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ABSTRACT 

 The objective of this research work is to identify and analyze the interactions between 

wear mechanisms in a machining tribosystem, and to confirm the fundamental 

physicochemical material interaction behavior through tribometric tests. The machining 

tribosystem under study involves dry turning of a grade-5 titanium alloy (Ti-6Al-4V) with 

uncoated tungsten carbide-cobalt (WC-Co) cutting tools. The interactions being investigated 

involve both individual and combinations of macro and microstructural wear mechanisms 

that are predominantly force or temperature controlled. The worn surface obtained with 

different operational parameters was examined by scanning electron microscopy (SEM) and 

the elemental composition analyzed by energy dispersive spectroscopy (EDS). In addition, 

the topology of worn tools was characterized through scanning by a 3D optical surface 

profiler. The following major interactions were observed. At low cutting speeds, adhesion of 

Ti alloy and minor diffusion of C was observed (which increases with feed). At medium and 

high cutting speeds, the increased diffusion of Co led to WC grain pullout forming a crater, 

followed by the adhesion of Ti alloy. Also, at low feed rates C pullout and deposition was 

observed. Machining process conditions were appropriately represented in ball-on-disc 

tribometric bench tests to study the associated material behavior – two of the above 

interactions were confirmed. These led to recommendations to increase productivity by 

enabling selective wear mechanism interactions (though parameter selection) thus providing 

a better understanding of how the final worn tool surface is generated. 
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1. INTRODUCTION 

 

1.1 OBJECTIVE 

The objective of this research work is to identify and analyze the interactions between 

wear mechanisms in a machining tribosystem, and to confirm the major fundamental 

physicochemical material interaction behavior through tribometric bench tests. The 

machining tribosystem under study involves dry turning of a grade-5 titanium alloy (Ti-6Al-

4V) with uncoated tungsten carbide-cobalt (WC-Co) cutting tools. Machining process 

conditions are appropriately represented in tribometric bench tests to study the associated 

fundamental material behavior. The interactions being investigated involve both individual 

and combinations of macro and microstructural wear mechanisms that are predominantly 

force or temperature controlled. This investigation is expected to provide a better 

understanding of how major wear mechanisms interact so as to generate the final worn tool 

surface. 

 

1.2 MOTIVATION 

The motivation for this work is to truly understand the interactions between wear 

mechanisms and how they affect the final wear state of a surface within a machining 

tribosystem. Traditionally, investigators have studied wear mechanisms individually [1, 2]. 

However, different wear mechanisms occur simultaneously in a tribosystem and they interact 

with each other. Therefore, studying the interactions between wear mechanisms is necessary 

to truly understand the wear process as a function of operational parameters - this will help 

predict and control the cumulative wear state of tool materials effectively. Figure 1-1 shows 
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the worn surface of a WC-Co tool used to turn Ti-6Al-4V which illustrates multiple wear 

mechanism interactions. A crater seems to have formed first due to the Co-binder leaving 

with the chips leading to WC grain pullout. A deficiency of C in the crater (and deposition on 

the tool surface) suggests high temperature dissolution. Additionally, Ti was found adhered 

over the crater, as well as C build-up over this adhered layer possibly due to C being 

“chemically-pulled” out of the tool body.  

 

 

Figure 1-1 Worn surface of a WC-Co tool used to turn Ti-6Al-4V showing wear mechanism interactions. A 

crater was formed due to the Co-binder leaving with the chips, & eventual WC-grain pullout. C seems to have 

left the crater due to high temperature dissolution (and deposited on the surface). Further, Ti was found adhered 

as well as C built-up over the crater. 
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Thus, such complex wear mechanism interactions need to be thoroughly investigated to 

fundamentally understand the synergistic wear process. Tribometric bench tests will help 

investigate physicochemical material behavior in a simpler setting at the model-level test [3].  

 

1.3 METHODOLOGY 

From previously conducted machining experiments, the worn surface of cutting tools 

were analyzed by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy 

(EDS), and a 3D optical surface profiler to identify the dominant wear mechanisms at 

different process conditions. Then, the major interactions between them were identified and 

characterized as a function of process parameters. Finally, these mechanisms and interactions 

were mapped onto a feed rate vs. cutting speed plot. 

For the associated tribometric tests, the machining tribosystem operational parameters 

were first scales as suitable for the pin-on-disc tribometer. After conducting tribometric tests, 

the worn surfaces of the ball were analyzed by SEM, EDS, and the 3D surface profiler. The 

observed wear mechanism interactions between the machining tribosystem (field-level test) 

and tribometric bench tests (model-level test) were compared to confirm the fundamental 

material physics. These analyses led to recommendations to increase productivity by 

enabling selective wear mechanism interactions (though parameter selection) thus providing 

better understanding of how the final worn tool surface is generated as a result of major wear 

mechanism interactions. 
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2.  BACKGROUND AND LITERATURE REVIEW 
 

This chapter covers the relevant background and literature review for this work. The 

topics are grouped into seven sections for organization: 

1. The Machining Tribosystem 

2. Tool Material: WC-Co 

3. Types of Wear Mechanisms 

4. Transitions in Wear Rate/Mechanisms and Interaction of Wear Mechanisms 

5. Wear Testing and Selection of Testing Method 

 

2.1 THE MACHINING TRIBOSYSTEM 

The machining process can be analyzed as a tribosystem with a number of inputs and 

outputs, which are affected by disturbances as well as experience some losses. The 

machining tribosystem involves the turning of Ti-6Al-4V by WC-Co tools, where the region 

of interest is interface between the rake face of the cutting tool and the chip flowing over it. 

Machining is one of the most popular manufacturing processes. It is used for primary 

processing and finishing of simple and complex profiles for low/high production volumes 

with good finishes. It is a complex process with two simultaneous operations: large strain 

plastic deformation in a concentrated shear zone and material transport with the chip flow [4]. 

As a result, the cutting tool experiences high forces which can be resolved into cutting force 

and thrust force on the tool or normal force and friction force on the tool/chip interface. 

Further, the tools also experience high temperatures (with increasing speed), often exceeding 

1000°F. Figure 2-1 shows the typical turning operation. Figure 2-2 shows the schematic 

illustration of orthogonal turning where the chip is formed during the process. 
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Figure 2-1 (A) Typical turning operation on a lathe [5].  (B) Image of an actual bar turning operation [6]. 

 

 

Figure 2-2 Schematic illustration of orthogonal turning where the chip formation process can be considered to 

be two-dimensional [5] 

 

WC-Co tools can usually be classified into two categories, which are ISO K-type for non-

ferrous metals and ISO P-type for ferrous metals. The K-type WC-Co is used in this study, 

which contains hard WC grains and about 4-12% Co binder. The important parameters of 

interest of WC-Co tool include Co concentration, carbide grain size, distribution of mean 

carbide grain size, bonding layer thickness, etc. which determine their hardness (decreases 
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with temperature) and transverse rupture strength. For instance, the increase of Co content 

will decrease the hardness and increase its transverse rupture strength (within limits). 

Ti-6Al-4V is an alloy which has high fracture and corrosion resistance, and can maintain 

high strength at elevated temperatures. Thus, it is a good candidate material for the aerospace 

industry. However, titanium alloys also have some disadvantages, such as low modulus of 

elasticity, high chemical reactivity and low thermal conductivity [7]. The low thermal 

conductivity of Ti-6Al-4V results in the majority of the generated heat flowing into the tool 

edge (about 80%) [8], rather than the chip or the stock, thereby wearing out the cutting tool 

faster. 

When a WC-Co tool cuts Ti-6Al-4V, common wear mechanisms observed are adhesive 

wear due to Ti-adhesion, diffusion of Co to the chips, loss of C, and WC grain pull-out. High 

cutting speed (and hence high temperatures) will accelerate the wear. By using coolant, one 

can effectively reduce the frictional force and the temperature and mitigate wear to an extent 

[9]. High pressure coolant application is recommended rather than flood coolant. Other 

common measures to mitigate wear include controlling the hard impurities/inclusions which 

contribute to abrasion, applying thermal spray coating on the tool surface [10], find the 

optimum cutter diameter to width of cut ratio, set range of recommended cutting speeds, 

feeds, spindle specifications [11], etc. 

 

2.2 TOOL MATERIAL: WC-CO 

Tungsten carbide (WC-Co) is a composite, which consists ceramic and metal. It is being 

regarded as one of the most commonly used carbide. Figure 2-3 shows the microstructure of 

WC-Co. The grains with different shapes are the WC grains and the white part is the Co.  
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WC-Co tools have been divided into two categories, which are the ISO K-type for non-

ferrous metals and the ISO P-type for ferrous metals. The K-type tool substrates contain hard 

WC-grains and about 4-12% of the softer or ductile Co-binder [12].   

It is common for cemented carbide tools to have a carbide grain size of less than l μm. 

There are two main phases in a WC-Co, which are the tungsten carbide phase, and the binder 

phase. Tungsten carbide has a highly anisotropic structure. With the crystal growth, the 

shapes of anisotropic crystal develop into flat triangular prisms or polygonal shapes with 

clear boundaries. WC has a quantitatively low crystal defect densities. This is because that 

the residual stresses during sintering are accommodated by plastic deformation. Figure 2-3 

[13] shows the microstructure of WC displaying the straight faceted WC grain. Cobalt is the 

most commonly used bonding metal or binder, which separates the carbide particles. Unlike 

the WC grain, the Cobalt phase has relatively high dislocation density and stacking faults. 

The ductility from this cobalt phase and the strength provided by the harder WC phase give 

the high toughness of WC-Co [14]. A cobalt skeleton forms in the microstructure when the 

content of Co is high. Relevant physical and chemical properties of WC-Co are shown in 

Table 2-1. 
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Table 2-1 The physical and chemical properties of WC-Co [12, 15, 16] 

 
WC-Co 

Grain size H10A (0.54μm) H13A (0.61μm) 

Composition 10.2% Co, 89.8% WC 10.2% Co, 89.8% WC 

Density (g/cm3) 14.96 

Hardness (HV) 1675 1580 

Young's Modulus (GPa) 580 [16] 

Ultimate Tensile Strength 

(MPa) 
1440 

 

 

Figure 2-3 Typical microstrucute of WC-Co [13] 

   

The typical mechanical properties of interest for WC-Co tool as a function of the 

percentage of Co content is shown in Figure 2-4 [5]. The important parameters of interest of 

WC-Co tools include cobalt concentration, carbide grain size, distribution of mean carbide 

grain size, and bonding layer thickness. These parameters determine their hardness (strength) 

and transverse rupture strength (TRS), which is a measure of its toughness, or the amount of 
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energy it can absorb until fracture. From Figure 2-4, the hardness decreases with the increase 

of the Co content. On the other side, the TRS increases with the increase of Co content. 

 

 

Figure 2-4 The effect of Cobalt content on the mechanical properties of WC-Co cutting tools [5]. 

 

Temperature is another factor affects the hardness of WC-Co cutting tool, in which the 

hardness of WC-Co decreases as the temperature increases. WC tools are generally usable 

until about 800 °C, beyond which the hot-hardness is unsatisfactory [5]. 

