
  

THE EFFECT OF DISRUPTED CIRCADIAN RHYTHM AND ASSOCIATED 

MICRORNA ON BILIARY INJURY AND MALIGNANT TRANSFORMATION 

 

 

A Dissertation 

by 

YUYAN HAN 

 

 

Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 

 

Chair of Committee, Gianfranco Alpini 
Committee Members, Cynthia J. Meininger 
 Shannon Glaser 
 Fanyin Meng 
 John Greene 
Head of Department, Van Wilson 

 

December 2014 

 

Major Subject: Medical Sciences 

 

Copyright 2014 Yuyan Han  



 

 ii 

ABSTRACT 

 Cholangiocarcinoma (CCA) is a devastating tumor characterized by late 

presentation of symptoms with limited treatment options. Disruption of circadian 

rhythm is associated with cancer development and progression. MicroRNAs 

(miRNAs) are a class of small noncoding RNAs that trigger mRNA translation, 

repression or degradation. The aim of the study was to evaluate the role of 

deregulated circadian rhythm and related microRNAs in CCA growth. Human 

intra- and extrahepatic CCA cells and non-malignant (H69) human 

cholangiocytes were serum starved for 48 hours before stimulation with 50% 

serum for 2 hours. The 24-hours rhythmic expression of core clock genes, such 

as Per1/2/3, CLOCK, Bmal1, Cry1/2 and two clock-controlled genes (CCGs) 

WEE1 and DBP, was evaluated in the selected CCA cells and H69 controls by 

real-time PCR. To further evaluate the role of Per1, we overexpressed Per1 by 

transfecting Mz-ChA-1 CCA cells with Per1 or empty vector. In parallel studies, 

we silenced miR-34a expression with anti-miR-34a inhibitor. Then, we 

measured: (i) cell proliferation by MTS assays and PCNA immunoblots; (ii) cell 

cycle; (iii) apoptosis; and (iv) cell migration and. We used luciferase assay to 

demonstrate whether Per1 acts as a direct target of miR-34a. Finally, we 

maintained CCA xenograft nude mice in complete dark or light/dark cycle for up 

to 40 days before evaluating tumor growth. We found the 24-hours rhythmical 

expression of Per1 was abolished in all CCA cell lines. The rhythmic expression 

of Bmal1, CLOCK, Per2/3, Cry1/2, WEE1 and DBP was also lost in some of the 
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CCA cell lines tested. After overexpression of Per1, Mz-ChA-1 showed: (i) 

reduced cell proliferation; (ii) higher G0/G1 arrest and lower G2/M arrest and (iii) 

enhanced apoptosis. miR-34a was rhythmically expressed in CCA cell lines and 

H69. Moreover, the inhibition of miR-34a decreased proliferation, migration and 

invasion in the selected CCA cell lines. Per1 was verified as a target of miR-34a. 

However, prolonged darkness therapy did not inhibit the CCA xenograft growth 

in vivo. Summary and conclusions: Disruption of circadian rhythms contributes to 

the malignant phenotypes of human CCA, and may serve as novel prognostic or 

therapeutic targets for CCA.  
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Liver and intrahepatic biliary tree 

Liver and liver diseases 

The liver is the largest solid organ in the human body. The liver secretes 

bile to help digest fats and stores vitamins (A, D, E and K). The liver is also the 

processing center and the warehouse for carbohydrates, fats, sugars and 

vitamins. It helps the body not only to break down hormones, but also detoxify 

alcohol, drugs and filter waste products from our body. Without the liver, food 

could not be completely digested, nutrients could not be absorbed and toxic 

substances could not be removed from our body. The liver is predominantly 

composed of two kinds of epithelial cells, hepatocytes and cholangiocytes (1). 

Hepatocytes represent about 70% of the total liver mass, whereas 

cholangiocytes account for 3% to 5% of the total liver population. Besides these 

two special epithelia cell types, there is a population called “non-parenchymal 

cells” in the liver, which also play important roles in liver pathophysiology. These 

cells include sinusoidal hepatic endothelial cells, Kupffer cells and hepatic 

stellate cells, etc. 
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Intrahepatic biliary tree 

The intrahepatic biliary epithelium is a three-dimensional (3-D) tubular 

structure that is lined by biliary epithelia (2). The biliary tree begins with many 

small branches that end in the common bile duct (also known as the trunk of the 

biliary tree). The duct, branches of hepatic artery and the portal vein come 

together to form the central axis of the portal triad (2). The biliary epithelium 

originates from the biliary pole of hepatocytes that is responsible for the 

synthesis of canalicular bile. Once produced, the bile is secreted into the lumen 

of the bile canaliculus, and it moves through the liver lobule in a centrifugal 

direction. Cholangiocytes modify bile before reaching the duodenum by a series 

of re-absorptive/secretory events (3), which are modulated by gastrointestinal 

hormones, neuropeptides and bile acids (4, 5).  

 

Morphological, phenotypic and functional heterogeneity of cholangiocytes 

Cholangiocytes are morphologically, phenotypically and functionally 

heterogeneous (6). In rats, the biliary network is subdivided into two portions 

according to size differences: the small (≤ 15 µm in diameter) and large (> 15 

µm in diameter) bile ducts (7). Large cholangiocytes are more susceptible to 

damage (8, 9) and respond to secretin via a cAMP-dependent pathway (10), 

whereas small cholangiocytes are resistant to toxins (8, 9), do not respond to 

secretin and function by activation of IP3/Ca2+/PKC-dependent mechanism (11).  

Secretin, as a gastrointestinal hormone, plays a key role in the event of bile 
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modification and secretion. It stimulates biliary bicarbonate secretion by 

interacting with basolateral G protein coupled secretin receptors, which leads to 

the stimulation of 3’-5’-cyclic adenosine monophosphate (cAMP) and 

phosphorylation of protein kinase A (PKA), opening of the Cl- channel, cystic 

fibrosis transmembrane conductance regulator (CFTR), and subsequent 

activation of the Cl-/HCO3
- anion exchanger 2 (AE2) and bicarbonate secretion 

into bile (12-15).   

 

Cholangiopathies 

Cholangiocytes are the targets of a number of biliary diseases referred as 

cholangiopathies. Cholangiopathies are characterized by a cholangiocyte-

targeted inflammation that leads to bile duct injury/loss coupled with 

compensatory biliary proliferation in the early stage of liver disease.  These 

biliary diseases include primary biliary cirrhosis (PBC) and primary sclerosing 

cholangitis (PSC) (1). Chronic biliary injury (due to multiple factors) can induce 

ductopenia, biliary fibrosis and eventually transform into cholangiocarcinoma. 

 

Cholangiocarcinoma (CCA) 

Definition and classification 

Cholangiocarcinoma (CCA, also known as bile duct cancer) is a 

malignant growth composed of mutated epithelial cells that originate from the 

biliary epithelium. CCA can be divided into two subtypes based on anatomic 
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location: intrahepatic CCA and extrahepatic CCA. The extrahepatic CCA can be 

further divided into perihilar CCAs (also known as Klatskin tumors) and distal 

CCAs, which are divided by the cystic duct. Recently, several studies have 

shown that CCA may originate from multiple cell types, including hepatocytes, 

hepatoblasts and hepatic progenitor cells (16, 17).    

 

Cholangiocarcinoma epidemiology 

CCA represents the second most common primary liver cancer (18). The 

overall incidence and mortality rate of intrahepatic CCA appears to have 

increased worldwide (19). The 5-year survival rate is less than 5%. About 2000 

to 3000 people in United States develop CCA each year. Men have a slightly 

high incidence and mortality of CCA than women. CCA mostly occurs after age 

40, except in patients with PSC (20). 

 

Risk factors and diagnosis of CCA  

The live flukes Opisthorchis viverrini and Clonorchis sinensis can cause 

chronic inflammation in liver and are treated as carcinogens in Southeast Asia. 

The infection of these liver flukes has been found to be associated with the 

development of CCA (21, 22). Hepatolithiasis (also known as bile duct stones), 

which are similar but smaller than gallstones, can also cause inflammation that 

increases the risk of CCA (21). PSC is the most common pre-existing condition 

for CCA in western countries. A number of potential risk factors for CCA have 
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been found in patients with PSC including smoking and alcohol (21). 

Choledochal cysts are bile-filled sacs that connect with the bile duct. The cells 

lining the sac are susceptible to carcinogenic changes, which increase the risk of 

CCA (23). Recently, Hepatitis B and Hepatitis C virus infection and cirrhosis 

have been found related to CCA (24, 25).  

Besides liver and biliary diseases that can increase the risk of CCA, other 

risk factors have also been found to be correlated with CCA, including 

inflammatory bowel disease, aging, alcohol, smoking, fatty liver disease (26), 

and diabetes. In addition, genetic polymorphisms have also been found 

associated with CCA (26-28).  

The symptoms of CCA may be non-specific, making it sometimes difficult 

for early diagnosis. The symptoms may differ depending on the type of CCA. 

Extrahepatic CCA symptoms include jaundice, itching, light-colored stools, dark 

urine, abdominal pain and fever; whereas the intrahepatic CCA is indolent (29). 

Ultrasound, triple-phase helical computerized tomography are usually used to 

assess the dilatation of bile duct and possible invasiveness. Magnetic resonance 

cholangiopancreatography combined with endoscopic retrograde 

cholangiopancreatography (ERCP) and percutaneous transhepatic 

cholangiopancreatography (PTC) can provide good sensitivity and specificity in 

the diagnosis of CCA. Currently, there is no 100% effective biomarker for the 

early diagnosis of CCA. Carbohydrate antigen 19-9 (CA19-9) only detects 62% 

of intrahepatic CCA and even less in perihilar CCA (30).  
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Treatment for CCA and survival rate 

As discussed above, due to the difficulty of discovery and diagnosis of 

CCA, the treatment options for CCA are limited (30). The surgical resection of 

the tumor is the only effective option for CCA and might increase the long-term 

survival in some patients (31). However, only the patients who have potentially 

resectable tumors should undergo surgery. The five-year survival rates vary 

from 20% to 40% after the surgical resection and poor outcomes are predicted 

(31, 32). Gemcitabine and cisplatin are standard practice of care for advanced-

stage CCA (33). Besides chemotherapy, radiotherapy is also used for patients 

with non-resectable CCA (34). 

 

Neuroendocrine regulation of CCA growth 

Several studies have shown that cholangiocytes synthesize, secrete and 

respond to neuroendocrine hormones in the course of cholestasis and 

malignancy transformation (3, 35). For example, serotonin and dopamine 

secretion is increased in the bile of CCA patients (36). The release of serotonin 

and dopamine in CCA has been shown to promote the proliferation of CCA, 

whereas inhibition of serotonin and dopamine inhibits the tumor growth in nude 

mice (36). Histamine is a biogenic amine that is synthesized by the enzyme, 

histidine decarboxylase (HDC).  Histamine interacts with four G-protein coupled 

receptors (H1-H4) (37). Previous studies have shown that activation of H3 or H4 

receptor inhibits CCA growth by activation of PKCα signaling (37, 38). 
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Furthermore, silencing of HDC has been shown to inhibit CCA growth both in 

vivo and in vitro (39). Histamine release by autocrine or paracrine pathways 

promotes CCA growth. Melatonin, which is synthesized in pineal gland and 

peripheral organs, also regulates CCA growth. Melatonin secretion is impaired in 

CCA patients. Administration of melatonin inhibits CCA growth in vivo. In 

addition, treatment with endothelin (40), caffeic acid phenethyl ester (41), 

endocannabinoid anandamide (42), gamma-aminobutyric acid (43), and gastrin 

(44) inhibits CCA growth, whereas leptin (45) and estrogen (46) have been 

shown to stimulate CCA growth. 

