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ABSTRACT 

The complex and coupled behavior of variables in the currently developing 

Generation IV reactors and Small Modular Reactors is becoming a major incentive to 

seek efficient design methods. This research develops and validates new methods to 

evaluate systems with various degrees of variables’ interactions using basic knowledge 

in variables’ directions of effect and an adaptive number of experiments. The methods 

replace the commonly used assumption of negligible interactions with a broader 

assumption of monotonic variables’ effects. The assumption was evaluated using studies 

of other physical systems’ regularities, and is expected to be significantly present in 

physical systems.  

Four methods were developed and analyzed in this dissertation. Three of the 

introduced methods utilized an adaptive sequential spanning tree concept with a method 

specific criterion to construct piecewise multidimensional surfaces or subtrees. Each 

method then used a specific approach to project the results within the subtrees. The 

fourth method is an expansion to an existing method to explore any order of interactions 

through the introduction of a new domain of parameters. Three of the four methods 

significantly outperformed the common orthogonal arrays methods that rely on a 

uniform distribution of experiments in the design domain. Two of the three methods 

significantly outperformed the third method and were used in the dissertation’s 

application. The strength of the applicable methods was demonstrated through their 

application to two examples from literature, each of which has a different degree of 

variables’ monotonic behavior. The most applicable method of the two most effective 
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methods was used to decouple the effects of fourteen variables on six performance 

characteristics in the design of a Small Modular Reactor version of the Advanced 

Pressurized Water Reactor AP1000. The methods’ application succeeded in finding the 

most important main effects and interactions of each performance characteristic. The 

performance of the methods’ application to three performance characteristics was 

compared to the performance of fractional factorial designs. The methods were found to 

significantly reduce the projection error when the assumption of variables’ monotonic 

behavior is valid.  
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NOMENCLATURE 

AOFAT Adaptive One Factor at A Time 

AP1000 Advanced Pressurized Water Reactor -1000 MWe 

ANN Artificial Neural Network  

ASIS Asymmetric Synergistic Interaction Structure 

BOF Beginning Of Life  

Cm Centimeter 

C Conversion Matrix 

cov  Covariance 

d  Density Reactivity Coefficient 

X  Design Matrix 

effK  Depletion Drop of Multiplication Factor 

DBARs Discrete Burnable Absorber Rods 

EOL End Of Life 

e Error 

FFD Fractional Factorial Design 

FT  Fuel Temperature Reactivity Coefficient 

g Gram 

I  Interaction 

IFFD Iterative Fractional Factorial Designs 

J Joul 
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K Kelvin 

Kg Kilogram 

LWSMR Light Water Small Modular Reactor 

ME  Main effect 

MEr Margin of Error 

MCNP Monte Carlo N-Particle Transport Code 

MSIV Monotonic Sparsely Interacting Variables  

MHIV Monotonic Highly Interacting Variables  

MDO Multidisciplinary Design Optimization 

effK  Effective Multiplication Factor  

MWth MegaWatt Thermal Power 

NRMSE Normal Root Mean Square Error 

N Number of Variables 

n Total Number of Combinations 

  Parameter 

RC Range Convergence 

OAT One at A Time 

OFAT One Factor at A Time 

Pa Pascal 

PIRT Phenomenon Identification and Ranking Table 

y Performance Characteristic or Response 

PB Plackett Burman 
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PPF Power Peaking Factor  

P Probability 

RFS Ratio of Fast Spectrum 

Res Resolution 

RMSE Root Mean Square Error 

SMR Small Modular Reactor 

x Binary State 0 or 1 

  Standard Deviation 

SMEr Simultaneous Margin of Error 

x Variable  

var  Variance 

w Weight  

Z Z score 
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I. INTRODUCTION 

The development of nuclear reactors as a mean to utilize atomic fission energy in 

power generation was driven by simple yet innovative physical concepts. From the time 

of the first reactor, the Chicago Pile [1], to the currently developing Generation IV 

reactors, the complexity of reactors has increased and continues to increase in a rapid 

manner. In early stages of reactors development, the lack of computational power and, in 

some cases, the lack of sufficient knowledge of the physical behavior of various parts of 

the reactor did not generate what would be considered an optimal design today. 

However, the early designs are still the bases for the current running reactors, and 

similarities are apparent when comparing current designs to older designs [2, 3]. The 

occurrence of few major accidents and several minor accidents forced the consideration 

of scenarios and effects that were previously discarded. This was reflected in the design 

of new generations of reactors. The main drive for design changes of nuclear reactors 

was safety for a long period of time. In recent years, economics became another 

important drive for design changes as power utilities tried to extend the life of operating 

reactors. Existing designs were reviewed to consider the possibility of the extension. 

Both safety and economic factors did not cause significant divergence of reactors 

designs from their initial core designs. Design changes were determined through 

practice-driven performance optimization facilitated through experience buildup from 

several decades of operations of water cooled reactors.  
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The complex and coupled behavior of variables in the currently developing 

Generation IV reactors [4] and the increase of interest in Small Modular Reactors 

(SMRs) [5] are becoming a major incentive to seek efficient design methods. The 

application of modern design and optimization methods on Generation IV reactors and 

SMRs is receiving an increasing attention in recent years. The experience of earlier 

reactors’ designs is being thoroughly reviewed to utilize it in the development of 

Generation IV reactors and SMRs (e.g. [6, 7]). A sample of the number of variables and 

performance characteristics involved in a typical reactor’s design is shown in Figure 1. 

These design variables, along with others [8], vary significantly from one reactor to 

another. If two levels of variation are set for each of the shown 19 variables, 524,288 

combinations are needed to determine all variables’ effects and interactions. Performing 

such a large number of experiments is not practical when experiments are expensive. In 

nuclear reactors design, experiments, including computational ones, are often expensive.  
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Figure 1. Example Variables and Performance Characteristics in the Design of Nuclear 
Reactors  
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Performances characteristics are sometimes optimized with respect to a set of 

variables [9-12]. It is often the case that the optimization method is not thoroughly 

described, a brute force approach is applied, or a comprehensive trial and error process is 

followed [13-17]. An example of a design flow chart for nuclear reactors is found in 

[18]. The coupling of variables in nuclear reactors design makes trial and error efforts 

very inefficient. An integrated approach that targets the coupling effect of several 

variables on several performance characteristics is not commonly applied in nuclear 

reactors design. Shortlisting variables affecting certain performance characteristics 

without a clear evaluation process is a commonly followed design approach. Experts’ 

input dependent approaches, such as Phenomenon Identification and Ranking Tables 

(PIRTs), is another common approach (e.g. [19, 20]). It is also common to drive the 

sensitivity analysis process with a theory based modeling as performed in [21].  

If a model is missing for a certain aspect of the design, experiments are needed to 

develop one. In nuclear reactors designs, most of the performed experiments are 

computational experiments. While computational experimentation is more economical 

than physical experimentation, it can become very expensive for complex systems. The 

design of experiments is a well-developed widely addressed subject in literature and 

books such as [22-24]. The subject presents several potential methods to decouple the 

performance characteristics of a nuclear reactors design. A variety of methods are 

investigated in this dissertation.  

This dissertation develops new experiments design methods to guide the initial 

phase of the design process for a nuclear reactor. The methods apply an adaptive 
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approach for the development of approximation models between variables and 

performance characteristics. These models highlight the most contributing variables and 

interactions for each performance characteristic. From this, the number of variables 

considered in the detailed design process of each performance characteristic is 

significantly reduced and the optimization process became more economical. In the field 

of design of experiments, experiments performed for this purpose are defined as 

“Sensitivity Analysis” or “Screening” experiments, and are sometimes referred to as 

exploratory experiments. This is a topic that is addressed thoroughly in literature. 

Screening is directly related to sensitivity analysis. If the parameters found by screening 

are divided by the variables’ ranges, the resulting parameters are the sensitivity 

coefficients. In addition to finding important variables and interactions, these 

experiments have several benefits that can be found in [25]. Most of the sensitivity 

analysis and screening methods do not deal with nonlinear effects of isolated variables. 

Nonlinearity can be investigated in other response surface methodologies such as central 

composite designs (see [26] for details). 

Different screening and sensitivity analysis methods utilize different 

assumptions. A review of existing sensitivity analysis and screening methods is 

presented in the “Existing Approaches” section. The methods of this dissertation will 

utilize the monotonic behavior assumption, which is present in reactors design and other 

engineering fields. In addition, the dissertation’s methods will assume knowledge of 

variables’ directions of effect on certain performance characteristics. For example, the 

magnitude of effect of changing fuel enrichment on the effective multiplication factor,
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effK , might be unknown in the design of new reactors. However, there is a strong belief 

that increasing enrichment will always increase effK . This represents a monotonic or 

persistent positive relationship between the variable enrichment and effK . This 

knowledge can be used in the design of any reactor. In some cases, this relationship 

exists between some variables and components of the performance characteristic. For 

example, instead of dealing with effK , it might be simpler to deal with its main 

contributors, such as fission reaction rate, absorption reaction rate and leakage rate. The 

variables’ directions of effect can often be predicted from common sense or knowledge 

that has developed over decades of experience.  

The following section will evaluate the validity of the monotonic behavior 

assumption using existing studies of other regularities. Using this assumption, section III 

will present the shape for the response change after variables’ alignment. Section III 

introduce four methods’ concepts to benefit from this knowledge. The methods are 

explained in a detailed manner in section IV. Two examples of the application of the 

most applicable method on a regular and non-regular systems are presented in section V. 

Section VI applies the most applicable methods on the design of an SMR version of the 

AP1000. The conclusions of the application of these methods and the corresponding 

results are analyzed in section VII. Future development on the methods and application 

are presented in the section VIII.  
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I.1 Problem Statement 

The design of new nuclear reactors, including Generation IV reactors, differs 

significantly from the conventional designs of water cooled reactors. The divergence of 

the design from the conventional domain into a new domain introduces several behavior 

uncertainties that could be comprehended through experimentation. The design of these 

experiments is challenging when experiments are expensive to conduct. The least 

experiments demanding model to evaluate the performance characteristics’ dependence 

on a set of variables is a linear model. In a linear model, two end points of each variable 

can be used to define the link between the response and the variables. If variables’ 

interactions are to be considered, the model becomes linear with respect to single 

variable changes only. If all interactions are to be explored, an exponentially increasing 

number of experiments is needed. If the number of variables considered is N and if all 

interactions are to be captured, the full factorial set of n=2N experiments will need to be 

performed. When N is large, the actual number of experiments performed, m, need to be 

much smaller than n. Since m is lower than the model full factorial number of 

unknowns, the system is underdetermined. Unlike over-determined systems with 

replicated experiments that apply regression methods [27], it is necessary in under-

determined systems to either make valid assumptions to constrain the excessive degrees 

of freedom, or to use existing relevant knowledge of the system.  
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In reactors design, useful knowledge does exist and can be used to compensate 

for the missing degrees of freedom. The existing knowledge used in this dissertation will 

not be by physical behavior quantification, but rather a direction based knowledge. The 

majority of existing approaches uses an assumption on the significance of the 

interactions at various orders. Since there is no knowledge of whether this assumption is 

valid, the norm is to seek few orders and assume higher orders as negligible. This is 

inefficient since it assumes that the orders of interactions of all variables are equally 

important when, in reality, they are not. In addition, exploring very low order of 

interactions only would result in inaccurate results. Most systems tend to behave in a 

manner similar to the one shown in Figure 2. An adaptive method would mean that as 

experiments are performed, the large interactions of the tree to the left side are targeted 

first, followed by the second order interactions of the right side of the figure. The 

unknown smaller interactions in both sides are further explored as the experiments are 

performed. The majority of existing approaches assume a uniform distribution of 

experiments, or that all variables have the same importance. If second order interactions 

are assumed significant, the assumed system model will be similar to Figure 3. It is, thus, 

desired to develop a method to enable the experimenter to efficiently determine 

experiments that reveal important variables and interactions only.  
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Figure 2. Example Realistic Importance of Main Effects and Interactions  
 
 
 

 
 
 

 
 

Figure 3. Example Assumed Importance of Main Effects and Second Order Interactions  
 

Main 
Effects 

2nd order 
interactions 

4thorder 
interactions 

3rd order 
interactions 

2nd order 
interactions 

Main 

Effects 

 1         2      3    4         5         6      7     8         9       10      11    12 
                                                Variables Index 

 1         2      3    4         5         6      7     8         9       10      11    12 
                                                Variables Index 



 

10 
 

 

I.2 Existing Approaches 

If all variables’ interactions of a system model are to be determined, a full 

factorial design is necessary. It is, however, impractical and often illogical to develop 

full factorial designs for problems with a large number of variables. Fractional Factorial 

Designs (FFDs) are orthogonal arrays that can reduce the number of experiments. 

However, FFDs can only be used if high order interactions are known to be negligible 

[25], since they are based on confounding main effects and various degrees of 

interactions. Plackett Burman (PB) introduced a new set of orthogonal arrays in 1946 

[25, 28].  They differ from FFDs in the way the interactions are confounded. PB designs 

determine the main effects of N variables using N+1 experiments in a manner that 

distributes evenly the confounding interactions among the main effects. This reduces the 

error of the determined main effects. PB designs and FFDs are popular screening 

methods, but they both confound interactions with main effects, and provide accurate 

results only if the system has negligible interactions. Tagushi introduced orthogonal 

arrays to screen the most effective variables affecting a product’s quality [29, 30]. Like 

other orthogonal arrays, they also confound effects. 

 Figure 4 demonstrates how FFDs confound interactions. The figure shows an 

example of all two state combinations of five variables. Each node represents one 

parameter of 32 parameters in total. There are two resolutions to screen this system 

through FFDs. One is using eight a Res III set of experiments and the other using a 

sixteen Res IV set of experiments. The degree of confounding parameters is usually 

described by resolution (Res). A low resolution design implies confounding parameters 
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of low order interactions. This reduces significantly the screening accuracy. Figure 4 

shows the Res III FFD with the nodes of the same color as confounded. FFDs sum the 

nodes of the same color to generate eight summations. If high order interactions are 

neglected, this would represent neglecting nodes in the upper side of the tree. As the 

number of variables and the number of nodes increase, screening by a certain resolution 

sums an increasing number of nodes. Parameters evaluation based on these sums 

becomes questionable. In addition, confounding a large number of parameters makes it 

impossible to identify which interaction parameter is significant and which are not. For 

example, if green was judged as important and as a result variable 5 is defined as a 

significant variable, this finding might be due to the 13 interaction being important, 

which falsely caused variable 5 to appear important. In addition, even if variable 5 is 

classified as important, it is not possible to determine which of its interactions is 

significant since they confound with other variables. A simple heat transfer example is 

used in Appendix A to demonstrate how confounding main effects and interactions can 

cause inaccurate conclusions.  
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Figure 4. Res III Grouping of Confounded Parameters  
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Means to unfold confounding effects such as semifolding or mirror-image foldover 

designs also exist  (see [25, 31] for details). However, the unfolding decision is based on 

an expert selecting specific interactions to unfold, and they are expensive in terms of the 
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number of experiments. Within the scope of the dissertations’ problem, the limitation of 

the most common orthogonal arrays, FFDs, can be summarized as:  

1. They do not provide information on whether the performed screening resolution is 

sufficient to produce an accurate model.  

2. They are inefficient since they give equal importance to all variables and interaction. 

In the unfolding process, interactions deemed unimportant at the initial screening 

will also be unfolded as there is no possibility to unfold selected interactions.  

3. They proceed in steps of power of 2 (8, 16, 32, 64, 128...), which makes it 

exponentially expensive to increase the resolution of screening. It is not possible to 

use a number of experiments between these steps except for certain semifolding 

matrices that usually require a large number of experiments such as Johns ¾ 

Designs.  

4. Except for Res III to IV designs, it is not possible to increase the resolution of the 

design. If Res IV was deemed inaccurate, a new set of experiments are to be 

performed that slightly overlap with the lower resolution set of experiments.  

5. They do not give the flexibility to economically add new variables to the model after 

screening is performed  

Non-orthogonal arrays were developed to predict certain interactions provided 

that the experimenter knows which interactions to explore [32]. The method of [33] 

combined fractional factorial designs and orthogonal polynomials. To screen interacting 

variables, Cotter [34] developed a method that determines the summation of odd and 

even parameters for every variable. This requires a total of 2N+2 experiments. This 
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method assumes that it is unlikely for a variable’s odd and even parameters to confound. 

The method is mainly valid for screening important variables. It does not provide 

valuable information on parameters since they are confound with other interactions of 

the same parent variable. A high number of variables indicate that several second order 

interactions exist, and distinction of interacting variables’ effects becomes not feasible. 

The method of [35] expanded on Cotter’s method to unfold second order interactions, 

assuming third and fourth order interactions are negligible. The study determines the 

interactions to explore based on the assumption that either parents of an interaction must 

be active in order for an interaction to be active. This assumption is valid according to 

[36, 37], but this method’s performance is sensitive to false negligence of an important 

interaction. One of this dissertation’s methods expanded Cotters method to unfold the 

confounding effects of the combined or integrated parameters on all orders.  

Group screening is a methodology that was developed to handle high number of 

weakly interacting variables [38]. These methods rely on placement of variables into 

groups and separately analyzing each group before analyzing cross groups interactions 

of important variables in each. Several group evaluation methods exist [38-46], and have 

similar assumptions and similar limitations. The common limitations are that these 

methods are dependent on the experimenter grouping process and on the strength of 

variables’ interactions. A demonstration example of how confounding effects can hide 

active variables in group screening is shown in Appendix A. Three group screening 

methods are briefly introduced in this section for illustration. In the method of [43], the 

experimenter screens separate groups of design and noise. The method establishes a 
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main effect of groups. Once a group is defined as active, it is investigated for its 

variables’ main effects and second order interactions. Only variables that interact within 

the group are investigated for interactions with other groups. The method aligns the 

directions of effect of variables in each group to reduce the confounding effects, thus 

reducing the probability of missing an important variable. The study of [44] analyzed the 

performance of [43] according to two criteria related to the number of experiments and 

the probability of missing an active effect. The method’s limitation is that it does not 

always capture group to group variables’ interactions if in-group interactions or main 

effects are classified as negligible due a local confounding behavior. It also requires a 

pre-knowledge of variables’ importance as to group them in an efficient manner. If 

variables’ importance was poorly judged, it would result in inaccurate results or 

inefficient number of experiments. Another group screening method that relies on the 

union of active factors from overlapping groups is introduced in [45]. The groups are 

selected randomly and adaptively. The method is efficient in determining important 

main effects. It does not target high order interactions and its efficiency in determining 

important variables is dependent on the grouping process. The study of [46] developed 

the Sequential Bifurcation (SB) method and provides a comparison of common group 

screening methods. The method relies on the spanning tree concept and the directional 

alignment of variables. It accounts for second order interactions and proposes to include 

second order nonlinearity of single variables. This adds N terms to the model, thus 

requires a middle point to be estimated for every variable states. The method makes the 

assumption that the variable’s direction of effect is determined based on the main effect. 
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The method is not designed for highly interacting variables. The efficiency of this 

method is dependent on the distribution of the important variables on the groups.  

One at A Time (OAT) ,also referred to as One Factor at A Time (OFAT), are 

sensitivity analysis and screening methods that are based on simply changing one 

variable at a time with all other variables fixed [47]. The experimenter evaluates the 

result before changing other variables. The study of [48] developed a trajectory based 

sensitivity analysis method with random starting points of experiments. Variables’ 

effects are found by a mean and variance representing the main effect and confounded 

interactions with nonlinearity. The method was revised and improved by [49]. The study 

of [50] developed another OAT trajectory based experiments selection method that is in 

the order of N2, and explores second order interactions. Other OAT methods have been 

investigated too such as [51]. OAT methods’ efficiencies and applicability remain a 

topic of discussion (see [52, 53][54][55]).  

The Fourier Amplitude Sensitivity Test [56] is a sensitivity analysis method that 

is based on the fact that important variables behave in a periodic manner approximated 

by coefficients of the Fourier series. Its applicability in complex systems remains 

questionable. The method of Iterative Fractional Factorial Designs (IFFD) of [57], and 

evaluated in [58], uses a sets of different FFD experiments in an iterative manner to 

produce a sensitivity model.   

To compensate for the lack of sufficient information on physical systems 

behavior, studies were conducted to evaluate certain regularities in the behavior of 

systems as to find common physical patterns. Recent studies [36, 37] analyzed four 
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systems regularities: sparsity, hierarchy, heredity and asymmetric synergistic interaction 

structure. The statistical results of [37] were used to develop a Bayesian approach in 

predicting active main effects and interactions.  

Fields other than screening and sensitivity analysis have been investigated for 

applicability to solve the dissertation’s problem. Designing a set of experiments is 

analogues to the mathematical problem of multidimensional nonlinear surface fitting. A 

sample of points, or experiments, is used to define the behavior of the surface, or 

response. Several examples of curve fitting methods can be found in literature [59-61]. 

Artificial Intelligence and specifically Artificial Neural Networks (ANNs) can be used to 

solve the dissertation’s problem. ANNs require the experimenter to define the size of the 

network and the functions to use. ANNs’ applicability was tested by modeling one 

performance characteristic, effK , of this dissertation’s case study. The ANN was found to 

be significantly less accurate than FFDs.  

Instead of focusing on variables, it is also possible to drive the experimentation 

process towards a certain response point or region. This process is referred to as 

optimization. Optimization efficiency is very dependent on the complexity of the system. 

If the system is too complex, it can to be broken into subcomponents using 

Multidisciplinary Design Optimization (MDO) methods. MDO studies the means to 

optimize coupled systems by optimizing the whole system or optimizing the coupled 

subsystems separately then accounting for the interactions between subsystems. The 

study of [62] reviews existing MDO approaches and discusses their performances. There 

are several optimizations methods in literature [63]. Several of these are gradient based 
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[64]. Others are based on the divide and conquer concept, such as the branch and bound 

optimization that is utilized in [65]. The concept of branch and bound is to split the 

domain of variables according to a certain criterion into smaller subdomains. The bound 

of the optimization criteria in every subdomain is then found. This concept has been 

utilized in the dissertation’s methods development.  

Genetic algorithms are one of the most common optimization methods. They 

optimize systems with respect to certain targets using observations made from 

experiments performed using various combination of variables’ states. They start from 

the no-knowledge state and builds knowledge of the performance characteristic, not the 

variables, towards a desired value as more experiments are performed. In genetic 

algorithms, the result is a set of variables’ states or ranges that achieves the desired 

performance characteristic to a certain degree. These algorithms have been applied in 

nuclear reactors designs [66] and in fuel shuffling and depletion analysis [67-70]. Since 

these algorithms start from no knowledge, they are not as efficient as the dissertation’s 

methods, which assume knowledge of directions of effect. In addition, these methods do 

not introduce an understanding of how systems behave. They rather deal with systems as 

a black box. If the optimization value of the performance characteristic is changed, these 

algorithms have to be performed again utilizing only a portion of the performed 

experiments. Genetic algorithms converge on the performance characteristics. Screening 

and sensitivity analysis methods converge on the variables’ parameters.  

Predictive modeling, dimensionality reduction and pattern recognition methods 

such as [71-73] were explored to solve the problem of underdetermined systems. These 
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methods are mostly non-deterministic, but can explain extremely large number of 

variables. They could be thought of as encoding methods that reduces the size of a large 

set of data into a small one. They reduce the dimensionality of the system to a defined 

size based on the assumption that, underneath the complex, high dimensional system 

lays a low dimensional model that can represent the high dimensional system with an 

acceptable error. These approaches are mostly probabilistic and driven by historical data, 

thus are inapplicable to solve the dissertation’s problem.  

I.3 Objectives 

The target of the dissertation’s methods is to overcome the limitations of the 

existing methods’ assumptions in order to evaluate systems with various degrees of 

interactions in an efficient manner. The method should not neglect high order 

interactions or make any assumptions on the strength of high order interactions. The 

results of the application of the methods should reduce optimization efforts through the 

identification of important variables and interactions. The detailed objectives of the 

method can be listed as: 

 Utilization of various degrees of knowledge of the directions of variables’ effects on 

a performance characteristic  

 Efficient selection of experiments to determine only significant performance-relevant 

main effects and interactions in a system with large number of interacting variables 

 Adaptive modeling and identification of significant performance-relevant main 

effects and interactions with a quantified estimated response uncertainty 
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In terms of application, the methods should be applied to the design of a sample 

of variables and performance characteristics of a Light Water Small Modular Reactor 

(LWSMR) to understand the coupling behavior of variables.  

I.4 Assumptions 

Two main assumptions and few minor assumptions are used in this dissertation. 

The first assumption is the knowledge of the direction of variables effects on 

performance characteristics. This is the key input for the methods introduced in this 

dissertation. The methods utilize this knowledge in aligning the variables to reduce the 

confounding effects. The second assumption is that the directions of effect of important 

variables, also referred to as active variables, tends to be persistent. This is considered a 

phenomenon, referred to as monotonic, that has been seldom investigated in literature. 

The validity of this assumption is evaluated in a later section. Absolute confidence of the 

monotonic behavior is not necessary, since the assumption is evaluated through a 

process to predict the performance of the model within every part of design domain.  

As often followed in screening and sensitivity analysis experiments, a linear 

model is considered sufficient to generate an approximation of the response behavior, 

since a linear mode will require the minimum number of experiments. The model is only 

considered linear with respect to every variable when all other variables are fixed. It will 

allow nonlinearity due to variables’ interactions.  

Since an adaptive sequential method is desired, it should be possible to conduct 

experiments one at a time. The design ranges of variables should be defined while the 
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performance characteristic’s domain remains boundless. As was mentioned earlier, 

screening and sensitivity analysis methods limit the variables’ domain while 

optimization methods limit the performance characteristics domain. In summary, the 

assumptions made in the introduced methods are: 

  Various degrees of knowledge of the variables’ directions of effect on the 

performance characteristics   

 Monotonic effects of active variables on the performance characteristics 

 Sequential experimentation  

 Finite variables’ design domain  

 Limited nonlinearity of single variables 

I.5 Approximation Model and Design Domains 

The model used in the dissertation’s methods is a linear model in every variable. 

This model requires a minimum of two states for every variable. A linear model is 

considered sufficient at this stage of the design, since, in an interacting system, the 

interactions nonlinearity is more significant than single variable’s nonlinearity. The 

linear model of a response or performance characteristic is approximated using Taylor 

series[74] as: 
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where ,...,, ,3,2,1 xxx are the states of variables in a defined domain and ,...,, ,3,2,1 RRR xxx  are 

reference points for the model in the same domain. Since a linear model is assumed with 

respect to every variable, the second and higher order derivatives of single variables 

were omitted from the model.  

 If the experimental error can be found, it can be used in choosing a threshold for 

importance as will be demonstrated at a later stage. These errors can play a very 

important role in small response changes as they can significantly alter the shape of the 

model. The impact of the experimental error on the response model development has 

been addressed in literature and will not be addressed in this dissertation. It is expected 

that the response projection error will dominate over the experimental error. The model 

of equation 1 can be rewritten as: 
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 s are the parameters of the models, and are equal to 



 

23 
 

 

 






































































...
,...),,(

,...),,(,...),,(

...
,...),,(,...),,(

,...),,(
,...),,(

,3,2

,...,32

321

,3,1

,...,31

321
,2,1

,...21

321

,3

,...,3

321
,2

,...,2

321

,1

,...,1

321
,3,2,1

0

,4,1

,4,2,3

,2,1,3,1

,3,2

RR

xx

RR

xx

RR

x

R

xx

R

xx

R

xx

RRR

xx
xx

xxxy

xx
xx

xxxy
xx

xx

xxxy

x
x

xxxY
x

x

xxxy

x
x

xxxy
xxxy

RR

RRR

RRRR

RR

  (3) 










































....
,...),(

...
,...),(

,...),(,...),,(

,3,2

,...321

21
3

,3

,...31

21
2

,2

,...21

21
2

,...,1

321

1

,4,2

,3,3,2

RR

x

R

x

R

xxx

xx
xxx

xxy
x

xx

xxy

x
xx

xxy

x

xxxy

RR

RRR  (4) 










































...
,...),(

...
,...),(

,...),(,...),,(

,3,1

,...321

21
3

,3

,...32

32
2

,1

,...21

2
2

,...,2

321

2

,4,1

,3,3,1

RR

x

R

x

R

xxx

xx
xxx

xxy
x

xx

xxy

x
xx

xxy

x

xxxy

RR

RRR  (5) 










































...
,...),(

...
,...),(

,...),(,...),,(

,2,1

,...321

21
3

,2

,...32

32
2

,1

,...31

31
2

,...,3

321

3

,4,1

,2,2,1

RR

x

R

x

R

xxx

xx
xxx

xxy
x

xx

xxy

x
xx

xxy

x

xxxy

RR

RRR  (6) 





















 ...

,...),(,...),(
,3

,...321

21
3

,...21

21
2

12

,4,3

R

xx

x
xxx

xxy

xx

xxy

RR

  (7) 





















 ...

,...),(,...),(
,2

,...321

21
3

,...31

21
2

13

,4,2

R

xx

x
xxx

xxy

xx

xxy

RR

  (8) 



 

24 
 

 





















 ...

,...),(,...),(
,1

,...321

21
3

,...32

21
2

23

,4,1

R

xx

x
xxx

xxy

xx

xxy

RR

  (9) 

















 ...
,...),(

,...321

21
3

123

,4 Rx
xxx

xxy  (10) 

The target of the dissertation’s methods is to find the most influential parameters 

that will explain the relationship between the response y and the variables ,...,, 321 xxx  

of equation 2. Using full factorial designs will require n= 2N experiments to determine 

all n parameters. Every experiment will provide a result for a unique combination of 

variables’ states. In a matrix format, this can be expressed as:  
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X  is the design matrix and defines all state combinations of the variables. n  is the 

interaction parameter of all variables ( N......12345 ). Two domains were investigated for the 

variables ,...,, 321 xxx  in this dissertation. The 0,1 domain, x {0,1}, transforms the 

variables’ range into a minimum state of zero and a maximum of one. The -1,1 domain,

x {-1,1}, transforms the variables’ range into a minimum state of negative one and a 

maximum of one. The design matrices of the two domains are:  
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The parameters have different interpretation depending on the design matrix 

domain. In the -1,1 design domain, the parameters represent half the main effects and 

interactions. Since every variable varies from -1 to 1, the actual change of the response 

due to variation of one variable is twice the value of its parameters, thus a parameter 

value is half the main effect or interactions. The relationship between parameters in the 

two design domains is:  
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A brief explanation of the two design domains’ relationship in addition to the 

effect of the response variance on the parameters of each of the two domains can be 

found in Appendix B. The most important finding to take from the appendix is the 

advantage of the -1,1 design matrix domain over the 0,1 design domain. It is that it 

provides an equal value and error weight to all experiments results. If the covariances of 

the response results are assumed as zero then: 
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where iS  is the sign of the parameter ,1,1, k  effect on the response. If all the response 

errors are assumed of the same magnitude then:  
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Since only a small portion (m) of the total number of experiments is performed, the 

response error can be categorized into an experimental error,  iExp y  and an 

experimental and projection error,  iojectionExp yPr . The parameters’ variance is, then, 

defined as: 
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If all the response errors are assumed of the same magnitude and 

   22
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 This shows that as the number of parameters, n, exponentially increases by the increase 

of the number of variables N, the parameter’s variance dependence on the response’s 

variance weakens. The equation also shows that as n , the effect of incrementing m 

decreases and the main contributor for reduction of 2
1,1, )( k  is the reduction of 

 2
Pr ojectionExp

y


 . If m n, then there is a need to establish a covariance of the response, 

y, through introducing an assumption to overcome the weak dependence of 2
1,1, )( k  

and  2
Pr ojectionExp

y


 . The assumption used, in this dissertation, is the monotonic 

variables’ behavior assumption. The validity of this assumption is addressed in the 

following section.   
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II. VALIDITY OF VARIABLES MONOTONIC BEHAVIOR ASSUMPTION 

This section will demonstrate the validity of the monotonic variables’ behavior 

assumption from the findings of previous studies [36, 37] that analyzed physical systems 

regularities. The studies used the Lenth method [75] to classify variables’ effects from 

un-replicated experiments as active or inactive, representing important or unimportant 

variables. Other methods can be used to assess the variables’ effects [76-78][25], and a 

review of several methods is available at [79]. Four systems regularities were analyzed 

in the studies. These are sparsity, hierarchy, heredity and Asymmetric Synergistic 

Interaction Structure (ASIS). Sparsity indicates that the number of significant effects and 

interactions on a physical system response is usually small. Hierarchy indicates that the 

ratio of active effects or interactions to all effects or interactions of the same order tends 

to be larger than the next order ratio of active interactions to all interactions. It also 

indicates a larger average magnitude of an effect or interaction than the average 

magnitude of the next order interactions. Heredity indicates that the probability of an 

active interaction increases as the number of its active parent variables increase. ASIS 

indicates that second order interactions tend to follow a certain directional pattern with 

respect to their parent variables. The studies concluded that sparsity, hierarchy, heredity 

and ASIS are significantly present in active variables of physical systems. This section 

will evaluate whether a monotonic behavior is significantly present in active variables if 

these regularities are significantly present.  

If a consequence relationship of active variables on monotonic variables is 

proven then there are two scenarios for each variable as shown in Figure 5. If the 
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variable is found active, the assumption of monotonic behavior is very likely to be valid. 

If the variable is found inactive, the variable effect is weak on the performance 

characteristic. The variable monotonic behavior assumption is, thus, invalid, but since 

the variable is not important, it can only cause small monotonic violation. Thus, the 

wrong assumption will not severely affect the accuracy of the projection. The 

mathematical condition for positive monotonic behavior of variable i in the -1,1 design 

domain is derived in Appendix C, and is found as:   

0...
, , ,1

1,1,
, ,1

1,1,
,1

1,1,1,1,     
  


 






N

ilkl

N

ikjk

N

ijj
ijkljkl

N

ikjk

N

ijj
ijkjk

N

ijj
ijji sss   (19) 

for all combinations of ,...,, jkljkj sss  where ,....,, lkjjklkjjkjj xxxsxxsxs  . The two 

extreme design domain states are when all variables are at their high state or all variables 

are at their low state. If all variables are at their low state, the monotonic behavior 

requires that 
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which can written as:  

0)()( 1,1,1,1,   ii EvenOdd   (21) 

Odd and Even represent functions that sum all odd or even parameters of the variable in 

a similar manner to [34]. These functions will be referred to as the “Integrated Odd 

Parameters” and the “Integrated Even Parameters” in this dissertation. If all variables are 

at their high state, the monotonic behavior requires that 

0)()( 1,1,1,1,   ii EvenOdd   
(22) 
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In the following sections, the relationship between each of the four mentioned 

regularities of active variables and the monotonic behavior of these variables will be 

investigated.  

 
 
 

 

 
Figure 5. Validation Scenarios of the Monotonic Variables Assumption  

 
 

II.1 Sparsity Effect on Variables Monotonic Behavior  

Sparsity implies that the number of active effects affecting any performance 

characteristic is a small portion of the total effects. Both of [36] and [37] found that this 

behavior is significantly present. Sparsity implies that a big portion of the variables will 

not be active or monotonic, but these variables are not of concern since their effect on 

the performance characteristic is weak. 

II.2 Heredity Effect on Variables Monotonic Behavior  

Heredity implies that if an interaction is active, its parent variables and 

interactions are likely to be active too. Both of [36] and [37] found that this behavior is 
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significantly present. Due to the nature of inequality 19, and as is demonstrated in 

inequality 21 and inequality 22, second order interactions are the main players in 

satisfying the monotonic behavior inequality. It is, thus, expected that any active 

interaction for an inactive variable presents a variable that is non-monotonic and has a 

significant change of direction due to the active interaction. This presents a scenario that 

is not probable (around 4.5% by [36] and 2.5% by [37]). In addition, since one of the 

parents is active, the active interaction will be captured when exploring the active parent. 

The scenario of two inactive parents of a second order active interactions is further 

improbable (0.48% by [36] and 1.3% by [37]), and will cause both variables to be non-

monotonic. Unless the interaction in this case is confounded in another interaction, it is 

also likely that this interaction will be captured too. Since both of the previous scenarios, 

representing non-monotonic behavior, are weakly present in systems, most of the active 

second order interactions are for active variables with strong main effects. This indicates 

that heredity supports that active variables in physical systems will satisfy inequality 21 

and 22, and are monotonic. 

II.3 Hierarchy Effect on Variables Monotonic Behavior  

Hierarchy implies that as the order of active interactions increase, its average 

magnitude tends to be lower than its active parents. This means that for any variable i, 

1,1,1,1,   iji  . It also implies that the number of active interactions from the total 

number of interactions of the same order decrease as the order increase.  Since inequality 

19 has several second order interactions to every first order parameter, it is not 
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guaranteed that 
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 
N

ijj
iji

,1
1,1,1,1,  when neglecting higher orders. However, hierarchy 

and sparsity indicate that the number of active 1,1, ij  is not high, and heredity analysis 

found that the probability of an active third order interaction, if the parent second order 

interaction is active, is relatively high. Including third order interactions in inequality 19 

increases the probability of satisfying it, since it requires that


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N

ijj
ij

N

ijjjk
ijki
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,1,
1,1,1,1,   when neglecting higher orders. It is, thus, concluded 

that the presence of hierarchy supports that active variables in physical systems will 

satisfy inequality 21 and 22, and are monotonic. 

II.4 Asymmetric Synergistic Interaction Structure Effect on Variables Monotonic 

Behavior  

ASIS introduced by [36] implies that the active synergistic second order 

interactions tend to have a sign that is the result of the multiplication of the signs of their 

parent variables. The paper found that 80% of active interactions obeyed the inequality 

01,1,1,1,1,1,  ijji  . Since this is significantly present, the alignment of variables’ 

directions of effect will cause the interactions to accumulate, thus reducing the 

confounding effect of interactions. This behavior means that 


 
N

ijj
iji

,1
1,1,1,1,  is harder 

to achieve since most parameters 1,1, ij  will have the same sign. It also indicates that the 

most challenging scenario of inequality 19 is when all or most of the variables are at 
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their low state. One the other hand, this regularity provides valuable knowledge on the 

expected shape of the response as explained in the following section. 
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III. CONCEPT: DIRECTIONAL KNOWLEDGE AND MONOTONIC 

BEHAVIOR UTILIZATION 

 
In this section, the concept of knowledge of the variables’ directions of effect and 

the variables’ monotonic behavior will be utilized in the response shape development. 

The concept behind four new methods will be explained. To visually comprehend the 

idea behind the introduced methods, the multivariable model development will be 

explained by a non-linear single variable response model. A diamond tree structure will 

be introduced to graphically comprehend the concept in the multivariable space.  

III.1 Response Shape after Variables Alignment 

 The approximation model, of N variables with n=2N parameters, was introduced 

earlier as: 

  ...),...,,,(
1

1,1,
1

1,1,
1

1,1,321  
  


 






N

i
k

N

ij

N

jk
jiijk

N

i

N

ij
jiij

N

i
iin xxxxxxxxxxyE   

(23) 

, and is a combination of intersecting splines with N degrees of freedom in each. Each of 

these splines can be expressed as: 

  i
n

N

i

xxyE 1,1,
0

)( 

   

(24) 

The regularities explained in the previous section, especially the ASIS, are used 

in this section to predict that, if the variables are aligned in the positive direction, the 

drop at the maximum end of the response is relatively large, and the increase at the lower 

end is small, thus: 
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This is due to the fact that if the active main effect has 1,1, i >0 by alignment, 






N

ijj
ij

,1
1,1,  is maximized, since 01,1, ij  in most of the active interactions. The slope at 

the top end of the multidimensional surface is expected to decrease till the other end of 

the multidimensional surface is reached. In the 1-D nonlinear splines space, the expected 

response drop due to a variable i drop at various other variables’ states is similar to the 

examples in Figure 6. However, non-monotonic behavior of variables will cause the 

response drop to depart from the general shape of Figure 6. The multidimensional 

surface will have !n  possibilities to drop from the high state of all variables to the low 

state of all variables. Each possibility presents a different drop path that is not smooth, 

because the variable will drop by a different magnitude at different states of other 

variables. The curvature of the spline increases as the degree of interaction of the 

dropped variable increases. For every variable, there are !)1( n  paths or splines that are 

similar to the examples of Figure 6.  

Since the shape of the response can be predicted for monotonic variables, the 

concepts of spanning tree, branch and bound and the Newton’s Raphson method are 

utilized in the next sections to find an accurate approximation of the !n  splines with a 

relatively small number of experiments. The word “tree” is used to describe the set of 

experiments’ results of all variables’ combinations. Assuming that all variables are 

monotonic and aligned, it is possible to predict the increase of experiments’ results in a 
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diamond tree as shown in Figure 7. Each binary number represents the states of the 

variables in one experiment, or one node. Though the tree uses the 0,1 notation in its 

nodes to represent the variables’ states, the parameters found using the dissertation’s 

methods are all -1,1 domain parameters. The 0,1 notation is only used to present 

variables’ states, since even though 0,11,1   , the response 1,1 xy  is the same as 0,1xy

, and the variable physical state of 1,1x  is the same as 0,1x . The 0,1 notation is 

used, from here onwards, for compact presentation of variables’ states. 

 

 
 

Figure 6. Examples of Response Drop by One Variable Drop at Various States of 
Variables  
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Figure 7. Five Variables Diamond Tree Representation of Experiments  
 
 

III.2 Monotonic Sparsely Interacting Variables (MSIV) Method Concept 

This method groups the variables into interacting and non-interacting variables 

based on an initial evaluation of the strength of the integrated even parameters of every 
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variable. In the interacting variables’ group, or subtree, the summation of the integrated 

odd parameters of order R is compared with the integrated even parameters of the parent 

order R-1. If the difference is small, then all interactions are explained in the interacting 

variables’ subtree, otherwise a cross interaction exist with the non-interacting variables’ 

subtree, and the non-interacting variables’ subtree is replicated with the binary states of 

cross interacting variables. In addition, if the integrated even parameters of order R are 

important, the higher order interactions, R+1, are explored. Since this process requires 

an expensive exploration of level by level of interactions in the interacting variables’ 

subtree, this method is only recommended when there are a small number of interacting 

variables. The non-interacting variables’ subtree is analyzed through any of the existing 

low resolution screening or sensitivity analysis methods, such as FFDs. The exploration 

path of this method is shown in Figure 8. 

The advantage of this method is that it only applies a sufficient Res III evaluation 

method on the non-interacting variables’ subtrees, and is able to determine the degree of 

exploration to perform in the interacting variables’ subtree. The method’s disadvantage 

is that it is not applicable for systems with a large number of interacting variables, 

because it becomes exponentially expensive as the number of variables in the interacting 

variables’ subtree increases. 

 

 

 

 



 

38 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8. Exploration Path of the MSIV Method  
 
 

III.3 Monotonic Highly Interacting Variables (MHIV) Method Concept 

This method recursively groups the variables into interacting and non-interacting 

variables based on a local evaluation of the strength of the integrated even parameters of 

each variable. If a variable is non-interacting, the drop or increase at each end of a tree or 

subtree is equal. This is analogous to two equal slopes at two end points of a 1-D spline 

when applying the Newton’s Raphson method. The grouping is initially applied to all 

variables. The non-interacting variables are isolated as they are found, and the 
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interacting variables are further explored. For every interacting variables’ subtree, the 

most interacting variable is used to span the subtree into two subtrees at the two states of 

that variable. The child interacting variables’ subtrees are then analyzed in a similar 

manner to the parent subtree, but with fewer variables.  

The exploration path of this method is shown in Figure 9. The spanning of 

interacting variables’ subtrees continues to a point where no further interacting variables 

remain in the subtrees (referred to as leaf subtrees). In the leaf subtrees, the local and 

inherited integrated odd parameters of non-interacting variables are used to project the 

response results through a non-interacting variables’ model. Since two nodes are 

performed in every subtree, the projection can be done by either of the top or bottom end 

nodes of the tree. The other end node can be used for the subtree’s projection error 

evaluation. This is analogous to projecting the two ends of a spline using Newton’s 

Raphson method and finding that each end projection intersects with the other. If the 

subtree has a very high error, but no interacting variables, then interactions were missed 

in that subtree due to confounding parameters, and further subtree’s exploration is 

needed. 

The advantage of this method is that it drives the exploration process by the 

strength of interactions, and provides a mean to determine the accuracy of the results 

within every subtree.  
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Figure 9. Exploration Path of the MHIV Method  
 

III.4 Range Convergence (RC) Method Concept 

This method utilizes the branch and bound concept. The method reclusively 

groups the variables into important and non-important variables’ subtrees based on an 

initial evaluation of the strength of the integrated parameters, representing summed even 
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and odd parameters, of each variable. This integrated value is equivalent to the result 

drop of each variable at the top end of a tree, thus there is no strict need in this method to 

determine the increase of the variables at the lower end of the tree. On the other hand, if 

the variables’ integrated odd and even parameters are needed, for the experimenter to 

determine the strength of interactions, the top and bottom end of the tree are explored.  

The experimenter will continue to perform the RC method if variables are 

strongly interacting. Otherwise, the experimenter can perform the SB method, since it is 

designed for weakly interacting variables. In this case, the experimenter will utilize the 

knowledge gained through the initial RC evaluation steps in the variables’ grouping of 

the SB.  

If the RC method is applied, the grouping is initially applied to all variables. For 

every important variable subtree, the most important local variable is used to span the 

subtree into two subtrees at the two states of that variable. The child variables’ subtrees 

are then analyzed in a similar manner to the parent subtree, but with fewer variables. The 

exploration path of this method is shown in Figure 10. The spanning of important 

variables’ subtrees continues to a point where no further important variables remain in 

the subtrees, when the span of the subtrees falls below a certain threshold, or when the 

maximum number of experiments is reached. The span of every node in the leaf subtrees 

is found by enforcing that every node has to be smaller than any performed higher 

connected node and higher than any performed lower connected node. This establishes a 

range for every node. The projected response for every node is set as the middle point of 

the node range.  
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Figure 10. Exploration Path of the RC Method  

 
 
 
 This method has some similarities to the SB method of [46]. Unlike SB, this 

method utilizes the response shape finding of Figure 7, and is not limited to second order 

interactions. Instead of splitting the tree from a middle node, this method drives the 

exploration process by the importance of variables, thus efficiently reducing the span of 
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the nodes. The span of nodes provides a way to determine the accuracy of the results 

within every subtree. The disadvantage of the RC method is that it is weak when applied 

to systems with weakly interacting variables, since the skewed shape of Figure 6 

becomes closer to a line. The RC method is designed for systems with strongly 

interacting variables, and thus, complements the SB method that is designed for systems 

with weakly interacting variables. 

III.5 Hierarchical Integrated Parameters (HIP) Method Concept 

This method hierarchically and reclusively explores the important interactions by 

finding the integrated odd and even parameters of every interaction to a point where the 

integrated even parameters of all interactions are not important. This method is 

developed as an expansion to the method of [34]. The method of [35] expanded [34] to 

unfold second order interactions. This method expands [35] and [34] to determine any 

order of interaction. This can be accomplished by a hierarchical structure of exploration, 

i.e. 1,1, ijk  can only be unfolded if 1,1, ij  , 1,1, jk  , 1,1, ik  and their parents are 

unfolded first. A new domain of parameters ( ) is introduced for this method (see 

Appendix D for an example of the domain conversion process). The exploration path of 

this method is shown in Figure 11. 
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This method was found to result in high response projection error especially in its 

middle zone of the tree. For the four variables’ example of Appendix D, the design 

matrix was found as: 





























































0     0     0     0     0     0     0      0     0     0     0     0     0       0     0     1

0     0     0     0     0     0     2-    2-    0     0     0     0     0       0     0     1

0     0     0     0     0     0     0     0     2-    2-    0     0     0       0     0     1

0     0     0     0     4-    4     0     0     0     0     2-    2     2-     2     1     0

0     0     0     0     0     0     0     0     0     0     2-    2-    0       0     0     1

0     0     4-    4     0     0     0     0     2-    2     0     0     2-     2     1     0

4-    4     0     0     0     0     2-    2     0     0     0     0     2-     2     1     0

0     0     0     0     0     0     0     0     0     0     0     0     2-     2     1     0

0     0     0     0     0     0     0     0     0     0     0     0     2-    2-    0     1

4     4     0     0     0     0     2-   2-   0     0     0     0     2-    2-    0     1

0     0     4     4     0     0     0     0     2-   2-   0     0     2-    2-    0     1

0     0     0     0     0     0     0     0     0     0    2-   2      0     0      1     0

0     0     0     0     4     4     0     0     0     0    2-   2-    2-    2-    0     1

0     0     0     0     0     0     0     0     2-    2     0     0     0     0     1     0

0     0     0     0     0     0     2-    2     0     0     0     0     0     0     1     0
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Y

 

(26) 

The 4 and -4 multiplication affecting the high end of the integrated parameters, which is 

usually assumed as zero, increases the projection error of this method. This is analogous 

to projecting the shape of 1-D spline by averaging the slope at its two ends. As a result, 

this method is very economical in screening important variables and interactions, but not 

efficient in response’s projection or parameters’ determination. Its response’s projection 

efficiency improves as the sparsity of effects increases and high orders interactions 

weakens. 
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Figure 11. Exploration Path of the HIP Method  
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IV. METHODS* 

In this section, the concepts introduced in the previous section are utilized to 

produce a flow chart of the steps for each method. The methods description will utilize a 

diamond tree structure of experiments similar to the example shown in Figure 7, where 

the tree nodes represent an experiment’s result at a unique state of variables. The 

methods will utilize the assumption that variables are monotonic. The following sections 

will explain the common then specific steps of the four methods.  

