we refer to (5.17) and (5.21) as the main constraints

of the problem at hand.

Using (5.15), (5.18), and (5.19) in (5.2) and (5.3), we have

πsi =
αi[2aiαj + ajβi − (2α1α2 − β1β2)(siki +mi) + αjβi(sjkj +mj)]

2

(4α1α2 − β1β2)ki
and

πbi =
αi[2aiαj + ajβi − (2α1α2 − β1β2)(siki +mi) + αjβi(sjkj +mj)]

4α1α2 − β1β2

·

{
(ki − 1)[2aiαj + ajβi + 2α1α2(siki −mi) + β1β2mi + αjβi(sjkj +mj)]

(4α1α2 − β1β2)ki

+mi − ci

}
,

i, j = 1, 2 and j ̸= i.

Although ki > 0 by definition, in order to apply Karush-Kuhn-Tucker (KKT)

conditions (Bazaraa et al. (2006)), under which a strict inequality constraint is not

allowed, to solve buyer i’s optimization problem as shown below, we momentarily

assume ki ∈ ℜ, i = 1, 2. We solve the optimal decision over ki,mi ∈ ℜ and then

show that the optimal ki is actually positive, i = 1, 2.

Considering the fact that b3 is a buyer-driven contract, supplier i would not

accept b3 unless supplier i’s corresponding profit exceeds the reservation profit π−
si
,
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i = 1, 2. Recalling (5.17) and (5.21) and considering the above expressions for πsi

and πbi and ki,mi ∈ ℜ, buyer i’s optimization problem under b3 can be stated

as

(Pb3− ai) :

max
ki,mi∈ℜ

πbi

=
αi[2aiαj + ajβi − (2α1α2 − β1β2)(siki +mi) + αjβi(sjkj +mj)]

4α1α2 − β1β2

·

{
(ki − 1)[2aiαj + ajβi + 2α1α2(siki −mi) + β1β2mi + αjβi(sjkj +mj)]

(4α1α2 − β1β2)ki

+mi − ci

}
(5.22)

s.t., 2aiαj + ajβi − (2α1α2 − β1β2)(siki +mi) + αjβi(sjkj +mj) ≥ 0,

(ki − 1)[2aiαj + ajβi + 2α1α2(siki −mi) + β1β2mi + αjβi(sjkj +mj)]

(4α1α2 − β1β2)ki

+mi − ci ≥ 0,

πsi =
αi[2aiαj + ajβi − (2α1α2 − β1β2)(siki +mi) + αjβi(sjkj +mj)]

2

(4α1α2 − β1β2)ki

≥ π−
si
, (5.23)

given kj,mj ∈ ℜ, i, j = 1, 2 and j ̸= i.

As discussed earlier, under b3 buyer 1 and buyer 2 make decisions simultaneously,

and, hence, their optimal decisions lead to a Nash equilibrium (Fudenberg and Tirole

(1991)). That is, each buyer does not have an incentive to deviate if the other buyer’s

decision is fixed. In the following, we will characterize the Nash equilibrium in three

steps:

• First, for given kj,mj ∈ ℜ, we use KKT necessary conditions to identify a KKT

point (see the definition of KKT point in Bazaraa et al. (2006)) for (Pb3− ai),

i, j = 1, 2 and j ̸= i. The reason for doing this is the following: According to
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Lemma 4.4.1 of Bazaraa et al. (2006), if the Hessian of the Lagrangian function

conditioned on Lagrangian multipliers associated with a KKT point is negative

semi-definite in the feasible region, then the KKT point is a global maximum.

• Second, using Lemma 4.4.1 of Bazaraa et al. (2006), we show that the KKT

point is optimal for (Pb3− ai) given kj,mj ∈ ℜ, i, j = 1, 2 and j ̸= i.

• Finally, using the optimal response of each buyer corresponding to the other

buyer’s decision, we identify the Nash equilibrium of the two buyers’ optimiza-

tion problems.

5.4.2 Optimal solution of (Pb3− ai)

We start with identifying a KKT point for (Pb3−ai), i = 1, 2. Let µi1, µi2, and µi3

denote Lagrangian multipliers corresponding to the three constraints in (Pb3− ai),

respectively, i = 1, 2. The Lagrangian function is given by

Li = Li(ki,mi, µi1, µi2, µi3) = πbi + µi1gi1 + µi2gi2 + µi3gi3, (5.24)

where

gi1 = 2aiαj + ajβi − (2α1α2 − β1β2)(siki +mi) + αjβi(sjkj +mj), (5.25)

gi2 =
(ki − 1)[2aiαj + ajβi + 2α1α2(siki −mi) + β1β2mi + αjβi(sjkj +mj)]

(4α1α2 − β1β2)ki

+mi − ci, and (5.26)

gi3 = πsi − π−
si
, (5.27)

and πbi and πsi are given by (5.22) and (5.23), respectively, i, j = 1, 2 and j ̸= i.

Thus, the KKT necessary conditions (see Theorem 4.2.13 in Bazaraa et al. (2006))

150



are the following:

∂Li

∂ki
=

∂πbi

∂ki
+ µi1

∂gi1
∂ki

+ µi2
∂gi2
∂ki

+ µi3
∂gi3
∂ki

= 0, (5.28)

∂Li

∂mi

=
∂πbi

∂mi

+ µi1
∂gi1
∂mi

+ µi2
∂gi2
∂mi

+ µi3
∂gi3
∂mi

= 0, (5.29)

∂Li

∂µi1

= gi1 ≥ 0, (5.30)

∂Li

∂µi2

= gi2 ≥ 0, (5.31)

∂Li

∂µi3

= gi3 ≥ 0, (5.32)

µi1gi1 = 0, (5.33)

µi2gi2 = 0, (5.34)

µi3gi3 = 0, (5.35)

µi1, µi2, µi3 ≥ 0, i = 1, 2. (5.36)

Then, we characterize the Lagrangian multipliers that satisfy (5.28) – (5.36) at

optimality, denoted by µ∗
i1, µ

∗
i2, and µ∗

i3, i = 1, 2. We first show µ∗
i1 = µ∗

i2 = 0 is true,

i = 1, 2. Consider all possible cases of µ∗
i1 and µ∗

i2, i = 1, 2:

1. If µ∗
i1 > 0 and µ∗

i2 = 0 then by (5.33) gi1 = 0. Using (5.25) in (5.22) and (5.23),

gi1 = 0 implies πbi = πsi = 0. If π−
si

> 0 then there does not exist a feasible

solution. If π−
si
= 0 then obviously the solution for the KKT conditions is not

optimal.

2. If µ∗
i1 = 0 and µ∗

i2 > 0 then by (5.34) gi2 = 0. Using (5.26) in (5.22), gi2 = 0

implies πbi = 0. Obviously, the solution for the KKT conditions is not optimal.

3. If µ∗
i1 > 0 and µ∗

i2 > 0 then by (5.33) and (5.34) gi1 = gi2 = 0. According to
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the development of (5.25) and (5.26),

gi1 = 0 ⇔ wb3
i (·) = si and gi2 = 0 ⇔ (ki − 1)wb3

i (·) +mi − ci = 0.

Hence,

gi1 = gi2 = 0 ⇔ (ki − 1)si +mi − ci = 0 ⇔ kisi +mi = si + ci.

Using kisi +mi = si + ci in (5.25), gi1 = 0 is equivalent to

Ai = 2aiαj + ajβi − (2α1α2 − β1β2)(si + ci) + αjβi(sjkj +mj) = 0, (5.37)

j = 1, 2, j ̸= i.

• If Ai = 0 then the solution should satisfy kisi +mi = si + ci. Note that

gi1 = gi2 = 0 implies πbi = πsi = 0. If π−
si
> 0 then there does not exist

a feasible solution. If π−
si

= 0 then obviously the solution for the KKT

conditions is not optimal.

• Otherwise if Ai ̸= 0 then there does not exist a solution for gi1 = gi2 = 0.

Therefore, the three cases above are ruled out, and at optimality we have µ∗
i1 = µ∗

i2 =

0, i = 1, 2. Next, we analyze the solution of (5.28) – (5.36) assuming µ∗
i1 = µ∗

i2 = 0

for two different cases:

Case 0: µ∗
i1 = µ∗

i2 = 0 and µ∗
i3 > 0;

Case 1: µ∗
i1 = µ∗

i2 = 0 and µ∗
i3 = 0, i = 1, 2.

152



Case 0.

If µ∗
i1 = µ∗

i2 = 0 and µ∗
i3 > 0 then (5.28) and (5.29) reduce to

∂Li

∂ki
=

∂πbi

∂ki
+ µ∗

i3

∂gi3
∂ki

=
∂πbi

∂ki
+ µ∗

i3

∂πsi

∂ki
= 0, (5.38)

∂Li

∂mi

=
∂πbi

∂mi

+ µ∗
i3

∂gi3
∂mi

=
∂πbi

∂mi

+ µ∗
i3

∂πsi

∂mi

= 0, (5.39)

and using (5.27), (5.35) implies

πsi = π−
si
, (5.40)

i = 1, 2.

Then, we solve µ∗
i3 such that (5.38) – (5.40) are satisfied at the point (ki,mi) =

(k∗
i (kj,mj),m

∗
i (kj,mj)). Using (5.22) and (5.23), we have

∂πbi

∂ki
=

αi

(4α1α2 − β1β2)2k2
i

{αjβ
2
i (sjkj +mj)[αj(sjkj +mj) + βjsik

2
i ]

+(2aiαj + ajβi)[2aiαj + ajβi + 2βiαj(sjkj +mj)]

+sik
2
i (β

2
1β

2
2ci + 8α2

1α
2
2ci − 6α1α2β1β2ci + 2aiαjβ1β2 + ajβ

2
i βj)

−(2α1α2 − β1β2)[2αjβimi(sjkj +mj) + 4α1α2sik
2
i (siki +mi)

+2mi(2aiαj + ajβi)−m2
i (2α1α2 − β1β2)− 2α1α2s

2
i k

2
i ]},

∂πbi

∂mi

= − αi

(4α1α2 − β1β2)2ki
{[ki(ajβ2

i βj − 6α1α2β1β2ci + 8α2
1α

2
2ci + β2

1β
2
2ci

+2aiαjβ1β2)] + αjβi(sjkj +mj)(4α1α2 − 2β1β2 + kiβ1β2)

+2(2α1α2 − β1β2)(2aiαj + ajβi)− 4kiα1α2(2α1α2 − β1β2)(kisi +mi)

+2α1α2(β1β2siki − 4α1α2mi + 2β1β2mi)}, (5.41)

∂πsi

∂ki
= −αigi1[2aiαj + ajβi + (2α1α2 − β1β2)(kisi −mi) + αjβi(kjsj +mj)]

(4α1α2 − β1β2)2k2
i

, and

∂πsi

∂mi

= −2αigi1(2α1α2 − β1β2)

(4α1α2 − β1β2)2ki
,
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i, j = 1, 2 and j ̸= i. Substituting the above equations in (5.38) – (5.40) and solving

the problem using the software Maple 14, we obtain

µ∗
i3 = 1,

k∗
i (kj,mj) =

A2
i

16αiα2
jπ

−
si

, and (5.42)

m∗
i (kj,mj) =

β1β2[2aiαj + ajβi + αjβi(sjkj +mj)]

4α1α2(2α1α2 − β1β2)

+
(2α1α2 − β1β2)(4α1α2 − β1β2)(si + ci)

4α1α2(2α1α2 − β1β2)

−sik
∗
i (kj,mj), (5.43)

where Ai is defined in (5.37), i, j = 1, 2 and j ̸= i.

Next, in order to show that (k∗
i (kj,mj),m

∗
i (kj,mj)) is a KKT point, we need to

verify whether (5.30) and (5.31) are satisfied for ki = k∗
i (kj,mj) andmi = m∗

i (kj,mj),

i, j = 1, 2 and j ̸= i. Substituting (5.42) and (5.43) in (5.25) and (5.26), we have

gi1 =
(4α1α2 − β1β2)Ai

4α1α2

and

gi2 =
(4α1α2 − β1β2)[A

2
i − 8αj(2α1α2 − β1β2)π

−
si
]Ai

32αiα2
j (2α1α2 − β1β2)π−

si

,

where Ai is defined in (5.37), i, j = 1, 2 and j ̸= i. As we can see, gi1, gi2 ≥ 0 is true

only if

Ai ≥ 0 and (5.44)

π−
si
∈
[
0,

A2
i

8αj(2α1α2 − β1β2)

]
, (5.45)

i, j = 1, 2 and j ̸= i.

Therefore, the KKT necessary conditions in (5.28)–(5.36) are all satisfied for
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(ki,mi) = (k∗
i (kj,mj),m

∗
i (kj,mj)) and (µ∗

i1, µ
∗
i2, µ

∗
i3) = (0, 0, 1), if (5.44) and (5.45)

hold true, i, j = 1, 2 and j ̸= i. According to Bazaraa et al. (2006), the solution

(k∗
i (kj,mj),m

∗
i (kj,mj)) is a KKT point with Lagrangian multipliers (µ∗

i1, µ
∗
i2, µ

∗
i2)

corresponding to the three constraints in (Pb3− ai), if (5.44) and (5.45) hold true,

i, j = 1, 2 and j ̸= i.

Substituting (5.42) and (5.43) in (5.22), buyer i’s corresponding profit at the

KKT point is given by

π∗
bi
=

A2
i

8αj(2α1α2 − β1β2)
− π−

si
, (5.46)

i = 1, 2. Since the constraint on supplier i’s profit is binding as seen in (5.40),

supplier i’s correponding profit is the reservation profit, i = 1, 2.

Case 1.