 

Circadian rhythm and cancer development 

Circadian rhythms in pathophysiology 

Circadian rhythm is a biological process that displays an oscillation of 

about 24 hours. This circadian clock system is conserved in all organisms and is 

present not only in the central nervous system but also in peripheral tissues.  

The circadian clock system signals cells to ensure the optimal timing for 

physiological activities, which can be synchronized by external signals and 

persist without these signals.  In mammals, the circadian rhythm controls a 

number of physiologic processes and behavioral patterns, such as the 

feeding/wake cycle, body temperature rhythms, endocrine rhythms and nutrient 

update and metabolism (47). The external synchronizing factors include light, 

hormones, metabolic signals, among which light is the most powerful circadian 
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signal. Light signals are captured by the retina and transmitted by the 

retinohypothalamic tract to the suprachiasmatic nucleus (SCN) (48, 49). The 

SCN, located in the anterior hypothalamus, acts as a master “pacemaker” 

generating neural and hormonal signals for peripheral clocks through the body 

(50). Disruption of the circadian rhythm can increase the risk of developing 

various disorders and diseases including cancer, which is supported by 

epidemiologic studies on breast, prostate and colorectal cancers (51-53). 

 

Molecular regulation of circadian rhythms 

The molecular basis of circadian rhythm is based on a set of clock genes, 

which include CLOCK (circadian locomotor output cycles kaput), Bmal1 (brain 

and muscle-Arntlike1), Per1/2/3 (Period 1, 2, and 3), and Cry1/2 (cryptochrome 

1-2) (54, 55). Bmal1 and CLOCK, as transcription factors, form a transcription 

heterodimer complex and bind to the E-box of the promoter region of Period 

family and Cry family genes, as well as a group of genes called CCGs (clock-

controlled genes) (56). The protein products of Per and Cry genes can also 

negatively regulate the transcription of Bmal1 and CLOCK by forming 

heterodimers and translocating into the nucleus (54). Other than these core 

clock genes, there are also other genes and microRNAs involved in the 

modulation and fine-tuning of the feedback-loop of circadian rhythm to maintain 

the 24-hours rhythm (57, 58).  
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Circadian rhythms in the liver  

The liver, as the organ responsible for energy homeostasis, has been 

found directly linked to circadian rhythms via various signaling pathways. 

Feeding cycles can entrain the liver independently of the SCN and the light 

cycle, which represents one of the most critical peripheral circadian oscillators. 

Kornmann et al has generated conditional transgenic mice in which Bmal1 

transcription is absent only in the liver when the doxycycline-deficient food is 

supplied. Microarray analysis indicates that about 350 rhythmic genes are 

abolished in the liver with the absence of doxycycline from the food, suggesting 

that the liver clock is an important addition to the central clock (59). It is also 

worthy noting that there are still 31 genes showing a circadian rhythm of 

expression, indicating the central circadian system could still control part of the 

liver clock when the local clock is abolished in the liver. Besides this, many 

hormones related to metabolism, such as glucagon (60), adiponectin (61), 

insulin (62), leptin (63), corticosterone (64) and ghrelin (65), have been shown to 

display rhythmical oscillations. In addition, the expression or the activity of 

metabolic enzymes is also under the control of the circadian clock (66). On the 

other side, nutrients such as glucose, amino acids, sodium, and ethanol as well 

as energy levels such as NAD(P)+/NAD(P)H redox can induce or reset the 

circadian rhythms by modulation of clock gene expression (66).  

Loss of circadian rhythmicity of glucose metabolism may lead to 

metabolic disorders, such as type 2 diabetes. More importantly, by knocking out 
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core clock genes or inducing point mutation of clock genes, several metabolic 

disorders were shown in animals (66). For example, clock 
Δ
19 homozygous 

animals have attenuated diurnal feeding rhythm, obesity, hyperlipidemia, hepatic 

steatosis and hyperglycemia (67). Similarly, gluconeogenesis is abolished in 

Bmal1 -/- mice. Liver-specific knockout of Bmal1 resulted in loss of rhythmic 

expression of hepatic glucose regulatory genes (67). Likewise, the 

glucocorticoid-induced diurnal feeding rhythm is abolished in Per2 -/- mice. The 

Per2 -/- mice developed obesity more easily with a high-fat diet as compared with 

wild type mice (68).  

 

Circadian rhythms and tumorigenesis 

As mentioned previously, the circadian clock regulates a group of genes 

called circadian controlled genes (CCGs). These CCGs are related to different 

biological functions. Therefore, it is not surprising to find that disrupted circadian 

rhythms were correlated with cancer development (55). Especially, modern 

lifestyles result in people being exposed to light longer than before and include 

more night shifts in their work. Epidemiological studies have indicated the 

correlation of circadian rhythm with breast cancer incidence (69). There is 

increasing evidence that the dysregulation of clock genes is related to 

tumorigenesis. For example, decreased expression of Per1 and Per2 was found 

in sporadic and familiar breast cancer (70). Methylation of the promoter region of 

Per1 and Cry1 increased the survival of breast cancer cells (71). Decreased 
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expression of Per1 was found to be involved in prostate tumorigenesis by 

inhibiting the transcription activity of the androgen receptor (72). Circadian 

disruption also facilitates liver carcinogenesis in mice exposed to 

diethylnitrosamine (DEN) (73).  

Epigenetic silencing of Bmal1 in CpG islands causes the loss of circadian 

rhythmicity and eventually leads to polymphocytic leukemia (74). Suppression of 

Bmal1 expression increases the metastatic ability of human lung, glioma and 

prostate cancer. Bmal1regulates the PI3K-MMP2 pathway and cell cycle arrest, 

which is critical for tumor proliferation and invasion (75). Tissue-specific 

silencing of Bmal1 could cause insulin resistance (76), reactive oxygen species 

accumulation, genomic instability, senescence and increased proliferation in 

epidermal cells (77). Studies have shown that single nuclear polymorphisms in 

the human clock gene are correlated with increased susceptibility to breast, 

lung, skin, pancreatic, ovarian, colorectal, lymphoma, chronic lymphocyte 

leukemia and prostate cancers (75). 

All tissues and stromal cells have a circadian rhythm-controlled cell cycle, 

but metastatic cancer cells display arrhythmic or ultradian rhythms of the cell 

cycle (75). The circadian clock regulates cell proliferation and cancer cell growth 

by modulating the cell cycle, DNA damage/repair, cellular senescence, 

metabolic homeostasis and the inflammatory response (75). For example, p53, 

p21, c-Myc, Mdm2, β-catenin, Cyclin D1, and Wee1 are directly under the 

control of the circadian clock (78). The activity of β-catenin is regulated directly 
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by the activation of the Wnt signaling pathway via CKIε. The genes that activate 

β-catenin include c-Myc, Cyclin D1 and AP1 family members (78). On the other 

hand, the aberrant expression of β-catenin modulates clock genes by promoting 

Per2 degradation (79).  

 

Chronotherapy of cancer 

Chronotherapy (also known as treatment scheduling) refers to the use of 

rhythmic cycles in the application of clinic therapy. The idea of chronotherapy, 

which aims to maximize the efficiency of anticancer treatment by evaluating the 

biological clocks, was conceived a long time ago. However, it has not been put 

into reality until recently after more evidence was generated in this area. 

Recently, the development of programmable time pumps has given hope to the 

combination chronotherapy protocols that involve multiple anticancer drugs 

given in a safe and highly effective delivery method. Indeed, a recent meta-

analysis has shown that chronotherapy with leucovorin, 5-flurouracil and 

oxaliplatin has improved the tumor response rate and survival, when compared 

to conventional chemotherapy delivery in men with colorectal cancer (80). 

Likewise, chronotherapy protocols with radiation therapy could also improve the 

therapeutic index. It was found that morning radiation caused more hair loss as 

compared with evening radiation in mice with a normal dark/light cycle (81). 

Better anti-tumor efficacy occurred when giving the radiation therapy in the 

activity phase rather then the rest phase compared with the normal dark/light 
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cycle (82). Moreover, personalized medication has also shed light on the effects 

of circadian phase differences in patients (83). The determination of an 

individual’s circadian phase could be achieved by computed acrophase (the time 

at which the peak of a rhythm occurs) of physical activity, which varies by up to 

10 hours among different patients. The monitoring of circadian phase could 

enable the personalization of chrono-modulated chemotherapy and radiotherapy 

schedules and optimize the treatment effects (83). However, chronotherapy still 

has a long way to go before it reaches clinical application. More studies are 

needed to understand the basic mechanisms underlying the pathophysiology of 

circadian rhythm and to develop a novel therapy to combine circadian rhythm 

with different medications to maximize the anti-tumor effect and minimize the 

toxicity of the medicine. 

 

microRNA and cancer biology 

microRNA general background 

The microRNAs (miRNAs) are a family of 21-25 nucleotide small non-

coding RNAs that can bind to mRNAs to regulate gene expression in a 

sequence-specific manner. The first miRNA, lin-4, was first identified in C. 

elegans in 1993 (84). It did not catch the attention of researchers until the 

second miRNA, let-7 (85), was discovered, also in worms, seven years later.  

The discovery of these two miRNAs provided a completely novel mechanism of 

gene regulation, also called “post-translational regulation.” The latest version of 
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the miRNA database, June 2014, has 28645 entries of miRNA records. Over 

50% of miRNAs are clustered and act redundantly. More than 40% of miRNAs 

are located in the intronic regions, while ~10% are located in the exonic regions 

(86).   They exert their function by base pairing to partially or completely 

complementary sites of the target genes and inhibiting their translation. These 

miRNAs are well conserved between different species. About 55% of C. elegans 

miRNAs have homologues in humans. The miRNAs in mammals have multiple 

isoforms (also known as paralogues) (86).   

 

Biogenesis and the target prediction of the miRNAs 

The biogenesis of miRNAs initiates from the nucleus and ends in the 

cytoplasm. They are first transcribed as primary capped and poly-A precursors 

of miRNA (also known as pre-miRNAs) by RNA polymerase. Then pri-miRNAs 

form “stem-loop” secondary structures and are cropped by the Drosha/DGCR8 

heterodimer enzyme to form the hairpin pre-miRNAs, which are 60-100 

nucleotides in length. The pre-miRNAs are then exported into the cytoplasm by 

Exportin-5 and its partner Ran-GTP. Dicer, an RNase III, then takes the pre-

miRNAs and further cleaves them into approximately 22 nucleotide double 

stranded miRNAs in the nucleus. The miRNA duplex is then recognized by 

Argonaute (Ago) and forms the RNA-induced silencing complex (RISC), where 

one strand becomes mature miRNA and the other strand is degraded. The 

miRNAs then guide Ago to recruit mRNAs by interacting with the target in an 
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uncomplementary manner. Since miRNAs exert their function through targeting 

genes, it is important to identify the targets of miRNAs for understanding the 

specific function of miRNAs. Different computational algorithms have been 

developed to aid in identifying the potential targets of miRNAs, which are based 

on conservation criteria (miRanda, PicTar, TargetScan, DIANA-microT) and free 

energy of binding or secondary structure of 3’ UTRs that promote or prevent the 

RNA bindings (PITA and rna22) (86). However, experimental verification, such 

as with luciferase reporter assays, is still necessary to confirm the targets of 

miRNAs. 

