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ABSTRACT

The increasing penetration of renewable generation poses significant risks to the

reliable operation of power systems, mainly due to the variable and uncertain na-

ture of the output of wind and solar resources. This dissertation presents a robust

optimization based decision making framework in future power systems with high

penetration of variable renewable resources.

The first part of this dissertation involves the modeling and analysis of a robust

optimization based bidding strategy for the combination of a wind farm and an en-

ergy storage device participating in a deregulated electricity market. The selection

of the uncertainty set for the robust optimization problem, based on the decision

maker’s risk preference, is also discussed. From the market participant’s point of

view improved utilization of the renewable resource, through storage enabled energy

arbitrage, can lead to better economic performance. The storage device can pro-

vide firming power to the output of the wind farm, enabling the renewable resource

to participate in the electricity market. The robust optimization based approach

is compared to a deterministic optimization based approach through a numerical

example.

The second part of this dissertation investigates the metric and the dispatch

method needed for a more robust real-time market operation. A novel metric for

evaluating system-wide ramp flexibility is proposed. A robust framework to ensure

the reliable dispatch of generators is presented and analyzed. The robust model is

compared to both the conventional economic dispatch as well as a proposed industry

approach to managing system flexibility called the look-ahead dispatch. Further-
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more, the formulation for a robust multi-zonal dispatch model is presented. The

proposed robust model and flexibility index is demonstrated through a numerical on

a modified IEEE 24 Bus Reliability Test System.
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NOMENCLATURE

ACE Area Control Error

AGC Automatic Generation Control

CAISO California Independent System Operator

CPS Control Performance Standard

DR Demand Response

ED Economic Dispatch

ISO Independent System Operator

LMP Locational Marginal Price

LORP Lack of Ramp Probability

LP Linear Programming

LSE Load Serving Entity

MAE Mean Absolute Error

MISO Midcontinent Independent System Operator

MPC Model Predictive Control

NERC North American Electric Reliability Corporation

RO Robust Optimization

SCED Security Constrained Economic Dispatch

UC Unit Commitment

VPP Virtual Power Plant
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1. INTRODUCTION∗

1.1 Motivation and Overview

Over the past decade, in power systems around the world, the penetration of gen-

eration from renewable resources such as wind and solar has increased significantly.

Given the decrease in the cost of renewable generation technologies and policies such

as renewable portfolio standards, the share of renewables in the generation port-

folio is expected to increase in the future. The variable and uncertain nature of

these renewable resources poses certain challenges for the reliable and cost-effective

operation of power systems.

In deregulated electricity markets the dispatch schedule of generators is decided

by independent system operators (ISOs) many hours in advance of the actual op-

erating time, based on the results of an optimization problem. Market participants

(both generators and load serving entities) submit their sale and purchase bids for

the operating day to the ISO which clears the market. As a result the generators

only have a forecast of the market clearing prices at the time they make their bid-

ding decision. Additionally, for renewable generators the amount of power they can

produce can not be scheduled but depends on the physical availability of the renew-

able resource. Given the forecast errors, even with the best forecasting techniques,

making the optimal decision as to the bidding strategy is a challenge. Further, due

to their variable and uncertain nature, it is difficult for system operators to dispatch

∗This section is in part a reprint of the material in the following papers: (1) Reprinted with
permission from A. A. Thatte, L. Xie, D. E. Viassolo and S. Singh, “Risk Measure based Robust
Bidding Strategy for Arbitrage using a Wind Farm and Energy Storage,” IEEE Transactions on
Smart Grid, vol. 4, no. 4, pp. 2191-2199, Dec. 2013. Copyright 2013, IEEE. (2) Reprinted
with permission from A. A. Thatte, X. A. Sun and L. Xie, “Robust Optimization Based Economic
Dispatch for Managing System Ramp Requirement,” Proceedings of the 47th Hawaii International
Conference on System Sciences, Waikoloa, HI, pp. 2344-2352, Jan 6-9, 2014. Copyright 2014,
IEEE.
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renewable resources as they dispatch conventional generation. This has an adverse

impact on the reliable operation of power systems.

Energy storage can be used in conjunction with renewable resources to miti-

gate the impact of variability and uncertainty [1]. Energy storage devices can be

leveraged to improve economic benefits through the exploitation of arbitrage oppor-

tunities as well as provide technical benefits by participating in ancillary services

such as frequency regulation. Combining revenue streams from multiple applications

in deregulated electricity markets could justify the high investment costs required for

storage devices [2].The combination of renewable generators and energy storage can

be dispatched using dispatch strategies obtained from optimization based methods.

In these optimization problems uncertainty arises due to both the market clearing

prices as well as the output of the renewable generators. Stochastic programming is a

popular optimization method used to deal with uncertainty. In stochastic program-

ming models usually the assumption is made that the probability distribution of the

uncertain data is either known or can be estimated. However, in practice informa-

tion about the probability distribution of uncertain variables may not be available.

Further, stochastic programming is generally computationally intensive due to the

large number of scenarios that have to be considered in order to accurately sample

the uncertain variable [3].

In recent years, robust optimization (RO) has attracted significant interest as

a framework for optimization under uncertainty [4]. The approach has several at-

tractive modeling and computational advantages. First, it uses a deterministic set-

based method to model parameter uncertainty. This method requires only moderate

amount of information, such as the support and moments, of the underlying uncer-

tainty. At the same time, it provides the flexibility to incorporate more detailed

information. There is also a deep connection between uncertainty sets and risk

2



theory [5]. Second, the robust optimization approach yields a solution that immu-

nizes against all realizations of uncertainty data within the uncertainty set, rather

than a finite number of sample scenarios. Such robustness is consistent with the

reliability requirement of power system operations, given that the cost associated

with constraint violations is very high. Third, for a wide class of problems, the ro-

bust optimization models have similar computational complexity as the deterministic

counterparts. This computational tractability makes robust optimization a practical

approach for many real-world applications.

In this dissertation robust optimization is applied to the decision making in power

systems, both from the price taking market participant’s perspective as well as the

system operator’s perspective. The notion of risk is incorporated into the formu-

lation through the related choice of the uncertainty set. The impact of the choice

of uncertainty set on the performance of the solution is also examined. Thus, this

dissertation presents a risk aware robust decision making framework for generators in

power systems with high penetration of renewable resources such as wind and solar.

The contributions of this dissertation are as follows: (1) the robust optimization

approach for obtaining the optimal decisions for generators in deregulated electric-

ity markets, under increasing uncertainty due to the penetration of renewables is

introduced and studied; (2) a risk preference based robust approach to optimal bid-

ding strategy selection for improving the utilization of the renewable resource and

energy storage, from the market participant’s perspective is studied; and (3) a robust

risk aware framework for ensuring the reliable dispatch of generation, by maintain-

ing system power balance and adequate ramp capability, from the system operator’s

perspective, is studied.
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1.2 Market Participant’s Perspective

1.2.1 Prior Work

In the deregulated electricity industry, generation companies sell their power

output either through auctions in the spot market or directly to load serving entities

(LSEs) through bilateral contracts. The generators submit their bids for the hour

by hour production for the entire day in the day-ahead market to the ISO. The

system operator collects sale and purchase bids from both generators and LSEs and

clears the market thereby determining the equilibrium price and quantity of electrical

power.

The selection of the bidding strategy for a generator can be formulated as an

optimization problem which aims to maximize the total profit from sale of electricity

in the day-ahead market.

In [6] the optimal bidding strategy for a price-taking power producer is formulated

as a mixed-integer linear programming problem. In [7] the value of combining wind

farms with energy storage for energy arbitrage in short-term electricity markets has

been analyzed. Castronuovo and Lopes [8] obtained the optimal operational strategy

for a combined wind and pumped storage facility based on deterministic linear opti-

mization for scenarios generated using a Monte Carlo simulation approach. Kazem-

pour et al. [9] applied mixed-integer non-linear programming to the self-scheduling

problem for the combination of a hydro plant with pumped storage across energy

and ancillary service markets. In [10] a dynamic programming algorithm is used

to obtain the optimal operational strategy for a wind power plant with a generic

energy storage device. In [11] an optimization algorithm for arbitrage is proposed to

obtain the pumping and generating schedule of a pumped-storage unit. In [12] the

bidding strategy for a virtual power plant (VPP) participating in joint energy and

4



spinning reserve market is obtained using a genetic algorithm. The two stage stochas-

tic programming approach has been applied to obtain optimal bidding strategies for

price-taking generators [13, 14]. In fact there are more examples of the application

of the stochastic programming approach to problems in power systems [15, 16].

Thus, many researchers have proposed using the stochastic programming ap-

proach to deal with uncertainty in generator decision making. However, the stochas-

tic programming approach is computationally challenging due to the large number

of scenarios that have to be considered. Additionally, stochastic programming also

requires knowledge of the probability distribution of uncertain variables, which may

not be available.

Another relevant issue is the emergence of the smart grid and the development

of energy storage technologies. Due to the increasing penetration of variable and

uncertain renewables in the generation mix, the importance of energy storage in

power system operations has increased. These technologies enable the mitigation of

the adverse impact of renewables on reliable grid operation. Significant efforts have

been spent on reducing the cost and improving the technical performance of energy

storage technologies. These storage technologies include batteries, flywheels, com-

pressed air, pumped-hydro, ultracapacitors, and superconducting magnetic energy

storage [17].

Energy storage may also be provided through flexible load management, such

as controlling building thermal storage [18] and frequency control of loads [19, 20].

Thermal loads such as water heaters, water chillers, or air conditioning systems

can reduce their consumption in response to high electricity prices thereby achieving

savings. The bidirectional communication made possible by smart grid infrastructure

enables the active participation of distributed storage and demand resources in real

time electricity markets [21]. Through aggregation of a large number of small-scale

5



units these Demand Response (DR) resources can be seen as viable service providers

in electricity markets [22, 23].

The advantages of energy storage in power system operations have been discussed

in a large body of literature. For example, in [24] a superconducting magnetic energy

storage system was used for stabilizing the transients in long distance transmission

networks. For frequency regulation services, fast responsive storage such as flywheels

can be utilized to smooth out the frequency deviations due to the increasing pene-

tration of variable renewable resources [25, 26, 27, 28]. Also the inertial response of

loads such as thermal energy in buildings can be utilized for frequency regulation in

electricity markets [18, 29]. Various types of batteries ranging from lead-acid to flow

batteries are now being considered for power system applications [17].

Given that energy storage is an important element in the smart grid environment,

it is essential to understand its operational value in order to promote investment in

this resource. Energy storage can be considered as a service which provides value

to electricity market operations across time scales. Thus, through cross market co-

optimization in deregulated electricity markets, an improved value proposition can

be obtained in order to justify the investment in energy storage technologies [2].

1.2.2 Main Contributions from Market Participant’s Perspective

In Section 3, robust optimization is applied to obtain the bidding strategy for

the combination of a wind farm and an energy storage device, which together act as

a price-taking generator. The main feature of the robust optimization approach is

that it uses a non-probabilistic approach to deal with the uncertainty. Uncertainty is

addressed by constructing an uncertainty set and the solutions obtained are robust to

all realizations of uncertain data within the defined uncertainty set. This definition

of uncertainty leads to a more tractable problem. The question that arises in this

6



regard is as to the selection of these uncertainty sets. One method that has been

suggested to determine the uncertainty set is to use risk measures commonly used

in the finance industry [5]. In financial portfolio optimization the future values of

the assets are uncertain, similarly in the generator scheduling problem the market

clearing price of electricity in the day-ahead market is uncertain at the time of

generator bidding. Thus, the uncertainty set can be determined based on a coherent

risk measure such as Conditional Value at Risk (CVaR) [30]. Consequently a robust

optimization bidding strategy can be obtained based on the risk preference of the

renewable generator operator.