IV.1 Common Steps of All Methods 

The first four steps of the four methods in addition to the last validation step are 

the same in all methods, so they will be explained in the following sections.  

IV.1.1 Performance Characteristic Directional Alignment 

This step is optional, except in the top end exploration scenario of the RC 

method. It can be performed before or after the next step depending on the degree of 

knowledge about the performance characteristic. The step is performed in this 

dissertation to better present the methods results. This step aligns the low end of the 

performance characteristic with the potential saturation plateau, if one is expected to 

exist, thus  

                                                 
*Some definitions and formulas in this section are from: Cotter, S. C., A screening design for factorial 
experiments with interactions, Biometrika, 1979,vol. 66,2, pp. 317-320, by permission of Oxford 
University Press 
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0...0001....111 


XiXi dx

dy

dx

dy  (27) 

If the performance characteristic is to be reversed, this can be achieved by simply 

inversing the performance characteristic or subtracting it from a reference point. The 

reversal process is usually dependent on the performance characteristic. 

IV.1.2 Variables Directional Alignment 

This step is the main input of the experimenter and represents the added value to 

the evaluation process. If variables are aligned in one direction, it is expected that 

regularities will reduce the confounded interactions as was explained in section III. A 

table is established of all variables and their expected directions of effect on the 

performance characteristic. An example is shown in Table 1. The justification of the 

directional decision making could be shown in another table such as Table 2, and is used 

as a reference to why the signs of the directions of effect are selected. The positive sign 

corresponds to the alignment of the variable high state to 1 and the low state to -1. The 

negative corresponds to the alignment of the high state to -1 and the low state to 1. The 

equal sign indicates that the variable state has no effect on the performance 

characteristic. A question mark indicates an unknown directional relationship of the 

variables and the performance characteristic. In some cases, the initial directional 

judgment is found to be wrong, indicated by two signs with the correct sign in brackets. 

If a variable is assigned a sign and found to be reversed, the assignment of -1 (or 1) to 
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low and 1 (or -1) to high is reversed to -1 (or 1) to high and 1 (or -1) to low. Whenever a 

wrongly aligned active variable is found, its effect has to be reversed.  

 

Table 1    
Variables’ Directions of Effect on the Performance Characteristic  
 

Variable Index Variable 
Direction of Effect on the 

Performance Characteristic 

1 Name 1 + 

2 Name 2 = 

3 Name 3 - 

 

 
Table 2     
Justification of the Variables’ Directions of Effect on the Performance Characteristic  
 

Variable 
Index 

Variable Justification 

Direction of 
Effect on the 
Performance 
Characteristic 

1 Name 1 
Justification of why variable 1 
affects the performance 
characteristic in this direction  

? 

2 Name 2 
Justification of why variable 2 
affects the performance 
characteristic in this direction 

+ 

3 Name 3 
Justification of why variable 3 
affects the performance 
characteristic in this direction 

+(-) 
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IV.1.3 Variables Integrated Parameters Determination 

In section III, the integrated odd and even parameters were introduced. This step 

will apply the mathematical representation of these definitions using the definitions of 

[34]. The first order integrated odd and even parameters are defined as: 

...)(
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and the variables’ importance is defined as: 

)()()( 1,1,1,1,1,1,   iii EvenOddimp   
(30) 

The integrated odd and even parameters for every variable are dependent on four 

experiments only, two at the top end of the tree and another two at the bottom end. The 

integrated odd and even parameters are determined using:  
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This represents the top node and the node right below it with variable i set at its low state 

and the bottom node and the node right above it with variable i set at its high state. This 

process will be referred to as the “one down and one up” process later in the dissertation. 

For N variables, 2N+2 experiments are needed to determine the integrated odd and even 

parameter of all main effects.  
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If the absolute function used in [34], and shown in equation 30 is dropped, the 

importance of each variable becomes only dependent on two experiments at the top end 

of the tree, and is determined using:  

 
 

  
)()(2
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 

 
ii EvenOdd

xixxi yyimp


  
(33) 

Otherwise, four experiments are needed to determine the integrated odd and even 

parameters, and the absolutes of both values are summed. 

IV.1.4 Variables Categorization  

In this step, depending on the applied method, the variables are sorted by the 

strength of interactions in a bar chart similar to the example shown in Figure 12 or sorted 

by the variables’ importance as shown in Figure 13. In addition, a threshold for the 

strength of integrated even parameters or importance is defined in this step to categorize 

important integrated even parameters or important variables. Depending on the method 

used, this step will isolate the non-interacting variables, the non-important variables, or 

the non-important interactions.  
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Figure 12. Example Integrated Odd and Even Parameters Sorted by the Strength of 
Interactions 

 
 
 

 
 

Figure 13. Example Integrated Odd and Even Parameters Sorted by Importance 
 
 

IV.1.5 Validation 

The validation of the results, found by any of the methods of this dissertation, is 

performed using a set of validation experiments. Though the parameters are targeted in 

the methods, validation is done through the performance characteristic results, since the 
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parameters of the validation set of experiments are unknown. The Root Mean Square 

Error (RMSE, and referred to as Root Mean Square Deviation in [80]) of the response is 

used for validation, and is defined as  

S

yy
RMSE

S

i
ii




 1

ˆ
 (34) 

where S is the number of validation points, iŷ  is the projected performance 

characteristic, and iy is the result of the performed performance characteristic 

experiment at the same state of variables as iŷ . The selection of the validation set is 

problem dependent since the experimenter might bias the validation toward certain 

regions of interest. In this dissertation, a FFD set of experiments is selected for a uniform 

distribution of validation points.  

In the following sections, the specific flow chart and steps of the four methods of 

the dissertation are explained.  

IV.2 Monotonic Sparsely Interacting Variables Method  

The key of this method is the separation of interacting and non-interacting 

variables into separate subtrees, the exploration of interactions of the interacting 

variables, and then the exploration of cross interactions of interacting variables with non-

interacting variables. The flow chart of the proposed method is shown in Figure 14. 
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IV.2.1 Next Order Integrated Parameters Determination 

In this step, the next order odd and even parameters of variables in the interacting 

variables’ subtree are found. Appendix D demonstrates the approach developed to 

determine the integrated parameters of any order of interactions using the new   

domain. If four variables are considered, the integrated odd and even parameters are 

found using: 
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For every second order interaction, eight experiments need to be performed. 

However, six of the experiments already have been performed for the parent main 

effects. As a result, only two experiments are needed. The same applies to any order of 

interactions, thus two experiments are needed to find the integrated odd and even 

parameters of any interaction, provided that the parent main effects and interactions have 

been explored. 
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Figure 14. Flow Chart of the MSIV Method  
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IV.2.2 Evaluation of Interactions in Interacting Variables Subtree 

After the next order integrated parameters in the interacting variables’ subtree are 

found, two checks are performed. The first check is to determine if any of the integrated 

even parameters is important. If an important integrated even parameters is found, its 

next order integrated parameters are determined in the same manner explained in the 

previous step. Thus, if )( 1,1, REven  >threshold, )( 1,1,1 REven   and )( 1,1,1 ROdd   are to 

be determined.  

The second check is to find the difference between the summation of integrated 

odd parameters of order R interactions and the integrated even parameters of its parent 

order R-1 interaction. If    )()( 1,1,1,1,1 RR OddEven  ,then all interactions of R-1 are 

in the interacting variables’ subtree. If    )()( 1,1,1,1,1 RR OddEven  , then some 

interactions of R-1 are with the non-interacting variables’ subtree. A table similar to the 

one shown in Table 3 is used to check the equality. If the equality is not satisfied for a 

number of interactions, the interacting variables’ tree is split into groups representing all 

states of these cross interacting variables as will be shown in the following step.  

 
 
Table 3    
Check Table for Interactions of Interacting Variables with Non-Interacting Variables  
 

Index  )( 1,1,1 REven      )( 1,1,ROdd    Difference 

1 Value 1  Value 4  |Value 4- Value 1| 
2 Value 2  Value 5  |Value 5- Value 2| 
3 Value 3  Value 6  |Value 6- Value 3| 
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If both of the above checks show that no higher order interactions are expected, 

and that no interacting variables exist outside the interacting variables’ subtree, one node 

per subtree is performed to find the offset of every subtree 

IV.2.3 Cross Interacting Variables Subtrees Establishment 

In this step, subtrees are established for all combinations of interacting variables 

that are not fully interacting within the interacting variables’ subtree. As a result, 2L 

subtrees are established where L is the number of interacting variables that are not fully 

interacting within the interacting variables’ subtree.  

IV.2.4 One Node per Subtree of Interacting Variables 

For every subtree that has been created, either a FFD is performed or the FFD 

model from another subtree in the same group is applied. If the FFD model from another 

subtree is used, it is necessary to perform at least one experiment in every subtree to 

determine the offset. The offset for every subtree is found in the following step, since the 

needed FFD parameters will be found then. The offset is found using:  
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(36) 

FFDi ,1,1,   is a FFD parameter, and y  is the result of the performed node per subtree of 

this step. 
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IV.2.5 Projection of the FFD Model in Subtrees and Results Generation 

In this step, the subtrees are grouped according to the binary combinations of 

interacting variables that cross interact with the non-interacting variables. For example, 

if two variables were found to interact with the non-interacting variables, then four 

groups are established for the 00,01,10,11 states of these two variables. Within these 

groups, several interacting variables’ subtrees exist, but only one FFD per group is 

needed. For every cross interacting variables’ group, one low Res FFD is performed. 

The FFD is performed at the high end of the main tree to reduce confounded 

interactions. The interaction of any non-interacting variable j with an interacting variable 

i is found using: 

2)(

2)(

0,1...11,1,1...1111,1,

1,1,1,1,1,1,1,1,0,1...1,1,1,1...1111,1,









xiXijXij

ijijijijxiXijXij




 (37) 

The fact that two interacting variables are cross interacting with the non-

interacting variables’ subtree does not imply that the second order interaction of these 

two variables is also cross interacting. The group 00 of the example above does not 

require a separate FFD, unless the interaction of the two variables has an integrated even 

parameter that is not fully explained in the interacting variables’ subtree. Once all cross 

interactions are found, the equality of    )()( 1,1,1,1,1 RR OddEven   can be checked 

and should be almost satisfied for all variables. After the FFD models have been 

developed for all subtrees, the results of every node are found using  



 

58 
 

 






  




S

i
FFDiiS xxxxxy

1
,1,1,1,1,1,1,0321 ),...,,,(   (38) 

IV.3  Monotonic Highly Interacting Variables Method  

The key of this method is the recursive isolation of non-interacting variables 

from subtrees of interacting variables. The flow chart of the proposed method is shown 

in Figure 15. 

IV.3.1 Interacting Variables Subtrees Establishment 

After the variables were categorized into interacting and non-interacting in the 

previous step, subtrees are established based on the binary state combinations of the 

most interacting variables. There are two approaches to perform this. The first approach 

is to create subtrees of one variable at a time. This approach requires a large number of 

experiments batches, but is more efficient in terms of the total number of experiments. 

The second approach is to unfold few variables at a time, which is less efficient in terms 

of the total number of experiments, but requires a smaller number of experiments 

batches. If two variables are selected for constructing a subtrees, 4=22 subtrees are 

constructed with the two variables’ states at one of the four combinations. The end nodes 

are performed to bound every subtree. If two interacting variables are being unfolded, 

eight experiments are to be performed representing the end nodes of the four subtrees. 

Six of these experiments are performed at the previous integrated parameters 

determination step, so only two experiments are actually performed in this step. 
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Figure 15. Flow Chart of the MHIV Method  
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IV.3.2 Subtrees Variables Integrated Parameters Determination 

This step determines the integrated odd and even parameters of the variables in a 

similar manner to the previous step “Variables Integrated Parameters Determination” 

except it is applied to the local variables of the interacting variables’ subtrees.  

IV.3.3  Subtrees Variables Categorization and Evaluation 

This section combines two steps. The first step evaluates the integrated odd and 

even parameters of the variables in a similar manner to the previous step “Variables 

Categorization” except it applies to local variables of the interacting variables’ subtrees. 

In the second step, the integrated even parameters are checked against the integrated 

even parameters threshold to determine if any local variable in the interacting variables’ 

subtree require subtrees creation. If further subtrees are to be created, the previous step 

of “Interacting Variables Subtrees Establishment” is performed. For every non-

interacting variable i, it is expected that:   
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(39) 

Thus, the first order parameter of the variable is set to its integrated odd parameters, and 

the integrated even parameters is assumed as zero.  

)( 1,1,1,1,   ii Odd   
(40) 
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 0)( 1,1,1,1,   ijij Even   
(41) 

The main effects’ parameters of the non-interacting variables are cascaded to all child 

subtrees of the subtree where they are found. 

IV.3.4 Projection of Subtrees and Result Generation  

At this point, subtrees were unfolded to an extent where interactions fell below 

the threshold defined earlier and the first order parameters of all variables in the subtrees 

are set to the integrated odd parameters from parent subtrees. In these leaf subtrees, the 

response model used is the simple non-interacting variables’ model:  


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 
Q

i
iiQ xxxxxy

1
1,1,1,1,1,1,0321 ),...,,,(   

(42) 

where Q is the number of variables of the leaf subtree. For every subtree, two nodes 

were performed as part of the previous steps, thus two offset values LH ,1,1,01,1,0 ,    can 

be determined by projecting each end of the subtree. The offset parameter of the subtree 

is the average offset of the two end offsets. Thus:  
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    22 0...00001...1111,1,1,0,1,1,0,1,1,01,1,0   xxLHmean yy  
(45) 
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IV.3.5 Projection Results Evaluation  

In order to verify that the confounding parameters did not cause false non-

interacting variables’ classification, H,1,1,0  and L,1,1,0   are compared. Ideally, if all 

interactions within the subtree are indeed zero, the two found values H1,1,0  and L,1,1,0 

from the projection of each side of the subtree should be the same. The offset value 

should be identical regardless of which node is used. The difference of the two offsets is 

an indication of the validity of the negligible interactions assumption within the subtree. 

The error is found using 

2,1,1,0,1,1,0,1,1,0 LHError     
(46) 

If a subtree offset has very high error, but no interacting variables, then one or more 

interactions of the subtree were not captured due to confounding parameters in that 

subtree, thus further subtree spanning is needed.   

IV.4 Range Convergence Method 

The key of this method is the recursive isolation of important variables from 

variables’ subtrees, thus creating leaf subtrees with a small span. The range of every 

node in the subtree is determined based on lowest higher connected node and highest 

lower connected node of performed experiments. The flow chart of the proposed method 

is shown in Figure 16. 
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IV.4.1 Important Variables Subtrees Establishment 

In this step, the variable that has the highest importance is selected as the most 

influential variables to use for subtrees’ creation. Creating subtrees using the most 

important variables ensures minimum to almost no overlapping of subtrees in addition to 

maximum span reduction.  

The number of variables to use to branch a tree or subtree into child subtrees is 

selected depending on the number of experiments that are to be performed. There are 

two approaches to perform this. The first approach is to create two subtrees of the most 

important variable at a time. The second is to create subtrees of multiple important 

variables at a time. The process of subtrees’ establishment was previously explained in 

the “Interacting Variables Subtrees Establishment” step of the MHIV method. 

IV.4.2 Subtrees Nodes Ranges Update  

After subtrees are established, the results of the end nodes of every subtree are 

cascaded to the subtree’s nodes. Assuming, the variables are aligned in the positive 

direction, the upper end of the potential range of each node , HighiR , , is equal to the lowest 

result of a connected performed node, j, above that node. The lower end of the potential 

range of each node, LowiR , , is equal to the highest result of a connected performed node, j, 

above that node.  

)min(, jHighi yR   if iji XXXAND ),(  (47) 

)max(, jLowi yR   if iji XXXOR ),(  (48) 
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Figure 16. Flow Chart of the RC Method  
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IV.4.3 Span Check  

Unless the maximum number of allowed experiments is reached, the single 

nodes’ spans or total nodes’ span in the subtree are found using: 

)( ,, LowiHighi RRSpanNode   (49) 





S

i
LowiHighi RRSpanSubtreeTotal

1
,, )( , 

(50) 

and are compared against the threshold of allowed single or total nodes span. It is also 

possible to track the span of the parameters that are found by the span of the response 

nodes. If the span is smaller than the threshold, the subtree is not further spanned. If it is 

higher than the threshold, the next most important variables are explored and the 

previous step of “Important Variables Subtrees Establishment” is performed. Instead of 

using variables’ importance strength as a criterion for subtrees’ unfolding, other 

experiment’s path selection processes were investigated, and are explained in Appendix 

E.  

IV.4.4 Projection of Subtrees and Result Generation  

Once all subtrees have reached a span that does not exceed the threshold of the 

span, the experimentation stops and each node’s value is projected to fall in the middle 

of its range.  

2/)(ˆ ,, LowiHighii RRy   (51) 
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where HighiR ,  and LowiR ,  are the boundaries of every node. The middle point selection 

biases the parameters convergence towards the actual parameter. Important variables’ 

parameters tend to converge fast toward their values unlike noise and weak variables.  

IV.5 Hierarchical Integrated Parameters Method 

The key of this method is the hierarchical exploration of important integrated 

even parameters of the main variables’ tree. This method assumes that if the value of the 

integrated even parameters of any order of interactions is small, the integrated even 

parameters for that order can be equated to zero. The flow chart of the proposed method 

is shown in Figure 17. A new domain of parameters is introduced for this method. The 

relationship of the new domain   to the domain of   is: 

 C  
(52) 

where   is a vector of odd and even parameters for 2/n  parameters. C is a domain 

conversion matrix between the two domains. The new parameters can be found using 

  YXCXCXY
111     (53) 

An example of the new domain conversion process can be found in Appendix D.  

IV.5.1 Next Order Interactions Determination 

In this step, the next order integrated odd and even parameters of every important 

variable or interaction in the main variables’ tree are found. This step is similar to the 

previous step of “Next Order Interactions Determination” of the MSIV method except it 

is applied to the main tree only.  
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Figure 17. Flow Chart of the HIP Method  
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threshold. This step is similar to the first check of the previous step of “Evaluation of 

Interactions in Interacting Variables Subtree” of the MSIV method except it is applied to 

the main tree only. If )( 1,1, REven   is found to be below the threshold, then no further 

high order interactions containing R are explored. If )( 1,1, REven   is found to exceed the 

threshold then the previous step of “Next Order Interaction Determination” is performed 

on the next order assuming a heredity compliant behavior.  

IV.5.3 Projection and Results Generation  

Once all interactions have been unfolded to an extent where they have no 

integrated even parameters, the integrated parameters of all order interactions are used to 

project the response in the main tree using these parameters. The integrated offset 

parameters of the tree are found by each end of the tree using the first two rows of  .  
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V. EXAMPLE APPLICATION 

Out of the four introduced methods, the two methods of MHIV and MSIV are 

applied in the examples and application of this dissertation since they were both found to 

produce the most accurate results. In this section, the MHIV method is used on two 

examples from literature. Both examples variables were found highly interacting, so the 

method of MSIV was not applicable. An example application of the RC Method is 

shown in Appendix F for the method demonstration. 

V.1 Method Application to Regular System  

In this section, the MHIV method is tested on a system that conforms with the 

monotonic assumption to a high extent. The example used is the study of the “Analysis 

of earth-moving systems using discrete-event simulation” [81]. The method steps will be 

explained and the results will be compared with the results of a FFD using a close 

number of experiments. The study [81] performed a full factorial set of experiments on 

two performance characteristic. This example will analyze one of the performance 

characteristics for demonstration of the method.  

V.1.1 Performance Characteristic Directional Alignment 

The performance characteristic analyzed in this example is the production rate. It 

is limited by a value of zero. Thus, a saturation plateau is expected at the lower end of 

the response, if the variables are aligned in the same direction of effect. The alignment of 

the response is sustained as high is proportional to performance characteristic high.  
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V.1.2 Variables Directional Alignment  

Since this is a demonstrative example, no experimenter input is needed, and the 

variables of the example are aligned to produce the lowest value of the response at the 

variables’ states of low. This is satisfied by reversing the unaligned variable’s signs. 

Accordingly, variables two to six of the paper are reversed.   

V.1.3 Variables Integrated Parameters Determination  

In this step, the variables “one down and one up” process is applied. Since 6 

variables are explored, fourteen experiments are performed at this stage. The integrated 

odd and even parameters of all variables are shown in Table 4.  

 
 

Table 4     
Integrated Odd and Even Parameters in the Main Tree of Production  
 

Variable Top End Drop 
Bottom End 

Drop 
Integrated Odd 

Parameters 

Integrated 
Even 

Parameters 
1 96.8 31.9 64.3 32.4 
2 73.5 1.9 37.7 35.8 
3 65.6 0.9 33.2 32.3 
4 -1.4 0.1 -0.6 -0.8 
5 124.5 39.7 82.1 42.4 
6 0.4 0.3 0.3 0.1 
 

V.1.4 Variables Categorization  

The results of the integrated odd and even parameters are sorted according to the 

strength of interaction and presented in Figure 18. It is clear from the magnitudes of the 
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integrated even parameters that four of the variables are interacting. It is possible to fully 

unfold the four variables by performing sixteen experiments and determining the full 

factorial design of the four variables. It is also possible to apply adaptive non-interacting 

variables’ isolation within the four variables to produce the results with a smaller 

number of experiments. It is important to note that if the variables were analyzed using 

FFD, the interactions behavior would not have been so easy to judge. Instead of 

performing a full factorial design on the four interacting variables, the MHIV method is 

applied.  

The value of the integrated even parameters threshold is the experimenter 

decision. As the selected threshold is lowered, the number of experiments increases. In 

this example a threshold of 3 is set. Accordingly, it is possible to categorize variables 

1,2,3 and 5 (variables’ indices will be referred to in a combined format, 1235, in the 

dissertation) as interacting and variables 46 as non-interacting. The non-interacting 

variables are not further explored. They are assumed to have first order parameters that 

are equal to the integrated odd parameters, highlighted in grey in Table 4, and zero even 

parameters.  
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Figure 18. Integrated Odd and Even Parameters in the Main Tree of Production 
 
 

V.1.5 Variables Interactions Exploration  

To better present the flow of the method, several steps are combined in this 

section. These are the steps in the “Variables Interactions Exploration” box of Figure 15. 

Since the numbers of experiments are to be minimized, one variable with the highest 

integrated even parameters is selected at each step of subtree’s establishment. This 

requires unfolding variable 5 first. The result of unfolding 5 and determining the 

integrated even and odd parameters of variables 1, 2 and 3 within every subtree is shown 

in Figure 19. 
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(a) 5=0 (b) 5=1 
  

Figure 19. Integrated Odd and Even Parameters of 123 in Subtrees 5=x of Production 
 
 
 

Within subtree 5=0, only variable 1 is unfolded, thus creating two subtrees 1=x 

of 5=0. As for subtree 5=1, variable 1 is selected to establish the next level subtree since 

it is the variable with the highest integrated even parameters. The integrated odd and 

even parameters of variables 23 in subtrees 1=x of 5=1 are found next. The results are 

shown in Figure 20. Only subtree 1=1 of 5=1 is to be further unfolded by establishing 

subtrees 23=xx of 1=1 of tree 5=1. The flow of the experiments followed in this example 

is shown in Figure 21. 
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(a) 1=0 (b) 1=1 
  

Figure 20. Integrated Odd and Even Parameters of 23 in Subtrees 1=x of 5=1 of 
Production 

 
 

V.1.6 Projection of Subtrees and Results Generation 

The offset parameter of every subtree is found by averaging the two end offsets 

using by equation 45. The value of Error,1,1,0   in every subtree is found using equation 

46. In this example, Error,1,1,0   in subtree 1=0 of 5=0 was found high, as a result, 

subtrees 2=x was created. The values of Error,1,1,0   in all subtrees are shown in Table 5.  
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Table 5     
Offset Errors in All Subtrees of Production  
 

Subtree 5123 
States 000x 001x 010x 011x 10xx 1100 1101 1110 1111 

Error,1,1,0   0 -0.75 5.25 2.1 2.65 2.375 4.125 4.525 6.325 

 

 

 

 

Figure 21. Flow Chart of the Recursive Exploration of Production Variables’ 
Interactions  
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that subtree. The parameters resulting from the MHIV method projection are shown in 

Table 7. 

 

Table 6     
Parameters in All Subtrees of Production 
 

Parameter Index 5=0,12=xx 5=1,1=0 5=1,1=1,23=xx 

1 0 0 0 
2 0 15 0 
3 1.725 13.175 0 
4 -0.625 -0.625 -0.625 
5 0 0 0 
6 0.3 0.3 0.3 

 
 

V.1.7 Method Validation 

In total, 28 experiments were performed to find the model of the production. In 

this section, the model projection results are evaluated with respect to the full factorial 

results of the paper then the results are compared to the performance of the closest FFD, 

which is a 32 res VI. The errors of the projected production using the MHIV method are 

shown in Figure 22. The errors of the projected production using the 32 Res VI FFD are 

shown in Figure 23. The RMSE of the projected results using the MHIV method is 

found as 2.24 while the 32 FFD RMSE is found as 6.54. Thus, the MHIV method 

projection is significantly more accurate using a smaller number of 28 experiments.  
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Table 7     
Parameters of Production  
 

Parameter Index Parameter Value Parameter Index Parameter Value 

'0' 137.090 '234' -0.114 
'1' 41.057 '235' 2.615 
'2' 21.373 '236' -0.114 
'3' 18.232 '245' 0.278 
'4' 0.405 '246' -0.082 
'5' 58.459 '256' 0.278 
'6' 1.330 '345' 0.091 
'12' 12.963 '346' 0.059 
'13' 10.760 '356' 0.091 
'14' 0.477 '456' 0.048 
'15' 4.487 '1234' 0.052 
'16' 0.580 '1235' 3.118 
'23' 2.454 '1236' 0.155 
'24' -0.055 '1245' 0.125 
'25' 17.852 '1246' -0.345 
'26' 0.048 '1256' 0.228 
'34' 0.077 '1345' 0.094 
'35' 16.205 '1346' -0.054 
'36' 0.180 '1356' 0.197 
'45' 0.500 '1456' -0.502 
'46' -0.035 '2345' -0.100 
'56' 0.603 '2346' -0.573 
'123' 2.857 '2356' 0.003 
'124' 0.092 '2456' -0.193 
'125' 10.930 '3456' -0.334 
'126' 0.092 '12345' 0.066 
'134' 0.080 '12346' -0.079 
'135' 10.171 '12356' 0.066 
'136' 0.080 '12456' -0.262 
'145' 0.059 '13456' -0.552 
'146' -0.391 '23456' -0.321 
'156' 0.059 '123456' 0.091 
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Figure 22. Production’s Projection Error of the MHIV Method with Respect to the 

Performed Experiments of the Full Factorial Design 
 
 
 

 
Figure 23. Production’s Projection Error of the 32 Res VI FFD with Respect to the 

Performed Experiments of the Full Factorial Design 
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V.1.8 Conclusions 

Since the FFD’s experiments rely on a uniform distribution of points, it failed to 

perform at the high end of the response as it did at the low end. This explains the bias of 

the errors toward one end in Figure 23. The sparsity of interactions is not accounted for 

by the FFD, since it applies equal importance to all variables. The MHIV method was 

able after few steps to isolate two variables and target the remaining four. It needed an 

additional 12 experiments to explore these four variables. A total of 28 experiments 

generated a very accurate model compared to the FFD. The method performed poorly in 

subtrees like subtree 1=0 of 5=0 due to the non-monotonic behavior of variables in these 

subtrees. Fortunately these poorly behaving subtrees were detected by Error,0 . 

V.2 Method Application to Non-Regular System  

In this section, the MHIV method is tested on a system that does not fully 

conform to the monotonic assumption. The example used is the study of the “Parameters 

Contributing to Power Loss in Disengaged Wet Clutches” [82]. The method steps will be 

explained and the results will be compared with the results of a FFD of the same number 

of experiments. The study of [82] performed a full factorial set of experiments analyzing 

one performance characteristic.  

V.2.1 Performance Characteristic Alignment 

The performance characteristic analyzed in this example is the Parasitic Drag 

Torque. It is limited by a value of zero. Thus, a saturation plateau is expected at the 
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lower end of the response. The alignment of the response is sustained as high is 

proportional to performance characteristic high. This example will show that even if the 

monotonic behavior is not always present, the assumption of monotonic behavior and 

application of the MHIV method will generate more accurate results than a FFD. This is 

explained by the fact that for most of the time, this assumption is valid. If the variables 

are all highly monotonic, the results are very accurate. If the variables are less 

monotonic, the results are less accurate. 

V.2.2 Variables Directional Alignment  

Since this is a demonstrative example, no experimenter input is needed, and the 

variables of the example are aligned to produce the highest value of the response at the 

high states of variables. Accordingly, variables three, four, six, and seven of the paper 

are reversed. Though the variables are aligned, the monotonic behavior is not achieved 

for all variables of this example due to the variables’ non-regular interactions. In fact, 

the violation percentage ratio of the variables’ monotonic behavior, shown in Table 8, 

indicates that only one of the variables is always monotonic. 
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Table 8     
Validity of Variables’ Monotonic Effect on the Parasitic Drag Torque 
 

Variable 
Ratio of Non-Monotonic Links 
to Total Number of Links (%) 

Ratio of the Non-Monotonic Behavior 
Magnitude to the Span of the Response 

(%) 
1 12.5 13.3 
2 54.7 9.9 
3 0 0 
4 31.3 30.4 
5 15.6 10.5 
6 9.4 5.5 
7 4.7 3.3 

 
 

V.2.3 Variables Integrated Parameters Determination  

In this step the “one down and one up” process is applied. Since seven variables 

are explored, sixteen experiments are performed at this stage. The integrated odd and 

even parameters of all variables are shown in Table 9.  

 
 

Table 9     
Integrated Odd and Even Parameters in the Main Tree of the Parasitic Drag Torque 
 

Variable 
Top End 

Drop 
Bottom End 

Drop 
Integrated Odd 

Parameters 
Integrated Even 

Parameters 
1 5.500 -0.250 2.625 2.875 
2 4.000 0.050 2.025 1.975 
3 6.300 0.600 3.450 2.850 
4 4.100 0.200 2.150 1.950 
5 4.700 0.700 2.700 2.000 
6 5.000 0.200 2.600 2.400 
7 4.250 0.100 2.175 2.075 
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V.2.4 Variables Categorization  

The results of the integrated odd and even parameters are sorted according to the 

strength of the integrated even parameters and presented in Figure 24. It is concluded 

from the magnitudes of the integrated even parameters that all of the variables are 

interacting. The threshold of integrated even parameters is set at 1. Since no non-

interacting variables are found at this tree, none of the variables are isolated at this level.  

 
 

 
 

Figure 24. Integrated Odd and Even Parameters in the Main Tree of the Parasitic Drag 
Torque 

 
 

V.2.5 Variables Interactions Exploration  
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parameters of all other variables in subtrees 1=x is shown in Figure 25. Within subtree 

1=0, only variable 4 is to be unfolded, thus two subtrees of 4=x of 1=0 are created. As 

for subtree 1=1, all variables are interacting. Subtrees of the most interacting variable, 3, 

are created. In subtrees 3=x of 1=1, the integrated odd and even parameters of 24567 are 

found, and are shown in Figure 26. Subtree 3=0 of 1=1 has one interacting variable, 5, so 

subtrees 5=x of 3=0 of 1=1 are created. Subtree 3=1 of 1=1 has all of the five variables 

as interacting, so the most interacting variable, 6, is selected to create the next level 

subtrees. The integrated odd and even parameters of 2457 in subtrees 6=x of 3=1 of 1=1 

are found, and shown in Figure 27. Within subtree 6=0 of 3=1 of 1=1, no variable is 

interacting. Subtree 6=1 of 3=1 of 1=1 has four interacting variables, so the most 

interacting variable, 2, is unfolded by creating subtrees 2=x of 6=0 of 3=1 of 1=1. The 

results of the integrated odd and even parameters of 457 within subtrees 2=x of 6=1 of 

3=1 of 1=1 are shown in Figure 28.  

 
 

(a) 1=0 
 

(b) 1=1 

Figure 25. Integrated Odd and Even Parameters of 234567 in Subtrees 1=x of the 
Parasitic Drag Torque 
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(a) 3=0 (b) 3=1 
 

Figure 26. Integrated Odd and Even Parameters of 24567 in Subtrees 3=x of 1=1 of the 
Parasitic Drag Torque 

 
 
 

(a) 6=0 (b) 6=1 
 

Figure 27. Integrated Odd and Even Parameters of 2457 in Subtrees 6=x of 3=1 of 1=1 
of the Parasitic Drag Torque 
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(a) 2=0 (b) 2=1 
 

Figure 28. Integrated Odd and Even Parameters of 457 in Subtrees 2=x of 6=1 of 3=1 of 
1=1 of the Parasitic Drag Torque 
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experiments performed to explore interactions of this example is shown in Figure 29. 
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resulting parameters of all subtrees are shown in Table 11. The parameters of every 

subtree along with the offset are used to project the performance characteristic in that 

subtree. The parameters resulting from the MHIV method projection are shown in Table 

12. 

 

 

 

Figure 29. Flow Chart of the Recursive Exploration of the Parasitic Drag Torque 
Variables’ Interactions 
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Table 10   
Offset Errors in All Subtrees of Parasitic Drag Torque 
 

Subtree 1234567 States Error,1,1,0   

0x00x0x -0.875 
0x00x1x -1.425 
0x01x0x -1.325 
0x01x1x -1.125 
0x10x0x -0.925 
0x10x1x -1.525 
0x11x0x -0.525 
0x11x1x 0.275 
1x000xx -0.425 
1x001xx -1.525 
1x010xx -0.175 
1x011xx 0.025 
1x1xx0x -0.6 
101xx1x -1.125 
111xx1x 0 

 
 
 
Table 11   
Parameters in All Subtrees of Parasitic Drag Torque 
 

Parameter Index 
1=0, 

346=xxx 

1=1, 
3=0, 

45=xx 

1=1, 
3=1, 
6=0 

1=1, 
3=1, 
6=1, 
2=0 

1=1, 
3=1, 
6=1, 
2=1 

1 0 0 0 

No Projection 
(All Nodes Performed) 

2 0.525 0.05 -0.475 
3 0 0 0 
4 0 0 0.025 
5 1.1 0 1.775 
6 0 1.425 0 
7 0.1 1.1 1.325 
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Table 12   
Parameters of Parasitic Drag Torque 
 

Parameter Index Parameter Value Parameter Index Parameter Value 

'0' 4.8594 '1234' 0.0215 
'1' 1.5414 '1235' 0.0973 
'2' 0.1086 '1236' 0.1707 
'3' 1.4637 '1237' 0.0809 
'4' 0.1609 '1245' 0.1438 
'5' 1.0414 '1246' 0.1023 
'6' 0.7375 '1247' 0.0422 
'7' 0.5086 '1256' 0.1516 
'12' -0.1742 '1257' 0.1430 
'13' 0.5606 '1267' -0.0625 
'14' -0.4422 '1345' 0.1801 
'15' 0.1836 '1346' -0.0027 
'16' 0.5594 '1347' 0.0746 
'17' 0.6508 '1356' -0.0160 
'23' 0.0574 '1357' 0.0723 
'24' 0.0898 '1367' 0.0301 
'25' 0.0289 '1456' 0.0477 
'26' 0.1656 '1457' 0.1156 
'27' 0.0578 '1467' 0.0211 
'34' 0.3996 '1567' -0.0078 
'35' 0.1699 '2345' 0.1324 
'36' 0.0293 '2346' 0.1465 
'37' 0.1152 '2347' 0.0340 
'45' -0.2734 '2356' 0.1684 
'46' 0.2852 '2357' 0.0668 
'47' 0.1945 '2367' -0.0176 
'56' -0.0148 '2456' 0.1219 
'57' 0.0555 '2457' 0.0250 
'67' 0.0766 '2467' 0.0586 
'123' -0.0293 '2567' 0.0148 
'124' 0.0031 '3456' 0.0590 
'125' -0.0078 '3457' 0.0746 
'126' 0.1477 '3467' 0.0355 
'127' 0.0711 '3567' -0.0207 
'134' -0.0184 '4567' 0.1047 
'135' 0.0926 '12345' 0.0957 
'136' -0.0137 '12346' 0.1035 
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Table 12  Continued 
 

Parameter Index Parameter Value Parameter Index Parameter Value 

'137' 0.0879 '12347' 0.0473 
'145' -0.3508 '12356' 0.1316 
'146' -0.0578 '12357' 0.0020 
'147' 0.1672 '12367' -0.0043 
'156' -0.0234 '12456' 0.0852 
'157' 0.0781 '12457' -0.0398 
'167' 0.1180 '12467' 0.0719 
'234' 0.0855 '12567' 0.0188 
'235' 0.1066 '13456' 0.0254 
'236' 0.1785 '13457' 0.0973 
'237' 0.0902 '13467' 0.0520 
'245' 0.1531 '13567' 0.0020 
'246' 0.1602 '14567' 0.1273 
'247' 0.0516 '23456' 0.1262 
'256' 0.1609 '23457' 0.0645 
'257' -0.0617 '23467' -0.0105 
'267' -0.0531 '23567' 0.0434 
'345' 0.2441 '24567' 0.1211 
'346' 0.0754 '34567' 0.0574 
'347' 0.1387 '123456' 0.1168 
'356' -0.0082 '123457' -0.0371 
'357' 0.0816 '123467' -0.0199 
'367' 0.0379 '123567' -0.0020 
'456' 0.1055 '124567' 0.0258 
'457' 0.1250 '134567' 0.0480 
'467' 0.0789 '234567' 0.0246 
'567' 0.0016 '1234567' 0.0035 

 
 

V.2.7 Method Validation 

In total, 62 experiments were performed to produce the model presented in the 

previous section. In this section, the results are evaluated with respect to the results of 

the full factorial design of the paper, then the results are compared to the performance of 
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the closest FFD, which is a 64 Res VII FFD. The errors of the projected Parasitic Drag 

Torque using the MHIV method are shown in Figure 30. The errors of the projected 

Parasitic Drag Torque using the 64 FFD are shown in Figure 31. The RMSE of the 

projected results using the MHIV method is found as 0.7339 while the RMSE of the 

projected results using the 64 FFD is found as 0.8978. Thus, the MHIV method 

produced more accurate results with a similar number of 62 experiments, even though 

the system variables are moderately non-monotonic.  

V.2.8 Conclusions 

Since the FFD experiments rely on a uniform distribution of points, it failed 

again to perform at the high end of the response. This explains the bias of the errors 

toward one end in Figure 31. Both methods required a high number of experiments for a 

reasonable accuracy. The MHIV method was able, from the first few steps, to determine 

that exploring the response will require a high number of experiments. This is due to the 

high number of important integrated even parameters with respect to the defined 

threshold. FFDs do not give such information, so if a low Res FFD was performed, such 

as sixteen Res IV experiments, the results would have been misleading.  
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Figure 30. Parasitic Drag Torque’s Projection Error of the MHIV Method with Respect 

to the Performed Experiments of the Full Factorial Design  
 
 
 

 
Figure 31. Parasitic Drag Torque’s Projection Error of the 32 Res VII FFD with Respect 

to the Performed Experiments of the Full Factorial Design 
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VI. CASE STUDY: NEUTRONICS EVALUATION OF AN SMR VERSION OF 

THE ADVANCED PRESSURIZED WATER REACTOR AP1000 

VI.1 Problem Statement  

The complex nature of the developing LWSMRs requires application of efficient 

design methods. The reference design used in developing LWSMRs is the current water 

cooled reactors. The reason behind this is the proven safety behavior of this type of 

reactors, which significantly impact the regulatory aspects of the SMRs’ licensing. The 

problem used to demonstrate the capabilities of the dissertation’s methods is to scale 

down a water cooled reactor. In specific, the AP1000 design [2] is scaled down with a 

proposed reduction of power between 100 MWth and 300 MWth. The scaling down of 

such a reactor will influence the design performance characteristics, and constitutes a 

complex problem. There are tens if not hundreds of performance characteristics to 

consider while designing a reactor. Examples are: 

 Fuel cycle: criticality, fuel front end requirements, depletion, burnup, life cycle and 

reprocessing capabilities. 

 Performance: efficiency, power profile, power peaking, pressure drop, availability 

and reliability. 

 Safety: temperature and void reactivity coefficients, thermal stresses, transient 

behavior, risk assessment and accidents management. 

 Mechanical: reactor’s size, mass and mechanical stresses. 

 Waste management: minor actinides & fission products production. 
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 Reactor economics: capital cost, fueling cost, operational cost, maintenance cost and 

power production. 

 Materials: fuel integrity, cladding integrity and mechanical elements integrity. 

 Environment: radioactivity discharge and spent fuel radioactivity. 

 Safeguards & security: fuel accessibility, fuel handling and fuel composition. 

Designing these performance characteristics to fall within desired acceptable 

ranges is a significant challenge, especially, because they interact and often conflict. A 

simpler way to design such a system is to apply screening or sensitivity analysis methods 

to find the set of most important variables and interactions on each of the performance 

characteristic.  

In this case study, two of the dissertation’s methods are applied to six 

performance characteristics that are determined from computational experiments. The 

Beginning Of Life (BOL) effective multiplication factor ( effK ),the BOL Flux Spectrum 

in Fuel and Cladding (will be referred to as RFS for Ratio of Fast Spectrum) , the BOL 

fuel temperature reactivity coefficient ( FT ), the BOL water density reactivity 

coefficient ( d ), the power peaking factor (PPF) and the depletion drop of the effective 

multiplication factor ( effK ) are considered as the performance characteristics of 

interest.  
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The aim of this case study is to determine the behavior of the performance 

characteristics with respect to fourteen variables in order to determine their most 

important variables and interactions, and to develop a good understanding of the 

system’s behavior. Table 13 lists the variables of interest along with their design limits. 

Since one of the main objectives of SMRs is to reduce the size and power of the core, 

this was reflected in the selection of the design ranges. Two ends are set for each of the 

fourteen variables as shown in Table 13. If the methods of this dissertation, or any other 

method, are not utilized, 6x214 experiments are needed to unfold all interactions of all 

orders. The example will demonstrate how a relatively small number of experiments 

(few hundreds) are sufficient to unfold the most important variables and interactions 

provided that the variables’ directions of effect on the performance characteristics are 

known. Demonstrative figures of a sample of the variables’ states are shown in Figure 32 

to Figure 42. For abbreviation purposes, the variables’ indices of Table 13 will be used 

from here onwards instead of using the full variables’ names.  
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Table 13   
Design Variables of the Case Study and Their Proposed Ranges 
 

Index Variables Min* Max* AP1000* ** 

Core Level 

1 
No Of Active Core 
Assemblies (cm) 

37 73 157 

2 
Active Fuel Height 

(cm) 
85.0 256.0 426.7 

3 
Core Radial 

Surrounding Water 
(cm) 

24.96 49.91 49.91 

4 Enrichments (%) 2.35, 3.4, 4.45 3.4, 4.45,4.95 2.35,3.4,4.45 

5 Power (MWth) 100 300 3415 

6 
Moderator Density 

(g/cm3) 
0.716 

(305C 15.5MPa) 
0.813 

(243C 7.2 MPa) 
0.716  

(305C 15.5 MPa) 

7 
Fuel Temperature 

(K) 
600 900 293.15 (cold) 

 Assembly Level 

8 
No of Rods per 

Assembly 
11x11 13x13 17x17 

9 Rod Pitch (cm) 1.051 1.260 1.260 

10 
No of DBARs per 

Assembly 
9 21 25 

 Fuel Pin Level 

11 
IFAB and Fuel 
Pellet Diameter 

(cm) 
0.680 0.819 0.819 

12 IFAB and Fuel Gap 
Thickness (cm) 

0.0065 0.011 0.008 

13 
IFAB and Fuel 
Clad Thickness 

(cm) 
0.046 0.057 0.057 

14 
Discrete Burnable 

Absorber Area 
(cm2) 

0.094 0.187 0.375 

*    Rounded to the number of shown decimals 
**  Based on actual and estimated values  
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Table 14   
Performance Characteristics of the Case Study and their Desired Values 
 

Performance Characteristics Desired Values 

BOL Effective Multiplication factor  Between 1.15 and 1.2 
Flux Spectrum in Fuel and Cladding As Thermal as possible 
BOL Fuel Temperature Reactivity Coefficient Negative and high in magnitude 
BOL Water Density Reactivity Coefficient Positive and high in magnitude 
Power Peaking Factor As close as possible to one 
Depletion Drop of Effective Multiplication Factor  BOL Keff-1 
 
 
 
 
 

 

 

Figure 32. Variable 1 “No of Fuel Assemblies” States 
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Figure 33. Variable 2 “Active Fuel Height” States 
 

 

 

Figure 34. Variable 3 “Core Radial Surrounding Water” States 
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Figure 35. Variable 8 “No of Rods per Assembly” Core View of States  
 
 
 

 

 

 
Figure 36. Variable 8 “No of Rods per Assembly” Assembly View of States  
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Figure 37. Variable 9 “Rod Pitch” States 
 
 
 
 

 

 

Figure 38. Variable ‘a’ “No of Discrete Burnable Absorber Rods per Assembly” States 
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Figure 39. Variable ‘b’ “IFAB and Fuel Pellet Diameter” States 
 
 
 

 

 

 
Figure 40. Variable ‘c’ “IFAB and Fuel Gap Thickness” States 
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Figure 41. Variable ‘d’ “IFAB and Fuel Clad Thickness” States 

 

 

 

Figure 42. Variable ‘e’ “Discrete Burnable Absorber Area” States 
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VI.2 Analysis and Results  

In this section, the dissertation’s methods steps are applied and results are 

presented. The package used to simulate the reactor’s design is the Monte Carlo N-

Particle transport code (MCNP5) [83]. The number of particles used for each Monte 

Carlo experiment is dependent on the sensitivity of the performance characteristic, and 

are shown in Table 15. 

 

Table 15   
Experiments’ Number of Particles and Errors’ Order of Magnitude of the Six 
Performance Characteristics   
 

Performance Characteristic effK  RFS d  FT  PPF effK  

Number of Particles in 
millions 

2 2 2 32 4 1 

Performance Characteristic 
Standard Deviation order of 

Magnitude 

0.000x 0.00x 0.000x 0.0001x 0.0x 0.000x 

 
 
 
Two of the dissertation’s methods were used to evaluate the system. These are 

the MSIV and MHIV methods. The steps applied were introduced in Figure 14 and 

Figure 15. The RC method was not used in this application, but was tested on one of the 

performance characteristics, RFS, for results comparison. The methods’ results of three 

performance characteristics are compared to the results from a 128 Res IV FFD for 

validation. The high Res IV FFDs are generated using the Franklin-Bailey algorithm 

implemented in MATLAB [84]. The remaining three performance characteristics are 

validated using a FFD set of sixteen experiments.  
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VI.2.1 Multiplication Factor Analysis 

In this section, the BOL of the effective multiplication factor effK  is analyzed. 

effK is a measurement of the criticality of the core(see [85] for criticality definition). The 

aim for effK is to be in the range of 1.15 and 1.2 to sustain enough excess reactivity for 

the life of the core. However, the defined variables’ ranges are expected to cause the 

effective multiplication factor to exceed this range at both ends.  

VI.2.1.1 Performance Characteristic Directional Alignment 

The effective multiplication factor is theoretically limited by a zero at its low 

end, and the number of neutrons per fission (around 2.4) at its high end. However, it is 

impossible that the design will approach this value. Instead, it is expected that effK is 

limited by the under-to-over moderation plateau at its high end, if the design falls in the 

under moderation region. At the low end, a plateau is expected as effK approaches zero. 

This might requires that the direction of effK  be reversed to ensure the alignment of the 

high end of the variables’ tree with the highest slope of the multidimensional surface of

effK . For now, the direction of effK is held in its current state, till the level of saturation 

is found at both ends, in a later step. 
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VI.2.1.2 Variables Directional Alignment  

The directional dependence of effK on the variables is determined at this stage. 