 

microRNA in cancer development 

While miRNAs play important roles in normal conditions, their 

dysregulation is found in various diseases, including cancer. A database called 

miR2Disease summarizes published relationships between miRNA 

abnormalities and human disease. The research into miRNAs in cancer 

development started from a finding that miR-15a/16-1 was frequently deleted in 

chronic lymphocytic leukemia in 2002 (87). From then on, a robust series of 

studies has been generated aiming to define the roles of miRNAs in 

tumorigenesis. Several new concepts were raised during the research on roles 

of miRNAs in oncology.  

The first concept involved oncomiRs and tumor-suppressor miRs. These 

miRNAs are increased or decreased in pathological conditions, allowing them to 
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act as oncogenes or tumor-suppressors. For example, miR-21 is considered to 

be an oncogene in HCC, due to its overexpression in HCC (88). On the contrary, 

let-7 (89) and miR-26a (90) inhibit tumor progression in vivo when systemically 

administered. Therefore, they are treated as tumor suppressors. Some miRNAs 

might play a dual role in different cancer types. For example, miR-17-92 cluster 

acts as an oncomiR in lung, colon, pancreas, and prostate cancers, targeting the 

3’UTR of E2F transcription factors to inhibit their translation (91). On the other 

hand, miR-17-92 cluster also acts as a tumor suppressor in retinoblastoma, 

breast cancer, HCC and nasopharyngeal carcinoma. Loss of heterozygosity and 

deletion of the miR-17-92 cluster was observed in these tumors. Finally, miR-17-

92 was found to downregulate AIB1 (also known as RAC3, TRAM1 and SRC-3), 

a proto-oncogenic transcription activator (92). 

Another concept is the “miRNome,” which is based on the fact that 

significant changes in miRNA expression in malignant cancer cells compared to 

their normal controls represents a specific signature in different stages of tumors 

and different clinical parameters of tumors (93). The miRNA expression profiling 

in human tumors has defined some signatures that help with diagnosis, staging, 

progression, prognosis and response to treatment.  
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Recent findings of microRNAs in cholangiocarcinoma and circadian 

rhythms 

Several studies have proven the direct link between miRNAs and core 

clock genes. For example, two brain-specific miRNAs, miR-219 and miR-132, 

are under the control of the CLOCK and Bmal1 heterodimer and show robust 

circadian rhythm expression (57), whereas silencing miR-219 could regulate the 

circadian period. Interestingly, miR-132 can be induced by light signals via a 

MAPK-CREB signaling pathway (57). Specifically in mouse liver, a circadian 

pattern of miR-122 precursor expression was shown. While transcription of miR-

122 was found regulated by REV-ERBα, miR-122 can also target the CCGs, 

SMARCD1/BAF60a, which specifically regulate hepatic lipid metabolizing genes 

(94). 

A number of miRNAs have been found to be dysregulated in CCA cells, 

and their targets were related to cell growth and apoptosis. Several studies have 

shown that miRNAs act as oncomiRs, such as miR-421 (95), miR-21 (88, 96), 

miR-31 (97) (98), and miR-26 (99), and can regulate cell proliferation via various 

mechanisms (100). For example, miR-21 was found to target arsenic resistance 

protein 2 and programmed cell death 4 (PDCD4) and was upregulated in human 

CCA (101). In contrast, there are a group of miRNAs that act as tumor 

suppressor miRNAs, such as miR-141 (102-104), miR-138 (105-107), miR-148a 

(108, 109), miR-152 (110) and miR-370 (100). These miRNAs are 

downregulated and play an inhibitory role in cell proliferation. Likewise, some 
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microRNAs contribute to regulation of cell apoptosis and affect drug resistance. 

For example, miR-320 and miR-204 can regulate Mcl-1 and Bcl-2 expression, 

respectively, and promote chemotherapeutic-induced apoptosis (111). In 

addition, because CCAs are frequently developed after a series of pathological 

alterations from chronic biliary tract inflammation, it is not surprising to see that 

some miRNAs that are related to inflammation can also play a role during the 

tumorigenesis of CCA. IL-6 was known to contribute to the uncontrolled 

proliferation and survival of biliary malignancy through regulating the expression 

of miR-148a and miR-152 (112). Since a large number of miRNAs, that could 

target multiple genes and modulate related signal pathways, may be involved in 

biliary malignancy transformation, it is essential to understand which miRNAs 

and how these miRNAs contribute to the pathogenesis of CCA for the 

development of potential prognostic and therapeutic applications. 

 

The Problem 

Therefore, evaluating the functional role of miR-34a and its target genes 

such as Per1 in CCA could provide new insight into interventions for CCA as 

well as the molecular mechanisms of the disease. The overall goal of this 

dissertation research was to study the role of circadian rhythms, theirrelated 

miRNAs and the effect of their regulatory pathways on biliary cancer using both 

in vivo animal and in vitro cell culture models. These studies provide new 

evidence of the critical role of core clock genes and their target relationship to 
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specific miRNA. Modulation of these factors might provide novel prognostic and 

therapeutic options for clinical application. 
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CHAPTER II  

MATERIALS AND METHODS 

Materials 

Reagents were purchased from Sigma-Aldrich (St. Louis, MO) unless 

otherwise indicated. The antibodies were purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA), unless differently indicated. The miR-34a 

inhibitors and negative controls were purchased from Ambion Inc. (Austin, 

Texas). The pCMV6-Per1 and controls were purchased from OriGene 

(Rockville, MD).  

 

Methods 

Cell lines 

Six human CCA cell lines (Mz-ChA-1, TFK-1, HuH-28, CCLP, HuCC-T1 

and SG-231) of different biliary origin were utilized in our study. Mz-ChA-1 cells 

(from human gallbladder) were a gift from Dr. G. Fitz (University of Texas 

Southwestern Medical Center, Dallas, TX) (113); HuH-28 cells (from human 

intrahepatic bile ducts) (114) and TFK-1 cells (from human extrahepatic bile 

ducts) (115) were obtained from Cancer Cell Repository, Tohoku University, 

Japan. These cells were maintained at the conditions previous described (44). 

CCLP (116), HuCC-T1(117), and SG231(118) (from intrahepatic bile ducts) were 

a gift from Dr. A.J. Demetris (University of Pittsburgh, PA) and cultured as 

described (116-118). The human immortalized, nonmalignant cholangiocyte cell 
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line, H69, (from Dr. G.J. Gores, Mayo Clinic, MN) was cultured as described 

(119). 

 

Expression of clock genes in nonmalignant and CCA cell lines and human 

biopsies 

The expression and localization of the core clock genes, Bmal1, CLOCK, 

Per1/2/3 and Cry1/2, was evaluated by immunofluorescence and real-time PCR 

in the selected CCA lines. For immunofluorescence, cells were seeded onto 

coverslips and allowed to adhere overnight. Following washing with cold 1x 

phosphate buffered saline (PBS), the cells on the coverslips were fixed with 4% 

paraformaldehyde (in 1x PBS) at room temperature for 5 minutes. Cells were 

permeabilized in PBS containing 0.2% Triton-X100 (PBST), and blocked in 4% 

goat serum (in PBST) for 1 hour at room temperature. Appropriate dilutions (in 

1% goat serum in PBST) of MT1 or MT2 antibodies were added to the coverslips 

and incubated overnight at 4°C. Cells were washed three times for ten minutes 

in PBST and a 1:100 dilution (in 1% goat serum in PBST) of a cy3-conjugated 

secondary antibody (Jackson ImmunoResearch Laboratories, Inc., West Grove, 

PA) was added for 2 hours at room temperature. Cells were washed three times 

for ten minutes in PBST and mounted on microscope slides with Prolong Gold 

Antifade containing 4,6-diamidino-2-phenylindole (DAPI) as a counterstain 

(Invitrogen, Carlsbad, CA). Images were taken on an Olympus FluoView 500 

laser scan microscope with a DP70 digital camera (Tokyo, Japan). 
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The expressions of the core clock genes, Bmal1, CLOCK, Per1/2/3, 

Cry1/2, were evaluated by real-time PCR (120) in H69 and CCA cell lines. RNA 

was extracted from the selected cell lines using the RNeasy Mini kit (Qiagen, 

Valencia, CA) and reverse transcribed using the Reaction ReadyTM First Strand 

cDNA Synthesis Kit (SABiosciences, Frederick, MD). These reactions were used 

as templates for the PCR assays using SYBR Green PCR Master Mix 

(SABiosciences) in the real-time thermal cycler (ABI Prism 7900HT sequence 

detection system) using commercially available primers (SABiosciences) 

designed against human Bmal1 (NM_001178), Per1 (NM_033419), Per2 

(NM_022817), Per3 (NM_016831), Cry1 (NM_004075), Cry2 (NM_021117), and 

CLOCK (NM_004898) and glyceraldeshyde-3- phosphate dehydrogenase 

(GAPDH, housekeeping gene) (NM_002046) genes. A ΔΔCT (delta delta of the 

threshold cycle) analysis was performed using H69 as the control sample. Data 

are expressed as relative mRNA levels ± standard error of the mean (SEM) 

(n=4).  The primer list is provided in Table 1. 

We also assessed the expression levels of core clock genes in 

commercially available Accumax tissue arrays (ISU ABXIS Co., Seoul, Korea) 

by immunohistochemistry. These tissue arrays contain 48 well-characterized 

human CCA biopsy samples from different tumor differentiation grades as well 

as 4 non-malignant liver biopsy samples. Light microscopy and 

immunohistochemistry observations were taken with a BX-40 light microscope 

(Olympus, Tokyo, Japan) with a video-cam (Spot Insight, Diagnostic Instrument, 
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Inc.). Antibodies against Per1 (SC-25362), CLOCK (SC-25361), Bmal1 (SC-

48790) and Cry 1 (SC-33177) were utilized for evaluating the expression of 

these genes in human biopsies. Semi-quantitative analysis was performed. 

Staining intensity was assessed (in a blinded fashion) using a scale from 1-4 (1 

= no staining, 4 = intense staining) and the abundance of positively stained cells 

was given a score from 1 to 5 (1= no cells stained, 5 = 100% stained). The 

staining index was given by the staining intensity multiplied by the staining 

abundance, which gives a range from 1 to 20. 

 

Circadian expression of core clock genes and CCGs in CCA cells and H69 

As previously mentioned, even single cells showed circadian expression 

of clock genes (121). Thus, we demonstrated that nonmalignant and CCA cell 

lines display different profiles of core clock genes and CCGs rhythmic 

expression during a 24-hours period. We employed an established in vitro 

synchronization method, as previously described, to detect the 24-hours 

circadian rhythm in CCA cell lines and cholangiocytes H69 (121). In brief, cells 

were deprived of serum for 48 hours, and then transferred to a medium 

containing 50% serum for 2 hours, and then returned to serum-free medium. 