 

2.3 TYPES OF WEAR MECHANISMS 

Common classifications of major wear mechanism include the following: 

2.3.1 Adhesive Wear 

Adhesive wear occurs when two materials rub together with sufficient force to cause the 

removal of material from the less wear resistant surface [17]. Adhesive wear refers to a type 

of wear generated by the sliding of one solid surface along another surface, as shown in 
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Figure 2-5  Schematic images of adhesive wear [19]. Adhesive wear denotes a wearing action 

in which no specific agency can be identified as the cause of the wear [18]. 

 

 

Figure 2-5  Schematic images of adhesive wear [19] 

 

The wearing process involves many variables, which include bonding between substrates, 

materials dependence, conformity of contacting surface, few of which have been studied 

sufficiently to formulate wear equations that can be used by designers. Until now, the most 

widely publicized equation is Archard equation [20], which is 

 

V = Kad

WL

H
                                                                        (2.1) 

 

Where 𝑉 is the wear volume,  𝐾𝑎𝑑 is called the wear coefficient for adhesive wear.  𝑊 is the 

total normal load, 𝐿 is the sliding distance, and  𝐻 is the hardness of the softest contacting 

surfaces. The physical meaning of 𝐾𝑎𝑑 is the wear volume fraction at the plastic contact zone, 

and it is strongly affected by the material properties and the geometry of the zone in 

compression and shearing. In the adhesive wear of metals wear coefficient 𝐾𝑎𝑑  varies 

between 10−7 and 10−2 depending on the operating conditions and materials properties.  

http://en.wikipedia.org/wiki/Hardness
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Adhesive wear mechanisms are analyzed separately for metals and polymers. In 60-40 

brass versus tool steel, adhesive wear was observed via two different mechanisms, which 

produce two effects. One is local adherence of brass to steel, and the other is continuous film 

formed by zinc oxide. Also, it is indicated that transition between severe ear and mild wear is 

affected by sliding speed, applied load, and ambient temperature. Hard metals do not wear 

soft metals away. In the rubbing of polymers on metals, a thin film of polymer is established 

on the metal surface. The formation of this film can be divided by three steps, which are 

break-in regime, steady-state wear regime and severe wear regime. In this process, there are 

two factors in controlling the formation of transfer film. One is the surface finish orientation 

to sliding direction and the other surface cleanliness. 

Some measures to prevent the adhesive wear, such as avoiding sliding similar material 

together. Also, comparison of the relative hardness of materials is needed considered before 

working. Lubrication is another way to reduce wear. 

2.3.2 Abrasive Wear 

According to the definition of ASTM [21], abrasive wear is due to the hard particles or 

hard protuberances that are forced against and move along a solid surface.  

According to different types of contact, abrasion can be categorized two-body and three-

body wear, which is as shown in Figure 2-6 [19]. Contact environments are classified as 

either free or constrained. From Blickensderfer test, the measurements of the loss in closed 

systems are higher than that in open system due to the higher loads in closed systems. 

Abrasion can be further categorized as being low stress, high stress, or gouging.  

 



 

 

12 

 

 

Figure 2-6 Schematic images of abrasive wear [19] 

 

There is no single one mechanism can be used to completely clarify the loss during 

abrasion. The commonly proposed mechanisms include fracture, fatigue and melting. The 

abrasive wear is affected by many material properties, which include hardness of material, 

work harden, crystal structure and orientation, microstructure, fracture toughness, and 

alloying. For example, the harnesses were inverse linearly related to abrasive wear. The 

materials with constant hardness and different fracture toughness also shows different wear 

rate. The one with higher toughness shows a smaller wear rate. Alloying is another method to 

improve abrasion resistance. 

The environment is also very critical to abrasive wear. The environmental factors include 

the type of abrasive and its characteristic, humidity speed of contact and corrosive effect. For 

instance, the hardness of the abrasive particles affects the abrasion rate of the subject 

materials. There is one analytical model [22] to explain the abrasive wear, which is expressed 

as the following. 
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 Vg =
2ltanα

πH
Wg                                                                     (2.2) 

 

Where Vg  is the volume of removed material, l is the distance travelling, α is the angle, H is 

the material’s yield stress under indentation (hardness) and Wg  is the individual load. It 

shows that the abrasive wear is proportional to the load, following the Archard equation [20], 

which was derived for adhesive wear and also very useful for abrasive wear. 

2.3.3 Oxidative Wear 

Oxidative wear refers to wear affected by material surface reaction with oxygen [22]. 

Oxidative wear has the surprising characteristic that although wear might be severe it is 

usually accompanied by a diminished coefficient of friction. Temperature and sliding speed 

are two critical factors in determining the rate of oxidative wear. It was found that when the 

temperature and sliding speed are high enough to increase the contact temperature by several 

hundred, the debris will change from iron to iron oxides. Archard [23] proposes an 

assumption that when the thick oxidative film was formed, the mild oxidative wear prevailed 

and if the thick film was broken down or worn away severe wear would happen. Figure 2-7 

shows the formation of thick oxidative wear on piercing tools. The thickness is related to the 

temperature. Usually, the thickness of the oxidation thin film is larger at high temperature. 
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Figure 2-7 Thick oxidative wear scales formation on piercing tools [24] 

 

2.3.4 Diffusive Wear 

When two opposing surfaces maintain true contact at a high interface temperature, 

significant diffusion of chemical elements from one body to another can occur [22]. The rake 

face of a cutting tool close to the cutting edge in high-speed machining is a typical example. 

In this situation, there is almost the perfect contact between the tool and the metal chip due to 

the extreme contact stresses and very high temperatures, reaching 700°C or more [25]. The 

metal chip represents a continually refreshed supply of relatively pure metal while the tool is 

a high concentration mixture of some radically different elements, such as tungsten and 

carbon. Therefore, some elements in the tool have a trend to diffuse into the chip. When the 

surface material of the tool loses a vital alloying element it becomes soft and is very soon 

worn away by the chip [25]. Figure 2-8 shows the diffusion mechanism in cutting titanium 

alloys with tungsten carbide cutting tool. The diffusive wear rate of cutting tools depends on 

the tool material solubility limits in the workpiece. The rate of diffusive wear can be 

expressed as the following [26]: 
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W = (2Cs/ρ)(VD0
′ /πx)

1
2 exp (−

Q′

2RT
)                                            (2.3) 

Here, 𝐶𝑠 is the concentration of Cobalt in the chip at the chip-tool interface (assumed 

equal to the original Cobalt concentration in the tool; 𝜌  is the density of the diffusing 

substance; 𝑉 is the velocity of the chip; 𝑥 is the distance along the rake face, measured from 

the tip of the tool and 𝐷0
′  and 𝑄′ are, respectively, the pre-exponential coefficient and the 

activation energy for the diffusion of Cobalt inside the Titanium alloy [26]. 

 

 
 

Figure 2-8 Diffusion mechanism in cutting titanium alloys with tungsten carbide tool [1] 

 

Also, dissolution wear occurs when two materials with different chemical potentials are 

in contact with each other. To some extent, dissolution wear can be considered as a superset 

of diffusive wear and dissociation into elements [27, 28]. It is to be noted that there are a 

series of chemically driven mechanisms such as diffusion, dissolution and chemical reaction 

happening during the formation of a crater. All these chemically driven mechanisms can be 
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grouped together as “generalized dissolution.” For a WC-Co tool machining a Ti-6Al-4V 

workpiece, this consists of the following processes: 

 Dissociation of tool material into WC, and Co, 

 Chemical reaction of these dissociated species with Ti-6Al-4V stock material, 

 Atomic transport across the tool-chip interface (in both directions), and 

 Diffusion of the dissociated species that have not been consumed. 

2.3.5 Other Chemically Driven Wear Mechanisms 

Besides the wear mechanisms above, other chemically driven wear mechanisms exist 

such as corrosive wear.  Corrosive wear is the degradation of materials in which both 

corrosion and wear mechanisms are involved [18], which usually occurs in a corrosive 

environment caused by the chemical reaction. Figure 2-9 shows an example of corrosive 

wear, in which a corrosive layer is formed by the chemical reaction between Fe and H2SO4. 

When corrosive attack exists on the surfaces and the sliding action wears off the corroded 

surface film, corrosive wear occurs. If the corroded compounds formed are harder than the 

original material and it is loose particles, the wear rate accelerates. If the corroded 

compounds formed are softer, this acts to reduce the wear rate [29]. 
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Figure 2-9 Schematic figure of corrosive wear,in which the corrosive products formed by chemical reaction [29]. 

 

2.4 TRANSITIONS IN WEAR RATE/MECHANISMS AND INTERACTIONS 

Numerous researchers have studied the transition of wear mechanisms, which include (1) 

the transition in the dominance from one wear mechanism to another, and, (2) the transition 

(or change) of wear rate of one particular wear mechanism. 

Relevant investigations on dominance transition from one wear mechanism to another 

include the following. Sasada [30] reported that the abrasive grain size has an effect on the 

transition between abrasive and adhesive wear. Okonkwo [31]  reported that temperature 

affects the wear mechanism transition from adhesive wear to material removal by ploughing. 

Kagnaya [32] pointed out that the wear mechanisms of WC-Co tools cutting steels change 

from plastic deformation and micro-cracking of WC grain, to diffusive wear when increasing 

the sliding speed. At low sliding speeds, plastic deformation and micro-cracking of WC grain 

occurred, while diffusive wear occurred at high sliding speeds. Generally, the transitions of 

wear mechanisms are described by wear maps; and an example is shown in Figure 2-10. This 

wear map is for uncoated WC cutting tools when dry turning steel. 

http://www.sciencedirect.com/science/article/pii/S0043164809000659
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Figure 2-10 Wear map for uncoated WC cutting tools when dry turning steel  [33]. 

 

Similarly, some relevant investigations on transition in wear rate include the following. 

For steel / tool steel pairs, Wang [34] and So [35] reported that increase in the load affects 

the rate of oxidative wear in steels from mild wear to severe wear in dry sliding. Okonkwo 

[31] reported that temperature is also a critical factor on change of rate of sliding wear of 

steel / tool steel pairs. For WC-Co, the wear rate decreases by decreasing the binder (Co) 

content and increasing the hardness [2]. For WC-Co, the wear rate increases by increasing 

the binder (Co) content [2] and increasing grain size [36]. Hsu [37], Xu [38], and Cho [39] 

investigated the effects of temperature and cutting speed on the wear rate transition of 

alumina. Figure 2-11 shows the plots of transitioning wear rate versus sliding time under 

different applied loads for alumina. 
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Figure 2-11 Log plot of wear scar diameter VS sliding time for 4 μm grain sized alumina under different applied 

loads [39]. 

 

However, there are no reports on the interactions among and between wear mechanisms. 

In reality, the final wear state of a surface is the result of a number of wear mechanisms 

occurring and synergistically interacting simultaneously. For instance, after the dominant 

wear mechanism changes from one to another, the former dominant wear mechanism may 

still be in effect. This means that more than one wear mechanisms may exist simultaneously. 

This research work will focus on addressing interactions between these wear mechanisms. 

In order to analyze the interactions between wear mechanisms, these can be divided into 

force-controlled wear and temperature-controlled wear [40]. Force-controlled wear describes 

wear mainly governed by the process of deformation and fracturing. The deformation process 

has a substantial role in the overall wear process of ductile materials, and the fracturing 

process has a major role in the wear process of brittle materials. Force-controlled wear can be 

also called “mechanical wear”, which include adhesive wear, abrasive wear, etc.  On the 

other hand, temperature-controlled wear describes the wear related to the change of 
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temperature. It can also refer to the wear became noticeable at high temperature, such as 

diffusive wear. In addition to diffusive wear, temperature-controlled wear include chemical 

wear, thermal wear, oxidation wear and so on. 