Variables are categorized into known monotonic variables and variables with unknown 

direction of effect. Power is a passive variable, since it does not affect effK . The 

variables with the highest monotonic behavior confidence are determined first, and are 

shown in Table 16. The directional dependence is briefly justified in Table 17. The 

unknown variables’ directions of effect, marked by a question mark, was found by 

performing low accuracy Monte Carlo experiments to develop a preliminary sense of the 

directions of effect. According to the table, the maximum effK occurs at the variables’ 

states of 1111x10110000, thus the variables are aligned to all high at this combination. 

VI.2.1.3 Variables Integrated Parameters Determination  

In this step, the “one down and one up” process is performed. Since 13 variables 

are explored, 28 experiments are performed at this stage. The results of the performed 

experiments are shown in Appendix G. The corresponding integrated odd and even 

parameters of all variables are shown in Table 18. All results of effK  will be shown in 

units of 10-3 from here onwards. 
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Table 16   
Variables’ Directions of Effect on effK   

 

Variable Index Variable 
Direction of Effect 

on effK  

1 No of Fuel Assemblies + 

2 Active Fuel Height  + 

3 Core Radial Surrounding Water  + 

4 Enrichments  + 

5 Power  = 

6 Moderator Density  + 

7 Fuel Temperature Lib  - 

8 No of Rods per Assembly + 

9 Rod Pitch  + 

10 (a) No of DBARs per Assembly - 

11 (b) IFAB and Fuel Pellet Diameter  - 

12 (c) IFAB and Fuel Gap Thickness  - 

13 (d) IFAB and Fuel Clad Thickness  - 

14 (e) Discrete Burnable Absorber Area  - 

  



 

106 
 

 

Table 17   
Justification of Variables’ Directions of Effect on effK  

 

Index Variable       Justification 
Direction of 

Effect on effK  

1 
No of Fuel 
Assemblies 

 Larger core causes lower leakage 
ratio to other reaction rates 

+ 

2 
Active Fuel 
Height  

 Larger core causes lower leakage 
ratio to other reaction rates 

+ 

3 
Core Radial 
Surrounding 
Water  

 Higher reflection by surrounding 
water  

 Higher capture in surrounding 
water 

+- (+)* 

4 Enrichments (%) 
 Higher ratio of fission to 

absorption in fuel 
+ 

5 Power   No effect = 

6 Moderator Density  
 Higher moderation  
 Higher water capture  

+- (+)* 

7 
Fuel Temperature 
Lib  

 Higher absorption in the 
epithermal energy region 

- 

8 
No of Rods per 
Assembly 

 Lower ratio of absorber to fuel + 

9 Rod Pitch  
 Higher moderation  
 Higher water capture 

+-(+)* 

10 (a) 
No of DBARs per 
Assembly 

 Higher ratio of absorber to fuel - 

11 (b) 
IFAB and Fuel 
Pellet Diameter  

 More fissile material 
 Lower water capture 
 Lower water moderation 

++-(-) 

12 (c) 
IFAB and Fuel 
Gap Thickness  

 Lower water moderation  
 Lower water capture  

-+(-)* 

13 (d) 
IFAB and Fuel 
Clad Thickness  

 Lower water capture but higher, 
clad, stronger, capture 

 Lower water moderation 
-- 

14 (e) 
Discrete Burnable 
Absorber Area  

 Higher ratio of absorber to fuel - 

*These variables can be non-monotonic, but assuming the design will fall mostly in the under moderation 
region, they are assumed to follow the moderation effect 



 

107 
 

 

 
 

Table 18   
Integrated Odd and Even Parameters in the Main Tree of effK  

 

Variable Top End Drop 
Bottom End 

Drop 
Integrated Odd 

Parameters 
Integrated Even 

Parameters 

1 18.2500 23.9800 21.1150 -2.8650 
2 22.9500 17.0750 20.0125 2.9375 
3 0.0000 -0.3500 -0.1750 0.1750 
4 43.7500 28.2050 35.9775 7.7725 
5 0.0000 0.0000 0.0000 0.0000 
6 7.9500 16.0900 12.0200 -4.0700 
7 4.0500 3.4750 3.7625 0.2875 
8 19.3500 23.1200 21.2350 -1.8850 
9 36.4500 75.0900 55.7700 -19.3200 
a 26.9500 24.2150 25.5825 1.3675 
b 12.2000 25.4300 18.8150 -6.6150 
c 0.5500 3.2600 1.9050 -1.3550 
d 2.4000 8.1150 5.2575 -2.8575 
e 7.1500 26.2000 16.6750 -9.5250 

 
 

VI.2.1.4 Variables Categorization  

The results of the integrated odd and even parameters are sorted according to the 

strength of the integrated even parameters and presented in Figure 43. It is clear from the 

magnitudes of the integrated even parameters that most of the variables are non-

interacting. If the threshold of integrated even parameters is set at 3, it is possible to 

categorize variables 469be as important and interacting, variables 128a as important and 

non-interacting, and variables 37cd as non-important and non-interacting. Due to the 

sparsity of interactions with respect to this performance characteristic, the MSIV method 
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can be applied. However, for comparison purposes, both of the MHIV and MSIV 

methods are applied to this performance characteristic. 

 
 

 
 

Figure 43. Integrated Odd and Even Parameters in the Main Tree of effK  

 

VI.2.1.5 Monotonic Highly Interacting Variables Method Application 

VI.2.1.5.1 Variables Interactions Exploration  

Variables 469be are selected as the most interacting variables. Since the 

interactions of the variables are not accumulative, the exploration process of this method 

on this performance characteristic will not be very comprehensive, but it is applied for 

comparison with the MSIV. The three most interacting variables are 49e. Eight subtrees 

are established representing all binary states of 49e (49e=xxx). Within each of these 

trees, the integrated odd and even parameters of 6b are found. In total, four experiments 

‐10

0

10

20

30

40

50

60

5 3 7 c a 8 d 1 2 6 b 4 e 9

Odd Parameters Even Parameters



 

109 
 

 

per subtree are performed. However, the top and bottom subtrees already have two 

relevant experiments performed in each, thus the total number of experiments performed 

at this stage is 28 (4x7). The resulting odd and even parameters of variables 6b are listed 

in Table 19, and shown in Figure 44. Checking the integrated even parameters against 

the set threshold of 3, the variables highlighted in grey in Table 19 of subtrees 49e=xxx 

are not further explored and their integrated odd parameters are used as the first order 

parameters in 49e spanned subtrees.  

Variable b is interacting in all 49e subtrees while variable 6 is only interacting in 

49e=010,011,110,111, thus subtrees b=x are created for 49e= 000,001,100,101 and 

6b=xx for the rest. In total, 71 experiments were performed. The results of all performed 

experiments are shown in Appendix G.  

 

Table 19   
Integrated Odd and Even Parameters of 6b in Subtrees 49e=xxx of effK   

 

49e= 000 001 010 011 

6 Odd 14.8700 14.7825 10.5225 10.6000 

6 Even -1.2200 -2.0825 -4.0725 -5.0500 

b Odd 35.6150 35.5050 -1.0725 0.1500 

b Even 10.1850 8.5450 4.3725 3.9000 

49e= 100 101 110 111 

6 Odd 16.2175 16.4225 12.8250 12.4250 

6 Even -1.3675 -1.9225 -3.9250 -4.4750 

b Odd 41.0350 42.1200 6.2250 7.2500 

b Even 9.5150 9.1300 5.6250 4.9500 
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(a) variable 6  
 

(b) variable b 

Figure 44. Integrated Odd and Even Parameters of 6b in Subtrees 49e=xxx of effK  

 
 

VI.2.1.5.2 Projection of Subtrees and Results Generation 

The offset parameter of every subtree is found by averaging the offset 

determined by each end of the subtree using equation 45. The values of Error,1,1,0   in 

every subtree is found using equation 46, and are shown in Table 20. The parameters of 

all subtrees are shown in Table 21. The performance characteristic is projected in all 

subtrees, then the global model parameters are found. The highest thirty parameters are 

shown in Table 22 and Figure 45.  
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Table 20   
Offset Errors in All Subtrees of effK  

 
Subtree 49e6b 
States 

000x0 000x1 001x0 001x1 01000 01001 01010 

Error,1,1,0   5.71 26.08 -10.1525 6.9375 5.99 19.985 3.095 

Subtree 49e6b 
States 

01011 01100 01101 01110 01111 100x0 100x1 

Error,1,1,0   15.095 -9.27 4.93 -12.97 -0.62 6.8575 25.8875

Subtree 49e6b 
States 

101x0 101x1 11000 11001 11010 11011 11100 

Error,1,1,0   -11.7275 6.5325 5.83 20.98 1.88 15.58 -9.87 

Subtree 49e6b 
States 

11101 11110 11111 

Error,1,1,0    5.13 -13.72 -0.67 

 
 

Table 21   
Parameters in All Subtrees of effK  

 

Parameter 
Index 

49e=000, 
b=x 

49e=001, 
b=x 

49e=010,011, 
110,111, 
6b=xx 

49e=100, 
b=x 

49e=101, 
b=x 

1 21.1150 21.1150 21.1150 21.1150 21.1150 
2 20.0125 20.0125 20.0125 20.0125 20.0125 
3 -0.1750 -0.1750 -0.1750 -0.1750 -0.1750 
4      
5 00.000 00.000 00.000 00.000 00.000 
6 14.8700 14.7825  16.2175 16.4225 
7 3.7625 3.7625 3.7625 3.7625 3.7625 
8 21.2350 21.2350 21.2350 21.2350 21.2350 
9      
a 25.5825 25.5825 25.5825 25.5825 25.5825 
b      
c 1.9050 1.9050 1.9050 1.9050 1.9050 
d 5.2575 5.2575 5.2575 5.2575 5.2575 
e      
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Table 22   
Highest Thirty Parameters of effK  Using the MHIV Method 

 

Parameter Index Parameter Value Parameter Index Parameter Value 

'9' -100.9700 'd' 3.2848 
'b' 96.1290 '1b' 3.2604 
'4' 38.8860 '69' 3.1484 
'9b' -32.1080 '6b' -3.1191 
'6' -17.6650 '9ab' 2.9177 
'a' -14.4400 'c' 2.8972 
'2' 10.5630 '19b' -2.2948 
'49' -8.0825 '89b' -2.1764 
'8' 8.0290 '24' 1.9152 
'4b' 7.9489 '9d' -1.7549 
'ab' -6.3008 '7' -1.4745 
'1' 5.6937 '26' -1.4058 
'29' -5.6475 '49b' -1.404 
'2b' 5.5902 '3' 1.2672 
'9a' 5.5679 '46' -1.2427 
'e' 4.8722 '249' -1.1793 

'19' -4.6412 '24b' 1.086 
'8b' 4.1482 'bd' 1.0115 
'89' -3.8978 '269' 0.80853 
'29b' -3.3063 '26b' -0.79712 
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Figure 45. Highest Thirty Parameters of effK Using the MHIV Method 

 
 

VI.2.1.6 Monotonic Sparsely Interacting Variables Method Application 

VI.2.1.6.1 Variables Interactions Exploration 

Since the five variables of 469be are selected as the interacting variables, a 

subtree of non-interacting variables is established at every combination, or node, of the 
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in a previous step, with the summation of integrated odd parameters of the second order 

interactions, found in this step. If all interactions are explained in the interacting 

variables’ subtree, the two values should to be identical. This indicates that the variables 

‐100

‐80

‐60

‐40

‐20

0

20

40

60

80

100

'9
'

'b
'

'4
'

'9
b
'

'6
'

'a
'

'2
'

'4
9
'

'8
'

'4
b
'

'a
b
'

'1
'

'2
9
'

'2
b
'

'9
a' 'e
'

'1
9
'

'8
b
'

'8
9
'

'2
9
b
'

'd
'

'1
b
'

'6
9
'

'6
b
'

'9
ab
'

'c
'

'1
9
b
'

'8
9
b
'

'2
4
'

'9
d
'

Parameters Value



 

114 
 

 

are only interacting in the interacting variables’ subtree. Unlike variables 469, Table 24 

shows that variables b and e are not fully interacting in the interacting variables’ subtree. 

It is, thus, decided to explore b and e interactions with the non-interacting variables. It is 

also found from Table 23 that none of the second order integrated even parameters is 

above the threshold of 3, thus no higher order interactions are explored. 

 
 

Table 23   
Integrated Odd and Even Parameters of the Second Order Interactions of 469be of effK  

 

Interaction Integrated Odd Parameters Integrated Even Parameters 

'46' 1.0288 -0.1713 
'49' 3.6763 -0.2988 
'4b' 3.5363 -0.5388 
'4e' -0.0225 0.0525 
'69' -2.0113 1.2638 
'6b' -1.2500 1.3000 
'6e' -0.1038 0.3713 
'9b' -17.4738 2.0513 
'9e' -1.6350 -0.7850 
'be' 0.5525 0.3775 

 
 
 
Table 24   
Evaluation of Second Order Interactions of 469be of effK  

 
1st Order Integrated 

Even Parameters 
2nd Order Summation of 

Integrated Odd Parameters Difference 
4 7.7725 8.2188 0.4463 
6 -4.0700 -2.3363 1.7338 
9 -19.3200 -17.4438 1.8763 
b -6.6150 -14.6000 -8.0200 
e -9.5250 -1.2088 8.3163 

 
 



 

115 
 

 

VI.2.1.6.2 One Node per Subtree of Interacting Variables 

In order to project a FFD of the non-interacting variables on all interacting 

variables’ nodes, one node per subtree needs to be known to find the offset 0 . 

However, the twelve experiments out of the 28 representing the “one down and one up” 

process of Table 18, in addition to the twenty second order interactions’ experiments of 

Table 23, are the 32 needed nodes. Thus, no additional experiments are needed. The 

performed experiments are shown in Appendix G.  

VI.2.1.6.3 Projection of the FFD model in Subtrees and Results Generation 

In this step, a Res III FFD set of experiments are performed on the non-

interacting variables at the top end of the interacting variables’ subtree (469be=11111) in 

addition to subtrees b=0 and e=0 (469be =11101, and 469be= 11110). The results of the 

performed experiments are shown in Appendix G. The first order parameters, of the nine 

non-interacting variables, in the three subtrees are shown in Table 25. The interactions of 

a non-interacting variable i with variables b and e are found by: 

  22)( ,11101469,11111469,11101469,11111469 ibeibebibibibiibeibe   
 

(54) 

  22)( ,11110469,11111469,11110469,11111469 ibeibeeieieieiibeibe   
 

(55) 

The interactions of the non-interacting variables with b and e are shown in Table 

25. The summations of b and e set of interactions are -7.475 and 6.7625. These values 

are close to the unexplained difference of -8.0200 and 8.31625 of Table 24. It is thus 

concluded, that with these three FFD sets, most of the important interactions have been 
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unfolded. The remaining confounded parameters or unexplained interactions are 

summarized in Table 26. 

Since a FFD for each of the three non-interacting variables’ subtrees 

(469be=xxx11, 469be=xxx01 and 469be=xxx10) was performed, the FFD parameters 

used for a non-interacting variable i are 11,,  beFFDii   for subtrees 469be=xxx11, 

10,,  beFFDii   for subtrees 469be =xxx10, 01,,  beFFDii   for subtrees 469be =xxx01 

and )( 11,,10,,01,,   beFFDibeFFDibeFFDii   for subtrees 469be=xxx00. The value of 

)( 11,,11,,   beFFDibeFFDi   is the integrated parameters of e with the non-interacting 

variables. The integrated parameters of ‘be’ was found below the threshold, so it was 

omitted from the cross interactions’ evaluation.  

 
 

Table 25   
Second Order Interactions of Non-Interacting Variables with Variables b and e of effK  

 

Index       
e down 

parameters 
b down 

parameters 
Top Node 
parameters 

Interactions 
of b and 

Non-
Interacting 
Variables 

Interactions 
of e and 

Non-
Interacting 
Variables 

1 20.1500 20.4438 20.7188 0.1375 0.2844 
2 21.3750 21.2563 21.4688 0.1063 0.0469 
3 0.1625 -0.1563 -0.0312 0.0625 -0.0969 
5 0.0000 0.0000 0.0000 0.0000 0.0000 
7 4.1125 3.1313 3.1063 -0.0125 -0.5031 
8 18.3500 26.7813 23.2938 -1.7438 2.4719 
a 16.4750 39.7313 27.9813 -5.8750 5.7531 
c 1.2875 0.8938 0.4813 -0.2063 -0.4031 
d 3.7625 2.0688 2.1813 0.0563 -0.7906 
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Table 26   
Confounded Parameters in the First Order Parameters of effK  

 
    Index      Confounded Parameters or Unexplained Interactions 

1 
 2nd order with non-interacting and interacting variables , 3rd order with b 
and e 

2 
 2nd order with non-interacting and interacting variables , 3rd order with b 
and e 

3 
 2nd order with non-interacting and interacting variables , 3rd order with b 
and e 

4 0. 44625 of unexplained interactions 

5 
 2nd order with non-interacting and interacting variables , 3rd order with b 
and e 

6 1.73375 of unexplained interactions 

7 
 2nd order with non-interacting and interacting variables , 3rd order with b 
and e 

8 
 2nd order with non-interacting and interacting variables , 3rd order with b 
and e 

9 1.87625 of unexplained interactions 

a 
 2nd order with non-interacting and interacting variables , 3rd order with b 
and e 

b -0.545 of unexplained interactions 

c 
 2nd order with non-interacting and interacting variables , 3rd order with b 
and e 

d 
 2nd order with non-interacting and interacting variables , 3rd order with b 
and e 

e 1.55375 of unexplained interactions 

 
The offset 0  is found using the performed node in every non-interacting 

variables’ subtree from the previous step. In total, 98 experiments are performed to apply 

this method. The FFD parameters are used to project the performance characteristic in 

all non-interacting variables subtrees, then the global model parameters are found. The 

highest thirty parameters are shown in Table 27 and Figure 46.  
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Table 27   
Highest Thirty Parameters of effK Using the MSIV Method 

 

Parameter Index Parameter Value  Parameter Index Parameter Value 

'9' 0.05802  '69' -0.00177 
'4' 0.035431  '9e' 0.001535 
'a' -0.0256  '69b' 0.001064 
'8' 0.021254  '6b' 0.001064 
'1' 0.021134  '46' 0.000873 
'b' -0.02109  'be' 0.000407 
'2' 0.020032  '49b' -0.00028 
'9b' 0.017495  '9be' 0.000178 
'e' -0.0165  '49be' -0.00016 
'6' 0.013816  '46b' -0.00015 
'd' -0.00528  '469b' -0.00015 
'7' -0.00378  '4be' 0.000147 
'49' 0.003407  '69be' -0.00014 
'4b' -0.00329  '6be' -0.00013 
'c' -0.00192  '469' 0.000132 

 
 
 

 
 

Figure 46. Highest Thirty Parameters of effK Using the MSIV Method 
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VI.2.1.7 Validation 

In this section, it is desired to evaluate and compare the MHIV and MSIV 

methods with a 128 Res IV FFD set of experiments. The validation is performed by 

comparing each method’s projected results with the performed experiments of the other 

method. The errors of the projected effK  using MHIV and MSIV are shown in Figure 47 

and Figure 48. The RMSEs for all three methods are found using:  

 
128

128

1

2
,,,,,




 i

iPerfomedFFDeffiMHIVeff

MHIV

KK
RMSE  

(56) 

 
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128
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,,,,,
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(57) 

 
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1

2
,,,,,




 i

iPerfomedMSIVeffiFFDeff

FF

KK
RMSE  

(58) 

The numbers of experiments performed using the MHIV and MSIV methods are 

71 and 98. The RMSEs of effK , using both methods, are 11.924 and 10.325. These are 

2.4% and 2.1% of the projected response range, referred to as NRMSE, and 3.97 and 

3.44 times the threshold. The 128 FFD projection RMSE was found as 10.8349. Thus, 

the dissertation’s methods seem to be slightly more accurate with a smaller number of 

experiments in the case of the MSIV method and slightly less accurate with a much 

smaller number of experiments in the case of the MHIV method.  
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Figure 47. effK ’s Projection Error of the MHIV Method with Respect to the 128 

Performed Experiments of the FFD  
 
 
 

 
Figure 48. effK ’s Projection Error of the MSIV Method with Respect to the 128 

Performed Experiments of the FFD  
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In order to further evaluate the methods, a 256 Res V FFD set of experiments 

was performed. The RMSEs of the projected effK by the two methods from the 256 FFD 

performed experiments were found as 12.711 and 9.747. The RMSE of the 128 FFD 

projection from the 256 FFD performed experiments was found as 12.354. This 

demonstrates that, in comparison to the 128 FFD, the dissertation’s MSIV method 

required 75% the number of experiment, and resulted in around 25% error reduction. 

The MHIV method achieved a similar error to the 128 FFD with 55% the number of 

experiments. This example does not demonstrate the full strength of the introduced 

methods since variables were found to not significantly interact in their effect on effK . 

Thus, the FFDs’ assumption of weak interactions was relatively valid in the first place.  

Since ANNs can also be used to develop models of systems behavior, an ANN 

was also developed in Appendix F for modeling this performance characteristic using 

the 128 FFD set of experiments. It was found to be much less accurate than the 128 FFD. 

VI.2.2 Flux Spectrum Analysis 

In this section, the energy spectrum of the flux in the fuel and cladding is 

analyzed. The target for the spectrum is to be as thermal as possible to reduce the effect 

of neutrons fluence on the fuel and cladding materials’ structure.  

VI.2.2.1 Performance Characteristic Directional Alignment 

Since the operational energy spectrum of water reactors is in the thermal region, 

it is expected that a saturation behavior will occur as the spectrum is increasingly 
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thermalized. Since the saturation plateau is be aligned with the bottom end of the 

performance characteristic, the performance characteristic is defined as reversely 

proportional to the thermal end of the spectrum. Thus: 

 

 




Eth

m

E

Eth
m

dEmE

dEmE
RFS

0

4

1

max 4

1

),(

),(




 (59) 

RFS is the Ratio of the Fast flux Spectrum over the thermal flux spectrum. The index m 

is used to sum the spectrum of three fuel materials with different enrichments, and one 

cladding material. thE is the threshold energy used to separate the thermal and fast 

spectrums. This was chosen as 0.05eV, since this value was found to maximize the 

sensitivity of the ratio on design changes. High thE values produce very low ratios with 

magnitudes that are of the same order as the result’s error. maxE is defined as 20 MeV.  

VI.2.2.2 Variables Directional Alignment  

The directional dependence of the RFS on the variables is determined in this 

step. Variables are categorized into monotonic variables, and variables with unknown 

direction of effect. Power is a passive variable since it does not affect the spectrum. The 

variables with the highest monotonic behavior confidence are determined, and are shown 

in Table 28. The directional dependence is briefly justified in Table 29. According to the 

table, the maximum RFS occurs at the variables’ states of 1111x001011111, thus the 

variables are aligned to all high at this combination. 
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VI.2.2.3 Variables Integrated Parameters Determination  

Since thirteen variables are explored, 28 experiments are performed at this stage. 

The results of the performed experiments are shown in Appendix G. The corresponding 

integrated odd and even parameters of all variables are shown in Table 30. 

 

Table 28   
Variables’ Directions of Effect on RFS 
 

Variable 
Index 

 Variable 
Direction of Effect 

on RFS  

1 No of Fuel Assemblies + 

2 Active Fuel Height  + 

3 Core Radial Surrounding Water  + 

4 Enrichments  + 

5 Power  = 

6 Moderator Density  - 

7 Fuel Temperature Lib  - 

8 No of Rods per Assembly + 

9 Rod Pitch  - 

10 (a) No of DBARs per Assembly + 

11 (b) IFAB and Fuel Pellet Diameter  + 

12 (c)  IFAB and Fuel Gap Thickness  + 

13 (d) IFAB and Fuel Clad Thickness  + 

14 (e) Discrete Burnable Absorber Area  + 
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Table 29   
Justification of Variables’ Directions of Effect on RFS 
 

Index Variable      Justification 
Direction of 

Effect on RFS 

1 
No of Fuel 
Assemblies 

 Larger core causes higher fuel 
ratio to surrounding radial water  

+ 

2 Active Fuel Height  
 Larger core causes higher fuel 

ratio to surrounding axial water  
+ 

3 
Core Radial 
Surrounding Water  

 Lower fuel ratio to surrounding 
radial water  

 Higher fission at the high 
enrichment edge of the core  

-+(+) 

4 Enrichments  

 Higher production of fast 
neutrons and absorption of 
thermal neutrons  

+ 

5 Power   No effect = 

6 Moderator Density  
 Higher moderation  
 Higher water capture 

-+(-)* 

7 
Fuel Temperature 
Lib  

 Higher absorption in the 
epithermal energy region 

- 

8 
No of Rods per 
Assembly 

 Lower absorber ratio to fuel + 

9 Rod Pitch  
 Higher moderation  
 Higher water capture 

-+(-)* 

10 (a) 
No of DBARs per 
Assembly 

 Higher absorption of neutrons 
especially thermal neutrons 

+ 

11 (b) 
IFAB and Fuel 
Pellet Diameter  

 Lower moderation 
 Lower water capture 

+-(+)* 

12 (c) 
IFAB and Fuel Gap 
Thickness  

 Lower moderation 
 Lower water capture 

+-(+)* 

13 (d) 
IFAB and Fuel 
Clad Thickness  

 Lower moderation 
 Lower water capture 

+-(+)* 

14 (e) 
Discrete Burnable 
Absorber Area  

 Higher absorption of neutrons 
especially thermal neutrons 

+ 

*These variables can be non-monotonic, but assuming the design will fall mostly in the under moderation 
region, they are assumed to follow the moderation effect 
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Table 30   
Integrated Odd and Even Parameters in the Main Tree of RFS  
 

Variable Top End Drop 
Bottom End 

Drop 
Integrated Odd 

Parameters 
Integrated Even 

Parameters 

1 0.028779 -7.76E-05 0.014351 0.014428 
2 0.048397 0.000571 0.024484 0.023913 
3 0.002996 -0.00045 0.001272 0.001724 
4 0.070861 0.021237 0.046049 0.024812 
5 0 0 0 0 
6 0.033665 0.008697 0.021181 0.012484 
7 0.003323 -0.00034 0.001493 0.001829 
8 0.017099 0.003249 0.010174 0.006925 
9 0.192387 0.0511 0.121744 0.070643 
a 0.030326 0.005809 0.018068 0.012258 
b 0.185029 0.046741 0.115885 0.069144 
c 0.005596 0.000207 0.002902 0.002695 
d 0.011166 0.000506 0.005836 0.00533 
e 0.006568 0.00321 0.004889 0.001679 

 
 

VI.2.2.4 Variables Categorization  

The results of the integrated odd and even parameters are sorted according to the 

strength of the integrated even parameters and presented in Figure 49. It is concluded 

from the magnitudes of the integrated even parameters that most of the variables are 

interacting. It is also clear that there is a significant step in the magnitudes of the 

integrated even parameters of variables 9 and b. Unlike the effective multiplication 

factor, it is not possible to clearly isolate the interacting and non-interacting variables of 

this performance characteristic. If a threshold of integrated even parameters is set at 

0.0027 (slightly higher than the integrated even parameters of variable c), it is possible 

to categorize variables 9b as most interacting, variables 12468ad as interacting and 
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variables 357ce as non-interacting. The non-interacting variables are not further 

explored. 

 
 

 
 
Figure 49. Integrated Odd and Even Parameters in the Main Tree of RFS 
 
 

VI.2.2.5 Variables Interactions Exploration  

Since two variables are selected as the most interacting variables, four subtrees 

are to be established representing all binary states of 9b=xx. In each of these subtrees, 

the integrated odd and even parameters of each of 12468ad are found. In total fourteen 

experiments per subtree are performed. However, the top and bottom subtrees already 

have seven relevant experiments performed in each. Thus, the total number of 

experiments performed at this stage is 42. The resulting integrated odd and even 

parameters of variables 12468ad are listed in Table 31 and Table 32, and shown in 
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Figure 50. Checking the integrated even parameters against the set threshold of 0.0027, 

the variables highlighted in grey in Table 31 and Table 32 of subtrees 9b=xx are not 

further explored, and their integrated odd parameters are used as the first order 

parameters in 9b spanned subtrees 

 
  

Table 31   
Integrated Odd Parameters of 12468ad in Subtrees 9b=xx of RFS 
 

Variable 9b=00 9b=01 9b=10 9b=11 

1 0.000113 0.002032 0.004792 0.019913 
2 0.002658 0.007645 0.007903 0.030085 
4 0.024478 0.037738 0.03833 0.058645 
6 0.01141 0.018838 0.01817 0.025813 
8 0.002185 0.006117 0.005615 0.01822 
a 0.005515 0.01227 0.010803 0.029195 
d 0.0007 0.0024 0.003885 0.00789 

 

 
Table 32   
Integrated Even Parameters of 12468ad in Subtrees 9b=xx of RFS 
 

Variable 9b=00 9b=01 9b=10 9b=11 

1 0.000188 0.001362 0.001663 0.008837 
2 0.002087 0.00472 0.006193 0.018315 
4 0.003237 0.007232 0.007675 0.012205 
6 0.00271 0.004618 0.00503 0.007838 
8 -0.00107 -0.0012 -0.00114 -0.00112 
a -0.0003 -0.00058 0.000623 0.001105 
d 0.000195 0.00023 0.002005 0.00326 
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(a) 9b =00  (b) 9b =01  

(c) 9b =10                (d) 9b =11  

Figure 50. Integrated Odd and Even Parameters of 12468ad in Subtrees 9b=xx of RFS 
 

Within subtree 9b=00, variables 4 and 6 are unfolded, thus establishing subtrees 

46=xx in subtree 9b=00. Within each of the 46 subtrees all variables are non-interacting. 

The same is followed for 9b=01 and 9b=10, but with the three variables 246 requiring 

eight experiments each. Subtrees 9b=11 has five variables that are interacting. Instead of 

establishing 32 subtrees, it decided to establish subtrees of the most interacting three 

‐0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

1 2 4 6 8 a d

Odd Parameters Even Parameters

‐0.01

0

0.01

0.02

0.03

0.04

1 2 4 6 8 a d

Odd Parameters Even Parameters

‐0.01

0

0.01

0.02

0.03

0.04

0.05

1 2 4 6 8 a d

Odd Parameters Even Parameters

‐0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 4 6 8 a d

Odd Parameters Even Parameters



 

129 
 

 

variables 124 of 9b=11. In the subtrees 124=xxx of 9b=11, variables 6 and d integrated 

odd and even parameters are found. The results are shown in Table 33 and Figure 51. It 

is concluded from the figure, that variables 6 and d are not considered interacting in all 

subtrees of 124 except 124=110 and 124=111. In these two subtrees, variables 6 and d 

are unfolded establishing subtrees 6d=xx of 124=110 of 9b=11 and 6d=xx of 124=111 of 

9b=11. The results of all performed experiments are shown in Appendix G.  

 

 
Table 33   
Integrated Odd and Even Parameters of 6d in Subtrees 124=xxx of 9b=11 of RFS  
 

124=000 124=001 124=010 124=011 124=100 124=101 

6 Odd 0.0185 0.019463 0.022963 0.024285 0.020638 0.023528 

6 Even 0.000525 0.000132 0.002128 -3.50E-05 -0.00031 -0.00188 

d Odd 0.004965 0.003245 0.006978 0.005882 0.005895 0.004497 

d Even  0.000335 -0.0008 0.001048 0.001218 0.000895 -0.00095 

       

 124=110 124=111     

6 Odd 0.030058 0.03094     

6 Even 0.003648 0.00271     

d Odd 0.010705 0.008055     

d Even  0.003345 0.003095     
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(a) variable 6  
 

(b) variable d  

Figure 51. Integrated Odd and Even Parameters of 6d in Subtrees 124=xxx of 9b=11 of 
RFS  

 

VI.2.2.6 Projection of Subtrees and Results Generation 

The offset parameter of every subtree is found by averaging the offset 

determined by each end of the subtree using equation 45. The values of Error,1,1,0   in 

every subtree is found using equation 46, and are shown in Table 34. The resulting 

parameters in all subtrees are shown in Table 35. In total, 130 experiments were 

performed. The performance characteristic is projected in all subtrees, then the global 

model parameters are found. The highest thirty parameters are shown in Table 36 and 

Figure 52. 

  

0.
00

36

0.
00

27

‐0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

6 Odd 6 Even

‐0.002

0

0.002

0.004

0.006

0.008

0.01

0.012

d Odd d Even



 

131 
 

 

Table 34   
Offset Errors in All Subtrees of RFS 
 

Subtree 
9b1246d 

States 
00xx00x 00xx01x 00xx10x 00xx11x 01x000x 01x001x 

Error,1,1,0   -0.009238 -0.006148 -0.005093 -0.001208 -0.010313 -0.007993 

Subtree 
9b1246d 

States 
01x010x 01x011x 01x100x 01x101x 01x110x 01x111x 

Error,1,1,0   -0.002103 0.000628 -0.006572 -0.003617 -0.000153 0.005387 

Subtree 
9b1246d 

States 
10x000x 10x001x 10x010x 10x011x 10x100x 10x101x 

Error,1,1,0   -0.011628 -0.007518 -0.003997 -0.000287 -0.006103 -0.002898 

Subtree 
9b1246d 

States 
10x110x 10x111x 11000xx 11001xx 11010xx 11011xx 

Error,1,1,0   0.002403 0.007743 -0.011243 -0.003390 -0.000037 0.011865 

Subtree 
9b1246d 

States 
11100xx 11101xx 1111000 1111001 1111010 1111011 

Error,1,1,0   

 
-0.009385 -0.002517 -0.004438 -0.000877 -0.000273 0.007448 

Subtree 
9b1246d 

States 
1111100 1111101 1111110 1111111 

  

Error,0  0.007822 0.015863 0.015093 0.021893 

 

  



 

132 
 

 

Table 35   
Parameters in All Subtrees of RFS 
 

Index 
9b=00 
46=xx 

9b=01 
246=xxx 

9b=10 
246=xxx 

9b=11 
124=000 

9b=11 
124=001 

9b=11 
124=010 

1 0.000113 0.002033 0.004793 
2 0.002658 
3 0.001275 0.001275 0.001275 0.001275 0.001275 0.001275
4 
5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
6 0.018500 0.019463 0.022963
7 0.001483 0.001483 0.001483 0.001483 0.001483 0.001483
8 0.002185 0.006118 0.005615 0.018220 0.018220 0.018220
9 
a 0.005515 0.012270 0.010803 0.029195 0.029195 0.029195
b 
c 0.002905 0.002905 0.002905 0.002905 0.002905 0.002905
d 0.000700 0.002400 0.003885 0.004965 0.003245 0.006978
e 0.004880 0.004880 0.004880 0.004880 0.004880 0.004880

9b=11 
124=011 

9b=11 
124=100 

9b=11 
124=101 

9b=11 
124=110, 

6d=xx 

9b=11 
124=111, 

6d=xx 
1 
2 
3 0.001275 0.001275 0.001275 0.001275 0.001275 
4 
5 0.000000 0.000000 0.000000 0.000000 0.000000 
6 0.024285 0.020638 0.023528 
7 0.001483 0.001483 0.001483 0.001483 0.001483 
8 0.018220 0.018220 0.018220 0.018220 0.018220 
9 
a 0.029195 0.029195 0.029195 0.029195 0.029195 
b 
c 0.002905 0.002905 0.002905 0.002905 0.002905 
d 0.005883 0.005895 0.004498 
e 0.004880 0.004880 0.004880 0.004880 0.004880 
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Table 36   
Highest Thirty Parameters of RFS  
 

Parameter Index Parameter Value Parameter Index Parameter Value

'9' -0.100970 'd' 0.003285 
'b' 0.096129 '1b' 0.003260 
'4' 0.038886 '69' 0.003148 
'9b' -0.032108 '6b' -0.003119 
'6' -0.017665 '9ab' 0.002918 
'a' -0.014440 'c' 0.002897 
'2' 0.010563 '19b' -0.002295 
'49' -0.008083 '89b' -0.002176 
'8' 0.008029 '24' 0.001915 
'4b' 0.007949 '9d' -0.001755 
'ab' -0.006301 '7' -0.001475 
'1' 0.005694 '26' -0.001406 
'29' -0.005648 '49b' -0.001404 
'2b' 0.005590 '3' 0.001267 
'9a' 0.005568 '46' -0.001243 
'e' 0.004872 '249' -0.001179 

'19' -0.004641 '24b' 0.001086 
'8b' 0.004148 'bd' 0.001012 
'89' -0.003898 '269' 0.000809 
'29b' -0.003306 '26b' -0.000797 
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Figure 52. Highest Thirty Parameters of RFS 
 
 

VI.2.2.7 Validation 

In this section, it is desired to evaluate and compare the MHIV method results 

with a 128 Res IV FFD. The validation is performed by comparing each method 

projected results with the performed experiments of the other method. The errors of the 

projected RFS are shown in Figure 53. The RMSE of the MHIV projection was found as 

0.008032, which is around 1.19% of RFS projected range and 2.97 times the threshold. 

The 128 FFD projection RMSE was found as 0.053884. Thus, the MHIV method seems 

to be significantly more accurate with a similar number of 130 experiments. The RC 

Method was tested on this performance characteristic too, and was found to produce a 

projection RMSE of 0.016898.  
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Figure 53. RFS’s Projection Error of the MSIV Method with Respect to the 128 

Performed Experiments of the FFD  
  

VI.2.3 Water Density Reactivity Coefficient Analysis 

The density reactivity coefficient, d , is a measurement of the change of the 

reactivity due to the change of the density. The target for this coefficient is to be as high 

as possible in the positive direction. Thus, it is required that the reactivity decrease as the 

density drops. This coefficient was chosen as to combine the effect of water temperature 

and pressure in one performance characteristic. It is similar to the void coefficient of 

reactivity, but it will also include the effect of the moderator’s temperature coefficient of 

reactivity (see [85] for definitions).  
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VI.2.3.1 Performance Characteristic Directional Alignment 

Since water represents a medium for moderation, it is expected that as the density 

is lost, the reactivity will reduce. As d approaches zero, the effect of water density 

change becomes very weak. It is, thus, expected that d is limited by a plateau at its low 

end. Since the saturation plateau is to be aligned with the bottom end of the performance 

characteristic, the performance characteristic is defined as: 

Sateff

Sateff

refeff

refeff
Satrefd k

k

k

k

5.0,

5.0,

,

,
5.0

)1()1( 



   (60) 

where   is the reactivity. The range of d that can be investigated is the full range of 

the density (0-100% void). However, since the uncertainty of this coefficient increase as 

the void increases [86], it was decided to investigate d from 0% void, representing 

normal operational state, to 50% void of the saturation state, assuming fixed pressure. 

Since density is a variable of the fourteen variables analyzed in the SMR design, the 

50% quality of saturation density is different for each density state. The densities used 

are summarized in Table 37. The units used for d , from here onwards, is pcm, which is 

equivalent to 10-5. 
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Table 37   
Definition of Density’s Binary States for 0% and 50% Void 
 

State\Void (%) 
0% void  

(Reference Case) 
50%  

void at Saturation 
Density State Low (g/cm3) 0.716 (305C 15.5MPa) 0.34815 (50% void at 15.5MPa) 

Density State High (g/cm3) 0.813 (243C 7.2 MPa) 0.38695 (50% void at 7.2MPa) 

 
 

VI.2.3.2 Variables Directional Alignment  

The directional dependence of d on the variables is determined in this step. 

Variables are categorized into monotonic variables and variables with unknown 

direction of effect. Power is considered a passive variable. The energy spectrum was 

used as the criteria to determine the directions of effect of the variables. As the spectrum 

is thermalized, the effect of density changes on d  increase. The variables with the 

highest monotonic behavior confidence are determined, and are shown in Table 38. The 

directional dependence is briefly justified in Table 39. According to the table, the 

maximum d  occurs at the variables’ states of 0000x010010111, thus the variables are 

aligned to all high at this combination. 
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Table 38   
Variables’ Directions of Effect on d  

 

Variable 
Index 

Variable 
 Direction of 
Effect on d  

1 No of Fuel Assemblies - 

2 Active Fuel Height  - 

3 Core Radial Surrounding Water  - 

4 Enrichments  - 

5 Power  = 

6 Moderator Density  - 

7 Fuel Temperature Lib  + 

8 No of Rods per Assembly - 

9 Rod Pitch  - 

10 (a) No of DBARs per Assembly + 

11 (b) IFAB and Fuel Pellet Diameter  -* 

12 (c) IFAB and Fuel Gap Thickness  + 

13 (d) IFAB and Fuel Clad Thickness  + 

14 (e) Discrete Burnable Absorber Area  + 
*Assumed negative, but found positive at the end results 
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Table 39   
Justification of Variables’ Directions of Effect on d  
 

Index Variable       Justification 
Direction of 

Effect on d  

1 
No of Fuel 
Assemblies 

 Harder spectrum reduces the 
consequence of water void increase   

- 

2 Active Fuel Height  
 Harder spectrum reduces the 

consequence of water void increase   
- 

3 
Core Radial 
Surrounding Water  

 Harder spectrum reduces the 
consequence of water void increase   

- 

4 Enrichments  
 Harder spectrum reduces the 

consequence of water void increase   
- 

5 Power   No effect = 

6 Moderator Density 

 More water increases the effect of 
its void  

 Softer spectrum reduces the 
consequence of water void increase   

++(-) 

7 
Fuel Temperature 
Lib  

 Higher absorption in the epithermal 
energy region 

+ 

8 
No of Rods per 
Assembly 

 Harder spectrum reduces the 
consequence of water void increase  

- 

9 Rod Pitch  
 Softer spectrum reduces the 

consequence of water void increase   
+( -) 

10 (a) 
No of DBARs per 
Assembly 

 Harder spectrum reduces the 
consequence of water void increase 

- 

11 (b) 
IFAB and Fuel 
Pellet Diameter  

 Harder spectrum reduces the 
consequence of water void increase 

-(+) 

12 (c) 
IFAB and Fuel Gap 
Thickness  

 Harder spectrum reduces the 
consequence of water void increase 

-(+) 

13 (d) 
IFAB and Fuel 
Clad Thickness  

 Harder spectrum reduces the 
consequence of water void increase 

-(+) 

14 (e) 
Discrete Burnable 
Absorber Area  

 Harder spectrum reduces the 
consequence of water void increase 

-(+) 
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VI.2.3.3 Variables Integrated Parameters Determination  

Since thirteen variables are explored, 28 experiments are performed at this stage. 

The results of the performed experiments are shown in Appendix G. The corresponding 

integrated odd and even parameters of all variables are shown in Table 40.  

 
 

Table 40   
Integrated Odd and Even Parameters in the Main Tree of d   

 

Variable 
Top End 

Drop 
Bottom End Drop 

Integrated Odd 
Parameters 

Integrated Even 
Parameters 

1 3293.2 1316.3 2304.8 988.4 
2 2484.4 1595.2 2039.8 444.6 
3 242.5 20.9 131.7 110.8 
4 1123.4 166.3 644.8 478.6 
5 0.0 0.0 0.0 0.0 
6 1101.1 427.9 764.5 336.6 
7 211.5 146.9 179.2 32.3 
8 2265.9 491.1 1378.5 887.4 
9 3964.6 2597.6 3281.1 683.5 
a 1263.3 -91.0 586.2 677.1 
b 452.1 -1813.0 -681.0 1132.7 
c 109.4 31.0 70.2 39.2 
d 366.8 153.5 260.1 106.6 
e 1148.2 141.7 645.0 503.3 

 
 

VI.2.3.4 Variables Categorization  

The results of the integrated odd and even parameters are sorted according to the 

strength of the integrated even parameters, and shown in Figure 54. It is concluded from 

the magnitudes of the integrated even parameters that variables are highly interacting. It 

is also concluded from the figure that it is not possible to clearly isolate the interacting 
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and non-interacting variables. If a threshold of integrated even parameters is set at 240 

(three times the average error of the calculated d  of 80), it is possible to categorize 

variables 18b as most interacting, variables 2469ae as interacting, and variables 357cd as 

non-interacting. The non-interacting variables are not further explored.  

 
 

 
Figure 54. Integrated Odd and Even Parameters in the Main Tree of d  

 
 

VI.2.3.5 Variables Interactions Exploration  

Since three variables are selected as the most interacting variables, eight trees are 

to be established representing all binary states of 18b=xxx. Within each of these 

subtrees, the integrated odd and even parameters of each of 2469ae are found. In total 

twelve experiments per tree are performed. However, the top and bottom trees already 

have six experiments performed in each, thus the total number of experiments performed 

at this stage is 84. The resulting integrated odd and even parameters of variables 2469ae 
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are shown in Table 41, Table 42, and in Figure 55. Checking the integrated even 

parameters against the set threshold of 240, the variables highlighted in grey in Table 41 

and Table 42 of subtrees 18b=xxx are not further explored and their integrated odd 

parameters are used as the first order parameters in 18b spanned subtrees. 