Cells were harvested every four hours after serum stimulation and evaluated for 

core clock gene expression (Per1/2/3, Bmal1, Cry1/2), miR-34a and CCG 

(WEE1, DBP) mRNA expression by real-time PCR as we described previously. 

The RNA level before serum shock (time 0) of H69 is denoted as 1.  
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Table 1  List of primers that used in this study 
 

Catalog	
  
Number	
   Gene	
  Symbol	
   Refseq	
  Accession	
  #	
   Description	
  

PPH06229F	
   ARNTL/Bmal1	
   NM_001178	
  
Aryl	
  hydrocarbon	
  
receptor	
  nuclear	
  
translocator-­‐like	
  

PPH06231B	
   CRY1	
   NM_004075	
   Cryptochrome	
  1	
  
(photolyase-­‐like)	
  

PPH06235A	
   CRY2	
   NM_021117	
   Cryptochrome	
  1	
  
(photolyase-­‐like)	
  

PPH02075A	
   PER1	
   NM_002616	
   Period	
  homolog	
  1	
  
(Drosophila)	
  

PPH06234E	
   PER2	
   NM_022817	
   Period	
  homolog	
  2	
  
(Drosophila)	
  

PPH19810B	
   PER3	
   NM_016831	
   Period	
  homolog	
  3	
  
(Drosophila)	
  

PPH06233A	
   CLOCK	
   NM_004898	
  
Circadian	
  
Locomotor	
  Output	
  
Cycles	
  Kaput	
  

PPH00445A	
   WEE1	
   NM_003390	
   WEE1	
  homolog	
  (S.	
  
pombe)	
  

PPH19697A	
   DBP	
   NM_001352	
  

D	
  site	
  of	
  albumin	
  
promoter	
  (albumin	
  
D-­‐box)	
  binding	
  
protein	
  

PPH00216B	
   PCNA	
   NM_182649	
   Proliferating	
  cell	
  
nuclear	
  antigen	
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Restoration of Period 1 expression in Mz-ChA-1 cells 

To demonstrate that the restoration of Per1 expression decreases the 

malignancy of Mz-ChA-1 cells, the 3873-bp of the complete Per1 cDNA-

containing C-terminal MYC/DDK tag was cloned into the pCMV-XL expression 

vector. The predicted expression protein was 136 kDa. The transfection and the 

selection of clones were performed as previously described (122). The plasmid 

(1 µg) was transfected by a nucleofector technology (Lonza, Basel, Switzerland) 

into Mz-ChA-1 cells, according to the manufacturer’s instructions. Mz-ChA-1 

cells (1x106 cells per reaction) were resuspended in 100 µl of NucleofectorTM 

solution (Lonza). Per1 plasmid cDNA (1 µg) was mixed with 100 µl of cell 

suspension and transferred into a cuvette. The cuvette was inserted into the 

NucleofectorTM device (Lonza), and the cells were pulsed according to program 

U-017. After pulsing, the cells were rinsed with pre-warmed complete medium 

and transferred into a 6-well plate. Culture medium was replaced 24 hours after 

the transfection. Stable overexpressing Per1 cells were selected based on 

neomycin resistance. The overexpression of Per1 in Mz-ChA-1 cells was verified 

by real-time PCR. The cell invasion was evaluated using a cell invasion assay kit 

(Chemicon international, Temecula, CA).   

 

 

 



 

 26 

Evaluation of proliferation, apoptosis, invasion and cell cycle in Mz-ChA-1 

cells overexpressing Per1 

To evaluate the malignancy features of Mz-ChA-1 cells, we examined the 

alteration of proliferation, apoptosis and cell cycles in control vector and Per1 

cDNA stably transfected cell lines. We detected the proliferation rate by MTS 

assays, and the expression of PCNA by real-time PCR and western blotting. We 

evaluated apoptosis and cell cycle using an Annexin V-PE Apoptosis Detection 

Kit (BD Biosciences, MountainView, CA) (123) and BD CycletestTM Plus DNA 

Reagent Kit (BD Bioscience), respectively (124). Briefly, cells used for detecting 

apoptosis were cultured at 37°C in a CO2 incubator until cells reached 80% 

confluence. Then, cells were serum starved for 24 hours. Cells were then 

harvested and washed with cold 1x PBS twice. Cells were counted and diluted 

to 1×106cells/ml. A cell suspension solution (100 µl) was taken and divided into 

four polystyrene round-bottom test tubes: (1) unstained control, (2) FITC 

Annexin V only, (3) PI only and (4) FITC Annexin V + PI. FITC Annexin V and PI 

(5 µl) were added to the appropriate tubes. The cells were gently vortexed and 

incubated for 15 minutes at room temperature in the dark. The 1× binding buffer 

(400 µl) was added to each tube and the tubes were gently vortexed. Cells were 

analyzed in a BD Accuri TM C6 flow cytometer with FL1 (FITC) channel and FL 

2(PI) channel.  

For detecting cell cycle, cells were first serum starved for 48 hours and 

then changed back to 10% serum for 24 hours. Cells were harvested and 
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centrifuged (300g, 5 min at room temperature). The cell pellet was fixed with 

cold 70% ethanol. The cells were washed twice with cold PBS and centrifuged 

(300g, 5 min at room temperature). Then, 250 µl Solution A (250 µl) was added, 

tubes mixed by vortexing and cells incubated for 10 minutes. Then, Solution B 

(200 µl) was added, tubes mixed by vortexing and cells incubated for another 10 

minutes. Finally, 200 µl of cold solution C (PI) was added to each tube, and 

incubated for 10 minutes in the dark on ice. Samples were then analyzed using 

a BD Accuri TM C6 flow cytometer with the FL 2 channel (PI). 

To study invasion, we employed the CultureCoat® 96-well BME Cell 

Invasion Assay Kit (R&D systems, Minneapolis, MN). Briefly, cells were plated 

and cultured until 80% confluent in a 6-well plate. Then, one day before plating 

into the 96-well assay kit, cells were put in a serum-free medium. Cells were 

diluted to 1×106 cells/ml in a serum-free medium. Then, 50 µl of diluted cells per 

well was added to the top chamber and 150 µl of complete medium per well was 

added to the bottom chamber. After assembling the chamber, the cells were 

incubated at 37°C in a CO2 incubator for 48 hours. To evaluate the migration of 

cells or invasion of cells, 12 µl of Calcein AM was added to 12 ml of cell 

dissociation solution. The medium was removed from the top chamber and 

washed with wash buffer and then transferred into a blank black receiver plate. 

Then, 100 µl of cell dissociation/Calcein AM was added to the bottom chamber 

and incubated at 37°C in a CO2 incubator for one hour. The top chamber was 
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removed before reading the plate at 485 nm excitation and 520 nm emission. 

Data from control-transfected group was denoted as one. 

 

Aberrantly expressed microRNAs in Mz-ChA-1 cells compared to non-

malignant cholangiocytes 

To study the miRNAs that were aberrantly expressed in CCA cell lines, 

we performed a microRNA array using the CCA cell line Mz-ChA-1, and the non-

malignant cholangiocyte cell line H69. Total RNA (5µg) was reverse transcribed 

using a biotin-labeled random octamer oligonucleotide primer. Hybridization of 

biotin-labeled complementary DNA was done using a custom miRNA microarray 

chip (ncRNA Program at Center for Targeted Therapy, MD Anderson Cancer 

Center). The data from these samples, for each cell type, was further analyzed 

via the BRB-Array Tools software from the National Cancer Institute. A list of 

aberrantly expressed miRNAs was generated as candidates for further analysis.  

 

Screen candidate microRNAs that target Per1 in CCA 

To determine the potential miRNAs that could possibly target Per1, we 

used three different target prediction programs, DIANA-MicroT v3.0 

(http://diana.cslab.ece.ntua.gr/microT/)(125), Miranda 

(http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/)(126) and 

RNAhybrid (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/welcome.html)(127), 

which use different algorithms. For DIANA-MicroT, we searched for miRNAs that 
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target Per1 gene (NM_002616) by setting the miTG score at 7. For Miranda, we 

searched for Per1 as the keyword and picked the homo sapiens Per1 

(ENST00000354903) for further analysis. With RNAhybrid, we extracted the 

whole gene from the NCBI nucleotide website (NM_002616.2, 4717 bp) as the 

mRNA part and the mature miR-34a (UGGCAGUGUCUUAGCUGGUUGU), 

miR-185 (UGGAGAGAAAGGCAGUUCCUGA) and miR-29b 

(GCUGGUUUCAUAUGGUGGUUUAGA) as the microRNA part.  

The expression of miR-34a was further confirmed by real-time PCR with a 

Mice MicroRNA Assay Kit (Applied Biosystems, Foster City, CA). The U6 snRNA 

was used as the endogenous control.  A ΔΔCT (delta delta of the threshold 

cycle) analysis was performed using H69 cholangiocytes as controls.  Data were 

expressed as fold-change of relative miRNA levels ± SEM (n=6).  

 

Per1 as a novel target confirmed by luciferase assay in Mz-ChA-1 cells 

 We performed a luciferase assay to further confirm the suppression of 

Per1 expression by miR-34a. Mz-ChA-1 cells were plated into 6-well plates and 

co-transfected with 1 µg of a Renilla luciferase expression construct pRL-TK and 

1 µg of the pMIR-PER1-wt-luc or pMIR-PER1-mut-luc firefly luciferase 

expression construct, along with either miR-34a precursor or control precursor 

with Lipofectamine 2000 (Life Technologies, Grand Island, NY). Twenty-four 

hours later, cells were harvested and plated into 96-well plates at a density of 

5000 cells/well. Luciferase assays were performed 24 hours after the cells were 
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plated into 96-well plates using the dual luciferase reporter assay system 

(Promega, Madison, WI), as described by the manufacturer. Briefly, 48 hours 

after transfection, we removed the medium from the cultured cells before 

washing cells with 1x PBS once. Then, 20 µl of 1× passive lysis buffer was 

added into the 96-well plate and the 96-well plates were gently shaken for 15 

minutes at room temperature. Then, we set up the automated program of the 

spectrophotometer (Thermo Labsystems , Beverly, MA), and injectors 1 and 2 to 

dispense 100 µl of LAR II and STOP & GLO® Reagent, respectively. We 

allowed 2 seconds delay before the measurement and 10 second read time. 

After dispensing 100 µl of LAR II with injector 1, the firefly luciferase activity was 

measured to normalize and eliminate background. Then, we dispensed 100 µl of 

STOP & GLO® Reagent with injector 2 for measuring Renilla luciferase activity. 

Data were presented as ratio of Renilla/Firefly luciferase activity. 

 

Evaluation of functional role of suppression of miR-34a in 

cholangiocarcinoma cells 

Since miR-34a was found to be increased in CCA cell lines compared to 

H69 cells and miR-34a can act as both tumor suppressor and oncogene in 

various tumors (88, 128-131), we wanted to evaluate the functional effect of 

miR-34a in CCA cells. The miR-34a precursor antisense inhibitor and control 

(Ambion Inc., Austin, TX) were transfected into Mz-ChA-1 cells and H69 cells 

with DharmaFECTTM Transfection Reagent (Thermo Scientific, Waltham, MA) 
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using the standard protocol. Forty-eight hours after transfection, cells were used 

for evaluation of proliferation, apoptosis and invasion. The silencing of miR-34a 

was confirmed by miRNA real-time PCR.  The cell proliferation was evaluated 

via MTS assay after silencing of miR-34a in the Mz-ChA-1 cells. The apoptosis 

was evaluated with the Annexin-V Apoptosis Kit (BD Biosciences Pharmingen, 

San Diego, CA) and the cell invasion was evaluated using the cell invasion 

assay kit (Chemicon international), as described above. 