When studying the collective wear of WC-Co tools, the interactions and dependency of 

each of these wear mechanisms with each other needs to be considered as well. The two main 

factors that affect chemically driven wear in machining are temperature and relative chemical 

affinity of the tool and workpiece material constituents. It is not straight forward to explicitly 

differentiate between force and temperature-controlled wear mechanisms as they occur 

simultaneously. This research is an attempt to investigate the interactions among and 

between them. 

 

2.5 WEAR TESTINGS AND SELECTION OF TESTING METHODS 

Wear testing is usually conducted by tribometer, which is an instrument that measures 

tribological quantities, such as coefficient of friction, friction force, and wear volume. 

Tribometers are often referred to the specific contact arrangement they simulate. Several 

arrangements exist, such as four ball [41, 42], pin-on-disc [43], block on ring [44], bouncing 

ball, SRV testing machine, reciprocal sliding wear test [45], twin disc, etc. The most 

common ones, such as four-ball method, pin-on-disc, block-on-ring and reciprocal testing, 

are briefly explained. 

 

 

 

 

http://en.wikipedia.org/wiki/Coefficient_of_friction
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2.5.1 Common Wear Testing Methods 

2.5.1.1 Four-Ball Method 

Four-ball method is usually used to determine the measurement of properties of the most 

popular oil additive, such as lubricating grease. There are two arrangements for this test, 

which are Precision Scientific Company Four-Ball Test Arrangement and Falex Corporation 

(Roxanna) Four-Ball Test Arrangement, as shown in Figure 2-12 [41].  
 

 

Figure 2-12 (left) Precision scientific company four ball test arrangement and (right) Falex corporation Four-

ball test arrangement [41] 

 

In each of the above two four-ball test arrangements, three 12.7 mm diameter steel balls 

are fixed together and the lubricant is covered on them to be evaluated. A fourth 12.7 mm 

diameter steel ball on the top is pressed with a force of 392 N into the cavity formed by the 

three clamped balls for three-point contact. The temperature of the lubricating grease 

specimen is regulated at 75°C and then the top ball is rotated at 1200 rpm for 60 min. 

Lubricants are compared by using the average size of the scar diameters worn on the three 

lower clamped balls [42].  
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2.5.1.2 Pin-on-Disc Method 

Pin-on-Disc test [43] is used to determine the wear of materials during sliding. In pin-on-

disc wear test, a pin with a tip is positioned perpendicular to a flat circular disk. In this test, 

either the disk specimen or the pin specimen is set to revolve about the disk center and the 

pin is pressed against the disk at a selected load. This test is conducted at a specified value of 

sliding distance, load and speed.  The wear result is reported as volume loss. 

Figure 2-13 shows a schematic drawing of pin-on-disc test arrangement, where F is 

applied normal load, R is radius of the wear track that is produced, d is diameter of the 

spherical top of the pin, D is Diameter of the disk and w is rotational speed. 

 

 

Figure 2-13  Arrangement of ball-on-disc test. The pin is stationary and the disc is rotating.  [43] 

 

The precision of this test depends on the test parameters chosen. The reproducibility of 

repeated tests on the same material will depend on material homogeneity and the interaction 

between machine and material.  

 

 



 

 

23 

 

2.5.1.3 Ball-on-Disc Wear Test 

The ball-on-Disc apparatus tests the sliding wear and friction of the coatings. It consists 

mainly of a ball, and a horizontally rotating disc at the bottom of the ball as shown in Figure 

2-14 [46]. The stationary ball was loaded by a dead weight on the top of the ball. The rotating 

disc was driven by a d.c. motor. The tangential force originated from the normal force was 

measured by a strain gauge. The experimental data were collected and displayed graphically 

using a microcomputer via an analogue-digital converter.  

 

Figure 2-14 Schematic illustration of ball-on-disc test. The ball is stationary and the disc is rotating. [46] 

 

2.5.1.4 Block-on-Ring Wear Test 

Block-on-Ring test is used to determine sliding wear of various materials. The stationary 

block specimen is stationary and is applied a constant force while the ring specimen is 

rotating at a direction perpendicular to the ring's axis of rotation [44].Friction between these 

two specimen leads to the loss of material from both surfaces. This block-on-ring test is 

mainly used for metals. The test may be run at the loads, velocities, and temperatures which 
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simulate the service conditions with various lubricants and liquids. The volume loss in cubic 

millimeters for both the block and ring is used as the wear test results. The following is a 

typical test setup, as shown in Figure 2-15. 

 

 

Figure 2-15 Arrangement of block-on-ring test [44] 

 

2.5.1.5 Reciprocal Sliding Wear Test 

The reciprocal sliding wear test [45] utilizes a flat lower specimen and a ball-shaped 

upper specimen are utilized and the ball-shaped upper specimen slides against the flat 

specimen in a linear, back and forth way under a prescribed set of conditions. In this test 

method, the load is applied vertically downward through the ball specimen against the 

horizontally mounted flat specimen. The normal load, stroke length, frequency of oscillation, 

test temperature, lubricant, and test duration are selected from one of two procedures given in 

Table 2-2. 
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Table 2-2 Parameters used for reciprocal sliding wear test 

Procedure Lube Temp. 
Applied 

load 

Stroke 

length 

Oscillating 

frequency 
Duration 

A No Ambient 25 N 10.0 mm 5.0 Hz 16min40sec 

B Yes 150 °C 200 N 10.0 mm 10.0 Hz 30min20sec 

 

2.5.1.6 Pin-on-Drum Abrasive Wear Test 

Pin-on-Drum test is used to study the wear that occurs during crushing and grinding of 

ore [47]. The test rig is shown in Figure 2-16Figure 2-16 Arrangement of pin-on-drum wear 

test [47]. A cylindrical pin specimen is moved over abrasive paper with sufficient load to 

abrade material from the specimen and crush the fixed abrasive grains. The sample pin also 

rotates while moving. In this high-stress abrasion test, the load is sufficient to fracture the 

abrasive particles. 

 

 

Figure 2-16 Arrangement of pin-on-drum wear test [47]  
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2.5.1.7 Taber Abraser Test 

The Taber Abraser, which is shown in Figure 2-17, is designed to test abrasive wear. In 

Taber Abraser, a specimen is mounted on a rotating turntable and subjected to the wearing 

action of two abrasive wheels applied at a specific load. The rotating turntable will drive the 

wheels. In this process, abrasive wear is produced by the sliding-rotation of the two abrading 

wheels against the specimen. The resulting abrasion marks form a circle on the specimen 

surface. The resistance of abrasive wear is described by this circle. 

 

Figure 2-17 Schematic diagram of Taber Abraser  [47] 

 

2.5.1.8 Ball-on-Three-Discs Wear Test 

The Ball on Three Disks tester is a bench test to measure diesel fuel lubricity [48], which 

is shown in Figure 2-18. In this tester, it consists of a ceramic ball that revolves for 45 

minutes against 3 metal disks that are pressed against the ball whilst being immersed in a test 

fuel sample. The final wear scar diameter (WSD) on the ceramic ball determines the lubricity 

of fuel sample. A low WSD indicates a good lubricity fuel sample and a high WSD indicates 
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a poor lubricity fuel sample. This test is a new test. This test and the result of test have been 

sent to ASTM by the Falex Corporation. 

 

Figure 2-18 Ball on Three Disc tester with original fuel test cup disc holder and fuel test cup lid [48]  

 

2.5.1.9 Particle Erosion Wear Test 

The particle erosion wear test is usually used to test the erosion resistance of materials 

and coatings. This erosion test machine, which is shown in Figure 2-19, controls a repeated 

impact erosion approach which involves a small nozzle delivering gas stream containing 

abrasive particles. These particles impact the surface of a test specimen and erosion wear 

occurs. The erosion rate can be expressed by the amount of weight loss per unit of time. The 

Test System may be used to rank the erosion resistance of different materials. 

 

Figure 2-19 Picture of Erosion Test Machine [49] 
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2.5.1.10 Fretting Wear Test 

The fretting wear test is usually used to test the fretting wear of the materials. Fretting 

wear occurs where there is oscillatory motion with a small displacement of the contacting 

surfaces under load. The fretting wear test rig is shown in Figure 2-20 [50]. In this rig, the 

research object is two rolling bearings and the fretting wear of bearings is studied. An 

eccentric cam and crank mechanism were used to minutely oscillate the bearings to cause the 

fretting wear on them.  

 

 

Figure 2-20 Schematic diagram of Fretting Wear Test [50] 

 

2.5.1.11 Ball Cratering Test 

The Ball Cratering Test is used to test the mild abrasive wear resistance of the coatings 

[51] and to measure the coating thickness of coatings [52]. The schematic diagram is shown 

in Figure 2-21, which is three-body abrasion test. This apparatus consists of a hard steel ball 

being rotated by drive shaft against to the sample at certain speed. The contact between ball 

and sample is fed with abrasive slurry. After some cycles, a crater will be formed on the 

sample. 
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Figure 2-21 Schematic diagram of Ball Cratering Test [51] 

 

2.5.2 Selection of Wear Test Methods 

The bench tests described above are used for quality control functions such as thickness 

of coating, porosity, adhesion, strength, hardness, ductility, and wear resistance of coating 

and bulk materials. These bench tests serve for replicating and investigating real-world wear 

problems. The transition from the real-world wear problem to the bench test solution needs to 

be explored. Extracting the necessary key information in the field problem is very important 

for the following steps of bench test. This transition sometimes is a very difficult process, 

and in some case it involves some compromises due to the lack of information, availability of 

the bench test equipment and the economic reasons. 

Voitik [53] generalized a procedure to select the wear test method, as follows. First, the 

characteristics of the field problem is evaluated, which include recording characteristics of 

contact velocity, contact area, contact pressure, and entry angle. An appropriate bench test is 

then selected from Tribology Aspect Number (TAN) tables [53]. Then, the test conditions 

need to be established. The test conditions must be based on the field conditions, which 

include contact pressure, speed, lubricants, materials, hardness and surface finishes. Finally, 
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the temperature is set to represent the field condition. The bench test is usually run for lower 

cycle times compared to the real-world scenario for economic reasons. 

In this research, we focus on the wear mechanisms of WC-Co. We need to know the 

conditions and relative parameters during the real manufacturing process. Then we determine 

which test method is feasible and also can provide the similar conditions as that of machining 

process for a more accurate simulation. Next, we need to determine the variables to be used 

in the experiment, which affect our objective. For the wear, the cutting speed, feed rate, and 

cutting time will affect the wear. Also, we need know how to measure our objective and find 

the best way to get our objective. For example, the simplest way to measure the wear is to 

measure the weight loss during and after a test. To measure the weight loss, we can measure 

the volume loss, the crater height if crater occurred after the experiment. We can also 

measure the wear coefficient. 