As for subtree 18b=000 and 100, the unfolding of variable 4 is already 

performed, thus no further experiments are required, and subtrees 4=x of 18b=000,100 

are created. Subtrees 18b=001, 010,110 have two interacting variables 4a, thus subtrees 

4a=xx of 18b=001,010,110 are created. Subtrees 18b=011,101,111 have four interacting 

variables that need to be unfolded. Instead of unfolding the variables at one stage, which 

requires a large number of experiments, the highest two interacting variables 4a are 

unfolded, and the integrated odd and even parameters of the other two variables 9e are 

found in each of the new subtrees. The results of the unfolded subtrees are shown in  

Table 43 and Figure 56. It is concluded from the figure that variables 9 and e are not 

considered interacting in all combinations of 4a=xx of 18b=011,101,111, thus no further 

subtree are to be created. The results of all performed experiments are shown in 

Appendix G. 
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Table 41   
Integrated Odd Parameters of 2469ae in Subtrees 18b=xxx of d   

 

Variable 18b=000 18b=001 18b=010 18b=011 

2 1586.3 1904 1762.3 2089.8 
4 759 267.7 762.8 436 
6 319.5 625.3 340.3 729.7 
9 2639.8 2987 2674 3258 
a 88.5 374.7 199.2 593.8 
e 188.8 476.5 261.3 694.8 

18b=100 18b=101 18b=110 18b=111 
2 1770.3 2135.5 1989 2311.8 
4 764.5 521.5 921 604.3 
6 459.8 871.3 560.5 980.8 
9 2705.8 3437.3 2801.3 3615 
a 144.3 553 230.3 692.3 
e 160 545 234.3 755.8 

 
 

Table 42   
Integrated Even Parameters of 2469ae in Subtrees 18b=xxx of d  

 
Variable 18b=000 18b=001 18b=010 18b=011 

2 -9.3 97.5 -34.0 131.8 
4 592.5 406.4 527.3 466.0 
6 -109.0 -5.3 -174.0 -18.0 
9 42.2 189.5 -31.0 340.5 
a 179.0 305.3 283.8 463.3 
e 46.7 215.0 19.3 347.7 
       

Variable 18b=100 18b=101 18b=110 18b=111 
2 -48.0 188.0 184.5 172.8 
4 563.0 546.5 582.0 518.8 
6 -60.0 57.2 -73.0 120.3 
9 -7.3 371.2 11.3 349.5 
a 134.3 360.0 279.8 570.8 
e 85.5 269.0 24.3 392.3 
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(a) 18b=000 
 

(b) 18b=001 

(c) 18b=010 (d) 18b=011 

(e) 18b=100 (f)18b=101 

(g)18b=110 
 

(h)18b=111 

Figure 55. Integrated Odd and Even Parameters of 2469ae in 18b=xxx of d   
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Table 43   
Integrated Odd and Even Parameters of 9e in Subtrees 18b=011,101,111 of d   

 
Integrated 4a=00 4a=01 4a=10 4a=11 
Parameter 18b=011 

9 Odd 2878.5 3123.8 3387 3645 
9 Even -39 -46 -6 -47 
e Odd 380 847.8 400.3 1006.8 
e Even 33 72.3 47.2 35.7 

 18b=101 
9 Odd 3039.8 3091.8 3496.8 3741 
9 Even -26 -61 40.3 67.5 
e Odd 279.3 559.5 337.8 785 
e Even 3.25 18.5 19.8 29 

 18b=111 
9 Odd 3269.5 3634.0 3740.8 4002.5 
9 Even 4.0 3.5 -4.8 -38.0 
e Odd 343.5 874.5 408.8 1122.8 
e Even -20.0 12.0 40.2 25.3 

 

 

VI.2.3.6 Projection of Subtrees and Results Generation 

The offset parameter of every subtree is found by averaging the offset 

determined by each end of the subtree using equation 45. The values of Error,1,1,0   in 

every subtree is found using equation 46, and are shown in Table 44. The resulting 

parameters of all subtrees are shown in Table 45. In total, 168 experiments were 

performed. The performance characteristic is projected in all subtrees, then the global 

model parameters are found. The highest forty parameters are shown in Table 46 and 

Figure 57. 
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(a) 18b=011 

 
(b) 18b=101 

 
(c) 18b =111 

 

 

Figure 56. Integrated Odd and Even Parameters of 9e in Subtrees 18b=011,101,111 of 

d   
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Table 44   
Offset Errors in All Subtrees of d  

 
Subtree 18b4a States 0000x 0001x 00100 00101 00110 00111 01000 

Error,1,1,0   -476.5 708.5 -651.6 -105.4 96.6 643.9 -594.5 
Subtree 18b4a States 01001 01010 01011 01100 01101 01110 01111 

Error,1,1,0   -122.5 364.5 861.5 -280.3 -181.3 8.5 108.0 
Subtree 18b4a States 1000x 1001x 10100 10101 10110 10111 11000 

Error,1,1,0   -225.8 900.2 -255.0 -93.8 96.0 194.0 -514.8 
Subtree 18b4a States 11001 11010 11011 11100 11101 11110 11111 

Error,1,1,0   -3.8 600.7 1083.8 -165.8 -108.3 146.7 353.5 
 
 

 

Table 45   
Parameters in All Subtrees of d   

 
Parameter 

Index 
18b=000 

4=x 
18b=001 

4a=xx 
18b=010, 

4a=xx 
18b=011, 

4a=00 
18b=011, 

4a=01 
18b=011, 

4a=10 
1       
2 1586.3 1904 1762.3 2089.8 2089.8 2089.8 
3 131.8 131.8 131.8 131.8 131.8 131.8 
4       
5 0.0 0.0 0.0 0.0 0.0 0.0 
6 319.5 625.3 340.3 729.7 729.7 729.7 
7 179.3 179.3 179.3 179.3 179.3 179.3 
8       
9 2639.8 2987 2674 2878.5 3123.8 3387 
a 88.5      
b       
c 70.3 70.3 70.3 70.3 70.3 70.3 
d 260 260 260 260 260 260 
e 188.8 476.5 261.3 380 847.8 400.3 
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Table 45  Continued 
 
Parameter 

Index 
18b=011, 

4a=11 
18b=100, 

4=x 
18b=101, 

4a=00 
18b=101, 

4a=01 
18b=101, 

4a=10 
18b=101, 

4a=11 
1       
2 2089.8 1770.3 2135.5 2135.5 2135.5 2135.5 
3 131.8 131.8 131.8 131.8 131.8 131.8 
4       
5 0.0 0.0 0.0 0.0 0.0 0.0 
6 729.7 459.8 871.3 871.3 871.3 871.3 
7 179.3 179.3 179.3 179.3 179.3 179.3 
8       
9 3645 2705.8 3039.8 3091.8 3496.8 3741 
a 144.3     
b       
c 70.3 70.3 70.3 70.3 70.3 70.3 
d 260 260 260 260 260 260 
e 1006.8 160 279.3 559.5 337.8 785 

Parameter 
Index 

18b=110, 
4a=xx 

18b=111, 
4a=00 

18b=111, 
4a=01 

18b=111, 
4a=10 

18b=111, 
4a=11 

1      
2 1989 2311.8 2311.8 2311.8 2311.8 
3 131.8 131.8 131.8 131.8 131.8 
4      
5 0.0 0.0 0.0 0.0 0.0 
6 560.5 980.8 980.8 980.8 980.8 
7 179.3 179.3 179.3 179.3 179.3 
8      
9 2801.3 3269.5 3634 3740.8 4002.5 
a      
b      
c 70.3 70.3 70.3 70.3 70.3 
d 260 260 260 260 260 
e 234.3 343.5 874.5 408.8 1122.8 
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Table 46   
Highest Forty Parameters of d  

 

Parameter Index Parameter Value Parameter Index Parameter Value 

'9' -3009 '3' -132 
'1' -2098 '19' 119.5 
'2' -1944 '12' 108.7 
'8' -1100 '16' 107.8 
'b' 1017.1 'ae' 96.7 
'6' -611 '49' 95.3 
'4' -609 '28' 94.8 
'e' 395.2 'abe' -95 
'a' 338.8 '49b' -92 

'9b' 303.2 '89' 90.3 
'18' 286.3 'c' 71 
'd' 260.7 '19b' -70 
'8b' 215.3 '8a' -67 
'4b' -194 '8e' -66 
'6b' 190.4 '14' 63.6 
'be' -183 '89b' -58 
'7' 180 '8ae' -50 
'1b' 174.5 '8abe' 49.3 
'ab' -172 '48' 49 
'2b' 166.2 '9a' -46 
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Figure 57. Highest Forty Parameters of d  

 
 

VI.2.3.7 Validation 

Since the MHIV method was compared earlier with the FFDs, the target of this 

section is to only evaluate the projected results with respect to a validation set. In order 

to ensure that the validation set is as spread as possible in the domain of experiments, the 

validation set selected is a FFD set of sixteen experiments. The results of the validation 

set are presented in Appendix G. Figure 58 shows the errors of the projected d . The 

RMSE with respect to the validation set is found as 462.3, which is around 1.8% of the 

d projected range and 1.92 times the threshold.  
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Figure 58. d ’s Projection Error of the MHIV Method with Respect to the Sixteen 

Performed Experiments of the FFD  
 

 

VI.2.4 Fuel Temperature Reactivity Coefficient Analysis 

The fuel temperature reactivity coefficient, FT , is a measurement of the change 

of the reactivity due to the change of the fuel’s temperature (see [85] for definition), and 

is one of the measures for reactors stability. The target for this coefficient is to be as high 

as possible in the negative direction, thus causing the reactivity to decrease as the 

temperature increase.  

VI.2.4.1 Performance Characteristic Directional Alignment 

The main cause of the negative effect of temperature on FT is the Doppler 

broadening of the resonance region in the energy spectrum of the cross sections. Since 

the fuel used in the SMR is Uranium Oxide, thermal expansion and other phenomenon 
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that could cause reactivity changes due to the change of temperature can be neglected 

due to their small magnitude [87]. The range of FT in this example is expected to vary 

from around zero to a high negative value. As a result, FT is expected to have a plateau 

at its high end of zero, and needs to be reversed. Since the saturation plateau is to be 

aligned with the bottom end of the performance characteristic, the performance 

characteristic is defined as: 

   
Satkeff

Kkeff

refkeff

refkeff
KrefrefKFT k

k

k

k

5.0,

2500,

,

,
25002500

)1()1( 



   (61) 

where   is the reactivity. The low end of the range of FT  is assumed to have a value 

between 600K and 900K.The fuel temperatures used are summarized in Table 47. The 

high end of the range of the fuel temperature was chosen based on the maximum 

temperature of cross section libraries in ENDF and MCNP. This was found as 2500K in 

[83, 88]. The units used for FT  from here onwards is pcm, which is equivalent to 10-5. 

 
 

Table 47   
Definition of Fuel Temperature’s Binary States for Low and High Temperatures 
 
State\Temperature Low (Reference Case) High 

Temperature State Low (K) 600 2500 
Temperature State High (K) 900 2500 
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VI.2.4.2 Variables Directional Alignment  

The directional dependence of FT on the variables is determined in this step. 

Variables are categorized into monotonic variables and variables with unknown 

direction of effect. The Doppler broadening of the resonance was used as the criterion to 

determine the directions of effect of the variables. As the spectrum is thermalized, the 

effect of Doppler broadening and temperature changes on FT  reduce. The variables’ 

directions of effect are shown in Table 48 . The directional dependence is briefly 

justified in Table 49. According to the table, the maximum FT occurs at the variables’ 

states of 0000x001011111, thus the variables are aligned to all high at this combination. 

VI.2.4.3 Variables Integrated Parameters Determination  

Since thirteen variables are explored, 28 experiments are performed at this stage. 

The results of the performed experiments are shown in Appendix G. The corresponding 

integrated odd and even parameters of all variables are shown in Table 50.  
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Table 48   
Variables’ Directions of Effect on FT  
 

Variable 
Index 

Variable 
 Direction of 

Effect on FT  

1 No of Fuel Assemblies 
- 

2 Active Fuel Height 
- 

3 Core Radial Surrounding Water  
- 

4 Enrichments  
- 

5 Power  
= 

6 Moderator Density  
- 

7 Fuel Temperature Lib  
- 

8 No of Rods per Assembly 
+ 

9 Rod Pitch  
- 

10 (a) No of DBARs per Assembly 
+ 

11 (b) IFAB and Fuel Pellet Diameter  
+ 

12 (c) IFAB and Fuel Gap Thickness  
+ 

13 (d) IFAB and Fuel Clad Thickness  
+ 

14 (e) Discrete Burnable Absorber Area  
+ 
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Table 49   
Justification of Variables’ Directions of Effect on FT  
 

Index Variable       Justification 
Direction of 

Effect on FT  

1 
No of Fuel 
Assemblies 

 Harder spectrum increases the 
effect of Doppler broadening   

+(-) 

2 Active Fuel Height  
 Harder spectrum increases the 

effect of Doppler broadening  
+(-) 

3 
Core Radial 
Surrounding Water  

 Harder spectrum increases the 
effect of Doppler broadening 

+(-) 

4 Enrichments  
 Harder spectrum increases the 

effect of Doppler broadening 
+(-) 

5 Power   No effect = 

6 Moderator Density  
 Softer spectrum reduces the 

effect of Doppler broadening 
- 

7 
Fuel Temperature 
Lib  

 Softer spectrum reduces the 
effect of Doppler broadening 

- 

8 
No of Rods per 
Assembly 

 Harder spectrum increases the 
effect of Doppler broadening 

+ 

9 Rod Pitch  
 Softer spectrum reduces the 

effect of Doppler broadening 
- 

10 (a) 
No of DBARs per 
Assembly 

 Harder spectrum increases the 
effect of Doppler broadening 

+ 

11 (b) 
IFAB and Fuel Pellet 
Diameter  

 Harder spectrum increases the 
effect of Doppler broadening  

 More fuel increases the effect of 
temperature 

++ 

12 (c) 
IFAB and Fuel Gap 
Thickness  

 Harder spectrum increases the 
effect of Doppler broadening 

+ 

13 (d) 
IFAB and Fuel Clad 
Thickness  

 Harder spectrum increases the 
effect of Doppler broadening 

+ 

14 (e) 
Discrete Burnable 
Absorber Area  

 Harder spectrum increases the 
effect of Doppler broadening 

+ 
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Table 50   
Integrated Odd and Even Parameters in the Main Tree of FT   
 

Variable Top End Drop 
Bottom End 

Drop 
Integrated Odd 

Parameters 
Integrated Even 

Parameters 
1 25.55 19.15 22.35 3.20 
2 33.70 27.45 30.58 3.13 
3 16.30 -0.15 8.08 8.22 
4 216.25 62.45 139.35 76.90 
5 0.00 0.00 0.00 0.00 
6 175.85 84.00 129.93 45.93 
7 561.10 208.85 384.98 176.13 
8 46.95 -0.50 23.23 23.73 
9 1001.20 410.00 705.60 295.60 
a -10.15 -34.50 -22.32 12.18 
b 713.45 252.20 482.83 230.63 
c 29.55 -1.70 13.93 15.63 
d 102.80 11.65 57.23 45.58 
e 157.70 17.80 87.75 69.95 
 
 

VI.2.4.4 Variables Categorization 

The results of the integrated odd and even parameters are sorted according to the 

strength of the integrated even parameters, and presented in Figure 59. If a threshold of 

integrated even parameters is set at 39 (39 is three times the average error of the 

calculated effK  of 13), it is possible to categorize variables 79b as the most interacting 

variables, variables 46de as interacting variables, and variables 12358ac as non-

interacting variables. The non-interacting variables are not further explored.  
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Figure 59. Integrated Odd and Even Parameters in the Main Tree of FT  
 
 

VI.2.4.5 Variables Interactions Exploration  

Since three variables are selected as the most interacting variables, eight subtrees 

are to be established representing all binary states of 79b. Within each of these subtrees, 

the integrated odd and even parameters of each of 46de are found. In total eight 

experiments per subtree are performed. However, the top and bottom subtrees already 

have four experiments performed in each. Thus, the total number of experiments 

performed at this stage is 56. The resulting integrated odd and even parameters of 

variables 46de are listed in Table 51 and Table 52, and shown in Figure 60. Checking 

the integrated even parameters against the threshold of 39, the variables highlighted in 

grey in Table 51 and Table 52 of subtrees 79b=xxx are not further explored, and their 

integrated odd parameters are used as the first order parameters in 79b spanned subtrees. 
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All variables of 79b subtrees fell below the threshold, and are considered as non-

interacting. Thus, no further subtrees spanning is needed. The results of all performed 

experiments are shown in Appendix G. 

 
 

Table 51   
Integrated Odd Parameters of 46de in Subtrees 79b=xxx of FT   
 

79b= 
Variable 000 001 010 011 100 101 110 111 

4 76.17 92.85 97.43 164.50 93.45 126.05 128.25 185.25

6 86.87 121.30 105.30 142.55 109.98 150.83 139.95 171.48

d 22.75 37.93 28.55 79.20 16.65 50.50 48.90 90.38 

e 44.92 45.50 54.88 97.78 44.08 68.10 78.65 120.53

 
 
 

Table 52   
Integrated Even Parameters of 46de in Subtrees 79b=xxx of FT   
 

79b= 
Variable 000 001 010 011 100 101 110 111 

4 13.72 12.35 7.78 22.95 13.35 18.85 5.75 31.00

6 2.88 11.35 2.50 5.75 13.68 2.12 -1.40 4.37 

d 11.10 10.43 -1.35 13.45 0.55 -6.15 -0.70 12.42

e 27.13 18.45 20.48 25.38 23.23 27.00 13.80 37.18
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(a) 79b=000 (b) 79b=001 

(c) 79b=010 (d) 79b =011 

(e) 79b =100 (f) 79b =101 

(g) 79b =110 (h) 79b =111 

Figure 60. Integrated Odd and Even Parameters of 26de in 79b=xxx of FT   

0

50

100

4 6 d e

Odd Parameters Even Parameters

0

50

100

150

4 6 d e

Odd Parameters Even Parameters

0

50

100

150

4 6 d e

Odd Parameters Even Parameters

0

50

100

150

200

4 6 d e

Odd Parameters Even Parameters

0

50

100

150

4 6 d e

Odd Parameters Even Parameters

0

50

100

150

200

4 6 d e

Odd Parameters Even Parameters

0

50

100

150

4 6 d e

Odd Parameters Even Parameters

0

50

100

150

200

4 6 d e

Odd Parameters Even Parameters



 

160 
 

 

VI.2.4.6 Projection of Subtrees and Results Generation 

The offset parameter of every subtree is found by averaging the offset 

determined by each end of the subtree using equation 45. The values of Error,1,1,0   in 

every subtree is found using equation 46, and are shown in Table 53. The parameters of 

all subtrees are shown in Table 54. In total 90, experiments were performed. The 

performance characteristic is projected in all subtrees, then the global model parameters 

are found. The highest thirty parameters are shown in Table 55 and Figure 61. 

 
 

Table 53   
Offset Errors in All Subtrees of FT  
 
Subtree 

79b 
States 

000 001 010 011 100 101 110 111 

 

Error,1,1,0 
 

-50.650 -65.150 15.525 -66.900 -31.025 -71.150 18.775 -52.800
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Table 54   
Parameters in All Subtrees of FT   
 

79b= 
Index 000 001 010 011 100 101 110 111 

1 22.35 22.35 22.35 22.35 22.35 22.35 22.35 22.35 
2 30.575 30.575 30.575 30.575 30.575 30.58 30.58 30.58 
3 8.08 8.08 8.08 8.08 8.08 8.08 8.08 8.08 
4 76.175 92.85 97.425 164.5 93.45 126.05 128.25 185.25 
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
6 86.875 121.3 105.3 142.55 109.975 150.83 139.95 171.48 
7         
8 23.225 23.225 23.225 23.225 23.225 23.23 23.23 23.23 
9         
a -22.325 -22.325 -22.325 -22.325 -22.325 -22.32 -22.32 -22.32 
b         
c 13.925 13.925 13.925 13.925 13.925 13.93 13.93 13.93 
d 22.75 37.925 28.55 79.2 16.65 50.50 48.90 90.38 
e 44.925 45.5 54.875 97.775 44.075 68.10 78.65 120.53 

 

 
Table 55   
Highest Thirty Parameters of FT  
 

Parameter Index Parameter Value 
Parameter 

Index 
Parameter Value 

'9' -670 '4b' -22 
'b' 453 '9e' -19 
'7' -356 '79b' 18 
'9b' -136 '6b' -18 
'6' -128 'bd' 18 
'4' -120 '9d' -15 
'79' 82 '67' 15 
'e' 69 'c' 14 

'7b' -57 'be' 14 
'd' 47 '47' 13 
'2' -30 '69' 11 
'49' 23 '49b' 9 
'8' 23 '7e' -9 
'a' -23 '3' -8 
'1' -22 '9be' -7 



 

162 
 

 

 

Figure 61. Highest Thirty Parameters of FT  
 
 

VI.2.4.7 Validation 

Since the MHIV method was compared earlier with the FFDs, the target of this 

section is to only evaluate the projected results with respect to a validation set. In order 

to ensure that the validation set is as spread as possible in the domain of experiments, the 

validation set selected is a FFD set of sixteen experiments. The results of the validation 

set are presented in Appendix G. Figure 62 shows the errors of the projected FT . The 

RMSE with respect to the validation model is found as 67.4, which is around 1.67% of 

the FT projected range and 1.72 times the threshold.  
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Figure 62. FT ’s Projection Error of the MHIV Method with Respect to the Sixteen 

Performed Experiments of the FFD  
 
 

VI.2.5 Power Peaking Factor Analysis 

The power peaking factor, PPF, is an indication of the power distribution in the 

core. It is the ratio of the maximum power zone in the core to the average power of the 

core. In order to improve the thermohydraulic and materials aspects of the design, it is 

desired to have a power profile that is as flat as possible.  

VI.2.5.1 Performance Characteristic Directional Alignment 

As the power peaking is reduced, PPF approaches a value of one. This is a 

theoretical limit since only an infinitely large core has a PPF of one. On the other hand, 

as the core gets smaller, it is expected that PPF will increase due to a very steep power 

profile. Accordingly, PPF is limited by a plateau at its low end. Since the saturation 
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plateau is to be aligned with the bottom end of the performance characteristic, the 

performance characteristic is defined as: 

Avg

Max

Power

Power
PPF   

(62) 

The core is split into 100 spatial elements consisting of ten axial elements and ten 

radial elements. PPF is the ratio of the power depositions in the highest element to the 

average of all 100 elements.   

VI.2.5.2 Variables Directional Alignment  

The directional dependence of PPF on the variables is determined in this step. 

Variables are categorized into monotonic variables and variables with unknown 

direction of effect. The criterion used is that it is expected that larger cores will have 

smaller PPF. It is also expected that as the heat source or fuel is more condensed, PPF 

increases. The variables’ directions of effect are shown in Table 56. The directional 

dependence is briefly justified in Table 57. According to the table, the maximum PPF 

occurs at the variables’ states of 1101x110101001, thus the variables are aligned to all 

high at this combination. 
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Table 56   
Variables’ Directions of Effect on PPF 
 

Variable 
Index 

Variable 
Direction of 

Effect on PPF

1 No of Fuel Assemblies 
+ 

2 Active Fuel Height  
+ 

3 Core Radial Surrounding Water  
- 

4 Enrichments  
+ 

5 Power  
= 

6 Moderator Density  
+ 

7 Fuel Temperature Lib  
+ 

8 No of Rods per Assembly 
- 

9 Rod Pitch  
+ 

10 (a) No of DBARs per Assembly 
- 

11 (b) IFAB and Fuel Pellet Diameter  
+ 

12 (c) IFAB and Fuel Gap Thickness  
- 

13 (d) IFAB and Fuel Clad Thickness  
- 

14 (e) Discrete Burnable Absorber Area  
+ 

 
  



 

166 
 

 

 
Table 57   
Justification of Variables’ Directions of Effect on PPF 
 

Index Variable       Justification 
Direction 
of Effect 
on PPF 

1 
No of Fuel 
Assemblies 

 Larger core causes lower PPF   - (+) 

2 Active Fuel Height   Larger core causes lower PPF -(+) 

3 
Core Radial 
Surrounding Water  

 More water increases reflection at the 
edges  

- 

4 Enrichments  
 Higher enrichment causes higher heat 

production especially at the center  
+ 

5 Power   No effect = 

6 Moderator Density  
 Softer spectrum results in higher heat 

production especially at the center  
+ 

7 
Fuel Temperature 
Lib  

 Higher temperature causes higher 
absorption especially at the center 

+ 

8 
No of Rods per 
Assembly 

 Larger core causes lower PPF 
 Smaller burnable absorber to fuel ratio 

causes higher PPF    

-+(-) 

9 Rod Pitch  

 Softer spectrum causes higher heat 
production especially at the center 

 Larger core causes lower PPF  

+-(+) 

10 (a) 
No of DBARs per 
Assembly 

 Higher absorption especially at the 
center 

- 

11 (b) IFAB and Fuel 
Pellet Diameter  

 Harder spectrum especially at the 
center  

 Higher heat production especially at the 
center 

-+(+) 

12 (c) IFAB and Fuel Gap 
Thickness  

 Harder spectrum especially at the 
center 

- 

13 (d) IFAB and Fuel 
Clad Thickness  

 Harder spectrum especially at the 
center 

- 

14 (e) 
Discrete Burnable 
Absorber Area 
(cm2) 

 Higher absorption especially at the 
center 

-(+) 
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VI.2.5.3 Variables Integrated Parameters Determination  

Since thirteen variables are explored, 28 experiments are performed at this stage. 

The results of the performed experiments are shown in Appendix G. The corresponding 

integrated odd and even effects of all variables are shown in Table 58. Since the range of 

the PPF variation is small, it is expressed in 10-2 from now onwards.  

 
 

Table 58   
Integrated Odd and Even Parameters in the Main Tree of PPF 
 

Variable Top End Drop 
Bottom End 

Drop 
Integrated Odd 

Parameters 
Integrated Even 

Parameters 
1 10.58 -2.69 3.95 6.63 
2 16.20 2.04 9.12 7.08 
3 8.79 -0.26 4.26 4.52 
4 15.47 1.88 8.67 6.80 
5 0.00 0.00 0.00 0.00 
6 6.15 2.28 4.21 1.94 
7 6.75 -2.59 2.08 4.67 
8 2.24 -8.25 -3.00 5.25 
9 13.38 7.38 10.38 3.00 
a 21.27 -6.60 7.33 13.94 
b 4.72 -10.40 -2.84 7.56 
c 5.66 0.64 3.15 2.51 
d 4.59 -1.12 1.74 2.86 
e 7.26 -6.43 0.42 6.85 

 
 

VI.2.5.4 Variables Categorization  

The results of the integrated odd and even parameters are sorted according to the 

strength of the integrated even parameters, and are shown in Figure 63. It is conclude 

from the magnitudes of the integrated odd and even parameters, that variables are highly 
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interacting. It is also clear that since the integrated odd parameters are smaller than the 

integrated even parameters for most of the variables, the variables are highly non-

monotonic. As a result, the application of the dissertation’s methods is not recommended 

for this performance characteristic. This, however, is not a limitation of the dissertation’s 

methods. The fact that they can determine that the variables are interacting and non-

monotonic is a major finding by itself. From this knowledge, the experimenter can know 

whether a very high Res FFD is needed for this performance characteristic.  

This performance characteristic will be analyzed using the MHIV method and a 

FFD for demonstration. Starting with the MHIV method, if a threshold of integrated 

even parameters is set at 2, it is possible to categorize variables 2ab as most interacting, 

variables 134789cde as interacting, and variables 56 as non-interacting. The non-

interacting variables are not further explored.  

 

 
 
Figure 63. Integrated Odd and Even Parameters in the Main Tree of PPF 
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VI.2.5.5 Variables Interactions Exploration  

Since three variables are selected as the most interacting variables, eight subtrees 

are to be established representing all binary states of 2ab=xxx. Within each of these 

subtrees, the integrated odd and even parameters of each of 134789cde are found. In 

total eighteen experiments per subtree are performed. However, the top and bottom 

subtrees already have 9 experiments performed in each. Thus, the total number of 

experiments performed at this stage is 126. The resulting integrated odd and even 

parameters of variables 134789cde are listed in Table 59 and Table 60, and shown in 

Figure 64. Checking the integrated even parameters against the set threshold of 2, the 

variables highlighted in grey in Table 59 and Table 60 of subtrees 2ab=xxx are not 

further explored, and their integrated odd parameters are used as the first order 

parameters in 2ab spanned subtrees. The results of all performed experiments are shown 

in Appendix G. 

Subtree 2ab=000 has three interacting variables 148, and they all are relatively 

far from the threshold of 2. As a result, it is decided to unfold all of them, thus creating 

subtrees 148=xxx of 2ab=000. Subtree 2ab=001 has two interacting variables, 19, so 

they are also unfolded by creating subtrees 19=xx of 2ab=001. Subtree 2ab=010 has 

three interacting variables, 39d. It is unfolded by creating subtrees 39d=xxx of 2ab=010. 

However, since these variables are close to the threshold, it is possible to unfold them 

through multi-stages’ exploration. Subtree 2ab=011 has no interacting variables, so no 

further spanning is needed. Subtree 2ab=100 has five interacting variables 189de, thus a 

multistage spanning approach is applied. At the first stage, the two most interacting 
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variables, de, are unfolded and subtrees de=xx of 2ab=100 are created. Within every 

subtree, variables 189 integrated odd and even parameters are found. The results are 

shown in Table 61 and Figure 65. It is concluded from the results that some variables are 

still strongly interacting in all subtrees, thus subtrees 18=xx of de=00,01,10 of 2ab=100, 

and 9=x of de=11 of 2ab=100 are created.  

 
 

Table 59   
Integrated Odd Parameters of 134789cde in Subtrees 2ab=xxx of PPF 
 

2ab= 
Variable 000 001 010 011 100 101 110 111 

1 0.84 5.05 4.32 6.17 1.59 4.92 7.04 8.59 
3 -0.69 -0.86 0.20 1.89 -1.50 2.05 0.61 4.44 
4 5.43 5.24 6.33 4.49 10.38 8.22 9.38 10.63 
7 -3.21 -3.67 -0.09 1.48 -1.66 0.64 -1.13 2.19 
8 -4.41 -4.55 -1.80 -1.17 -15.23 -6.88 3.06 -0.27 
9 6.25 10.04 4.71 13.28 3.85 10.30 8.71 13.17 
c -0.73 -1.68 -0.11 0.62 3.71 -1.26 3.40 6.40 
d -2.06 0.63 0.42 -0.55 -0.32 0.34 0.09 3.69 
e -6.26 -3.17 -1.06 -1.66 -11.26 -9.77 3.86 3.78 

 
 
 
Table 60   
Integrated Even Parameters of 134789cde in Subtrees 2ab=xxx of PPF 
 

2ab= 
Variable 000 001 010 011 100 101 110 111 

1 3.53 2.20 0.03 1.41 2.20 2.35 -0.19 1.99 
3 -0.43 -1.62 -2.57 0.82 -1.02 1.33 -2.98 4.34 
4 3.55 0.69 0.95 1.33 -0.43 3.15 0.51 4.84 
7 -0.62 -0.91 -0.43 1.17 0.62 -0.89 -5.64 4.56 
8 3.84 -0.91 -1.11 -1.84 -2.12 -2.82 3.68 2.51 
9 -1.13 -2.25 -2.79 1.74 -2.88 -5.34 -0.70 0.21 
c -1.37 -0.80 -1.93 0.78 0.41 -1.85 -0.51 -0.74 
d -0.94 0.83 -2.13 -1.00 -3.17 0.07 -0.53 0.91 
e 0.17 -0.59 -1.78 -0.80 -5.64 -4.37 -0.15 3.49 
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(a) 2ab=000 
 

(b) 2ab =001 

(c) 2ab =010 (d) 2ab =011 

(e) 2ab =100 (f) 2ab =101 

(g) 2ab =110 (h) 2ab =111 

Figure 64. Integrated Odd and Even Parameters of 134789cde in Subtrees 2ab=xxx of 
PPF  
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Subtree 2ab=101 has five interacting variables 1489e. Variables 49e are unfolded 

at the first stage and subtrees 49e=xxx of 2ab=101 are created. Within every subtree, 

variables 18 integrated odd and even parameters are found. The results are shown in 

Table 62 and Figure 66. Based on the results is decided that no further unfolding is 

needed in subtree 49e=000,001,101 of 2ab=101. Variables 18 are interacting in subtrees 

49e=010,011,110,111, so subtrees 18=xx of 49e=010,011,110,111 of 2ab=101 are 

created. Subtree 49e=100 has variable 1 as interacting, thus subtrees 1=x of 49e=100 of 

2ab=101 are created.  

 

Table 61   
Integrated Odd and Even Parameters of 189 in Subtrees de=xx of PPF  
 

Odd Parameters 
de=00 de=01 de=10 de=11 

Variable 
1 4.8025 6.1600 2.2000 2.8850 
8 -7.5700 -15.9975 -9.6800 -18.4375 
9 8.2175 6.8825 5.2800 7.1750 

Even Parameters 
de=00 de=01 de=10 de=11 

Variable 
1 5.4125 9.3350 3.7050 0.9050 
8 5.5350 7.1925 8.9650 1.0875 
9 1.4925 1.3125 -0.1250 -6.2100 
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(a) de =00 (b) de =01 

(c) de =10 
 

(d) de =11 

Figure 65. Integrated Odd and Even Parameters of 189 in Subtrees de=xx of PPF  
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Table 62   
Integrated Odd and Even Parameters of 18 in Subtrees 49e=xxx of 2ab=101 of PPF  
 
Odd Parameters                                          49e= 
Variable 000 001 010 011 100 101 110 111 

1 4.41 -0.45 -1.56 -3.07 7.90 10.04 7.98 4.64 
8 -5.95 -12.74 -11.29 -15.27 -3.31 -6.37 -7.00 -13.96 

Even Parameters                                          49e= 
Variable 000 001 010 011 100 101 110 111 

1 1.84 0.48 2.91 7.04 4.02 1.48 5.91 2.63 
8 -1.89 -1.78 3.89 5.96 -1.29 -0.57 6.05 4.26 

 

 

(a) Variable 1 
 

(b) Variable 8 

Figure 66. Integrated Odd and Even Parameters of 18 in Subtrees 49e=xxx of 2ab=101 
of PPF  
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subtrees. The integrated odd and even parameters of variables 8e are found in each of the 

subtrees, and are shown in Table 63 and Figure 67. From the results, it is decided that 

subtrees 8e=xx of 347=000,111 of 2ab=111 are created. Subtrees 347=001 and 347=011 

have variable e as interacting, so subtrees e=x of 347=001,011 of 2ab=111 are created. 

Subtree 347=010 has no interacting variables, thus no subtrees are spanned within this 

subtree. Subtrees 347=100,101 and 110 have variable 8 as an interacting variable, thus 

subtrees 8=x of 347=100,101,110 of 2ab=111 are created, and no further subtrees’ 

spanning is needed. 

 

Table 63   
Integrated Odd and Even Parameters of 8e in Subtrees 347=xxx of 2ab=111 of PPF  
 
Odd Parameters                                              347= 
Variable =000 001 010 011 100 101 110 111 

8 -0.61 4.04 -2.19 -1.60 -1.59 1.96 -3.22 -2.00 

e  -4.61 -0.97 -2.05 -4.96 -1.96 -2.15 -3.61 2.10 
Even Parameters                                             347= 
Variable 000 001 010 011 100 101 110 111 

8 2.16 1.66 0.90 1.83 -4.00 2.31 2.90 4.24 

e  -4.89 -3.41 1.61 -3.82 -0.85 0.58 1.43 5.16 
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(a) Variable 8 
 

(b) Variable e 

Figure 67. Integrated Odd and Even Parameters of 8e in Subtrees 347=xxx of 2ab=111 
of PPF 
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Table 64   
Offset Errors in All Subtrees of PPF 
 

Subtree 
2ab134789abde 

States 
Error,1,1,0 

 

Subtree 
2ab134789abde 

States 
Error,1,1,0 

 

Subtree 
2ab134789abde 

States 
Error,1,1,0 

 
0000x0x0xxxxx 9.33 1001xxx1xxx01 -5.54 110x0x00xxxxx -19.95 
0000x0x1xxxxx 7.59 1000xxx0xxx10 -4.99 110x0x01xxxxx -15.47 
0000x1x0xxxxx 17.96 1000xxx1xxx10 2.74 110x0x10xxxxx -20.75 
0000x1x1xxxxx 13.27 1001xxx0xxx10 -7.79 110x0x11xxxxx -9.33 
0001x0x0xxxxx 4.16 1001xxx1xxx10 -4.17 110x1x00xxxxx -21.31 
0001x0x1xxxxx 3.26 100xxxxx0xx11 5.42 110x1x01xxxxx -4.11 
0001x1x0xxxxx 6.35 100xxxxx1xx11 -7.00 110x1x10xxxxx -22.01 
0001x1x1xxxxx 4.75 101xx0xx0xxx0 -5.61 110x1x11xxxxx -12.96 
0010xxxx0xxxx 3.35 101xx0xx0xxx1 1.06 111x0000xxxx0 -21.32 
0010xxxx1xxxx 2.82 1010x0x01xxx0 -8.22 111x0000xxxx1 -23.40 
0011xxxx0xxxx 11.72 1010x0x11xxx0 -2.88 111x0001xxxx0 -9.29 
0011xxxx1xxxx 7.44 1011x0x01xxx0 -4.86 111x0001xxxx1 -18.72 
010x0xxx0xx0x 3.03 1011x0x11xxx0 -5.66 111x001xxxxx0 -15.83 
010x0xxx0xx1x 2.87 1010x0x01xxx1 -8.01 111x001xxxxx1 -22.65 
010x0xxx1xx0x 2.97 1010x0x11xxx1 -4.33 111x010xxxxxx -14.36 
010x0xxx1xx1x -0.02 1011x0x01xxx1 -2.18 111x011xxxxx0 -10.59 
010x1xxx0xx0x -0.76 1011x0x11xxx1 -5.11 111x011xxxxx1 -18.22 
010x1xxx0xx1x 4.30 1010x1xx0xxx0 -8.48 111x1000xxxxx -15.85 
010x1xxx1xx0x -0.66 1011x1xx0xxx0 -0.43 111x1001xxxxx -23.85 
010x1xxx1xx1x 0.08 101xx1xx0xxx1 -6.98 111x1010xxxxx -26.67 
011xxxxxxxxxx -3.50 1010x1x00xxx1 -4.39 111x1011xxxxx -22.06 
1000xxx0xxx00 -3.77 1010x1x10xxx1 -6.67 111x1100xxxxx -16.26 
1000xxx1xxx00 -9.63 1011x1x00xxx1 -6.94 111x1101xxxxx -10.46 
1001xxx0xxx00 -9.88 1011x1x10xxx1 1.16 111x1110xxxx0 -19.07 
1001xxx1xxx00 -4.68 1010x1x01xxx1 3.97 111x1110xxxx1 -10.72 
1000xxx0xxx01 -4.51 1010x1x11xxx1 -2.14 111x1111xxxx0 -12.56 
1000xxx1xxx01 -8.85 1011x1x01xxx1 -5.40 111x1111xxxx1 -7.05 
1001xxx0xxx01 -4.56 1011x1x11xxx1 -9.68 
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Table 65   
Parameters in All Subtrees of PPF  
 

Parameter Index 
2ab=000, 
148=xxx 

2ab=001, 
19=xx 

2ab=010, 
39d=xxx 

2ab=011 

1 4.32 6.17 
2 
3 -0.69 -0.86 1.89 
4 5.24 6.33 4.49 
5 0.00 0.00 0.00 0.00 
6 4.21 4.21 4.21 4.21 
7 -3.21 -3.67 -0.09 1.48 
8 -4.55 -1.80 -1.17 
9 6.25 13.28 
a 
b 
c -0.73 -1.68 -0.11 0.62 
d -2.06 0.63 0.00 -0.55 
e -6.26 -3.17 -1.06 -1.66 

Parameter Index 
2ab=100, 
de=00, 
18=xx 

2ab=100, 
de=01, 
18=xx 

2ab=100, 
de=10, 
18=xx 

2ab=100, 
de=11, 

9=x 
1 2.88 
2 
3 -1.50 -1.50 -1.50 -1.50 
4 10.38 10.38 10.38 10.38 
5 0.00 0.00 0.00 0.00 
6 4.21 4.21 4.21 4.21 
7 -1.66 -1.66 -1.66 -1.66 
8 -18.44 
9 8.22 6.88 5.28 
a 
b 
c 3.71 3.71 3.71 3.71 
d 
e 
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Table 65  Continued  

Parameter Index 
2ab=101, 
49e=000 

2ab=101, 
49e=001 

2ab=101, 
49e=010,011,110,111, 

18=xx 

2ab=101, 
49e=100, 

1=x 
1 4.41 -0.45 
2 
3 2.05 2.05 2.05 2.05 
4 
5 0.00 0.00 0.00 0.00 
6 4.21 4.21 4.21 4.21 
7 0.64 0.64 0.64 0.64 
8 -5.95 -12.74 0.00 -3.31 
9 
a 
b 
c -1.26 -1.26 -1.26 -1.26 
d 0.34 0.34 0.34 0.34 
e 

Parameter Index 
2ab=101, 
49e=101 

2ab=110 
378=xxx 

2ab=111, 
347=000, 

8e=xx 

2ab=111, 
347=001, 

e=x 
1 10.04 7.04 8.59 8.59 
2 
3 2.05 
4 9.38 
5 0.00 0.00 0.00 0.00 
6 4.21 4.21 4.21 4.21 
7 0.64 
8 -6.37 4.04 
9 8.71 13.17 13.17 
a 
b 
c -1.26 3.40 6.40 6.40 
d 0.34 0.09 3.69 3.69 
e 3.86 
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Table 65  Continued  

Parameter Index 
2ab=111, 
347=010 

2ab=111, 
347=011, 

e=x 

2ab=111, 
347=100, 

8=x 

2ab=111, 
347=101, 

8=x 
1 8.59 8.59 8.59 8.59 
2 
3 
4 
5 0.00 0.00 0.00 0.00 
6 4.21 4.21 4.21 4.21 
7 
8 -2.19 -1.60 
9 13.17 13.17 13.17 13.17 
a 
b 
c 6.40 6.40 6.40 6.40 
d 3.69 3.69 3.69 3.69 
e -2.05 -1.96 -2.15 

Parameter Index 
2ab=111, 
347=110, 

8=x 

2ab=111, 
347=111, 

8e=xx 
1 8.59 8.59 
2 
3 
4 
5 0.00 0.00 
6 4.21 4.21 
7 
8 
9 13.17 13.17 
a 
b 
c 6.40 6.40 
d 3.69 3.69 
e -3.61 
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Table 66   
Highest Forty Parameters of PPF Using the MHIV Method 
 

Parameter Index Parameter Value Parameter Index Parameter Value 

'9' 9.3388 'abe' 1.4622 
'4' 7.306 '1a' -1.3891 
'2' 4.9845 '28' 1.3731 
'1' 4.9745 '2ae' -1.3538 
'a' -4.7213 'ac' 1.2098 
'8' 4.4543 '7a' -1.2062 
'6' 4.1129 'c' -1.2023 
'8a' 3.6607 '2abd' 1.1996 
'e' -3.2837 'abc' 1.1753 
'ae' -2.9898 '1b' 1.0242 
'2a' -2.9771 '18b' 0.98346 
'b' -2.968 '18ab' 0.97874 
'9b' 2.3718 '2d' -0.90299 
'2b' 2.1515 '4b' -0.85646 
'28a' 2.0706 '9a' -0.82659 
'ab' 2.0116 '27a' 0.81844 
'2c' -1.6417 '28ae' 0.80514 
'18' -1.6255 '8ae' 0.80259 
'18a' -1.601 '8e' 0.7984 
'24' 1.5775 '28e' 0.78933 
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Figure 68. Highest Forty Parameters of PPF 
 

VI.2.5.7 Validation 

Since it was concluded earlier that the MHIV method is not expected to perform 

well on this performance characteristic due to the nature of the variables’ interactions, a 

high Res FFD needs to be performed. A 256 Res V FFD set of experiments was 

performed. The results of the validation set are presented in Appendix G. The errors of 

the projected PPF using the MHIV method are shown Figure 69. The errors of the 

projected PPF using FFDs are shown in Figure 70. The RMSE of the MHIV method was 

found as 9.1, which is around 6.6% of the PPF projected range and 4.5 times the 

threshold. The RMSE of the 256 FFD was found as 6.52, which is around 30% lower 

than the RMSE of the MHIV method. The parameters of the 256 FFD are shown in 

Table 67 and Figure 71.  
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Figure 69. PPF’s Projection Error of the MHIV Method with Respect to the 256 

Performed Experiments of the FFD  
 
 
 

 
Figure 70. PPF’s Projection Error of the 256 FFD with Respect to the Performed 

Experiments of the MHIV Method 
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Table 67   
Highest Forty Parameters of PPF Using a 256 Res V FFD  
 

Parameter Index Parameter Value Parameter Index Parameter Value 

'9' 8.3027 '18a' -1.4306 
'4' 7.5333 '29' -1.2766 
'2' 5.7365 '49' 1.1405 
'8' 5.4852 'ab' 1.0974 
'1' 4.9249 '189' -1.0513 
'a' -4.6061 '169' -0.94178 
'e' -4.1716 '7e' 0.91107 
'2a' -3.936 '46' 0.90051 
'18' -3.1934 '2ae' -0.88414 
'8a' 3.0531 '1ae' -0.86767 
'ae' -2.6135 '68' 0.8675 
'b' -2.4644 '7d' 0.86518 
'6' 2.2713 '8e' 0.84945 
'9b' 2.1151 '4a' 0.82802 
'2e' -2.1077 '16' -0.79712 
'2b' 2.0579 '7bc' -0.79184 
'28' 1.7501 '28b' -0.78641 
'14' 1.6095 '9ab' -0.78148 
'24' 1.5694 '28a' 0.76893 
'19' -1.4958 '18b' 0.76105 
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Figure 71. Highest Forty Parameters of PPF Using a 256 Res V FFD 
 

VI.2.6 Multiplication Factor Depletion Analysis 

In this section, effK is analyzed with respect to time. As the reactor core is 

depleted, effK  is expected to drop due to fissile materials depletion (see [85] for 

definition). The aim for the effective multiplication factor is to not drop below one at the 

End of Life (EOL). The drop of effK  ( effK ) is defined as the difference between effK  

at the BOL and effK  at the EOL, which is 5 years from BOL.  

VI.2.6.1 Performance Characteristic Directional Alignment 

Since the SMR is a water cooled thermal reactor and has a lower than one 

conversion ratio, effK after five years cannot be negative, thus effK is expected to 
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have a plateau at its low end. Since the saturation plateau is to be aligned with the low 

end of the performance characteristic, the performance characteristic is defined as: 

yeffBOLeffeff KKK 5,,   (63) 

VI.2.6.2 Variables Directional Alignment  

The directional dependence of effK on the variables is determined at this stage. 

Variables are categorized into monotonic variables and variables with unknown 

direction of effect. The criterion used is that as the core fuel mass increase or the power 

decrease, effK  is expected to decrease. Power is an active variable on this performance 

characteristic, and is considered as a monotonic variable. The variables’ directions of 

effect are shown in Table 68. The directional dependence is briefly justified in Table 69. 

According to the table, the maximum effK occurs at the variables’ states of 

00011100100000, thus the variables are aligned to all high at this combination.  
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Table 68   
Variables’ Directions of Effect on effK  

 

Variable 
Index 

Variable 
Direction of Effect 

on effK  

1 No of Fuel Assemblies - 

2 Active Fuel Height  
- 
 

3 Core Radial Surrounding Water  
- 
 

4 Enrichments  
+ 
 

5 Power  + 

6 Moderator Density  + 

7 Fuel Temperature Lib  - 

8 No of Rods per Assembly - 

9 Rod Pitch  + 

10 (a) No of DBARs per Assembly - 

11 (b) IFAB and Fuel Pellet Diameter  - 

12 (c) IFAB and Fuel Gap Thickness  - 

13 (d) IFAB and Fuel Clad Thickness  - 

14 (e) Discrete Burnable Absorber Area  - 
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Table 69   
Justification of Variables’ Directions of Effect on effK  

 

Variable 
Index 

Variable       Justification 
Direction of 

Effect on effK  

1 No of Fuel Assemblies  Higher fuel to power ratio - 
2 Active Fuel Height   Higher fuel to power ratio - 

3 
Core Radial 
Surrounding Water  

 Unknown effect ?(-) 

4 Enrichments   More fissile Material  -(+) 

5 Power   Faster fuel depletion  + 

6 Moderator Density  
 Thermalizing spectrum 

reduces breeding  
+ 

7 Fuel Temperature Lib   Unknown effect ?(-) 

8 
No of Rods per 
Assembly 

 Higher fuel to power ratio - 

9 Rod Pitch  
 Thermalizing spectrum 

reduces breeding 
+ 

10 (a) 
No of DBARs per 
Assembly 

 Absorber depletes with 
time, thus adds reactivity 

- 

11 (b) 
IFAB and Fuel Pellet 
Diameter  

 Higher fuel to power ratio - 

12 (c) 
IFAB and Fuel Gap 
Thickness  

 Hardening spectrum 
increases breeding 

- 

13 (d) 
IFAB and Fuel Clad 
Thickness  

 Hardening spectrum 
increases breeding 

- 

14 (e) 
Discrete Burnable 
Absorber Area  

 Absorber depletes with 
time, thus adds reactivity 

- 

 
 

VI.2.6.3 Variables Integrated Parameters Determination  

 Since fourteen variables are explored, thirty experiments are performed at this 

stage. The results of the performed experiments are shown in Appendix G. The 
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corresponding integrated odd and even parameters of all variables are shown in Table 

70. The units used for effK  are in 10-3 from here onwards. 

 

Table 70   
Integrated Odd and Even Parameters in the Main Tree of effK  

 

Variable 
Top End 

Drop 
Bottom End 

Drop 
Integrated Odd 

Parameters 
Integrated Even 

Parameters 

1 40.215 20.74 30.478 9.737 
2 58.805 41.535 50.17 8.635 
3 0.56 -0.29 0.135 0.425 
4 39.325 12.425 25.875 13.45 
5 66.66 40.225 53.443 13.218 
6 19.165 1.2 10.183 8.982 
7 5.345 -0.56 2.39 2.955 
8 20.69 -1.84 9.423 11.268 
9 76.425 6.405 41.415 35.01 
a -2.59 18.43 7.923 -10.51 
b 80.425 5.99 43.208 37.218 
c 1.295 -0.95 0.173 1.122 
d 3.61 0.515 2.063 1.547 
e 8.58 10.23 9.405 -0.82 

 
 

VI.2.6.4 Variables Categorization  

The results of the integrated odd and even parameters are sorted according to the 

strength of integrated even parameters and presented in Figure 72. It is clear from the 

magnitudes of the integrated even parameters that most of the variables are interacting. 

If a threshold of integrated even parameters is set at 8.5, it is possible to categorize 

variables 9b as most interacting, variables 124568a as interacting (a is slightly non-
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monotonic), variables e as important and non-interacting and variables 37cd as non-

important and non-interacting. The non-interacting variables are not further explored.  

 
 

 
 

Figure 72. Integrated Odd and Even Parameters in the Main Tree of effK  

 
 

VI.2.6.5 Variables Interactions Exploration  

Since two variables are selected as the most interacting variables, four subtrees 

are to be established representing all binary states of 9b=xx. Within each of these 

subtrees, the integrated odd and even parameters of each of 124568a are found. In total 

fourteen experiments per subtree is performed. However, the top and bottom subtrees 

already have seven experiments performed in each, thus the total number of experiments 

performed at this stage is 42. The resulting integrated odd and even parameters of 

variables 124568a are listed in Table 71 and Table 72, and shown in Figure 73. 
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Checking the integrated even parameters against the set threshold of 8.5, the variables 

highlighted in grey in Table 71 and Table 72 of subtrees 9b=xx are not further explored, 

and their integrated odd parameters are used as the first order parameters in 9b spanned 

subtrees. The results of all performed experiments are shown in Appendix G. 