 

Studies in nude mice 

Animal procedures were performed under the guidelines of the Baylor 

Scott and White Institutional Animal Care and Use Committee (IACUC). Male 

BALB/c nude (nu/nu) mice were kept in a temperature-controlled (20-22°C) 

environment with 12-hour light-dark cycles and with free access to drinking 

water and standard mouse chow. Mz-ChA-1 cells (5 × 106) were suspended in 

0.25 mL of extracellular matrix gel (Sigma-Aldrich) and injected in the back flank 

of nude mice.  After the tumor was established, mice were randomly divided into 

two groups: normal 12-hour light-dark cycle group and 24-hours continuous 

darkness group. Tumor growth was measured three times a week by an 

electronic caliper, and volume was determined as follows: tumor volume (mm3) = 

0.5 × length (mm) × width (mm) × height (mm). Tumors were allowed to grow 

until maximum allowable tumor burden was reached, as set forth by the Baylor 

Scott & White IACUC tumor burden policy. After 42 days, mice were 
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anaesthetized with sodium pentobarbital (50 mg/kg i.p.) and sacrificed according 

to institutional guidelines.  

 

Statistical analysis 

All data are expressed as mean ± SEM. Differences between groups 

were analyzed by the Student unpaired t test when two groups were analyzed 

and by analysis of variance when more than two groups were analyzed, followed 

by an appropriate post hoc test.  A p value of <0.05 was considered to indicate 

statistical significance. 
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CHAPTER III  

RESULTS 

Core clock genes were aberrantly expressed in CCA 

Expression of core clock genes in CCA cell lines 

In order to evaluate whether clock genes were altered in CCA, we first 

examined the mRNA levels of the core clock genes Bmal1, CLOCK, Per1/2/3, 

Cry1/2 in intra- and extra-hepatic CCA cell lines as well as the non-malignant 

control H69 cell line. The mRNA expression of the transcription factor, Bmal1, 

increased in HuH-28 and CCLP cells compared to H69, but decreased in all of 

the extra-hepatic cell lines (Mz-ChA-1 and TFK-1 cells) and one intra-hepatic 

cell line (HuCC-T1) (Figure 1). The expression of CLOCK did not change 

significantly in Mz-ChA-1 and SG231 cells, but increased about 0.5 fold in HuH-

28 and TFK-1 cells. The decreased expression of CLOCK was observed in 

CCLP and HuCC-T1 cells compared to H69.  Then, we examined the negative 

regulator Period and Cryptochromes family (Figure 2 and Figure 3). The mRNA 

expression of Per1, significantly decreased in all intra- and extra- hepatic CCA 

cell lines compared to H69 (Figure 2). Then, we examined other clock genes, 

including Per2, Per3 and Cry1 and Cry2 in CCA cell lines and H69 cells (Figure 

2 and Figure 3). Cry 1 expression increased in all the CCA cell lines except TFK-

1 cells (Figure 3), while Cry2 expression decreased in TFK-1 and increased in 

CCLP compared with H69, but did not show significant changes in the other 

CCA cells (Figure 1). Per3 expression showed increased expression in HuH-28 
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and decreased expression in the other CCA cells, except that in CCLP cells, 

compared with H69 (Figure 2). 

In order to analyze the protein coded by core clock genes and the 

localization of these clock genes, we also measured their expression in CCA cell 

lines as well as in H69 cells (Figure 4). We showed the expression of Bmal1, 

CLOCK, Cry1 and Per1 in H69, Mz-ChA-1, TFK-1 and HuCC-T1 cells. Per1 

expression slightly decreased in Mz-ChA-1, TFK-1 and HuCCT-1 cells 

compared with H69, whereas the Cry1 expression was very low in all of the cells 

examined. CLOCK expression was decreased in TFK-1 and HuCC-T1 

compared with H69; there was no significant difference noted in Mz-ChA-1 cells 

compared with H69. Bmal1 showed increased immunoreactivity in TFK-1, it did 

not show significant changes in HuCC-T1 and Mz-ChA-1 cells compared to H69. 

 

Expression of core clock genes in human CCA biopsies 

Further, we examined by immunohistochemistry the expression of Per1, 

Bmal1, CLOCK and Cry1 in a human CCA tissue array. There was decreased 

expression of Per1 in the human CCA biopsies compared to non-malignant 

controls (Figure 5). The protein level of Bmal1 increased in human CCA biopsies 

compared to non-malignant control tissues (Figure 5). On the other hand, the 

expression of CLOCK and Cry1 showed no significant difference compared to 

non-malignant controls. We also analyzed the core clock gene protein 

expression in different stages of CCA cells compared with non-malignant 
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controls. There was no significant stage difference regarding the core clock gene 

expression compared with non-malignant controls (data not show) 

 

 

 

 

Figure 1  Real-time PCR gene expression of positive feedback loop 
transcription factors Bmal1 and CLOCK. The gene expression of Bmal1 and 
CLOCK was measured in six cholangiocarcinoma cell lines and the non-
malignant cholangiocyte cell line H69. The gene expression of Bmal1 and 
CLOCK was upregulated in HuH-28 cells. Bmal1 expression was downregulated 
in Mz-ChA-1, TFK-1 and HUCC-T1 cells. CLOCK gene expression was 
downregulated in CCLP and HUCC-T1 cells. Data are mean ± SEM of 3 
independent experiments. *p <0.05 vs. Bmal1 and CLOCK mRNA expression of 
H69 cells. 
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Figure 2 Real-time PCR gene expression of Period family Per1/2/3. The 
gene expression of Per1, Per2 and Per3 was measured in six 
cholangiocarcinoma cell lines and the non-malignant cholangiocyte cell line H69. 
The gene expression of Per1 was downregulated in all CCA cells. Per2 mRNA 
expression was downregulated in HuH-28 and HUCC-T1 cells, whereas it was 
upregulated in Mz-ChA-1 and TFK-1 cells. Per3 mRNA expression was 
upregulated in HuH-28 but decreased in all other CCA cell lines except in CCLP. 
Data are mean ± SEM of 3 independent experiments. *p <0.05 vs. Bmal1 and 
CLOCK mRNA expression of H69 cells.  
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Figure 3 Real-time PCR gene expression of the Cryptochromes family. 
The gene expression of Cry1 and Cry2 was measured in six CCA cell lines and 

the non-malignant cholangiocyte cell line. The gene expression of Cry1 was 
enhanced in all CCA cells except TFK-1 and HUCC-T1. Cry2 mRNA expression 
did not show significant alteration except an increase in CCLP and a decrease in 
TFK-1. Data are mean ± SEM of 3 independent experiments. *p <0.05 vs. Bmal1 

and CLOCK mRNA expression of H69 cells. 
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Figure 4 Immunofluorescence images of Cry1, CLOCK, Bmal1, Per1 
expression. H69, Mz-ChA-1, TFK-1 and HuCC-T1 cell expression of Cry1, 
CLOCK, Bmal1 and Per1 was assessed with specific immunoreactivity shown in 
green and cell nuclei counterstained with DAPI (blue). Negative control 
consisted of secondary antibody with the absence of primary antibodies (data 
not shown). All pictures were taken using the same exposure time. As indicated 
by immunofluorescence, expression of CLOCK did not show significant changes 
in Mz-ChA-1 and TFK-1, but show decreased reactivity in HuCC-T1 cells. Cry1 
staining was very faint in all the cell lines. Whereas Per1 showed a decrease in 
Mz-ChA-1, TFK-1 and HuCC-T1 cells compared with H69, Bmal1 showed 
increased immunoreactivity in TFK-1 but didn’t show significant changes in 
HuCC-T1 and Mz-ChA-1 cells compared with H69. 
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Figure 5 Immunohistochemistry in human biopsies for Per1, Bmal1, 
CLOCK and Cry1 expression. Per1 immunoreactivity is decreased in CCA 
samples compared with the non-malignant control, whereas Bmal1 showed 
enhanced expression in CCA. CLOCK and Cry1 expression was not altered in 
CCAs. *p < 0.05 vs. non-malignant. Data are mean ± SEM of 3 experiments. 
Original magnification X40. 
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Disrupted circadian rhythm in CCA cell lines 

24-hours circadian expression of Per1 in CCA cell lines and H69 

Among the core clock genes we examined for basal level of CCA and 

non-malignant control expression, Per1 showed the most consistent and 

significant decreased expression in both human CCA cell lines and biopsies. 

Previous studies have shown circadian oscillation of clock genes in various cell 

types in vitro via a special synchronization method (121). Therefore, we aimed to 

evaluate whether the 24-hours rhythmic expression still exists for Per1 

expression in CCA lines as compared with H69. As shown in Figure 6, the 

rhythmic feature of Per1 was present in H69 cell line but was lost in both intra- 

and extrahepatic CCA cell lines (Figure 6). Specifically, we found the peak 

expression of H69 at 2 hours and 14 hours after the serum stimulation. Two 

small peaks can be observed in the TFK-1 cell line at the same time points as in 

H69. 

Rhythmical expression of other clock genes in CCA cell lines and H69 

It is worthy to note that all the other core clock genes we examined 

showed a robust rhythmical expression in H69, whereas circadian rhythms of 
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Figure 6 The 24-hours circadian rhythm of Per1 mRNA expression 
levels in CCA and H69 cell lines. The expression level of Per1 was measured 
in extra-hepatic CCA cell lines (Mz-ChA-1 and TFK-1), intra-hepatic CCA cell 
lines (HuH-28, HUCC-T1, SG231 and CCLP) and H69 cells. The cells were 
stimulated with 50% serum for 2 hours after being serum starved for 48 hours. 
Samples were taken every four hours until 24 hours. The points represent the 
mean ± SEM for 3 experiments. *p < 0.05 vs. H69 corresponding time points. 
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these clock genes were lost in some CCA cell lines. Still, they showed phase 

shift or loss of 24-hours cycle expression in CCA cell lines (Figure 7, Figure 8 

and Figure 9). For example, Bmal1 lost circadian rhythm in Mz-ChA-1, TFK-1 

and HuCC-T1 cell lines. However, Bmal1 showed rhythmic expression in HuH-

28. Furthermore, the phase-shift of Bmal1 was also observed in HuH-28 

compared to the H69 cell line. On the other hand, Per2 and Per3 showed 

rhythmical expression in all extra-hepatic cell lines (Mz-ChA-1 and TFK-1) and 

the CCLP cell line, which parallels the basal mRNA expression in CCA cell lines, 

whereas disrupted rhythmical expression of Per2 and Per3 was observed in 

HUCC-T1, SG231 and HuH-28 (Figure 8). Regarding the Cry1/2 circadian 

rhythms, Cry1 lost circadian rhythm in HuCC-T1 and SG231 cell lines, but still 

showed circadian rhythm in Mz-ChA-1 TFK-1 HuH-28 and CCLP cells. While the 

circadian rhythm still exists for Cry2 expression in TFK-1, HuH-28 and CCLP, it 

was lost in Mz-ChA1, HuCC-T1 and SG231 cells (Figure 9). From the analysis of 

these clock genes, we conclude that the CCLP cell line is the one that shows the 

least disrupted circadian rhythms among the cell lines tested, while HUCC-T1 

showed the most disrupted circadian rhythms among these cells (Figure 6, 

Figure 7, Figure 8 and Figure 9). Among all the core clock genes, Per1, which 

showed disrupted circadian rhythm, seems more important than other clock 

genes in the malignant transformation of biliary injury (Figure 6).  
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Rhythmical expression of clock controlled genes in CCA cell lines and H69 

Clock controlled genes (CCGs) are a group of genes that show rhythmical 

expression under the control of Bmal1/CLOCK heterodimer interaction. Previous 

studies have found that genes related to metabolism, cell cycle and hormone 

release are rhythmically expressed in liver (60-62) (64, 65). To assess whether 

the daily profile of clock-controlled gene expression was affected in CCA cell 

lines, we also examined the expression of representative CCGs DBP and WEE1 

in Mz-ChA-1 and H69 cells. As seen in Figure 10, the 24-hours expression 

profile of DBP and WEE1 displayed robust rhythmic patterns in H69. But in Mz-

ChA-1, the expression of DBP and WEE1 was diminished at all time points. The 

24-hours rhythmicity was also lost in this specific CCA cell type.  