Currently, the methods used to test the wear properties of WC-Co include the Pin-on-

Disc test, Ball Cratering test, Ball-on-Disc. Zhao [54] studied the friction and wear properties 

of WC-Co sliding against Ti-6Al-4V alloy by Rotating Pin-on-Disc test. He found a distinct 

difference in wear mechanism between the pin and disc. For Ti-6Al-4V disc, severe grooved 

wear, squeezing, adhering and tearing interactions are the main mechanisms. For WC-Co pin, 

abrasion, adhesion and WC grain pulling out are the main mechanisms. Acker [51] studied 

the influence of tungsten carbide particle size and distribution on the wear resistance of laser 

clad WC/Ni coatings by Ball-on-Disc and Ball Cratering test. The Ball-on-Disc test shows 

that an increase in concentration of the carbides and a decrease in their size are both 

favorable for the wear resistance. In Ball Cratering test, wear coefficient decreases with 

increasing carbide concentration. Xu [55] studied the friction and wear properties of 
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Ti6Al4V/WC-Co friction pair were studied using an autonomous atmospheric pressure bare 

electrode cold plasma jet generating device and Block-on-Ring wear tester, respectively. 

Kagnaya [32] used Pin-on-Disc wear test to study the friction and wear of WC-Co cemented 

carbide. The WC-Co is the pin and the steel is served as disc. The pin experienced different 

wear mechanisms at different speeds. At low sliding speeds, the wear mechanisms of the pin 

deal with plastic deformation and micro-cracking of WC grains, fragmentation and 

debonding of WC grains and polishing of the pin contact surface. At high sliding speeds, a 

supplementary wear mechanism is observed. It deals with transfer of iron oxide. 
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3.  RESEARCH METHODOLOGY 
 
This chapter briefly describes the research methodology that was used to attain the 

objective of this work. As stated before, the objective of this research work is to identify and 

analyze the interactions between wear mechanisms in a machining tribosystem, and to 

confirm the fundamental physicochemical material interaction behavior through tribometric 

tests. 

 

3.1 RESEARCH QUESTIONS, TASKS AND OUTPUTS 

 
 RQ 1: What are the major interactions among wear mechanisms in the Ti-6Al-4V / 

WC-Co turning tribosystem, and how do these change as a function of process 

conditions? 

To answer RQ 1, the dominant wear mechanisms observed on the rake face of the cutting 

tool were identified and mapped as a function of feed rate and cutting speed. Following this 

the major interactions between these were identified and mapped as well. 

 Methodology: SEM images, EDS elemental distribution maps, and the 3D surface 

profile (from the white light interferometer) of the worn cutting tool surfaces were 

analyzed to identify the dominant wear mechanisms. Following this, these dominant 

wear mechanisms as a function of the controllable process parameters were mapped. 

Then, the evolution of the major interactions among dominant wear mechanisms were 

identified and charted at different process parameters. Finally, the major wear 

mechanism interactions as a function of the feed rate and cutting speed were mapped.  

 Outputs: The major outputs from these tasks are maps of dominant wear mechanisms 
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and interactions between them as a function of process parameters. 

 

 RQ 2: How do the wear mechanism interactions in tribometric testing compare 

with (field-level) machining tests? 

To answer RQ 2, the operating parameters were calculated for appropriately reproducing 

the tribometric conditions experienced by the rake face of the tool by suitable tribometric 

bench tests. The major interactions among the dominant wear mechanisms in (field-level) 

machining tribosystem and the idealized tribometric bench tests were compared. 

 Methodology: Published guidelines for appropriately representing field-level 

tribosystem conditions by model-level bench tests [18, 56] were used. Based on the 

general rule that the contact stress in tribometric testing should closely match the contact 

stress in machining, the normal stress was converted appropriately. Also, the relative 

surface speed on the rake face of the tool (chip velocity) was converted to the 

appropriate velocity parameter in the bench tests. Finally, the major wear mechanisms 

interactions in bench tests by a combination of SEM, EDS, and 3D surface profiler 

results were identified and compared. 

 Outputs: The output of this task will be analyses of wear mechanisms and interactions 

between the field and model-level tests to characterize fundamental material wear 

interaction behavior. 
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To answer RQ 3, the wear mechanism interactions at different process conditions were 

qualitatively ranked in terms of the total material worn away from the tool (and from the 

tribometric testing component). Then, strategies were devised to minimize collective wear on 

the tool for each process condition. 

 Methodology: The collective material loss that occurred due to each interaction process 

was approximated by the 3D surface profiler and the mechanism interactions were 

ranked accordingly. Then, strategies were devised by recommending process parameters 

so as to obtain a competitive material removal rate (MRR).  

 Outputs: The outputs of this task are strategies to increase tool life by controlling 

process conditions based on ranked wear mechanism interactions. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 RQ 3: How can the operational parameters in the machining process be controlled 

to manipulate wear mechanism interactions so as to increase the life of the cutting 

tool? 
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3.2 OUTLINE 

An outline of this research work is shown in  
Table 3. 1.    

 

Table 3. 1 Outline of this study
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4.  IDENTIFICATION AND MAPPING OF WEAR MECHANISMS 
INTERACTIONS (RQ1) 

 
4.1 EXPERIMENTAL SETUP  

The cutting tool used in this study is a WC-Co insert tool (Sandvik CNGP 12 04 08 

H10A). The workpiece material used here is Ti-6Al-4V. Ti-6Al-4V is a material with poor 

machinability, which is due to the low thermal conductivity and elastic modulus, and high 

chemical reactivity and temperature strength. The low thermal conductivity results in the 

majority of the generated heat flowing into the tool edge (about 80%) [8].  

Worn WC-Co cutting tools from turning tests conducted on Ti-6Al-4V are analyzed in 

this research work. The design of experiment for cutting inserts H10A consists of 3 

combinations of feed rates and cutting speeds [12], which is shown in Table 4-1. The depth of 

cutting is 2 mm. The turning test setup is shown in Figure 4-1. 

 

Table 4-1 Machining test conditions 

Tests Feed rate 
(mm/rev) 

Cutting speed 
(m/min) 

Duration of 
test (s) 

MRR 
(mm3/min) 

1 0.05 30 200 3000 

2 0.05 60 100 6000 

3 0.05 120 50 12000 

4 0.15 30 66.7 9000 

5 0.15 60 33.3 18000 

6 0.15 120 16.7 36000 

7 0.30 30 33.3 18000 

8 0.30 60 16.7 36000 

9 0.30 120 8.3 72000 
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Figure 4-1 Setup of the Ti-6Al-4V turning test 

 

H10A Grade WC-Co Insert has good abrasive wear resistance and large toughness for the 

medium to rough turning of heat resistant steels and titanium alloys [6]. H10A WC-Co inset 

is suitable for machining heat resistant super alloys and titanium alloys. The specification of 

the H10A insert [57] is listed below.  
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Item: Carbide Turning Insert 

Relief Angle: 0° Ground 

Insert Shape: 80° Diamond 

Style: CNGP 

Inset Size: 432 

Chip-Breaker: Groove 

Grade: H10A 

Application: Finishing 

Workpiece Material: Non-Ferrous 

Inscribed Circle: 1/2 inch (12.7 mm) 

Insert Thickness: 0.1875 inch (4.7625 mm) 

Nose Radius: 0.0315 inch (0.8 mm) 

Coating: Uncoated 

Cutting Direction: Neutral 

Mounting Hole Diameter: 0.203 inch (5.1562 mm) 

Mounting Style: Top and Hole Clamping  

Rake: Negative 

No. of Edges: 4 

ISO Number:CNGP 12 04 08 h10a 

ANSI Number: CNGP 432 H10A 

Weigth: 0.01 

The worn cutting tool after each run is characterized by SEM, EDS, and 3D surface 

profiler. Some general guidelines were used to identify the wear mechanisms [58-60], which 
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include that micro-chipping or indications of “chunks” of material pulled away as indicators 

for adhesive wear, wear scars or grooves on the tool caused by harder particles (or inclusions) 

as indicators for abrasive wear, discolorations for oxidation or chemical wear, and smooth 

surfaces on the tool for diffusive wear. 

 

4.2 OBSERVED WEAR MECHANISMS  

From the machining experiments, the major observed wear mechanisms on the WC-Co 

tool surface are explained below: 

 

4.2.1 After Machining 10-cm3 of Ti-6Al-4V Workpiece Stock (Volume-1) 

4.2.1.1 Cutting Speed at 30 m/min (Volume 1) 

The SEM images of cutting tool H10A at cutting speed 30 m/min are shown in Figure 4-2 

and Figure 4-3. Figure 4-2 (left) is the image at the feed rate of 0.05 mm/rev and Figure 4-2 

(right) is the image at the feed rate of 0.15 mm/rev. Figure 4-3 (left) is the image at the feed 

rate of 0.30 mm/rev and Figure 4-3 (right) is the amplified part of the wear area of Figure 4-3 

(left). The dark grey area is the adhesion area. As shown in Figure 4-2 and Figure 4-3, only 

adhesive wear occurs. Also, it is obvious that when the feed rate increases, the area of 

adhered Ti become larger. When feed rate is 0.05 mm/rev, only small amounts of adhered Ti 

were found at the outer edge. When the feeding rate increases to 0.15 mm/rev, there is an 

increase in the amount of adhered Ti area. Figure 4-4 shows EDS image of composition of 

element in cutting tool when cutting speed is 30m/min and feed rate is 0.30 mm/rev. From 

the EDS images, it can be seen the elements at the adhered area are Ti, V and Al. Ti is the 

primary adhered element since Ti is the primary element in Ti-6Al-4V. 
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Figure 4-2 SEM images of tool at a cutting speed of 30m/min and feed of 0.05 mm/rev (left), 0.15 mm/rev 

(right) after machining 10 cm3 

 

Figure 4-3 SEM images of cutting tool when cutting speed is 30m/min and feed rate is 0.30 mm/rev (left) and 

amplified part (right) after machining 10 cm3 

 

 

Figure 4-4 EDS images of composition of elements in cutting tool when cutting speed is 30m/min and feed rate 

is 0.30 mm/rev after machining 10 cm3. The elements are Ti, V, Al, C, and W from left to right. 
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4.2.1.2 Cutting Speed at 60 m/min (Volume 1) 

The SEM images of cutting tool H10A at cutting speed 60 m/min are shown in Figure 4-5 

and Figure 4-6. Figure 4-5 (left) is the image at the feed rate of 0.05 mm/rev, and Figure 4-5 

(right) is the image at the feed rate of 0.30 mm/rev. Figure 4-6 (left) is the image at the feed 

rate of 0.15 mm/rev and Figure 4-6 (right) is the amplified part of the wear area. The 

adhesion of Ti occur at all different feed rates. From the figures, it is obvious that when the 

feed rate increases, the area of adhered Ti becomes larger qualitatively, which follows the 

trend at cutting speed 30 m/min. Also, a smooth surface appears at feed rate 0.15 mm/rev, 

which is the crater. The formation mechanism of crate will be given in the discussion part. 

One feature in Figure 4-6 (left) is carbon discoloration, which is due to the diffusion of C. In 

Figure 4-6 (right), the Ti BUE (built-up edge) is also formed due to the inhomogeneity of Ti 

adhesion distribution. Figure 4-7 shows EDS image of composition of elements when feed 

rate is 0.15 mm/rev. From the EDS image, the primary element at the adhered area is Ti.  

 

 

Figure 4-5 SEM images of cutting tool when cutting speed is 60m/min and feed rate is 0.05 mm/rev (left) and 

0.30 mm/rev (right) after machining 10 cm3 
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Figure 4-6 SEM images of cutting tool when cutting speed is 60m/min and feed rate is 0.15 mm/rev (left) and 

amplified part (right) after machining 10 cm3 

 

 

Figure 4-7 EDS images of composition of elements in cutting tool when cutting speed is 60m/min and feed rate 

is 0.15 mm/rev after machining 10 cm3. The elements are Ti, V, C, W, and Co from left to right. 