 

Table 71   
Integrated Odd Parameters of 124568a in Subtrees 9b=xx of effK   

 

Variable 9b=00 9b=01 9b=10 9b=11 

1 16.398 41.500 31.265 62.818 
2 32.875 67.605 58.118 95.448 
4 20.470 22.755 20.418 20.188 
5 33.498 69.065 61.125 101.115 
6 8.125 12.458 9.643 13.233 
8 -0.145 12.413 7.200 26.695 
a 7.857 10.940 9.455 12.033 

 
 
 
 
Table 72   
Integrated Even Parameters of 124568a in Subtrees 9b=xx of effK  

 

Variable 9b=00 9b=01 9b=10 9b=11 

1 -4.343 -8.305 -12.290 -22.603 
2 -8.660 -17.440 -28.708 -36.643 
4 8.045 12.090 12.518 19.138 
5 -6.728 -15.445 -25.995 -34.455 
6 6.925 6.943 6.943 5.932 
8 1.700 1.443 -1.000 -6.005 
a -10.573 -17.975 -11.845 -14.618 

 

  



 

192 
 

 

(a) 9b=00 (b) 9b=01 

(c) 9b=10 (d) 9b =11 
  

Figure 73. Integrated Odd and Even Parameters of 124568a in Subtrees 9b=xx of effK  
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In Subtree 9b=00, variables 2 and a are the only interacting variables, thus 2a are 

unfolded by creating subtrees 2a=xx of 9b=00. Subtree 9b=01 has four interacting 

variables 245a. The two most interacting variables of 9b=01 are unfolded first, thus 

subtrees 2a=xx of 9b=01 are created. In every subtree, the integrated odd and even 

parameters of variables 45 are determined. The results are shown in Table 73 and Figure 

74. It is clear that except in subtree 2a=10, variables 45 are interacting in all subtrees of 

2a=xx of 9b=01. As a result, subtrees 45=xx are created in 2a=00,01,11 of 9b=01 and 

subtrees 5=x are created in 2a=10 of 9b=01.  

 

 

Table 73   
Integrated Odd and Even Parameters of 45 in Subtrees 2a=xx of 9b=01 of effK  

 
Odd Parameters 

Variable 2a=00 2a=01 2a=10 2a=11 
4 25.158 21.583 29.948 26.143 
5 68.245 72.978 53.238 43.738 

Even Parameters 
Variable 2a=00 2a=01 2a=10 2a=11 

4 14.493 12.933 7.492 8.703 
5 -16.265 -9.728 19.563 9.883 
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(a) Variable 4 (b) Variable 5 
 

Figure 74. Integrated Odd and Even Parameters of 45 in Subtrees 2a=xx of 9b=01 of 

effK  

 
 

 
Subtree 9b=10 has variables 1245a as interacting variables. The two most 

interacting variables 25 are selected, and subtrees 25=xx of 9b=10 are created. Within 

every subtree of 25=xx, the integrated odd and even interactions of variables 14a are 

found. The results are shown in Table 74 and Figure 75. As a result, subtrees 1a=xx are 

created in 25=00 of 9b=10, subtrees 4=x are created in 25=01,10 of 9b=10, and subtrees 

a=x are created in 25=11 of 9b=10.  
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 Subtree 9b=11 is similar to subtree 9b=10, since it has variables 1245a as 

interacting. Since the values of the integrated even parameters of these variables are 

high, three variables, 125, are unfolded. Within every subtree of 125=xxx, the integrated 

odd and even interactions of variables 4a are found. The results are shown in Table 75 

and Figure 76. Subtrees 125=001,010,011,101,110 of 9b=11 have no interacting 

variables, and require no subtrees spanning. Subtrees 125=000,100,111 have one 

interacting variable, a, thus subtrees a=x of 125=000,100,111 of 9b=11 are created. The 

results of all performed experiments are shown in Appendix G. 

 
 

Table 74   
Integrated Odd and Even Parameters of 14a in Subtrees 25=xx of 9b=10 of effK  

 
Odd Parameters     

Variable 25=00 25=01 25=10 25=11 
1 53.623 41.865 40.370 17.445 
4 4.080 22.890 22.630 35.305 
a 8.945 11.340 9.763 7.600 

 
Even Parameters     

Variable 25=00 25=01 25=10 25=11 
1 10.068 -0.145 0.140 1.530 
4 -3.820 13.305 11.660 -2.370 
a -12.355 -5.065 -4.328 -9.990 
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(a) 25=00 

 
(b) 25=01 

 
(c) 25=10 

 
(d) 25=11 

 
Figure 75. Integrated Odd and Even Parameters of 14a in Subtrees 25=xx of 9b=01 of 

effK  

 
  

‐20

‐10

0

10

20

30

40

50

60

1 4 a

Odd Parameters Even Parameters

‐10

0

10

20

30

40

50

1 4 a

Odd Parameters Even Parameters

‐10

0

10

20

30

40

50

1 4 a

Odd Parameters Even Parameters

‐20

‐10

0

10

20

30

40

1 4 a

Odd Parameters Even Parameters



 

197 
 

 

Table 75   
Integrated Odd and Even Parameters of 4a in Subtrees 125=xxx of 9b=11 of effK  

 
Odd Parameters                                              125= 
Variable 000 001 010 011 100 101 110 111 

4 -4.320 36.865 36.568 42.778 9.558 43.338 41.515 39.513
a 13.818 18.380 17.425 17.738 7.818 21.128 19.740 10.463

Even Parameters                                             125= 
Variable 000 001 010 011 100 101 110 111 

4 -5.370 6.465 7.538 0.422 8.403 -0.728 -0.445 -0.188

a -12.833 -6.610 -4.530 -8.253 -11.718 -5.683 -6.275 -13.048
 
 
 
 

 
(a) Variable 4 

 

 
(b) Variable a 

Figure 76. Integrated Odd and Even Parameters of 4a in Subtrees 125=xxx of 
9b=11 of effK  

  

‐10

0

10

20

30

40

50

Odd Parameters Even Parameters

‐15

‐10

‐5

0

5

10

15

20

25

Odd Parameters Even Parameters



 

198 
 

 

VI.2.6.6 Projection of Subtrees and Results Generation 

The offset parameter of every subtree is found by averaging the offset determined by 

each end of the subtree using equation 45. The values of Error,1,1,0   in every subtree is 

found using equation 46, and are shown in Table 76. The resulting parameters of all 

subtrees are shown in Table 77. In total, 154 experiments were performed. The 

performance characteristic is projected in all subtrees, then the global model parameters 

are found. The highest forty parameters are shown in Table 78 and Figure 77. 

VI.2.6.7 Validation 

Since the MHIV method was compared earlier with FFDs, the target of this 

section is to only evaluate the projected results with respect to a validation set. In order 

to ensure that the validation set is as spread as possible in the domain of experiments, the 

validation set selected is a FFD set of sixteen experiments. The results of the validation 

set are presented in Appendix G. Figure 78 shows the errors of the projected effK . The 

RMSE was found as 24.4, which is around 3.67% of the projected range, and 2.87 times 

the threshold. The error ratio of RMSE to threshold is slightly higher in this example 

than with the other performance characteristics. This is because the threshold was 

selected slightly below the integrated even parameters of many variables, to limit the 

number of experiment.  
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Table 76   
Offset Errors in All Subtrees of effK  

 
Subtree 
9b1245a 

States 
00x0xx0 00x0xx1 00x1xx0 00x1xx1 01x0000 01x0010 01x0100

Error,1,1,0   46.755 30.505 34.330 15.105 37.570 -13.920 47.595 

Subtree 
9b1245a 

States 
01x0110 01x0001 01x0011 01x0101 01x0111 01x1001 01x1011

Error,1,1,0   2.840 15.580 -25.935 19.385 -10.005 -10.393 28.733 

Subtree 
9b1245a 

States 
01x1101 01x1111 01x1x00 01x1x10 1000x00 1000x01 1010x00

Error,1,1,0   -27.360 -7.220 -9.580 -6.600 3.762 -10.488 34.358 

Subtree 
9b1245a 

States 
1010x01 10x001x 10x011x 10x100x 10x110x 10x1x10 10x1x11

Error,1,1,0   11.883 9.547 36.158 9.100 32.420 24.388 4.407 

Subtree 
9b1245a 

States 
1100x00 1100x01 1100x1x 1101x0x 1101x1x 1110x00 1110x01

Error,1,1,0   17.993 -7.672 -5.713 -7.365 -11.278 42.600 19.165 

Subtree 
9b1245a 

States 
1110x1x 1111x0x 1111x1x 1111x1x

   

Error,1,1,0   -22.078 -22.368 25.260 -0.835 
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Table 77   
Parameters in All Subtrees of effK   

 
Parameter 

Index 
9b=00 
2a=xx 

9b=01,2a=00,01,11 
45=xx 

9b=01,2a=10 
5=x  

1 16.398 41.500 41.500 
2 
3 0.135 0.135 0.135 
4 20.470 29.948 
5 33.498 
6 8.125 12.458 12.458 
7 2.390 2.390 2.390 
8 -0.145 12.413 12.413 
9 
a 
b 
c 0.172 0.172 0.172 
d 2.063 2.063 2.063 
e 9.405 9.405 9.405 

Parameter 
Index 

9b=10,25=00 
1a=xx 

9b=10,25=01 
4=x 

9b=10,25=10 
4=x 

9b=10,25=11 
a=x 

1 0.000 41.865 40.370 17.445 
2 
3 0.135 0.135 0.135 0.135 
4 4.080 35.305 
5 
6 9.643 9.643 9.643 9.643 
7 2.390 2.390 2.390 2.390 
8 7.200 7.200 7.200 7.200 
9 
a 11.340 9.763 
b 
c 0.172 0.172 0.172 0.172 
d 2.063 2.063 2.063 2.063 
e 9.405 9.405 9.405 9.405 
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Table 77 Continued  

Parameter 
Index 

9b=11,125=000 
a=x 

9b=11,125=001 9b=11,125=010 9b=11,125=011

1 
2 
3 0.135 0.135 0.135 0.135 
4 -4.320 36.865 36.568 42.778 
5 
6 13.233 13.233 13.233 13.233 
7 2.390 2.390 2.390 2.390 
8 26.695 26.695 26.695 26.695 
9 
a 18.380 17.425 17.738 
b 
c 0.172 0.172 0.172 0.172 
d 2.063 2.063 2.063 2.063 
e 9.405 9.405 9.405 9.405 

Parameter 
Index 

9b=11,125=100 
a=x 

9b=11,125=101 9b=11,125=110 
9b=11,125=111 

a=x 
1 
2 
3 0.135 0.135 0.135 0.135 
4 9.558 43.338 41.515 39.513 
5 
6 13.233 13.233 13.233 13.233 
7 2.390 2.390 2.390 2.390 
8 26.695 26.695 26.695 26.695 
9 
a 21.128 19.740 
b 
c 0.172 0.172 0.172 0.172 
d 2.063 2.063 2.063 2.063 
e 9.405 9.405 9.405 9.405 
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Table 78   
Highest Forty Parameters of effK  

 
Parameter Index Parameter Value Parameter Index Parameter Value 

'5' 59.987 '1b' 6.6345 
'2' -57.84 '5b' -6.55 
'b' -57.507 '12' -6.4417 
'9' 55.426 '59b' 6.3531 
'1' -34.369 '129' -6.3493 
'4' 24.572 '15' 6.1055 
'25' 13.595 '159' 6.0202 
'59' 13.42 '19b' -5.8498 
'a' -12.138 '45' 5.6557 

'29' -11.709 '2b' 5.4537 
'8' -11.616 '24' -5.3857 
'6' 10.94 '89' -5.3829 
'e' -9.4888 '19' -5.3203 

'259' 9.1181 '9b' -5.1359 
'125b' -8.1978 '25b' -4.5785 
'1259b' -8.1743 '4b' -3.6028 

'8b' 7.9368 '245' 3.2864 
'125' 7.086 '459' 3.2113 
'1259' 6.9876 '249' -3.1485 
'29b' -6.924 'ab' 2.7747 
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Figure 77. Highest Forty Parameters of effK  

 

 

 
Figure 78. effK ’s Projection Error of the MHIV Method with Respect to the Sixteen 

Performed Experiments of the FFD  
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VII. CONCLUSIONS  

VII.1 Methods 

Four new methods to utilize the knowledge of variables’ directions of effect and 

monotonic behavior were developed in this dissertation. Three of the four developed 

methods succeeded in reducing the projection’s error from the most common existing 

methods, and generated a more accurate approximation of the model’s parameters. The 

fourth method is an improvement and expansion to an existing method, but failed to 

produce accurate results.   

The methods’ first few steps, which introduced the variables’ directional 

alignment to cotter’s definition of summed odd and even parameters, and utilized 

common system regularities, represent a significant contribution in determining 

variables’ strength of interactions.  

Three of the four methods achieved the method’s objectives of the dissertation, 

since they: 

 Utilized various degrees of knowledge of the directions of variables’ effects on the 

performance characteristic  

 Developed an efficient process of selection of experiments in a system with large 

number of interacting variables 

 Achieved adaptive modeling and identification of significant performance-relevant 

main effects and interactions with a quantified estimated response uncertainty 
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In summary, the dissertation introduced “Novel Evaluation Methods for 

Complex Systems via Adaptive Sequential Exploration of Variables Interactions”. The 

methods used in the application were coded to automate and simplify the experiments’ 

selection process. Since the two methods of MSIV and MHIV were mainly applied in 

the application, the findings of the two methods are summarized in the following 

sections. 

VII.1.1  MSIV Method Specific Findings 

 The application of the method on effK  demonstrated that, in comparison to the 128 

FFD, the MSIV method used 75% the number of experiments and resulted in 25% 

error reduction. The RMSE was found as 2.1% of the response range 

 The uncertainty found using the difference between the integrated even parameters 

of the first order effects and the summation of integrated odd parameters of the 

second order interactions was used to predict parameters accuracy and set a stop 

condition. This criterion was found to perform well if the monotonic behavior is 

significantly present.  

 If it is the interest of the experimenter to explore a certain variable, such as Variable 

6, it is possible to perform a FFD on the non-interacting variables’ subtree at the low 

state of the variable, such as 469be=10111, to unfold its interactions with non-

interacting variables.  
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VII.1.2  MHIV Method Specific Findings 

 The application of the method on RFS demonstrated that, in comparison to the 128 

FFD, the MHIV method used 101% the number of experiments, and resulted in 85% 

error reduction. The application of the method on effK used 55% the number of 

experiments, and resulted in a similar error to the 128 FFD. 

 The error of the projected response was found in the same order of magnitude as the 

integrated even parameters threshold.  

 Except for the PPF, the application of the method on all performance characteristics 

resulted in an RMSE that is lower than 4% of the response range.  

 The PPF example demonstrated how assuming highly non-monotonic variables as 

monotonic resulted in 30% error increase in comparison to a FFD. This poor 

performance was expected due to the invalidity of the method’s main assumption.  

 Since two nodes are performed in every subtree, the difference of the end nodes 

offsets, in the subtree, was used as an indication of the validity of assuming that 

interactions are negligible within the subtree. Ideally, if all interactions are indeed 

negligible, the two found values by each end are similar.   

 If it is the interest of the experimenter to explore a certain variable, such as Variable 

6, it is possible to use a different threshold for the variable’s integrated even 

parameters.  
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VII.1.3 General Findings 

 If a variable has confounded interactions, it is likely that they will be captured, since 

the other parent variables of the interactions are explored to an extent that they do 

not interact, thus unfolding the confounded interactions.  

 If a new variable, such as water boron concentration, is added to the set of variables 

to be evaluated, the variable is simply explored at the main tree level. It can be 

explored in a similar manner as if the variables were 15 instead of 14. Adding 

variables in the methods is easy, and does not affect the path of selected experiments 

as long as the threshold is kept the same. 

 The number of experiments needed was driven mainly by the strength of variables’ 

interactions. This is observed in Table 79 and Table 80. In addition, the variables’ 

monotonic behavior had a significant effect on the convergence of interactions 

exploration. 

 
 

Table 79   
Number of Performed Experiments for the Six Performance Characteristics 
 
Performance 
Characteristic effK  RFS d  FT  PPF effK  

No of Performed 
Experiments 

98 130 168 90 292 154 
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Table 80   
Number and Order of Parameters in the Highest Thirty Parameters of the Six 
Performance Characteristics  
 

Parameter Order effK  RFS d  FT  PPF effK  

1st  12 11 12 13 9 10 
2nd  13 15 16 14 16 10 
3rd  3 4 2 3 5 7 
4th  1 0 0 0 0 2 
5th  1 0 0 0 0 1 

 
 

The main features of the dissertation’s methods over FFD can be summarized as: 

 Monotonic behavior is a broader physical behavior than weak interaction. A 

system with no interactions is a special case of systems with monotonically 

behaving variables. 

 Monotonic behavior is a significantly present physical behavior. The behavior of 

weak interactions is not as significant.  

 It is easier for experts to judge the significance of monotonic behavior of 

variables, while it is not as easy to judge the significance of interactions. 

 The introduced methods enable the experimenter to determine the strength of 

variables’ interactions on a performance characteristic and choose an appropriate 

resolution. 

 The introduced methods bias the experiments toward important variables and 

interactions only.  

 The introduced methods enable the experimenter to unfold a certain interaction 

with a small number of experiments. 
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 The introduced methods do not bind by a number of experiments, thus enabling 

the experimenter to decide on the number of experiments to invest 

 The introduced methods overcome the limitation of resolution change of FFDs. 

 The introduced methods allow the addition of variables after the method 

application without the need to reevaluate the already evaluated variables and 

interactions. 

VII.2 Application 

In this section, the results of the application of the dissertation’s methods on the 

design of the SMR version of the advanced pressurized water reactor are analyzed. The 

findings are summarized as: 

 An approximation model can be setup from the determined parameters, and can be 

used to estimate any of the six performance characteristics of any design with 

variables falling in the defined ranges. The errors of the performance characteristics 

are known from the performed validation. If validation was not performed, the error 

order of magnitude can be estimated from the defined threshold or from the methods’ 

projection errors.  

 The mathematical model used assumes linear behavior of single variable. This means 

that if all variables are fixed and one variable is varied, the behavior is expected to be 

close to linear. The small magnitude of the first order parameters indicates that the 

error due to this assumption is not expected to be significant.  
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 The variables were found to be weakly interacting in their effects on effK and FT , 

moderately interacting on their effect on the RFS and d , and relatively strongly 

interacting on their effect on the PPF and effK . The list of the highest 100 

parameters of the six performance characteristics are shown in Appendix H. The 

percentage main effects of the fourteen variables on the six performance 

characteristics are shown in Table 81. The percentage main effect is calculated using  

     
)(

2
100(%)

minmax YY
ME i

i 



, 

(64) 

and is a measurement of the effect of the variable on the response in comparison to 

the span of the projected response. The variables are classified into levels of strength 

in Table 82. The same is applied to the strongest interactions, and is shown in Table 

83 and Table 84.  

 Variables 3,c and d, representing radial surrounding water, gap thickness and clad 

thickness, have weak to very weak effects on the performance characteristics, thus 

can be omitted from the list of variable in the optimization process. The weak effect 

of the radial surrounding water indicates that the radial surrounding water is 

sufficient to sustain good neutrons economy and small fluence on the vessel. 
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Table 81   
Heat Map of the Percentage Main Effects on the Six Performance Characteristics 
 
Parameter 

Index effK  RFS d  FT  PPF effK  

'0' 100.00 100.00 100.00 100.00 100.00 100.00 
'1' 8.25 1.69 -16.75 -1.10 7.17 -10.18 
'2' 8.66 3.13 -15.52 -1.51 8.35 -17.13 
'3' 0.00 0.38 -1.06 -0.39 -0.32 -0.06 
'4' 15.10 11.53 -4.86 -5.97 10.96 7.28 
'5' 0.00 0.00 0.01 0.01 0.00 17.76 
'6' 6.12 -5.24 -4.88 -6.37 3.31 3.24 
'7' -1.47 -0.44 1.44 -17.63 -0.20 -0.73 
'8' 9.17 2.38 -8.78 1.14 7.98 -3.44 
'9' 23.79 -29.95 -24.03 -33.23 12.08 16.41 
'a' -11.42 -4.28 2.71 -1.12 -6.70 -3.59 
'b' -8.76 28.51 8.12 22.45 -3.59 -17.03 
'c' -0.44 0.86 0.57 0.68 -0.22 -0.08 
'd' -1.19 0.97 2.08 2.32 -0.88 -0.64 
'e' -7.80 1.45 3.15 3.43 -6.07 -2.81 
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Table 82   
Strength of the Percentage Main Effects on the Six Performance Characteristics  
 

Index Variable effK RFS d  FT  PPF effK  

'1' No of Active Core Assemblies  M W S W M M 

'2' Active Fuel Height  M W S W M S 

'3' Core Radial Surrounding Water W 

'4' Enrichments  S M W M M M 

'5' Power  S 

'6' Moderator Density  M M W M W W 

'7' Fuel Temperature  W W S 

'8' No of Rods per Assembly M W M W M W 

'9' Rod Pitch  VS VS VS VS M S 

'a' No of DBAR per Assembly M W W W M W 

'b' IFAB and Fuel Pellet Diameter  M VS M VS W S 

'c' IFAB and Fuel Gap Thickness 

'd' IFAB and Fuel Clad Thickness  W W W 

'e' Discrete Burnable Ab. Area M W W W M W 
    

VS Very Strong(>20)  S    Strong (>15) 
M Moderate (>5)   
W Weak (>1)  Blank  Very Weak (<1)  
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Table 83   
Heat Map of the Most Important Percentage Interactions of the Six Performance 
Characteristics.  
 
Parameter 

Index effK  RFS d  FT  PPF effK  

'9b' 7.04 -9.52 2.42 -6.73 3.08 -1.52 
'2a' 0.00 -0.01 -0.01 0.01 -5.73 -0.42 
'18' -1.20 0.00 2.29 0.01 -4.65 0.00 
'8a' 0.00 0.00 -0.53 0.00 4.44 -0.03 
'79' 0.00 0.00 -0.01 4.05 0.10 0.01 
'25' 0.00 0.01 -0.01 -0.01 0.00 4.03 
'59' 0.00 0.00 -0.01 0.00 0.00 3.97 
'ae' -2.39 0.00 0.77 0.00 -3.80 -0.03 
'29' 0.00 -1.68 0.00 0.00 -1.86 -3.47 
'2e' -0.04 0.01 -0.01 0.00 -3.07 -0.02 
'2b' -0.02 1.66 1.33 0.01 3.00 1.61 
'7b' -0.20 0.00 0.01 -2.81 -0.12 -0.02 
'259' 0.00 -0.01 0.00 0.00 0.00 2.70 
'28' 0.00 0.01 0.76 0.01 2.55 -0.02 

'125b' 0.00 0.00 0.00 0.01 0.00 -2.43 
'1259b' 0.00 0.00 0.00 0.00 0.00 -2.42 

'49' 1.21 -2.40 0.76 1.16 1.66 0.43 
'4b' -1.79 2.36 -1.55 -1.07 -0.54 -1.07 
'8b' -1.00 1.23 1.72 -0.01 -0.82 2.35 
'14' 0.00 0.18 0.51 0.00 2.34 -0.20 
'ab' 2.34 -1.87 -1.38 -0.01 1.60 0.82 
'24' 0.00 0.57 0.02 0.00 2.28 -1.59 
'19' 0.00 -1.38 0.95 0.00 -2.18 -1.58 
'125' 0.00 0.00 0.00 0.01 0.00 2.10 
'18a' 0.00 0.00 -0.04 0.01 -2.08 0.00 

'1259' 0.00 0.00 0.00 0.00 0.00 2.07 
'29b' 0.00 -0.98 0.00 0.00 -0.40 -2.05 
'1b' -0.12 0.97 1.39 0.01 0.32 1.96 
'5b' 0.00 0.00 0.01 0.01 0.00 -1.94 
'12' 1.08 0.05 0.87 -0.01 0.99 -1.91 
'59b' 0.00 0.00 -0.01 0.00 0.00 1.88 
'129' 0.00 -0.04 0.00 0.00 -0.54 -1.88 
'15' 0.00 0.01 -0.01 -0.01 0.00 1.81 
'159' 0.00 0.00 0.00 0.00 0.00 1.78 
'19b' 0.00 -0.68 -0.56 0.00 0.25 -1.73 
'45' 0.00 0.01 -0.03 0.00 0.00 1.67 
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Table 83  Continued  

Parameter 
Index effK  RFS d  FT  PPF effK  

'9a' 0.00 1.65 -0.37 0.00 -0.34 -0.23 
'89' 0.00 -1.16 0.72 0.00 0.53 -1.59 
'189' 0.00 0.00 -0.11 0.00 -1.53 0.01 
'6b' 0.42 -0.93 1.52 -0.89 1.04 -0.56 
'be' 0.49 0.00 -1.46 0.67 -0.26 -0.02 

'169' 0.00 0.18 0.00 0.00 -1.37 -0.01 
'69' -1.37 0.93 0.00 0.56 -0.52 0.16 
'25b' 0.00 0.01 -0.01 0.00 0.00 -1.36 
'7e' -0.01 0.00 0.01 -0.42 1.33 -0.01 
'46' 0.16 -0.37 0.02 0.00 1.31 0.01 
'2ae' 0.00 0.00 0.00 0.01 -1.29 -0.01 
'1ae' 0.05 0.00 -0.22 0.01 -1.26 -0.01 
'68' 0.00 -0.01 0.34 0.00 1.26 0.00 
'7d' 0.00 -0.01 0.01 -0.24 1.26 -0.01 
'8e' 0.71 0.00 -0.53 0.00 1.24 0.00 
'4a' 0.00 -0.01 -0.22 0.00 1.21 0.10 
'16' 0.00 -0.18 0.86 0.00 -1.16 0.00 
'7bc' 0.00 0.00 0.01 0.00 -1.15 0.00 
'28b' 0.00 0.01 0.03 0.00 -1.14 0.00 
'9ab' 0.00 0.87 0.35 0.00 -1.14 0.04 
'28a' 0.00 0.00 0.00 0.01 1.12 -0.01 
'18b' 0.09 0.00 -0.13 0.00 1.11 0.00 
'1d' 0.01 0.07 -0.01 0.00 -1.09 0.00 
'9e' 1.03 0.00 0.00 -0.93 0.63 0.01 
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Table 84   
Strength of the Most Important Percentage Interactions of the Six Performance 
Characteristics  
 
Parameter 

Index effK  RFS d  FT  PPF effK  

'9b' M M W M W W 
'2a' M 
'18' W W W 
'8a' W 
'79' W 
'25' W 
'59' W 
'ae' W W 
'29' W W W 
'2e' W 
'2b' W W W W 
'7b' W 
'259' W 
'28' W 

'125b' W 
'1259b' W 

'49' W W W W 
'4b' W W W W W 
'8b' W W W W 
'14' W 
'ab' W W W W 
'24' W W 
'19' W W W 
'125' W 
'18a' W 

'1259' W 
'29b' W 
'1b' W W 
'5b' W 
'12' W W 
'59b' W 
'129' W 
'15' W 
'159' W 
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Table 84 Continued 
  
Parameter 

Index effK  RFS d  FT  PPF effK  

'19b' W 
'45' W 
'9a' W 
'89' W W 
'189' W 
'6b' W W 
'be' W 

'169' W 
'69' W 
'25b' W 
'7e' W 
'46' W 
'2ae' W 
'1ae' W 
'68' W 
'7d' W 
'8e' W 
'4a' W 
'16' W 
'7bc' W 
'28b' W 
'9ab' W 
'28a' W 
'18b' W 
'1d' W 
'9e' W 

 

 

 Since the current system has fourteen variables and six performance characteristics, 

it is currently underdetermined, and additional performance characteristics can be 

introduced. However, three of the fourteen variables were found unimportant to any 
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of the six performance characteristics. As a result, the current actual degree of 

freedom of the system is 14-6-3=5. The dependence of the performance 

characteristics on the variables can be summarized as: 

      ),,,9,8,6,4,2,1( ebafKeff    (65) 

      ),9,6,4( bfRFS    (66) 

      ),9,8,2,1( bfd    (67) 

      ),9,7,6,4( bfFT    (68) 

      ),,9,8,4,2,1( eafPFF    (69) 

      ),9,5,4,2,1( bfKeff    (70) 

 As the size of the SMR is varied, the signs of the effects of variables on the 

performance characteristics establish a balance. For example, effK  response to 

variables 1 and 2 can be balanced by variables b and a. This balance enables the 

designer to evaluate and mitigate the consequences of changing a variable by 

glancing at the table. 

 Except for effK , variables 1 and 2, representing the number of fuel assemblies and 

active fuel height, have almost identical main effects on all performance 

characteristics. This behavior enables the designer to increase either variable and 

balance it by reducing the other. This, however, is not the case of their interactions.  

 Variable 9, representing the rod pitch, is the most important variable that 

significantly affects all the considered performance characteristics. In order to 

change its effect, it is possible to change b, representing pellet diameter, since it will 

increase the effect of 9 in three performance characteristics while reducing the effect 
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of 9 in the other three. It is also possible to change the effect of 9 on effK  by using 

59, on FT  by using 79, or other interactions as shown in Table 83.  

 Variable b is the second most important variable. Its effect is moderately coupled 

with 9 and weakly coupled with other variables.  

 Interaction 9b, representing rod pitch and pellet diameter, is the most important 

interaction. This is consistent with the common design consideration of pitch and 

diameter ratio. The main effects and interaction of pitch and diameter indicate that 

the reactor design domain fall completely in the under-moderation region, since both 

variables’ effects are monotonically positive and negative consequently.  

  effK  dependence on 9 and b is a strong as its dependence on the mass of fuel in the 

core. This is probably due to the effect of these variable on the spectrum, thus on the 

fissile materials conversion of the reactor. 
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VIII. FUTURE WORK 

Various topics for methods performance improvement can be investigated. These 

can be summarized as: 

 Introduction of variables’ first order nonlinearity: A mean to detect and adaptively 

introduce nonlinearity need to be developed. This addition will improve the methods’ 

projection accuracies and expand its domain of applicability. 

 Expanding the methods to enable evaluating combined performance characteristics: In 

this dissertation, each performance characteristic was handled as a separate problem. 

However, extracting more than one performance characteristic from the same 

experiment might be necessary, and an approach to handle such a scenario needs to be 

developed.  

 Quantification of the probability of variables’ monotonic behavior: A quantitative 

representation of the variables’ monotonic behavior could be introduced to enable 

belief dependent categorization of projected results. A survey of the means to quantify 

the variables’ monotonic behavior is available in Appendix I.  

As for the application, the future work can be summarized as: 

 Application of additional performance characteristics, thus reducing the degree of 

freedom of the system and narrowing down the design domain into a smaller domain.  

 Application of additional variables to include water boron concentration, fuel 

composition and other design variables. This will not require reevaluating the 

variables and interactions that has already been evaluated. 
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APPENDIX A 

1. Example Graphical Representation of Confounding Effects  

This section explains how the strength of confounding effects can hide active 

variables if they are group screened. Figure 79 shows surfaces generated from two 

variables, 1x , 2x . If group screening is applied, it is probable that the end states of the 

surface will be explored first. These are 11,0021 xx . The surface of Figure 79 (a) has a 

very small degree of interaction’s nonlinearity. The surface of Figure 79 (b) has slightly 

stronger interaction’s nonlinearity. In both cases, the importance of both variables is 

detectable. The surfaces of Figure 79 (c) and (d) demonstrate strong nonlinearity. The 

surfaces hide the importance of the two variables due to the nonlinearity in variables or 

due to their interaction. Case (c) is very unlikely in physical systems. It indicates a 

confounding effect that is as significant as the main effect and that opposes the direction 

of both main effects. This behavior is not consistent with the ASIS and hierarchy 

behaviors observed in physical systems in [36]. Case (d) is usually caused by composite 

variables or responses. This means that the nonlinearity is due to 1x being composed of 

two or more variables 1,1x and 2,1x that are hidden within this variable. These variables 

interact in a manner to cause the change of direction. This nonlinearity can also be due to 

the response, y , being composed of two or more responses, 1,1y and 2,1y , that are linked 

to 1x  in a semi-linear manner. The combination of the two responses in one response can 

cause the response nonlinearity. This explains the need to decompose variables, and 
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sometimes responses, to their basic components before evaluation to reduce nonlinearity. 

For example, instead of using the fuel cell pitch to fuel pellet diameter ratio (p/d) in a 

reactor design, the pitch and the diameter can be considered as two separate variables. It 

is also possible to use the p/d ratio along with the diameter or the pitch as an additional 

variable. The addition of a decomposition variable is expensive, since adding one 

variable to N adds 2N variables’ combinations. Instead of variables’ decomposition, case 

(d) nonlinearity can also be expressed by adding a square term to the potential nonlinear 

variables in the approximation model.  

In regression analysis, the nonlinearity problem is usually handled through 

stepwise selection. Variables sometimes appear like noise till other confounding variables 

or interactions are introduced causing the original variable behavior to develop a pattern, 

and its significance to be revealed. This is applied through testing whether the 

approximation model better explains the response if more variables or interactions are 

added [27].   
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(a) Very Low Interaction Nonlinearity        (b) Low Interaction Nonlinearity 

 

     
         (c) High Interaction Nonlinearity                (d) High Single Variable Nonlinearity 

Figure 79. Scenarios of Two Confounding Variables  
 
 
 

2. Example Application of PB  

In this example, the model developed by Dittus-Boelter for determining the heat 

transfer coefficient in heated or cooled pipes is analyzed. This is assuming that the model 

is unknown for demonstration purposes. The most common approximation metric model 

used is [89, 90]:  

333.08.0

023.0 








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This model can be used for turbulent flow with a Reynolds number: 


VD

Re  
(72) 

exceeding 10,000. The model shows that six variables affect the heat transfer coefficient 

h. As a result, a full factorial set of 26 experiments are needed to determine all main 

effects and interactions. In order to reduce the number of variables to a small number, the 

parameters related to water are combined. Water is assumed to have two states of 40C 

and 90C at 1 MPa. The properties of water at the two states are shown in Table 85. Due 

to the integration of water variables in two temperature states, only three variables’ 

effects are considered on the heat transfer coefficient. The ranges of the three variables 

are shown in Table 86. The full factorial and Res III PB designs to screen the variables 

are shown in Table 87 and Table 88 along with the results for every combination. The 

full factorial and Res III PB designs’ parameters are shown in Table 89. PB is found to 

severely underestimate the temperature especially when the compared to the diameter. 

This is due to the fact this Res III PB design confounds second order interactions in main 

effects. The confounding of the velocity and diameter interaction in the temperature 

causes the temperature first order parameters to appear as: 

1033.1032.30665.316  DVTT  

It is, thus, shown in this example that confounded effects can cause a significant error in 

the experimenter evaluation of variables. As the resolution increases, this error decreases, 

since higher order interactions are then confound in the main effects.  
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Table 85   
Water’s Relevant Properties at the Two States of the PB Example  

 

State 
Temperature T 

(C) 
Density 

(kg/m3) 

Viscosity 
  

(Pa.s) 

Specific 
Heat Cp 
(J/Kg.K) 

Fluid  
Conductivity k 

(W/m.K) 
-1 40 992.6 6.53E-04 4071 0.631 
1 90 965.7 3.15E-04 3819 0.676 

 
 
 

Table 86   
Variables’ States of the PB Example 

 

State 
Temperature T Mean Velocity V Pipe Diameter D 

(Cel.) (m/s) (m) 
1 90 1 1 
-1 40 0.1 0.1 

 
 
 

Table 87   
Results of the Full Factorial Design’s Application to the PB Example 

 

Exp. 
Index 

Temp. 
T  

Mean 
Velocity 

V 

Pipe 
Diameter 

D 

Temp.
T 

Mean 
Velocity 

V 

Pipe 
Diameter 

D 

Heat 
Transfer 
Coeff. 

 h 
State State State (Cel.) (m/s) (m) (W/m2.K) 

1 -1 -1 -1 40 0.1 0.1 519 
2 -1 -1 1 40 0.1 1 327 
3 -1 1 -1 40 1 0.1 3275 
4 -1 1 1 40 1 1 2066 
5 1 -1 -1 90 0.1 0.1 731 
6 1 -1 1 90 0.1 1 461 
7 1 1 -1 90 1 0.1 4615 
8 1 1 1 90 1 1 2912 
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Table 88   
Results of the Res III PB’s Application to the PB Example 

 

Exp. 
Index 

 

Temp. 
T  

Mean 
Velocity 

V 

Pipe 
Diameter 

D 

Temp 
 T 

Mean 
Velocity 

V 

Pipe 
Diameter 

D 

Heat 
Transfer 
Coeff. 

 h 
State State State (Cel.) (m/s) (m) (W/m2.K) 

1 1 1 1 90 1 1 2912. 
2 1 -1 -1 90 0.1 0.1 731 
3 -1 1 -1 40 1 0.1 3275 
4 -1 -1 1 40 0.1 1 327 

 
 
 

Table 89   
PB and Full Factorial Design’s Parameters of the PB Example 

 

Parameter PB Full Factorial 

Offset 1811 1863.71 
Temp 10 316 

Velocity 1282.13 1353 
Diameter -191 -421 

Temp x Velocity --- 230 
Temp x Diameter --- -71 

Velocity x Diameter --- -306 
Temp x Velocity x Diameter --- -52 
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APPENDIX B 

1. Conversion Between the Design Matrix Domains of -1,1 and 0,1: 

This section explains the relationship between the two common domains of the 

design matrix using a three variables’ example. The conversion from the 0,1 domain 

parameters ( 0,1 s) to the -1,1 domain parameters ( 1,1  s) is found using: 


































125.00000000

125.025.0000000

125.0025.000000

125.00025.00000

125.025.025.005.0000

125.025.0025.005.000

125.0025.025.0005.00

125.025.025.025.05.05.05.01

0,1
1

1,1 XX  
(73) 

 If the approach of [23] is used to find the main effect for any variable ix  in the 0,1, 

domain of three variables, then: 

   

   





















1,0,0,1,0,1,0,1,0,0,1,1,

0,0,0,0,0,1,1,1,0,1,1,1,

8

1
2)(

kjikjikjikji

kjikjikjikji

i

xxxxxxxxxxxx

xxxxxxxxxxxx

ExpxME  
(74) 

Exp is defined here as the experiment performed at the three variables’ states kji xxx . 

Each of the terms in the round brackets present a fixed state of the variables, jk, at 

different i states. This means that the main effect is an average effect of changing i at 

every state of j and k. Using the three variables’ model in the 0,1 domain: 
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kjiijkkjjk

kiikjiijkkjjiikji

xxxxx

xxxxxxxxxxy

0,1,0,1,

0,1,10,1,,0,1,0,1,0,1,0,1,0,, ),,(








 

(75) 

the main effect, which is in the -1,1 domain, is found as  

 
 
    
    
    





 
















































0,1,0,1,0,1,0,1,

0,1,0,1,00,1,0,1,0,1,0,1,0

0,1,0,1,00,1,0,1,0,1,0,1,0

0,1,00,1,0,1,0

0,1,0,1,0,1,0,1,0

0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0

8

1

4

1

4

1

2

1
2

8

1
22)(

ijkikiji

kikki

jijji

i

jkkj

ijkjkikijkji

iixME













 

(76) 

This indicates that the main effect for any variable is a combination of all variable’s 

parameters in the 0,1 domain. Each order has half the weight of the lower order. Thus, the 

main effects are biased towards the lower orders of the 0,1 domain parameters by 

definition. The second order interaction in the -1,1 domain is defined as: 

   

   





















0,0,0,0,0,1,0,1,0,0,1,1,

1,0,0,1,0,1,1,1,0,1,1,1,

8

1
2)(

kjikjikjikji

kjikjikjikji

ji

xxxxxxxxxxxx

xxxxxxxxxxxx

ExpxxIE  
(77) 

Substituting the parameters’ model: 

 
 
    
    
    

  



 
















































0,1,0,1,0,1,0,1,

0,1,00,1,0,1,0

0,1,0,1,00,1,0,1,0,1,0,1,0

0,1,0,1,00,1,0,1,0,1,0,1,0

0,1,0,1,0,1,0,1,0

0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0

8

1

4

1
22

8

1
2

8

1
2)(

ijkijijkij

i

jijji

kikki

jkkj

ijkjkikijkji

ji xxIE












 
(78) 
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Thus, the interaction is a portion of the i and j main affects’ parameters with the same 

weights as the main effects’ parameters. The three variables’ interaction is defined as: 

   

   





















0,0,1,0,0,0,0,1,0,0,1,1,

1,0,0,1,0,1,1,1,0,1,1,1,

8

1
2)(

kjikjikjikji

kjikjikjikji

kji

xxxxxxxxxxxx

xxxxxxxxxxxx

ExpxxxIE  
(79) 

Substituting the parameters’ model:     

 
 
    
    
    

0,1,

0,1,0,1,00,1,0

0,1,0,1,00,1,0,1,0,1,0,1,0

0,1,0,1,00,1,0,1,0,1,0,1,0

0,1,0,1,0,1,0,1,0

0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0

8

1
2

8

1
2)(

ijk

i

jijji

kikki

jkkj

ijkjkikijkji

kji xxxIE




























































 

(80) 

Table 90 shows all main effects and interactions of the three variables. For every 

variables’ combination, the parameters’ contribution, in the 0,1 domain, vary from offset 

contribution to all parameters contribution as shown in Table 91. As the order of the 

parameter in the 0,1 domain increases, its importance decreases. The weight of the 

parameters can be also found using the variables’ middle point in the 0,1 domain: 

0,1,0,1,0,1,

0,1,0,1,0,1,0,1,0,1,0

125.025.025.0

25.05.05.05.0 =0.5)y(0.5,0.5,

ijkjkik

ijkji








 

(81) 
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Table 90   
Definition of Main Effects and Interactions in the 0,1 Domain of the Design Matrix  
 

Index Effect 0,1 Parameters 

1 )( 1xME  




  0,1,1230,1,130,1,120,1,1 8

1

4

1

4

1

2

1
2   

2 )( 2xME  




  0,1,1230,1,230,1,120,1,2 8

1

4

1

4

1

2

1
2   

3 )( 3xME  




  0,1,1230,1,230,1,130,1,3 8

1

4

1

4

1

2

1
2 

4 )( 21xxIE  




  0,1,1230,1,12 8

1

4

1
2   

5 )( 31xxIE  




  0,1,1230,1,13 8

1

4

1
2   

6 )( 32xxIE  




  0,1,1230,1,23 8

1

4

1
2   

7 )( 321 xxxIE  






0,1,1238

1
2   
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Table 91   
Response of a Three Variables’ Example in Parameters of the 0,1 Domain  
 

Index x3 x2 x1 Y 

1 0 0 0 0,1,0  

2 0 0 1 0,1,10,1,0    

3 0 1 0 0,1,20,1,0    

4 0 1 1 0,1,120,1,20,1,10,1,0    

5 1 0 0 0,1,30,1,0    

6 1 0 1 0,1,130,1,30,1,10,1,0    

7 1 1 0 0,1,230,1,30,1,20,1,0    

8 1 1 1 0,1,1230,1,230,1,130,1,120,1,30,1,20,1,10,1,0  

 

2. Response Variance Propagation to Parameters Variance 

The target of this section is to determine the effects of response values’ 

uncertainty on the calculated parameters’ uncertainty. The variance of the parameters is 

equal to: 

 TXYX 11 )var()var(   (82) 

1X and  TX 1 can be found from the design matrix. The matrix of var(Y) is the only 

unknown that is needed to find )var( . It is defined as: 





















)var(...),(),(

),(

),(...),()var(

)var(

21

12

1211

nnn

n

yyyCovyyCov

yyCov

yyCovyyCovy

Y



 

(83) 

In a two variables scenario, x1x2 where N=2 and n=4, the response variance is: 
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



















)var(),(),(),(

),()var(),(),(

),(),()var(),(

),(),(),()var(

)var(

4342414

4332313

4232212

4131211

yyyCovyyCovyyCov

yyCovyyyCovyyCov

yyCovyyCovyyyCov

yyCovyyCovyyCovy

Y  
(84) 

The covariance between the experiments is not zero if the variables are assumed 

monotonic. In monotonic variables, the result of one experiment will provide information 

on other experiments. The two variables’ design matrix of the 0,1 domain is defined as:  





















1111

0101

0011

0001

0,1X   , 

and its inverse is: 

(85) 





















1-1-11

0101-

0011-

0001

1
0,1X ,  (86) 

thus: 

 




















1000

-1100

-1010

1-1-11

1
0,1

T
X  

(87) 
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Substituting these matrices in the variance propagation equation for the 0,1 domain: 

 TXYX 1
0,1

1
0,10,1 )var()var(   

(88) 





















































































)var(

),(

),(

),(

),(

)var(

),(

),(

),(

),(

)var(

),(

),(

),(

),(

)var(

),(

),(

)var(

),(

),(

),(

),(

)var(

),(

),(

),(

),(

)var(

),(

),(

)var(

),(),(),()var(

)var(

4

43

42

41

34

3

32

31

24

23

2

21

14

13

12

1

43

41

3

31

23

21

13

1

42

41

32

31

2

21

12

1

4131211

1
0,1

y

yyCov

yyCov

yyCov

yyCov

y

yyCov

yyCov

yyCov

yyCov

y

yyCov

yyCov

yyCov

yyCov

y

yyCov

yyCov

y

yyCov

yyCov

yyCov

yyCov

y

yyCov

yyCov

yyCov

yyCov

y

yyCov

yyCov

y

yyCovyyCovyyCovy

yX  
(89) 
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









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
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






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
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






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





































































































)var(

),(

),(

),(

),(

)var(

),(

),(

),(

),(

)var(

),(

),(

),(

),(

)var(

),(

)var(

),(

),(

),(

),(

),(

)var(

),(

),(

)var(

),(

),(

),(

),(

)var(

),(

),(

),(

)var(

),(

),(

)var(

),(

),(

),(

),(

)var(

)var(

),(

),(

)var(

),(

),(

),(

)var(

),(

)var(

),(

),(

),(

),(

)var(

),(

),(

)var(

),(

),(

),(

)var(

)var(

),(

),(

)var(

),(

)var(

),(

),(

),(

)var(

),(

)var(
),(

)var(
)var(

)var(

4

43

42

41

34

3

32

31

24

23

2

21

14

13

12

1

34

3

32

31

14

13

12

1

24

23

2

21

14

13

12

1

14

13

12

1

43

41

3

31

23

21

13

1

3

31

13

1

23

21

13

1

13

1

42

41

32

31

2

21

12

1

32

31

12

1

2

21

12

1

12

1

41

31

21

1

31

1
21

1
1

0,1

y

yyCov

yyCov

yyCov

yyCov

y

yyCov

yyCov

yyCov

yyCov

y

yyCov

yyCov

yyCov

yyCov

y

yyCov

y

yyCov

yyCov

yyCov

yyCov

yyCov

y

yyCov

yyCov

y

yyCov

yyCov

yyCov

yyCov

y

yyCov

yyCov

yyCov

y

yyCov

yyCov

y

yyCov

yyCov

yyCov

yyCov

y

y

yyCov

yyCov

y

yyCov

yyCov

yyCov

y

yyCov

y

yyCov

yyCov

yyCov

yyCov

y

yyCov

yyCov

y

yyCov

yyCov

yyCov

y

y

yyCov

yyCov

y

yyCov

y

yyCov

yyCov

yyCov

y

yyCov

y
yyCov

y
y



 

(90) 
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In the 1,-1 domain, the variance propagation equation is defined as: 

 TXYX 1
1,1

1
1,11,1 )var()var( 



   

(91) 



























































4

1
    

4

1
    

4

1
    

4

1
    

4

1
-   

4

1
    

4

1
-   

4

1
    

4

1
-   

4

1
-   

4

1
    

4

1
    

4

1
    

4

1
-   

4

1
-   

4

1
    

)var(

4

1
    

4

1
-   

4

1
-   

4

1
    

4

1
    

4

1
    

4

1
-   

4

1
-   

4

1
    

4

1
-   

4

1
    

4

1
-   

4

1
    

4

1
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Multiplying the first two matrices then multiplying the result by the third matrix results 

in:  
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This result can also be found if the conversion between the two domains is used: 
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1,11,1  XXYXXXYX

I


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 


 (95) 

 TXXXX 0,1
1

1,10,10,1
1

1,11,1 )var()var( 



    (96) 

The conclusion from equations 90 and 94 is that in the 0,1 domain, the 

parameters’ variance increase as the parameters’ interaction order increase. However, in 

the -1,1 domain, the parameters’ variances are of the same order of magnitude. This is 

due to the reducing transformation weight of high order interactions’ parameters from the 

0,1 domain to the -1,1 domain, as was explained in the previous section. As the 

parameters’ interaction order increases in the -1,1 domain, the variance increase of the 

0,1 domain is balanced by the transformation weight reduction. 
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APPENDIX C 

1. Derivation of the Mathematical Representation of Monotonic Variables 

Behavior in the -1,1 Design Domain 

The mathematical representation of positive monotonic variables in the 0,1 

domain requires that the response increase as more variables are set to the high state, 

thus: 
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(97) 

If every inequality is written separately and simplified then: 
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(98) 

where ijkl represent every possibility of variables’ indices. The right most inequality  

1,0,n >0 means that all first order terms must be positive if a monotonic behavior is 

present. Starting with the inequality to the left, the parameters of the inequality can be 

expanded to:  
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This can be rearranged to:  
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



































































































ikl

ikl

ijl

ijl

ijk

ijk

iklijlil

iklijlil

iklijkik

iklijkik

ijlijkij

ijlijkij

ikl

ijlijkilikiji

ikl

ijlijkilikiji






























 

(100) 
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Each of the rows represents half a main effect or interaction as was explained in the 

previous Appendix. The inequality can be abbreviated then rewritten as 

  0.....),,(),,(),,(...),(),(),()(5.0  lkiIljiIkjiIliIkiIjiIiM , where ijkl 

represent every possibility of variables’ indices. This can be expressed as 

  0,..)()(  iIiM . The second monotonic behavior inequality of the inequalities 98 

requires that  

0
....0,1,0,1,

0,1,0,1,
















jkljl

jkj




 

(101) 

This can be expanded then rearranged to:  

0

125.0

125.0

125.025.0

125.025.0

125.025.0

125.025.0

....125.025.025.05.0

125.025.025.05.0

0,1,

0,1,

0,1,0,1,

0,1,0,1,

0,1,0,1,

0,1,0,1,

0,1,0,1,0,1,0,1,

0,1,0,1,0,1,0,1,

















































jkl

jkl

jkljl

jkljl

jkljk

jkljk

jkljljkj

jkljljkj

















 
(102) 

Each of the rows represents half a main effect or interaction and can be abbreviated  

as   0...),,(...),,(),,(...),(),(),()(5.0  lkjIljiIkjiIljIkjIjiIjM ,  

where ijkl represent every possibility of variables’ indices. This can be expressed as 

  0,...),(,...)()(   jiIjIjM . This is a similar inequality to inequality 100. 