Robust optimization solves for the worst-case, consequently it will yield conser-

vative results if the forecast errors are low. However, since the robust approach

yields solutions that are immunized to all realizations of uncertain data within the

uncertainty set, it may be a suitable approach when forecast errors are high.

The main contributions of this section are:

• presents the formulation for a robust optimization based bidding strategy for

the combination of a wind farm and an energy storage device in deregulated

electricity markets.

• analyzes and compares the performance of the robust optimization approach

to the deterministic approach.

• verifies through a case study that the robust approach has a higher probability

of yielding better economic returns compared to the deterministic optimization

approach, for a high forecast error in day-ahead electricity market clearing

price.

• compares the robust optimization based bidding strategy to a stochastic opti-
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mization based approach.

• proposes the use of risk measure based uncertainty sets for determining the

optimal bids in the day-ahead electricity market. Risk measures used in the

finance industry can be used to incorporate decision maker’s risk aversion in

the decision making process.

• illustrates through case studies, the risk measure based robust bidding strategy

for an energy arbitrage application using the combination of a wind farm and

a generic energy storage.

1.3 System Operator’s Perspective

1.3.1 Prior Work

The increasing penetration of renewable resources such as wind and solar poses

a challenge to the goal of ISOs to manage the power system with a reliable and cost

effective approach. Due to the limited control over the output of renewable resources

as well as associated forecast errors the ISOs will have to deal with an increasing

amount of uncertainty and variability in the system [31].

Due to the higher penetration of variable renewables and increasing demand side

participation enabled by smart grid technologies, unit commitment in deregulated

electricity markets has become more challenging. In the power system operations lit-

erature, stochastic programming has been adopted by many researchers to solve unit

commitment problems. Takriti et al. [32] used the stochastic programming approach

for solving the unit commitment problem while also considering uncertainty in fuel

prices. Nowak et al. [33] used a two-stage stochastic integer programming model in

order to incorporate day-ahead trading into the unit commitment of a hydro-thermal

power system. Many researchers have worked on the unit commitment problem using

8



methods ranging from dynamic programming to evolutionary programming [34].

Recently researchers have proposed applying robust optimization based approaches

for the unit commitment problem [35]. Bertsimas et al. [36] proposed a two stage

adaptive robust optimization model for the security constrained unit commitment

problem in the presence of nodal net injection uncertainty. The method used is

based on Benders decomposition and the level of conservatism of the solution is

controlled by an uncertainty budget. Similarly [37, 38, 39] also apply robust opti-

mization for the unit commitment problem, with the uncertainty set determined by

an uncertainty budget. Jiang et al. [40] propose a method to provide a robust unit

commitment schedule for thermal generators in the day-ahead market with wind

power fluctuations.

Another significant issue is the temporary price spikes experienced by many ISOs

in the real time electricity market due to shortages attributed to a lack of system

ramp capability [41]. The main causes of these shortages include variability of load,

scheduled interchanges and non-controllable generation resources (primarily wind)

as well as uncertainty associated with short term forecasts. Due to the physical

limitations on ramp rates generators are unable to respond effectively to these price

spikes. The current practices to deal with ramp shortages include increasing reserve

margins, starting fast-start units (such as gas turbines) and out of market dispatch

methods that involve operator action. However, these approaches are usually high

cost or create some market distortion. It is important for ISOs to have additional

flexibility for dispatchable generation resources through the market clearing process.

The Security Constrained Economic Dispatch (SCED) decision needs to be robust

to the uncertainties so that the critical system power balance requirement is not

violated.

Some ISOs are considering modifying their economic dispatch model to include

9



additional ramp capability constraints. Midcontinent ISO (MISO) has proposed an

economic dispatch model with ramp product, which aims to cover forecast variability

in net load as well as uncertainty, which is calculated based on a statistical analysis

of historical data available to the system operator [42]. California ISO (CAISO) is

also investigating a flexible ramping product in order to create additional flexibility

in the dispatch so that the occurrences of ramp shortage and temporary price spikes

are greatly reduced [43]. However, even with the ramp capability modification there

is a significant probability of shortage events due to lack of system ramp capability.

1.3.2 Main Contributions from System Operator’s Perspective

In Section 4 a robust optimization based economic dispatch model is proposed

which gives dispatch decisions that are robust to uncertainties in the system net load.

The main contributions of this section are as follows:

• presents a robust optimization based economic dispatch model for ensuring a

reliable dispatch solution for the power system.

• proposes a novel metric for dispatch flexibility based on a probabilistic risk

measure.

• illustrates the proposed robust model on a small test system for the real time

economic dispatch.

• compares the robust model to the current conventional economic dispatch

model as well as the industry proposed ramp product and look-ahead dis-

patch models, in terms of dispatch costs, system reliability and their impact

on Locational Marginal Prices (LMPs).

• presents the formulation for the implementation of robust dispatch in a multi-

zonal system with transmission line flow constraints considered.
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• illustrates the proposed robust model on a multi-zonal IEEE 24 bus Reliability

Test System for real time economic dispatch using realistic data. To compare

the robust approach to the existing and industry proposed models in terms of

dispatch costs and the proposed flexibility metric.

1.4 Dissertation Outline

The rest of this dissertation is organized as follows. Section 2 presents the back-

ground on robust optimization, uncertainty sets, risk measures used in finance in-

dustry, incorporating decision makers risk aversion and the risk measure based con-

struction of uncertainty sets. This section also describes the power system scheduling

operations, specifically the conventional economic dispatch and automatic generation

control. Also NERC’s Control Performance Standard (CPS) criteria for secondary

frequency control are reviewed.

Section 3 presents the formulation of a robust optimization based bidding strategy

for dispatching the combination of a wind farm and an energy storage device. The

bidding strategy increases the profit of the renewable generator by exploiting energy

arbitrage opportunities. Further, the risk preference of the user can be incorporated

through the choice of the uncertainty set for the robust problem. Two approaches

that incorporate risk are considered for the choice of uncertainty sets: (i) modulated

convex hull, and (ii) coherent risk measure CVaR used in finance. In order to il-

lustrate these approaches case studies are presented. The decision making process

for selecting the optimum bidding strategy, from the point of view of the wind farm

operator, is also presented. The robust approach is compared to the deterministic,

stochastic and model predictive control approaches.

Section 4 presents a robust optimization based economic dispatch model for en-

suring adequate system ramp capability. The proposed robust model is compared
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existing and industry proposed economic dispatch approaches: (i) ramp product,

and (ii) look-ahead dispatch. Further, a metric called the lack-of-ramp probability

(LORP) index is proposed to measure the flexibility of dispatch. This probabilistic

metric can be used to compare the different economic dispatch models in terms of the

risk of shortage events occurring, due to lack of system ramp capability. A numerical

assessment on a test system is presented, including Monte Carlo simulations in order

to compare the economic dispatch models. Further, a robust dispatch formulation

for a multi-zonal system including transmission line flow constraints is presented.

The implementation of the proposed multi-zonal robust dispatch is demonstrated

through a case study on an IEEE 24 bus Reliability Test System.

Finally in Section 5, the main contributions of this dissertation are summarized

and some future research directions are suggested.
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2. BACKGROUND∗

2.1 Robust Optimization

Robust optimization offers a non-probabilistic approach to deal with uncertainty

through the use of an uncertainty set. Unlike stochastic programming in this ap-

proach knowledge of the probability distribution of the uncertain variable is not

required. For many problems in power systems it may be difficult to accurately esti-

mate the probability distribution of the uncertain variable. Further a large number

of scenarios have to be considered in order to get a reasonable guarantee on the

solution, which leads to large problem size.

Robust optimization solves for the worst case of uncertainty within the uncer-

tainty set, hence the solution is feasible for all realizations of uncertain variables

within the given uncertainty set. The other advantage is that for many classes of

optimization problems the RO formulation is tractable [44].

The generic robust optimization formulation is given as:

min
x∈X

f(x, u)

s.t. g(x, u) ≥ 0, ∀u ∈ U (2.1)

where x is a vector of decision variables which belong to set X ⊆ Rn, f and g are

∗This section is in part a reprint of the material in the following papers: (1) Reprinted with
permission from A. A. Thatte, D. E. Viassolo, and L. Xie, “Robust bidding strategy for wind
power plants and energy storage in electricity markets,” in Proc. IEEE Power Energy Soc. Gen.
Meet., San Diego, CA, Jul. 22-26, 2012, pp. 1-8. Copyright 2012, IEEE. (2) Reprinted with
permission from A. A. Thatte, L. Xie, D. E. Viassolo and S. Singh, “Risk Measure based Robust
Bidding Strategy for Arbitrage using a Wind Farm and Energy Storage,” IEEE Transactions on
Smart Grid, vol. 4, no. 4, pp. 2191-2199, Dec. 2013. Copyright 2013, IEEE. (3) Reprinted with
permission from A. A. Thatte, F. Zhang and L. Xie, “Frequency aware economic dispatch,” Proc.
North American Power Symposium (NAPS), Boston, MA, Aug. 4-6, 2011, pp. 1-7. Copyright
2011, IEEE.
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the objective function and constraints respectively, u are the uncertain parameters

which take values in the uncertainty set U .

Thus we obtain the optimal solution x∗ where the constraint g(x, u) ≥ 0 is satis-

fied for all realizations of the uncertain variable u within the defined uncertainty set

U .

The general uncertain linear programming (LP) problem is given as

min
x∈X

cTx

s.t. ãTx ≥ b (2.2)

where without loss of generality the uncertainty is assumed to affect only the

constraint coefficients ã. Every element of the vector ã is assumed to be subject to

uncertainty and belongs to the uncertainty set U .

The robust counterpart to the uncertain LP problem is computationally tractable

for many types of uncertainty sets, and for polyhedral uncertainty sets the robust

counterpart can be converted to a deterministic LP problem [4, 44].

The uncertainty set can be based on some historical information about the values

of the uncertain parameters. If information about the variance of the uncertain

coefficients is available then that information can be used to construct polyhedral

uncertainty sets [45].

In order to limit the conservatism of the solution there are different approaches

available in the literature. One way is to select the uncertainty set based on a

budget of uncertainty. Another approach is to use a modulated convex hull based

on available data. Further, based on the correspondence of the uncertainty set with

risk measures commonly used in finance we can construct uncertainty sets for the

generator dispatch problem [5, 30].
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2.1.1 Budget of Uncertainty

The general robust optimization problem is very conservative since we consider

the worst case for every uncertain variable. An approach to allow the decision maker

to control the degree of conservatism is suggested in [46].

Bertsimas et al. [36] propose a way to construct the uncertainty set which is as

follows. Suppose every element of the vector ã belongs to a symmetrical interval

[â − ∆a, â + ∆a], where â and ∆a represent the nominal values and deviations

respectively. The polyhedral uncertainty set can be defined as

U =

{

ãi :
N
∑

i=1

|ãi − âi|
∆a

≤ Γ

}

(2.3)

where |∆ai| = |α âi|, α being a scalar constant in the set [0, 1] which gives the relation

of the deviation ∆ai to the nominal value âi. N is the number of uncertain variables

and Γ is referred to as the budget of uncertainty which is used to adjust the level of

conservatism of the solution. When Γ = 0 the problem reduces to the deterministic

case which solves the problem using the nominal values i.e., expected values of the

uncertain coefficients. Γ can be adjusted according to the trade-off between decision

maker’s risk preference and the conservatism of the solution.