 

4.2.1.3 Cutting Speed at 120 m/min (Volume 1) 

The SEM images of cutting tool H10A at cutting speed 120 m/min are shown in Figure 

4-8 and Figure 4-9. Figure 4-8 (left) is the image at the feed rate 0.05 mm/rev and Figure 4-8 

(right) is the image at the feed rate 0.30 mm/rev. Figure 4-9 (left) is the image at the feed rate 

0.15 mm/rev and Figure 4-9 (right) is the amplified part. At cutting speed 120 m/min, the 

adhesion of Ti occurs in all cases. In Figure 4-8 (left), the carbon build-up can be seen at the 

tool edge. Figure 4-10 shows EDS image of composition of element when feed rate is 0.15 
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mm/rev. From the EDS image, it can be learned that the adhered area is mainly composed of 

Ti. And there is no Co on the smooth area.  

 

 

Figure 4-8 SEM images of cutting tool when cutting speed is 120m/min and feed rate is 0.05 mm/rev (left) and 

0.30 mm/rev (right) after machining 10 cm3 

 

 

Figure 4-9 SEM images of cutting tool when cutting speed is 120m/min and feed rate is 0.15 mm/rev (left) and 

amplified part (right) after machining 10 cm3 
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Figure 4-10 EDS images of composition of elements in cutting tool when cutting speed is 120m/min and feed 

rate is 0.15 mm/rev after machining 10 cm3. The elements are Ti, V, C, W, and Co from left to right. 

 

4.2.2 After Machining 20-cm3 of Ti-6Al-4V Workpiece Stock (Volume-2) 

4.2.2.1 Cutting Speed at 30 m/min (Volume 2) 

The SEM images of cutting tool H10A at cutting speed 30 m/min are shown in Figure 

4-11 and Figure 4-12. Figure 4-11 (left) is the image at the feed rate of 0.05 mm/rev and 

Figure 4-11 (right) is the image at the feed rate of 0.15 mm/rev. Figure 4-12 (left) is the 

image at the feed rate of 0.30 mm/rev and Figure 4-12 (right) is the amplified part of the 

wear area. The area of adhesion increases as the feed rate increases from 0.05 to 0.30 mm/rev. 

At feed rate 0.30 mm/rev, some adhered Ti layer are worn way and the new smooth area 

appears. This is different from that at same cutting speed and feed rate in Volume 1. This is 

due to the increase of cutting volume and some area with Ti adhesion is worn away. Figure 

4-13 shows EDS image of composition of element when feed rate is 0.30 mm/rev. From the 

EDS images, it is obvious that the adhesion area mainly composed by Ti.  
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Figure 4-11 SEM images of cutting tool when cutting speed is 30m/min and feed rate is 0.05 mm/rev (left) and 

0.15 mm/rev (right) after machining 20 cm3 

 

 

Figure 4-12 SEM images of cutting tool when cutting speed is 30m/min and feed rate is 0.30 mm/rev (left) and 

amplified part (right) after machining 20 cm3 

 

 

Figure 4-13 EDS images of composition of elements in cutting tool when cutting speed is 30m/min and feed 

rate is 0.30 mm/rev after machining 20 cm3. The elements are Ti, V, C, and W from left to right. 
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4.2.2.2 Cutting Speed at 60 m/min (Volume 2) 

The SEM images of cutting tool H10A at cutting speed 60 m/min are shown in Figure 

4-14 and Figure 4-15. Figure 4-14 (left) is the image at the feed rate of 0.05 mm/rev and 

Figure 4-14 (right) is the image at the feed rate of 0.30 mm/rev. Figure 4-15 (left) is the 

image at the feed rate of 0.15 mm/rev and Figure 4-15 (right) is the amplified part of the 

wear area. The adhesion of Ti occur at all different feed rates. From the figures, it is obvious 

that when the feed rate increases, the area of adhered Ti becomes larger qualitatively. At feed 

rate 0.15 mm/rev, some adhered Ti is worn away and the smooth area appears. This is due to 

the increase of cutting volume, which leads some area with Ti adhesion worn away. Figure 

4-16 shows EDS image of composition of elements when feed rate is 0.15 mm/rev. From the 

EDS image, the primary element at the adhered area is Ti. The carbon discoloration can be 

seen on EDS image. 

 

 

Figure 4-14 SEM images of cutting tool when cutting speed is 60m/min and feed rate is 0.05 mm/rev (left) and 

0.30 mm/rev (right) after machining 20 cm3 



 

 

47 

 

 

Figure 4-15 SEM images of cutting tool when cutting speed is 60m/min and feed rate is 0.15 mm/rev (left) and 

amplified part (right) after machining 20 cm3 

 

 

Figure 4-16 EDS images of composition of elements in cutting tool when cutting speed is 60m/min and feed 

rate is 0.15 mm/rev after machining 20 cm3. The elements are Ti, V, C, W, and Co from left to right. 

 

4.2.2.3 Cutting Speed at 120 m/min (Volume 2) 

The SEM images of cutting tool H10A at cutting speed 120 m/min are shown in Figure 

4-17 and Figure 4-18. Figure 4-17 (left) is the image at the feed rate 0.05 mm/rev and Figure 

4-17 (right) is the image at the feed rate 0.15 mm/rev. Figure 4-18 (left) is the image at the 

feed rate 0.30 mm/rev and Figure 4-18 (right) is the amplified part of the wear area. 

Compared to that at cutting speed 30 m/min, more adhered Ti is worn away, which is due to 

larger abrasive wear and high temperature wear. When the feed rate increases to 0.30 mm/rev, 

most of the adhesion layer disappears. On the left side of the worn area, the fracture appears. 
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When the chip flows over the tool surface, the chip begins to adhere to some region of the 

cutting tool. Then the afterward movement of the chip may induce the plastic deformation of 

the welded joint and finally lead to the fracture of cutting tool. Figure 4-19 shows EDS image 

of composition of element when feed rate is 0.15 mm/rev.  

 

 

Figure 4-17 SEM image of tool for a speed of 120m/min and feed is 0.05 mm/rev (left) and 0.15 mm/rev (right) 

after machining 20 cm3 

 

 

Figure 4-18 SEM image of cutting tool when cutting speed is 120m/min and feed rate is 0.30 mm/rev (left) and 

amplified part (right) after machining 20 cm3 
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Figure 4-19 EDS image of composition of element in cutting tool when cutting speed is 120m/min and feed rate 

is 0.15 mm/rev after machining 20 cm3. The elements are Ti, V, C, W, and Co from left to right. 

 

4.2.3 After Machining 30-cm3 of Ti-6Al-4V Workpiece Stock (Volume-3) 

4.2.3.1 Cutting Speed at 30 m/min (Volume 3) 

The SEM images of cutting tool H10A at cutting speed 30 m/min are shown in Figure 

4-20 and Figure 4-21. Figure 4-20 (left) is the image at the feed rate 0.05 mm/rev and Figure 

4-20 (right) is the image at the feed rate 0.15 mm/rev. Figure 4-21 (left) is the image at the 

feed rate 0.30 mm/rev and Figure 4-21 (right) is the amplified part of the wear area. The area 

of adhesion increases as the feed rate increase from 0.05 to 0.30 mm/rev. When the feed rate 

increases to 0.30 mm/rev, some smooth area appears. This is different from that for Volume 

1 and Volume 2. This is due to the increase of cutting volume, which leads some area with Ti 

adhesion worn away. Figure 4-22 shows EDS images of composition of element when feed 

rate is 0.30 mm/rev. From the EDS images, Ti is the primary adhered element. 
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Figure 4-20 SEM images of cutting tool when cutting speed is 30m/min and feed rate is 0.05 mm/rev (left) and 

0.15 mm/rev (right) after machining 30 cm3. 

 

 
Figure 4-21 SEM images of cutting tool when cutting speed is 30m/min and feed rate is 0.30 mm/rev (left) and 

amplified part (right) after machining 30 cm3 

 

 

Figure 4-22 EDS images of composition of elements in cutting tool when cutting speed is 30m/min and feed 

rate is 0.30 mm/rev after machining 30 cm3. The elements are Ti, V, C, W, and Co from left to right. 
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4.2.3.2 Cutting Speed at 60 m/min (Volume 3) 

The SEM images of cutting tool H10A at cutting speed 30 m/min are shown in Figure 

4-23 and Figure 4-24. Figure 4-23 (left) is the image at the feed rate 0.05 mm/rev and Figure 

4-23 (right) is the image at the feed rate 0.15 mm/rev. Figure 4-24 (left) is the image at the 

feed rate 0.30 mm/rev and Figure 4-24 (right) is the amplified part of the wear area. From 

Figure 4-23 and Figure 4-24, some adhesive layer is worn way and the smooth area appears 

when the feed rate increases to 0.15 mm/rev. Figure 4-25 shows EDS image of composition 

of elements when feed rate is 0.15 mm/rev. From the EDS image, the primary element on the 

adhered area is Ti.  

 

     

Figure 4-23 SEM images of cutting tool when cutting speed is 60m/min and feed rate is 0.05 mm/rev (left) and 

0.15 mm/rev (right) after machining 30 cm3 
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Figure 4-24 SEM images of cutting tool when cutting speed is 60m/min and feed rate is 0.30 mm/rev (left) and 

amplified part (right) after machining 30 cm3 

 

 

Figure 4-25 EDS images of composition of elements in cutting tool when cutting speed is 60m/min and feed 

rate is 0.30 mm/rev after machining 30 cm3. The elements are Ti, V, C, W, and Co from left to right. 

 

4.2.3.3 Cutting Speed at 120 m/min (Volume 3) 

The SEM images of cutting tool H10A at cutting speed 120 m/min are shown in Figure 

4-26 and Figure 4-27. Figure 4-26 (left) is the image at the feed rate 0.05 mm/rev and Figure 

4-26 (right) is the image at the feed rate 0.15 mm/rev. Figure 4-27 (left) is the image at the 

feed rate 0.30 mm/rev and Figure 4-27 (right) is the amplified part of the wear area. At these 

three feeding rates, some adhered layer is worn way and the smooth area appears. When the 

feed rate increases to 0.30 mm/rev, the left edge of cutting tool begins to crack. Figure 4-28 

shows EDS image of composition of element when feed rate is 0.15 mm/rev.  
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Figure 4-26 SEM image of cutting tool when cutting speed is 120 m/min and feed rate is 0.05 mm/rev (left) and 

0.15 mm/rev (right) after machining 30 cm3 

 

 

Figure 4-27 SEM image of cutting tool when cutting speed is 120m/min and feed rate is 0.30 mm/rev (left) and 

amplified part (right) after machining 30 cm3 

 

Figure 4-28 EDS image of composition of element in cutting tool when cutting speed is 120m/min and feed rate 

is 0.15 mm/rev after machining 30 cm3. The elements are Ti, V, C, W, and Co from left to right. 
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4.3 DISCUSSION OF RESULTS 

From the above experiments for Volume 1, when the cutting speed is low (30 m/min) and 

the feed rate increase from 0.05 to 0.30 mm/rev, the only wear mechanism is the Ti adhesion 

and the area of Ti adhesion increases. When the cutting speed is medium (60 m/min), both of 

the crater and Ti adhesion are observed at all three feed rates. When the cutting speed is high 

(120 m/min), the wear mechanisms are similar as that at medium cutting speed (60 m/min).  