If µ∗
i1 = µ∗

i2 = µ∗
i3 = 0 then (5.28) and (5.29) reduce to ∂πbi/∂ki = 0 and

∂πbi/∂mi = 0, i = 1, 2. Setting ∂πbi/∂mi = 0 in (5.41), we obtain

mi(ki) =
2(2α1α2 − β1β2)(2aiαj + ajβi)

2(2α1α2ki + 2α1α2 − β1β2)(2α1α2 − β1β2)

+
αjβi(4α1α2 − 2β1β2 + kiβ1β2)(sjkj +mj)

2(2α1α2ki + 2α1α2 − β1β2)(2α1α2 − β1β2)

+
(ajβ

2
i βj + β2

1β
2
2ci + 2aiαjβ1β2 + 8α2

1α
2
2ci − 6α1α2β1β2ci)ki

2(2α1α2ki + 2α1α2 − β1β2)(2α1α2 − β1β2)

− (2α1α2 − β1β2)(4α1α2ki − β1β2)siki
2(2α1α2ki + 2α1α2 − β1β2)(2α1α2 − β1β2)

,

i, j = 1, 2 and j ̸= i. Substituting the above equation for mi in (5.22), we have

πbi =
αikiA

2
i

4(2α1α2ki + 2α1α2 − β1β2)(2α1α2 − β1β2)
, (5.47)
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so that

∂πbi

∂ki
=

αiA
2
i

4(2α1α2ki + 2α1α2 − β1β2)2
≥ 0, (5.48)

where Ai is defined in (5.37), i, j = 1, 2 and j ̸= i. Consider the following two cases

for Ai:

• If Ai = 0 then using (5.47) πbi = 0, i = 1, 2. Obviously, it is not optimal.

• Otherwise if Ai ̸= 0 then using (5.48), ∂πbi/∂ki > 0 over −∞ < ki < +∞,

i = 1, 2. Hence, ∂πbi/∂ki = 0 is not true in general unless ki = ∞, i = 1, 2. In

this case, there is not finite solution for ∂πbi/∂ki = 0 such that−∞ < ki < +∞,

i = 1, 2. By (5.23), πsi ≥ 0 is true only if ki > 0, and, hence, we can omit

ki = −∞, i = 1, 2. Now, let us consider ki = +∞, i = 1, 2. Using (5.47), we

have

lim
ki→+∞

πbi =
A2

i

8αj(2α1α2 − β1β2)
,

where Ai is defined in (5.37), i = 1, 2. Substituting mi = mi(ki) in (5.23), we

have

πsi =
αikiA

2
i

4(2α1α2ki + 2α1α2 − β1β2)2
,

so that

lim
ki→+∞

πsi =
αiA

2
i

16(2α1α2ki + 2α1α2 − β1β2)α1α2

= 0,

i = 1, 2. Therefore, (5.32) is satisfied only when π−
si
= 0 and (5.32) is binding

such that limki→+∞ πsi = π−
si
= 0, i = 1, 2.

Note that this case corresponds to Case 0 when π−
si
= 0, i = 1, 2. If we let π−

si
=

0 in Case 0, we have k∗
i (kj,mj) = +∞ using (5.42), buyer i’s corresponding
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profit in (5.47) is the same as that in (5.46), and supplier i’s corresponding

profit is the reservation profit which is zero. That is, the solution in Case 1,

i.e., ki = +∞ for π−
si
= 0, is included in Case 0. Therefore, it suffices to only

consider Case 0 for both products.

In Case 0, we have shown that (k∗
i (kj,mj),m

∗
i (kj,mj)) given by (5.42) and (5.43)

is a KKT point with Lagrangian multipliers given by µ∗
i1 = µ∗

i2 = 0 and µ∗
i3 = 1, if

(5.44) and (5.45) hold true, i, j = 1, 2 and j ̸= i. Now, we show that the KKT point

is optimal for (Pb3 − ai), i = 1, 2. For µ∗
i1 = µ∗

i2 = 0 and µ∗
i3 = 1, the Lagrangian

function in (5.24) is given by

Li = πbi + µ∗
i3gi3 = πbi + µ∗

i3(πsi − π−
si
) = πbi + πsi − π−

si
,

so that

∇2Li = −4α2
iαj(2α1α2 − β1β2)

(4α1α2 − β1β2)2

 s2i si

si 1

 ,

i = 1, 2. Observe that |∇2Li| = 0, and, hence, ∇2Li is negative semi-definite,

i = 1, 2. Therefore, the KKT point (k∗
i (kj,mj),m

∗
i (kj,mj)) given by (5.42) and

(5.43) is optimal for (Pb3 − ai) (see Lemma 4.4.1 in Bazaraa et al. (2006)), for

given kj,mj ∈ ℜ, if (5.44) and (5.45) hold true, i, j = 1, 2 and j ̸= i.

5.4.3 Nash equilibrium of (Pb3− a1) and (Pb3− a2)

Next, using each buyer’s optimal solution corresponding to the other buyer’s

decision given by (5.42) and (5.43), we solve (Pb3−a1) and (Pb3−a2) simultaneously

to identify the Nash equilibrium, denoted by (k∗
1,m

∗
1) and (k∗

2,m
∗
2). When (k∗

1,m
∗
1)
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and (k∗
2,m

∗
2) lead to a Nash equilibrium, it should be satisfied that

k∗
1(k

∗
2,m

∗
2) = k∗

1,

m∗
1(k

∗
2,m

∗
2) = m∗

1,

k∗
2(k

∗
1,m

∗
1) = k∗

2, and

m∗
2(k

∗
1,m

∗
1) = m∗

2,

where k∗
i (k

∗
j ,m

∗
j) and m∗

i (k
∗
j ,m

∗
j) can be calculated using (5.42) and (5.43), respec-

tively, at (kj,mj) = (k∗
j ,m

∗
j), i, j = 1, 2, j ̸= i. Solving the set of equations above,

after some algebra we obtain

k∗
i =

(2α1α2 − β1β2)Π
∗
i

2α1α2π−
si

and (5.49)

m∗
i = −sik

∗
i + x∗

i , (5.50)

where

Π∗
i =

2αj(2α1α2 − β1β2)

(16α2
1α

2
2 − 12α1α2β1β2 + β2

1β
2
2)

2
[2ajαiβi + ai(4α1α2 − β1β2)

−αi(4α1α2 − 3β1β2)(si + ci) + βi(2α1α2 − β1β2)(sj + cj)]
2 and (5.51)

x∗
i =

β1β2[2ajαiβi + ai(4α1α2 − β1β2)]

αi(16α2
1α

2
2 − 12α1α2β1β2 + β2

1β
2
2)

+
(2α1α2 − β1β2)[4αi(2α1α2 − β1β2)(si + ci) + β2

i βj(sj + cj)]

αi(16α2
1α

2
2 − 12α1α2β1β2 + β2

1β
2
2)

,

i, j = 1, 2 and j ̸= i. Obviously, k∗
i > 0, i = 1, 2.

Recall that buyer i’s optimal response is given by (5.42) and (5.43) only if (5.44)

and (5.45) hold true, i = 1, 2. Next, we need to check whether Ai ≥ 0 in (5.44) is

true for (kj,mj) = (k∗
j ,m

∗
j), i, j = 1, 2 and j ̸= i. Substituting (5.49) and (5.50) in
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(5.37), we have

Ai =
4αj(2α1α2 − β1β2)Bi

16α2
1α

2
2 − 12α1α2β1β2 + β2

1β
2
2

≥ 0,

where Bi = (4α1α2 − β1β2)[ai − αi(si + ci) + βi(sj + cj)] + 2α1α2[aj − αj(sj + cj) +

βj(si + ci)] ≥ 0 by (5.5), i = 1, 2.

We also need to identify the range for π−
si
to ensure (5.45) for (kj,mj) = (k∗

j ,m
∗
j),

i, j = 1, 2 and j ̸= i. Substituting (5.49) and (5.50) in (5.37) and using (5.45), we

have

π−
si
∈
[
0,

A2
i

8αj(2α1α2 − β1β2)

]
⇒ π−

si
∈ [0,Π∗

i ],

where Π∗
i is given by (5.51), i = 1, 2.

Therefore, k∗
i and m∗

i given by (5.49) and (5.50) are the optimal contract

parameters under b3 for π−
si
∈ [0,Π∗

i ], i = 1, 2. Substituting (5.49) and (5.50) in

(5.47), buyer i’s profit under the optimal b3 for π−
si
∈ [0,Π∗

i ] is given by

π∗
bi
= Π∗

i − π−
si
,

and as shown earlier, supplier i’s corresponding profit under optimal b3 for

π−
si
∈ [0,Π∗

i ] is given by

π∗
si
= π−

si
,

i = 1, 2. It is easy to see that the total profit of supplier i and buyer i is given by Π∗
i

as given in (5.51), which is independent of the supplier’s reservation profit, i = 1, 2.

In sum, we conclude that
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• If π−
si

∈ [0,Π∗
i ] for both i = 1, 2 then the tuple (k∗

i ,m
∗
i ) given by (5.49) and

(5.50) is the optimal decision for buyer i under b3,

• If π−
si

> Π∗
i for both i = 1, 2 then there does not exist feasible solutions for

(Pb3− a1) and (Pb3− a2), and, hence, b3 does not offer a practical solution,

• If π−
si

∈ [0,Π∗
i ] and π−

sj
> Π∗

j then there does not exist a feasible solution for

(Pb3− aj), and, hence, b3 also does not offer a practical solution, where Π∗
i is

given by (5.51), i, j = 1, 2 and j ̸= i.

5.5 Conclusion

In this chapter, we consider the exclusive dealer setting and study the generic

contract in a generalized asymmetric case. Considering the suppliers’ reservation

profits, we formulate each buyer’s optimization problem and derive a buyer’s optimal

decision corresponding to the other buyer’s decision. Assuming the two buyers make

decisions simultaneously, we characterize the Nash equilibrium of their optimization

problems. As a result, under the optimal contract, each supplier’s profit is the

reservation profit, and each buyer’s profit is decreasing in the corresponding supplier’s

reservation profit. In particular, the total profit of each supplier-buyer pair on a

product is constant independent of the supplier’s reservation profit under the optimal

contract. While the suppler can only obtain the reservation profit, the buyer can

obtain the rest of the constant total profit.
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6. INTERVENTION MECHANISMS IN A NEWSVENDOR PROBLEM FOR

PUBLIC INTEREST GOODS

6.1 Setting 4. The newsvendor problem setting under social welfare objective

Public interest goods include safety products (e.g., smoke detectors), energy ef-

ficient appliances (e.g., water-saving toilets), health-related products (e.g., vaccines)

(see e.g., Chick et al. (2008), Deo and Corbett (2009), Cho (2010), Mamani et al.

(2012), and Adida et al. (2013)), food in shortage, emission-reduced vehicles (e.g.,

the electric vehicle) (see e.g., Ovchinnikov and Raz (2014)), and so on. Social wel-

fare, referring to the benefits of all agents involved, is the main concern for marketing

a public interest good. Social welfare is composed of benefits for three entities, in-

cluding the seller’s profit, consumers’ surplus, and the benefit for the community,

net the government cost on implementing interventions, if applicable. This chapter

considers a social welfare setting, in which a public interest good is distributed by

a newsvendor-type seller to consumers with stochastic demand depending on retail

price.

The social welfare setting of interest is illustrated in Figure 6.1. The seller is a

newsvendor, who faces a stochastic demand from the market and decides the retail

price and the order quantity (i.e., supply quantity). While the traditional newsvendor

problem maximizes the seller’s expected profit (see e.g., Nahmias (2005)), our model

focuses on maximizing the expected social welfare. In this setting, the government

plays a significant role in controlling the affordability and availability of a public

interest good and leveraging its social welfare. The purpose of the government is to

improve/maximize the expected social welfare by intervening in the seller’s price and

quantity or consumers’ purchase decisions through intervention mechanisms.
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Seller

GovernmentDesigns interventions on 
seller

Consumer
Decides retail price and supply 

quantity to maximize the seller’s 
expected profit

Designs interventions on 
consumers

Stochastic demand
Additive or multiplicative

Improve/maximize 
the expected social welfare

Public interest good

Figure 6.1: The newsvendor problem setting under social welfare objective.

This chapter revisits Ovchinnikov and Raz (2014)’s work by considering the mul-

tiplicative demand function. Different than our setting, Ovchinnikov and Raz (2014)

apply the additive demand function. The multiplicative demand function is widely

applicable and suitable in social welfare analysis for different reasons (see e.g., Tellis

(1988), Driver and Valletti (2003), Song et al. (2009), and Huang and Van Mieghem

(2013)). As we will demonstrate in this chapter, the demand function also determines

the government’s decision for choosing a suitable intervention mechanism.

The intervention mechanisms commonly applied by the government can be clas-

sified as regulatory interventions (regulations) and market interventions. With reg-

ulatory interventions, the government directly imposes restrictions on the seller’s

behavior, e.g., setting the maximum price (the maximum price regulation) (see e.g.,

Linhart and Radner (1992)), requiring specific supply, or the combination. With

market interventions, the government provides incentives to encourage the seller to

make decisions that are socially better. For example, the government adjusts the

tax rate (see e.g., Brito et al. (1991), Mas-Colell et al. (1995), Dardan and Stylianou

(2000) and Mamani et al. (2012)); the government pays the seller a subsidy for

each unit supplied, referred to as the cost subsidy (see e.g., Brito et al. (1991) and
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Ovchinnikov and Raz (2014)), or the purchase subsidy (see e.g., Taylor and Yadav

(2011), Adida et al. (2013), and Mamani et al. (2012)); and the government pays a

consumer a rebate for each unit purchased, referred to as the consumer rebate (see

e.g., Ovchinnikov and Raz (2014)), or the sales subsidy (see e.g., Taylor and Yadav

(2011) and Adida et al. (2013)).

For additive demand, Ovchinnikov and Raz (2014) investigate two market inter-

ventions, the consumer rebate and the cost subsidy, as well as their combination,

the joint rebate-subsidy. They conclude that the joint intervention enables the gov-

ernment to coordinate the system and maximize the expected social welfare. For

multiplicative demand, our results differ from their work from two aspects:

• Under additive demand, using Ovchinnikov and Raz (2014)’s results, we prove

that the socially optimal retail price is less than the seller’s production/ordering

cost. It is, hence, impossible to align the seller’s price with the socially opti-

mal one through a price regulation without providing additional compensations

to the seller. Under multiplicative demand, however, we are able to demon-

strate that the socially optimal price could be more than the seller’s produc-

tion/ordering cost. Hence, using the maximum price regulation, it is possible to

coordinate the price. This is an easily-implemented-and-administrated option

for the government.