2.1.2 Modulated Convex Hull

Another approach to defining the uncertainty set, called the modulated convex

hull is as follows [47]:

We choose parameter ǫ ∈ [0, 1], for which we get the uncertainty set as

U = â + (1− ǫ)(conv{a1, a2, . . . , aN} − â) (2.4)
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where â is the nominal or expected value of the uncertain vector and ai, i = 1, . . . , N

are vectors that represent the historic data of the random vector. As ǫ increases from

0 (worst case) to 1 the uncertainty set collapses to â. Therefore, the uncertainty set

for price can be defined around the forecast value based on decision maker’s choice

of parameter ǫ. Thus this parameter ǫ can be used to represent decision maker’s risk

preference.

2.1.3 Risk Measures

In the field of finance the portfolio allocation problem is an optimization problem

where the uncertain coefficients are the future asset returns. Risk measures are used

to quantify the likelihood and size of potential losses. A risk measure is effectively

a mapping from a set of random variables (e.g., portfolio returns) to the set of real

numbers. The aim of the portfolio optimization is to find the minimum risk portfolio

in the set of feasible portfolios. Analogous to this, the bid scheduling problem for

the energy from the combination of a wind farm and an energy storage device can

also be framed as an optimization problem. The aim is to maximize the profit from

sale of electricity under uncertainties in electricity price forecasting and wind power

forecasting.

2.1.3.1 Value at Risk (VaR)

Value at Risk (VaR) is a risk measure which is widely used in finance. VaR is

computed as the maximum profit over a target time horizon such that the probability

of the profit being less than or equal to this value is less than or equal to 1− β [48].

Thus VaR can be used to represent the monetary risk associated with the bid schedule

of the combination of the wind farm and energy storage, due to uncertainties in the

forecasts.

Given a confidence level β ∈ (0, 1) and the normally distributed random variable,
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profit, Value at Risk for the operating day is defined as

V aRβ(profit) = max{t|Pr(profit ≤ t) ≤ 1− β} (2.5)

The main disadvantages of VaR are that (i) it does not capture tail cases, and

(ii) VaR is not coherent.

2.1.3.2 Coherent Risk Measures

A risk measure ρ(.) is coherent if it satisfies the following four conditions [49].

1. Sub-additivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y )

2. Homogeneity: For any ξ ≥ 0, ρ(ξX) = ξρ(X)

3. Monotonicity: ρ(X) ≤ ρ(Y ) if X ≥ Y

4. Translational invariance: ρ(X + c) = ρ(X)− c, for any constant c

These axioms have certain interpretations as applied to financial investments.

Sub-additivity means that the risk of a combination of two investments can not be

greater than the sum of their individual risks. Homogeneity means that the risk

scales with the size of the investment. Monotonicity means that if the value of one

investment is always greater than another, then the risk associated with the former

is always lower. Translation invariance states that the addition of a sure amount of

capital c > 0 to a position lowers the risk of that position by the amount c.

Convexity, defined as ξ ∈ [0, 1], ρ(ξX + (1− ξ)Y ) ≤ ξρ(X) + (1− ξ)ρ(Y ) follows

from above conditions. The main consequence of coherency is the preservation of

convexity, which in turn implies computational tractability of optimization [50, 30].
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2.1.3.3 Conditional Value at Risk (CVaR)

Conditional Value at Risk (CVaR) is defined as the conditional expectation of

the profit, given that the profit is less than or equal to the VaR value. Thus given a

confidence level β ∈ (0, 1),

CV aRβ(profit) = E[profit|profit ≤ V aRβ ] (2.6)

Therefore CVaR is the expected value of the worst (1− β) cases of profit. Com-

pared to VaR, CVaR is a conservative risk measure since it captures the tail of the

probability distribution of profit. The main advantage of CVaR is that it is coherent

[51]. This addresses the motivation of using the CVaR risk measure in this case.

CVaR being a coherent risk measure preserves the convexity of the robust counter-

part to the linear optimization problem with uncertain data. Therefore, the resulting

robust optimization problem is tractable.

CVaR captures the tail of the bidding profit scenarios as specified by a confidence

level β (Fig. 2.1). Therefore for a given confidence level CVaR can be used as

a performance measure to compare different bidding strategies. By changing the

confidence level the conservatism level of this performance measure can be adjusted.

For instance if we take β = 100% the CVaR measure is reduced to the worst case

scenario only. Whereas if we take β = 0% then CVaR gives the mean for all profit

scenarios. Thus the confidence level β can be used to represent the decision maker’s

risk aversion. A more risk averse decision maker may choose a larger value of β,

while a risk tolerant decision maker may choose a smaller value of β.

Expressing the decision maker’s risk preference as a coherent risk measure, allows

us to formulate the optimization problem with uncertain data as a robust optimiza-

tion problem with a convex uncertainty set. Example 3.2 in Bertsimas and Brown
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Figure 2.1: VaR and CVaR

[5] specifies the link between CVaR risk measure and polyhedral uncertainty sets, as

follows.

Given N samples of data i.e., {a1, . . . , aN}, the uncertainty set for the uncertain

vector ã corresponding to CV aRβ is

U = conv

({

1

1− β

∑

i∈I

piai +
(

1− 1

1− β

∑

i∈I

pi
)

aj :

I ⊆ {1, . . . , N}, j ∈ {1, . . . , N}\I,
∑

i∈I

pi ≤ 1− β

})

(2.7)

If we assume the probability distribution of data samples ai as pi = 1/N, ∀i and

also take 1−β = j/N , then for some j ∈ Z+ this has the interpretation of the convex

hull of all j-point averages of matrix A = [a1, . . . , aN ].
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2.2 Power System Scheduling

Electric power system operation aims at maintaining certain bounds with respect

to state variables such as voltage and frequency, via a series of control actions at var-

ious hierarchical levels. The real power-frequency control sub-problem is addressed

through a sequence of temporally separated control actions, based in part on the

natural decomposition of system load which is as follows [52, 53]:

1. day-ahead load forecast,

2. real-time (every 5 minutes) updated forecast load, and

3. random fluctuations within the 5 minute interval.

The main task of power system scheduling is to match the total system load with

generation. Imbalances between generation and load lead to frequency deviating

from its nominal value, which in the US is 60 Hz. The aim of system operators is to

maintain the system frequency within certain bounds of 60 Hz, and in doing so meet

the demand using the least cost generation. Corresponding to the above temporal

decomposition of system load, the three stages of generator real power control are as

follows [54]:

1. unit commitment (UC),

2. economic dispatch (ED), and

3. primary and secondary frequency control

Unit commitment aims to find the on/off scheduling of the generators in the

system in order to meet the forecasted load. Economic dispatch is carried out to

determine the amount of power that should be produced by the generators which are
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committed during each market interval of the operating day. Secondary frequency

control is done through a system known as Automatic Generation Control (AGC).

The AGC control signal is sent by the system operator to participating generators so

as to control their power output in order to regulate the system frequency. Whereas,

primary control is implemented through the governor control of the synchronous

generator, which is a local control.

This temporal separation of control actions means that when making ED deci-

sions, it is implicitly assumed that the system frequency will be stable and will remain

on average at the nominal value (i.e., 60 Hz for US). This assumption is justified since

usually the magnitude of the random fluctuations in load is much smaller than the

magnitude of the near-term updated load forecast. Also the random fluctuations can

be assumed to be zero-mean Gaussian, therefore under normal conditions the pri-

mary and secondary control actions will stabilize the frequency around the nominal

value. Thus we are able to decompose the problem into several simpler sub-problems

at the different levels of the power system hierarchy. The temporal separation prin-

ciple and hierarchical structure have provided a fast and near-optimal approach to

solving what amounts to a large-scale complex dynamic system problem [53].

Fig. 2.2 illustrates the scheduled or forecast demand as well as the actual demand

for a hypothetical power system. Economic dispatch is used to meet this scheduled

demand by dispatching power from participating generators. The actual demand

comprises of small and rapid fluctuations around this scheduled demand. The AGC

system is used to maintain the system power balance by tracking these fluctuations

on a moment to moment basis through the ancillary service known as frequency

regulation [55].

Both ED and AGC decisions are implemented physically at the same input of the

generator control system, namely the setpoint of the speed governor. However, ED
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Figure 2.2: Scheduled and actual demand for a hypothetical power system

and AGC operate at different time scales. ED is typically carried out every 5 to 15

minutes and aims to balance the load requirement in the most economical way. The

signal to execute AGC is sent out typically every 2 to 4 seconds, and the aim of AGC

is to restore the system frequency to its nominal value within seconds to minutes.

The conventional ED can be formulated as the following deterministic optimiza-

tion problem [31].

min
PGi

N
∑

i=1

CGi(PGi) (2.8)

s.t.,
N
∑

i=1

PGi =

M
∑

j=1

PLj (2.9)

Pmin
Gi ≤ PGi ≤ Pmax

Gi ∀i (2.10)

−Ri ≤ PGi − P 0
Gi ≤ Ri ∀i (2.11)

|F | ≤ Fmax (2.12)
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where

CGi() is the cost function of generator i,

PGi is the power output of generator i,

Pmin
Gi is the minimum output level of generator i,

Pmax
Gi is the maximum output level of generator i,

P 0
Gi is the generator power output in the previous time interval,

PLj is the power demand of load j,

Ri is the ramp rate of generator i,

F is the vector of line flows,

Fmax is the vector of line flow limits.

The objective of the ED problem (2.8) is to minimize the total cost of dispatch of

all generators. The main constraint is to balance the system demand with generation

(2.9). The generator outputs should be within their upper and lower limits (2.10).

The inter-temporal generator ramp rates also constrain the power outputs (2.11).

Also, the line flows on all transmission lines should be within the specified limits

(2.12).

The objective of the conventional Area Control Error (ACE) based AGC is to

adjust the governor set points of the generators and thus change their power out-

puts, in order to maintain the system frequency close to the nominal value. If the

frequency bias of each area is chosen to correspond to its natural response coefficient

β then ACE provides a measure of the local power imbalance in a specific control

area. Therefore if the ACE of an area is zero, then generation and demand are bal-

anced [54].

ACE = Ta − Ts − 10B(Fa − Fs) (2.13)
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where

Ta and Ts are net actual and scheduled tie flows (in MW) leaving a control area,

respectively

B is the frequency bias coefficient (MW/0.1 Hz),

Fa and Fs are actual and scheduled system frequency (in Hz), respectively.

The performance of AGC can be monitored using NERC’s Control Performance

Standard (CPS). Control areas are required to ensure compliance with the NERC

CPS in order to maintain reliability. CPS is composed of two parts - CPS1 and

CPS2. Each control area must have at least 100% compliance with CPS1 and 90%

compliance with CPS2. The formulae for calculating CPS compliance are stated as

follows [56]:

CF12month = AV G12month

[(

ACE

−10B

)

1

×∆F1

]

(2.14)

CPS1 =

(

2− CF12month

(ǫ1)2

)

× 100% (2.15)

where ǫ1 is the CPS1 control target of the Interconnection (in Hz), ∆F1 is the

clock-minute average of frequency deviation (in Hz), B is the frequency bias of the

control area (in MW/0.1 Hz),
(

ACE
−10B

)

1
and is the clock-minute average of ACE divided

by the control area’s frequency bias (in Hz).

CPS2 compliance is calculated based on a statistically derived bound L10 on the

ten-minute average of ACE

AV G10minute(ACEi) ≤ L10 (2.16)
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where:

L10 = 1.65ǫ10
√

(−10Bi)(−10Bs) (2.17)

ǫ10 is a constant derived from the targeted frequency bound, and Bs is the sum of

the Frequency Bias Settings of the Balancing Authority Areas in the Interconnection.