In the experiments for Volume 2, when the cutting speed is low (30 m/min) and the feed 

rate increases from 0.05 to 0.30 mm/rev, the only wear mechanism is the Ti adhesion. When 

the cutting speed is medium and high, the characteristic features of surface are the same as 

that in Volume 1. Some of Ti adhesion is worn away and some new adhesion area is 

observed on the top of crater. When the cutting speed is 120 m/min and feed rate is 0.30 

mm/rev, the failure of cutting tool happens. 

In the experiments for Volume 3, the characteristic features of the surface of cutting tool 

follow the trends in Volume 2.  The failure and catastrophe fracture of cutting tool also 

happens in this case at high cutting speed and high feeding rate. 

When the cutting speed is kept as constant, the feed rate varies from 0.05 mm/rev to 0.30 

mm/rev. The area of adhered Ti increases accordingly. When the cutting speed increases, the 

size of the crater area increases and the size of the adhesion area of Ti becomes smaller. This 

is because when the cutting speed increases, the temperature of the tool surface will become 

higher, and will promote the temperature-controlled wear, such as the diffusion wear. In 

diffusion wear mechanism, the elements in the cutting tool, such as C, W, and Co, may 

diffuse from the cutting tool and lead to the formation of more smooth area.  
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Further, the amount of workpiece volume cut affects the wear mechanisms. The thickness 

of adhesion of Ti decreases when the stock removal volume increases from 10 to 30 cm3. 

More outer surface of the adhesion area will be abraded by the chip when the cutting volume 

increases. Thus, the increase of the feed rate leads to the increase of the area of adhesion. 

When the cutting speed increases, the area of adhesion will decrease and the width and depth 

of the crater will increase. 

 

4.4 MAJOR INTERACTIONS BETWEEN WEAR MECHANISMS 

This section serves to explain the major interactions between dominant wear mechanisms. 

 

4.4.1 Interaction #1 (at Low Cutting Velocities) 

When the cutting tool cuts the workpiece at low cutting velocities, only an adhered layer 

of mostly Ti is observed in addition to smaller quantities of the other workpiece elements, Al 

and V. At low cutting speeds (for all feed rates), the weight percentage of Ti, Al, and V are 

about 90%, 6%, and 4%, respectively (matching the workpiece weight percentage). As the 

feed rate increases, the area of this adhered (predominantly) Ti layer increases as shown in 

Figure 4-29, where the adhered layer area is the largest for the highest feed rate of 0.30 

mm/rev. 

There is also some diffusion of the cutting tool elements (W, C, Co) into the workpiece 

material, i.e., (i) into the chips as well as (ii) into the adhered Ti layer. At low temperatures 

around 500°C [61], the diffusion coefficient of C is much larger than that of W and Co. 

Hence, more C diffuses from the cutting tool to the (i) chips, as well as to the (ii) adhesion 

layer on the tool, compared to W and Co. This C is deposited further along the tool by the 
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edge of the passing chips as shown in Figure 4-29 and Figure 4-30 (b). This is the only way 

the C can reach that area. Further, from Figure 4-30 (b) – (d), it is observed that the 

distribution of C is more abundant and uniform in the adhesion layer compared to the 

distribution of W and Co. There is a possibility that the observed W and Co in the EDX maps 

in Figure 4-30 (c) and (d) are actually being captured through holes on the adhesion layer. 

This possibility can be excluded due to the significantly different observed concentrations of 

W and Co between the unworn and adhesion areas; this difference in concentrations is 

insignificant in the case of C. Further, the small amounts of W and Co observed in the 

adhesion layer are not at the same locations as the detected C, thus signifying that these are 

not holes in the adhesion layer, but rather different amounts of diffused W, C, and Co from 

under the adhesion layer into the adhesion layer. Also, the temperature is not high enough for 

large-rate diffusion to happen at a low surface speed of 30 m/min, regardless of the feed rate. 

Therefore, no crater is observed at low cutting velocities. 

Thus, at low cutting velocities (temperatures), an adhered layer of mostly Ti is observed 

(which increases with feed), and diffusion of (mostly) C occurs from the tool (i) to the chips 

as well as (ii) to the adhered-layer on the tool. 

 

Figure 4-29 SEM images of cutting tool when cutting speed is 30m/min (lowest speed) and feed rate is (a) 0.05 

mm/rev, (b) 0.15 mm/rev, and (c) 0.30 mm/rev. The red arrow points to the adhered Ti. From (a) to (c), the area 

of adhered Ti is increasing with the increase of the feed rate. 
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Figure 4-30 (a) SEM image of cutting tool when cutting speed is 30m/min and feed rate is 0.15 mm/rev. The 

pink square shows the selected area for EDS analysis. (b), (c), and (d) are the elemental distribution of C, W, 

and Co element in selected area by EDS, separately.  

 

4.4.2 Interaction #2 (at Medium and High Cutting Velocities) 

When the cutting tool cuts the workpiece at medium and high cutting velocities, there are 

series of events happen in sequence. A sample area is used to analyze these events, as shown  

in Figure 4-31. Figure 4-32 is the schematic figure of the worn surface of the cutting tool. 

Figure 4-31 (b) is the sketch map for this chosen area seen from different views. Next, each 

event is explained individually in the following. 
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1. First, a crater is formed due to (1) high-temperature diffusion of Cobalt from the tool 

to the chip [1], and (2) loss of WC grains due to the sliding action of the chip on the 

rake face of the tool [1]. The diffusion coefficient of Co is 8 × 10−4𝑚𝑚2/𝑠 while the 

coefficient of WC is 1.05 × 10−8𝑚𝑚2/𝑠. Therefore, the diffusion of Co accounts for 

the primary contribution to the diffusion wear and diffusion of C and W is weak 

comparatively. This is in good agreement with the autoradiographic studies by Cook 

et. al. [62]. After large amount of Co diffuses to the chip, the contact area between 

WC grains become smaller without the binding from Co. Then, the WC grain will be 

carried away by the chip. Next, the crater is formed, which includes the idealized 

areas 1, 2, and 3 in Figure 4-31 (b). Area 4 is the unworn WC-Co surface.  

2. When the cutting continues, the second event happens in which Ti from the 

workpiece start to adhere to the crater. Until T2, an adhesion layer formed on the 

crater surface. This is shown in Figure 4-31, in which areas 1 and 3 is already covered 

by the adhesion of Ti. 

3. When the cutting process continues, the adhesion layer will start to wear away by 

sliding wear and continuing diffusive wear.  

4. Until T4, the surface appearance is shown in Figure 4-31 (c). It is clear that more 

adhesion layer is worn away and some new adhesion layer formed on the crater. 

Meanwhile, the diffusive wear progresses.  

5. From T4 to T5, the adhesion layer is further worn away as shown in Figure 4-31 (d). 
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Figure 4-31 (a) SEM image of cutting tool when cutting speed is 120m/min and feed rate is 0.15 mm/rev 

(volume 1); (b) amplified part of (a); (c) SEM image when cutting speed is 120m/min and feed rate is 0.15 

mm/rev (volume 2) and (d) SEM image of cutting tool when cutting speed is 120m/min and feed rate is 0.15 

mm/rev (volume 3) 
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Figure 4-32  Sketch map of worn surface of WC-Co (top view), and  Sketch map of worn surface (side view)  

 

These events can also be listed as a flow chart, which is shown in Figure 4-33. It is 

observed that the depth of the crater increases when the cutting process continues. 
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Figure 4-33 Flow chart of interaction #2 

 

4.4.3 Interaction #3 (C Pullout and Deposition at Low Feed Rates) 

When the cutting tool cuts the workpiece at high cutting velocities and low feed rates, 

interactions between the dominant wear mechanisms result in carbon pullout from the tool 

body and its deposition on the tool surface – this is the third interaction observed. 

When the chip slides on the rake face with high velocity, high temperatures are generated. 

At high temperatures, the diffusion coefficients of W, C, and Co are close to each other. At 

this temperature, the pullout of WC resulting from Co diffusion, play a more important role 

than the diffusion of W and C. Although the diffusion coefficient of Co is slightly lower than 

those of W and C, the Co diffusion makes the WC grains more exposed to the chips, and 
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weakens the attachment between these peripheral WC grains and the rest of the tool body. 

These WC particles are removed by the sliding chip and a crater is formed. As cutting 

progresses, the Ti from the workpiece starts to adhere to the crater and forms an adhered 

layer on the crater close to the cutting edge. This adhered layer will separate the contact 

between the tool surface and chip and decrease the temperature in the tool in that region. This 

will prevent the crater from increasing to some extent. Due to this lower temperature, the 

diffusion rate of elements from the tool to the chip are decreased, especially for W and Co 

[61]. However, at lower temperatures, the diffusion coefficient of C is much higher than that 

of W or Co, and hence C will diffuse from the tool to adhered layer, which explains the C 

build-up at the tool edge as shown in Figure 4-34. Further, part of this C deposition can be 

carried by the chip to the tool body, which can be seen in Figure 4-34 as the C discoloration. 

The elemental distribution in EDS in Figure 4-35 can verified the SEM image. The 

distribution of C matches that in SEM image. From SEM  and EDS, there is no indication of 

the formation of a stable TiC layer as discussed in [63]. 
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Figure 4-34 SEM images of cutting tool when cutting speed is 120m/min and feed rate is 0.05 mm/rev. The 

regions of adhesive Ti, C build-up, and C discoloration are pointed. 

 

  

Figure 4-35 (a) SEM image of cutting tool when cutting speed is 120m/min and feed rate is 0.05 mm/rev. The 

pink square shows the selected area for EDS analysis. (b), (c), (d), (e), (f) are the EDS image of selected area of 

C, O, Ti, Co, and W element, which show the elemental distribution 
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4.5 MAPPING OF MAJOR WEAR MECHANISM INTERACTIONS   

After analyzing and identifying the worn surface of WC-Co at different conditions, three 

kinds of interactions between the wear mechanisms at different conditions are obtained. In 

this section, the mapping of wear mechanisms and the mapping of interactions between wear 

mechanisms are shown in Figure 4-36 and Figure 4-37 respectively. 

 

 

Figure 4-36 Mapping of wear mechanisms at different conditions 
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Figure 4-37 Mapping of interactions between the wear mechanisms at different conditions 

 

Figure 4-36 shows the mapping of the wear mechanisms, which indicates the transition of 

wear mechanisms. Adhesion occurs at low cutting speed and all feed rates. At low feed rate, 

the area of adhesion layer is smaller. As the feed rate increases, the area of adhesion layer 

increases correspondingly. When the cutting speed increases, diffusive wear mechanisms 

appears and part of the adhesion layer is worn away. Figure 4-37, which is based on the 

discussion in Section 4.4, shows the mapping of the interactions between the wear 
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mechanisms. At low cutting speed and all feed rates, Interaction #1 occurs. At medium and 

high cutting speeds, Interaction #3 occurs. At medium and high cutting speeds and feed rates, 

Interaction #2 occurs. Interaction #2 has the largest wear rate. 
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5. CONFIRMING MAJOR WEAR MECHANISMS INTERACTIONS THROUGH 

TRIBOMETRIC TESTS (RQ2) 

This chapter discusses the design of tribometric bench tests to confirm the wear 

mechanism interactions in terms of fundamental material behavior. Generally, according to 

the structure and function of the tribosystem to be studied, the tribotests can be grouped by 

machinery field test, machinery bench tests, tribosystem tests, components bench tests, 

model tests, and laboratory tests [64]. In our case, tribosystem tests and tribometric bench 

tests are our research objects, which are to identify and analyze the interactions between wear 

mechanisms in a machining tribosystem, and to confirm the fundamental physicochemical 

material interaction behavior through tribometric tests. Since the design of the tribometric 

bench tests are used to simulate the wear mechanisms and the interaction among them in the 

tribosystem, the design has to meet a sufficient similarity in the basic tribological parameters 

between the tribosystem tests and tribometric bench tests. These parameters may include 

materials/lubricant/environment combination, connected materials properties, cutting speed, 

feed rate, temperature, cutting time, and so on. 