• While Ovchinnikov and Raz (2014) do not consider the impact of tax on the

seller’s decisions, we generalize their model by allowing for the sales tax imposed

on the seller’s revenue. The setting is realistic, as the tax serves as an important

tool in leveraging price and quantity decisions in practice (see e.g., Mas-Colell

et al. (1995) and Dardan and Stylianou (2000)). With the tax adjustment

available, the tax cut and two more joint interventions, the joint tax-rebate
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and tax-subsidy, are investigated, besides the rebate-subsidy, which is also

considered by Ovchinnikov and Raz (2014). We demonstrate that the joint tax-

rebate and tax-subsidy are better options for the government than the rebate-

subsidy, as they cost the government less and achieve the same coordination

performance.

Based on these results, the main contributions of the chapter are summarized as

the following: To the best of our knowledge, this work is the first to investigate the

social welfare issue in a newsvendor model with multiplicative uncertainty. With the

form of the optimal policy and the performance of intervention mechanisms, our work

addresses an important theoretical gap and complements results by Ovchinnikov and

Raz (2014). We contribute to the literature by investigating the impact of demand

uncertainty on the optimal decisions and intervention mechanisms in a social welfare

maximization problem. We employ the joint tax-rebate and tax-subsidy interventions

and show that they are better options for the government than the rebate-subsidy

used by Ovchinnikov and Raz (2014) for the additive demand. In practice, our work

can be used to provide the government/policy maker several ways to control the

affordability and availability of a public interest product to improve the expected

social welfare.

In the remainder of the chapter, Section 6.2 discusses how the social welfare is

modeled using multiplicative demand and Section 6.3 models the problem. Next,

Section 6.4 identifies the optimal solutions to the expected profit and social welfare

maximization problems, respectively, where the comparison between the two deci-

sions and their economic implications are also provided. Section 6.5 analyzes various

government/market interventions and their combinations, and Section 6.6 numeri-

cally investigates the intervention performance through a case study. Finally, the
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chapter is concluded in Section 6.7 by summarizing the application of the model and

avenues of future chapter.

6.2 Demand function in welfare analysis

In pricing literature, the stochastic price-dependent demand function D(p, ξ) is

usually assumed to include two components: a deterministic function of price d(p)

and a random variable ξ. Their mathematical relationships are revealed frequently

by the additive form D(p, ξ) = ξ + d(p) or the multiplicative form D(p, ξ) = ξd(p).

For the multiplicative form, we assume that ξ is a positive random variable with

a cumulative distribution function F (·), a probability density function f(·), and

E(ξ) = µ and var(ξ) = σ2.

Remark 1. A multiplicative demand D(p, ξ) = ξd(p) is applicable in social welfare

analysis, if d′(p) ≤ 0 for all p in the possible range, where ξ is a positive random

variable.

In microeconomic theory, according to Mas-Colell et al. (1995), a demand function

can be applied in welfare analysis only if the demand function is derived based on an

underlying model of consumer behavior. That is, consumers should make decisions by

choosing from a given set of possible options to maximize their utility. Fortunately,

in order to check if the demand function is applicable in welfare analysis, we do

not need to figure out the model of consumer behavior behind the demand function.

Krishnan (2010) states that if a demand function satisfies certain conditions on the

partial derivatives of demand with respect to prices presented in Definition 1, then it

is guaranteed that there is an underlying model of consumer behavior that generates

the demand function (see e.g., Varian (1992), Mas-Colell et al. (1995), Krishnan

(2010)). Definition 1 is taken from Section 2.3 of Krishnan (2010).

165



Definition 1.
−→
h (−→p , u) is the Hicksian demand function, and ∂

−→
h (−→p , u)/∂pi, ∀i, are

the price derivatives of the Hiscksian demand function, where −→p is a price vector

and u is a given value of utility. The matrix of partial derivatives has the following

properties:

1. The own-price effect is non-positive, i.e., ∂hi(
−→p , u)/∂pi ≤ 0,

2. The matrix of terms ∂hj(
−→p , u)/∂pi is negative semi-definite, and

3. The matrix of terms ∂hj(
−→p , u)/∂pi is symmetric.

According to Krishnan (2010), the three properties in Definition 1 are not only

necessary conditions of the Hicksian demand function, but also sufficient conditions

that guarantee that a demand function is generated by utility maximizing consumers.

Note that the “Slutsky symmetry” condition (i.e., the third condition in Definition

1) is usually violated by the multiplicative demand functions for a multi-product

case. It is because the realizations of the random variables in demand functions for

different products might not be the same (see e.g., Krishnan (2010)). However, if

there is only a single product, the symmetry condition always holds true. Consider

a single-product case with the demand function h(p, u) = D(p, ξ) = ξd(p). The first

condition in Definition 1 is satisfied as follows

∂h(p, u)

∂p
=

dD(p, ξ)

dp
= ξd′(p) ≤ 0,

when ξd′(p) ≤ 0 due to Remark 1. The other two conditions are also satisfied,

because the matrix of partial derivatives is 1× 1, which is naturally symmetric and

negative semi-definite if

∂h(p, u)

∂p
≤ 0

166



is true. Therefore, the multiplicative demand function for a single product satisfies

all conditions in Definition 1, and the demand is feasible for social welfare analysis.

Most of the commonly-used multiplicative demand functions satisfy the condi-

tion d′(p) ≤ 0. Examples include the multiplicative demand functions with the

linear deterministic demand d(p) = a − bp for a > 0, b > 0, and the power form

d(p) = ap−b (see e.g., Petruzzi and Dada (1999)), and the reservation-price model

D(p, ξ) = ξ(1 − F (p)) (see e.g., Ziya et al. (2004)). Furthermore, this condition is

intuitively realistic, since it states that the own-price effect is non-positive (see e.g.,

Varian (1992)) implying that demand decreases in price. In the next section, we will

characterize the model in the social welfare setting.

6.3 The model

Consider a system comprising a newsvendor-type seller who decides the retail

price p and the order quantity q, and a government who intervenes in the market

to affect the seller’s and the consumers’ behaviors to maximize the expected social

welfare. We follow Ovchinnikov and Raz (2014) by using the same definition of social

welfare, which is defined as the summation of all participants’ benefits in the channel,

net the government cost, given by

Social welfare = Seller’s profit + Consumers’ surplus + Externality benefit

- Government cost.

In centralized control, we assume the system is managed by a central planner. That

is, the socially optimal decisions are used without any intervention implemented by

the government. In this case, the social welfare is the summation of the first three

components on the RHS of the above equation without the government cost. In this
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section, we focus on modeling the social welfare in centralized control. The impact

of the government interventions on the decentralized decisions will be investigated

in Section 6.5.

The seller’s profit, consumers’ surplus, and externality benefit represent the ben-

efits of the seller, the consumers, and the other people in the society, respectively,

obtained from the distribution of the product. Let D(p, ξ) be a generic demand func-

tion at price p and with random component ξ. Suppose that the production/ordering

cost is c per unit for the seller, any left-over item is salvaged at a value s per unit, and

all unsatisfied demand is lost. A sales tax t is imposed on the seller’s sales revenue.

Then, the seller’s expected profit function is given by

SP (p, q) = (1− t)pmin {D(p, ξ), q} − cq + s (max{q −D(p, ξ), 0}) . (6.1)

The terms on the RHS of the above equation represent the sales revenue after tax,

the production/ordering cost, and the salvage value, respectively.

Consumers’ surplus is an important concept in social welfare, which is called

Marshallian Consumer Surplus originated from Marshall (1920). It is defined as

the difference between a consumer’s willing-to-pay price and the market price of

a product (Marshall (1920)). Consumers’ surplus is regarded as the counterpart

of seller’s profit, since consumers’ surplus decreases and seller’s profit increases as

the retail price increases. According to Ovchinnikov and Raz (2014), “consumer’s

surplus is generally defined as the area under the demand curve above the given

price.” When demand is uncertain, consumers’ surplus is not generated for the part

of demand that is unmet and lost. While there are several ways to model consumers’
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surplus in the case of stockout, following Ovchinnikov and Raz (2014) we obtain:

CS(p, q) = min

{
q

D(p, ξ)
, 1

}∫ ∞

p

D(x, ξ)dx. (6.2)

By (6.2), if q ≥ D(p, ξ), then all demand can be satisfied, and the corresponding

consumers’ surplus is
∫∞
p

D(x, ξ)dx, which only depends on the retail price p. If

q < D(p, ξ), only q/D(p, ξ) portion of the total demand is satisfied. Then, the

consumers’ surplus in this case is given by (q/D(p, ξ))
∫∞
p

D(x, ξ)dx.

According to Laffont (2008), “An externality is any indirect effect that either a

production or a consumption activity has on a utility function, a consumption set or

a production set.” The externality benefit measures the positive influence of owning

a product on the other people in the society. Following Ovchinnikov and Raz (2014),

the externality benefit is defined as a constant marginal externality, α, where α > 0,

times the sales amount given as below:

EB(p, q) = αmin (D(p, ξ), q) . (6.3)

Overall, the expected social welfare in centralized control for given p and q values is

the following:

ΠC(p, q) = ESP (p, q) + ECS(p, q) + EEB(p, q),

where the terms on the RHS are expected values of the seller’s profit, consumers’

surplus, and the externality benefit, respectively. The centralized problem is to

maximize the expected social welfare ΠC(p, q), and the decentralized problem is to

maximize the seller’s expected profit ESP (p, q).

We state the following assumptions on the demand function and cost parameters.
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These assumptions are needed for the analytical tractability and applicability of the

models in real-world situations. Assumption 1 on the costs and the retail price is

made to guarantee the problem setting is practical. Recall that the multiplicative

demand is expressed as D(p, ξ) = ξd(p).

Assumption 1. 1. The production/ordering cost is greater than the salvage value,

c > s,

2. The retail price p is in the range p ∈ [s/(1− t), p], where p satisfies d(p) = 0

and (1− t)p > c.

The seller’s revenue per unit sold (i.e., the retail price after tax p(1− t)) should

be greater than the salvage value; otherwise, the seller would prefer to salvage the

product instead of selling it. In addition, p denotes the maximum admissible value

of p, such that d(p) = 0, to avoid negative demand. Therefore, the set of feasible

price levels is confined to the finite interval [s/(1− t), p]. Furthermore, it is natural

to assume that the product is affordable to consumers when it is profitable to the

seller. That is, the production/ordering cost cannot be greater than the highest

possible price p after tax, such that (1− t)p > c. The following assumptions for the

demand function are needed for analytical tractability to guarantee the existence of

the optimal decisions in centralized and decentralized problems.

Assumption 2. For p ∈ [s/(1− t), p], d(p) satisfies the following conditions:

1. d(p) is positive, strictly decreasing, and continuously differentiable,

2. d(p)/d′(p) is decreasing and concave, and

3. p+ d(p)/d′(p) is strictly increasing.
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Assumption 2 is satisfied by common convex functions, such that d(p) = ap−k for

a > 0 and k > 0, d(p) = (a−bp)k for b < 0 and k < −1, linear function d(p) = a−bp

for a > 0 and b > 0, and log-linear function ak−bp for a > 0, k > 0, and b > 0 (see

e.g., Song et al. (2009)). Assumption 3 is from Song et al. (2009), which is used in

the proof of Property 6.

Assumption 3. The generalized failure rate of the distribution function of ξ, defined

by l(u) = uf(u)/(1− F (u)), is increasing.

According to Lariviere (2006), “the assumption holds for many common distri-

butions, including uniform, normal, exponential, gamma with shape parameter ≥ 1,

and beta with both parameters ≥ 1.”

6.4 Optimal decisions in centralized and decentralized controls

In this section, we first characterize the objective functions under the multiplica-

tive demand. After that, we identify the socially optimal retail price and order

quantity that maximize the expected social welfare in centralized control. Then,

we identify the decentralized optimal decisions that maximize the seller’s expected

profit. A comparison of the decisions with the two objectives is also provided.

6.4.1 Expressions of objective functions

First, using the multiplicative demand, we derive the expected values of seller’s

profit, consumers’ surplus, and the externality benefit from (6.1), (6.2), and (6.3),

respectively. Let us define z = q/d(p). Recall that D(p, ξ) = ξd(p). The variable

z can be termed as the stocking factor and F (z) represents the proportion of the

demand that is satisfied (see e.g., Petruzzi and Dada (1999)). In the sequel, we will

use the following identities. Using max{x, 0} = −min{x, 0}, the quantity sold can
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be written in two forms as given below:

min{D(p, ξ), q} = q +min{D(p, ξ)− q, 0} = q −max{q −D(p, ξ), 0} and (6.4)

min{D(p, ξ), q} = D(p, ξ) + min{q −D(p, ξ), 0}

= D(p, ξ)−max{D(p, ξ)− q, 0}. (6.5)

Let us define

θ(z) =

∫ r

z

(r − z)dF (r) and (6.6)

δ(z) =

∫ z

r

(z − r)dF (r). (6.7)

Note that the expected unsatisfied demand is given by

E[max{D(p, ξ)− q, 0}] = d(p)

∫ r

z

(r − z)dF (r) = d(p)θ(z), (6.8)

and the expected leftover inventory is given by

E[max{q −D(p, ξ), 0}] = d(p)

∫ z

r

(z − r)dF (r) = d(p)δ(z). (6.9)

Using (6.4) and (6.9), the expected sales is written as

E[min (D(p, ξ), q)] = q − E [max{q −D(p, ξ), 0}]

= q − d(p)δ(z) = d(p)(z − δ(z)), (6.10)

and using (6.5) and (6.8), the expected sales can also be written as

E[min (D(p, ξ), q)] = E [D(p, ξ)]− E [max{D(p, ξ)− q, 0}]

= d(p) (µ− θ(z)) . (6.11)
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From (6.10) and (6.11), we observe that

µ− θ(z) = z − δ(z) = z (1− F (z)) +

∫ z

r

rdF (r). (6.12)

Taking the expectation of (6.1), the seller’s expected profit is given by

ESP (p, q) = (1− t)pE[min{D(p, ξ), q}]− cq + sE [max{q −D(p, ξ), 0}] .