However, it is for any variable j after dropping all i terms by setting its state to 0 in the 
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0,1 domain or -1 in the -1,1 domain. The inequalities will drop one variable after the 

other till the last one. Combining all the findings in the -1,1 domain: 

....

0
......

...

0
......

...

0
......

...

0
......

...

1,,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,

11,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,





































































lkjijkliklijlijk

ilikiji

kjijkliklijlijk

ilikiji

jijkliklijlijk

ilikiji

ijkliklijlijk

ilikiji

















 (103) 

This can be generalized as: 

0...
, , ,1

1,1,
, ,1

1,1,
,1

1,1,1,1,     
  


 






N

ilkl

N

ikjk

N

ijj
ijkljkl

N

ikjk

N

ijj
ijkjk

N

ijj
ijji sss   

(104) 

for all combinations of ,...,, jkljkj sss , where ,....,, lkjjklkjjkjj xxxsxxsxs  . 

Accordingly, inequality 104 is the mathematical representation of the monotonic 

behavior condition for any variable i in the -1,1 domain. 
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APPENDIX D 

1. Example of Parameters Domain Conversion to Cotter’s Integrated Parameters  

This section explains the conversion of the -1,1 domain parameters to the 

integrated parameters’ domain, then determines the new domain’s design matrix. This is 

demonstrated through a four variables’ example. The conversion matrix C between the 

parameters’ domain,  , and the integrated parameters’ domain,  , for this example is a 

combination of two conversion matrices, one for the integrated odd parameters and 

another for the integrated even parameters. The  domain parameters’ vectors for four 

variables are defined as: 







































 

 

 

 

Oijk...,

Oijk,

Oij,

,

,0




















Oi

O

Odd , 







































Eijk...,

Eijk,

Eij,

,

,0

 

 




















Ei

E

Even ,   
(105, 106) 

The conversion matrices for the integrated odd and even parameters are based on: 

...
1

1,1,21,1,,  




u

i
RROR   

(107) 

.... 
1

1,1,3
1

1,1,1,  







w

k
R

v

j
RER  , 

(108) 
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where R is an interaction order, and u, v and w are the number of interactions containing 

the R interaction of the order R+2, R+1, and R+3 consequently. Thus, the conversion 

matrices for the integrated odd parameters and the integrated even parameters are: 



























































1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0

0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0

0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0

0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0

1   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0

1   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0

1   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0

1   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0

1   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0

1   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0

0   1   1   1   0   0   0   0   0   0   0   1   0   0   0   0

0   1   1   0   1   0   0   0   0   0   0   0   1   0   0   0

0   1   0  1   1   0   0   0   0   0   0   0   0   1   0   0

0   0   1   1   1   0   0   0   0   0   0   0   0   0   1  0

1   1   1   1   1   1   1  1   1   1   1   1    1   1   1   1

oddC

 

(109) 
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

























































0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

0   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0

0   1   0   1   0   0   0   0   0   0   0   0   0   0   0   0

0   1   0   0   1   0   0   0   0   0   0   0   0   0   0   0

0   0   1   1   0   0   0   0   0   0   0   0   0   0   0   0

0   0   1   0   1   0   0   0   0   0   0   0   0   0   0   0

0   0   0   1   1   0   0   0   0   0   0   0   0   0   0   0

1   0   0   0   0   1    1   0   1   0   0   0   0   0   0   0

1   0   0   0   0   1   0   1   0   1   0   0   0   0   0   0

1   0   0   0   0   0   1   1   0  0  1  0   0   0   0   0

1   0   0   0   0   0   0   0   1   1   1  0   0   0   0   0

1   1- 1-  1- 1- 1  1   1   1   1   1   1-1-1-1-1

EvenC

 

(110) 

The matrices of OddC  and EvenC are combined in one matrix C . However, n/2 of the rows 

of C are dependent, and are eliminated. The resulting combined conversion matrix is: 
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

























































0   0   1   1   0   0   0   0   0   0   0   0   0   0   0   0

1   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0

0   0   1   0   1   0   0   0   0   0   0   0   0   0   0   0

1   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0

0   0   0   1   1   0   0   0   0   0   0   0   0   0   0   0

1   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0

1   0   0   0   0   1   1   0   1   0   0   0   0   0   0   0

0   1   1   1   0   0   0   0   0   0   0   1   0   0   0   0

1   0   0   0   0   1   0   1   0   1   0   0   0   0   0   0

0   1   1   0   1   0   0   0   0   0   0   0   1   0   0   0

1   0   0   0   0   0   1   1   0   0   1   0   0   0   0   0

0   1   0   1   1   0   0   0   0   0   0   0   0   1   0   0

1   0   0   0   0   0   0   0   1   1   1   0   0   0   0   0

0   0   1   1   1   0   0   0   0   0   0   0   0   0  1   0

1   1- 1- 1- 1- 1   1   1   1   11  1- 1- 1-  1-  1

1  1   1   1   1   1   1   1   1   1   1  1   1   1   1   1

C

 

(111) 

and the associated   vector is:  
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
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
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






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









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






















E

O

E

O

E

O

O

,14

,14

,13

,13

,12

,12

E4,

,4

E3,

O3,

E2,

O2,

E1,

O1,

E0,

O0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 




















 

(112) 

The integrated odd and even parameters are found using:  

  YXCXCXY
111     (113) 

The matrix   11 XC  can be found, since X  and C  are already known. Substituting 

  11 XC in equation 113: 
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Y



























































1/8   1/8-   0      0      0     0    1/8-  1/8   1/8-  1/8     0     0      0     0    1/8    1/8-

1/8   1/8-   0      0      0     0    1/8   1/8-  1/8-  1/8     0     0      0     0    1/8-  1/8  

1/8     0    1/8-   0      0    1/8-  0     1/8    1/8-   0     1/8    0      0    1/8     0     1/8-

1/8     0    1/8-   0      0     1/8   0     1/8-  1/8-   0     1/8    0      0    1/8-   0     1/8  

1/8     0      0     1/8- 1/8-   0     0     1/8    1/8-   0      0    1/8    1/8   0      0     1/8-

1/8     0      0     1/8   1/8-   0     0     1/8-  1/8-   0      0    1/8-  1/8   0      0     1/8  

1/4   1/4-   0      0      0      0      0      0      0     0      0     0      0     0    1/4-  1/4  

1/4   1/4-   0      0      0      0      0      0      0     0      0     0      0     0    1/4    1/4-

1/4     0     1/4-  0      0      0      0      0      0     0     0      0      0   1/4-   0     1/4  

1/4     0     1/4-  0      0      0      0      0      0     0     0      0      0   1/4     0     1/4-

1/4     0      0      0    1/4-   0      0      0       0      0     0    1/4-   0     0      0     1/4  

1/4     0      0      0    1/4-   0      0      0       0      0     0    1/4     0     0      0     1/4-

1/4     0      0      0     0      0      0    1/4-   1/4-   0      0     0      0     0      0    1/4  

1/4     0      0      0     0      0      0    1/4     1/4-   0      0     0      0     0      0   1/4-

   0      0      0      0     0     0      0      0       0      0      0     0      0     0      0     1   

1      0      0      0      0     0      0      0       0      0      0     0      0     0      0     0   



 

(114) 

This equation demonstrates that as the order of the integrated odd and even parameters 

increase, the number of contributing response nodes increase. If the last six integrated 

parameters are assumed negligible: 



 

258 
 

 



























































































































0

0

0

0

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E4,

,4

E3,

O3,

E2,

O2,
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E0,
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then the experiments to find y3, y5, y6, y9, y10, and y12 are not needed, as they do not 

contribute to any of the integrated parameters. The relationship of the response and the 

integrated parameters is found as: 
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Y

 

(116) 

The magnification of the neglected high order integrated parameters in the middle region 

of the y vector causes a significant error. This is analogous to the projection of a spline 

using the two end points and slopes. This magnification demonstrates why the HIP 

method is inaccurate in the projection of the response and the estimation of -1,1 domain 

parameters.  
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APPENDIX E 

1. Experiments Path Selection Approaches for the RC Method 

In this section, several approaches are explored to determine the best experiments’ 

selection approach. After that successful alignment of variables was performed and the 

importance of variables is found, the following approaches are explored for path 

selection. 

Nodes with the Maximum Number of Connection 

 This approach targets the nodes with the maximum number of connections to nodes 

with high ranges. Thus, the node with highest potential impact is targeted first. This is 

done by summing the ratios of the ranges of all upper and lower connected nodes to the 

total range span of the tree. The index of the next experiment to conduct is of the node 

with the highest iE  where: 
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Currentyy )( minmax   is the current span of the tree. The problem with this approach is that it 

does not take into account the expected value of the node, and the impact of this value on 

the rest of the tree.  
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Nodes with the Highest Median Impact 

In this approach, the median value for every node’s range is used, and the impact of 

such assumption on the total reduction of nodes’ ranges is found. The node that causes 

the maximum range reduction is selected. The index of the next experiment to conduct is 

of the node with the lowest iE  where: 
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iR  is the assumed result of i.  
Currentjj yy min,max,   is the range of the j node before 

assuming a value for i. This approach predicts the value of every node, but does not 

account for the location of the node in the tree. It is, thus, predicted that adjacent nodes in 

the tree will have close results. 

Nodes with the Highest Absolute Linear Interpolation Impact 

In this approach, the results of the nodes are assumed to follow a linear distribution 

from the lowest node to the highest node. The effect of such assumption in the total 

reduction of nodes ranges is found for every node. The node that causes the maximum 

ranges reduction is selected. The index of the next experiment to conduct is of the node 

with the lowest iE  where: 
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iT  is the level ratio of the node in the tree, 0 for the bottom node, and 1 for the top node. 

This approach assumes results linearity, but it is rarely the case that nodes behave in a 

linear manner due to sparsity and interactions. 

Nodes with the Highest Local Linear Interpolation Impact 

In this approach, the results of the nodes are assumed to follow a linear distribution. 

However, the interpolation is from the closest lower performed and connected node to the 

closest upper performed and connected node. The effect of such assumption in the total 

reduction of nodes ranges is found for every node. The node that causes the maximum 

ranges reduction is selected. The index of the next experiment to conduct is of the node 

with the lowest iE  where 
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Localymin, is result of the closest lower performed and connected node and Localymax,  is the 

index of the closest upper performed and connected node. iT  is the level ratio of the node 

in the tree, 0 for the closest connected lower performed node, and 1 for the closest 

connected upper performed node. 
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This approach is better than the absolute linear approach, but it still assumes that 

nodes behave in a local linear manner. 

Nodes with the Highest Local Linear Interpolation Weighted Impact 

This approach is the same as the local linear interpolation impact. However, a weight 

is added to every node with the weight proportional to the range of the node. This biases 

the path selection toward nodes with the highest ranges. The index of the next experiment 

to conduct is of the node with the lowest iE  where 
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 )( min,max,min, LocalLocalLocali yyTyL   
(127) 

This approach provides better results that the non-weighted approach. However, it 

also assumes local linearity and ignores interactions effects.  

Nodes with the Highest Span Impact 

In this approach, the effect of changing every node from its range lower limit to its 

range higher limit is found. The node with the span change that causes the maximum 

impact is selected. The index of the next experiment to conduct is of the node with the 

highest iE  where 
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(129) 

This approach biases the path selection towards nodes that the tree is most 

sensitive to, and does not take into account the estimated value of the node.  

Nodes that Reveal Link Directional Belief 

This approach will target the links with high uncertainty in the directions of 

effect. As these links are explored, the belief in these links’ directions of effect is 

changed. The links monotonic behavior is either further confirmed or disconfirmed. This 

approach biases the experiment’s path selection toward inactive variables, since they are 

the ones that will demonstrate weak monotonic behavior. Thus, the approach fails to 

effectively reduce the nodes ranges.  

Nodes Based on a Probability Distribution  

In this approach, every node will have a probability distribution with a mean 

value and variance. Every node range is split into M points. For every point, the number 

of allowed combinations of other nodes is found. This number will reflect the probability 

that the node will have a value at this point. To illustrate this approach, two nodes in a 

five variables example are used. If after performing a number of experiments, node 

00010 is found to have a range of 5-10, and node 00011 is found to have a range of 6-11, 

and if M is set at 6, then the possible results are 5, 6, 7, 8, 9 and 10 for 00010 and 6, 7, 8, 

9, 10 and 11 for 00011. 
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A combinations matrix is found by testing all states of 00010 and 00011 that 

satisfy 00011>00010. The results of all combinations, without the 00011>00010 

condition, and with the condition, are shown in Table 92. The histograms for y1 and y2 of 

both cases, with and without the monotonic behavior condition, are shown in Figure 80. 

The figure shows that y2 is skewed with the highest probability of occurrence at 10 or 11. 

This is due to the fact that when y1 is at the lowest value, 5, y2 will vary freely. As y1 

increases, the range of allowable values of y2 is reduced up to the point when y1 is 10 and 

y2 is 10 or 11. Once a distribution is developed for every node, the mean and variance of 

every node is found. The covariance of two nodes is found by fixing the two nodes to 

every possible combination and determining the probability distribution of every 

combination of other nodes. The equations used to find the variance and covariance, 

when the condition is applied, are: 
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where u is the number of unperformed nodes. Another way to determine the covariance is 

to develop a correlation between the two responses and from that find the covariance 

through: 



 

266 
 

 

)()(),(),( 212121 yVaryVaryyCorryyCov   (134) 

The variance is known, so the correlation factor is to be found to determine the 

covariance.  

The correlation’s accuracy is dependent on M. In the example above, using 

M=10, 50 and 100 generated, through regression, the correlation factors of 0.4173, 

0.4270 and 0.4285. The combinations are shown in Figure 81. In order to improve the 

accuracy of the covariance and the corresponding probability distribution, M needs to be 

high enough. The problem is that as M increases, Mu increases exponentially. This 

represents 62 in the example. In a ten variables problem, the number of nodes is 210 

=1024 and if ten increments per node is desired, the number of combinations is 101024. 

Since the number of combinations needed to apply this approach makes it computational 

expensive, an approximation could be used by determining the combinations of every 

two nodes separately, then combining the overall probability by multiplying the 

connected nodes probabilities. This is, however, still computationally demanding when a 

large number of nodes and increments are considered. Thus, other approaches were 

investigated to approximate the correlation without the need to discretize the ranges.  
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Table 92   
Discretized Results of the Combinations of Two Overlapping Nodes  
 

  No Condition       00011>00010 
Index 00010 00011 00010 00011 

1 5 6 5 6 
2 5 7 5 7 
3 5 8 5 8 
4 5 9 5 9 
5 5 10 5 10 
6 5 11 5 11 
7 6 6 6 6 
8 6 7 6 7 
9 6 8 6 8 
10 6 9 6 9 
11 6 10 6 10 
12 6 11 6 11 
13 7 6 ---  ---  
14 7 7 7 7 
15 7 8 7 8 
16 7 9 7 9 
17 7 10 7 10 
18 7 11 7 11 
19 8 6 ---  ---  
20 8 7 ---  ---  
21 8 8 8 8 
22 8 9 8 9 
23 8 10 8 10 
24 8 11 8 11 
25 9 6  ---  ---  
26 9 7 --- ---  
27 9 8  --- ---  
28 9 9 9 9 
29 9 10 9 10 
30 9 11 9 11 
31 10 6  ---  --- 
32 10 7  ---  --- 
33 10 8  ---  --- 
34 10 9  ---  --- 
35 10 10 10 10 
36 10 11 10 11 

Variance, Covariance:  3,0 2.553, 1.046 
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(a) Without condition                              (b) with 00011>00010 

Figure 80. Node’s Potential Value Distribution by Other Nodes’ Effects 
 

 

One approach that was investigated is to consider the fact that the shape shown in 

Figure 81 consist of a rectangle with an area of 5 and a trapezoid with an area of (10-6) 

(1+5)/2=12. The slope of the line in the rectangle is zero and in the trapezoid is ((10-6)/ 

(10-6) +0)/2=1/2. A weighted average gives (0x5+1/2x12)/ (5+12) =0.35. This value 

underestimates the correlation factor. Another approach is to sum vectors that compose 

the shown line. The vectors summation is: 1i+0j+ (10-6) i+ (10.5 -8.5) j=5i+2j. The slope 

of the vector is 2/5=0.4. This value was found to underestimate the correlation factor too. 
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(a) M=10 
 

 
(b) M=50 

 

 
(c) M= 100 

Figure 81. M Effect on the Accuracy of the Correlation of Two Nodes 
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The best approach, to determine the two responses correlation, was developed 

using the overlapping interval of the two ranges. The overlapping interval’s points are set 

to equal the probability defined as: 
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1,, jmiP  if max,, jmi yy   (138) 

jmiP ,,  is the probability of increment m occurrence in node i with respect to node j. These 

equations are applied to the two nodes example, and the results are shown in Table 93. 

The table shows a distribution that is similar to the histogram of Figure 80. The 

probability for every point m in node i is combined using:  

 jmimi PP ,,,   (139) 

This probability is an approximation since it ignores the correlation between the js and 

just considers the effect of every node i on j separately. To include the j correlations, Mu-1 

combinations, for every point m in node i, are needed, which is computationally very 

expensive.  
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Table 93   
Probabilities of Increments Based on the Overlapping Proportions of Ranges  
 

 

The probability distribution approach was found good for low number of 

variables, but as the number of variables increase, the portability distribution converged 

on a step shape with the mean at the high limit of the range for the top tree nodes, and at 

the low limit of the range for the bottom tree nodes. This is logical, since it is expected 

that the nodes in the upper part of the tree are close to the top node, and the ones in the 

lower part of the tree are close to the bottom node. However, the severity of the bias of 

this approach makes it useless in the experiments path selection process especially for 

large trees. 

Nodes Selection Based on System Regularities  

In this approach, the effects of physical systems’ regularities on the experiments’ 

tree are considered. As explained in the dissertation, studies have surveyed physical 

systems for behavioral patterns, and some patterns were proven significant. This 

approach was the one selected for the RC method, and is explained as part of the 

dissertation.  

  

i=00010 2,,1 mP  i=00011 1,,2 mP  

5 1 6 1/5 
6 1 7 2/5 
7 4/5 8 3/5 
8 3/5 9 4/5 
9 2/5 10 1 
10 1/5 11 1 
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Convergence Test Criterion 

This approach was developed as a stopping criterion for the experiments path 

selection. The parameters’ convergence is used as the criterion in this approach. After 

every experiment is preformed, and results are populated, Lenth method [75] is applied to 

the average values of the projected variables’ parameters, 1,1  s. These values will 

converge in a dropping exponential manner to the correct values.   

Lenth method is used to establish three parameters regions defined by two 

thresholds. Parameters with an absolute value that fall in the region lower than the 

Margin of Error (referred to as MEr in this section) are confirmed as inactive parameters. 

Parameters with an absolute value that fall in the region above the Simultaneous Margin 

of Error (referred to as SMEr in this section) are confirmed as active parameters. 

Parameters with an absolute value that fall in the region between the MEr and SMEr are 

questionable parameters. The path selection continues, as long as there are questionable 

parameters. Once there are no parameters in the questionable zoon, the experimentation 

stops and the parameters are classified. The stopping criteria can, thus, be expressed as 

MErorSMErijkiji  ,...,, 1,1,1,1,1,1,  , i=1:N , j>i, k>j,… (140) 

Modified Lenth’s MEr and SMEr values were suggested in [91] to provide less 

conservative results, and can be used in this criterion. 
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APPENDIX F 

1. Example Application of the RC Method on a Regular System  

This section demonstrates the application of the RC method on the response of a 

regular system from literature [81]. The first steps of the MHIV method application, on 

the same example, aligned the performance characteristic and variables. Instead of 

finding the integrated odd and even parameters, it is desired to determine the importance 

of each variable, thus N+1 experiments are only needed. The results of these experiments 

are shown in the first eight rows of Table 94. As a result, variables 1235 were categorized 

as important. Assuming the total number of experiments allowed is sixteen experiments, 

out of which, eight (N+2) experiments are already performed, eight experiments are 

remaining. The experiments tree is shown in Figure 82.  

If two subtrees are established using the two most important variables, 15, 

experiments 100000,000010,100010 and 011101 are performed to bound the subtrees. 

The results of these experiments are shown in Table 94. The results are reflected into the 

nodes’ ranges of every subtree. The resulting subtrees are shown in Figure 83. Out the 

four subtrees of 15=xx, the spans of the last subtrees 15=00,10 are relatively small. The 

subtree 15=11 has one additional level of performed nodes. The total span of nodes in the 

subtree is 1139 Units. This is compared to the total span of subtree 15=01, which is 793 

units. As a result, it is decided to explore the first subtree further. This subtree is further 

spanned into subtrees based on the two local most important variables, 23, thus 

establishing subtrees 2=x of 15=11 and 3=x of 15=11. Since the two upper nodes of the 
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subtrees have already been performed, the lower nodes of these subtrees are performed. 

The results are reflected into the nodes’ ranges of every subtree. The resulting subtree is 

shown in Figure 84. The total span of the current subtree is 454.3. Since this is smaller 

than the total span of the 15=01 subtree, the 15=01 subtree is spanned. Variable 2 is the 

most important variable in this subtree, thus subtrees 2=x of 15=10 are created. The 

results are reflected into the nodes’ ranges of every subtree. The results are shown in 

Table 94.  

Sixteen experiments have been performed. In summary, the steps that were 

followed are: 

 Align the variables to point toward one direction of effect on the performance 

characteristics 

 Perform N+2 experiments of the bottom node, the top node and the layer of nodes  

below the top node  

 Generate subtrees of the most important nodes 

 Find the subtrees with highest total span and target them next 

 Within the subtrees, generate subtrees of the next most important nodes 

 Keep track of total span in subtrees at all levels to determine when to step out of a 

subtree and move to the next one 

After all experiments have been performed, the average value for every node’s 

range is used to estimate of the response, then the overall model parameters are found. 

The normalized span, after every experiment was performed, is shown in Table 94, and is 

exponentially decreasing. The RMSE of the developed model is 13.75 which 4% of the 
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projected response’s range. To validate the performance of this method, a Res IV FFD 

was performed. The FFD results are shown in Table 95. The RMSE of the FFD 

application is 40.02. Thus, the RMSE of the RC method is 34% the RMSE of the FFD. 

The parameters of both methods, in addition the full factorial design, are shown in Table 

96. This example shows that the RC method can outperform FFDs when applied to a 

system with highly monotonic variables. 

 

Table 94   
Production’s Results and Parameters’ Convergence Using the RC Method 
 

Exp. 
Index 

Variables States* Result
Parameters Range 
(Response Unit) 

Current 
Normalized 

Span 
1         0    0    0    0    0    0 39.2 --- --- 
2         1    1    1    1    1    1 373.1 323.47 100.00 
3         0    1    1    1    1    1 179.6 227.55 70.35 
4         1    0    1    1    1    1 226.1 187.88 58.08 
5         1    1    0    1    1    1 242 168.32 52.04 
6         1    1    1    0    1    1 375.9 163.10 50.42 
7         1    1    1    1    0    1 124.2 113.13 34.98 
8         1    1    1    1    1    0 372.4 107.90 33.36 
9         0    0    0    0    1    0 118.6 74.70 23.09 

10         1    0    0    0    0    0 103 59.41 18.37 
11         1    0    0    0    1    0 131.6 55.70 17.22 
12         0    1    1    1    0    1 44.2 36.87 11.40 
13         1    0    1    0    1    0 218.5 31.32 9.68 
14         1    1    0    0    1    0 233.6 26.17 8.09 
15         0    0    1    1    1    1 153.2 22.75 7.03 
16         0    1    0     0   1    0 152.2 18.64 5.76 

*Even though the parameters found are in the -1,1 domain, the 0,1 notation was used for variables states in  
this method to follow the dissertation’s tree convention.  
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Figure 82. Production’s Diamond Tree after Eight Experiments of the RC Method Application 
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Figure 83. Production’s Four Subtrees of the RC Method’s Application  
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Figure 84. Production’s First Subtree of the RC Method’s Application 
 

 

  



 

279 
 

 

Table 95   
Production’s Results of the Res IV FFD  
  

Exp. 
Index 

 
Variables States 

First Response (Production) 
Result 

1   -1  -1   -1    -1  -1  -1 39.2 
2   -1  -1   -1    1  -1    1 373.1 
3   -1  -1    1   -1    1    1 179.6 
4   -1  -1    1     1    1  -1 226.1 
5   -1    1    -1   -1    1    1 242 
6   -1    1    -1     1    1  -1 375.9 
7   -1    1    1   -1  -1  -1 124.2 
8   -1    1    1     1  -1    1 372.4 
9    1   -1    -1     -1    1  -1 118.6 

10    1   -1    -1     1    1    1 103 
11    1   -1    1   -1  -1    1 131.6 
12    1   -1    1     1  -1  -1 44.2 
13    1     1    -1   -1  -1    1 218.5 
14    1     1    -1     1  -1  -1 233.6 
15    1     1    1    -1   1  -1 153.2 
16    1     1    1    1   1    1 152.2 

  



 

280 
 

 

Table 96   
Production’s Estimated Parameters Using the RC Method and a FFD 
 

Parameter Index 
RC Method 

Value  
FFD  

Value  
Full Factorial 

Value  
0 138.00 140.71 137.39 
1 41.70 43.14 40.92 
2 16.94 30.29 21.10 
3 12.23 29.20 18.45 
4 3.41 0.55 1.04 
5 60.35 61.23 58.65 
6 3.52 1.59 0.94 
12 9.29 28.51 13.00 
13 10.13 28.73 11.28 
14 1.31 0.93 0.58 
15 5.75 5.30 4.16 
16 1.42 0.96 0.08 
23 3.83 0.00 1.72 
24 0.20 0.55 0.00 
25 16.13 0.00 17.94 
26 0.31 0.46 0.27 
34 0.29 0.00 -0.11 
35 11.41 0.00 16.00 
36 0.40 0.00 0.41 
45 2.59 0.00 0.88 
46 -1.87 0.00 -0.38 
56 2.70 0.00 0.39 
123 4.05 0.00 2.95 
124 0.43 0.33 0.08 
125 8.78 0.00 11.08 
126 0.54 0.64 0.13 
134 0.29 0.00 -0.03 
135 9.63 0.00 9.76 
136 0.40 0.00 0.06 
145 0.81 0.00 0.48 
146 -1.87 0.00 -0.13 
156 0.92 0.00 -0.38 
234 1.94 0.00 -0.07 
235 3.83 0.00 2.66 



 

281 
 

 

Table 96 Continued 
 

Variables Index 
Estimated  
Parameter  

FFD 
Parameter  

Full Factorial 
Parameter  

236 2.05 0.00 0.24 
245 0.20 0.00 0.10 
246 0.02 0.00 -0.20 
256 0.31 0.00 0.34 
345 0.29 0.00 -0.15 
346 0.99 0.00 -0.40 
356 0.40 0.00 0.43 
456 -1.87 0.00 -0.25 
1234 1.78 0.00 -0.16 
1235 4.05 0.00 3.58 
1236 1.89 0.00 0.20 
1245 0.43 0.00 0.06 
1246 -0.14 0.00 -0.21 
1256 0.54 0.00 0.12 
1345 0.29 0.00 0.03 
1346 -1.11 0.00 -0.18 
1356 0.40 0.00 0.24 
1456 -1.87 0.00 -0.15 
2345 1.12 0.00 -0.25 
2346 -1.98 0.00 -0.11 
2356 1.23 0.00 0.17 
2456 -0.80 0.00 -0.30 
3456 0.17 0.00 -0.29 

12345 1.28 0.00 -0.35 
12346 -1.75 0.00 -0.19 
12356 1.39 0.00 0.24 
12456 -0.64 0.00 -0.17 
13456 -1.61 0.00 -0.12 
23456 -1.98 0.00 -0.25 

123456 -1.75 0.00 -0.19 
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2. Example Application of the RC Method on a Non-Regular System  

In this section, the RC method is applied to the study of the “Parameters 

Contributing to Power Loss in Disengaged Wet Clutches” [82]. This is a highly 

interacting non-regular system. In addition to the RC method, a sample of existing 

methods is applied for comparison. The methods applied in this example are Res III 

Plackett-Burman (PB) designs [28], Res IV mirror foldover of Plackett-Burman (PB) 

designs, Res III Tagushi orthogonal arrays [29], Res IV mirror foldover of Tagushi 

orthogonal arrays, Res III FFDs [25], Res IV FFDs, a no-interactions estimation utilizing 

OFAT and Adaptive OFAT (AOFAT) experiments selection process [51, 52], SB’s 

method [46], and Cotter’s method [34]. The full factorial design that is performed in the 

study will be used for validating the results of each method. 

Applying the RC method, the same steps that were followed in the previous 

section are followed here. Variables are assumed monotonic, though this assumption is 

not always valid in this example. The results of all performed experiment are shown in 

Table 97. The importance of variables is found from the first nine rows in Table 97. The 

variables, sorted by importance, are 3165742. Assuming sixteen experiments are targeted 

in this example, variables 13 are selected to create subtrees 13=xx. Experiments one, 

three, five and ten through thirteen are the end points of these subtrees. Instead of a 

graphical representation of the subtrees, a table is used in this example for illustration.  

The performed nodes in every subtree are shown in Table 98. The results are 

reflected into nodes’ ranges of every subtree. Within subtree 13=10, the bottom node 

result is below the minimum of the main tree indicating non-monotonic behavior. As a 
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result, the lower limit of subtree 13=10 ranges are set to 1.4 and only the bottom is kept 

as 0.9. The summation of spans in every subtree is shown in Table 99. Accordingly, it is 

decided to target subtrees 13=10 and 13=01 next. Since only three experiments remain to 

be performed, nodes from the second top level of each subtree are only selected. This is 

shown as experiments fourteen and fifteen in Table 97. The updated total spans are 

shown in Table 100. Since subtree 13=11 and 13=01 are close in span, it is possible to 

perform one node in either subtree. Subtree 13=11 was selected, and the result of the last 

experiment, sixteen, is shown in Table 97.  

After all experiments have been performed, the average value for every node’s 

range is used to estimate of the response, then the overall model parameters are found. 

The first order parameters of the resulting model are shown in the 17th rows of Table 97. 

The results of applying existing methods are listed in Table 101 to Table 110. The 

summary of first order parameters in addition to their RMSEs from the full factorial 

results are shown in Table 111. It is concluded from the summary table that the Res III 

PB method outperformed all used methods except for the RC method and the three Res 

IV orthogonal arrays’ methods. The RC method, Res IV mirror foldover of PB, Res IV 

mirror foldover of Tagushi and Res IV FFD produced the lowest RMSE of first order 

parameters’ projection. This is expected since Res III methods will require a smaller 

number of experiments, but produce less accurate results, especially if second order 

interactions are significant.  

The RC method produced the most accurate estimation of first order parameters. 

It also produced the most accurate estimation of second order interactions as shown in 
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Table 112. This example demonstrates that even in a system with moderately non-

monotonic variables, the RC method produced very accurate results when compared to a 

sample of evaluation methods.  

 
 
Table 97   
Experiments and Parameters of Parasitic Drag Torque Using the RC Method  
 

Exp. Index Variables States* y 

 1 2 3 4 5 6 7  
1 0 0 0 0 0 0 0 1.4 
2 1 1 1 1 1 1 1 19 
3 0 1 1 1 1 1 1 8 
4 1 0 1 1 1 1 1 11 
5 1 1 0 1 1 1 1 6.4 
6 1 1 1 0 1 1 1 10.8 
7 1 1 1 1 0 1 1 9.6 
8 1 1 1 1 1 0 1 9 
9 1 1 1 1 1 1 0 10.5 
10 0 1  0 1 1 1 1 3.6 
11 0 0 1 0 0 0 0 2.6 
12 1     0 0 0 0 0 0 0.9 
13 1 0 1 0 0 0 0 4.9 
14 1 1 0 1 1  0 1 2.6 
15 0 1 1 1 0 1 1 5 
16 1 1 1 0 1 1 0 10.2 

Estimated 1st 
Order Parameters 1.029 0.264 1.840 0.229 0.476 0.640 0.236 

*Even though the parameters found are in the -1,1 domain, the 0,1 notation was used for variables states in  
this method to follow the dissertation’s tree convention.  
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Table 98   
Performed Experiments in the Four Subtrees of Parasitic Drag Torque 
 

Exp. Index Variables States* y 

 1 2 3 4 5 6 7  
Subtree 13= 00 

1 0 0 0 0 0 0 0 1.4 
10 0 1 0 1 1 1 1 3.6 

Subtree 13=01 
11 0 0 1 0 0 0 0 2.6 
3 0 1 1 1 1 1 1 8 

Subtree 13=10 
12 1 0 0 0 0 0 0 0.9 
5 1 1 0 1 1 1 1 6.4 

Subtree 13=11 
13 1 0 1 0 0 0 0 4.9 
2 1 1 1 1 1 1 1 19 
4 1 0 1 1 1 1 1 11 
6 1 1 1 0 1 1 1 10.8 
7 1 1 1 1 0 1 1 9.6 
8 1 1 1 1 1 0 1 9 
9 1 1 1 1 1 1 0 10.5 

*Even though the parameters found are in the -1,1 domain, the 0,1 notation was used for variables states in  
this method to follow the dissertation’s tree convention.  

 
 

Table 99   
Total Span of the Four Subtrees after Experiment No 13 of Parasitic Drag Torque 
 

Subtree 13= 00 10 01 1 1 
Span  66 150 162 113 

 
 

Table 100 
Total Span of the Four Subtrees after Experiment No 15 of Parasitic Drag Torque 
 

Subtree 13= 00 10 01 11 
Span  51 91.8 114.6 113 
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Table 101 
Experiments and Parameters of Parasitic Drag Torque Using Res III PB  
 

Exp. Index Variables States    y 

 1 2 3 4 5 6 7 
1 1 1 1 -1 1 -1 -1 8 
2 -1 1 1 1 -1 1 -1 4.1 
3 -1 -1 1 1 1 -1 1 4 
4 1 -1 -1 1 1 1 -1 3.6 
5 -1 1 -1 -1 1 1 1 2.4 
6 1 -1 1 -1 -1 1 1 9.4 
7 1 1 -1 1 -1 -1 1 3.1 
8 -1 -1 -1 -1 -1 -1 -1 1.4 

Estimated 1st 
Order Parameters 

1.525 -0.1 1.875 -0.8 0 0.375 0.225  

 
 

Table 102 
Experiments and Parameters of Parasitic Drag Torque Using Res IV Mirror Foldover of 
PB  
 

Exp. Index Variables States  y 
 1 2 3 4 5 6 7 
1 1 1 1 -1 1 -1 -1 8 
2 -1 1 1 1 -1 1 -1 4.1 
3 -1 -1 1 1 1 -1 1 4 
4 1 -1 -1 1 1 1 -1 3.6 
5 -1 1 -1 -1 1 1 1 2.4 
6 1 -1 1 -1 -1 1 1 9.4 
7 1 1 -1 1 -1 -1 1 3.1 
8 -1 -1 -1 -1 -1 -1 -1 1.4 
9 -1 -1 -1 1 -1 1 1 3 
10 1 -1 -1 -1 1 -1 1 6.8 
11 1 1 -1 -1 -1 1 -1 4.2 
12 -1 1 1 -1 -1 -1 1 3.2 
13 1 -1 1 1 -1 -1 -1 6 
14 -1 1 -1 1 1 -1 -1 2.1 
15 -1 -1 1 -1 1 1 -1 4 
16 1 1 1 1 1 1 1 19 

Estimated 1st 
Order Parameters 

2.244 0.494 1.944 0.344 0.969 0.944 1.094 
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Table 103 
Experiments and Parameters of Parasitic Drag Torque Using Res III Tagushi  
 

Exp. Index Variables States y 

 1 2 3 4 5 6 7 
1 -1 -1 -1 -1 -1 -1 -1 1.4 
2 -1 -1 -1 1 1 1 1 4 
3 -1 1 1 -1 -1 1 1 3 
4 -1 1 1 1 1 -1 -1 4.6 
5 1 -1 1 -1 1 -1 1 11.4 
6 1 -1 1 1 -1 1 -1 7.8 
7 1 1 -1 -1 1 1 -1 7.4 
8 1 1 -1 1 -1 -1 1 1.6 

Estimated 1st 
Order Parameters 

1.9 -1 1.55 -0.65 1.7 0.4 -0.15 
 

 
 

Table 104 
Experiments and Parameters of Parasitic Drag Torque Using Res IV Mirror Foldover of 
Tagushi  
 

Exp. Index Variables States y 

 1 2 3 4 5 6 7 
1 -1 -1 -1 -1 -1 -1 -1 1.4 
2 -1 -1 -1 1 1 1 1 4 
3 -1 1 1 -1 -1 1 1 3 
4 -1 1 1 1 1 -1 -1 4.6 
5 1 -1 1 -1 1 -1 1 11.4 
6 1 -1 1 1 -1 1 -1 7.8 
7 1 1 -1 -1 1 1 -1 7.4 
8 1 1 -1 1 -1 -1 1 1.6 
9 1 1 1 1 1 1 1 19 
10 1 1 1 -1 -1 -1 -1 4.8 
11 1 -1 -1 1 1 -1 -1 1.2 
12 1 -1 -1 -1 -1 1 1 4.4 
13 -1 1 -1 1 -1 1 -1 2.8 
14 -1 1 -1 -1 1 -1 1 3.1 
15 -1 -1 1 1 -1 -1 1 3.8 
16 -1 -1 1 -1 1 1 -1 4 

Estimated 1st 
Order Parameters  1.931 0.519 2.031 0.331 1.569 1.281 1.019 
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Table 105 
Experiments and Parameters of Parasitic Drag Torque Using Res III FFD  
 

Exp. Index Variables States y 

 1 2 3 4 5 6 7 
1 -1 -1 -1 1 1 1 -1 3.5 
2 1 -1 -1 -1 -1 1 1 4.4 
3 -1  1 -1 -1 1 -1 1 3.1 
4 1 1 -1 1 -1 -1 -1 2.1 
5 -1 -1 1 1 -1 -1 1 3.8 
6 1 -1 1 -1 1 -1 -1 9.8 
7 -1 1 1 -1 -1 1 -1 3.2 
8 1 1 1 1 1 1 1 19 

Estimated 1st 
Order Parameters  2.712 0.737 2.837 0.987 2.737 1.412 1.462 

 
 
 
Table 106 
Experiments and Parameters of Parasitic Drag Torque Using Res IV FFD  
 

Exp. Index Variables States y 

 1 2 3 4 5 6 7 
1 -1 -1 -1 -1 -1 -1 -1 1.4 
2 1 -1 -1 -1 1 -1 1 6 
3 -1 1 -1 -1 1 1 -1 2.2 
4 1 1 -1 -1 -1 1 1 5.2 
5 -1 -1 1 -1 1 1 1 4 
6 1 -1 1 -1 -1 1 -1 6.4 
7 -1 1 1 -1 -1 -1 1 3.2 
8 1 1 1 -1 1 -1 -1 8 
9 -1 -1 -1 1 -1 1 1 3 

10 1 -1 -1 1 1 1 -1 3.6 
11 -1 1 -1 1 1 -1 1 2.6 
12 1 1 -1 1 -1 -1 -1 1.6 
13 -1 -1 1 1 1 -1 -1 4 
14 1 -1 1 1 -1 -1 1 8.4 
15 -1 1 1 1 -1 1 -1 4.1 
16 1 1 1 1 1 1 1 19 

Estimated 1st 
Order Parameters  2.106 0.569 1.969 0.619 1.006 0.769 1.256 
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Table 107 
Experiments and Parameters of Parasitic Drag Torque Using OFAT Experiments 
Selection Process  
  

Exp. Index Variables States y 

 1 2 3 4 5 6 7 
1 -1 -1 -1 -1 -1 -1 -1 1.4 
2 1 -1 -1 -1 -1 -1 -1 0.9 
3 1 1 -1 -1 -1 -1 -1 1.4 
4 1 1 1 -1 -1 -1 -1 4.8 
5 1 1 1 1 -1 -1 -1 4.4 
6 1 1 1 1 1 -1 -1 4.4 
7 1 1 1 1 1 1 -1 10.5
8 1 1 1 1 1 1 1 19 

Estimated 1st 
Order Parameters  -0.250 0.250 1.700 -0.200 0.000 3.050 4.250 

 

 
Table 108 
Experiments and Parameters of Parasitic Drag Torque Using AOFAT Experiments 
Selection Process 
 

Exp. Index Variables States y 

 1 2 3 4 5 6 7 
1 -1 -1 -1 -1 -1 -1 -1 1.4
2 1 1 1 1 1 1 1 19 
3 -1 1 1 1 1 1 1 8 
4 -1 -1 1 1 1 1 1 6 
5 -1 -1 -1 1 1 1 1 4 
6 -1 -1 -1 -1 1 1 1 3.9
7 -1 -1 -1 -1 -1 1 1 2 
8 -1 -1 -1 -1 -1 -1 1 1.6

Estimated 1st 
Order Parameters  5.500 1.000 1.000 0.050 0.950 0.200 0.100 
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Table 109 
Experiments and Parameters of Parasitic Drag Torque Using Sequence Bifurcation’s 
Method  
 

Exp. Index Variables States y 

 1 2 3 4 5 6 7 
1 -1 -1 -1 -1 -1 -1 -1 1.4 
2 1 1 1 1 1 1 1 19 
3 1 1 1 1 -1 -1 -1 4.4 
4 -1 -1 -1 -1 1 1 1 3.9 
5 1 1 -1 -1 -1 -1 -1 1.4 
6 -1 -1 1 1 -1 -1 -1 3.4 
7 1 1 1 -1 -1 -1 -1 4.8 
8 1 1 -1 1 -1 -1 -1 1.6 
9 1 -1 -1 -1 -1 -1 -1 0.9 
10 -1 1 -1 -1 -1 -1 -1 1.5 
11 1 1 1 1 1 1 -1 10.5
12 1 1 1 1 -1 -1 1 6.8 
13 1 1 1 1 -1 1 1 9.6 
14 1 1 1 1 1 -1 1 9 

Estimated 1st 
Order Parameters -0.150 0.150 1.550 -0.050 2.900 3.200 2.725 
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Table 110 
Experiments and Parameters of Parasitic Drag Torque Using Cotter’s Method  
 

Exp. Index Variables States y 

 1 2 3 4 5 6 7 
1 1 1 1 1 1 1 1 19 
2 -1 1 1 1 1 1 1 8 
3 1 -1 1 1 1 1 1 11 
4 1 1 -1 1 1 1 1 6.4 
5 1 1 1 -1 1 1 1 10.8 
6 1 1 1 1 -1 1 1 9.6 
7 1 1 1 1 1 -1 1 9 
8 1 1 1 1 1 1 -1 10.5 
9 -1 -1 -1 -1 -1 -1 -1 1.4 
10 1 -1 -1 -1 -1 -1 -1 0.9 
11 -1 1 -1 -1 -1 -1 -1 1.5 
12 -1 -1 1 -1 -1 -1 -1 2.6 
13 -1 -1 -1 1 -1 -1 -1 1.8 
14 -1 -1 -1 -1 1 -1 -1 2.8 
15 -1 -1 -1 -1 -1 1 -1 1.8 
16 -1 -1 -1 -1 -1 -1 1 1.6 

Estimated 1st 
Order Parameters 1.313 1.013 1.725 1.075 1.350 1.300 1.088 
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Table 111 
Estimated and Full Factorial Design’s 1st Order Parameters of Parasitic Drag Torque 
with the Associated RMSEs 
 

Method 1st Order Parameter 

 1 2 3 4 5 6 7 RMSE

RC Method 1.029 0.264 1.840 0.229 0.476 0.640 0.236 0.333 

Res III PB 1.525 -0.100 1.875 -0.800 0.000 0.375 0.225 0.513 

PB Mirror 
Foldover 

2.244 0.494 1.944 0.344 0.969 0.944 1.094 0.411 

Res III Tagushi 1.900 -1.000 1.550 -0.650 1.700 0.400 -0.150 0.630 

Tagushi Mirror 
Foldover 

1.931 0.519 2.031 0.331 1.569 1.281 1.019 0.463 

Res III FFD 2.713 0.738 2.838 0.988 2.738 1.413 1.463 1.079 

Res IV FFD 2.106 0.569 1.969 0.619 1.006 0.769 1.256 0.455 

OFAT -0.250 0.250 1.700 -0.200 0.000 3.050 4.250 1.663 

AOFAT 5.500 1.000 1.000 0.050 0.950 0.200 0.100 1.487 

SB -0.150 0.150 1.550 -0.050 2.900 3.200 2.725 1.453 

Cotter 1.313 1.013 1.725 1.075 1.350 1.300 1.088 0.593 

Full Factorial  1.504 0.046 1.404 0.034 0.904 0.774 0.663 
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Table 112 
RMSEs of the Second Order Parameters of Parasitic Drag Torque 
 

Method 2nd Order Parameters RMSE  

RC Method 0.22 

Res IV Mirror Foldover of PB  0.32 

Res IV Mirror Foldover of Tagushi  0.35 

Res IV FFD 0.34 
 
 
 
 

 
 

Figure 85. Parasitic Drag Torque’s Estimated and Actual First Order Parameters 
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Figure 86. Parasitic Drag Torque’s Estimated and Actual Second Order Parameters 
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3. Example Application of Artificial Neural Networks on Keff  

The concept of Artificial Neural Networks (ANNs) was introduced in 1943 [92], 

and is widely used in literature, so it will not be explained in this section. In this section, 

a brute force approach was followed to choose the number of hidden layers of the neural 

network. For every number of hidden layers, an ANN was developed and the validation 

error was checked. The ANN with the lowest error was selected. The set of experiments 

used for the model development is the 128 FFD set of experiments of effK . The ratio of 

development, testing and validation sets are 70:15:15 and 90:5:5. In both cases, the most 

accurate ANN was found to be with three hidden layers. Higher number of hidden layers 

over fits the multidimensional response shape, and reduces the accuracy of the model. 