The basic characteristics and relevant parameters of the tribosystem tests and tribometric 

bench tests in our study are shown in Figure 5-1. 
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Figure 5-1 Basic characteristics and parameters of tribosystem and tribometer 

 

5.1 MATCHING THE MACHINING TRIBOSYSTEM TESTS TO BENCH TESTS 

5.1.1 Parameters of the Machining Tribosystem  

The parameters of tribosystem play an important role in the wear process. It may affect 

the interaction among the wear mechanisms and the transition of the dominant wear 

mechanisms. The basic and relevant parameters of the tribosystem are given below. 

 

For the (field-level) machining tribosystem: 

1. Triboelement 1: rake face of WC-Co cutting tool;  

2. Triboelement 2: (shiny) underside of Ti-6Al-4V chip 
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3. Geometry of the test configuration: It is shown in Figure 5-2. 

 

 

Figure 5-2 Description of the geometry of the test configuration [65]. 

 

4. Materials characteristics and properties:  

a. WC-Co: Fine WC particles are the major constituent, which are relatively 

hard and brittle, and the minor constituent is a cobalt-rich binder phase which 

is relatively soft and ductile and account for 10.2 % [14].  

b. Ti-6Al-4V: High fracture resistance, high resistance to corrosion, it can 

maintain high strength at elevated temperatures. However, it also has some 

disadvantages, such as low modulus of elasticity, high chemical reactivity and 

low thermal conductivity [7]. The low thermal conductivity results in the 

majority of the generated heat flowing into the tool edge (80%) [8], and wear 

out the cutting tool faster.  These properties of WC-Co and Ti-6Al-4V are 

summarized in Table 5-1. 
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Table 5-1 The physical and chemical properties of WC-Co and Ti-6Al-4V [12, 15, 16] 

 
WC-Co Ti-6Al-4V 

Composition 10.2% Co, 89.8% WC 90% Ti, 6% Al, 4% V 

Density (g/cm3) 14.96 4.42 

Hardness (HV) 1675 349 

Young's Modulus (GPa) 580 [16] 114 

Ultimate Tensile Strength (MPa) 1440 950 
 

5. Interfacial element: Air (no lubrication). 

6. Environmental medium: dry air.  

7. Motion: sliding motion between the rake face of cutting tool and the chip. 

8. Load: The load for each process conditions combination is different. Further, these loads 

vary during the cut both periodically due to the adiabatic shear banding process as well as 

due to tool wear. The maximum cutting and feed forces recorded from a force-sensor 

integrated tool are given below in Table 5-2 for each process condition.  

 

Table 5-2 The forces applied and resultant stress at different conditions. 

Feed rate 
(mm/rev) 

Cutting 
speed 

(m/min) 

Chip 
velocity 
(m/min) 

Max cutting 
force (N) 

Max feed 
force (N) 

Resultant 
Force (N) 

Shear angle 
(degrees) 

0.05 30 9.79 172.55 247.95 302.08 17.42 
0.05 60 18.65 161.91 246.19 294.66 16.67 
0.05 120 44.48 215.41 265.27 341.71 19.54 
0.15 30 7.10 294.29 606.57 674.19 12.94 
0.15 60 14.66 290.7 578.83 647.73 13.33 
0.15 120 32.51 302.2 537.09 616.27       14.68 
0.30 30 5.61 418.07 1107.99 1184.24 10.34 
0.30 60 13.86 468.2 990.73 1095.79 12.65 
0.30 120 74.92 2350 1331 2700.75 30.24 
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9. Sliding Speed: In the turning tests, three cutting speed are used, which are 30 m/min, 60 

m/min, and 120 m/min. As the cutting speed changes, the rake angle (𝛼) is constant, 

which is -6°. However, the shear angle (𝜑) changes as a function of rake angle and 

friction angle (𝛽), as given in the Equation (5.2). From this the chip velocities are 

calculated ( Equation 5.1). 

10. The chip formation process in orthogonal turning is illustrated in Figure 5-3.  

 

 
Figure 5-3 Schematic illustration of orthogonal turning. The red rectangle shows the contact area between the 

chip and the rake face of tool. N is the normal force, F is the friction force along the contact area of chip and 

tool, Ft is the thrust force, FC is the cutting force. R is the resultant force. α is the rake angle, and φ is the shear 

angle.[5] 

 

The normal force and speed of chip are calculated, which are shown in  Table 5-3.

 The speed of chip is calculated by the following formulas, 
 

VC = V ∗
sinφ

cos(φ−α)
                 (5.1) 

φ = 45 + 1/2(α − β)                         (5.2) 
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Here, VC is speed of chip, V is cutting speed, φ is shear angle, α is rake angle, and β is the 

angle shown in Figure 5-3. 

The contact area is calculated by two methods, which are by ImageJ and by equation. The 

equation is expressed as 

 

σ𝑐 =
𝑁

𝑙 𝑑
                                          (5.3) 

 
 

Here, N is speed of chip, 𝑙 is contact length between the chip and rake face of cutting 

tool, 𝑑 is the depth of cut. There is some approximation in this equation. In our case, the 

calculation of contact area is conducted by ImageJ, which gives a more accurate result. One 

example is given in Figure 5-4, in which the contact area at cutting speed 30 m/min and feed 

rate 0.30 mm/rev is 0.833 mm2. 

 

 

Figure 5-4 The measurement of contact area by ImageJ 
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Table 5-3 The normal force, friction force and speed of chip at different conditions 

Feed 
rate(mm/rev) 

Cutting speed 
(m/min) 

Normal force at 
chip-rake 
interface (N) 

 Chip velocity 
(m/min) 

Contact 
area (mm2) 

 Contact 
Stress (MPa) 

0.05 30 197.52 9.79 0.09 2146.98 
0.05 60 186.76 18.65 0.12 1518.35 
0.05 120 241.96 44.48 0.18 1314.99 
0.15 30 356.08 7.10 0.41 866.38 
0.15 60 349.61 14.66 0.41 842.44 
0.15 120 356.69 32.51 0.31 1158.07 
0.30 30 531.60 5.61 0.86 618.14 
0.30 60 569.19 13.86 0.82 696.69 
0.30 120 2476.25 74.92 N/A N/A 

 

5.1.2 Parameters of Ball-On-Disc Tribometric Tests 

Bench tests are usually used to simulate the tribological behavior of a practical 

tribosystem and try to simplify the conditions and parameter in the tribosystem. Currently, 

the common bench tests used for WC-Co / Ti-6Al-4V tribosystems include pin-on-disc, ball-

on-disc, and block-on-ring tribometers [32, 51, 54, 55]. In this study, the ball-on-disc is 

adopted. 

The basic characteristics and relevant parameters of ball-on-disc test are given below. 

1. Triboelement 1: Ball 

2. Triboelement 2: Disc 

3. Geometry of the test configuration: Figure 5-5 shows the schematic illustration of ball-

on-disc test.  

4. Interfacial element: Air and no lubrication.  

5. Environmental medium: dry air.  
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6. Motion: sliding motion between the ball and the disk. A ball is stationary against rotating 

disc. 

7. Maximum load: 5N. 

 

 
Figure 5-5 Schematic illustration of ball-on-disc test. The ball is stationary and the disc is rotating.  

5.1.3 Calculation of Tribometric Parameters  

Since a tribometer is made to simulate the tribological behavior of a tribosystem, there 

should be a sufficient similarity between the operational parameters of the tribosystem and 

tribometer. The value of parameters in the machining tests will be scaled to the 

corresponding parameters in the tribometer tests. The scaling process is given in the 

following. 

First, the stress between the ball and disc is needed to be calculated. A rule that contact 

stress between chip and rake face of cutting tool in the tribosystem equal to the stress 

between the ball and disc [13] is followed. The contact stress in the tribosystem can be 

obtained by the normal stress and the contact area. Then this contact stress is used to 
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calculate the contact force and radius of the contact area between the ball and disc by using 

the Herztian equations [66].  

 

k = 9/16[(1 − 𝜐1
2) +

E1

E2
(1 − 𝜐2

2)]    (5.4) 

 

Where k is an elastic mismatch factor, 𝜐1 is Poisson ratio of Ti-6Al-4V, 𝜐2 is the Poisson 

ratio of WC-Co, 𝐸1 is the elastic modulus of Ti-6Al-4V, 𝐸2 is the elastic modulus of WC-Co. 

 

a3 =
4kPR

3E1
                                           (5.5) 

 

Where a is the radius of contact area, P is normal load, R is the radius of WC-Co ball. 

 

Pm =
P

πa2                                                  (5.6) 

Where Pm is the mean contact pressure.  

By combining these equations above, the forces in tribometer tests and radiuses of 

contact area for some representative cases are shown in Table 5-4. Due to the forces higher 

than the limit of the tribometer (5N), the forces are scaled into the limit as the value of P` by 

divided by 10. Here, 7 typical tests of 9 are conducted in tribometer tests.  
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Table 5-4 Data of the radius of contact area and normal force 

Machining Test Condition Sliding 
speed 

a (radius of 
the contact 

area) 

P (Normal 
force) 

P` 
(P/10) 

Test 
number 

Feed 
rate 

(mm/rev) 

Cutting 
speed 

(m/min) 
(m/min) (mm) (N) (N) 

1 0.05 60 18.6 0.11 48.2 4.8 
2 0.05 120 44.5 0.09 31.3 3.1 
3 0.15 30 7.1 0.06 9.0 0.9 
4 0.15 60 14.7 0.06 8.2 0.8 
5 0.15 120 32.5 0.08 21.4 2.1 

6 0.30 30 5.6 0.04 3.3 0.3 

7 0.30 60 13.9 0.05 4.7 0.5 
 

 

5.2 OBSERVATIONS FROM TRIBOMETRIC TESTS 

After the ball-on-disc tests, the worn balls are characterized by SEM and EDS. In these 

experiments, major and observed wear mechanisms on WC-Co are adhesion of Ti-6Al-4V, C 

pullout.  From the SEM image, the adhesion of Ti can be seen on the cutting tool. 