Recalling z = q/d(p) and using (6.9) and (6.11), the seller’s expected profit can be

written as

ESP (p, z) = (1− t)pd(p)(µ− θ(z))− cd(p)z + sd(p)δ(z)

= d(p) [(1− t)p(µ− θ(z))− cz + sδ(z)] . (6.13)

Let H(p) =
∫∞
p

d(x)dx. Recalling D(p, ξ) = ξd(p) and using (6.2), we obtain

CS(p, q) =


ξH(p), if ξd(p) < q,

qξH(p)
ξd(p)

= qH(p)
d(p)

, if ξd(p) ≥ q.

(6.14)

Then, the expected consumers’ surplus is given by

ECS(p, q) =

∫ q
d(p)

r

rH(p)dF (r) +

∫ r

q
d(p)

qH(p)

d(p)
dF (r)

= H(p)

∫ q
d(p)

r

rdF (r) +
qH(p)

d(p)

∫ r

q
d(p)

dF (r)

= H(p)

∫ q
d(p)

r

rdF (r) +
qH(p)

d(p)

(
1− F

(
q

d(p)

))
.
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Substituting z = q/d(p) into the above equation and using (6.12), we obtain:

ECS(p, z) = H(p)

∫ z

r

rdF (r) +H(p)z(1− F (z)) = H(p)(µ− θ(z)). (6.15)

By (6.3), the expected externality benefit is given byEEB(p, q) = αE[min{D(p, ξ), q}].

Using z = q/d(p) and (6.11), we obtain

EEB(p, z) = αd(p) (µ− θ(z)) . (6.16)

Due to mathematical ease, in the sequel, we use variables p and z instead of variables

p and q in the analysis.

6.4.2 Comparison between centralized and decentralized decisions

With the explicit expressions for all components in (6.13), (6.15), and (6.16), the

expected social welfare can be written as

ΠC(p, z) = ESP (p, z) + ECS(p, z) + EEB(p, z)

= [(1− t)pd(p) +H(p) + αd(p)] [µ− θ(z)] + (sδ(z)− cz) d(p).(6.17)

In centralized control, the government decides p and z to maximize the expected

social welfare. Hence, the centralized optimization problem is given by

max
p,z

ΠC(p, z).

The socially optimal price p∗C and stocking factor z∗C are presented in Property 1.

Property 1. In centralized control, the optimal retail price p∗C and the stocking factor
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z∗C that maximize the expected social welfare satisfy

p− td(p)

(1− t)d′(p)

∣∣∣∣
p=p∗C

=
1

1− t

[
c− α +

(c− s)δ(z)

z − δ(z)

]∣∣∣∣
z=z∗C

(6.18)

and

F (z∗C) =
H(p) + d(p)((1− t)p− c+ α)

H(p) + d(p)((1− t)p− s+ α)

∣∣∣∣
p=p∗C

. (6.19)

The optimal order quantity q∗C is given by q∗C = d(p∗C)z
∗
C.

Proof of Property 1: Recall (6.6) and (6.7) that define θ(z) and δ(z), respectively

and H(p) =
∫∞
p

d(x)dx. We have H ′(p) = −d(p), θ′(z) = −(1 − F (z)) and δ′(z) =

F (z). Taking the first and second derivatives of ΠC(p, z) in (6.17) w.r.t z, we obtain

∂ΠC(p, z)

∂z
= [(1− t)pd(p) +H(p) + αd(p)] [1− F (z)] + sd(p)F (z)− cd(p),(6.20)

and

∂2ΠC(p, z)

∂z2
= − [((1− t)p+ α− s) d(p) +H(p)] f(z) < 0,

because p(1−t) ≥ s from Assumption 1 andH(p) > 0 from Assumption 3. Therefore,

ΠC(p, z) is concave in z for any given p and the optimal z satisfies the first order

condition ∂ΠC(p, z)/∂z = 0. In addition, we have

∂ΠC(p, z)

∂p
= [(1− t)d(p) + (1− t)pd′(p)− d(p) + αd′(p)] (µ− θ(z))

+(sδ(z)− cz)d′(p), (6.21)
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and

∂2ΠC(p, z)

∂p2
= ((1− t)d(p) + (1− t)pd′(p)− d(p) + αd′(p))

′
(µ− θ(z))

+(sδ(z)− cz)d′′(p). (6.22)

Suppose that p0 satisfies the first order condition ∂ΠC(p, z)/∂p|p=p0
= 0. Rear-

ranging (6.21), we obtain that p0 satisfies

sδ(z)− cz = − [(1− t)d(p) + (1− t)pd′(p)− d(p) + αd′(p)] (µ− θ(z))

d′(p)

∣∣∣∣
p=p0

.

Then, using the above equality in (6.22), we have

∂2ΠC(p, z)

∂p2

∣∣∣∣
p=p0

= [(1− t)d(p) + (1− t)pd′(p)− d(p) + αd′(p)]
′
(µ− θ(z))−

[(1− t)d(p) + (1− t)pd′(p)− d(p) + αd′(p)] (µ− θ(z))d′′(p)

d′(p)

∣∣∣∣
p=p0

.

By multiplying with d′(p), the above equation can be written as

d′(p)
∂2ΠC(p, z)

∂p2

∣∣∣∣
p=p0

= (1− t) {[(d(p) + pd′(p))′d′(p)− (d(p) + pd′(p)) d′′(p)]

−
[
(d′(p))2 − d(p)d′′(p)

]}
(µ− θ(z))

∣∣
p=p0

.

According to Assumption 2, since p+ d(p)/d′(p) is strictly increasing,

(
d(p) + pd′(p)

d′(p)

)′

> 0

and we obtain (d(p)+pd′(p))′d′(p)− (d(p)+pd′(p))d′′(p) > 0. In addition, d(p)/d′(p)

is decreasing, and hence, − [(d′(p))2 − d(p)d′′(p)] ≥ 0. Since µ− θ(z) > 0 by (6.12),
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we have

d′(p)
∂2ΠC(p, z)

∂p2

∣∣∣∣
p=p0

> 0 and then
∂2ΠC(p, z)

∂p2

∣∣∣∣
p=p0

< 0.

Hence, ΠC(p, z) is concave at any stationary point p0. Thus, there is a unique

stationary point p0 for a given z which is the optimal price. Dividing both sides of

∂ΠC(p, z)/∂p = 0 by (1− t)d′(p)(µ− θ(z)) (6.21) and using (6.12), we obtain

p− td(p)

(1− t)d′(p)
− cz − sδ(z)− α(z − δ(z))

(1− t)(z − δ(z))
= 0.

Rearranging the above equation and ∂ΠC(p, z)/∂z = 0 in (6.20), we obtain the

optimal price p∗C and the stocking factor z∗C satisfy (6.18) and (6.19).

Property 1 characterizes the optimal retail price and the order quantity that

maximize the expected social welfare. It is interesting to note that the optimal

solution to the centralized problem given by (6.19) has an elegant form and can be

considered as a generalized solution to the price-setting newsvendor problems with

different objectives. The solution to the profit maximization problem that satisfies

F (z) = (p−c)/(p−s) (see e.g., Nahmias (2005)) can be directly obtained by omitting

consumers’ surplus related term H(p) and letting t = 0 and α = 0 in (6.19). Note

that, in centralized control without the government intervention, the social welfare

incorporates three terms: the seller’s expected profit, the consumers’ surplus, and

the externality benefit. Next property represents the relationship between the three

terms at the socially optimal decisions.

Property 2. In centralized control, ESP (p
∗
C , z

∗
C) ≤ −EEB(p

∗
C , z

∗
C). More specifically,

1. If t = 0, then ESP (p
∗
C , z

∗
C) = −EEB(p

∗
C , z

∗
C) and ΠC(p

∗
C , z

∗
C) = ECS(p

∗
C , z

∗
C);

and
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2. If t > 0, then ESP (p
∗
C , z

∗
C) < −EEB(p

∗
C , z

∗
C), and ΠC(p

∗
C , z

∗
C) < ECS(p

∗
C , z

∗
C).

Proof of Property 2: Multiplying both sides of (6.18) by (1− t)d(p)(z− δ(z)) and

rearranging the equation, we have

{(1− t)d(p)p(z − δ(z)) + d(p)(sδ(z)− cz)}|p=p∗C ,z=z∗C

=

{
−αd(p)(z − δ(z)) +

td2(p)(z − δ(z))

d′(p)

}∣∣∣∣
p=p∗C ,z=z∗C

.

Recall ESP (p, z) and EEB(p, z) from (6.13) and (6.16), respectively, and using z −

δ(z) = µ− θ(z), we observe that

ESP (p
∗
C , z

∗
C) = −EEB(p

∗
C , z

∗
C) +

td2(p)(z − δ(z))

d′(p)

∣∣∣∣
p=p∗C ,z=z∗C

.

Since d′(p) < 0, ESP (p
∗
C , z

∗
C) ≤ −EEB(p

∗
C , z

∗
C). The equality holds true if t = 0.

Property 2 shows that the seller’s expected profit is non-positive at the socially

optimal decisions. The result directly follows from ESP (p
∗
C , z

∗
C) ≤ −EEB(p

∗
C , z

∗
C) and

the expected externality benefit EEB(p, z) = αd(p) (µ− θ(z)) is always nonnegative

due to α > 0. Hence, the more beneficial the public interest product is to the

community, the more loss the seller faces. It is interesting to note that when the

tax rate is zero, the absolute values of the seller’s expected profit and the expected

externality benefit are equal, and hence, the expected social welfare is equal to the

expected consumers’ surplus.

In decentralized control, the seller maximizes the expected profit without consid-

ering the consumers’ surplus and the externality benefit. Using (6.13), the decen-

tralized optimization problem is given by

max
p,z

ΠD(p, z) = max
p,z

ESP (p, z) = max
p,z

d(p) [(1− t)p(µ− θ(z))− cz + sδ(z)] . (6.23)
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The optimal price p∗D and the stocking factor z∗D in decentralized control are presented

in the following property.

Property 3. In decentralized control, the optimal retail price p∗D and the stocking

factor z∗D that maximize the seller’s expected profit satisfy

p+
d(p)

d′(p)

∣∣∣∣
p=p∗D

=
1

1− t

[
c+

(c− s)δ(z)

z − δ(z)

]∣∣∣∣
z=z∗D

and

F (z∗D) =
(1− t)p− c

(1− t)p− s

∣∣∣∣
p=p∗D

. (6.24)

The optimal order quantity q∗D is given by q∗D = d(p∗D)z
∗
D.

Proof of Property 3: Taking the first and second derivatives of ΠD(p, z) in (6.23)

with respect to z and using θ′(z) = −[1− F (z)] and δ′(z) = F (z), we obtain

∂ΠD(p, z)

∂z
= (1− t)pd(p)[1− F (z)] + sd(p)F (z)− cd(p), (6.25)

and

∂2ΠD(p, z)

∂z2
= −(1− t)pd(p)f(z) + sd(p)f(z)

= − [(1− t)p− s] d(p)f(z) ≤ 0,

because (1 − t)p ≥ s from Assumption 1. Next, we analyze two possible cases,

respectively, when (1− t)p = s and (1− t)p > s. If (1− t)p = s, ∂2ΠD(p, z)/∂z
2 = 0

and ΠD(p, z) is decreasing in z, because ∂ΠD(p, z)/∂z = (s − c)d(p) < 0 from

Assumption 1. Hence, ΠD(p, z) achieves its optimal value at z = 0. In this case, the
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seller’s expected profit is zero such that

ΠD(p, z)|z=0 = d(p) [(1− t)p(µ− θ(z))− cz + sδ(z)] |z=0 = 0.

However, it cannot be the optimal solution, because there exists at least one feasible

solution that leads to a profit. Since (1− t)p > c from Assumption 1, there exists a

feasible retail price p∗, s.t. p∗ ∈ (c/(1− t), p). Let z∗ = r. Then, the expected profit

function at the feasible solution (p∗, z∗) is positive, which is given by

ΠD(p, z)|p=p∗,z=z∗ = d(p) [(1− t)pz − cz] |p=p∗,z=z∗ > 0.

Therefore, the optimal solution of ΠD(p, z) cannot be achieved when (1 − t)p = s.

The optimal retail price should satisfy (1 − t)p > s. For any given p in the range

(1 − t)p > s, ΠD(p, z) is strictly concave in z and the optimal z satisfies the first

order condition ∂ΠD(p, z)/∂z = 0. In addition, we have

∂ΠD(p, z)

∂p
= (1− t) (µ− θ(z)) (d(p) + pd′(p)) + (sδ(z)− cz)d′(p), (6.26)

and

∂2ΠD(p, z)

∂p2
= (1− t) (µ− θ(z)) [d′(p) + d′(p) + pd′′(p)] + (sδ(z)− cz)d′′(p).

= (1− t) (µ− θ(z)) [2d′(p) + pd′′(p)] + (sδ(z)− cz)d′′(p). (6.27)

Suppose that p0 satisfies the first order condition ∂ΠD(p, z)/∂p|p=p0
= 0. Rearrang-

ing (6.26), we obtain that p0 satisfies

sδ(z)− cz = − (1− t)(µ− θ(z)) [d(p) + pd′(p)]

d′(p)

∣∣∣∣
p=p0

.
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Then, using the above equality in (6.27) and multiplying both sides with d′(p), we

have

∂2ΠD(p, z)

∂p2

∣∣∣∣
p=p0

= (1− t) (µ− θ(z)) [2d′(p) + pd′′(p)]

− (1− t)(µ− θ(z)) [d(p) + pd′(p)] d′′(p)

d′(p)

∣∣∣∣
p=p0

.

According to Assumption 2, since p+ d(p)/d′(p) is strictly increasing,

(
d(p) + pd′(p)

d′(p)

)′

> 0

and we obtain [2d′(p) + pd′′(p)] d′(p)−(d(p)+pd′(p))d′′(p) = 2[d′(p)]2−d(p)d′′(p) > 0.

Therefore, we have

d′(p)
∂2ΠD(p, z)

∂p2

∣∣∣∣
p=p0

> 0, and
∂2ΠD(p, z)

∂p2

∣∣∣∣
p=p0

< 0.

Hence, ΠD(p, z) is concave at any stationary point p0. Thus, there is a unique

stationary point of ΠD(p, z) w.r.t p for a given z which is the optimal price.