The validations of both models with the 98 performed experiments of the MSIV are 

shown in  Table 87 and Table 88. The RMSE of both cases are 32.90776 and 31.718 

consequently. This is almost three times the error of the 128 FFD. The main reason of the 

ANN poor performance is that it assumes the same number of layers for all variables, and 

does not account for sparsity. It also uses a portion of the experiments to develop the 

model and allocates the other portion for testing and validation.  
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Figure 87. effK ’s 70:15:15 Projection Error of the ANN with Respect to the Performed 

Experiments of the MSIV Method 
 
 
 

 
Figure 88. effK ’s 90:5:5 Projection Error of the ANN with Respect to the Performed 

Experiments of the MSIV Method  
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APPENDIX G 

1. Multiplication Factor Experiments: MHIV Method Results (71) 

Table 113 
Application of the MHIV method to effK   

 

 
Low End 

Variables State effK
  

High End 
Variables State effK

 
'00000010011111' 0.8159 '11111101100000' 1.3079 

1 Up '10000010011111' 0.86386 1 Down '01111101100000' 1.2714 
2 Up '01000010011111' 0.85005 2 Down '10111101100000' 1.262 
3 Up '00100010011111' 0.8152 3 Down '11011101100000' 1.3079 
4 Up '00010010011111' 0.87231 4 Down '11101101100000' 1.2204 
5 Up '00001010011111' 0.8159 5 Down '11110101100000' 1.3079 
6 Up '00000110011111' 0.84808 6 Down '11111001100000' 1.292 
7 Up '00000000011111' 0.82285 7 Down '11111111100000' 1.2998 
8 Up '00000011011111' 0.86214 8 Down '11111100100000' 1.2692 
9 Up '00000010111111' 0.96608 9 Down '11111101000000' 1.235 
a Up '00000010001111' 0.86433 a Down '11111101110000' 1.254 
b Up '00000010010111' 0.86676 b Down '11111101101000' 1.2835 
c Up '00000010011011' 0.82242 c Down '11111101100100' 1.3068 
d Up '00000010011101' 0.83213 d Down '11111101100010' 1.3031 
e Up '00000010011110' 0.8683 e Down '11111101100001' 1.2936 

49 Up 00010010111111' 1.0349 49 Down 11101101000000' 1.1634 
4e Up 00010010011110' 0.92537 4e Down 11101101100001' 1.2058 
9e Up 00000010111110' 1.0092 9e Down 11111101000001' 1.2173 

49e Up 00010010111110' 1.0794 49e Down 11101101000001' 1.1464 
49e=111-6b  

00010010111110' Performed  11111101100000' Performed 
6 Up 00010110111110’ 1.1132 6 Down 11111001100000' 1.292 
b Up 00010010110110’ 1.084 b Down 11111101101000' 1.2835 

6b Up 00010110110110’ 1.1115 6b Down 11111001101000' 1.2574 
49e=110-6b  

00010010111111' Performed  11111101100001' Performed 
6 Up 00010110111111’ 1.0684 6 Down 11111001100001' 1.2758 
b Up 00010010110111’ 1.0361 b Down 11111101101001' 1.2699 

6b Up 00010110110111’ 1.0647 6b Down 11111001101001’ 1.2443 
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Table 113 Continued 
 

 

 
Low End 

Variables State effK
  

High End 
Variables State effK

 
49e=101-6b  

00010010011110' Performed  11111101000000' Performed 
6 Up 00010110011110' 0.96206 6 Down 11111001000000' 1.206 
b Up 00010010010110' 0.99135 b Down 11111101001000' 1.1325 

49e=100-6b  
00010010011111' Performed  11111101000001' Performed 

6 Up 00010110011111' 0.90748 6 Down 11111001000001' 1.1876 
b Up 00010010010111' 0.93535 b Down 11111101001001' 1.1162 

49e=011-6b  
00000010111110' Performed  11101101100000' Performed 

6 Up 00000110111110’ 1.0405 6 Down 11101001100000’ 1.2093 
b Up 00000010110110’ 1.0017 b Down 11101101101000’ 1.2123 

6b Up 00000110110110’ 1.0239 6b Down 11101001101000’ 1.1884 
49e=010-6b  

00000010111111' Performed  11101101100001' Performed 
6 Up 00000110111111’ 0.99527 6 Down 11101001100001’ 1.1929 
b Up 00000010110111’ 0.95519 b Down 11101101101001’ 1.1992 

6b Up 00000110110111’ 0.97787 6b Down 11101001101001’ 1.1758 
49e=001-6b  

00000010011110' Performed  11101101000000' Performed 
6 Up 00000110011110’ 0.90203 6 Down 11101001000000’ 1.138 
b Up 00000010010110’ 0.92222 b Down 11101101001000’ 1.0753 

49e=000-6b  
00000010011111' Performed  11101101000001' Performed 

6 Up 00000110011111’ 0.84808 6 Down 11101001000001’ 1.1191 
b Up 00000010010111’ 0.86676 b Down 11101101001001’ 1.0548 
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2. Multiplication Factor Experiments: MSIV Method Results (98) 

Table 114 
First Order Effects’ Exploration of the MSIV method’s Application to effK   

 
Main Tree 

Node 
Variables State effK  Main Tree 

Node 
Variables State effK

 
Top End '11111101100000' 1.3079 Bottom End '00000010011111' 0.8159 
1 Down '01111101100000' 1.2714 1 Up '10000010011111' 0.86386
2 Down '10111101100000' 1.262 2 Up '01000010011111' 0.85005
3 Down '11011101100000' 1.3079 3 Up '00100010011111' 0.8152 
4 Down '11101101100000' 1.2204 4 Up '00010010011111' 0.87231
5 Down '11110101100000' 1.3079 5 Up '00001010011111' 0.8159 
6 Down '11111001100000' 1.292 6 Up '00000110011111' 0.84808
7 Down '11111111100000' 1.2998 7 Up '00000000011111' 0.82285
8 Down '11111100100000' 1.2692 8 Up '00000011011111' 0.86214
9 Down '11111101000000' 1.235 9 Up '00000010111111' 0.96608
a Down '11111101110000' 1.254 a Up '00000010001111' 0.86433
b Down '11111101101000' 1.2835 b Up '00000010010111' 0.86676
c Down '11111101100100' 1.3068 c Up '00000010011011' 0.82242
d Down '11111101100010' 1.3031 d Up '00000010011101' 0.83213
e Down '11111101100001' 1.2936 e Up '00000010011110' 0.8683 
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Table 115 
Second Order Interactions’ Exploration and One Node per Tree of the MSIV method’s 
Application to effK   

 

Tree 
Index 

Top Node 
Top 

Node’s 
Value 

Bottom Node 
Bottom 
Node’s 
Value 

1 '11111101100000'  1.3079 '00010110110110'  Projected 
2 '11101101100000' 4 1.2204 '00010110110110' 4 Projected 
3 '11111001100000' 6 1.292 '00010110110110' 6 Projected 
4 '11111101000000' 9 1.235 '00010110110110' 9 Projected 
5 '11111101101000' b 1.2835 '00010110110110' b Projected 
6 '11111101100001' e 1.2936 '00010110110110' e Projected 
7 '11101001100000' 46 1.2093 '00010110110110' 46 Projected 
8 '11101101000000' 49 1.1634 '00010110110110' 49 Projected 
9 '11101101101000' 4b 1.2123 '00010110110110' 4b Projected 

10 '11101101100001' 4e 1.2058 '00010110110110' 4e Projected 
11 '11111001000000' 69 1.206 '00010110110110' 69 Projected 
12 '11111001101000' 6b 1.2574 '00010110110110' 6b Projected 
13 '11111001100001' 6e 1.2758 '00010110110110' 6e Projected 
14 '11111101001000' 9b 1.1325 '00010110110110' 9b Projected 
15 '11111101000001' 9e 1.2173 '00010110110110' 9e Projected 
16 '11111101101001' be 1.2699 '00010110110110' be Projected 
17 '11101001001001'  Projected '00000010011111'  0.8159 
18 '11101001001001' 4 Projected '00010010011111' 4 0.87231 
19 '11101001001001' 6 Projected '00000110011111' 6 0.84808 
20 '11101001001001' 9 Projected '00000010111111' 9 0.96608 
21 '11101001001001' b Projected '00000010010111' b 0.86676 
22 '11101001001001' e Projected '00000010011110' e 0.8683 
23 '11101001001001' 46 Projected '00010110011111' 46 0.90792 
24 '11101001001001' 49 Projected '00010010111111' 49 1.036 
25 '11101001001001' 4b Projected '00010010010111' 4b 0.93516 
26 '11101001001001' 4e Projected '00010010011110' 4e 0.92483 
27 '11101001001001' 69 Projected '00000110111111' 69 0.99527 
28 '11101001001001' 6b Projected '00000110010111' 6b 0.89914 
29 '11101001001001' 6e Projected '00000110011110' 6e 0.90155 
30 '11101001001001' 9b Projected '00000010110111' 9b 0.95525 
31 '11101001001001' 9e Projected '00000010111110' 9e 1.0088 
32 '11101001001001' be Projected '00000010010110' be 0.92288 
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Table 116 
Application of a FFD to the Non-Interacting Variables of effK  

 
Top End b down e down 

Variables State effK  Variables State effK  Variables State effK  

'00011100100000' 1.1808 '00011100101000' 1.1649 '00011100100001' 1.1644
'10011100110110' 1.1619 '10011100111110' 1.1655 '10011100110111' 1.1169
'01011101100110' 1.2667 '01011101101110' 1.2366 '01011101100111' 1.2518
'11011101110000' 1.2544 '11011101111000' 1.2507 '11011101110001' 1.2204
'00111101110100' 1.1746 '00111101111100' 1.1694 '00111101110101' 1.1399
'10111101100010' 1.2581 '10111101101010' 1.2303 '10111101100011' 1.2438
'01111100110010' 1.1571 '01111100111010' 1.1638 '01111100110011' 1.1123
'11111100100100' 1.2692 '11111100101100' 1.2504 '11111100100101' 1.2499
'00011111110010' 1.1659 '00011111111010' 1.1576 '00011111110011' 1.1323
'10011111100100' 1.2554 '10011111101100' 1.2274 '10011111100101' 1.2401
'01011110110100' 1.1543 '01011110111100' 1.1595 '01011110110101' 1.1088
'11011110100010' 1.2588 '11011110101010' 1.2352 '11011110100011' 1.2409
'00111110100110' 1.1678 '00111110101110' 1.1459 '00111110100111' 1.1504
'10111110110000' 1.1617 '10111110111000' 1.1667 '10111110110001' 1.1165
'01111111100000' 1.265 '01111111101000' 1.2398 '01111111100001' 1.2509
'11111111110110' 1.2442 '11111111111110' 1.2337 '11111111110111' 1.2094
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3. Multiplication Factor Experiments: 128 Res IV FFD Results (128) 

Table 117 
Application of a 128 Res IV FFD to effK   

 

Variables State effK  Variables State 
 

Variables State effK  

'00000000000000' 0.99717 '01010011010110' 1.0886 '10100110010110' 1.0077
'00000001111111' 1.027 '01010100101001' 1.1885 '10100111101001' 1.1478
'00000010111111' 0.96608 '01010101010110' 1.1283 '10110000101010' 1.1693
'00000011000000' 1.0397 '01010110010110' 1.0655 '10110001010101' 1.0697
'00000100111111' 1.0021 '01010111101001' 1.2263 '10110010010101' 1.0033
'00000101000000' 1.0816 '01100000011001' 0.87993 '10110011101010' 1.1907
'00000110000000' 1.0238 '01100001100110' 1.1659 '10110100010101' 1.0437
'00000111111111' 1.0498 '01100010100110' 1.108 '10110101101010' 1.2303
'00010000111100' 1.0936 '01100011011001' 0.92344 '10110110101010' 1.1925
'00010001000011' 1.0814 '01100100100110' 1.1333 '10110111010101' 1.0929
'00010010000011' 1.0181 '01100101011001' 0.96482 '11000000001111' 0.96256
'00010011111100' 1.1288 '01100110011001' 0.90416 '11000001110000' 1.1513
'00010100000011' 1.0636 '01100111100110' 1.1782 '11000010110000' 1.0989
'00010101111100' 1.1693 '01110000100101' 1.1778 '11000011001111' 0.98322
'00010110111100' 1.1203 '01110001011010' 1.017 '11000100110000' 1.1155
'00010111000011' 1.1101 '01110010011010' 0.97107 '11000101001111' 1.0283
'00100000110011' 0.96191 '01110011100101' 1.2262 '11000110001111' 0.98548
'00100001001100' 0.95046 '01110100011010' 1.0141 '11000111110000' 1.1562
'00100010001100' 0.90347 '01110101100101' 1.2556 '11010000110011' 1.1426
'00100011110011' 1.024 '01110110100101' 1.1965 '11010001001100' 1.091
'00100100001100' 0.9495 '01110111011010' 1.0412 '11010010001100' 1.0508
'00100101110011' 1.0514 '10000000100101' 1.1017 '11010011110011' 1.1937
'00100110110011' 0.9808 '10000001011010' 0.95983 '11010100001100' 1.097
'00100111001100' 0.97868 '10000010011010' 0.92547 '11010101110011' 1.2173
'00110000001111' 0.92513 '10000011100101' 1.1373 '11010110110011' 1.155
'00110001110000' 1.1529 '10000100011010' 0.96621 '11010111001100' 1.114
'00110010110000' 1.0905 '10000101100101' 1.1627 '11100000111100' 1.1147
'00110011001111' 0.95697 '10000110100101' 1.1165 '11100001000011' 1.1083
'00110100110000' 1.122 '10000111011010' 0.98323 '11100010000011' 1.0533
'00110101001111' 1.0039 '10010000011001' 0.95762 '11100011111100' 1.1423
'00110110001111' 0.95348 '10010001100110' 1.2329 '11100100000011' 1.0913
'00110111110000' 1.1714 '10010010100110' 1.1894 '11100101111100' 1.1716
'01000000101010' 1.0998 '10010011011001' 0.98856 '11100110111100' 1.1282
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Table 117 Continued 
 

Variables State effK  Variables State 
 

Variables State effK  

'01000001010101' 0.99248 '10010100100110' 1.2204 '11100111000011' 1.1269
'01000010010101' 0.91594 '10010101011001' 1.0324 '11110000000000' 1.1667
'01000011101010' 1.1352 '10010110011001' 0.98309 '11110001111111' 1.1837
'01000100010101' 0.95251 '10010111100110' 1.2497 '11110010111111' 1.131
'01000101101010' 1.1719 '10100000010110' 0.98626 '11110011000000' 1.1959
'01000110101010' 1.1198 '10100001101001' 1.128 '11110100111111' 1.1649
'01000111010101' 1.0135 '10100010101001' 1.0846 '11110101000000' 1.2362
'01010000010110' 1.0401 '10100011010110' 1.0235 '11110110000000' 1.1877
'01010001101001' 1.2054 '10100100101001' 1.1208 '11110111111111' 1.2003
'01010010101001' 1.1475 '10100101010110' 1.0597     
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4. Flux Spectrum Experiments: MHIV Method Results (130) 

Table 118 
Application of the MHIV Method to RFS 
 

 
Low End Variables 

State 
RFS 

 
High End Variables 

State 
RFS 

'00000110110000' 0.508673 '11111001001111' 1.1739 
1 Up '10000110110000' 0.508518 1 Down '01111001001111' 1.1164 
2 Up '01000110110000' 0.509814 2 Down '10111001001111' 1.0771 
3 Up '00100110110000' 0.507769 3 Down '11011001001111' 1.1679 
4 Up '00010110110000' 0.551146 4 Down '11101001001111' 1.0322 
5 Up '00001110110000' 0.508673 5 Down '11110001001111' 1.1739 
6 Up '00000010110000' 0.526067 6 Down '11111101001111' 1.1066 
7 Up '00000100110000' 0.508001 7 Down '11111011001111' 1.1673 
8 Up '00000111110000' 0.515172 8 Down '11111000001111' 1.1397 
9 Up '00000110010000' 0.610874 9 Down '11111001101111' 0.7891 
a Up '00000110100000' 0.520291 a Down '11111001011111' 1.1133 
b Up '00000110111000' 0.602156 b Down '11111001000111' 0.8039 
c Up '00000110110100' 0.509087 c Down '11111001001011' 1.1627 
d Up '00000110110010' 0.509684 d Down '11111001001101' 1.1516 
e Up '00000110110001' 0.515092 e Down '11111001001110' 1.1608 
9b Up 00000110011000' 0.7893 9b Down 11111001100111' 0.612632 
9B=11-12468a 
1 Up Performed 1 Down '10000110011000' 0.8114 
2 Up Performed  2 Down '01000110011000' 0.8128 
4 Up Performed  4 Down '00010110011000' 0.8821 
6 Up Performed  6 Down '00000010011000' 0.8252 
8 Up Performed  8 Down '00000111011000' 0.8280 
a Up Performed  a Down '00000110001000' 0.8455 
d Up Performed  d Down '00000110011010' 0.7985 
12 UP '00111001001111' 1.03671 12 Down '11000110011000' 0.8359 
14 UP '01101001001111' 0.988533 14 Down '10010110011000' 0.9102 
24 UP '10101001001111' 0.961631 24 Down '01010110011000' 0.9164 

124 UP '00101001001111' 0.929627 
124 
Down 

'11010110011000' 0.9490 
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Table 118 Continued 
 

 
Low End Variables 

State 
RFS 

 
High End Variables 

State 
RFS 

 9B=01-12468ad 
1 UP '01111001101111' 0.78235 1 Down '10000110111000' 0.6035 
2 UP '10111001101111' 0.764409 2 Down '01000110111000' 0.6080 
4 UP '11101001101111' 0.699203 4 Down '00010110111000' 0.6632 
6 UP '11111101101111' 0.742225 6 Down '00000010111000' 0.6306 
8 UP '11111000101111' 0.779302 8 Down '00000111111000' 0.6168 
a UP '11111001111111' 0.765755 a Down '00000110101000' 0.6279 
d UP '11111001101101' 0.783883 d Down '00000110111010' 0.6065 
24 UP '10101001101111' 0.681338 24 Down '01010110111000' 0.6758 
26 UP '10111101101111' 0.725689 26 Down '01000010111000' 0.6397 
46 UP '11101101101111' 0.661594 46 Down '00010010111000' 0.6964 

246 UP '10101101101111' 0.648256 
246 
Down 

'01010010111000' 0.7116 

9B=10-12468ad 
1 UP '01111001000111' 0.790952 1 Down '10000110010000' 0.6171 
2 UP '10111001000111' 0.775675 2 Down '01000110010000' 0.6143 
4 UP '11101001000111' 0.711845 4 Down '00010110010000' 0.6722 
6 UP '11111101000111' 0.757461 6 Down '00000010010000' 0.6371 
8 UP '11111000000111' 0.794913 8 Down '00000111010000' 0.6244 
a UP '11111001010111' 0.781006 a Down '00000110000000' 0.6312 
d UP '11111001000101' 0.792079 d Down '00000110010010' 0.6146 
24 UP '10101001000111' 0.693385 24 Down '01010110010000' 0.6814 
26 UP '10111101000111' 0.735456 26 Down '01000010010000' 0.6464 
46 UP '11101101000111' 0.673355 46 Down '00010010010000' 0.7050 

246 UP '10101101000111' 0.658892 
246 
Down 

'01010010010000' 0.7171 

 9B=00-12468ad 

1 UP '01111001100111' 0.612033 1 Down Performed  
2 UP '10111001100111' 0.603136 2 Down Performed  
4 UP '11101001100111' 0.557196 4 Down Performed  
6 UP '11111101100111' 0.584385 6 Down Performed  
8 UP '11111000100111' 0.610389 8 Down Performed  
a UP '11111001110111' 0.602192 a Down Performed  
d UP '11111001100101' 0.610836 d Down Performed  
46 UP '11101101100111' 0.533618 46 Down '00010010110000' 0.5716 
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Table 118 Continued 
 

 
Low End Variables 
State 

RFS 
 

High End Variables 
State 

RFS 

9B=11-124= 111 

6 UP '11010010011000' 1.00551 6 Down Performed  
d UP '11010110011010' 0.958957 d Down Performed  
6d UP 11010010011010' 1.0142 6d Down '11111101001101' 1.0806 

9B=11-124= 011 

6 UP '01111101001111' 1.067885 6 Down '01010010011000' 0.9651 
d UP '01111001001101' 1.102244 d Down '01010110011010' 0.9258 
9B=11-124= 101 
6 UP '10111101001111' 1.033805 6 Down '10010010011000' 0.9610 
d UP '10111001001101' 1.070034 d Down '10010110011010' 0.9211 
9B=11-124= 110 
6 UP '11101101001111' 0.964785 6 Down '11000010011000' 0.8887 
d UP '11101001001101' 1.004097 d Down '11000110011010' 0.8506 
6d UP '11101101001101' 0.942951 6d Down '11000010011010' 0.9014 

9B=11-124= 001 

6 UP '00111101001111' 0.997506 6 Down '00010010011000' 0.9208 
d UP '00111001001101' 1.031768 d Down '00010110011010' 0.8902 

9B=11-124= 010 

6 UP '01101101001111' 0.93835 6 Down '01000010011000' 0.8545 
d UP '01101001001101' 0.972479 d Down '01000110011010' 0.8247 
9B=11-124= 100 
6 UP '10101101001111' 0.92098 6 Down '10000010011000' 0.8533 
d UP '10101001001101' 0.948047 d Down '10000110011010' 0.8214 
9B=11-124= 000 
6 UP '00101101001111' 0.891583 6 Down Performed  
d UP '00101001001101' 0.919033 d Down Performed  
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5. Flux Spectrum Experiments: 128 FFD Results (128) 

Table 119 
Application of a 128 Res IV FFD to RFS 
 

Variables State RFS Variables State RFS Variables State RFS 

'00000000000000' 0.66256 '01010011010110' 0.75672 '10100110010110' 0.62461 
'00000001111111' 0.66186 '01010100101001' 0.71942 '10100111101001' 0.64033 
'00000010111111' 0.64512 '01010101010110' 0.71541 '10110000101010' 0.7446 
'00000011000000' 0.66966 '01010110010110' 0.69128 '10110001010101' 0.75586 
'00000100111111' 0.62 '01010111101001' 0.73115 '10110010010101' 0.74025 
'00000101000000' 0.63857 '01100000011001' 0.87108 '10110011101010' 0.75523 
'00000110000000' 0.63123 '01100001100110' 0.55227 '10110100010101' 0.70582 
'00000111111111' 0.63139 '01100010100110' 0.54891 '10110101101010' 0.71526 
'00010000111100' 0.69906 '01100011011001' 0.91291 '10110110101010' 0.70706 
'00010001000011' 0.76092 '01100100100110' 0.52913 '10110111010101' 0.71839 
'00010010000011' 0.75092 '01100101011001' 0.87138 '11000000001111' 1.0032 
'00010011111100' 0.72218 '01100110011001' 0.82768 '11000001110000' 0.54048 
'00010100000011' 0.71638 '01100111100110' 0.5307 '11000010110000' 0.53118 
'00010101111100' 0.68894 '01110000100101' 0.60533 '11000011001111' 1.027 
'00010110111100' 0.66809 '01110001011010' 1.0425 '11000100110000' 0.51057 
'00010111000011' 0.72364 '01110010011010' 0.97972 '11000101001111' 0.96937 
'00100000110011' 0.53447 '01110011100101' 0.60983 '11000110001111' 0.94841 
'00100001001100' 0.91308 '01110100011010' 0.92721 '11000111110000' 0.51816 
'00100010001100' 0.88645 '01110101100101' 0.582 '11010000110011' 0.58782 
'00100011110011' 0.54142 '01110110100101' 0.57874 '11010001001100' 1.1342 
'00100100001100' 0.84911 '01110111011010' 0.98765 '11010010001100' 1.0961 
'00100101110011' 0.52165 '10000000100101' 0.54585 '11010011110011' 0.60002 
'00100110110011' 0.5157 '10000001011010' 0.90106 '11010100001100' 1.0382 
'00100111001100' 0.86783 '10000010011010' 0.8649 '11010101110011' 0.57205 
'00110000001111' 1.0039 '10000011100101' 0.54747 '11010110110011' 0.56224 
'00110001110000' 0.5836 '10000100011010' 0.82379 '11010111001100' 1.0695 
'00110010110000' 0.57039 '10000101100101' 0.52488 '11100000111100' 0.64754 
'00110011001111' 1.0342 '10000110100101' 0.52546 '11100001000011' 0.70602 
'00110100110000' 0.54939 '10000111011010' 0.85771 '11100010000011' 0.70062 
'00110101001111' 1.0027 '10010000011001' 0.98425 '11100011111100' 0.66551 
'00110110001111' 0.97485 '10010001100110' 0.60067 '11100100000011' 0.66375 
'00110111110000' 0.55878 '10010010100110' 0.59573 '11100101111100' 0.63032 
'01000000101010' 0.67774 '10010011011001' 1.0282 '11100110111100' 0.61323 
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Table 119 Continued 
 

'01000001010101' 0.68204 '10010100100110' 0.57071 '11100111000011' 0.66823 
'01000010010101' 0.66028 '10010101011001' 0.97675 '11110000000000' 0.76941 
'01000011101010' 0.68662 '10010110011001' 0.94038 '11110001111111' 0.76051 
'01000100010101' 0.62672 '10010111100110' 0.57366 '11110010111111' 0.73649 
'01000101101010' 0.65083 '10100000010110' 0.65535 '11110011000000' 0.77851 
'01000110101010' 0.64309 '10100001101001' 0.67308 '11110100111111' 0.69881 
'01000111010101' 0.64445 '10100010101001' 0.66975 '11110101000000' 0.73459 
'01010000010110' 0.72865 '10100011010110' 0.66903 '11110110000000' 0.72585 
'01010001101001' 0.77369 '10100100101001' 0.63638 '11110111111111' 0.71922 
'01010010101001' 0.75901 '10100101010110' 0.63662 
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6. Density Reactivity Coefficient: MHIV Method Results (168 Experiments)  

Table 120 
Application of the MHIV Method to d   

 

 
Low End 

Variables State d  
 

High End 
Variables State d  

'11110101101000' 0.132042136 '00001010010111' 0.339774 
1 Up '01110101101000' 0.158369056 1 Down '10001010010111' 0.27391 
2 Up '10110101101000' 0.163946134 2 Down '01001010010111' 0.290085 
3 Up '11010101101000' 0.132460298 3 Down '00101010010111' 0.334924 
4 Up '11100101101000' 0.135367492 4 Down '00011010010111' 0.317306 
5 Up '11111101101000' 0.132042136 5 Down '00000010010111' 0.339774 
6 Up '11110001101000' 0.140599564 6 Down '00001110010111' 0.317752 
7 Up '11110111101000' 0.134980368 7 Down '00001000010111' 0.335544 
8 Up '11110100101000' 0.14186363 8 Down '00001011010111' 0.294456 
9 Up '11110101001000' 0.183994517 9 Down '00001010110111' 0.260482 
a Up '11110101111000' 0.130225321 a Down '00001010000111' 0.314508 
b Up '11110101100000' 0.095778625 b Down '00001010011111' 0.330731 
c Up '11110101101100' 0.132662819 c Down '00001010010011' 0.337585 
d Up '11110101101010' 0.1351116 d Down '00001010010101' 0.332439 
e Up '11110101101001' 0.134875472 e Down '00001010010110' 0.316809 
18' Up '01110100101000' 0.177207466 18 Down '10001011010111' 0.241224 
1b Up '01110101100000' 0.125125604 1b Down '10001010011111' 0.277105 
8b Up '11110100100000' 0.108239758 8b Down '00001011011111' 0.298034 
18b 
Up 

'01110100100000' 0.148200065 
18b 
Down 

'10001011011111' 0.258824 

18b=111-2469ae 
'01110100100000' Performed  '00001010010111' Performed 

2 Up '00110100100000' 0.190980509 2 Down  '01001010010111' Performed 
4 Up '01100100100000' 0.14991092 4 Down  '00011010010111' Performed 
6 Up '01110000100000' 0.16541123 6 Down  '00001110010111' Performed 
9 Up '01110100000000' 0.213506302 9 Down  '00001010110111' Performed 
a Up '01110100110000' 0.150627601 a Down  '00001010000111' Performed 
e Up '01110100100001' 0.155471452 e Down  '00001010010110' Performed 
4a 
Up 

'01100100110000' 0.151518 4a Down '00011010000111' 0.295824 

18b=111-4a=01 
9 Up '01100100000000' 0.224820822 9 Down '00011010110111' 0.244559 
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Table 120 Continued 
 

 
Low End 

Variables State d  
 

High End 
Variables State d  

e Up 01100100100001''' 0.157281268 e Down '00011010010110' 0.299576 
18b=111-4a=10 
9 Up '01110100010000' 0.223244579 9 Down '00001010100111' 0.23979 
e Up '01110100110001' 0.167881963 e Down '00001010000110' 0.305527 
18b=111-4a=00 
9 Up '01100100010000' 0.232327227 9 Down '00011010100111' 0.230345 
e Up '01100100110001' 0.1734716 e Down '00011010000110' 0.289347 
18b=011-2469ae 
1 Up '11110100100000' Performed 1 Down  '10001010010111' Performed 
2 Up '10110100100000' 0.147401555 2 Down '11001010010111' 0.229476 
4 Up '11100100100000' 0.107642248 4 Down '10011010010111' 0.255865 
6 Up '11110000100000' 0.123191632 6 Down '10001110010111' 0.259674 
9 Up '11110100000000' 0.166585965 9 Down '10001010110111' 0.201942 
a Up '11110100110000' 0.110848885 a Down '10001010000111' 0.252774 
e Up '11110100100001' 0.115178383 e Down '10001010010110' 0.253059 
4a 
Up 

'11100100110000' 0.109496268 4a Down '10011010000111' 0.237024 

18b=011-4a=01 
9 Up '11100100000000' 0.175497999 9 Down '10011010110111' 0.194308 
e Up '11100100100001' 0.114698126 e Down '10011010010110' 0.237473 
18b=011-4a=10 
9 Up '11110100010000' 0.174238989 9 Down '10001010100111' 0.185146 
e Up '11110100110001' 0.126355925 e Down '10001010000110' 0.24382 
18b=011-4a=00 
9 Up '11100100010000' 0.183328942 9 Down '10011010100111' 0.180228 
e Up '11100100110001' 0.128921977 e Down '10011010000110' 0.228756 
18b=101-2469ae 

'01110101100000' Performed  '00001011010111' Performed 
2 Up '00110101100000' 0.164075015 2 Down '01001011010111' 0.247985 
4 Up '01100101100000' 0.124625927 4 Down '00011011010111' 0.273096 
6 Up '01110001100000' 0.141407261 6 Down '00001111010111' 0.27589 
9 Up '01110101000000' 0.186445502 9 Down '00001011110111' 0.218294 
a Up '01110101110000' 0.128988713 a Down '00001011000111' 0.276201 
e Up '01110101100001' 0.130652319 e Down '00001011010110' 0.278176 
4a 
Up 

'01100101110000' 0.127103832 4a Down '00011011000111' 0.259374 
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Table 120 Continued 
 

 
Low End 

Variables State d  
 

High End 
Variables State d  

18b=101-4a=01 
6 Up '01100101000000' 0.193762833 6 Down '00011011110111' 0.212486 
e Up '01100101100001' 0.130988194 e Down '00011011010110' 0.261542 
18b=101-4a=10 
6 Up '01110101010000' 0.19205033 6 Down '00001011100111' 0.205463 
e Up '01110101110001' 0.139810748 e Down '00001011000110' 0.269054 
18b=101-4a=00 
6 Up '01100101010000' 0.200574943 6 Down '00011011100111' 0.199101 
e Up '01100101110001' 0.142217806 e Down '00011011000110' 0.25372 
18b=110-2469ae- 

'01110100101000' Performed  '00001010011111' Performed 
2 Up '00110100101000' 0.213302531 2 Down '01001010011111' 0.287256 
4 Up '01100100101000' 0.183988344 4 Down '00011010011111' 0.300671 
6 Up '01110000101000' 0.189887183 6 Down '00001110011111' 0.320993 
9 Up '01110100001000' 0.233008574 9 Down '00001010111111' 0.274475 
a Up '01110100111000' 0.176224286 a Down '00001010001111' 0.320532 
e Up '01110100101001' 0.181405557 e Down '00001010011110' 0.32556 
4a 
Up 

'01100100111000' 0.184531697 4a Down '00011010001111' 0.291442 

18b=001-2469ae 
'11110101100000' Performed  '10001011010111' Performed 

2 Up '10110101100000' 0.131906816 2 Down '11001011010111' 0.201195 
4 Up '11100101100000' 0.093005285 4 Down '10011011010111' 0.227741 
6 Up '11110001100000' 0.108385085 6 Down '10001111010111' 0.228819 
9 Up '11110101000000' 0.151729416 9 Down '10001011110111' 0.177695 
a Up '11110101110000' 0.097166255 a Down '10001011000111' 0.227623 
e Up '11110101100001' 0.101012984 e Down '10001011010110' 0.227392 
4a 
Up 

'11100101110000' 0.095659871 4a Down '10011011000111' 0.21543 

18b=010-2469ae 
'11110100101000' Performed  '10001010011111' Performed 

2 Up '10110100101000' 0.177786445 2 Down '11001010011111' 0.242543 
4 Up '11100100101000' 0.146568991 4 Down '10011010011111' 0.251304 
6 Up '11110000101000' 0.152154461 6 Down '10001110011111' 0.273784 
9 Up '11110100001000' 0.195961726 9 Down '10001010111111' 0.22424 
a Up '11110100111000' 0.140165735 a Down '10001010001111' 0.267437 
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Table 120 Continued 
 

 
Low End 

Variables State d  
 

High End 
Variables State d  

e Up '11110100101001' 0.146699539 e Down '10001010011110' 0.271489 
4a 
Up 

'11100100111000' 0.146287571 4a Down '10011010001111' 0.243548 

18b=100-2469ae 
'01110101101000' Performed  '00001011011111' Performed 

2 Up '00110101101000' 0.194730124 2 Down '01001011011111' 0.263579 
4 Up '01100101101000' 0.162395049 4 Down '00011011011111' 0.271482 
6 Up '01110001101000' 0.168756386 6 Down '00001111011111' 0.29003 
9 Up '01110101001000' 0.212625859 9 Down '00001011111111' 0.244059 
a Up '01110101111000' 0.158566403 a Down '00001011001111' 0.292458 
e Up '01110101101001' 0.159859097 e Down '00001011011110' 0.293118 
18b=000-2469ae 

'11110101101000' Performed  '10001011011111' Performed 
2 Up '10110101101000' Performed 2 Down '11001011011111' 0.227283 
4 Up '11100101101000' Performed 4 Down '10011011011111' 0.231792 
6 Up '11110001101000' Performed 6 Down '10001111011111' 0.254596 
9 Up '11110101001000' Performed 9 Down '10001011111111' 0.205176 
a Up '11110101111000' Performed a Down '10001011001111' 0.253467 
e Up '11110101101001' Performed e Down '10001011011110' 0.254111 

 

 
Table 121 
Application of a Sixteen FFD to d   

 

Variables State d  Variables State d  Variables State d  

'00000100101101' 0.23449 '01100101010101' 0.21949 '10110001100100' 0.1498
'00010011010001' 0.26674 '01110010101001' 0.19813 '11000111100000' 0.094937
'00100011001110' 0.28653 '10000001111011' 0.20048 '11010000011100' 0.20639
'00110100110010' 0.19918 '10010110000111' 0.22554 '11100000000011' 0.20226
'01000010110110' 0.18537 '10100110011000' 0.25422 '11110111111111' 0.14764
'01010101001010' 0.22102 
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7. Fuel Temperature Reactivity Coefficient: MHIV Method Results (90)  

Table 122 
Application of the MHIV Method to FT   
 

 
Low End 

Variables State FT  
 

High End 
Variables State FT  

      
'11111110100000' -0.01631 '00000001011111' -0.05471 

1 Up '01111110100000' -0.0167 1 Down '10000001011111' -0.0542 
2 Up '10111110100000' -0.01686 2 Down '01000001011111' -0.05404 
3 Up '11011110100000' -0.01631 3 Down '00100001011111' -0.05439 
4 Up '11101110100000' -0.01756 4 Down '00010001011111' -0.05039 
5 Up '11110110100000' -0.01631 5 Down '00001001011111' -0.05471 
6 Up '11111010100000' -0.01799 6 Down '00000101011111' -0.05119 
7 Up '11111100100000' -0.02049 7 Down '00000011011111' -0.04349 
8 Up '11111111100000' -0.0163 8 Down '00000000011111' -0.05377 
9 Up '11111110000000' -0.02451 9 Down '00000001111111' -0.03469 
a Up '11111110110000' -0.01562 a Down '00000001001111' -0.05491 
b Up '11111110101000' -0.02136 b Down '00000001010111' -0.04044 
c Up '11111110100100' -0.01628 c Down '00000001011011' -0.05412 
d Up '11111110100010' -0.01655 d Down '00000001011101' -0.05266 
e Up '11111110100001' -0.01667 e Down '00000001011110' -0.05156 
79 
Up 

'11111100000000' -0.03064 79 Down '00000011111111' -0.02752 

7b 
Up 

'11111100101000' -0.02668 7b Down '00000011010111' -0.03206 

9b 
Up 

'11111110001000' -0.03363 9b Down '00000001110111' -0.02667 

79b 
Up 

'11111100001000' -0.0429 79b Down '00000011110111' -0.02143 

79b=111-46de 
'11111100001000' Performed  '00000001011111' Performed  

4 Up '11101100001000' -0.04598 4 Down '00010001011111' Performed  
6 Up '11111000001000' -0.04624 6 Down '00000101011111' Performed  
d Up '11111100001010' -0.04446 d Down '00000001011101' Performed  
e Up '11111100001001' -0.04456 e Down '00000001011110' Performed  
79b=110-46de 

'11111100000000' Performed  '00000001010111' Performed  
4 Up '11101100000000' -0.03308 4 Down '00010001010111' -0.03776 
6 Up '11111000000000' -0.03346 6 Down '00000101010111' -0.03767 
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Table 122 Continued 
 

 
Low End 

Variables State FT  
 

High End 
Variables State FT  

d Up '11111100000010' -0.03163 d Down '00000001010101' -0.03948 
e Up '11111100000001' -0.03193 e Down '00000001010110' -0.03859 
79b=101-46de 

'11111100101000' Performed  '00000001111111' Performed  
4 Up '11101100101000' -0.02883 4 Down '00010001111111' -0.03179 
6 Up '11111000101000' -0.02966 6 Down '00000101111111' -0.03163 
d Up '11111100101010' -0.02782 d Down '00000001111101' -0.0338 
e Up '11111100101001' -0.02751 e Down '00000001111110' -0.03278 
79b=100-46de 

'11111100100000' Performed  '00000001110111' Performed  
4 Up '11101100100000' -0.02209 4 Down '00010001110111' -0.02453 
6 Up '11111000100000' -0.02242 6 Down '00000101110111' -0.0242 
d Up '11111100100010' -0.02081 d Down '00000001110101' -0.02632 
e Up '11111100100001' -0.02091 e Down '00000001110110' -0.02532 
79b=011-46de 

'11111110001000' Performed  '00000011011111' Performed  
4 Up '11101110001000' -0.03646 4 Down '00010011011111' -0.03974 
6 Up '11111010001000' -0.03637 6 Down '00000111011111' -0.04052 
d Up '11111110001010' -0.03495 d Down '00000011011101' -0.04164 
e Up '11111110001001' -0.03508 e Down '00000011011110' -0.04103 
79b=010-46de 

'11111110000000' Performed  '00000011010111' Performed  
4 Up '11101110000000' -0.02631 4 Down '00010011010111' -0.02996 
6 Up '11111010000000' -0.02657 6 Down '00000111010111' -0.02991 
d Up '11111110000010' -0.02511 d Down '00000011010101' -0.03152 
e Up '11111110000001' -0.0252 e Down '00000011010110' -0.03056 
79b=001-46de 

'11111110101000' Performed  '00000011111111' Performed  
4 Up '11101110101000' -0.02297 4 Down '00010011111111' -0.02542 
6 Up '11111010101000' -0.02356 6 Down '00000111111111' -0.02487 
d Up '11111110101010' -0.02191 d Down '00000011111101' -0.02655 
e Up '11111110101001' -0.0219 e Down '00000011111110' -0.02624 
79b=000-46de 

'11111110100000' Performed  '00000011110111' Performed  
4 Up '11101110100000' Performed  4 Down '00010011110111' -0.01963 
6 Up '11111010100000' Performed  6 Down '00000111110111' -0.01964 
d Up '11111110100010' Performed  d Down '00000011110101' -0.02075 
e Up '11111110100001' Performed  e Down '00000011110110' -0.01999 
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Table 123 
Application of a Sixteen FFD to FT  
 

Variables State FT  Variables State FT  

'00000100101101' 0.031321 '10010110000111' 0.026668 
'00010011010001' 0.028449 '10100110011000' 0.035088 
'00100011001110' 0.042735 '01010101001010' 0.045717 
'00110100110010' 0.020816 '10110001100100' 0.022983 
'01000010110110' 0.019758 '11000111100000' 0.017582 
'01100101010101' 0.035623 '11010000011100' 0.044473 
'01110010101001' 0.02434 '11100000000011' 0.038042 
'10000001111011' 0.033617 '11110111111111' 0.022427 
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8. Power Peaking Factor: MHIV Method Results (292)  

Table 124 
Application of the MHIV Method to PPF  
 

 
Low End 

Variables State 
PPF  

High End 
Variables State 

PPF 

'00101001010110' 2.2828 '11010110101001' 2.8326 
1 Up '10101001010110' 2.2291 1 Down '01010110101001' 2.621 
2 Up '01101001010110' 2.3236 2 Down '10010110101001' 2.5086 
3 Up '00001001010110' 2.2776 3 Down '11110110101001' 2.6569 
4 Up '00111001010110' 2.3204 4 Down '11000110101001' 2.5232 
5 Up '00100001010110' 2.2828 5 Down '11011110101001' 2.8326 
6 Up '00101101010110' 2.3283 6 Down '11010010101001' 2.7096 
7 Up '00101011010110' 2.231 7 Down '11010100101001' 2.6976 
8 Up '00101000010110' 2.1178 8 Down '11010111101001' 2.7877 
9 Up '00101001110110' 2.4303 9 Down '11010110001001' 2.565 
a Up '00101001000110' 2.1508 a Down '11010110111001' 2.4072 
b Up '00101001011110' 2.0748 b Down '11010110100001' 2.7381 
c Up '00101001010010' 2.2955 c Down '11010110101101' 2.7194 
d Up '00101001010100' 2.2604 d Down '11010110101011' 2.7407 
e Up '00101001010111' 2.1542 e Down '11010110101000' 2.6873 

2a Up '01101001000110' 2.3142 2a Down '10010110111001' 2.445 
2b Up '01101001011110' 2.2527 2b Down '10010110100001' 2.5381 
ab Up '00101001001110' 2.0034 ab Down '11010110110001' 2.2512 

2ab Up '01101001001110' 2.2077 2ab Down 10010110110001' 2.445 
 2ab=111,134789cde 

'01101001001110' Performed '11010110101001' Performed 
1 Up '11101001001110' 2.3398 1 Down '01010110101001' Performed 
3 Up '01001001001110' 2.2097 3 Down '11110110101001' Performed 
4 Up '01111001001110' 2.3235 4 Down '11000110101001' Performed 
7 Up '01101011001110' 2.1603 7 Down '11010100101001' Performed 
8 Up '01101000001110' 2.1522 8 Down '11010111101001' Performed 
9 Up '01101001101110' 2.467 9 Down '11010110001001' Performed 
c Up '01101001001010' 2.3506 c Down '11010110101101' Performed 
d Up '01101001001100' 2.2634 d Down '11010110101011' Performed 
e Up '01101001001111' 2.2134 e Down '11010110101000' Performed 

34 Up '01011001001110' 2.3798 34 Down '11100110101001' 2.5583 
37 Up '01001011001110' 2.2928 37 Down '11110100101001' 2.6729 
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Table 124 Continued 
 

 
Low End 

Variables State 
PPF  

High End 
Variables State 

PPF 

47 Up '01111011001110' 2.3545 47 Down '11000100101001' 2.4631 
347 Up '01011011001110' 2.3418 347 Down '11100100101001' 2.4978 

 2ab=011,134789cde 
'00101001001110' Performed '10010110101001' Performed 

1 Up '10101001001110' 2.0986 1 Down '00010110101001' 2.3571 
3 Up '00001001001110' 2.0248 3 Down '10110110101001' 2.4544 
4 Up '00111001001110' 2.0666 4 Down '10000110101001' 2.3921 
7 Up '00101011001110' 2.0095 7 Down '10010100101001' 2.4556 
8 Up '00101000001110' 2.0168 8 Down '10010111101001' 2.5688 
9 Up '00101001101110' 2.2342 9 Down '10010110001001' 2.2082 
c Up '00101001001010' 2.0001 c Down '10010110101101' 2.4806 
d Up '00101001001100' 2.0123 d Down '10010110101011' 2.5396 
e Up '00101001001111' 1.9863 e Down '10010110101000' 2.5578 

 2ab=110,134789cde 
'01101001000110' Performed '11010110100001' Performed 

1 Up '11101001000110' 2.4587 1 Down '01010110100001' 2.6011 
3 Up '01001001000110' 2.386 3 Down '11110110100001' 2.7856 
4 Up '01111001000110' 2.4917 4 Down '11000110100001' 2.5403 
7 Up '01101011000110' 2.4045 7 Down '11010100100001' 2.8734 
8 Up '01101000000110' 2.3018 8 Down '11010111100001' 2.6032 
9 Up '01101001100110' 2.5024 9 Down '11010110000001' 2.5778 
c Up '01101001000010' 2.3924 c Down '11010110100101' 2.6803 
d Up '01101001000100' 2.3267 d Down '11010110100011' 2.747 
e Up '01101001000111' 2.3945 e Down '11010110100000' 2.664 

37 Up '01001011000110' 2.3095 37 Down '11110100100001' 2.7263 
38 Up '01001000000110' 2.2216 38 Down '11110111100001' 2.7234 
78 Up '01101010000110' 2.2382 78 Down '11010101100001' 2.6938 

378 Up '01001010000110' 2.2633 378 Down '11110101100001' 2.6492 
2ab=101,134789cde 

'01101001011110' Performed '11010110111001' Performed 
1 Up '11101001011110' 2.3041 1 Down '01010110111001' 2.2619 
3 Up '01001001011110' 2.267 3 Down '11110110111001' 2.3396 
4 Up '01111001011110' 2.3542 4 Down '11000110111001' 2.1798 
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Table 124 Continued 
 

 
Low End 

Variables State 
PPF  

High End 
Variables State 

PPF 

7 Up '01101011011110' 2.2832 7 Down '11010100111001' 2.4122 
8 Up '01101000011110' 2.1714 8 Down 11010111111001''' 2.6011 
9 Up '01101001111110' 2.5654 9 Down '11010110011001' 2.308 
c Up '01101001011010' 2.2645 c Down '11010110111101' 2.4693 
d Up '01101001011100' 2.2581 d Down '11010110111011' 2.399 
e Up '01101001011111' 2.1448 e Down 11010110111000''' 2.69 

2ab=100,134789cde 
'01101001010110' Performed '11010110110001' Performed 

1 Up '11101001010110' 2.3114 1 Down '01010110110001' 2.1754 
3 Up '01001001010110' 2.314 3 Down '11110110110001' 2.3014 
4 Up '01111001010110' 2.5398 4 Down '11000110110001' 2.0521 
7 Up '01101011010110' 2.278 7 Down '11010100110001' 2.272 
8 Up '01101000010110' 2.0615 8 Down '11010111110001' 2.5982 
9 Up '01101001110110' 2.4581 9 Down '11010110010001' 2.2319 
c Up '01101001010010' 2.3894 c Down '11010110110101' 2.1688 
d Up '01101001010100' 2.3807 d Down '11010110110011' 2.321 
e Up '01101001010111' 2.2113 e Down '11010110110000' 2.5891 

ed Up '01101001010101' 2.1316 ed Down 11010110110010''' 2.5404 
2ab=010,134789cde 

'00101001000110' Performed '10010110100001' Performed 
1 Up '10101001000110' 2.2365 1 Down '00010110100001' 2.451 
3 Up '00001001000110' 2.2062 3 Down '10110110100001' 2.5854 
4 Up '00111001000110' 2.2584 4 Down '10000110100001' 2.3926 
7 Up '00101011000110' 2.1576 7 Down '10010100100001' 2.5484 
8 Up '00101000000110' 2.1369 8 Down '10010111100001' 2.5963 
9 Up '00101001100110' 2.3007 9 Down '10010110000001' 2.4998 
c Up '00101001000010' 2.1871 c Down '10010110100101' 2.5788 
d Up '00101001000100' 2.2017 d Down '10010110100011' 2.5724 
e Up '00101001000111' 2.1653 e Down '10010110100000' 2.5949 

39 Up '00001001100110' 2.3495 39 Down '10110110000001' 2.4951 
3d Up '00001001000100' 2.1778 3d Down '10110110100011' 2.5961 
9d Up '00101001100100' 2.3497 9d Down '10010110000011' 2.427 

39d Up '00001001100100' 2.3005 39d Down '10110110000011' 2.4474 
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Table 124 Continued 
 