CPS2 =
[

1− Vmonth

TPmonth − UPmonth

]

× 100% (2.18)

Vmonth is a count of the number of periods that ACE clock-ten-minute average ex-

ceeded L10

TPmonth are the total periods of the month

UPmonth are the unavailable periods of the month

The conventional methods of power system operation for real power-frequency

control are based on the assumption that generation is dispatchable and usually

predictable. However, the penetration of variable generation, such as wind and solar,

in power systems is increasing. Due to their inherent variability and unpredictability

these resources pose a challenge for the reliable operation of power systems.
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3. ROBUST OPTIMIZATION BASED BIDDING STRATEGY∗

3.1 Introduction

This section describes the formulation of an optimization based bidding strategy

for dispatching a wind farm in combination with energy storage. Through coor-

dination with energy storage devices, variable wind generators can be utilized as

dispatchable energy producers in the deregulated electricity market. The total profit

from sale of electricity can be increased by exploiting arbitrage opportunities avail-

able due to the variation of electricity prices over time in the electricity market.

The variable and uncertain nature of the wind resource poses challenges to op-

erations of the electricity grid. Despite improvements in forecasting methods it is

difficult for system operators to dispatch wind generators as they dispatch conven-

tional generators. Storage technologies can help in firming the output of wind gen-

eration and provide benefits to the system over different time scales. The combined

operation of renewable generators and energy storage allows for greater flexibility in

power output decision making. As an example, storage can help in exploiting arbi-

trage opportunities due to temporal variations in electricity prices over a duration

of several hours [57]. In addition, fast acting storage technologies can allow wind

generators to schedule their dispatch with more certainty, thereby enabling them to

participate in ancillary services such as frequency regulation [17]. Improved utiliza-

tion of wind energy can help in improving the operational economic performance of

∗This section is in part a reprint of the material in the following papers: (1) Reprinted with
permission from A. A. Thatte, D. E. Viassolo, and L. Xie, “Robust bidding strategy for wind power
plants and energy storage in electricity markets,” in Proc. IEEE Power Energy Soc. Gen. Meet.,
San Diego, CA, Jul. 22-26, 2012, pp. 1-8. Copyright 2012, IEEE. (2) Reprinted with permission
from A. A. Thatte, L. Xie, D. E. Viassolo and S. Singh, “Risk Measure based Robust Bidding
Strategy for Arbitrage using a Wind Farm and Energy Storage,” IEEE Transactions on Smart
Grid, vol. 4, no. 4, pp. 2191-2199, Dec. 2013. Copyright 2013, IEEE.
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wind generation.

Researchers have proposed techniques to coordinate the power output of wind

generation with energy storage devices. Castronuovo and Lopes [8] consider a com-

bined wind and pumped storage facility and determine the optimal operational strat-

egy based on deterministic linear optimization for scenarios generated using a Monte

Carlo simulation approach. The coordination of wind and flywheels for energy bal-

ancing and frequency regulation has been proposed in [1]. A dynamic programming

algorithm for optimal scheduling of the combination of wind with a generic energy

storage device is presented in [10]. Garcia-Gonzalez et al. [14] formulate the joint

optimization of the wind and pumped storage facility as a two-stage stochastic pro-

gramming problem. In fact there are many examples of the stochastic programming

approach applied to power systems to deal with uncertainty [15, 13, 16]. How-

ever both the stochastic programming and dynamic programming approaches are

computationally challenging due to the large number of scenarios that have to be

considered.

Over the past few years Robust Optimization (RO) has been receiving increas-

ing attention from researchers in electric power system operations to deal with un-

certainty in optimization problems. The RO approach has been applied across a

variety of domains including portfolio optimization, supply chain management, net-

work flows, circuit design, wireless networks, and model parameter estimation [44].

In power systems recently the RO approach has been applied to the unit commit-

ment problem [35]. In fact, over the past few years a number of researchers have

proposed robust optimization approaches for unit commitment in power systems

[37, 38, 39, 58].

The main feature of the RO approach is that it uses a non-probabilistic ap-

proach to deal with the uncertainty. Uncertainty is addressed by constructing an

27



uncertainty set and the solutions obtained are robust to all realizations of uncer-

tain data within the defined uncertainty set. Such robustness is consistent with the

reliability requirement of power systems operation, given that the cost associated

with constraint violations is very high. Also, for a wide class of problems, the ro-

bust optimization models have similar computational complexity as the deterministic

counterparts. This computational tractability makes robust optimization a practical

approach for many real-world applications. The question that arises in this regard is

as to the selection of these uncertainty sets. A commonly used approach to selecting

the uncertainty set is based on the budget of uncertainty notion, which is used to con-

trol the conservatism of the solution [44]. Another method that has been suggested

to determine the uncertainty set is to use risk measures commonly used in finance

industry [5]. In financial portfolio optimization the future values of the assets are

uncertain, similarly in the generator scheduling problem the market clearing price

of electricity in the day-ahead market is uncertain at the time of generator bidding

decision. The uncertainty set can be determined based on a coherent risk measure

such as Conditional Value at Risk (CVaR) [30]. Consequently a robust optimiza-

tion bidding strategy can be obtained based on the risk preference of the wind farm

operator. Robust optimization solves for the worst-case, consequently it will yield

conservative results if the forecast errors are low. However, since the robust approach

yields solutions that are immunized to all realizations of uncertain data within the

uncertainty set, it maybe a suitable approach when forecast errors are high.

The main contributions of this section are:

• presents the formulation for a robust optimization based bidding strategy for

the combination of a wind farm and an energy storage device in deregulated

electricity markets. By using energy arbitrage the wind farm operator can
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leverage the on-site energy storage in order to get increased profit.

• analyzes and compares the performance of the robust optimization approach

to the deterministic approach. The impact of the choice of uncertainty set on

the optimality of the result is examined.

• verifies through a case study that the robust approach has a higher probability

of yielding better economic returns compared to the deterministic optimization

approach, for a high forecast error in day-ahead electricity market clearing

price.

• compares the robust optimization based bidding strategy to a stochastic opti-

mization based approach.

• proposes the use of risk measure based uncertainty sets for determining the

optimal bids in the day-ahead electricity market. Risk measures used in fi-

nance industry can be used to incorporate decision maker’s risk aversion in the

decision making process.

• illustrates through case studies, the risk measure based robust bidding strategy

for an energy arbitrage application using the combination of a wind farm and

a generic energy storage.

3.2 Formulation

The bid scheduling for the combination of a wind farm and energy storage device

is formulated as a linear optimization problem which aims to maximize the total profit

from sale of electricity in the day ahead market. The aim of the energy arbitrage

strategy is to leverage the storage to take advantage of temporal variations in the

electricity price. This is done by storing energy from the wind farm in the storage
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device when the price is low and then returning this energy to the grid when the

price increases.

The inputs to the optimization are the forecasts of electricity prices and wind

farm power production, whereas the outputs are the hourly power injection profiles

of the wind farm and the energy storage for the entire operating day. The bids

comprising of the hourly power injection totals of the wind farm and energy storage

device are submitted to the market. Upon market clearing the system operator

sends the dispatch signal comprising of successful injection bids, to the wind farm

operator (Fig. 3.1). The wind farm and energy storage inject power to the grid to

match the dispatch commands. The bidding strategy leverages the storage device

by exploiting the arbitrage opportunities, created due to temporal price variations.

The abbreviation DKK is used for Danish Kroner, and k is the index for the hours

in the operating day. The nomenclature used is given in Table 3.1.

Wind Farm 

Energy Storage 

Controller 

Market Grid 

Bidding 

Dispatch 

Power Flow 

Control 

 

 

 

Figure 3.1: Schematic of wind farm and energy storage
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Table 3.1: Nomenclature for bidding strategy

Decision Variables:

P g
w[k] Power injected by wind farm directly into the grid (MW )

P d
s [k] Discharge power of storage device (MW )

P c
s [k] Charge power of storage device (MW )

Es[k] Energy level of storage device (MWh)

Point Forecasts:

P̂w[k] Forecast power production of wind farm (MW )

λ̂[k] Forecast market clearing price of electricity (DKK/MWh)

Random Variables:

P̃w[k] Power production of wind farm (MW )

λ̃[k] Market clearing price of electricity (DKK/MWh)

Constants:

Pmax
s Rated power of storage device (MW )

Emax
s Upper limit on energy level of storage device (MWh)

Emin
s Lower limit on energy level of storage device (MWh)

η Round-trip efficiency of the storage device (%)
ηd Discharging efficiency of the storage device (%)
ηc Charging efficiency of the storage device (%)
Cw Marginal cost of wind (DKK/MW )
Cs Charging/discharging (degradation) cost of storage (DKK/MW )
Ce Energy storage operation cost (DKK/MWh)
P r
w Ramping constraint of wind farm (MW/h)

N Number of time periods (for 1 day N = 24)

3.2.1 Deterministic Optimization Based Bidding Strategy

The objective function and constraints of the deterministic optimization problem

are expressed as follows.

min
Pw[k],P d

s [k],P
c
s [k],Es[k]

N
∑

k=1

[−λ̂[k](Pw[k] + P d
s [k]− P c

s [k])

+ CwPw[k] + Cs(P
d
s [k] + P c

s [k]) + CeEs[k]] (3.1)
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s.t.

−P r
w ≤ Pw[k]− Pw[k − 1] ≤ P r

w (3.2)

0 ≤ Pw[k] ≤ P̂w[k] (3.3)

Emin
s ≤ Es[k] ≤ Emax

s (3.4)

0 ≤ P c
s [k] ≤ Pmax

s (3.5)

0 ≤ P d
s [k] ≤ Pmax

s (3.6)

Es[k] = Es[k − 1]− 1

ηd
P d
s [k] + ηcP

c
s [k]− (P̂w[k]− P g

w[k]) (3.7)

The objective function (3.1) consists of (i) revenue from the sale of power from

both the wind farm and storage, and (ii) various costs including the marginal cost of

wind, degradation costs associated with charging and discharging, and energy storage

costs. By minimizing the negative of the total profit, (3.1) effectively maximizes the

total profit. The change in power output of the wind farm between consecutive

time periods is subject to ramping up/down constraints (3.2). The amount of wind

power directly injected into the grid can’t exceed the forecast maximum wind power

available (3.3). The amount of energy that can be stored in the storage device as

well as its charging and discharging rate have certain upper and lower limits (3.4)-

(3.6). The amount of energy in the storage device in any time period, depends on

the charge/discharge history of the storage device, i.e. the storage dynamics, which

are given by (3.7).

The model assumes that energy storage device can only be charged using wind

power and not by the grid. This assumption is reflected in the equation for the storage

dynamics (3.7). The term P̂w(k) − Pw(k) in (3.7) is the firming power provided by

storage to compensate for wind power forecast errors. The result of the optimization
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is the total power to be sold in the Day Ahead Market (DAM) for each hour of the

operating day.

Bid[k] = Pw[k] + P d
s [k]− P c

s [k], for k = 1, 2, ..., N. (3.8)

3.2.2 Robust Optimization Based Bidding Strategy

Using the formulation described in Section 2 the robust optimization based strat-

egy can be formulated as an extension to the deterministic optimization based strat-

egy. Uncertainty exists in the amount of wind power and electricity price due to

inaccuracy of forecasts. In such case the robust optimization problem can be stated

as follows.

min
P

g
w[k],P d

s [k],P
c
s [k],Es[k]

max
λ̃∈U ,P̃w∈V

N
∑

k=1

[−λ̃[k](P g
w[k] + P d

s [k]− P c
s [k])

+ CwP
g
w[k] + Cs(P

d
s [k] + P c

s [k]) + CeEs[k]] (3.9)

s.t.