Dividing both sides of ∂ΠD(p, z)/∂p = 0 by (1− t)d′(p)(µ− θ(z)) given in (6.26)

and using (6.12), we obtain

p+
d(p)

d′(p)
− cz − sδ(z)

(1− t)(µ− θ(z))
= p+

d(p)

d′(p)
− cz − sδ(z)

(1− t)(z − δ(z))
= 0.

Rearranging the above equation and using ∂ΠD(p, z)/∂z = 0 given by (6.25), we

obtain that the optimal price p∗D and the stocking factor z∗D satisfy

p+
d(p)

d′(p)

∣∣∣∣
p=p∗D

=
1

1− t

[
c+

(c− s)δ(z)

z − δ(z)

]∣∣∣∣
z=z∗D

and F (z∗D) =
(1− t)p− c

(1− t)p− s

∣∣∣∣
p=p∗D

.
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Due to the impact of consumers’ surplus and externality benefit, the optimal

decisions are different under the two objectives. Property 4 provides the comparison

between the socially optimal decisions and the decentralized optimal decisions.

Property 4. p∗C < p∗D, z
∗
C > z∗D, and q∗C > q∗D.

Proof of Property 4: In Properties 1 and 3, we prove that p∗C and z∗C satisfy the

first order conditions of ΠC(p, z), and p∗D and z∗D satisfy the first order conditions of

ΠD(p, z). Using (6.21), we have

∂ΠC(p, z)

∂p

∣∣∣∣
p=p∗C ,z=z∗C

= {[(1− t)d(p) + (1− t)pd′(p)− d(p) + αd′(p)] (µ− θ(z))

+(sδ(z)− cz)d′(p)}|p=p∗C ,z=z∗C
= 0. (6.28)

From (6.26), we have

∂ΠD(p, z)

∂p

∣∣∣∣
p=p∗C ,z=z∗C

= {d′(p) [(1− t)p(µ− θ(z))− cz + sδ(z)]

+(1− t)d(p) (µ− θ(z))}|p=p∗C ,z=z∗C

=

{
∂ΠC(p, z)

∂p
+ d(p)(µ− θ(z))− αd′(p) (µ− θ(z))

}∣∣∣∣
p=p∗C ,z=z∗C

= {d(p)(µ− θ(z))− αd′(p) (µ− θ(z))}|p=p∗C ,z=z∗C
.

According to (6.11) and Assumption 2, the first term d(p)(µ − θ(z)) represents the

expected sales, which should be positive, as well as (µ− θ(z)) > 0 and d′(p) < 0. We

obtain ∂ΠD(p, z)/∂p|p=p∗C ,z=z∗C
> 0. Hence, p∗D > p∗C .
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Using (6.20) and (6.25), and the definitions of p∗D and z∗D, we obtain

∂ΠC(p, z)

∂z

∣∣∣∣
p=p∗D,z=z∗D

= {(1− t)pd(p)[1− F (z)]

+ sd(p)F (z)− cd(p) + [H(p) + αd(p)][1− F (z)]}|p=p∗D,z=z∗D

=
∂ΠD(p, z)

∂z

∣∣∣∣
p=p∗D,z=z∗D

+ {[H(p) + αd(p)] [1− F (z)]}|p=p∗D,z=z∗D

= { [H(p) + αd(p)] [1− F (z)]}|p=p∗D,z=z∗D
> 0.

Hence, z∗C > z∗D. Furthermore, q∗C = z∗Cd(p
∗
C) > z∗Dd(p

∗
D) = q∗D.

Property 4 demonstrates that the seller’s decentralized optimal retail price is

higher and the order quantity is lower than the corresponding socially optimal de-

cisions. In other words, in centralized control, a lower price is charged and more

quantity is obtained in order to transfer a part of the seller’s profit to consumers to

improve the expected social welfare. These results are consistent with our intuition,

as consumers always prefer a lower retail price and more quantity available in the

market.

6.5 Intervention mechanisms

We have already shown in Property 4 that the seller’s decisions are not socially

optimal in a free market (i.e., in decentralized control). The question arises how

the government intervenes in the market to align the seller’s decisions with the so-

cially optimal ones. In this section, we examine several government intervention

mechanisms and investigate their coordination performance and efficiency. The gov-

ernment intervention mechanisms of interest are illustrated in Figure 6.2. The regu-

latory mechanisms and market mechanisms will be discussed in Sections 6.1 and 6.2,

respectively.
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Government
Interventions

The retailer 
decides

p, q,

D(p) = ξ d(p)

Maximum price 

Minimum quantity 

Tax cut

Consumer rebate

Cost subsidy

Regularity 
Interventions

Market 
Interventions

Figure 6.2: The framework of government intervention mechanisms.

We will evaluate and compare these government interventions from three aspects:

the effectiveness, coordination efficiency, and the government cost. With the effec-

tiveness of an intervention, we pay attention to whether the socially optimal price,

stocking factor, and/or quantity can be achieved through the intervention. With co-

ordination efficiency of an intervention, we are interested in the following questions:

a) does the intervention lead to a better expected social welfare, and b) how close is

it to the socially optimal expected welfare? Besides coordination efficiency, the gov-

ernment cost is also a critical concern when the government chooses an intervention

from multiple options. Hence, the cost should be taken into account for intervention

evaluation.

6.5.1 Regulatory intervention mechanisms

As discussed previously, regulatory interventions are often implemented by the

government to improve social welfare. As shown in Figure 6.2, we consider three gov-

ernment regulations such as maximum price regulation (i.e., the government restricts
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the highest retail price to p∗C), minimum quantity regulation (i.e., the government

restricts the lowest order quantity to q∗C), and maximum price and minimum quan-

tity regulation (i.e., the government restricts the highest retail price to p∗C and lowest

order quantity to q∗C). It is worth noting that it is possible for the government to

enforce the seller to sell the product at or below a given price under the maximum

price regulation only when the seller’s expected profit is positive at the price; other-

wise, the seller would exit the market. When the demand function is additive (i.e.,

D(p, ξ) = ξ+d(p)), according to (6) in Ovchinnikov and Raz (2014), the socially op-

timal price is c−α−Θ(z∗C)/2. This price is less than c, since the constant marginal

benefit α > 0 and the expected shortage Θ(z∗C) ≥ 0. In this case, the maximum

price regulation will be ruled out, because the seller does not make a profit by sell-

ing the product. However, when the demand function is multiplicative, the socially

optimal retail price might be more than the production/ordering cost after tax, i.e.,

p∗C > c/(1− t).

The explanation for the different results is the following. Recall that E(ξ) = µ

and var(ξ) = σ2. For the additive demand function, the variance is var(D(p, ξ)) =

var(ξ+d(p)) = σ2, and the coefficient of variation is CV (D(p, ξ)) = CV (ξ+d(p)) =

σd(p)/(d(p) + µ). Therefore, the variance of the additive demand function is con-

stant in p while the coefficient of variation increases in p. On the other hand,

for the multiplicative demand function, var(D(p, ξ)) = var(ξd(p)) = d2(p)σ2 and

CV (D(p, ξ)) = CV (ξd(p)) = σ/µ. That is, the variance of the multiplicative demand

function decreases in p and the corresponding coefficient of variation is constant in p.

Note that both variance and coefficient of variation measure extents of variabilities

of demands and they are expected to be low. Hence, in the additive case, a lower

price is charged to decrease coefficient of variation, while in the multiplicative case, a

higher price is charged to decrease variance to reduce the demand uncertainty. The
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following property presents a condition that ensures p∗C > c/(1− t).

Property 5. If

td(p)

d′(p)

∣∣∣∣
p=p∗C

+
(c− s)δ(z)

z − δ(z)

∣∣∣∣∣
z=z∗C

− α > 0, (6.29)

then p∗C > c/(1− t).

The proof of Property 5 follows by rearranging (6.18). Note that inequality

(6.29) is obviously satisfied when the sales tax t is zero, and the constant marginal

externality α is less than a threshold value, such as

α <
(c− s)δ(z)

z − δ(z)

∣∣∣∣
z=z∗C

.

Thus, if α and t are small enough, the condition in Property 5 holds true, and

hence, the maximum price regulation is effective to coordinate the price. Recall that

a higher constant marginal externality α implies that more benefit is generated to the

community from purchasing the product by a consumer. If the benefit is high for a

product, then the goal of maximizing the expected social welfare should be achieved

through lowering the price, increasing the affordability, and popularizing the product.

In this case, the socially optimal price may be very low so that p∗C ≤ c/(1− t). Prop-

erty 5 reveals scenarios where it is possible for the seller to have a positive expected

profit under the mandatory maximum price p∗C . Hence, the regulatory intervention

on price is effective to coordinate the price for the multiplicative demand function for

some cases. It is a significantly different result from the additive case. The following

property shows the seller’s optimal decisions under the three regulations.

Property 6. 1. Under the maximum price regulation, the seller’s optimal price

p∗MP is the socially optimal price p∗MP = p∗C, and the optimal stocking factor
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z∗MP satisfies

F (z∗MP ) =
(1− t)p∗C − c

(1− t)p∗C − s
. (6.30)

We have

z∗MP < z∗D < z∗C , and q∗MP < q∗C .

2. Under the minimum quantity regulation, the seller’s optimal quantity q∗MQ is the

socially optimal quantity q∗MQ = q∗C, and the optimal retail price p∗MQ satisfies

p

 ∫ q/d(p)

r
rdF (r)

q/d(p)− δ(q/d(p))

+
d(p)

d′(p)


∣∣∣∣∣∣
p=p∗MQ,q=q∗C

=
s

1− t

 ∫ q/d(p)

r
rdF (r)

q/d(p)− δ(q/d(p))

∣∣∣∣∣∣
p=p∗MQ,q=q∗C

.

We have

p∗MQ > p∗C , and z∗MQ =
q∗C

d(p∗MQ)
> z∗c > z∗D.

3. Under the maximum price and minimum quantity regulation, the seller’s opti-

mal quantity is q∗MPQ = q∗C, and the optimal retail price p∗MPQ = p∗C.

Proof of Property 6:

1. Under the maximum price regulation, the seller’s price p is restricted by the

constraint p ≤ p∗C . From Property 4, we have p∗D > p∗C . Hence, the seller’s optimal

price, p∗MP , under the maximum price regulation is binding at the constraint such

that p∗MP = p∗C . We also know that, from Property 3, for a given p, the decentralized

optimal stocking factor satisfies the first order condition ∂ΠD(p, z)/∂z = 0. Then,

for given p = p∗C , using (6.25), the optimal stocking factor z∗MP under the maximum
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price regulation satisfies

∂ΠD(p, z)

∂z

∣∣∣∣
p=p∗C ,z=z∗MP

= {[(1− t)p [1− F (z)] + sF (z)− c]d(p)}|p=p∗C ,z=z∗MP
= 0.

Thus, we have (6.30). Recall p∗C < p∗D and z∗D > z∗C from Property 4. Using (6.24),

we have F (z∗MP ) < F (z∗D). Then, we have z∗MP < z∗D < z∗C and q∗MP < q∗C , since

q∗MP = d(p∗MP )z
∗
MP = d(p∗C)z

∗
MP < d(p∗C)z

∗
C = q∗C with p∗MP = p∗C .

2. Under the minimum quantity regulation, the seller’s order quantity q is re-

stricted by the constraint q ≥ q∗C . We will first prove that the decentralized optimal

price satisfies the first order condition ∂ΠD(p, q)/∂q = 0, for a given q. Then, we

will show that the centralized optimal price also satisfies the first order condition

∂ΠC(p, q)/∂q = 0 for a given q, and compare the price decisions under the two situ-

ations. The objective function under the decentralized control can be expressed by

p and q as below

ΠD(p, q) = [(1− t)pd(p)] [µ− θ(q/d(p))] + sd(p)δ(q/d(p))− cq, (6.31)

which is obtained by substituting z = q/d(p) into (6.23). The decentralized problem

in (6.31) is the typical price-setting newsvendor problem with multiplicative demand

excepted that the sales revenue is taxed by t. The typical newsvendor problem is

investigated by Song et al. (2009). They show, in Proposition 1 of their work, that

there is a unique price that maximizes the objective function for a given quantity,

and the objective function all about quantity is concave under specific assumptions.

Incorporating the tax in our model, we are still able to prove the same result following

the proof of Proposition 1 of Song et al. (2009). To avoid repetition, we use the

result directly and inherit their assumptions, which are Assumptions 2 and 3 in this

188



chapter. We conclude that, for any given q, the optimal price p to ΠD(p, q) in (6.31)

satisfies the first order condition ∂ΠD(p, q)/∂p = 0, and ΠD(p(q), q) is concave in q,

under Assumptions 2 and 3, where p(q) is the optimal price given q. Recall q∗D < q∗C

from Properties 4. The seller’s optimal quantity q∗MQ under the minimum quantity

regulation is binding at the constraint such that q∗MQ = q∗C . The optimal price p∗MQ

satisfies ΠD(p, q)/∂p|p=p∗MQ,q=q∗C
= 0 given q = q∗C . We will characterize the relation

of p∗MQ and q∗C next. Differentiating (6.31) with respect to p, we have

ΠD(p, q)

∂p
= [(1− t)d(p) + (1− t)pd′(p)] [µ− θ(q/d(p))] + sd′(p)δ(q/d(p))

−(1− t)p[1− F (q/d(p))]
qd′(p)

d(p)
− sF (q/d(p))

qd′(p)

d(p)
. (6.32)

Recall that substituting z = q/d(p) into (6.12) gives

[1− F (q/d(p))]q/d(p) = q/d(p)− δ(q/d(p))−
∫ q/d(p)

r

rdF (r). (6.33)

Dividing both sides of (6.32) by (1− t)d′(p)[µ− θ(q/d(p))] and using (6.33), we have

ΠD(p,q)
∂p

(1− t)d′(p)[µ− θ(q/d(p))]
= p

 ∫ q/d(p)

r
rdF (r)

q/d(p)− δ(q/d(p))

+
d(p)

d′(p)

− s

1− t

 ∫ q/d(p)

r
rdF (r)

q/d(p)− δ(q/d(p))

 .