 

Restoration of Per1 expression in Mz-ChA-1 cells inhibits the proliferation, 

apoptosis as well as the invasion features 

Inhibition of proliferation in Per1-overexpressing Mz-ChA-1 cells 

Since Per1 expression was decreased in all CCA cell lines and lost its 

rhythmic expression in both intra- and extra CCA cell lines, we next aimed to 

determine if the restoration of Per1 expression decreases the malignancy of 

CCA. Expression of Per1 was five fold higher in the selected clone of the stable 

overexpressing cell line (compared to control), as confirmed by real-time PCR 

(Figure 11). We found that the proliferation was inhibited at 24 hours, 48 hours 

and 72 hours as shown in the MTS assay (Figure 12).  
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Figure 7 The 24-hours circadian rhythm of Bmal1 mRNA expression 
levels in CCA and H69 cell lines. The expression levels of Bmal1 were 
measured in extra-hepatic CCA cell lines (Mz-ChA-1 and TFK-1), intra-hepatic 
CCA cell lines (HuH-28, HUCC-T1, SG231 and CCLP) and H69 cells. The cells 
were stimulated with 50% serum for 2 hours after being serum starved for 48 
hours. Samples were taken every four hours until 24 hours. The points represent 
the mean ± SEM for 3 experiments. *p < 0.05 vs. H69 corresponding time 
points. 



 

 45 

 

Figure 8 The 24-hours circadian rhythm of Per2 and Per3 mRNA 
expression levels in CCA and H69 cell lines. The expression levels of Per2 
and Per3 were measured in extra-hepatic CCA cell lines (Mz-ChA-1 and TFK-1), 
intra-hepatic CCA cell lines (HuH-28, HUCC-T1, SG231 and CCLP) and H69 
cells. The cells were stimulated with 50% serum for 2 hours after being serum 
starved for 48 hours. Samples were taken every four hours until 24 hours. The 
points represent the mean ± SEM for 3 experiments. *p < 0.05 vs. H69 
corresponding time points. 
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Figure 9  The 24-hours circadian rhythm of Cry1 and Cry2 mRNA 
expression levels in CCA and H69 cell lines. The expression levels of Cry1 
and Cry2 were measured in extra-hepatic CCA cell lines (Mz-ChA-1 and TFK-1), 
intra-hepatic CCA cell lines (HuH-28, HUCC-T1, SG231 and CCLP) and H69 
cells. The cells were stimulated with 50% serum for 2 hours after being serum 
starved for 48 hours. Samples were taken every four hours until 24 hours. The 
points represent the mean ± SEM for 3 experiments. *p < 0.05 vs. H69 
corresponding time points. 
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Figure 10 The 24-hours circadian rhythm of known clock-controlled 
genes CREM, DBP and Wee1 mRNA and their mRNA expression levels in 
Mz-ChA-1 and H69 cells. The expression levels of CREM, DBP and Wee1 
mRNA were measured in Mz-ChA-1 and H69 cells. The cells were stimulated 
with 50% serum for 2 hours after being serum starved for 48 hours. Samples 
were taken every four hours until 24 hours. The points represent the mean ± 
SEM for 3 experiments. *p < 0.05 vs. H69 corresponding time points. 
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We also examined PCNA (proliferation marker) expression by real-time 

PCR and western blot. Likewise, the expression of PCNA was decreased in two 

stable Per1-overexpressing (OE) lines (Figure 11 and Figure 12). Per1 can 

regulate the cell cycle in various tumors (132). Therefore, we examined the cell 

cycle after overexpressing Per1. As shown in Figure 13, S phase and G2/M 

phase were inhibited in Per1 OE cells compared with cells transfected with 

empty vector (EV), whereas the quiescent phase G0/G1 was increased in Per1 

overexpressed cells compared with EV. This finding indicates that restoration of 

Per1 expression inhibits cell proliferation via modulating the cell cycle in Mz-

ChA-1 cells. 

 

Enhanced apoptosis in Per1overexpressing cells compared with control in 

Mz-ChA-1 cells 

Furthermore, we found that apoptosis was enhanced, as shown by 

Annexin V-FITC staining followed by flow cytometry in Mz-ChA-1 cells 

overexpressing Per1 compared to the control cell line (Figure 14). Briefly, both 

early apoptosis and late apoptosis were enhanced by restoration of Per1 

expression, whereas the percentage of live cells decreased in Per1 OE lines. 
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Per1 overexpression did not change the invasion or migration of CCA cells 

We also studied invasion and migration after overexpression of Per1 in 

Mz-ChA-1 cells. However, there was no significant difference between Per1 OE 

and control cell lines regarding the invasion and migration (data not shown).  

 

Aberrant expression of microRNAs (miRNAs) in CCA cells 

To study the microRNAs that are dysregulated in CCA, we performed a 

microRNA array comparing Mz-ChA-1, TFK-1 with H69 cells. A number of 

miRNAs were found dysregulated in CCA cells (Figure 15). Specifically, a group 

of miRNAs was upregulated in Mz-ChA-1 cells (cluster 1 in Figure 15), including 

miR-200b, miR-141, miR-34a, miR-23a, miR-21, miR-27a, miR-222, miR-205 

and miR-24-1 (Figure 16). In addition, a group of miRNAs was found to be 

upregulated in TFK-1 cells as compared to H69 cells, including miR-141, miR-

181 family, miR21, let-7, miR-292, miR-200b, miR23a, miR-34 family, miR-215, 

miR-27 and miR-144 (Lower panel, Figure 16). miR-141, miR-34 family, miR-21, 

miR-27a and miR-200b were found to be upregulated in both Mz-ChA-1 and 

TFK-1 cells, indicating that these miRNAs might be important in mediating the 

malignant transformation of CCA cells.  
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Figure 11 Confirmation of Per1 overexpression and mRNA exprssion of 
PCNA in Mz-ChA-1 cells. Mz-ChA-1 cells were transfected with empty vector 
(EV) and Per1 cDNA plasmid and stable transfected clones selected using 
geneticine. We successfully got two clones overexpressing (OE) Per1: Per1 OE 
cl 2 and Per1 OE cl 4. The mRNA expression of Per1 was confirmed by real-
time PCR. Expression of the proliferation marker PCNA was examined by real-
time PCR, which showed reduced expression in both clones. The points 
represent the mean ± SEM for 4 experiments. *p < 0.05 vs. EV. EV=empty 
vector Per1 OE cl = Per1 overexpressing clones. 
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Figure 12 Decreased proliferation in Per1-overexpressing clones. To 
further confirm that proliferation was inhibited after overexpressing Per1, we 
performed an MTS assay, which showed decreased proliferation in both 
overexpressing clones at 24, 48 and 72 hours after 24 hours of serum 
starvation. Protein levels of PCNA are also shown to be diminished in Per1 OE 
clone 4. A representative blot is shown at the bottom. Experiments for MTS are 
mean ± SEM of 3 repeated experiments. Quantification of blots is the mean ± 
SEM of 4 repeated experiments. *p < 0.05 vs. EV. EV=empty vector, Per1 OE cl 
=Per1 overexpressing clones. 
  



 

 52 

 

 

Figure 13 Decreased number of cells in S phase and G2/M phase in 
Per1-overexpressing Mz-ChA-1 cells. Cells were serum starved for 24 hours 
and then put back into complete medium for 24 hours before evaluating the cell 
cycle. Cell counts and data plots are shown in the top panel and percentage of 
cells in each cell cycle phase is shown on the bottom. The percentage of cells 
increased in G0/G1 phase and decreased in S and G2/M phases in Per1-
overexpressing cells, indicating that the proliferation rate was diminished after 
overexpressing Per1. EV = empty vector, Per1 OE = Per1 overexpression. 
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Figure 14 Enhanced apoptosis after overexpressing Per1 in Mz-ChA-1 
cells. Cell apoptosis was investigated in control and Per1-overexpressing stably 
transfected cell lines. Cells were stained using an AnnexinV-FITC apoptosis kit 
and then analyzed using flow cytometry. The gate was set using three controls: 
unstained, and staining the FITC only and PI only. The data are from double 
staining of PI and AnnexinV-FITC. By overexpressing the Per1, the percentage 
of early and late apoptotic cells was largely increased and the percentage of live 
cells was decreased. Top panel: FACS plots; Bottom panel: Percentage of cells 
in each apoptosis stage. EV = empty vector; Per1 OE = Per1 overexpression. 
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Figure 15 Comparison of miRNA obtained from H69 non malignant 
cholangiocytes and the human cholangiocarcinoma cell lines Mz-ChA-1 
and TFK-1. A heatmap was generated from the average of normalized log-
transformed fluorescent intensity for each data set (n=4 separate arrays, each 
with two probes for each miRNA). A cluster of miRNAs that was upregulated is 
enlarged and shown in the right panel. 
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Figure 16 A group of miRNAs with increased expression in CCA cell 
lines. Expression fold change of upregulated miRNAs was shown in Mz-ChA-1 
(upper panel) and TFK-1 (lower panel) cells vs. H69 cells.  Data are expressed 
as mean ± SEM from four experiments of each cell line. 
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Screening candidate miRNAs that target Per1 in CCA cell lines 

As we have shown earlier, Per1 expression was decreased and its 

circadian rhythm was lost in all CCA cells. By restoration of Per1 expression, 

CCA cell growth was inhibited. However, no information is known about the 

upstream regulation of Per1. Here, we hypothesized that dysregulated 

microRNA may lead to the decreased expression of Per1. We screened the 

potential miRNAs of Per1 with three target prediction programs that used 

different algorithms: DIANA-MicroT, Miranda and RNAhybid.  