−P r
w ≤ P g

w[k]− P g
w[k − 1] ≤ P r

w (3.10)

0 ≤ P g
w[k] ≤ P̃w[k] (3.11)

Emin
s ≤ Es[k] ≤ Emax

s (3.12)

0 ≤ P c
s [k] ≤ Pmax

s (3.13)

0 ≤ P d
s [k] ≤ Pmax

s (3.14)

Es[k] = Es[k − 1]− 1

ηd
P d
s [k] + ηcP

c
s [k]− (P̃w[k]− P g

w[k]) (3.15)
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where λ̃ is the uncertain electricity price variable, P̃w is the uncertain available

wind power, U is the uncertainty set for electricity price, and V is the uncertainty

set for available wind power.

The dynamic equation for the storage device is (3.15). In the implementation

code, in order to maintain tractability, this equality constraint is converted into two

inequality constraints with small tolerances. The term P̃w[k] − P g
w[k] is the firming

power provided by storage to compensate for wind power forecast errors.

It is assumed that the storage device can only be charged using the wind power

production and not by the grid (Fig. 3.1). This assumption is used since we are

interested in analyzing the impact of storage on the utilization of wind resource.

The power loss in storage charging and discharging is a function of ηd and ηc, the

discharging and charging efficiencies of the storage device respectively. The roundtrip

efficiency of the storage device can be taken as the product of these two values, i.e.

η = ηdηc.

3.2.3 Reformulation to Tractable Problem

In this subsection it is shown that using duality the min-max problem can be

reformulated as a tractable linear programming problem.

The problem (3.9)-(3.15) is of the form

min c̃Tx

s.t. Ax ≤ b̃

x ∈ X, c ∈ U , b ∈ V (3.16)

where x is the vector of decision variables, b̃ and c̃ are vectors of uncertain data. The
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uncertain problem (3.16) can be reformulated as

min t

s.t. t− c̃Tx ≤ 0

Ax− b̃y ≤ 0

x ∈ X, y = 1, c ∈ U , b ∈ V (3.17)

When the uncertainty sets are polyhedral they can be represented by matrix inequal-

ities. Thus (3.17) can be written in the min-max form as

min fTw

s.t. max gTi w ≤ hi

Digi ≤ di (3.18)

where the symbols in (3.17) are assumed to be redefined with consistency maintained.

Taking the dual of the inner maximization subproblem in (3.18) we get

min fTw

s.t. pTi di ≤ hi

pTi Di = w

pi ≥ 0 (3.19)

Thus the original problem (3.9)-(3.15) is transformed into a tractable linear program-

ming formulation.

35



3.2.4 Model Predictive Control Based Bidding Strategy

Model Predictive Control (MPC) is a receding horizon optimization based method

which has been used in various process control applications [59]. In each iteration

of the MPC an optimization problem based on a finite prediction horizon is solved

to obtain an optimal control strategy. However only the first step of the control

strategy is implemented and the remaining steps are discarded. New measurements

are obtained and then the optimization is repeated. MPC has been proposed to solve

the dispatch problem for power systems which have a high penetration of wind [60].

The use of MPC for the coordinated scheduling of wind farms and battery energy

storage systems has been proposed [61]. Receding horizon control has been proposed

for determining the real-time operation of a portfolio of storage devices [62].

The algorithm used by MPC method is as follows

1. Set iteration number k = 1.

2. Select the prediction horizon, N (e.g., 24 hours discretized into hourly intervals)

3. Solve the deterministic linear optimization problem (3.1-3.7) for the entire

horizon from k to k + N − 1 and get optimal decision U∗. We have U∗ =

[u∗
1, u

∗
2, . . . , u

∗
N ], where u∗

k = [Pw(k), P
d
s (k), P

c
s (k), Es(k)].

4. Use the first element of U to make the bidding decision for the wind farm and

storage device.

5. Set k = k+1 and update information (wind forecast, price forecast, constraints

etc.). Goto step 2.

The MPC method is applicable only for certain market structure. For example,

in the hour ahead market over the duration of one day 24 hourly bids are to be
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submitted one hour ahead of each operating hour, and thus the forecasts of wind

power and electricity price can be updated as the operating day progresses. Whereas

in the day-ahead market the bids for all the 24 hours have to be submitted at the

same time, hence MPC approach can not be used. Thus MPC is suitable for hour-

ahead or real-time markets where bids in each market time interval are submitted

individually at different times, rather than collectively at the same time.

3.3 Numerical Examples

A numerical example is considered in order to compare the performance of the

robust optimization approach with the deterministic optimization approach. These

approaches are applied for determining the optimal bidding strategy of the wind

farm and storage device combination, for the energy arbitrage application. The

characteristics of the wind farm and a generic energy storage device are presented in

Table 3.2.

Table 3.2: Wind farm and storage device parameters

P̃max
w Rated capacity of wind farm (MW ) 30

Pmax
s Rated capacity of storage device (MW ) 3

Emax
s Maximum energy level of storage device (MWh) 3.75
η Round trip efficiency of storage 90%
ηd Discharging efficiency of storage 95%
ηc Charging efficiency of storage 95%
Cw Marginal cost of wind (DKK/MW ) 5
Cs Charging discharging (degradation) cost (DKK/MW ) 1.5
Ce Energy storage cost (DKK/MWh) 1

Electricity price data from Nordpool for West Denmark is used for the simula-

tions. The hourly bids for sale and purchase of energy in the day ahead market for

the entire operating day have to be submitted on the previous day, 12 hours before
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the beginning of the operating day (Fig. 3.2). It is assumed that any excess wind

generation is sold in the hour-ahead market whereas any deficit has to be purchased

from the hour-ahead market at the hour-ahead market price. The decision for the

wind farm and storage device hourly power output profile is made based on forecasts

of the day-ahead electricity price and wind power. The profit is calculated based

on the actual values of price and wind. This settlement is done after the end of

the operating day. The robust optimization problem is solved using MATLAB along

with the YALMIP toolbox [63].

12:00

(noon)

0:00 0:00

(midnight)

1:00

Optimization &

DAM Bidding

DAM

Settlement

Operating day

…

Figure 3.2: Nordpool market timeline

3.3.1 Day Ahead Market - One Day (Deterministic vs. Robust)

In order to analyze the performance of the optimization based bidding strategy

Monte Carlo simulation method is used. The Cauchy distribution is taken as the

model for the distribution of wind power forecast errors [64]. For electricity price

forecast error again Cauchy distribution has been shown to be a reasonable model

[65]. Thus for both the wind farm power output and the electricity price an error

is generated at random for each hour of the day by sampling a Cauchy distribution
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within bounds defined by 90% confidence interval. For each hour of the day the

realization of the actual value of the input quantity (i.e., wind farm power output

and electricity price) is obtained by subtracting the error from the forecast value.

Thus M=100 scenarios of actual wind farm power output and electricity price are

generated using random sampling.

Two particular scenarios are shown for comparing the performance of robust

optimization to deterministic optimization. In Scenario A the forecast error is high

whereas in Scenario B the forecast error is low.

3.3.1.1 Scenario A

Fig. 3.3 shows the hourly electricity prices in the day-ahead market for Scenario

A. The error between forecast and actual price is high, particularly for hour 17 and

21. Fig. 3.4 shows the bidding decision for wind and storage for the given day.

In hours 2-5 when the forecast price is lower, part of the wind energy is used to

charge the storage device. In hour 11 when the forecast price reaches its peak the

stored energy is injected into the grid. Thus the storage device can be used to

take advantage of arbitrage opportunities that result from temporal variations in the

electricity price. Fig. 3.5 shows the bidding decision using the robust optimization

approach. In this scenario total profit from the wind farm and storage combination

for the deterministic approach is DKK 25, 241.12 whereas the total profit for the

robust approach is DKK 25, 341.50. Thus the economic performance of the robust

approach is higher than deterministic by 0.398% for this particular scenario.

3.3.1.2 Scenario B

Fig. 3.6 shows the hourly electricity prices in the day-ahead market for Scenario

B. Compared to Scenario A the actual electricity prices are closer to the forecast.

Fig. 3.7 and Fig. 3.8 show the bidding decisions for wind and storage using the
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Figure 3.3: Electricity prices for scenario A
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Figure 3.4: Results of deterministic optimization scenario A

deterministic and the robust optimization approach respectively. In this scenario

since the electricity price forecast error is smaller than Scenario A, particularly for

the key time intervals, hours 17 and 21 when the storage charges and discharges,
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Figure 3.5: Results of robust optimization for scenario A

the robust optimization gives a more conservative result than the deterministic op-

timization. In this scenario total profit from the wind farm and storage combination

for the deterministic approach is DKK 25, 083.42 whereas the total profit for the

robust approach is DKK 24, 977.59. Thus the economic performance of the robust

approach is lower than deterministic approach by 0.422% for this particular scenario.

3.3.1.3 Impact of Choice of Uncertainty Set

The performance of the robust optimization approach as a function of the budget

of uncertainty (Γ) is analyzed. Historical true values and forecasts of electricity

price for past seven days are used to estimate the variance and standard deviation

(σ) of the hourly prices for the given day, using the approach presented in [45].

Information about the variance of the uncertain coefficients is used to construct

polyhedral uncertainty sets for electricity price and wind power as follows.
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Figure 3.6: Electricity prices for scenario B
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Figure 3.7: Results of deterministic optimization for scenario B

The polyhedral uncertainty set is defined as

U =

{

ãi|
n
∑

i=1

|ãi − âi|
σi

≤ Γ

}

(3.20)
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Figure 3.8: Results of robust optimization for scenario B

where |ãi − âi| = |∆ai| = |α âi|, α being a scalar constant in the set [0, 1] which

gives the relation of the deviation ∆ai to the nominal value âi. σi is the standard

deviation of coefficient ai and Γ is the budget of uncertainty which is used to adjust

the level of conservatism of the solution [46].

The uncertainty sets are chosen as follows.

U = [(1− αp)λ̂, (1 + αp)λ̂] (3.21)

V = [(1− αw)P̂w, (1 + αw)P̂w] (3.22)

where U is the uncertainty set for electricity price, V is the uncertainty set for

available wind power, and αp and αw are the scalar parameters that define the

respective uncertainty sets.

Thus for each value of Γ using (3.20) the corresponding value of αp is obtained.

Then using the electricity price forecast and wind power forecast as the nominal
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values their respective uncertainty sets can be obtained.

The mean total profit of the day using the deterministic and robust optimization

approach for the 100 scenarios is calculated. The worst case realization profit is also

calculated for each case. Table 3.3 illustrates how the result is affected as the budget

of uncertainty for price increases. The uncertainty set for wind power is fixed and is

based on αw = 0.01

Table 3.3: Results of Monte Carlo runs (DO: deterministic optimization, RO: robust
optimization, result = mean daily total profit, change = % change relative to DO
case, WC = worst case realization profit)

Γ αp Result Change WC
(DKK) % (DKK)

DO - - 30,750 − 26,413
RO 0 0 30,750 0 26,170

5 0.01 30,512 −0.77 26,170
10 0.02 30,511 −0.77 26,169
15 0.03 30,454 −0.96 26,093
20 0.04 30,373 −1.22 26,019
25 0.05 29,664 −3.53 25,346
30 0.06 29,661 −3.54 25,338
35 0.07 29,661 −3.54 25,350
40 0.08 29,661 −3.54 25,350
45 0.09 29,636 −3.62 25,304
50 0.1 29,636 −3.62 25,304

It is observed that as the budget of uncertainty increases the performance of

robust optimization becomes more and more conservative in terms of the mean daily

total profit. Also, increasing Γ above 25 has only a small impact on the optimality

of result. The result of robust optimization for each case is better than the worst

case realization.
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3.3.2 Day Ahead Market - Many Days (Deterministic vs. Robust)

In this case the robust optimization algorithm is used for determining the bidding

strategy for 90 consecutive days. Fig. 3.9 shows the electricity price forecast and

actual data for the first 10 days. Fig. 3.10 shows the wind power output forecast

and actual values for the same time period. The mean daily total profit of the robust

optimization approach is calculated for different choices of price uncertainty bounds

and wind uncertainty bounds.
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Figure 3.9: Forecast and actual electricity price for 10 days

Table 3.4 shows the relationship of the mean daily total profit over 90 days to

the parameter αw which determines the uncertainty set for wind.