Recalling ΠD(p, q)/∂p|p=p∗MQ,q=q∗C
= 0 and using the above equation after some alge-
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bra, we have

p

 ∫ q/d(p)

r
rdF (r)

q/d(p)− δ(q/d(p))

+
d(p)

d′(p)

∣∣∣∣∣∣
p=p∗MQ,q=q∗C

=
s

1− t

 ∫ q/d(p)

r
rdF (r)

q/d(p)− δ(q/d(p))

∣∣∣∣∣∣
p=p∗MQ,q=q∗C

. (6.34)

Now, we have found the relation of p∗MQ and q∗C . To compare p∗MQ and p∗C , we need

to identify the relation of p∗C and q∗C . In the centralized problem, the expected social

welfare function, ΠC(p, q) expressed in p and q, can be obtained by substituting

z = q/d(p) into ΠC(p, z) from (6.17). The expected social welfare function is then

given by

ΠC(p, q) = [(1− t)pd(p) +H(p) + αd(p)] [µ− θ(q/d(p))] + sd(p)δ(q/d(p))− cq.

First, we prove that for any given q, for q > 0, there exits a p(q) that satisfies the

first order condition:

∂ΠC(p, q)

∂p

∣∣∣∣
p=p(q)

= 0.

For a given q, the first derivative of ΠC(p, q) with respect to p is given by

∂ΠC(p, q)

∂p
= [(1− t)p+ α− s] d′(p)

∫ q/d(p)

r

rdF (r)− td(p)[µ− θ(q/d(p))]

−H(p)

d(p)
d′(p)

[
µ− θ(q/d(p))−

∫ q/d(p)

r

rdF (r)

]
. (6.35)

Then, we prove by contradiction that there exists at least one p that satisfies ΠC(p, q)/∂p =
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0 for a given q. Suppose that there exists a q0, such that

∂ΠC(p, q0)

∂p
> 0,

for ∀p ∈ [s/(1− t), p]. Then, the optimal price is achieved at the upper bound p = p,

where d(p) = 0 defined in Assumption 1. In this case, the expected sales is zero,

and the revenue only comes from salvaging the order quantity. The expected profit

is ΠC(p, q0) = (s − c)q0 < 0, since s < c from Assumption 1. Thus, the solution

{p, q0} is not possible to be optimal. Suppose that these exists a q0, such that

∂ΠC(p, q0)/∂p < 0 for ∀p ∈ [s/(1− t), p]. Then, the optimal price is achieved at the

lower bound p = max{s/(1− t), d−1 (q0/r)}. It does not make sense to set the price

too low that the minimum possible demand is greater than the given quantity. So we

need rd(p) ≥ q0, equivalent to p ≥ d−1 (q0/r). For the case that s/(1−t ≥ d−1 (q0/r)),

the lower bound is p = s/(1 − t). Then, the seller’s revenue after tax is the salvage

value, and hence, the expected profit is (s− c)q0 < 0. So p = s/(1− t) cannot be the

optimal decision. For the other case that d−1 (q0/r) > s/(1 − t), we have the lower

bound p(q0) = d−1 (q0/r) and q0/d(p(q0)) = r.

Substituting z = q/d(p) into (6.16), we have EEB(p, q0) = H(p)(µ− θ(q0/d(p))).
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Differentiating the sum of (6.15) and the above equation with respect to p gives

lim
p→p(q0)

∂[ECS(p, q0) + EEB(p, q0)]

∂p

= lim
p→p(q0)

{[−d(p) + αd′(p)] (µ− θ(q0/d(p)))}

+ lim
p→p(q0)

{
[H(p) + αd(p)] (F (q0/d(p))− 1)

q0/d(p)d
′(p)

d(p)

}
= lim

p→p(q0)

{
−q0/d(p)

d′(p)

d(p)
H(p) + αd′(p)

∫ q0/d(p)

r

rdF (r)− q0

}

= lim
p→p(q0)

−q0/d(p)
d′(p)

d(p)
H(p)− q0 > −∞.

Furthermore, substituting z = q/d(p) into (6.13) and using results in Proposition

1 of Song et al. (2009), we can easily derive that

lim
p→p(q0)

∂ESP (p, q0)

∂p
= ∞.

Then,

lim
p→p(q0)

∂ΠC(p, q0)

∂p
= lim

p→p(q0)

∂ΠSP (p, q) + ΠCS(p, q) + ΠEB(p, q)

∂p
> 0,

which contradicts ∂ΠC(p, q0)/∂p < 0. Thus, there exists at least one p ∈ [s/(1−t), p]

satisfying ∂ΠC(p, q)/∂p = 0 for a given q. As we already prove that the optimal

price does not occur at the boundary points, the optimal price p∗C should satisfy

the first order condition, ∂ΠC(p, q)/∂p|p=p∗C ,q=q∗C
= 0, at the order quantity q = q∗C .

Substituting µ − θ(q/d(p)) = q/d(p) − δ(q/d(p)) from (6.33) into (6.35) and using

(6.34), when the optimal decision {p = p∗MQ, q = q∗C} under the minimum quantity
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regulation is used, we obtain

∂ΠC(p, q)

∂p

∣∣∣∣
p=p∗MQ,q=q∗C

=
1

1− t
d′(p)[q/d(p)− δ(q/d(p))] · α

∫ q/d(p)

r
rdF (r)

q/d(p)− δ(q/d(p))
− d(p)

d′(p)
+

H(p)

d(p)

1−
∫ q/d(p)

r
rdF (r)

q/d(p)− δ(q/d(p))


∣∣∣∣∣∣
p∗MQ,q∗C

.

From (6.12), we have q/d(p)−δ(q/d(p))−
∫ q/d(p)

r
rdF (r) > 0, and hence, the last term

of the above equation is positive. Recall d′(p) < 0. We have ∂ΠC(p, q)/∂p|p=p∗MQ,q=q∗C
<

0. Recalling ∂ΠC(p, q)/∂p|p=p∗C ,q=q∗C
= 0, we conclude p∗C < p∗MQ and z∗MQ =

q∗C/d(p
∗
MQ) > z∗C > z∗D.

3. Under both maximum price and minimum quantity regulations, when both

constraints p ≤ p∗C and q ≥ q∗C are applied, the optimal retail price p∗B and quantity

q∗B are binding at q∗B = q∗C and p∗B = p∗C , because q∗MP < q∗C and p∗MQ > p∗C .

There are several implications about the regularity interventions discussed in

Property 6. First, if the government sets the highest retail price to the socially

optimal price, then the seller would charge the socially optimal price and order less

than the socially optimal quantity. Second, if the government regulates the lowest

quantity as the socially optimal quantity, then the seller would order the socially

optimal quantity and charge a price higher than the socially optimal price. Third,

if the government regulates both the highest price and the lowest quantity, then

the seller uses the socially optimal decisions. However, from Property 2, we know

that the seller’s expected profit is non-positive if the socially optimal price and the

order quantity are used. Hence, the third regulation is not applicable in a real-world

situation. In addition, note that p∗C > c/(1 − t) is not a sufficient condition for the

seller to have a positive expected profit. If the order quantity is required to be high

(i.e., under the minimum quantity regulation) and any leftover is sold at a salvage
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value s < c, then a loss may occur for the seller. Hence, similar to the maximum price

regulation, the minimum quantity regulation is also only applicable when the seller

have a positive expected profit. Otherwise, if the government intends to practice

such regulations that result in a loss, the government has to compensate the seller

for the expected profit loss.

6.5.2 Market intervention mechanisms

Although it is possible for the maximum price and minimum quantity regulations

to coordinate the retail price and the order quantity, respectively, the regulations suf-

fer from several limitations. First, a regulation is not effective for coordination when

the seller’s expected profit is non-positive. Second, an effective regulation, i.e., the

maximum price or minimum quantity regulation, cannot align the seller’s both de-

cisions simultaneously. Third, there is little flexibility for the seller in choosing the

price/quantity decision, under the regulation restricting price/quantity. The inflex-

ibility may eliminate the seller’s incentive to collaborate with the government and

continue the business to sell a public interest good in long term. To address these

problems, in this section, we investigate three market intervention mechanisms, in-

cluding tax cut, consumer rebate, and cost subsidy mechanisms, and their combina-

tions. We characterize the seller’s and consumers’ behaviors under the interventions

and identify the interventions’ effectiveness and efficiency of coordination.

In the sequel, we will first introduce the three market interventions. Then, we

derive expressions for the seller’s expected profit and the government’s expected cost

for a generalized case where all three market interventions are applied. Given the

general expressions, formulas for each special case, where only one or two of the three

market interventions are applied, can be identified easily.
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6.5.2.1 Tax cut

Tax cut is reduction in taxes. It usually serves as an important intervention im-

plemented by the government to leverage price and stimulate sales for a product (see

e.g., Dardan and Stylianou (2000)). Under the tax cut intervention, the government

imposes a lower tax rate T on the product than the original rate t. Note that, to

increase the flexibility of the mechanism, we do not restrict the new tax rate T on a

positive range, and we allow for the tax rate reduced to a negative value. In this case,

the government pays money back instead of charging a tax to the seller to stimulate

the seller to make the socially optimal decisions. The tax cut would increase the

seller’s profit with no raise in the retail price. Hence, the government’s expected rev-

enue is decreased, while the seller’s revenue from selling a unit product is expected

to rise. It gives the seller an incentive to sell more by ordering more quantity and/or

charging a lower price. Under the tax cut mechanism, the seller’s expected profit

function is the same as (6.13) except using the new tax rate T instead of t.

6.5.2.2 Consumer rebate

A consumer rebate is a payment transferred from the government to a consumer

for each unit that the consumer purchases, with the intention of increasing the af-

fordability of the product. The common types of rebates include cash back, vouchers,

and coupons. In this chapter, we assume that cash back is used. Let R denote the

consumer rebate per unit. Let p′ be the retail price the seller charges and p be the

effective price that consumers actually pay for the product after the rebate. Hence,

we have p = p′ − R. With rebates, the product is expected to be affordable to

more consumers. This intervention provides an incentive for the seller to order more

quantity or charge a lower price to satisfy more consumers. For the notational and

computational convenience, we model the seller’s behavior using the effective price
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p, instead of the seller’s price p′, because it is the effective price that determines the

amount of demand. In particular, with rebates, the seller’s revenue per unit sold

is p′ = p + R. Hence, the seller’s expected profit with rebates ESP (p, z, R) can be

obtained by (6.13) by replacing p with p + R for the seller’s revenue per unit sold

given by

ΠR(p, z) = d(p) [(1− t)(p+R)(µ− θ(z))− cz + sδ(z)] . (6.36)

It is interesting to note that the consumer rebate intervention is equivalent to

another intervention, which we call “the seller rebate intervention”. Under the seller

rebate intervention, the rebate R is given to the seller as a cash back for each unit

sold, instead of the consumer. Taking p as the price charged to consumers and p+R

as the seller’s revenue per unit sold, the seller’s expected profit is the same as the

one in (6.36) and the expected government cost also remains unchanged. In this

sense, these two intervention mechanisms, the consumer rebate and the seller rebate,

are equivalent. The seller rebate intervention is also similar to the sales subsidy

intervention considered by Taylor and Yadav (2011), under which the donor pays

the sales subsidy to the retailer.

6.5.2.3 Cost subsidy

The cost subsidy is a payment transferred from the government to the seller for

each unit the seller purchases or produces, with the intention of inducing the seller

to keep more quantity and charge a less retail price. Suppose the cost subsidy is

denoted by S. The cost subsidy given to the seller decreases the effective purchase

or production/ordering cost from c to c − S. Note that, with subsidies, the seller’s

optimization problem is equivalent to the decentralized problem given by (6.13) with

production/ordering cost c− S. Thus, c− S > s is required in practice. Otherwise,
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if c−S ≤ s, the seller would order as much as possible because the seller can always

make a profit by salvaging the leftovers.

Although the three interventions provide different incentives, all of them can be

considered as mechanisms to compensate the seller in different ways. In particular,

S is the compensation paid by the government to the seller for each product ordered,

R is the compensation paid by the government to the seller for each product sold,

and tax difference t− T is the compensation paid by the government for each dollar

earned by the seller.

6.5.2.4 Generalized expressions for intervention mechanisms

Next, we investigate a combination of the three interventions and derive the

expressions for the seller’s expected profit and the government’s expected cost when

the combination is applied.

Suppose that the government executes tax cut, consumer rebate, and cost subsidy

intervention mechanisms at the same time: a new tax rate T is charged to the seller,

a consumer rebate R is applied on each unit sold to consumers, and a cost subsidy S

is applied on each unit ordered to the seller. Then, the seller’s cost per unit ordered

is reduced from c to c − S, and the seller’s revenue per unit sold is increased from

p to p + R, recalling that, p refers to the effective price after the rebate. Hence, by

replacing c with c−S for the seller’s unit cost, replacing p with p+R for the seller’s

unit revenue, and replacing the original tax rate t with the new tax rate T in the

seller’s expected profit function given by (6.13), we obtain the seller’s expected profit

under the combination of the three market interventions as below:

ESP (p, z, T, R, S) = d(p) [(1− T )(p+R)(µ− θ(z))− (c− S)z + sδ(z)] .(6.37)

Meanwhile, the expected revenue of the government is reduced due to the de-
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creased tax revenue, the rebates paid to all customers purchasing the product, and

the subsidies paid to the seller for ordered units. The government’s expected cost,

EGC(p, z, T, R, S), is measured as the difference between the government’s expected

revenues without and with the interventions. Without the interventions, the govern-

ment’s expected revenue, the tax rate times the seller’s expected revenue (see (6.11)),

is given by

tpd(p)(µ− θ(z)). (6.38)

The government pays a subsidy to the seller for each unit the seller orders. The

payment is given by

Szd(p) (6.39)

where q = zd(p) is the seller’s order quantity. The government also pays rebates

to all consumers who purchase the product. The expected payment is R times the

seller’s expected sales (see (6.11)) given by

Rd(p)(µ− θ(z)). (6.40)

Furthermore, the government’s expected tax revenue with the tax rate T is

T (p+R)d(p)(µ− θ(z)). (6.41)

Thus, the government’s expected revenue under the interventions is the expected tax

revenue net the expected costs on subsidies and rebates in (6.41), (6.39), and (6.40),

respectively, given by

T (p+R)d(p)(µ− θ(z))−Rd(p)(µ− θ(z))− Szd(p). (6.42)
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Therefore, using (6.38) and (6.42), the government’s expected cost is given by

EGC(p, z, T, R, S) = tpd(p)(µ− θ(z))

−{T (p+R)d(p)(µ− θ(z))−Rd(p)(µ− θ(z))− Szd(p)}

= d(p)(µ− θ(z))[(t− T )(p+R) + (1− t)R] + Szd(p).