By using DIANA-MicroT V3.0, 22 miRNAs were found that could target 

hPer1 (Table 2); while 49 miRNAs were found that could possibly target hPer1 

as predicted in Miranda (Table 3). When comparing these two miRNA lists, we 

found that miR-34a, miR-185 and miR-29b were predicted in both DIANA and 

Miranda. Then we analyzed the free energy and binding sites for miR-34a, miR-

185 and miR-29b with Per1 via RNAhybrid. One binding site was found (the 

same site of prediction as DIANA-MicroT and Miranda) for miR-34a. Besides 

miR-34a, we also identified one binding site for miR-185 and miR-29b as well 

(Figure 17). On the other hand, as we showed above, by PCR array analysis, we 

found a group of microRNAs that were upregulated in Mz-ChA-1 cells. However, 

miR-34a is the only one that was upregulated in Mz-ChA-1 cells compared with 

H69 cells, whereas miR-29b and miR-185 showed no significant change in Mz-

ChA-1 cells in the microRNA array data (Figure 16). We further examined the 

expression of miR-34a in Mz-ChA-1 by taqman real-time PCR, which showed 
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miR-34a increased about four times in Mz-ChA-1 compared with H69, which is 

consistent with the microRNA array data (Figure 18). 

 

24-hours circadian profile for miR-34a in CCA cells and H69 

Since Per1 is a primary output rhythmical gene, we also determined 

whether the 24-hours expression of miR-34a showed circadian rhythm similar to 

Per 1. Interestingly, miR-34a displayed rhythmical expression in CCA cells with 

higher amplitude during the 24-hours period (Figure 19). In H69 cells (normal 

culture condition), the expression upper peaks for miR-34a were seen at 6 and 

18 hours; while the lower peaks showed at 14 and 22 hours. Per1 expression, 

on the other hand, showed the upper peaks at 2 and 14 hours and lower peaks 

at 6 and 22 hours. It is worthy to note that Per1 and miR-34a displayed exactly 

opposite patterns at 6 hours and 14 hours with regard to the upper and lower 

peaks, indicating the opposite correlation between miR-34a and Per1. In Mz-

ChA-1 cells, expression of miR-34a showed shifted phase, higher amplitude and 

higher expression at all time points compared with H69 cells. In TFK-1 cells, the 

overall amplitude was not altered very much, however, the period was 

significantly shortened and the expression level was much higher compared with 

H69 cells. For HuCC-T1 cells, the overall expression level of miR-34a did not 

change significantly, however, the amplitude diminished and the circadian 

rhythm was lost compared with H69 cells (Figure 19). 
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Table 2  List of miRNAs to target Per1 predicted by DIANA-MicroT 
 

Rank miRNA name miTG score 

1 hsa-miR-646 15.37 

2 hsa-miR-637 13 

3 hsa-miR-29a 12.68 

4 hsa-miR-29c 12.49 

5 hsa-miR-29b 12.48 

6 hsa-miR-532-3p 11 

7 hsa-miR-485-5p 11 

8 hsa-miR-185 11 

9 hsa-miR-138 10.81 

10 hsa-miR-765 10 

11 hsa-miR-484 10 

12 hsa-miR-24 9.96 

13 hsa-miR-604 9 

14 hsa-miR-188-3p 9 

15 hsa-miR-497 8.94 

16 hsa-miR-424 8.51 

17 hsa-miR-939 8 

18 hsa-miR-766 8 

19 hsa-miR-608 8 

20 hsa-miR-149 8 

21 hsa-miR-34 7.69 

22 hsa-miR-449b 7.68 
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Table 3 List of miRNAs to target Per1 predicted by Mianda 

 

Rfam ID Score Rfam ID2 Score 

hsa-miR-222 18.1869 hsa-miR-24 16.0866 

hsa-miR-614 18.118 hsa-miR-541* 16.0807 

hsa-miR-423-5p 18.0126 hsa-miR-326 16.0366 

hsa-miR-138 17.9073 hsa-miR-218-2* 15.9807 

hsa-miR-185* 17.7799 hsa-miR-374b* 15.9807 

hsa-miR-30c-1* 17.7799 hsa-miR-519a 15.9807 

hsa-miR-604 17.6301 hsa-miR-519b-3p 15.9807 

hsa-miR-661 17.6176 hsa-miR-514 15.9534 

hsa-miR-432 17.5913 hsa-miR-338-3p 15.8749 

hsa-miR-769-3p 17.3806 hsa-miR-34a 15.8749 

hsa-miR-645 17.3076 hsa-miR-624* 15.8749 

hsa-miR-331-3p 17.1234 hsa-miR-221 15.6952 

hsa-miR-620 17.1058 hsa-miR-519c-3p 15.6632 

hsa-miR-30b* 16.8274 hsa-miR-515-5p 15.6252 

hsa-miR-601 16.8274 hsa-miR-657 15.5899 

hsa-miR-10b* 16.6157 hsa-miR-626 15.5876 

hsa-miR-484 16.6157 hsa-miR-361-5p 15.5574 

hsa-miR-145* 16.4041 hsa-miR-640 15.528 

hsa-miR-148b* 16.4041 hsa-miR-29b 15.4845 

hsa-miR-486-3p 16.3789 hsa-miR-145* 15.3457 

hsa-miR-30c-1* 16.2982 hsa-miR-490-5p 15.1814 

hsa-miR-484 16.2982 hsa-miR-371-3p 15.0632 

hsa-miR-570 16.2982 hsa-miR-889 14.8899 

hsa-miR-196b 16.1924 hsa-miR-299-5p 14.7107 

hsa-miR-519e* 16.1924 
  

 

  



 

 60 

 

 

Figure 17 RNA hybridization prediction showed the binding sites of 
three candidate miRNAs and mRNA of Per1. [A] Schematic picture of the 
binding site for miR-34a and Per1 indicating the position, minimum free energy; 
[B] Plot picture for the binding loop that formed between miR-34a and Per1; [C] 
and [D] Schematic picture of the binding site for miR-29b and miR-185 and Per1 
indicating the position, minimum free energy. 
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Figure 18 miR-34a expression in H69 and Mz-ChA-1 cells. The 
expression level of miR-34a was measured in Mz-ChA-1 and H69 cells with 
Taqman miRNA PCR assay. The data represent the mean ± SEM for 3 
experiments. *p < 0.05 vs. H69. 
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Figure 19 The 24-hours circadian rhythm of miR-34a expression levels 
in CCA and H69 cell lines. The expression level of miR-34a was measured in 
extra-hepatic CCA cell lines (Mz-ChA-1 and TFK-1), intra-hepatic CCA cell lines 
(HUCC-T1) and H69 cells. The cells were stimulated with 50% serum for 2 hours 
after being serum starved for 48 hours. Samples were taken every four hours 
until 24 hours. The points represent the mean ± SEM for 3 experiments. *p < 
0.05 vs. H69 corresponding time points. 
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miR-34a was verified as the upstream modulator of Per1 

To substantiate that miR-34a directly targets Per1; we generated a 

luciferase reporter assay with the 3’UTR, which contains potential miR-34a 

binding sites (pMIR-Per1-WT), or the mutations (pMIR-Per1-mut) inserted in the 

multiple cloning site (MCS). As shown in Figure 20, when transfecting with miR-

34a alone, or pMIR-Per1-WT alone, we did not detect any luciferase activity. 

Likewise, when co-transfecting miR-34a with pMIR-Per1-mut or control 

microRNA with pMIR-Per1-WT luciferase activity did not change. Co-transfecting 

the miR-34a with pMIR-Per1-WT significantly suppressed the luciferase activity, 

indicating the suppression effect is specific to the 3’-UTR regions and the 

binding sites are essential for the inhibitory effect of miR-34a on Per1.  

 

Inhibition of miR-34a expression diminished CCA proliferation and 

invasion 

Since we have shown that Per1 overexpression inhibited tumor growth 

and promoted apoptosis by regulating the cell cycle, we proposed to study 

whether inhibition of miR-34a could affect the proliferation and invasion in CCA 

cells, thus regulating Per1 expression. To evaluate the roles of miR-34a in the 

regulation of CCA growth in vitro, we transiently transfected the miR-34a 

inhibitor and relative control in Mz-ChA-1, TFK-1, HUCC-T1 and H69 cell lines. 

As shown in Figure 21, after inhibition of miR-34a expression, the proliferation of 

Mz-ChA-1 cells was significantly inhibited at 24, 48 and 72 hours; whereas the  
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Figure 20 Per1 was predicted and verified as a target of miR-34a. [A] 
Conserved target site of hsa-miR-34a on gene Per1.  The potential binding sites 
are labeled in red color. [B] Mz-ChA-1 cells were transfected with 1µg of a 
Renilla luciferase expression construct pRL-TK and 1µg of the pMIR-PER1-wt-
luc or pMIR-PER1-mut-luc firefly luciferase expression construct, along with 
either miR-34a precursor or control precursor. Luciferase assays were 
performed after 48 hours using the dual luciferase reporter assay system. The 
Renilla luciferase activity was normalized to that of firefly luciferase activity for 
each sample. A decrease in relative renilla luciferase activity in the presence of 
miR-34a indicates the presence of a miR-34a-modulated target sequence in the 
3'-UTR of PER1.   Data represents mean SEM from eight separate 
experiments. *p<0.05 relative to controls. 
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Figure 21 Inhibition of miR-34a decreased the proliferation of CCA cells 
but not the non-malignant cholangiocytes. Mz-ChA-1 (Top Panel) and H69 
(Bottom Panel) cells (5 x 104cells/well) in 96-well plates were transfected with 
either anti-miRNA inhibitor for miR-34a or with its respective control inhibitor.  
Cell proliferation was assessed after 72 hours using a viable cell assay.  
Transfection of Mz-ChA-1 with inhibitor to miR-34a decreased proliferation to 
71.7 ± 12.6 % of control after 72 hours.  Cell growth was not significantly altered 
in H69 cells transfected with miR-34a inhibitor after 72 hours (97.5  ± 11.0 % of 
control). The mean ± SEM from four separate experiments are illustrated. 
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proliferation of H69 did not show significant change after inhibiting the miR-34a 

expression. 

Furthermore, the invasion ability was also examined after inhibiting the 

expression of miR-34a. As shown in Figure 22, the ability to invade was 

significantly decreased in CCA cell lines compared to vector-transfected cells. 

However, H69 cells did not show any difference after transfection with the miR-

34a inhibitor. Taken together, these data indicate that miR-34a acts as an onco-

miR that can promote proliferation and invasion in CCA cells.  

We have previously shown that Per1 overexpression could enhance 

apoptosis. Bcl-2 is considered to be an anti-apoptotic protein and is thus 

classified as an oncogene during tumorigenesis (133). Here, we found the 

expression of Per1 is decreased and expression of bcl-2 is increased after the 

inhibition of miR-34a, indicating that miR-34a could promote tumorigenesis at 

least partly through inhibition of apoptosis (Figure 23).  

 

Prolonged dark exposure of CCA xenograft did not change the tumor 

growth in in vivo models 

In order to evaluate the relationship between central circadian system and 

the local circadian system, we exposed nude mice (in which we injected with 

Mz-ChA-1 cells) to complete dark or a 12:12 dark: light cycle (control) before 

measuring tumor growth. In control group, the tumors all grew to a similar size,  

  



 

 67 

as shown in the left panel of Figure 24; whereas, the tumors in animals that were 

exposed to the dark for 42 days showed a significant difference between 

different flanks of the same mice and between the different mice from the same 

group (right panel of Figure 24). However, when looking at the overall average 

tumor growth rate between the control and dark groups, the tumor volume did 

not show a significant difference (Figure 25). 
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Figure 22 Effect of miR-34a inhibitor on invasion in CCA cells. To assess 
the effect of miR-34a on tumor spread, Mz-ChA-1, TFK and HuCCT1 cells were 
transfected with either control or anti-miR-34a inhibitor. Anti-miR-34a decreased 
cell invasion in all three CCA cell lines studied compared to controls. These 
results support a functional role for miR-34a in mediating cell invasion in 
malignant cholangiocytes, and provide a mechanism by which over-expression 
of miR-34a may contribute to tumor spread.  * p < 0.05 when compared to 
control miRNA inhibitors.   
  