Table 3.5 shows the relationship of the mean daily total profit over 90 days to

the parameter αp which determines the uncertainty set for price. As we observe, the

mean daily total profit is more sensitive to the choice of wind uncertainty set than
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Figure 3.10: Forecast and actual wind farm power output for 10 days

Table 3.4: Impact of choice of uncertainty set of wind power

αp = 0.01
αw Mean Daily Total Profit (DKK) % Change

0 (Det) 70,847 0
0.005 70,633 −0.302
0.01 70,419 −0.604
0.02 69,990 −1.210
0.03 69,555 −1.824
0.04 69,112 −2.449

price uncertainty in this particular case.

3.3.3 Hour Ahead Market - One Day (Robust vs. MPC)

The robust optimization approach is compared to the MPC based optimization

approach. In this case study MPC uses a receding look ahead horizon of 24 hours and

the wind forecast is updated every 6 hours. It is assumed that when the actual wind

farm power output is less than the bid to the market the deficit has to be purchased
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Table 3.5: Impact of choice of uncertainty set of price

αw = 0.01
αp Mean Daily Total Profit (DKK) % Change

0 (Det) 70,847 0
0.005 70,420 −0.603
0.01 70,419 −0.604
0.02 70,412 −0.614
0.03 70,406 −0.622
0.04 70,388 −0.648

from the balancing market at regulation-up price, which is usually higher than the

spot market price. Whereas when the actual wind power exceeds the bid, the excess

is sold at regulation-down price, which in most hours is lower than the spot market

price or sometimes may even be negative. Thus by means of a lower total profit the

wind farm is effectively penalized for deviations of actual wind production from the

bid.

The hour-ahead energy forecast and actual price, as well as the regulation market

prices are shown in Fig. 3.11.

Fig. 3.12 shows the hourly bids using the robust optimization with uncertainty

in available wind power and electricity price for the hour-ahead market for one day.

Fig. 3.13 shows the hourly bids using the MPC based optimization. The curve for

the forecast wind power for 24 hours in Fig. 3.13 is comprised of the first 6 hours of

the forecast in each of the 4 iterations of the MPC. The total profit using the robust

optimization approach is DKK 43, 367 whereas the MPC approach yields DKK

45, 294, an increase of 4.44%.

3.4 Decision Making Process for Wind Farm Operator

In this subsection the decision making process from the perspective of a price

taking wind farm operator for participating in the day ahead electricity market is
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Figure 3.11: Hour ahead energy and regulation prices
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Figure 3.12: Results of robust optimization: hour-ahead market
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Figure 3.13: Results of MPC optimization: hour-ahead market

discussed.

3.4.1 Decision Making Algorithm and Flowchart

An offline decision making process is proposed to choose the optimization model

based on Monte Carlo simulation which makes use of historical data on the uncertain

variables, followed by an online decision which uses the chosen optimization model

and the forecasts of wind power and electricity price to yield the bidding strategy.

The flowchart for this decision making process is shown in Fig. 3.14.

1. It is assumed that historical data on wind power forecast error and electricity

price forecast error is available to the decision maker. This data can be used

to estimate the type of probability distribution in forecast error and the worst

case of uncertainty that may be experienced by the wind farm operator.

2. Next the performance of the optimization based bidding for multiple values of

the parameter β are compared using Monte Carlo simulation. The considered
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optimization models may range from deterministic (β = 0%) to worst-case

robust (β = 100%). Based on the profits obtained in the Monte Carlo runs

CVaR can be estimated for each model in order to compare their performance.

3. The decision maker selects the optimization model based on both the relative

performance as obtained from Monte Carlo simulations as well as the decision

maker’s confidence in the forecast. The decision maker may use historical data

on forecast error to decide the confidence level in a given forecasting method.

If the decision maker has a high level of confidence in the forecast it may not

make sense to use a more robust approach since it would be too conservative.

However, if the decision maker believes that the price forecast error is likely

to be high, choosing a more robust approach, i.e., a higher value of β may be

appropriate. A risk averse decision maker may choose a more robust approach

even when the price forecast error is anticipated to be medium, in order to

minimize potential loss of revenue in case the actual price forecast error is

higher than anticipated. The uncertainty set associated with the particular

choice of β can be obtained.

4. Once the optimization model is chosen the decision maker can use the opti-

mization model to determine the optimum bidding strategy. The uncertainty

set for wind power can be selected based on probabilistic forecasts.

Thus the optimization based bidding strategy for the combination of wind farm

and energy storage can be obtained.

3.4.2 Dashboard Tool for Bidding Strategy Selection

In order to facilitate bidding strategy selection a software tool with a dashboard

GUI is proposed (Fig. 3.15). This software tool would allow the decision maker to use
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Figure 3.14: Flowchart for wind farm operator decision making

historical data in an offline study to estimate the type of probability distribution of

the forecast error as well as the worst case of uncertainty that the wind farm operator

may experience. The tool can then compare the performance of the optimization

model for different values of the parameter β, based on Monte Carlo simulation, and

determine the uncertainty set. Thus the uncertainty set can be selected through

an offline process. Next in the online phase the optimization routine can be run to

determine the bidding strategy for the wind farm and energy storage device for the

day-ahead electricity market. The inputs are the wind power forecast and electricity
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price forecast for the operating day.
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Figure 3.15: Proposed dashboard for bidding strategy selection

3.5 Performance of Robust Bidding Strategy

In this subsection a case study is presented in which the economic performance

of the robust optimization based bidding strategy is evaluated. For simplicity it

is assumed that all the hourly bids submitted by wind farm and energy storage

combination to the market operator are successful. The characteristics of the wind

farm and a generic energy storage device are presented in Table 3.2.

The result of the robust optimization based bidding problem presented earlier

gives the power injection profile for the wind farm and storage device for each hour

of the entire operating day. Based on these injection profiles the bids, which are the

hour-by-hour total power injection of the wind farm and energy storage combination,
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are obtained. The bids for the Day-Ahead electricity market (DAM) have to be

submitted 12 hours before the beginning of the operating day (Fig. 3.2). Electricity

price data from Nordpool for West Denmark is used for the simulations. The data

used in this case study was provided by Vestas. It is assumed that during actual

operation any excess wind generation is sold in the Hour-Ahead market, whereas any

deficit has to be purchased from the Hour-Ahead market at the clearing price for

that hour. The total profit from electricity sales is calculated based on the actual

values of market clearing price. This settlement is done after the end of the operating

day. The robust optimization problem is implemented and solved in MATLAB using

linprog solver and the YALMIP toolbox [63].

In order to analyze the performance of the optimization based bidding strategy,

Monte Carlo simulation method is used for a what-if type analysis based on assump-

tions about forecast errors. The Cauchy distribution is considered to be a reasonable

model for the distribution of wind power forecast error [64] and electricity price fore-

cast error [65]. Based on historical data consisting of 3 months of hourly forecasts

and actual values of market clearing price and wind power, we also find that using

Cauchy distribution to model the errors is a reasonable assumption (Fig. 3.16 and

Fig. 3.17). Therefore for both the wind farm power production and the electricity

price an error is generated at random for each hour of the day by sampling a Cauchy

distribution within bounds defined by 90% confidence interval. For each hour of the

day the realization of the actual value of the input quantity (i.e., wind farm power

production and electricity price) is obtained by subtracting the error from the fore-

cast value. In this manner M=1000 scenarios of actual wind farm power production

and electricity price are generated for the given day using random sampling. For

each scenario based on the bids obtained from the robust optimization the profit for

the operating day can be calculated. These 1000 values are assumed to be indepen-
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dent identically distributed (i.i.d.) observations of the profit. Based on the order

statistics, the VaR and the CVaR can be estimated from these observations [66].
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Figure 3.16: Histogram of normalized price forecast error
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Figure 3.17: Histogram of normalized wind power forecast error
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3.5.1 Relative Performance of Robust Bidding

In this case study the robust bidding strategy is analyzed for one operating day.

The performance of the robust optimization bidding strategy relative to the deter-

ministic approach is analyzed for different levels of electricity price forecast error.

The deterministic model uses the point forecasts of the inputs in the optimization

to find the bid schedule [67]. Both the robust and deterministic optimization based

strategies are obtained for a set of price forecasts with error measured in Mean Ab-

solute Error (MAE). MAE is the unweighted average of the absolute values of the

forecast errors.

Mean Absolute Error (MAE) =
1

n

n
∑

i=1

|ŷi − yi|

where ŷi is the forecast value, yi is the actual value and n is the number of samples.

To evaluate the performance of each bidding strategy Monte Carlo simulation is

used. A number of scenarios of actual electricity price (1000 scenarios) are consid-

ered. The result we are interested in is the number of scenarios where the profit

from robust optimization (RO) based bidding strategy is greater than that from the

deterministic optimization (DO) based bidding strategy. The results for several days

are analyzed (Fig. 3.18). In all the cases for an increase in price forecast error there

is a corresponding increase in the probability of getting better results using robust

optimization compared to using deterministic optimization.

It has been observed that day-ahead wind power forecast error as a percentage

of installed capacity has MAE in the range of 15% − 25% for a single wind farm

[68, 69]. Wind farms that want to bid into day-ahead market have a serious problem

of dealing with the uncertainty due to high wind power production forecast errors.

Further the electricity price forecast for the day ahead time horizon can have an error
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Figure 3.18: Relative performance of robust optimization based bidding vs. price
forecast error

of up to around 15% [70]. The robust optimization approach can be used to manage

the uncertainty due to high day-ahead forecast error, and obtain better economic

performance compared to the deterministic optimization approach.

3.5.2 Performance Guarantee

Bertsimas et al. [46, 71] address the issue of the performance guarantee of the

robust optimization model versus the budget of uncertainty. Based on their approach

we consider the problem (3.17) and assume that each of the n elements of the vector

of uncertain cost coefficients c̃ belongs to a symmetric interval [c̄i− ĉi, c̄i+ ĉi] centered

at the point forecast value c̄i with maximum deviation ĉi. The parameter Γ ∈ [0, n] is

defined by
∑n

i=1 |(c̃i − c̄i)/ĉi| ≤ Γ, and is called the budget of uncertainty of the cost

coefficients. Γ is the upper bound of the aggregate scaled deviations of the actual

values of the coefficients from their point forecast values, and thus can be used to

represent the accuracy of forecasting. The key result from [46] can be summarized
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as follows. For the robust optimization problem let x∗ be an optimal solution and

t∗ the optimal objective function value, then Pr(c̃Tx∗ < t∗) ≤ ǫ if Γ is chosen to

be 1 + Φ−1(1 − ǫ)
√
n, where ǫ ∈ (0, 1), n is the number of uncertain variables (here

n = 24 hours since we consider one day) and Φ is the cumulative distribution function

of the standard Gaussian random variable. Thus the actual value of the profit from

bidding will exceed the predicted value with probability at least equal to 1− ǫ, and

this value is the performance guarantee. Fig. 3.19 shows the theoretical performance

guarantee of the robust optimization model, under above assumptions on uncertainty

in coefficients, for different values of the budget of uncertainty [71].