 
Low End 

Variables State 
PPF  

High End 
Variables State 

PPF 

2ab=001,134789cde 
'00101001011110' Performed '10010110111001' 

1 Up '10101001011110' 2.1317 1 Down '00010110111001' 2.3 
3 Up '00001001011110' 2.0899 3 Down '10110110111001' 2.4945 
4 Up '00111001011110' 2.1657 4 Down '10000110111001' 2.3265 
7 Up '00101011011110' 2.0198 7 Down '10010100111001' 2.5366 
8 Up '00101000011110' 2.0021 8 Down '10010111111001' 2.5542 
9 Up '00101001111110' 2.3205 9 Down '10010110011001' 2.2892 
c Up '00101001011010' 2.0573 c Down '10010110111101' 2.4945 
d Up '00101001011100' 2.0708 d Down '10010110111011' 2.4159 
e Up '00101001011111' 2.0233 e Down '10010110111000' 2.5202 

19 Up '00010110011001' 2.0649 19 Down '10101001111110' 2.3731 
2ab=000,134789cde 

'00101001010110' Performed '10010110110001' 
1 Up '10101001010110' Performed 1 Down '00010110110001' 2.3576 
3 Up '00001001010110' Performed 3 Down '10110110110001' 2.4672 
4 Up '00111001010110' Performed 4 Down '10000110110001' 2.2654 
7 Up '00101011010110' Performed 7 Down '10010100110001' 2.5215 
8 Up '00101000010110' Performed 8 Down '10010111110001' 2.4565 
9 Up '00101001110110' Performed 9 Down '10010110010001' 2.3426 
c Up '00101001010010' Performed c Down '10010110110101' 2.4871 
d Up '00101001010100' Performed d Down '10010110110011' 2.5048 
e Up '00101001010111' Performed e Down '10010110110000' 2.5666 

14 Up '10111001010110' 2.3791 14 Down '00000110110001' 2.22 
18 Up '10101000010110' 2.2497 18 Down '00010111110001' 2.63 
48 Up '00111000010110' 2.1418 48 Down '10000111110001' 2.2628 

148 Up '10111000010110' 2.3996 148 Down '00000111110001' 2.4199 
2ab=111,347-e 

'11010110101001' Performed '11010110101001' Performed 
3 Up '11110110101000' 2.8323 3 Down '11110111101001' 2.6522 
4 Up '11000110101000' 2.5546 4 Down '11000111101001' 2.438 
7 Up '11010100101000' 2.7412 7 Down '11010101101001' 2.7039 
34 Up '11100110101000' 2.646 34 Down '11100111101001' 2.4442 
37 Up '11110100101000' 2.6818 37 Down '11110101101001' 2.6987 
47 Up '11000100101000' 2.5193 47 Down '11000101101001' 2.5749 

347 Up '11100100101000' 2.6878 347 Down '11100101101001' 2.4668 
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Table 124 Continued 
 

 
Low End 

Variables State 
PPF  

High End 
Variables State 

PPF 

2ab=111,347-8 
3 Up '01001000001110' 2.258 3 Down '01001001001111' 2.1874 
4 Up '01111000001110' 2.2617 4 Down '01111001001111' 2.2503 
7 Up '01101010001110' 2.2079 7 Down '01101011001111' 2.209 
34 Up '01011000001110' 2.2575 34 Down '01011001001111' 2.2791 
37 Up '01001010001110' 2.2858 37 Down '01001011001111' 2.2384 
47 Up '01111010001110' 2.286 47 Down '01111011001111' 2.3317 

347 Up '01011010001110' 2.217 347 Down '01011011001111' 2.2807 

347-8e 
Up '11100101101000' 2.5028 

347-8e 
Down '01011010001111' 2.2523 

2ab=101,49e=111 
'01111001111110' 2.5495 '11010110111001' Performed 

1 Up '11111001111110' 2.5896 1 Down '01010110111001' Performed 
8 Up '01111000111110' 2.1851 8 Down '11010111111001' Performed 
18 Up '11111000111110' 2.4811 18 Down '01010111111001' 2.7484 

2ab=101,49e=110 
'01111001111110' 2.6869 '11010110111000' Performed 

1 Up '11111001111110' 2.7282 1 Down '01010110111000' Performed 
8 Up '01111000111110' 2.4259 8 Down '11010111111000' 2.7091 
18 Up '11111000111110' 2.5472 18 Down '01010111111000' 2.7187 

2ab=101,49e=101 
'01111001011111' 2.2544 '11010110011001' Performed 

1 Up '11111001011111' 2.4256 1 Down '01010110011001' 2.0776 
8 Up '01111000011111' 2.1384 8 Down '11010111011001' 2.4466 
18 Up '11111000011111' 2.3591 18 Down '01010111011001' 2.4167 

2ab=101,49e=100 
'01111001011110' Performed '11010110011000' 2.4764 

1 Up '11111001011110' 2.4317 1 Down '01010110011000' 2.238 
8 Up '01111000011110' 2.3138 8 Down '11010111011000' 2.5685 
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Table 124 Continued 
 

 
Low End 

Variables State 
PPF  

High End 
Variables State 

PPF 

2ab=101,49e=011 
'01101001111111' 2.492 '11000110111001' Performed 

1 Up '11101001111111' 2.29 1 Down '01000110111001' 2.1004 
8 Up '01101000111111' 2.0674 8 Down '11000111111001' 2.366 
18 Up '11101000111111' 2.1624 18 Down '01000111111001' 2.4514 

2ab=101,49e=010 
'01101001111110' Performed '11000110111000' Performed 

1 Up '11101001111110' 2.476 1 Down '01000110111000' 2.3238 
8 Up '01101000111110' 2.2618 8 Down '11000111111000' 2.4985 
18 Up '11101000111110' 2.3441 18 Down '01000111111000' 2.5205 

2ab=101,49e=001 
'01101001011111' Performed '11000110011001' 2.0219 

1 Up '11101001011111' 2.1263 1 Down '01000110011001' 2.0214 
8 Up '01101000011111' 1.9257 8 Down '11000111011001' 2.3122 

2ab=101,49e=000 
'01101001011110' Performed '11000110011000' 2.2292 

1 Up '11101001011110' Performed 1 Down '01000110011000' 2.1044 
8 Up '01101000011110' Performed 8 Down '11000111011000' 2.3861 

2ab=100,de=11,1 
1 Up '11101001010101' 2.1712 1 Down '01010110110001' Performed 
8 Up '01101000010101' 1.7411 8 Down '11010111110001' Performed 
9 Up '01101001110101' 2.3993 9 Down '11010110010001' Performed 

2ab=100,de=01,1 
1 Up '11101001010111' 2.1478 1 Down '01010110110011' 2.0111 
8 Up '01101000010111' 1.7475 8 Down '11010111110011' 2.4971 
9 Up '01101001110111' 2.3227 9 Down '11010110010011' 2.1571 
18 Up '11101000010111' 1.9913 18 Down '01010111110011' 2.5616 

2ab=100,de=10 
1 Up '11101001010100' Performed 1 Down '01010110110000' 2.471 
8 Up '01101000010100' 2.0078 8 Down '11010111110000' 2.6034 
9 Up '01101001110100' 2.4888 9 Down '11010110010000' 2.486 
18 Up '11101000010100' 2.264 18 Down '01010111110000' 2.6895 

2ab=100,de=00 
1 Up '11101001010110' Performed 1 Down '01010110110010' 2.3361 
8 Up '01101000010110' Performed 8 Down '11010111110010' 2.5811 
9 Up '01101001110110' Performed 9 Down '11010110010010' 2.3462 
18 Up '11101000010110' 2.1667 18 Down '01010111110010' 2.7155 
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9. Power Peaking Factor: 256 Res V FFD Results (256) 

Table 125 
Application of a 128 Res IV FFD to PPF 
  

Variables State PPF Variables State PPF 

‘00000000010001’ 2.0279 ‘10000000000011’ 2.2501 
‘00000000101110’ 2.2404 ‘10000000111100’ 2.3395 
‘00000001001110’ 2.0248 ‘10000001011100’ 2.2096 
‘00000001110001’ 2.3705 ‘10000001100011’ 2.3558 
‘00000010001101’ 2.0013 ‘10000010011111’ 1.9618 
‘00000010110010 2.2245 ‘10000010100000’ 2.3685 
‘00000011010010’ 2.2673 ‘10000011000000’ 2.2995 
‘00000011101101’ 2.2569 ‘10000011111111’ 2.2891 
‘00000100001011’ 2.0491 ‘10000100011001’ 2.0514 
‘00000100110100’ 2.2743 ‘10000100100110’ 2.3819 
‘00000101010100’ 2.3285 ‘10000101000110’ 2.3326 
‘00000101101011’ 2.3551 ‘10000101111001’ 2.3059 
‘00000110010111’ 2.0249 ‘10000110000101’ 2.2874 
‘00000110101000’ 2.2301 ‘10000110111010’ 2.3574 
‘00000111001000’ 2.1184 ‘10000111011010’ 2.1846 
‘00000111110111’ 2.5884 ‘10000111100101’ 2.3676 
‘00010000001000’ 2.0951 ‘10010000011010’ 2.2249 
‘00010000110111’ 2.2335 ‘10010000100101’ 2.5254 
‘00010001010111’ 2.3007 ‘10010001000101’ 2.3855 
‘00010001101000’ 2.3994 ‘10010001111010’ 2.5559 
‘00010010010100’ 2.1099 ‘10010010000110’ 2.3419 
‘00010010101011’ 2.316 ‘10010010111001’ 2.3852 
‘00010011001011’ 2.0398 ‘10010011011001’ 2.2125 
‘00010011110100’ 2.5141 ‘10010011100110’ 2.5148 
‘00010100010010’ 2.1712 ‘10010100000000’ 2.4516 
‘00010100101101’ 2.4098 ‘10010100111111’ 2.4274 
‘00010101001101’ 2.1672 ‘10010101011111’ 2.2515 
‘00010101110010’ 2.6172 ‘10010101100000’ 2.5826 
‘00010110001110’ 2.0809 ‘10010110011100’ 2.3222 
‘00010110110001’ 2.3576 ‘10010110100011’ 2.5724 
‘00010111010001’ 2.3656 ‘10010111000011’ 2.4392 
‘00010111101110’ 2.4791 ‘10010111111100’ 2.5746 
‘00100000000111’ 2.1192 ‘10100000010101’ 2.1459 
‘00100000111000’ 2.1851 ‘10100000101010’ 2.3641 
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Table 125 Continued 
 

Variables State PPF Variables State PPF 

‘00100001011000’ 2.1147 ‘10100001001010’ 2.1059 
‘00100001100111’ 2.3071 ‘10100001110101’ 2.3258 
‘00100010011011’ 1.8968 ‘10100010001001’ 2.0792 
‘00100010100100’ 2.2717 ‘10100010110110’ 2.3647 
‘00100011000100’ 2.1992 ‘10100011010110’ 2.2459 
‘00100011111011’ 2.3584 ‘10100011101001’ 2.367 
‘00100100011101’ 1.9702 ‘10100100001111’ 2.0816 
‘00100100100010’ 2.3524 ‘10100100110000’ 2.4312 
‘00100101000010’ 2.2237 ‘10100101010000’ 2.2803 
‘00100101111101’ 2.4123 ‘10100101101111’ 2.3239 
‘00100110000001’ 2.1918 ‘10100110010011’ 2.1717 
‘00100110111110’ 2.2387 ‘10100110101100’ 2.3776 
‘00100111011110’ 2.2205 ‘10100111001100’ 2.1688 
‘00100111100001’ 2.3567 ‘10100111110011’ 2.2364 
‘00110000011110’ 2.0664 ‘10110000001100’ 2.2672 
‘00110000100001’ 2.3942 ‘10110000110011’ 2.4294 
‘00110001000001’ 2.3101 ‘10110001010011’ 2.3053 
‘00110001111110’ 2.47 ‘10110001101100’ 2.4518 
‘00110010000010’ 2.1789 ‘10110010010000’ 2.4298 
‘00110010111101’ 2.1859 ‘10110010101111’ 2.4689 
‘00110011011101’ 2.0959 ‘10110011001111’ 2.1906 
‘00110011100010’ 2.3746 ‘10110011110000’ 2.4966 
‘00110100000100’ 2.2665 ‘10110100010110’ 2.4682 
‘00110100111011’ 2.236 ‘10110100101001’ 2.4799 
‘00110101011011’ 2.2329 ‘10110101001001’ 2.3428 
‘00110101100100’ 2.5189 ‘10110101110110’ 2.5344 
‘00110110011000’ 2.1432 ‘10110110001010’ 2.267 
‘00110110100111’ 2.5031 ‘10110110110101’ 2.5176 
‘00110111000111’ 2.328 ‘10110111010101’ 2.4124 
‘00110111111000’ 2.5492 ‘10110111101010’ 2.5067 
‘01000000000100’ 2.3951 ‘11000000010110’ 2.2198 
‘01000000111011’ 1.991 ‘11000000101001’ 2.588 
‘01000001011011’ 2.0696 ‘11000001001001’ 2.3533 
‘01000001100100’ 2.458 ‘11000001110110’ 2.4536 
‘01000010011000’ 2.1662 ‘11000010001010’ 2.3132 
‘01000010100111’ 2.3113 ‘11000010110101’ 2.0915 
‘01000011000111’ 2.3434 ‘11000011010101’ 2.2324 
‘01000011111000’ 2.5186 ‘11000011101010’ 2.5202 
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Table 125 Continued 
 

Variables State PPF Variables State PPF 

‘01000100011110’ 2.1502 ‘11000100001100’ 2.4039 
‘01000100100001’ 2.3819 ‘11000100110011’ 1.9332 
‘01000101000001’ 2.3396 ‘11000101010011’ 2.19 
‘01000101111110’ 2.5514 ‘11000101101100’ 2.566 
‘01000110000010’ 2.3338 ‘11000110010000’ 2.2463 
‘01000110111101’ 2.0245 ‘11000110101111’ 2.4738 
‘01000111011101’ 2.128 ‘11000111001111’ 2.4369 
‘01000111100010’ 2.5802 ‘11000111110000’ 2.3591 
‘01010000011101’ 2.0592 ‘11010000001111’ 2.4114 
‘01010000100010’ 2.5266 ‘11010000110000’ 2.6563 
‘01010001000010’ 2.5876 ‘11010001010000’ 2.5965 
‘01010001111101’ 2.5241 ‘11010001101111’ 2.7153 
‘01010010000001’ 2.2748 ‘11010010010011’ 2.2178 
‘01010010111110’ 2.3458 ‘11010010101100’ 2.688 
‘01010011011110’ 2.3223 ‘11010011001100’ 2.499 
‘01010011100001’ 2.6682 ‘11010011110011’ 2.4779 
01010100000111’ 2.3264 ‘11010100010101’ 2.2377 
‘01010100111000’ 2.4908 ‘11010100101010’ 2.7642 
‘01010101011000’ 2.5341 ‘11010101001010’ 2.618 
‘01010101100111’ 2.6616 ‘11010101110101’ 2.5924 
‘01010110011011’ 2.0666 ‘11010110001001’ 2.565 
‘01010110100100’ 2.5282 ‘11010110110110’ 2.6173 
‘01010111000100’ 2.6519 ‘11010111010110’ 2.7098 
‘01010111111011’ 2.6915 ‘11010111101001’ 2.7877 
‘01100000010010’ 2.128 ‘11100000000000’ 2.5044 
‘01100000101101’ 2.2883 ‘11100000111111’ 2.1624 
‘01100001001101’ 2.1627 ‘11100001011111’ 2.1263 
‘01100001110010’ 2.5223 ‘11100001100000’ 2.5763 
‘01100010001110’ 2.2079 ‘11100010011100’ 2.3467 
‘01100010110001’ 1.9722 ‘11100010100011’ 2.5236 
‘01100011010001’ 2.1505 ‘11100011000011’ 2.3847 
‘01100011101110’ 2.5607 ‘11100011111100’ 2.4227 
‘01100100001000’ 2.2972 ‘11100100011010’ 2.276 
‘01100100110111’ 1.9464 ‘11100100100101’ 2.4342 
‘01100101010111’ 2.2107 ‘11100101000101’ 2.5085 
‘01100101101000’ 2.5058 ‘11100101111010’ 2.4745 
‘01100110010100’ 1.957 ‘11100110000110’ 2.4682 
‘01100110101011’ 2.4427 ‘11100110111001’ 2.1597 
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Table 125 Continued 
 

Variables State PPF Variables State PPF 

‘01100111001011’ 2.3284 ‘11100111011001’ 2.2835 
‘01100111110100’ 2.5344 ‘11100111100110’ 2.557 
‘01110000001011’ 2.2191 ‘11110000011001’ 2.2988 
‘01110000110100’ 2.3247 ‘11110000100110’ 2.7463 
‘01110001010100’ 2.4421 ‘11110001000110’ 2.5571 
‘01110001101011’ 2.578 ‘11110001111001’ 2.487 
‘01110010010111’ 2.0669 ‘11110010000101’ 2.6262 
‘01110010101000’ 2.5007 ‘11110010111010’ 2.6273 
‘01110011001000’ 2.4018 ‘11110011011010’ 2.5185 
‘01110011110111’ 2.5483 ‘11110011100101’ 2.7098 
‘01110100010001’ 1.98 ‘11110100000011’ 2.5933 
‘01110100101110’ 2.674 ‘11110100111100’ 2.6122 
‘01110101001110’ 2.4362 ‘11110101011100’ 2.6611 
‘01110101110001’ 2.6459 ‘11110101100011’ 2.6353 
‘01110110001101’ 2.2931 ‘11110110011111’ 2.2643 
‘01110110110010’ 2.2783 ‘11110110100000’ 2.723 
‘01110111010010’ 2.5181 ‘11110111000000’ 2.6598 
‘01110111101101’ 2.6636 ‘11110111111111’ 2.4945 
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10. Multiplication Factor Depletion: Experiments Results (154 experiments) 

Table 126 
Application of the MHIV Method to effK   

 

 
Low End 

Variables State effK  
 

High End 
Variables State effK  

'11100011011111' 0.02029 '00011100100000' 0.68692 
1 Up '01100011011111' 0.06177 1 Down '10011100100000' 0.60649 
2 Up '10100011011111' 0.10336 2 Down '01011100100000' 0.56931 
3 Up '11000011011111' 0.01971 3 Down '00111100100000' 0.6858 
4 Up '11110011011111' 0.04514 4 Down '00001100100000' 0.60827 
5 Up '11101011011111' 0.10074 5 Down '00010100100000' 0.5536 
6 Up 11100111011111' 0.02269 6 Down '00011000100000' 0.64859 
7 Up '11100001011111' 0.01916 7 Down '00011110100000' 0.67623 
8 Up '11100010011111' 0.0166 8 Down '00011101100000' 0.64554 
9 Up '11100011111111' 0.0331 9 Down '00011100000000' 0.53407 
a Up '11100011001111' 0.05715 a Down '00011100110000' 0.69209 
b Up '11100011010111' 0.03227 b Down '00011100101000' 0.52607 
c Up '11100011011011' 0.01839 c Down '00011100100100' 0.68433 
d Up '11100011011101' 0.02132 d Down '00011100100010' 0.6797 
e Up '11100011011110' 0.04075 e Down '00011100100001' 0.66976 

9b Up '11100011110111' 0.0769 
9b 

Down 
'00011100001000' 0.35161 

9b=11 12468a 
'11100011110111' Performed '00011100100000' Performed 

1 Up '01100011110111' 0.24774 1 Down '10011100100000' Performed 
2 Up '10100011110111' 0.34108 2 Down '01011100100000' Performed 
4 Up '11110011110111' 0.079 4 Down '00001100100000' Performed 
5 Up '11101011110111' 0.34804 5 Down '00010100100000' Performed 
6 Up '11100111110111' 0.0915 6 Down '00011000100000' Performed 
8 Up '11100010110111' 0.1423 8 Down '00011101100000' Performed 
a Up '11100011100111' 0.1302 a Down '00011100110000' Performed 

12 Up '00100011110111' 0.36764 
12 

Down 
'11011100100000' 0.55529 

15 Up '01101011110111' 0.37635 
15 

Down 
'10010100100000' 0.54252 

25 Up '10101011110111' 0.39983 
25 

Down 
'01010100100000' 0.45244 

125 Up '00101011110111' 0.45436 
125 

Down 
'11010100100000' 0.2144 
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Table 126 Continued 
 

 
Low End 

Variables State effK  
 

High End 
Variables State effK  

9b=10 12468a 
'11100011111111' Performed '00011100101000' Performed 

1 Up '01100011111111' 0.12021 1 Down '10011100101000' 0.48812 
2 Up '10100011111111' 0.20675 2 Down '01011100101000' 0.46725 
4 Up '11110011111111' 0.0489 4 Down '00001100101000' 0.4602 
5 Up '11101011111111' 0.20734 5 Down '00010100101000' 0.45581 
6 Up '11100111111111' 0.0385 6 Down '00011000101000' 0.4929 
8 Up '11100010111111' 0.0495 8 Down '00011101101000' 0.51367 
a Up '11100011101111' 0.0757 a Down '00011100111000' 0.53085 

25 Up '10101011111111' 0.31456 
25 

Down 
'01010100101000' 0.25228 

9b=01 12468a 
'11100011010111' Performed '00011100000000' Performed 

1 Up '01100011010111' 0.13188 1 Down '10011100000000' 0.46768 
2 Up '10100011010111' 0.20236 2 Down '01011100000000' 0.43374 
4 Up '11110011010111' 0.0536 4 Down '00001100000000' 0.46438 
5 Up '11101011010111' 0.20129 5 Down '00010100000000' 0.42683 
6 Up '11100111010111' 0.0433 6 Down '00011000000000' 0.49527 
8 Up '11100010010111' 0.05421 8 Down '00011101000000' 0.50636 
a Up '11100011000111' 0.0901 a Down '00011100010000' 0.54814 

2a Up '10100011000111' 0.25004 
2a 

Down 
'01011100010000' 0.41382 

9b=00 12468a 
'11100011011111' Performed '00011100001000' Performed 

1 Up '01100011011111' Performed 1 Down '10011100001000' 0.3275 
2 Up '10100011011111' Performed 2 Down '01011100001000' 0.30318 
4 Up '11110011011111' Performed 4 Down '00001100001000' 0.29458 
5 Up '11101011011111' Performed 5 Down '00010100001000' 0.29807 
6 Up '11100111011111' Performed 6 Down '00011000001000' 0.32151 
8 Up '11100010011111' Performed 8 Down '00011101001000' 0.3485 
a Up '11100011001111' Performed a Down '00011100011000' 0.35704 

2a Up '10100011001111' 0.13638 
2a 

Down 
'01011100011000' 0.29882 

9b=11 125=111 
'00101011110111' Performed '00011100100000' Performed 

4 Up '00111011110111' 0.53376 4 Down '00001100100000' Performed 
a Up '00101011100111' 0.50138 a Down '00011100110000' Performed 
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Table 126 Continued 
 

 
Low End 

Variables State effK  
 

High End 
Variables State effK  

9b=11 125=011 
'10101011110111' Performed '10011100100000' Performed 

4 Up '10111011110111' 0.48454 4 Down '10001100100000' 0.52009 
a Up '10101011100111' 0.45181 a Down '10011100110000' 0.58752 

9b=11 
125=101 

'01101011110111' Performed '01011100100000' Performed 
4 Up '01111011110111' 0.46448 4 Down '01001100100000' 0.48409 
a Up '01101011100111' 0.42997 a Down '01011100110000' 0.53842 

9b=11 125=110 
'00100011110111' Performed '00010100100000' Performed 

4 Up '00110011110111' 0.45156 4 Down '00000100100000' 0.47146 
a Up '00100011100111' 0.41967 a Down '00010100110000' 0.52667 

9b=11 
125=001 

'11101011110111' Performed '11011100100000' Performed 
4 Up '11111011110111' 0.40884 4 Down '11001100100000' 0.46863 
a Up '11101011100111' 0.39802 a Down '11011100110000' 0.53175 

9b=11 125=010 
'10100011110111' Performed '10010100100000' Performed 

4 Up '10110011110111' 0.39914 4 Down '10000100100000' 0.45431 
a Up '10100011100111' 0.38499 a Down '10010100110000' 0.51673 

9b=11 125=100 
'01100011110111' Performed '01010100100000' Performed 

4 Up '01110011110111' 0.25005 4 Down '01000100100000' 0.41652 
a Up '01100011100111' 0.28681 a Down '01010100110000' 0.46024 

9b=11 125=000 
'11100011110111' Performed '11010100100000' Performed 

4 Up '11110011110111' Performed 4 Down '11000100100000' 0.23378 
a Up '11100011100111' Performed a Down '11010100110000' 0.21243 

9b=10 25=11 
'10101011111111' Performed '00011100101000' Performed 

4 Up '10111011111111' 0.38991 4 Down '00001100101000' Performed 
a Up '10101011101111' 0.34974 a Down '00011100111000' Performed 
1 Up '00101011111111' 0.34639 1 Down '10011100101000' Performed 
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Table 126 Continued 
 

 
Low End 

Variables State effK  
 

High End 
Variables State effK  

9b=10 25=01 
'11101011111111' Performed '01011100101000' Performed 

4 Up '11111011111111' 0.22651 4 Down '01001100101000' 0.39486 
a Up '11101011101111' 0.24015 a Down '01011100111000' 0.4547 
1 Up '01101011111111' 0.29136 1 Down '11011100101000' 0.38381 

9b=10 25=10 
'10100011111111' Performed '00010100101000' Performed 

4 Up '10110011111111' 0.22869 4 Down '00000100101000' 0.38723 
a Up '10100011101111' 0.23493 a Down '00010100111000' 0.44494 
1 Up '00100011111111' 0.28721 1 Down '10010100101000' 0.37479 

9b=10 25=00 
'11100011111111' Performed '01010100101000' Performed 

4 Up '11110011111111' Performed 4 Down '01000100101000' 0.25176 
a Up '11100011101111' Performed a Down '01010100111000' 0.2591 
1 Up '01100011111111' Performed 1 Down '11010100101000' 0.1249 

1a Up '01100011101111' 0.15834 
1a 

Down 
'11010100111000' 0.1108 

9b=01 2a=11 
'10100011000111' Performed '00011100000000' Performed 

4 Up '10110011000111' 0.28492 4 Down '00001100000000' Performed 
5 Up '10101011000111' 0.31775 5 Down '00010100000000' Performed 

45 Up '10111011000111' 0.3862 
45 

Down 
'00000100000000' 0.35639 

9b=01 2a=01 
'11100011000111' Performed '01011100000000' Performed 

4 Up '11110011000111' 0.1074 4 Down '01001100000000' 0.36471 
5 Up '11101011000111' 0.25551 5 Down '01010100000000' 0.30724 

45 Up '11111011000111' 0.29268 
45 

Down 
'01000100000000' 0.28233 

9b=01 2a=10 
'10100011010111' Performed '00011100010000' Performed 

4 Up '10110011010111' 0.24727 4 Down '00001100010000' 0.47326 
5 Up '10101011010111' 0.26971 5 Down '00010100010000' 0.40254 

9b=01 2a=00 
'11100011010111' Performed '01011100010000' Performed 

4 Up '11110011010111' Performed 4 Down '01001100010000' 0.33452 
5 Up '11101011010111' Performed 5 Down '01010100010000' 0.30986 

45 Up '11111011010111' 0.24707 
45 

Down 
'01000100010000' 0.26848 
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Table 127 
Application of a Sixteen FFD to effK  

 

Variables State effK  Variables State effK  Variables State effK  

'00001001011011' 0.20857 '01101010101010' 0.34693 '10110011001001' 0.17811 
'00010110100011' 0.52095 '01110101010010' 0.21982 '11001111000000' 0.31502 
'00100110011100' 0.22268 '10000011110110' 0.37658 '11010000111000' 0.1014 
'00111001100100' 0.60942 '10011100001110' 0.30728 '11100000000111' 0.11722 
'01000101101101' 0.18267 '10101100110001' 0.45336 '11111111111111' 0.25298 
'01011010010101' 0.3109 
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APPENDIX H 

1. Parameters of the Six Performance Characteristics Sorted by Their Maximum 

Effect  

Table 128 
Highest 100 Parameters of the Six Performance Characteristics  
 

Index    effK  Index    RFS     Index d  

'0' 1.079800 '0' 0.720680 '0' 0.204740 
'9' 0.058541 '9' -0.100970 '9' -0.030093 
'4' 0.037155 'b' 0.096129 '1' -0.020978 
'a' -0.028103 '4' 0.038886 '2' -0.019441 
'8' 0.022566 '9b' -0.032108 '8' -0.010997 
'b' -0.021556 '6' -0.017665 'b' 0.010171 
'2' 0.021316 'a' -0.014440 '6' -0.006114 
'1' 0.020297 '2' 0.010563 '4' -0.006089 
'e' -0.019189 '49' -0.008083 'e' 0.003952 

'9b' 0.017328 '8' 0.008029 'a' 0.003388 
'6' 0.015057 '4b' 0.007949 '9b' 0.003032 
'ae' -0.005875 'ab' -0.006301 '18' 0.002863 
'ab' 0.005753 '1' 0.005694 'd' 0.002607 
'4b' -0.004397 '29' -0.005648 '8b' 0.002153 
'7' -0.003622 '2b' 0.005590 '4b' -0.001939 
'69' -0.003361 '9a' 0.005568 '6b' 0.001904 
'49' 0.002970 'e' 0.004872 'be' -0.001832 
'18' -0.002953 '19' -0.004641 '7' 0.001800 
'd' -0.002916 '8b' 0.004148 '1b' 0.001745 
'12' 0.002647 '89' -0.003898 'ab' -0.001723 
'9e' 0.002539 '29b' -0.003306 '2b' 0.001662 
'8b' -0.002472 'd' 0.003285 '3' -0.001325 

'69b' 0.002282 '1b' 0.003260 '19' 0.001195 
'8e' 0.001744 '69' 0.003148 '12' 0.001087 

'469be' 0.001656 '6b' -0.003119 '16' 0.001078 
'be' 0.001216 '9ab' 0.002918 'ae' 0.000967 

'46e' 0.001100 'c' 0.002897 '49' 0.000953 
'c' -0.001091 '19b' -0.002295 '28' 0.000948 
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Table 128 Continued 
 

Index    effK  Index     RFS Index d  

'469e' -0.001084 '89b' -0.002176 'abe' -0.000946 
'6b' 0.001033 '24' 0.001915 '49b' -0.000920 
'12e' 0.000969 '9d' -0.001755 '89' 0.000903 
'6e' 0.000936 '7' -0.001475 'c' 0.000710 

'6be' -0.000823 '26' -0.001406 '19b' -0.000705 
'bd' -0.000791 '49b' -0.001404 '8a' -0.000670 

'49b' 0.000741 '3' 0.001267 '8e' -0.000660 
'1a' 0.000716 '46' -0.001243 '14' 0.000636 

'9be' -0.000684 '249' -0.001179 '89b' -0.000576 
'12b' -0.000541 '24b' 0.001086 '8ae' -0.000498 
'469' -0.000534 'bd' 0.001012 '8abe' 0.000493 
'4be' -0.000526 '269' 0.000809 '48' 0.000490 
'7b' -0.000503 '26b' -0.000797 '9a' -0.000460 

'46be' -0.000483 '16' -0.000622 '9ab' 0.000440 
'49be' -0.000412 '14' 0.000616 '68' 0.000421 

'bc' -0.000403 '169' 0.000605 '1489b' 0.000403 
'46' 0.000394 '16b' -0.000605 '1489' -0.000401 
'1c' 0.000391 '169b' 0.000605 '1a' -0.000359 
'1b' -0.000284 '14b' 0.000595 '8be' 0.000290 

'69be' 0.000232 '149' -0.000595 '149b' 0.000286 
'13' 0.000222 '149b' -0.000590 '149' -0.000283 
'4e' 0.000211 '2d' 0.000411 '1abe' 0.000281 

'18b' 0.000209 '29d' -0.000397 '1ae' -0.000277 
'ce' -0.000206 '2bd' 0.000393 '4a' -0.000270 

'1bc' 0.000178 '29bd' -0.000392 '4e' -0.000267 
'46b' -0.000149 '249b' -0.000371 '89a' 0.000262 
'17b' -0.000147 '469b' -0.000262 '89ab' -0.000256 
'1e' -0.000138 '1d' 0.000243 '148b' -0.000243 

'13b' -0.000122 '19bd' -0.000239 '489' -0.000238 
'1ae' 0.000113 '19d' -0.000236 '489b' 0.000236 
'2e' -0.000106 '1bd' 0.000236 '4be' 0.000232 

'69e' 0.000104 '126b' -0.000221 '14b' -0.000187 
'3b' 0.000097 '1269' 0.000221 '8ab' 0.000175 
'49e' 0.000083 '269b' 0.000220 '18abe' 0.000171 
'18e' 0.000069 '1269b' 0.000216 '18ae' -0.000171 
'3e' -0.000063 '126' -0.000215 '16b' -0.000170 
'de' 0.000056 '69b' -0.000206 '148' -0.000168 

'1de' 0.000056 '49bd' 0.000168 '18b' -0.000158 
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Table 128 Continued 
 

Index     effK  Index     RFS Index d  

'2b' -0.000047 '4bd' -0.000164 '4ae' -0.000154 
'1ab' 0.000034 '49d' 0.000163 '4abe' 0.000153 

'469b' -0.000034 '12' 0.000157 '189' -0.000137 
'13e' -0.000025 '9bd' -0.000156 '19ab' -0.000131 
'17e' -0.000025 '1249' -0.000153 '14be' -0.000130 
'1ce' 0.000019 '124b' 0.000151 '14e' 0.000128 
'1d' 0.000016 '1249b' -0.000148 '19a' 0.000127 
'7e' -0.000013 '124' 0.000146 '1be' 0.000121 

'1bd' -0.000009 '4d' -0.000142 '68b' -0.000115 
'3' 0.000003 '129' -0.000141 '48ab' 0.000109 
'17' -0.000003 '12b' 0.000139 '168' -0.000108 

'234' 0.000000 '129b' -0.000137 '1ab' 0.000103 
'124' 0.000000 '129d' -0.000102 '1489a' -0.000096 
'34' 0.000000 '12bd' 0.000102 '1489ab' 0.000094 

'1245' 0.000000 '146b' -0.000098 '168b' -0.000089 
'235' 0.000000 '1469' 0.000098 '489ab' -0.000089 
'356' 0.000000 '12d' 0.000095 '48b' -0.000087 
'125' 0.000000 '129bd' -0.000095 '489a' 0.000086 
'236' 0.000000 '1469b' 0.000091 '48a' 0.000070 
'145' 0.000000 '146' -0.000090 '14ae' 0.000069 
'23' 0.000000 '246b' -0.000058 '14abe' -0.000066 

'2346' 0.000000 '2469' -0.000056 '48e' 0.000065 
'24' 0.000000 '2c' 0.000046 '48be' -0.000063 
'14' 0.000000 '27' -0.000045 '128b' -0.000061 

'134' 0.000000 '4c' 0.000045 '4ab' 0.000054 
'1235' 0.000000 '2e' 0.000045 '12b' -0.000053 

'12346' 0.000000 '23' 0.000045 '189ab' -0.000052 
'45' 0.000000 '47' -0.000045 '48ae' 0.000051 

'156' 0.000000 '4e' 0.000045 '189a' 0.000050 
'3457' 0.000000 '34' 0.000045 '48abe' -0.000048 
'2567' 0.000000 '25' 0.000044 '18a' -0.000047 
'1346' 0.000000 '45' 0.000044 '14ab' -0.000044 
'1256' 0.000000 '2469b' -0.000040 '148be' -0.000044 

'0' 0.031095 '0' 2.3547 '0' 0.311170 
'9' -0.006701 '9' 0.083027 '5' 0.059987 
'b' 0.004526 '4' 0.075333 '2' -0.057840 
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Table 128 Continued 
 

Index     effK  Index        RFS Index      d  

'7' -0.003556 '2' 0.057365 'b' -0.057507 
'9b' -0.001358 '8' 0.054852 '9' 0.055426 
'6' -0.001284 '1' 0.049249 '1' -0.034369 
'4' -0.001203 'a' -0.04606 '4' 0.024572 
'79' 0.000818 'e' -0.04172 '25' 0.013595 
'e' 0.000691 '2a' -0.03936 '59' 0.013420 

'7b' -0.000566 '18' -0.03193 'a' -0.012138 
'd' 0.000467 '8a' 0.030531 '29' -0.011709 
'2' -0.000304 'ae' -0.02614 '8' -0.011616 
'49' 0.000234 'b' -0.02464 '6' 0.010940 
'8' 0.000230 '6' 0.022713 'e' -0.009489 
'a' -0.000225 '9b' 0.021151 '259' 0.009118 
1' -0.000221 '2e' -0.02108 '125b' -0.008198 

'4b' -0.000216 '2b' 0.020579 '1259b' -0.008174 
'9e' -0.000187 '28' 0.017501 '8b' 0.007937 

'79b' 0.000182 '14' 0.016095 '125' 0.007086 
'6b' -0.000179 '24' 0.015694 '1259' 0.006988 
'bd' 0.000176 '19' -0.01496 '29b' -0.006924 
'9d' -0.000149 '18a' -0.01431 '1b' 0.006635 
'67' 0.000145 '29' -0.01277 '5b' -0.006550 
'c' 0.000137 '49' 0.011405 '12' -0.006442 

'be' 0.000136 'ab' 0.010974 '59b' 0.006353 
'47' 0.000128 '189' -0.01051 '129' -0.006349 
'69' 0.000113 '169' -0.00942 '15' 0.006106 

'49b' 0.000093 '7e' 0.009111 '159' 0.006020 
'7e' -0.000085 '46' 0.009005 '19b' -0.005850 
'3' -0.000079 '2ae' -0.00884 '45' 0.005656 

'9be' -0.000074 '1ae' -0.00868 '2b' 0.005454 
'9bd' -0.000053 '68' 0.008675 '24' -0.005386 
'7d' -0.000048 '7d' 0.008652 '89' -0.005383 

'79bd' -0.000035 '8e' 0.008495 '19' -0.005320 
'479b' 0.000033 '4a' 0.00828 '9b' -0.005136 
'79d' 0.000031 '16' -0.00797 '25b' -0.004579 
'79be' -0.000031 '7bc' -0.00792 '4b' -0.003603 
'79e' 0.000031 '28b' -0.00786 '245' 0.003286 
'7be' -0.000028 '9ab' -0.00781 '459' 0.003211 

'679b' 0.000015 '28a' 0.007689 '249' -0.003149 
'679' -0.000013 '18b' 0.007611 'ab' 0.002775 
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Table 128 Continued 
 

Index    effK  Index    RFS Index      d  

'7bd' -0.000011 '1d' -0.00751 '245b' -0.002552 
'69b' -0.000009 '6b' 0.007143 '7' -0.002474 
'47b' 0.000007 '38' -0.00684 'd' -0.002147 
'5' 0.000002 '12' 0.00677 '6b' -0.001905 

'125' 0.000002 '79d' 0.006448 '2459' 0.001882 
'12a' -0.000002 '1a' -0.0064 '45b' -0.001758 
'12c' -0.000002 '9bd' 0.006386 '89b' 0.001725 
'135' 0.000002 '138' -0.00607 '24b' 0.001563 
'158' -0.000002 '268' 0.006034 '25a' -0.001494 
'15a' -0.000002 'd' -0.00603 '159b' -0.001479 
'15c' -0.000002 '7de' 0.005916 '15b' -0.001469 
'1ac' 0.000002 '26' -0.00576 '129b' 0.001440 
'235' 0.000002 '349' -0.00575 '49' 0.001440 
'23a' -0.000002 '8b' -0.0056 '12b' 0.001422 
'23c' -0.000002 '6c' 0.005583 '2a' -0.001410 
'258' -0.000002 '4e' 0.005477 '25ab' 0.001223 
'25a' -0.000002 '13' 0.00547 '49b' -0.001107 
'25c' -0.000002 '48c' -0.0054 '2459b' -0.001073 
'28c' 0.000002 '3be' -0.00527 '29a' 0.001038 
'2ac' 0.000002 '9d' 0.005222 '125a' 0.000794 
'358' -0.000002 'bc' -0.00509 '9a' -0.000761 
'35a' -0.000002 '38b' 0.005066 '249b' -0.000761 
'35c' -0.000002 '13d' -0.005 '459b' 0.000757 
'3ac' 0.000002 '19a' -0.00497 '29ab' -0.000755 
'58a' 0.000002 '148' -0.00467 '1259a' 0.000722 
'58c' 0.000002 '67' 0.004628 '149' -0.000718 
'5ac' 0.000002 '8ab' -0.0046 '14b' 0.000690 
'123' 0.000002 '12e' 0.004588 '14' -0.000686 
'128' -0.000002 '234' -0.00454 '149b' 0.000656 
'138' -0.000002 '19e' -0.00454 '1249' -0.000601 
'13a' -0.000002 '14d' 0.004529 '124b' 0.000601 
'13c' -0.000002 '178' -0.00448 '124' -0.000568 
'18a' 0.000002 '9e' 0.004358 '1249b' 0.000559 
'18c' 0.000002 '7ac' -0.00433 '69' 0.000549 
'238' -0.000002 '1268' 0.004281 '1a' -0.000520 
'28a' 0.000002 '78e' -0.00424 '1459' 0.000516 
'38a' 0.000002 '6ce' -0.00417 '145b' -0.000512 
'38c' 0.000002 'cd' 0.004101 '259a' -0.000481 
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Table 128 Continued 
 

Index     effK  Index      RFS Index      d  

'8ac' -0.000002 '39a' -0.00402 '59ab' 0.000477 
'238ac' -0.000002 '467' 0.004016 '145' 0.000461 
'12358' -0.000002 '8bc' -0.00401 '1459b' -0.000460 
'1235a' -0.000002 '39b' -0.00394 '19a' -0.000412 
'1235c' -0.000002 '68a' 0.003909 '1259ab' -0.000386 
'1238a' 0.000002 '148b' 0.003856 '24a' 0.000372 
'123ac' 0.000002 '128c' 0.003794 '249a' -0.000365 
'1258a' 0.000002 '1e' -0.00377 '125ab' -0.000364 
'1258c' 0.000002 '78a' -0.00372 '4a' 0.000327 
'125ac' 0.000002 '129' -0.00371 '249ab' 0.000319 
'128ac' -0.000002 '4b' -0.0037 '24ab' -0.000314 
'1358a' 0.000002 '23d' 0.00368 '59a' -0.000312 
'1358c' 0.000002 '89' 0.003629 '45a' -0.000292 
'135ac' 0.000002 '69' -0.00356 '49a' -0.000291 
'138ac' -0.000002 '149b' -0.00354 '5ab' 0.000290 
'158ac' -0.000002 '48d' -0.00353 '459a' 0.000286 
'2358a' 0.000002 '14e' -0.0035 '12ab' -0.000274 
'2358c' 0.000002 '139' -0.00349 '4ab' -0.000269 
'235ac' 0.000002 '26a' -0.00348 '49ab' 0.000260 
'258ac' -0.000002 '16e' -0.00346 '245ab' -0.000257 

 
 

 



 

337 
 

 

APPENDIX I 

1. Quantification of Monotonic Knowledge Buildup 

The methods used in the dissertation assumed monotonic behavior of variables. 

This assumption was valid often, but since it is not always the case, methods to quantify 

the monotonic knowledge was investigated in this section. Every node of the tree of 

experiments combines knowledge from other nodes with an unknown probability of 

knowledge validity. This validity depends on the combined degree of confidence in the 

monotonic behavior of the link between every node and all other nodes. A survey of 

potential means of probabilities aggregation to quantify the monotonic behavior is 

introduced in this section.  

Fisher method is one of the common approaches used to combine probability 

distributions [93]. However, it is biased toward the rejection hypothesis as described in 

[94]. This implies that if two nodes provide consistent or supporting information on a 

range limit with two different probabilities, p-values, e.g. 1 and 0.2 p-values, the final 

combined probability will be biased toward the lower probability, 0.33 for the example. 

Stouffer’s method sums the Z-scores of contributing nodes instead [93], and is defined as: 

kZZ
k

i iS 


1
 (141) 

where k is the number of combined nodes probabilities. This was modified by adding 

weights: 
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A comparison of the weighted Z method and Fisher’s method is performed in [94], and 

concluded that the weighted Z method is more powerful and precise. As a result, the 

Stouffer’s method is evaluated next.  

To illustrate Stouffer’s method, a three nodes example is used in the dissertation 

context. Assuming the upper range limit of node A is set by a value of 120, and the lower 

range limit is set by two connected lower nodes, B and C, then if B sets A’s lower limit 

by By =40 with a probability of 0.99865, and C sets A’s lower limit by Cy =30 with a 

probability of 0.97725, the constructed two natural distributions will overlap as shown in 

Figure 89. Assuming that the point of interest is 40 in this example, the probability that 

the lower limit will fall between 40 and 120 is 0.99865 from B and 0.84134 from C. The 

Z scores for B and C are 3 and 1 respectively. Using Stouffer’s non-weighted formula, 

the resulting Z score is 2.828427. This results in a lower limit of 40 with a combined 

probability of 0.99766 . This is lower than the B resulting probability of 0.99865, which 

indicates that confidence was lost as the two data were considered conflicting rather than 

consistent. This behavior is not desired in the quantification of monotonic behavior 

knowledge. If both curves were identical, the combined Z score of any point will consist 

of 2/2 , which is higher than the individual Z ,and results in a smaller probability. This 

again demonstrates that this approach is not designed for consistent results. As the 

number of identical contributing nodes increases, Stouffer’s method Z value increases as 

shown in Figure 90. Using weights was found to reduce the severity of the unwanted 

confidence loss, but will not result in the logically expected increase of probability.  
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Figure 89. Example of Two Normal Distributions of a Range’s Lower Limit 
 
 
  

 
Figure 90. Effect of the Number of Contributing Nodes on the Combined Z Value 

 
 
The use of probabilities indicate certain knowledge while in some cases, 

knowledge does not exist. For example, a probability of zero indicates that an event will 

never occur, while a knowledge value of zero indicates that the probability is unknown. It 
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could be zero and it could be any value up to one. If the knowledge of some behavior is 

0.5, this indicates that 50% of the time this event will occur and there is no information 

on the other 50%. This implies a probability P 0.5. Knowledge is aggregated while 

probability is combined. Knowledge behaves in a similar manner to an OR operator of 

probabilities. It is enough to have one sufficient knowledge source out of a number of 

knowledge sources to have sufficient knowledge. Knowledge (K) can be aggregated for 

two knowledge sources, A and B, using:  

)()()()(),( BKAKBKAKBAK   (143) 

The search for the concept of knowledge led to the introduced and well-defined 

theory of belief and evidence. Evidence theory is a science that has been formalized in a 

mathematical approach by Dempster and Shafer in the 60s and 70s (see [95] for a 

summary). The most important addition of this concept is that belief splits the probability 

range to confirmatory, dis-confirmatory and uncertain regions, instead of the Bayesian 

approach of confirmatory and non-confirmatory regions. The example of Fisher or 

Stouffer methods is a Bayesian approach to two independent events and not an evidence 

driven approach. It deals with portions of samples that an event occurred, and is usually 

associated with randomness behavior of sampling.  

The method of the Dempster Shafer is widely explained in literature. One of its 

main disadvantages is that the computational requirements increase exponentially as the 

number of evidence contributors increases. [96] addressed this issue, and reduced the 

exponential increase of computational power to a linear increase through introducing an 

assumption. The study of [97] used an assumption to shrink the tree into categories of 
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interest. For example, if out of A, B, C and D variables effects and interactions, AB and 

CD, their children, A, B, C and D, and their grandparent, ABCD, are of interest, the new 

tree will consist of three levels: The first level will have ABCD, the second level will 

have AB and CD, and the third level will have A, B, C and D. The method generates the 

total belief of the new tree and its nodes. This approach is useful in categorical problems, 

in which a tree search is needed with certain interest in some nodes of the tree. In the 

dissertation’s methods, it is desired to know if all nodes’ links are monotonic, thus 

aggregating the belief in subsets of the complete variables’ tree is not desired.  

Methods other than Dempster and Shafer were explored. Entropy [98] can be used 

to address the same issue, and is widely addressed in literature. This concept utilized the 

historical results in prediction of future results. The Certainty Factor, CF is another 

approach that was introduced to address a similar problem in medical diagnostics 

applications. This assumes that the increase of belief in one variable should be reflected 

in a decrease of belief in other variables as described in [97]. Several combinations rules 

for Dempster Shafer are surveyed in in [99]. From this section, it is concluded that the 

Dempster Shafer’s method using the Dempster rule should be used for the quantification 

of the monotonic behavior of the dissertation’s methods.  

 