Note that the expressions for the consumers’ expected surplus and the expected

externality benefit given by (6.15) and (6.16) are not affected by interventions. Ta-

ble 6.1 shows expressions for expected values of the seller’s profit, consumers’ sur-

plus, externality benefit and the government cost as ESP (p, z, T,R, S), ECS(p, z),

EEB(p, z) and EGC(p, z, T, R, S), respectively. Here, for instance, ESP (p, z, T,R, S)

represents the seller’s expected profit when the tax rate T , the rebate R and the

subsidy S are applied and the seller’s decisions are {p, z}. Using these generalized

terms in Table 6.1, it is easy to express one term for any intervention by setting

parameters of unapplied interventions as zero, i.e., S = 0 or the original value, i.e.,

T = t. For example, the seller’s expected profit, when only tax cut is applied, is

shown as below:

ESP (p, z, T, 0, 0) = d(p) [(1− T )p(µ− θ(z))− cz + sδ(z)] .

Table 6.1: Generalized expressions of terms under market intervention mechanisms.

Component Expressions
ESP (p, z, T,R, S) d(p) [(1− T )(p+R)(µ− θ(z))− (c− S)z + sδ(z)]

ECS(p, z) H(p) [µ− θ(z)]
EEB(p, z) αd(p)[µ− θ(z)]

EGC(p, z, T,R, S) (t− T )(p+R)d(p)(µ− θ(z)) + (1− t)Rd(p)(µ− θ(z)) + Szd(p)

199



For presentational convenience, we use (T,R, S) to represent an intervention when

the tax rate T , the cost subsidy S, and the consumer rebate R are applied. Specif-

ically, (T, 0, 0), (t, R, 0), and (t, 0, S) present the tax cut, the rebate, and the sub-

sidy interventions, respectively, where t is the original tax rate. Similarly, (T,R, 0),

(T, 0, S), and (t, R, S) represent the joint tax-rebate, the joint tax-subsidy, and the

joint rebate-subsidy mechanisms, respectively.

6.5.3 Coordination performance under market intervention mechanisms

As mentioned earlier in Section 6.5.2, intervention parameters T , R , and S cannot

be chosen arbitrarily. That is, the compensation by the government cannot be set so

unrewarding or rewarding that the seller’s decision is always to order nothing or to

order as much as possible under an intervention. We know that, for the cost subsidy,

c− S > s is required. It is also natural to assume that the seller’s revenue per unit

sold after rebate and tax cut is equal to or greater than the salvage value, so that

(1− T )(p+R) ≥ s holds. The conditions that ensure a meaningful intervention are

summarized in Assumption 4.

Assumption 4. 1. The seller’s cost after cost subsidy is greater than the salvage

value, i.e., c− S > s.

2. The seller’s revenue after rebate and tax cut is greater than the salvage value,

i.e., (1− T )(p+R) > s for p ≤ p.

Property 7 characterizes the seller’s optimal price and the optimal stocking factor

under a combination of interventions, when Assumption 4 is satisfied.

Property 7. Under an intervention mechanism L = (T,R, S), where T , R, and

S satisfy Assumption 4, the optimal retail price p∗L and the stocking factor z∗L that
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maximize the seller’s expected profit satisfy

p+R +
d(p)

d′(p)

∣∣∣∣
p=p∗L

=
1

1− T

[
(c− S) +

(c− S − s)δ(z)

z − δ(z)

]∣∣∣∣
z=z∗L

,

F (z∗L) =
(1− T )(p+R)− (c− S)

(1− T )(p+R)− s

∣∣∣∣
p=p∗L

,

and q∗L = d(p∗L)z
∗
L.

Proof of Property 7: The proof follows the proof of Property 3. For the no-

tational consistence with ΠC(p, z) and ΠD(p, z), which have a single-character sub-

script, denote the seller’s expected profit under the government intervention (T,R, S)

as ΠG(p, z, T,R, S). Obviously ΠG(p, z, T, R, S) = ESP (p, z, T, R, S) given by (6.37).

Taking the first and second derivatives of EG(p, z, T, R, S) with respect to z and

using θ(z) = −(1− F (z)) and δ′(z) = F (z), we obtain

∂ΠG(p, z, T,R, S)

∂z

= [(1− T )(p+R)d(p)] [1− F (z)] + sd(p)F (z)− (c− S)d(p), (6.43)

and

∂2ΠG(p, z, T,R, S)

∂z2
= − [(1− T )(p+R)d(p)] f(z) + sd(p)f(z)

= − [((1− T )(p+R)− s) d(p)] f(z) < 0,

because (1 − T )(p + R) − s > 0 from Assumption 4. Therefore, ΠG(p, z, T,R, S) is

strictly concave in z for a given p and the optimal z satisfies the first order condition

∂ΠG(p, z, T, R, S)/∂z = 0. In addition, taking the first and second derivatives of
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EG(p, z, T, R, S) with respect to p, we have

∂ΠG(p, z, T, R, S)

∂p
= [(1− T )d(p) + (1− T )(p+R)d′(p)] (µ− θ(z))

+(sδ(z)− (c− S)z)d′(p), (6.44)

and

∂2ΠG(p, z, T, R, S)

∂p2
= [(1− T )d(p) + (1− T )(p+R)d′(p)]

′
(µ− θ(z))

+(sδ(z)− (c− S)z)d′′(p). (6.45)

Next, we will prove that ΠG(p, z, T, R, S) is concave in p at any stationary point that

satisfies the first order condition ∂ΠG(p, z, T,R, S)/∂p = 0 for a given z. Suppose

that p0 is a stationary point such that ∂ΠG(p, z, T, R, S)/∂p|p=p0
= 0. Using (6.44),

we obtain the relation as below:

sδ(z)− (c− S)z = − [(1− T )d(p) + (1− T )(p+R)d′(p)] (µ− θ(z))

d′(p)

∣∣∣∣
p=p0

.

Substituting the above equation into (6.45), we have

∂2ΠG(p, z, T, R, S)

∂p2

∣∣∣∣
p=p0

= [(1− T )d(p) + (1− T )(p+R)d′(p)]
′
(µ− θ(z))−

[(1− T )d(p) + (1− T )(p+R)d′(p)] (µ− θ(z))d′′(p)

d′(p)

∣∣∣∣
p=p0

.
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By multiplying with d′(p), the above equation can be written as

d′(p)
∂2ΠG(p, z, T, R, S)

∂p2

∣∣∣∣
p=p0

= (1− T ) [(d(p) + pd′(p))′d′(p)− (d(p) + pd′(p))d′′(p)] (µ− θ(z))|p=p0
.

According to Assumption 2, p+ d(p)/d′(p) is strictly increasing such that

(
d(p) + pd′(p)

d′(p)

)′

> 0.

The inequality is equivalent to (d(p) + pd′(p))′d′(p)− (d(p) + pd′(p))d′′(p) > 0. It is

obvious µ− θ(z) > 0 by (6.12). Then, we have

d′(p)
∂2ΠG(p, z, T, R, S)

∂p2

∣∣∣∣
p=p0

> 0 and
∂2ΠG(p, z, T, R, S)

∂p2

∣∣∣∣
p=p0

< 0.

Hence, ΠG(p, z, T,R, S) is concave at any stationary point p0. Thus, there is a unique

stationary point p0 for a given z which is the optimal price. Dividing both sides of

∂ΠG(p, z, T, R, S)/∂p = 0 given by (6.44) by (1−T )d′(p)(µ− θ(z)) and using (6.12),

we obtain

p+R +
d(p)

d′(p)
− (c− S)z − sδ(z)

(1− T )(µ− θ(z))
= p+R +

d(p)

d′(p)
− (c− S)z − sδ(z)

(1− T )(z − δ(z))
= 0.

Rearranging the above equation and ∂ΠG(p, z, T, R, S)/∂z = 0 given by (6.43),

we observe that the optimal price p∗L and the stocking factor z∗L satisfy

p+R +
d(p)

d′(p)

∣∣∣∣
p=p∗L

=
1

1− T

[
(c− S) +

(c− S − s)δ(z)

z − δ(z)

]∣∣∣∣
z=z∗L

, and
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F (z∗L) =
(1− T )(p+R)− (c− S)

(1− T )(p+R)− s

∣∣∣∣
p=p∗L

.

Using the optimal decisions in Property 7, next, we explore how the government

determines the intervention parameters T , R, and S to coordinate the seller’s de-

cisions. Without considering the stocking factor, Ovchinnikov and Raz (2014) also

discuss the coordination of the price and order quantity. Since the percentage of sat-

isfied demand (i.e., service level) revealed by F (z) is also important for consumers

when they purchase a public interest good, it is necessary to consider the coordination

of stocking factor z in the analysis.

Property 8. Under an intervention mechanism L = (T,R, S), for L ∈ {(T, 0, 0),

(t, R, 0),(t, 0, S),(T,R, 0),(T, 0, S),(t, R, S)}, where T , R, and S satisfy Assumption

4,

• To coordinate the retail price, the corresponding intervention parameters and

the stocking factor z∗L should satisfy

p+R +
d(p)

d′(p)

∣∣∣∣
p=p∗C

=
1

1− T

[
(c− S) +

(c− S − s)δ(z)

z − δ(z)

]∣∣∣∣
z=z∗L

(6.46)

and

F (z∗L) =
(1− T )(p+R)− (c− S)

(1− T )(p+R)− s

∣∣∣∣
p=p∗C

;

• To coordinate the stocking factor, the corresponding intervention parameters

and the retail price p∗L should satisfy

p+R +
d(p)

d′(p)

∣∣∣∣
p=p∗L

=
1

1− T

[
(c− S) +

(c− S − s)δ(z)

z − δ(z)

]∣∣∣∣
z=z∗C

and

F (z∗C) =
(1− T )(p+R)− (c− S)

(1− T )(p+R)− s

∣∣∣∣
p=p∗L

;
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• To coordinate the order quantity, the corresponding intervention parameters,

the retail price p∗L and the stocking factor z∗L should satisfy

p+R +
d(p)

d′(p)

∣∣∣∣
p=p∗L

=
1

1− T

[
(c− S) +

(c− S − s)δ(z)

z − δ(z)

]∣∣∣∣
z=z∗L

,

F (z∗L) =
(1− T )(p+R)− (c− S)

(1− T )(p+R)− s

∣∣∣∣
p=p∗L

, and z∗L =
q∗C

d(p∗L)
; and

• To coordinate the retail price and the stocking factor, the corresponding param-

eters should satisfy

p+R +
d(p)

d′(p)

∣∣∣∣
p=p∗C

=
1

1− T

[
c− S +

(c− S − s)δ(z)

z − δ(z)

]∣∣∣∣
z=z∗C

(6.47)

and

F (z∗C) =
(1− T )(p+R)− (c− S)

(1− T )(p+R)− s

∣∣∣∣
p=p∗C

. (6.48)

Proof of Property 8: When the price is aligned with the socially optimal price

such that p∗L = p∗C , according to Property 7, the optimal stocking factor z∗L and the

corresponding intervention parameters should satisfy

p+R +
d(p)

d′(p)

∣∣∣∣
p=p∗L

=
1

1− T

[
c− S +

(c− S − s)δ(z)

z − δ(z)

]∣∣∣∣
z=z∗C

, and

F (z∗C) =
(1− T )(p+R)− (c− S)

(1− T )(p+R)− s

∣∣∣∣
p=p∗L

.

When the stocking factor is aligned with the socially optimal stocking factor such

that z∗L = z∗C , according to Property 7, the optimal price p∗L and the corresponding
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intervention parameters should satisfy

p+R +
d(p)

d′(p)

∣∣∣∣
p=p∗L

=
1

1− T

[
c− S +

(c− S − s)δ(z)

z − δ(z)

]∣∣∣∣
z=z∗C

, and

F (z∗C) =
(1− T )(p+R)− (c− S)

(1− T )(p+R)− s

∣∣∣∣
p=p∗L

.

When the order quantity is aligned with the socially optimal quantity such that

q∗L = z∗Ld(p
∗
L) = q∗C , according to Property 7, the optimal price p∗L, the optimal

stocking factor z∗L, and the corresponding intervention parameters should satisfy

p+R +
d(p)

d′(p)

∣∣∣∣
p=p∗L

=
1

1− T

[
c+

(c− s)δ(z)

z − δ(z)

]∣∣∣∣
z=z∗L

,

F (z∗L) =
(1− T )(p+R)− c

(1− T )(p+R)− s

∣∣∣∣
p=p∗L

, and

z∗L =
q∗C

d(p∗L)
.

From Property 8, we observe that in order to coordinate one decision (i.e., the

retail price, the stocking factor, or the order quantity), at least one intervention

mechanism has to be implemented. This is because when one decision variable is

fixed to be the centralized one, one additional degree of freedom on variable T , R, or S

has to be added to satisfy the two equations in each part of Property 8. Furthermore,

in order to coordinate both decisions simultaneously, a combination of two market

interventions is required for a similar reason. According to Property 8, the system

coordination can be achieved through properly setting intervention parameters that

make (6.47) and (6.48) hold true.

While applying the tax cut intervention (T, 0, 0) and the subsidy intervention

(t, 0, S), several issues should be considered. First, there does not always exist a tax
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rate T that leads the government to coordinate the price in regards to (T, 0, 0). Note

that the RHS of (6.46) is always positive at S = 0, R = 0, and T < 1. When the LHS

of (6.46) is negative, there does not exist a tax rate T < 1 that satisfies the equation.

In addition, there also does not always exist a cost subsidy S to coordinate the price

under (t, 0, S) for a similar reason. Note that the RHS of (6.46) is positive at R = 0,

S < c−s, and t < 1. When the LHS of (6.46) is negative, there does not exist a cost

subsidy S < c−s that satisfies the equation. Therefore, a single tax cut intervention

and a single cost subsidy intervention are not always effective for coordinating the

price. This observation will be demonstrated by numerical examples in Section 6.6.