 

5.2.1 At Low Cutting Velocities 
 
Figure 5-6 shows the SEM image of the worn surface of ball when rotating speed is 30 

m/min and normal load is 1 N, which corresponds to the turning test at cutting speed 30 

m/min and feed rate 0.15 mm/rev.  From this figure, adhesion layer can be seen and also 

some black discoloration is shown on the surface. Figure 5-7 shows the EDS images of 

composition of elements of the ball. From the EDS images, it is clear that the adhesion layer 

is mainly Ti and the discoloration element is C. These features of the worn surface agree well 

with that in the turning test at same condition. 
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Figure 5-6 SEM image of the worn surface of ball when rotating speed is 30m/min and the normal load is 0.9 N 

 

 
Figure 5-7 EDS images of composition of elements of the ball when rotating speed is 30 m/min and the normal 

load is 0.90 N. The elements are Ti, Al, C, W, and Co from left to right. 
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Figure 5-8 shows the SEM image of the worn surface of ball when rotating speed is 30 

m/min and normal load is 0.3 N, which corresponds to the turning test at cutting speed 30 

m/min and feed rate 0.30 mm/rev. Figure 5-9 shows the EDS images of composition of 

elements of the ball. These two figures show the similar surface features as those at rotating 

speed is 30 m/min and normal load is 1 N. This means that this difference of normal load 

does not provide much difference on the wear mechanisms. 

 

Figure 5-8 SEM image of the worn surface of ball when rotating speed is 30m/min and the normal load is 0.3 N. 
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Figure 5-9 EDS images of composition of elements of the ball when rotating speed is 30 m/min and the normal 

load is 0.3 N. The elements are Ti, Al, C, W, and Co from left to right. 

5.2.2 At Medium Cutting Velocities 

Next, let us take a look at these wear mechanisms occurred at medium cutting velocity. 

Figure 5-10 shows the SEM image of the worn surface of ball when rotating speed is 

60m/min and normal load is 5 N, which corresponds to the turning test at cutting speed 60 

m/min and feed rate 0.05 mm/rev.  From this figure, it can be seen that adhesion layer can be 

seen and also some black discoloration is shown on the surface. Figure 5-11 shows the EDS 

images of composition of elements of the ball. From the EDS images, it is clear that the 

adhesion layer is mainly Ti and the discoloration element is C. These features of the worn 

surface agree well with that in the turning test at same condition. 
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Figure 5-10 SEM images of the worn surface of ball when rotating speed is 60m/min and normal load is 5 N. 

 

 

 

Figure 5-11 The EDS images of composition of elements of the ball when rotating speed is 60 m/min and 

normal load is 5 N. The elements are Ti, V, C, W, and Co from left to right. 
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Figure 5-12 and Figure 5-13 show the SEM image and EDS mappings of the worn 

surface of ball when rotating speed is 60 m/min and normal load is 0.8 N, which corresponds 

to the turning test at cutting speed 60 m/min and feed rate 0.15 mm/rev.  These features of 

the worn surface agree well with the previous one at cutting speed 60 m/min and normal load 

5 N.  

 
Figure 5-12 SEM images of the worn surface of ball when rotating speed is 60m/min and the normal load is 0.8 

N. 
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Figure 5-13 EDS images of composition of elements in cutting tool when cutting speed is 60 m/min and the 

normal load is 0.8 N. The elements are Ti, Al, C, W, and Co from left to right. 

 

Figure 5-15 shows the SEM image of the worn surface of ball when rotating speed is 

60m/min and normal load is 0.5 N, which corresponds to the turning test at cutting speed 60 

m/min and feed rate 0.30 mm/rev.  These features of the worn surface agree well with the 

previous one at cutting speed 60 m/min and normal load 5 N. Figure 5-15 shows the EDS 

images of composition of elements of the ball. From the EDS images, it is clear that the 

adhesion layer is mainly Ti and the discoloration element is C. These features of the worn 

surface agree well with that in the turning test at same condition. 
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Figure 5-14 SEM images of the worn surface of ball when rotating speed is 60m/min and normal load is 0.5 N. 

 

 

 
 

Figure 5-15 EDS images of composition of elements in cutting tool when cutting speed is 60 m/min and the 

normal load is 0.5 N. The elements are Ti, C, W, and Co from left to right. 
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5.2.3 At High Cutting Velocities 

Next, let us take a look at these wear mechanisms occurred at high cutting velocity. 

Figure 5-16 shows the SEM image of the worn surface of ball when rotating speed is 

120m/min and normal load is 3 N, which corresponds to the turning test at cutting speed 120 

m/min and feed rate 0.05 mm/rev.  From this figure, it can be seen that adhesion layer can be 

seen and also some black discoloration is shown on the surface. Figure 5-17 shows the EDS 

images of composition of elements of the ball. From the EDS images, it is clear that the 

adhesion layer is mainly Ti and the discoloration element is C. These features of the worn 

surface agree well with that in the turning test at same condition. 

 
Figure 5-16 SEM images of the worn surface of ball when rotating speed is 120m/min and normal load is 3 N. 
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Figure 5-17 EDS images of composition of elements in cutting tool when cutting speed is 120 m/min and the 

normal load is 3 N. The elements are Ti, V, C, W, and Co from left to right. 

 

Next, let us take a look at these wear mechanisms occurred at medium cutting velocity. 

Figure 5-18 shows the SEM image of the worn surface of ball when rotating speed is 

120m/min and normal load is 2 N, which corresponds to the turning test at cutting speed 120 

m/min and feed rate 0.15 mm/rev.  From this figure, it can be seen that adhesion layer can be 

seen and also some black discoloration is shown on the surface. Figure 5-19 shows the EDS 

images of composition of elements of the ball. From the EDS images, it is clear that the 

adhesion layer is mainly Ti and the discoloration element is C. These features of the worn 

surface agree well with that in the turning test at same condition. 
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Figure 5-18 SEM images of the worn surface of ball when rotating speed is 120m/min and normal load is 2 N. 

 

 

 
Figure 5-19 EDS images of composition of elements in cutting tool when cutting speed is 120 m/min and the 

normal load is 2 N. The elements are Ti, V, C, W, and Co from left to right. 
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5.3 COMPARISON OF WEAR MECHANISM INTERACTION OBSERVATIONS   

The seven tribometric bench tests were conducted at low, medium, and high velocity 

counterparts of machining cutting speeds. Due to the tribometer equipment limitations, the 

forces had to be scaled. When examining the SEM images and EDS maps of the WC-Co ball, 

the following major observations were obtained. When considering major wear mechanisms, 

adhesion and carbon pullout were the main mechanisms observed. When considering major 

wear mechanism interactions, interaction #1 (adhesion of Ti and diffusion of C into the 

adhered layer at low velocities) and interaction # 3 (C pullout and deposition at low feed 

rates) were observed across all velocities of testing. Ti adhesion and the migration of carbon 

into this adhered titanium layer, which are the characteristics of interaction #1, were 

observed at all the velocities of bench testing – this confirms interaction #1. Also, adhesion, 

carbon pullout and deposition, which are the characteristic of interaction #3, were also 

observed – this confirms the partial occurrence of interaction #3. It is to be noted that crater 

formation was not expected to be observed in ball-on-disc tribometric testing since the 

mechanics of chip formation in the cutting process is a different from the sliding contact 

simulated on the bench tests. Thus, the observance of these interactions in the tribometric 

testing level confirms the material pair response. 
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6. CONTROLLING WEAR MECHANISM INTERACTIONS FOR TOOL LIFE 

OPTIMIZATION (RQ3) 

This chapter conducts a preliminary investigation on how machining operational 

parameters can be controlled to manipulate wear mechanism interactions so as to increase the 

life of the cutting tool. For this, from experiment results and their analyses, the amount of 

material lost from the tool body can be roughly estimated on the basis of each wear 

mechanisms interaction. This is obtained by examining the 3D surface profile to the worn 

surface of the tool by a non-contact optical surface profiler (white light interferometer). 

A representative scenario of estimating the relative amount of material worn away from 

the tool surface is shown in Figure 6-1. By drawing a suitable line (AB) on the 3D point 

cloud map of the worn surface of the tool, the associated surface profile (height variations) of 

the surface is obtained. By quantifying the constituent dimensions, a relative estimate of the 

material lost due to each major wear mechanism as well as interaction type can be obtained. 

On examining the 3D surface profile of the worn cutting tools, it is observed that the 

volume loss on the tool due interaction #2 is significantly more than that of interaction #1 

and interaction #3. This is evident since the volume lost on the tool due to crater formation is 

much more than that due to carbon pullout as well as any possible adhesive wear when the 

adhered layer is removed by mechanical action. Thus, the occurrence of interaction #2 or the 

interaction associated with crater formation needs to be minimized. 
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Figure 6-1 (a) 3D image of worn cutting tool (b) Surface profile curve along AB. 

 

For machining, high materials removal rate (MRR) of the workpiece is desired. The 

MRRs of all nine turning tests are shown in Figure 6-2. 
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Figure 6-2 Materials removal rate (MRR) during 9 turning tests. (Unit:mm3/min) 

 

From the view of MRR, the highest MRR can be obtained at high cutting speed and high 

feed rates, in which interaction #2 occurs. However, this will largely reduce the tool life, 

which is not desired since this will require more frequent tool changes. This leaves the 

remaining two interactions (#1 and #3). On comparing these, interaction #1 (low cutting 

speed and high feed rate) and interaction #3 (high cutting speed and low feed rate) are 

essentially better operational conditions in terms of net productivity (i.e., balancing cycle 

time and tool changing time). Between these, the operational condition of the highest cutting 

speed (120 m/min) is not really preferred due to a greater chance of too failure due to the 
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associated higher temperatures. Further, on comparing the material removal rates in each 

condition, this high cutting speed and low feed rate combination has a lower MRR (12,000 

mm3/min) than the high feed rate and low cutting speed combination (18,000 mm3/min), and 

hence this operational condition combination is a better one choose for higher tool life and 

hence net productivity.  
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7. CONCLUSIONS 

Through the above research work involving WC-Co / Ti-6Al-4V tribosystem analysis 

through machining and tribometric bench tests, major wear mechanisms and interactions 

between these wear mechanisms have been studied. It was observed that no single wear 

mechanism occurred individually and that a number of major wear mechanism interactions 

contributed to the final wear state of the tool. 

In the machining tests, three major interactions between wear mechanisms have been 

identified by their unique features. Interaction #1 occurs at low cutting velocities 

(temperatures), in which an adhered layer of mostly Ti is observed (whose area increases 

with feed), and diffusion of (mostly) C occurs from the tool body into (i) to the chips as well 

as (ii) to the adhered titanium layer on the tool. Interaction #2 occurs at medium and high 

cutting velocities, in which a series of events eventually lead to a smooth crater and an 

adhesion layer of titanium is formed on top of it. Interaction #3 occurs at low feed rates, in 

which both of C pullout and an adhesion layer formed. 

When conducting counterpart ball-on-disc tribometric bench tests to appropriately match 

the conditions in the machining process in terms of load and speed and to further study the 

associated material behavior, two of the above interactions were observed. This suggests that 

such interaction phenomena are intrinsic to the material pair even at scaled force levels. 

Following this, the three major wear mechanism interactions were ranked in terms of the 

amount of tool material work away which was relatively estimates through the 3D surface 

profiler maps. As a result, interaction #2 was suggested to be avoided, and the other two 

interactions (#1 and #3) were ranked accordingly to provide competitive material removal 

rates while maintaining a lower tool wear rates. 



 

 

93 

 

Thus, this research work helped provide a better understanding of the interactions 

between major wear mechanisms in the WC-Co / Ti-6Al-4V machining tribosystem, and 

recommendations for improving tool life from a mechanism interactions perspective. 
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