0.5 0.6 0.7 0.8 0.9
0

5

10

15

B
ud

ge
t o

f U
nc

er
ta

in
ty

  (
 Γ

)

Performance Guarantee

Figure 3.19: Performance guarantee of robust optimization model

3.6 Case Studies

In these case studies the robust bidding strategy is analyzed for one operating

day.
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3.6.1 Case 1: Modulated Convex Hull Based Uncertainty Set

Fig. 3.20 shows the forecast and actual hourly electricity prices for the day-ahead

market, as well as the actual prices in the hour-ahead market for the given day. The

error between forecast and actual day-ahead price is high in hours 17 and 21.
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Figure 3.20: Electricity prices for given day (Case 1)

First the results are presented using the uncertainty set defined based on choice

of parameter ǫ. Table 3.6 shows the results for different uncertainty sets based on

parameter ǫ. Based on these results it is seen that the 95% CVaR is maximum for

ǫ = 0.93. The corresponding robust bidding strategy for the combination of the wind

farm and storage (with one particular realization of actual wind) is shown in Fig.

3.21.
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Figure 3.21: Results for ǫ = 0.93

Table 3.6: Results of Monte Carlo simulation for different ǫ

Uncertainty Set for Price 95% VaR 95% CVaR Mean Profit
(ǫ) (DKK) (DKK) (DKK)
0.95 47, 632 46, 873 50, 891
0.94 47, 727 46, 962 50, 983
0.93 47, 728 46, 964 50, 982
0.92 47, 708 46, 954 50, 972
0.91 47, 703 46, 949 50, 966
0.90 47, 708 46, 948 50, 964

3.6.2 Case 2: Risk Measure Based Uncertainty Set

Next we use the uncertainty set constructed based on CVaR risk measure and

decision maker’s choice of risk parameter β. Fig. 3.22 shows the forecast and actual

hourly electricity prices for the day-ahead market. Table 3.7 shows the results of the

evaluation of the robust bidding strategy using Monte Carlo simulation, for different

uncertainty sets based on wind farm operator’s choice of parameter β. Table 3.8

shows the 95% CVaR values for different uncertainty sets and forecast errors in
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prices measured in MAE%. The robust bidding strategy for the combination of the

wind farm and storage corresponding to β = 10% and MAE=7.34% is shown in

Fig. 3.23. In hours 3-5 when the forecast price is low, part of the wind energy is

used to charge the storage device. In hour 11 when the forecast price is high the

stored energy is injected into the grid. Therefore the storage device can be used to

take advantage of arbitrage opportunities that result from temporal variations in the

electricity price.
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Figure 3.22: Electricity prices for given day (Case 2)

The simulation is conducted on a laptop with Intel Core 2 Duo 2.2 GHz CPU

with 4 GB of RAM. It takes 13.3 seconds to generate the Monte Carlo scenarios. For

each value of β the robust optimization and evaluation takes on average 7.2 seconds.

In order to determine uncertainty sets for wind power production around the

deterministic forecast we use probabilistic forecasts. Percentiles of a probabilistic

forecast are usually defined such that the probability of wind power production being
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Table 3.7: Results of Monte Carlo simulation for different β

Uncertainty Set for Price 95% VaR 95% CVaR Mean Profit
(β) (DKK) (DKK) (DKK)
20% 47, 692 46, 958 50, 775
10% 47, 693 46, 958 50, 775
5% 47, 692 46, 959 50, 776
2% 47, 692 46, 959 50, 776
1% 47, 675 46, 960 50, 776

Table 3.8: CVaR for combinations of β and MAE

95% CVaR (DKK)
MAE (%) β=10% β=5% β=1%

7.34 46, 958 46, 959 46, 960
8.35 47, 000 47, 001 47, 003
10.26 47, 077 47, 078 47, 078
10.93 47, 267 47, 268 47, 269
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Figure 3.23: Results of robust optimization for β = 10%
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Figure 3.24: Wind deterministic and percentile forecast

less than the value given by the θ percentile forecast is θ percent [72]. Fig. 3.24

shows the deterministic forecast, actual wind power production, and the probabilistic

forecasts for 40 and 60 percentiles for the given day. Pairs of probabilistic forecasts

are taken as the lower and upper bounds for the uncertainty set for wind power.

Table 3.9 shows the results of the Monte Carlo simulation, with different uncertainty

sets for wind power, based on pairs of probabilistic forecasts. Thus the optimal

robust bidding strategy is obtained which considers uncertainty in both electricity

price and wind power (Fig. 3.25).

3.6.3 Comparison to Stochastic Programming

Finally we present a comparison of the robust optimization approach to the

stochastic optimization approach. For the stochastic model we solve the expected

value problem using the sample average approximation method [3]. This involves

solving a large deterministic problem using the Monte Carlo method. With Ns=100
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Table 3.9: Results of Monte Carlo simulation for wind uncertainty sets

Uncertainty Set for Wind 95%
VaR

95%
CVaR

Mean
Profit

(percentile bands) (DKK) (DKK) (DKK)
40%− 60% 44, 581 43, 865 47, 641
30%− 70% 41, 249 40, 507 44, 249
20%− 80% 36, 012 35, 300 38, 982
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Figure 3.25: Results of robust optimization for β = 10% (price) and 40% − 60%
(wind)

samples the stochastic approach yields a mean profit of DKK 51, 164 and takes 714.2s

to solve. Whereas the robust approach yields a mean profit of DKK 50, 775 and takes

20.4s to solve. The problem size of the stochastic approach increases linearly with Ns

and the computation time would be very large for a large sample size, whereas, the

robust approach is comparable to the deterministic in computational effort required.
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3.7 Joint Bidding in Energy and Regulation Markets

Grid frequency control is an essential operation in power systems, which essen-

tially involves matching supply to demand so as to maintain the system frequency

close to the nominal value. This is a challenge given that load varies over time.

Further, generators may also deviate from their schedule, and in particular for wind

generators the output varies due to variations in wind speed. Normally conventional

generators provide capacity for frequency regulation, which is utilized through AGC

control. Given the increasing penetration of variable renewable generation from

sources such as wind and solar it is believed that the amount of regulation reserves

will also have to increase [73].

Modern power electronics based controllers allow wind generators to participate in

frequency control action [74]. Wind farms can provide regulation by curtailing energy

production to create head room for regulation up service. For a wind generator to

participate in the regulation market it has to reduce its participation in the energy

market. However, under certain market conditions, the price of regulation service

more than makes up for the lost opportunity cost. Thus it could be profitable for

a wind generator to participate in the regulation market. The regulation market is

a capacity market and the wind generator has to assure the system operator that it

can provide the required service when the system needs it. This is difficult given the

wind forecast inaccuracy. Hence we consider the case where an on-site storage facility

is available that can be coordinated with the wind generator in order to provide firm

capacity.

The question of the extent to which wind generator should participate in the

energy versus the regulation markets can be formulated as an optimization problem.

The objective is to maximize profits by exploiting price differences between the elec-
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tricity spot market and the frequency regulation capacity market. The decision to

be made in each period k is to choose the amount of wind energy to be sold into the

energy market versus bidding into the regulation capacity market. The decision for

the amount of regulation capacity that can be sold by the storage device depends on

the extent to which wind bids into the regulation market in the same time period.

The nomenclature used is given in Table 3.10.

Table 3.10: Nomenclature for joint energy and frequency regulation bidding

Decision Variables:

Pw[k] Power injection from wind farm to the grid (MW )
P ru
w [k], P rd

w [k] Reg-up and Reg-down capacity from wind farm (MW )
P ru
s [k], P rd

s [k] Reg-up and Reg-down capacity from storage (MW )

Point Forecasts:

P̂w(k) Forecast output of wind farm

λ̂[k] Energy market price for electricity (DKK/MWh)

λ̂ru[k] Regulation-up price (DKK/MW )

λ̂rd[k] Regulation-up price (DKK/MW )

Functions:

Ps[k] Net output power of storage
Es[k] Energy level of storage

Constants:

Cw Marginal cost of wind (DKK/MW )
Cr

w Cost for providing regulation (DKK/MW )
Cs Charging/discharging (degradation) cost of storage (DKK/MW )
Pmax
s Rated power of storage device (MW )

Emax
s Upper limit on energy level of storage device (MWh)

Emin
s Lower limit on energy level of storage device (MWh)

η Round-trip efficiency of the storage device (%)
ηd Discharging efficiency of the storage device (%)
ηc Charging efficiency of the storage device (%)
N Number of time periods (for 1 day N = 24)

The robust optimization problem for joint energy and frequency regulation market
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bidding for the combination of a wind farm and energy storage device is expressed

as follows.

min
~Pw[k], ~P ru

w [k], ~P rd
w [k], ~P ru

s [k], ~P rd
s [k]

max
λ̂∈U ,P̂w∈V

24
∑

k=1

[−λ̂[k]P̂w[k]− λ̂ru[k](P ru
w [k] + P ru

s [k])

− λ̂rd[k](P rd
w [k] + P rd

s [k] + CwPw[k]

+ Cs(P
d
s [k] + P c

s [k]) + Cr
w(P

ru
w [k] + P rd

w [k]) (3.23)

s.t.

0 ≤ P ru
w [k] ≤ P̂w[k]− Pw[k] (3.24)

0 ≤ P rd
w [k] ≤ Pw[k − 1] (3.25)

0 ≤ P ru
s [k] ≤ Pmax

s − Ps[k − 1]− (P̂w[k]− Pw[k]) (3.26)

0 ≤ P rd
s [k] ≤ Ps[k − 1] (3.27)

Es[k] = Es[k − 1]− 1

ηd
P d
s [k] + ηcP

c
s [k] (3.28)

Emin
s ≤ Es[k] ≤ Emax

s (3.29)

The objective function (3.23) consists of (i) revenue from the bids in both energy

and regulation markets, and (ii) various associated costs including the marginal cost

of wind, degradation costs associated with charging and discharging, and cost of

providing regulation. By minimizing the negative of the total profit, we are effectively

maximizing the total profit. The upper limit for regulation up capacity from the

wind generator is the head room that has been created between the maximum power

output potential (based on wind speed forecast) and the actual power output to the

grid (based on the extent of curtailment) (3.24). The upper limit on regulation down
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capacity of wind generator is the level of power output to the grid in the previous

time step (3.25). It is assumed that the wind generator can ramp down to zero

power output to grid. The amount of regulation up capacity that the storage device

can provide depends on its power output level in the previous time period. Here

the storage device is used so that the combination of the wind farm and storage

can provide firm regulation up capacity to the grid. Given the inherent uncertainty

with the wind forecast, it is assumed that the storage device acts as backup (3.26).

The maximum amount of regulation down capacity available from the storage device

depends its power output in the previous time period (3.27). The amount of energy in

the storage device in any time period, Es(k)(MWh) depends on the charge/discharge

history of the storage device, i.e. the storage dynamics (3.28). This equation also

includes the energy losses during charging/discharging. The amount of energy that

can be stored in the energy storage device has certain upper and lower bounds (3.29).

The net power output of the storage is the difference between its discharging and

charging power, i.e., Ps(k) = P d
s (k)− P c

s (k).

Future work on this topic will focus on case studies for the robust optimization

based joint bidding in energy and frequency regulation markets. Future work will

also include investigating the impact of choice of uncertainty sets for price and wind

power on the optimization solution.
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4. ROBUST OPTIMIZATION BASED ECONOMIC DISPATCH∗

4.1 Introduction

The increasing penetration of renewable resources such as wind and solar poses a

challenge to the goal of the ISOs to manage the power system with a reliable and cost

effective approach. Due to the limited control over the output of renewable resources

as well as associated forecast errors the ISOs will have to deal with an increasing

amount of uncertainty and variability in the power system as the penetration of

renewables increases [31].