To the best of our knowledge, we are the first to develop implementable structures

of joint interventions for a price-setting newsvendor problem with multiplicative de-

mand uncertainty to coordinate the system. The results provide the government

several ways to coordinate the price and quantity decisions for a public interest good

to achieve the optimal expected social welfare. Even when the system coordination

cannot be achieved via a single intervention, the affordability or/and availability of

the public interest product can be improved in comparison to the decentralized deci-

sion in a free market. With these available mechanisms, to fulfill coordination goals

for the public interest good, the government might reasonably combine and tailor

the intervention mechanisms according to its political and economical climate.

6.6 Application on diversified products

The purpose of the this section is to examine coordination performance of the

intervention mechanisms of interest on diversified products. We consider six typical

public interest goods as presented in Table 6.2. The examples of products 1, 2, 3, and

4 are from Ovchinnikov and Raz (2014). Product 5 represents a typical public inter-

est good with relatively low externality compared to the production cost. Product 6
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represents an example for a new launched product, whose demand function is mod-

eled based on the reservation-price model (see the definition of the reservation-price

model in Van Ryzin (2005)). Using this model, the demand function can be predicted

and obtained through a survey from potential consumers on their reservation prices

for the new product, since the historical sales data is not available.

For each product, we simulate 121 scenarios using 11 different values for c and a

(the 11 sample values in each range are taken with equal intervals starting with the

lower bound and ending with the upper bound), respectively. We briefly summarize

observations that apply to all these scenarios without presenting all results to avoid

repetition:

• Among the two regularity interventions, the maximum price regulation

leads to a smaller expected profit for the seller than the minimum quantity

regulation, and which regulation results in a higher expected social welfare is

indeterminant.

• Among the three single market interventions, the rebate mechanism leads

to the least loss of the expected social welfare regardless of the goal in compar-

ison to the tax cut and the subsidy mechanisms.

• Among the three joint market interventions that achieve system coordi-

nation, the joint tax-subsidy mechanism is the most cheapest and the joint

rebate-subsidy is the most expensive for the government.

6.7 Conclusion

This chapter considers a social welfare setting, in which a public interest good

is distributed by a newsvendor-type seller to consumers with stochastic demand de-

pending on retail price. We investigate the joint optimal retail price and order quan-
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Table 6.2: Characteristics of six different public interest products.

Example Cost c a, d(p) = a− p [r, r] α t s
Product 1 Eco-consumable 2 - 4 10− 15 [0.95,1.05] 0.5 0.1 0
Product 2 Energy-star air conditioner 100 - 200 300− 500 [0.5,1.5] 20 0.1 30
Product 3 Vaccine 12.5-17.5 30− 50 [0.95,1.05] 10 0.1 2
Product 4 Emergency power generator 300-500 700− 900 [0.5,1.5] 200 0.1 50
Product 5 Low externality 180− 220 240− 260 [0.5,1.5] 5 0.1 30
Product 6 Reservation-price model 6-7 d(p) = 1− bp [50,150] 0.1 0.1 0

b ∈ [1/11, 1/9]

tity decisions that maximize the expected social welfare, and maximize the seller’s

expected profit without government interventions, respectively. We demonstrate that

the price and quantity decisions made by the seller in decentralized control without

government interventions never reach socially optimal levels. Specifically, the opti-

mal order quantity is lower and the optimal price is higher in decentralized control

(maximizing the seller’s expected profit) than the centralized control (maximizing the

expected social welfare). Motivated by these observations, we investigate interven-

tion mechanisms implemented by the government, including regulative interventions,

market interventions, and combinations of market interventions, to align the seller’s

decisions with the socially optimal ones. Since the socially optimal price can be more

than the seller’s production/ordering cost considering the effect of the tax, the max-

imum price regulation enables the government to coordinate the retail price under

the multiplicative demand function. In addition, we demonstrate that applying one

of the three market interventions, the tax cut, the cost subsidy, and the consumer

rebate mechanisms, can lead to socially optimal level of only one decision, the price,

the stocking factor or the quantity. Applying a combination of two market inter-

ventions can lead to the socially-optimal levels of both price and quantity decisions

simultaneously.

We also compare the effectiveness, the efficiency and the government cost of dif-

ferent mechanisms. In terms of the coordination effectiveness, the rebate mechanism
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is more effective than the subsidy, which is more effective than the tax cut mecha-

nism. The minimum quantity regulation is more effective than the maximum price

regulation. In terms of coordination efficiency, rebate is the best followed by subsidy

and tax cut, which perform similarly. The comparison on efficiency between the two

regulations is inconclusive. More importantly, the government’s cost under the joint

tax-rebate mechanism and the joint tax-subsidy mechanism for the system coordi-

nation is less than using any single market intervention to coordinate the price or

the quantity. Since the joint tax-subsidy leads to a non-positive expected profit for

the seller, the joint tax-rebate is the best option for the government in terms of its

effectiveness, efficiency and the government cost. We provide several ways to coor-

dinate the channel using appropriate incentive schemes for a public interest good by

the government. They provide insights of the role of government involved in public

interest good distribution programs.

In a summary, to the best of our knowledge, this chapter makes the first attempt

in the literature to analyze social welfare in the price-setting newsvendor model for

a public interest good under the multiplicative demand function. We show that the

multiplicative demand function is derived based on consumers’ choices to maximize

their utility, and hence, it can be used to express demand for utility-maximizing

consumers. Then, it can be employed in both the profit maximization problem to

price private goods and in the social welfare maximization problem to price public

interest goods. This observation contrasts with the statement by Ovchinnikov and

Raz (2014), who argue that the welfare analysis fails with the multiplicative demand.

Furthermore, we have shown the empirical and analytical importance of applying the

multiplicative demand in several ways.

As we have mentioned previously, the government’s decision on choosing a suit-

able intervention mechanism is dependent on the demand function. In addition,
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Kling (1989) argues that the estimation of consumers’ surplus is heavily sensitive

to the choice of demand function. Hence, it requires careful investigation on how

the uncertain is modeled in the demand function. The error from misusing demand

function could be significant for the calculation of social welfare and the decision of

interventions. Several ways are optional to decide the form of demand as follows.

Based on the different properties of the two functions, given sales data of prices and

demands, one method is to calculate variance and coefficient of variation of demand

at different prices. As explained in Section 6.5.1, if variance is consistent, the ad-

ditive demand is appropriate; and if the coefficient of variation is consistent, the

multiplicative demand is appropriate. The demand can be also decided based on

another observation that the price elasticity of demand remains invariant to any re-

alization of demand variation under the multiplicative form, according to Driver and

Valletti (2003). The multiplicative demand is appropriate if the property holds true

for the data. Furthermore, Kling (1989) mentions three different ways to choose de-

terministic demand functions based on intuition, goodness-of-fit tests, and the utility

function, respectively. After estimating the deterministic function, we can calculate

both the difference error and the ratio error, and then test the randomness of both:

if the randomness of the first is significant, then the additive function is appropri-

ate; and if the second one is significantly random, then the multiplicative function

is appropriate. Especially, for a new launched product when historical sales data is

not available, the reservation-price model with a multiplicative demand function is

plausible, thus allowing us to express the relationship between prices and demands

through surveying reservation prices of potential consumers.

We believe there are several possible extensions of this topic. For example, this

chapter considers a newsvendor problem when a public interest good is distributed by

a single seller. It will be interesting to consider competitive situations when there are
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multiple sellers selling a product simultaneously. It remains unknown whether these

intervention mechanisms also work for channels where pricing competition among

sellers exists.
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7. CONCLUSION AND FUTURE DIRECTIONS

In this dissertation, we investigate contractual pricing problems for retail distri-

bution under different channel structures. In particular, we consider supplier-buyer

(e.g., manufacturer-retailer) channels under which powerful entities (e.g., mass re-

tailers or government) take the lead in designing contracts. Characterized by such

powerful entities, two classes of contractual problems are studied related to buyer

and government, respectively, in this dissertation.

In the first class of problems, we examine contractual coordination efforts with

an emphasis on buyer-driven contracts. we propose a new buyer-driven contract,

called the generic contract, and examine its performance in different supplier-buyer

channels.

First, we consider a basic single-product setting where a supplier sells a product

to a buyer. We show that the generic contract is a simple, general, effective, and

practical coordination contract that has several advantages relative to the existing

buyer-driven contracts. Next, we generalize the basic single-product setting to the

multi-product bilateral monopolistic setting where a supplier sells multiple products

to a buyer. We show that even in the case of asymmetric two products, the generic

contract coordinates the system under which the optimal contract parameters are

easy to calculate, and the contract is easy to implement. We also study the generic

contract in the exclusive dealer setting in the generalized asymmetric case. In this

setting, the contract allows each buyer to extract the system profit on the product less

the corresponding supplier’s reservation profit, while each supplier can only obtain

the reservation profit.

Applying the generic contract in different channel structures, we demonstrate
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that the contract is amenable to generalization for handling multi-product, multi-

supplier, and multi-buyer settings.

In the second class of problems, we study a newsvendor problem for a private re-

tailer where contractual government interventions are implemented for social welfare

maximization.

We study two new government regulatory mechanisms, and a new market in-

tervention along with two existing market interventions. We examine coordination

performance of these intervention mechanisms and also investigate the impact of

demand uncertainty. Our results demonstrate that the two government regularity

mechanisms are effective in improving the expected social welfare and using a combi-

nation of any two market interventions achieves the optimal expected social welfare.

In particular, using a combination of the new market intervention and one existing

market intervention costs the government less than using the combination of the two

existing market interventions.

We believe that there are several possible extensions related to buyer-driven con-

tracts studied in this dissertation. One interesting area is the contractual perfor-

mance of the generic contract under information asymmetry in the single- and multi-

product settings. The benefit of leadership and coordination performance under the

contract is impacted by incomplete information.

Another extension is to investigate the counterpart supplier-driven contract cor-

responding to the generic contract and to provide a comparative analysis of the

counterpart contracts in the single- and multi-product settings. The concept of

“counterpart contract” has been proposed by Liu and Çetinkaya (2009), who develop

the counterpart buyer-driven contracts corresponding to three general types of

supplier-driven contracts that have been studied by Corbett and Tang (1999): the

one-part linear contract, the two-part linear contract, and the two-part nonlinear
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contract. Another important type of supplier-driven contract is known as the one-

part nonlinear contract. To the best of our knowledge, the counterpart supplier-

and buyer-driven contracts under the one-part nonlinear scheme have never been

investigated in current literature. We aim to fill the gap and investigate the relation-

ship between the generic contract and the buyer-driven contract under the one-part

nonlinear scheme.

Furthermore, according to Corbett and Tang (1999), more sophisticated con-

tracts, e.g., contracts with more contract parameters, potentially offer increased

contract flexibility for negotiation for the channel leader. With the complete re-

sults for the counterpart supplier- and buyer-driven contracts under one-part linear,

one-part nonlinear, two-part linear, and two-part nonlinear schemes, we are inter-

ested in investigating the value of offering more sophisticated contracts under both

leaderships.
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APPENDIX A

REVENUE-SHARING CONTRACT

We derive the optimal contract under b5 considering the supplier’s reservation

profit π−
s ∈ [0,Πc]. Using the definition of b5 given in Section 3.6.1, (3.1), (3.2), and

(3.3), the supplier’s and buyer’s profits are given by

πs = (w − s)q + (1− ϕ)pq = (1− ϕ)(p− s)(a− bp) and

πb = (p− w − c)q − (1− ϕ)pq = (p− ϕs− c)q − (1− ϕ)pq

= ϕ(p− s− c)q − (1− ϕ)cq = ϕ(p− s− c)(a− bp)− (1− ϕ)c(a− bp),

respectively. Then, considering π−
s ∈ [0,Πc], assumption (3.5), and the two above

expressions for πs and πb, the buyer’s optimization problem under b5 can be

stated as

(Pb5) : max
0≤ϕ≤1,p≥s+c

πb = ϕ(p− s− c)(a− bp)− (1− ϕ)c(a− bp) (A.1)

s.t. πs = (1− ϕ)(p− s)(a− bp) ≥ π−
s . (A.2)

Using (A.1), observe that

∂πb

∂p
= ϕ(a− 2bp+ bs) + bc and

∂2πb

∂p2
= −2ϕb ≤ 0.
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Hence, πb is concave in p. Setting ∂πb/∂p = 0 leads to

pb5(ϕ) =
a+ b(s+ c)

2b
+

(1− ϕ)bc

2bϕ
. (A.3)

Also, using (A.1), observe that

∂πb

∂ϕ
= (p− s)(a− bp) > 0.

Hence, πb is increasing in ϕ, ϕ ∈ [0, 1]. Therefore, πb achieves the maximum at the

boundary of ϕ = 1 or πs = π−
s .

• When ϕ = 1, by (A.2), πs = 0 and (A.2) are satisfied only if π−
s = 0. In this

case, the supplier does not make any profit. The case is not practical and can

be discarded.

• If π−
s > 0 then πs = π−

s and ϕ < 1. Using (A.3) in (A.2), we have

πs = (1− ϕ)b

[(
a− bs

2b

)2

−
(

c

2ϕ

)2
]
= π−

s . (A.4)

Next, we consider c = 0 and c > 0, separately.

– If c = 0 then using (A.4),

πs = (1− ϕ)
(a− bs)2

4b
= π−

s ⇒ ϕb5 = 1− π−
s

Πc
,

where Πc = (a− bs)2/4b given in (3.11). Also, (A.3) implies

pb5 =
a+ bs

2b
= pc.
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Since ϕb5 and pb5 are realizable over the regions in (A.1), they characterize

the optimal b5. Then, using the definition of b5, (A.1) and (A.2), we have

Lb5 =
(a+ bs)(a− bs)π−

s

4bΠc
,

wb5 =

(
1− π−

s

Πc

)
s,

πb5
s = π−

s ,

πb5
b = Πc − π−

s , and

Πb5 = Πc,

where superscript for b5 is used in an obvious fashion. Clearly, the optimal

b5 is the coordination contract if c = 0.

– If c > 0 then using (A.3), pb5(ϕ) > pc = a+b(s+c)
2b

is true for all ϕ ∈ [0, 1).

Hence, the contract is not a coordination contract if c > 0.
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