 

 69 

 

Figure 23 Inhibition of miR-34a stimulates the expression of Per1 and 
inhibits the expression of bcl-2. Mz-ChA-1 cells in 6-well plates were 
transfected with either anti-miRNA inhibitor to miR-34a or with its respective 
control inhibitor (negative) for 48 hours. Total mRNA was harvested and 
expression of Per1 and anti-apoptotic factor was measured by real-time PCR. 
Data represents mean ± SEM from eight separate experiments. *p<0.05 relative 
to controls. 
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Figure 24 CCA tumors dispalyed size variation in the dark group but not 
in the control group. Male BALB/c nude (nu/nu) mice bearing CCA xenografts 
were kept in a 12-h light-dark cycle or a 24-hours continuously dark cycle. After 
42 days, mice were sacrificed and the pictures of each tumor were obtained. 
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Figure 25 No significant difference in tumor volume was observed 
between control and dark groups. Mz-ChA-1 cells (5x106) were suspended in 
0.25 mL of extracellular matrix gel and injected in the back flank of nude mice.  
After the tumor was established, mice were randomly divided into two groups: 
normal 12-hour light-dark cycles and 24-hours continuously dark group. Tumor 
growth was measured three times a week by an electronic caliper, and volume 
was determined as follows: tumor volume (mm3) = 0.5 × length (mm) × width 
(mm) × height (mm). Data are mean ± SEM of tumor size evaluations from four 
mice per each group of animals.	
  

 



 

 72 

CHAPTER IV 

SUMMARY AND CONCLUSION 

In our study, we found that the expression of core clock genes Per1/2/3, 

Bmal1, clock and cry1/2 was dysregulated in both intra- and extra-hepatic cell 

lines as compared with H69 cells. The immunoreactivity of Bmal1 was increased 

in human CCA biopsies. Furthermore, we demonstrated that the rhythmic 

expression of core clock genes, including Bmal1, CLOCK, Cry1/2 and Per1/2/3, 

was disrupted in all or some of the CCA cell lines compared with H69 cells. 

Specifically, expression of Per1 was largely decreased in all six CCA cell lines 

we examined and the human CCA biopsies. The 24-hours profile of mRNA 

expression of Per1 showed loss of circadian rhythm in all CCA cell lines. 

Furthermore, the CCGs WEE1 and DBP also lost 24-hours circadian expression 

in Mz-ChA-1 cells compared with H69 cells. Restoration of Per1 inhibited the 

proliferation, promoted the apoptosis and decreased the percentage of cells in 

the G2/M phase and S phase of the cell cycle. Then, miR-34a, miR-29b and 

miR-185 was predicted by three different software programs to target Per1. Also, 

miR-34a was verified to target Per1 by luciferase reporter assay. Inhibition of 

miR-34a could inhibit the proliferation and invasion of Mz-ChA-1, TFK-1 and 

HuCC-T1 cells. Finally, we also performed an in vivo study and were able to 

show that disruption of central circadian system by exposing the nude mice to 

continuous darkness would not affect the average tumor growth.  
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In our study, we first demonstrated that the circadian rhythm of core clock 

genes in non-malignant cholangiocytes, and then showed this rhythm was 

disrupted in CCA. Consistent with our research, disruption of circadian rhythms 

was found in both human and animal models of tumors (78). Circadian 

disruption was found to increase susceptibility to cancer development in all 

essential organs in humans, leading to breast, hepatocellular carcinoma, ovarian, 

lung, pancreatic, prostate, acute myeloid leukemia, osteosarcoma, colorectal, 

and endometrial cancer (52, 53, 134-140). Indeed, circadian rhythm is proposed 

as an independent cancer risk factor for humans(135).  Disrupted circadian 

rhythm not only happens in cancer development, but also happens in other 

disorders such as obesity, type 2 diabetes and insulin resistance (141, 142). 

Clock mutant mice fed a high fat diet showed significantly higher triglyceride 

content in the liver (143). Bmal1 knockout mice showed hepatic steatosis with 

regular diet feeding (144). All of these findings indicate that disruption of 

circadian homeostasis would lead to pathophysiological changes in all essential 

organs.  

It has been previously reported that Per1, one of the output primary clock 

genes, can act as a tumor suppressor gene in various tumors. Decreased Per1 

expression was found in colon cancer, which correlated with estrogen receptor-

beta expression via epigenetic regulation (145). Among 35 endometrial 

carcinomas and paired non-tumor tissues, Per1 expression was significantly 

decreased and accompanied with hyper-methylation in the CpG area of the 
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promoter region of Per1 (146). Similar deregulation of Per1 was also found in 

breast cancer, non-small cell lung cancer, pancreatic, HCC and prostate cancer 

(72, 147-149). Likewise, we found that Per1 expression was decreased in both 

intra- and extra- hepatic cell lines. Further investigation needs to be done to 

examine whether the epigenetic modification is involved in the decreased 

expression of Per1. 

By overexpressing Per1, we found that tumor growth of CCA is inhibited 

via inhibition of proliferation and enhanced apoptosis. Indeed, Per1 has been 

found to regulate cell growth by regulating the cell cycle (150). When the Per1 

expression reached a high level, the percentage of cells that enter into the M 

phase is reduced. The potential mechanisms could be explained by the finding 

that Per1 protein interacts with the checkpoint protein ataxia telangiectasia 

mutated (ATM) and the checkpoint kinase 2 (CHK2), leading to DNA repair and 

cell cycle arrest and/or apoptosis (132). However, the inhibition of Per1 in non-

malignant cholangiocytes should be also investigated in the future to further 

validate whether Per1 has a rate-limiting role in the malignant transformation of 

cholangiocytes. 

One question may rise regarding how disrupted clock genes could lead to 

the malignant transformation of cholangiocytes. Previous findings indicate that 

the core clock gene machinery could regulate a group of genes named clock-

controlled genes (CCGs) (56). Hundreds of protein-coding genes showed a 24-

hours oscillation expression pattern in liver (151). The expression of CCGs might 
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shed light on this complicated question. In our study, we found previously 

reported CCGs, WEE1 and DBP, lost circadian rhythms in CCA cell lines. WEE1 

is a nuclear kinase that could inhibit Cdk1 by phosphorylating it on two different 

sites (150). The regulation of Cdk1 by WEE1 is important in controlling the G2/M 

checkpoint (132). This is interesting because after we restored Per1 expression, 

the percentage of cells in the G2/M phase was decreased in Mz-ChA-1 cells, 

indicating that Per1 might directly regulate expression of WEE1, which affects 

the downstream cell cycle-related molecules.  

It is interesting that we found not only do CCGs show circadian rhythm, 

but miRNAs that regulate Per1 expression also show circadian rhythm. We 

found that miR-34a displayed ultracircadian rhythm in CCA cells and normal 

circadian rhythm in H69 cells. The high peak levels of miR-34a coincided with 

the lowest level of Per1 expression, suggesting the direct modulation of Per1 

expression by miR-34a. This phenomenon actually has been predicted by a 

computational model for the interaction of core clock genes with microRNAs, 

which indicated that miRNA-mediated regulation of clock genes could enhance 

the robustness of the circadian rhythms(152). The circadian rhythm exists not 

only in miR-34a expression in cholangiocytes. For example, miR-122, as a 

hepatocyte-specific miRNA, also has circadian rhythm in mouse liver (94). The 

rhythmic transcription of miR-122 precursors has been demonstrated by 

northern blots. By genetic loss of function and gain-of-function experiments, the 

orphan nuclear receptor REV-ERBα has been identified as the major regulator 
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of miR-122. All these findings together indicate that the miRNAs and clock 

genes could interact with each other in a 24-hours oscillation fashion to fine-tune 

the circadian rhythm. Further study needs to be performed regarding the events 

upstream of miR-34a and whether the miR-34a is regulated at the transcriptional 

level. 

As previously shown the circadian rhythm of core clock genes was not 

completely lost in malignant cells. They displayed ultracircadian rhythms with a 

shorter period in murine tumor models (reviewed in (153)). We also found that 

the circadian rhythm of some core clock genes still exists in some of the CCA 

cells. This indicates that the effects of some of the core clock genes might not be 

essential during the malignant transformation of cholangiocytes. Further gain-of 

function and lost-of-function studies need to be performed to further define the 

role of other clock genes.  

Prolonged dark could inhibit biliary hyperplasia and biliary fibrosis by 

regulating core clock gene expression (154). BDL mice exposed to continuous 

darkness for one week showed decreased biliary fibrosis and cholangiocyte 

proliferation due to inhibiting the core clock gene proliferation. We also wanted 

to see whether the darkness therapy could affect tumor growth in CCA. 

However, exposure of nude mice to continuous darkness did not significantly 

inhibit the proliferation of CCA xenografts. However, it is interesting to note that 

the tumor volume of CCA in normal light/dark cycle displayed consistent and 

small deviation, whereas the tumor volume of CCA in mice exposed to 
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continuous darkness showed huge differences between different animals and 

large deviations. This indicates dark therapy might affect the tumor growth in a 

different mechanism compared with that in cholestasis. Further studies need to 

confirm whether circadian rhythms of these core clock genes are changed.  

In summary, our work helps to define the role of circadian rhythm of core 

clock genes in CCA, the correlation of microRNA to clock genes and CCA and 

the therapeutic effect of Per1 and miR-34a in CCA. Our findings build the bridge 

of microRNA and circadian rhythm in CCA for the first time. The modulation of 

Per1 and miR-34a could provide a possible prognostic and therapeutic effect in 

clinical applications. Further studies need to be performed regarding the role of 

other core clock genes in CCA as well as the possible involvement of other 

miRNAs. The potential molecular mechanism(s) of how Per1, miR-34a and the 

upstream regulator lead to the malignant transformation of cholangiocytes also 

needs to be further investigated.  
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NOMENCLATURE 

 

CCA  Cholangiocarcinoma 

PSC  Primary Sclerosing Cholangitis 

cAMP  3’-5’-cyclic adenosine monophosphate 

PKA  protein kinase A 

PKC  protein kinase C 

CFTR  cystic fibrosis transmembrane conductance regulator 

AE2  Cl-/HCO3- anion exchanger 2 

SCN  suprachiasmatic nucleus 

CLOCK   circadian locomotor output cycles kaput 

Bmal1  brain and muscle-Arntlike1 

Per1/2/3   Period 1, 2, and 3 

Cry1/2  cryptochrome 1 and 2 

CCGs  clock-controlled genes 

RISC  RNA-induced silencing complex  

PDCD4  programmed cell death 4 

CREM  cAMP responsive element modulator 

FACS   fluorescence-activated cell sorting 

PI   propidium iodide 

FITC   fluorescein isothiocyanate 

EV  empty vector 
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OE  overexpressing 

PCNA  proliferating cell nuclear antigen 

PCR  polymerase chain reaction 
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