Fig. 4.1 illustrates the issue of uncertainty in the forecast of renewables. It shows

the actual and day-ahead forecast wind power production profile for a day for the

California ISO (CAISO) system. The forecast error for some hours can be high. On

the day-ahead horizon load forecast error usually has MAE = 1-2%, whereas for a

region wind power forecast error can have MAE=15% or higher [69]. Even for the

hour-ahead regional wind power forecast the MAE can be as high as 11%.

The other aspect of renewables is the variability in their output profiles. Fig. 4.2

shows the actual wind power output in the CAISO system for 5 consecutive days.

From this figure we can see that the wind power can vary greatly during a day. Also

unlike load which usually has a consistent diurnal pattern we see that the profile of

wind power can vary from day to day.

In many electrical grids wind is not dispatched but considered as a negative load

in the system. Thus, system operators are faced with the challenge of dispatching

the generators in order to follow the system net load. The system net load is defined

∗This section is in part a reprint of the material in the following paper: Reprinted with permission
from A. A. Thatte, X. A. Sun, and L. Xie, “Robust Optimization Based Economic Dispatch for
Managing System Ramp Requirement,” in Proc. 47th Hawaii Intl. Conf. on System Sciences,
Waikoloa, HI, Jan. 6-9, 2014, pp. 2344-2352. Copyright 2014, IEEE.
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Figure 4.1: Wind actual and forecast production in CAISO for a day

5 10 15 20
0

500

1000

1500

2000

2500

3000

Hours

M
W

 

 

Day 1 Day 2 Day 3 Day 4 Day 5

Figure 4.2: Wind production in CAISO for different days

as follows.

Net Load = Total Load− Renewable Generation

+ Scheduled Interchanges (i.e., Exports− Imports) (4.1)
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As the penetration of wind generation in power systems increases the uncertainty

in net load will increase significantly. Due to this uncertainty the conventional eco-

nomic dispatch model, which dispatches the system for one interval at a time, is more

inefficient in terms of total generation cost. Further, due to the increased variabil-

ity of the net load the system as a whole needs greater rampable capacity in order

to avoid shortage events. Thus many ISOs are investigating modifications to the

conventional economic dispatch optimization model in order to improve the dispatch

solution, and make it more cost-effective and reliable. The two main modified models

that are being considered by system operators in the US are (i) ramp product, and

(ii) look-ahead economic dispatch.

In this dissertation we propose a robust optimization based economic dispatch

model for ensuring adequate system ramp capability. The proposed model is crit-

ically assessed with the ramp product model as well as the look-ahead dispatch

model, which are currently under consideration by system operators. We conduct a

theoretical assessment based on a proposed lack-of-ramp probability (LORP) index

and a numerical assessment using Monte Carlo simulations. It is shown that com-

pared with the recently proposed industry models, the proposed robust formulation

of ramp requirement yields more smoothed generation cost variation and is capable

of ensuring lower lack of ramp probability.

The main contributions of this section are as follows:

1. presents a robust optimization based economic dispatch model for ensuring a

reliable dispatch solution for the power system.

2. proposes a novel metric for dispatch flexibility based on a probabilistic risk

measure.

3. illustrates the proposed robust model on a small test system for the real time
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economic dispatch.

4. compares the robust model to the current conventional economic dispatch

model as well as the industry proposed ramp product and look-ahead dispatch

models, in terms of dispatch costs, proposed flexibility metric and their impact

on Locational Marginal Prices (LMPs).

5. presents the formulation for the implementation of robust dispatch in a multi-

zonal system with transmission line flow constraints considered.

6. illustrates the proposed robust model on a multi-zonal IEEE 24 bus Reliability

Test System (RTS) for real time economic dispatch using realistic data.

4.2 System Operator Initiatives to Improve Dispatch

4.2.1 Ramp Capability Model

One significant challenge for system operators is the temporary price spikes ex-

perienced in the real time electricity market due to shortages attributed to a lack of

system ramp capability [41]. The main causes of these shortages include variability

of load, scheduled interchanges and non-controllable generation resources (primarily

wind) as well as uncertainty associated with short term forecasts. Due to the physical

limitations on ramp rates generators are unable to respond effectively to these price

spikes. The current practices to deal with ramp shortages include increasing reserve

margins, starting fast-start units (such as gas turbines) and out of market dispatch

methods that involve operator action. However, these approaches are usually high

cost or create some market distortion. It is important for ISOs to have additional

flexibility for dispatchable generation resources through the market clearing process.

The Security Constrained Economic Dispatch (SCED) decision needs to be robust
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to the uncertainties so that the critical system power balance requirement is not

violated.

An approach called the ramp capability model or ramp product is currently being

investigated by Midcontinent ISO (MISO) {formerly called Midwest Independent

Transmission System Operator} which involves a modification to the conventional

Security Constrained Economic Dispatch (SCED) formulation to include additional

ramp capability constraints [75]. The proposed economic dispatch with ramp product

aims to cover forecast variability in net load as well as uncertainty, which is calculated

based on a statistical analysis of historical data available to the system operator.

CAISO is also investigating a flexible ramping product in order to create additional

flexibility in the dispatch so that the occurrences of ramp shortage and temporary

price spikes are greatly reduced [43].

The proposed ramp product comprises of the following additional constraints

which are to be added to the current SCED formulation [76, 42]:

1. Ten minute Ramp Capability for each dispatchable resource

2. System (or Zonal) Ramp Capability requirement

As shown in Fig. 4.3 the dispatch solution must match both variability and

uncertainty in net load over 2 dispatch intervals i.e., 10 minutes. Further, it must

account for the uncertainty around point forecast (based on confidence interval) =

±u.

The system ramp capability requirement would allow dispatchable generators to

respond to any forecast variations in net load as well as uncertainty. The uncertainty

in net load can be estimated based on a statistical analysis of its components and

then combining them. The statistical characterization of individual components of

net load may be obtained from historical data [75]. We present a simplified version
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Figure 4.3: Illustration of system ramp capability requirement

of the formulation of the dispatch with ramp product for the real time market. The

actual formulation will include regulation reserve, contingency reserves and network

constraints, which are omitted here for simplifying the exposition. The dispatch

scheme is posed as an optimization problem with the aim of obtaining the least cost

dispatch solution to maintain the system power balance as well as meet generator

power output and ramp constraints. The notation used is given in Table 4.1.

min
P

g
i [t]

Ng
∑

i=1

Cg
i (P

g
i [t]) (4.2)

Ng
∑

i=1

P g
i [t] = P̂ l[t] (4.3)

P g
i [t] +RCUi[t] ≤ Pmax

i , ∀ i, t (4.4)

P g
i [t] +RCDi[t] ≥ Pmin

i , ∀ i, t (4.5)

P g
i [t]− P g

i [t− 1] ≤ Ri, ∀ i (4.6)
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Table 4.1: Notation for economic dispatch models

t Time index of real time dispatch (5 min. intervals)
Cg

i () Cost function of generator i
P g
i [t] Dispatched output of generator i at time t
Ng Total number of generators in system

Pmax
i Maximum output of generator i

Pmin
i Minimum output of generator i

P̂ l[t] System net load forecast at time t

P̃ l[t] System net load uncertain variable
RCUi Cleared ramp up capability of resource i
RCDi Cleared ramp down capability of resource i
RCUs System wide ramp up requirement
RCDs System wide ramp down requirement
Ri One interval (5 min.) ramp rate of resource i
F [t] Vector of line flows at the time t
Fmax Vector of line flow limits
U Uncertainty set for net load

P g
i [t− 1]− P g

i [t] ≤ Ri, ∀ i (4.7)

−Fmax ≤ F [t] ≤ Fmax, ∀ t (4.8)

RCUi[t] ≤ 2Ri, ∀i (4.9)

RCDi[t] ≤ 2Ri, ∀i (4.10)

Ng
∑

i=1

RCUi[t] ≥ RCUs[t] (4.11)

Ng
∑

i=1

RCDi[t] ≥ RCDs[t] (4.12)

where

RCUs[t] = P̂ l[t + 2]− P̂ l[t] + u (4.13)

RCDs[t] = −(P̂ l[t + 2]− P̂ l[t]) + u (4.14)
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and u is the estimated system net load uncertainty

(4.2)-(4.8) comprise the conventional SCED formulation, whereas, (4.9)-(4.12)

are the modifications for the ramp capability. The objective of SCED (4.2) is the

sum of dispatch costs of all generators which are committed by the unit commitment

(UC). (4.3) is the power balance constraint where it is assumed that the current time

interval net load forecast P̂ l[t] is accurate. Any small deviations are handled in the

frequency regulation time frame. Violation of this constraint carries with it a very

high cost and so ISOs would like to avoid such events.

The implementation of the ramp product would be as follows. The generators

will submit their bids for the current time interval. The system operator will run the

optimization with the ramp capability constraints and thereby obtain the dispatch

allocation for each generator. The LMPs will be based on the Lagrangian multipliers

associated with the system power balance constraint (4.3). Thus the operation of the

dispatch with ramp product model will be similar to the conventional single interval

economic dispatch which is presently used in the ISO electricity markets.

4.2.2 Look-Ahead Economic Dispatch

Many ISOs are also investigating look-ahead economic dispatch models in order

to dispatch generators using a more cost-effective and reliable approach [77]. The

proposed look-ahead economic dispatch uses the short-term forecast of load and

wind to calculate the optimal dispatch solution over multiple time intervals. Thus

compared to the conventional economic dispatch, look-ahead dispatch is more cost-

effective and more reliable. The functionality provided by look-ahead dispatch is

distinct from that of the ramp capability model.

The formulation of the look-ahead economic dispatch is given as follows [78].
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min
P

g
i
[t]

T
∑

t=1

Ng
∑

i=1

Cg
i (P

g
i [t]) (4.15)

s.t.
Ng
∑

i=1

P g
i [t] =

Nl
∑

j=1

P̂ l
j [t], ∀t = 1, . . . , T (4.16)

|P g
i [t]− P g

i [t− 1]| ≤ Ri, ∀i, ∀t = 1, . . . , T (4.17)

Pmin
i ≤ P g

i [t] ≤ Pmax
i , ∀i, ∀t = 1, . . . , T (4.18)

−Fmax ≤ F [t] ≤ Fmax, ∀t = 1, . . . , T (4.19)

Both ramp product and look-ahead economic dispatch can be used either indi-

vidually or combined to better manage the dispatch of generators.

4.2.3 Comparison of Ramp Product

The key features of the ramp product can be compared to the look-ahead dispatch

and the frequency regulation reserves. Table 4.2 compares the key features of the

ramp product to the look-ahead dispatch model. Table 4.3 compares the ramp

product to the frequency regulation reserve.

Table 4.2: Ramp product vs. look-ahead

Ramp Product Look-Ahead
Similarities
Deals with ramping Deals with ramping
Reduces scarcity price instances Reduces scarcity price instances
Differences
Adjust ramp to deal with net load
variability

Pre-ramps to reduce dispatch costs
over multiple intervals

Based on uncertainty and expected
change in net load

Based on deterministic forecast
change in net load
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Table 4.3: Ramp product vs. regulation

Ramp Product Regulation
Similarities
Deals with unexpected changes in
load

Deals with unexpected changes in
load

Differences
Deals with net load variation in dis-
patch horizon (every 5 min)

Deals with net load variation in
AGC horizon (seconds to minutes)

Applies to changes between eco-
nomic dispatch intervals

Applies to changes within given in-
terval

Dispatched by Economic Dispatch Dispatched by AGC

4.2.4 Need for Robust Economic Dispatch

Even with the ramp capability modification or the look-ahead dispatch model

there is a significant probability of shortage events due to lack of system ramp ca-

pability. The SCED decision needs to be robust to the uncertainties so that the

critical system power balance requirement is not violated. Therefore, in this disser-

tation a robust optimization based economic dispatch model is proposed, which gives

dispatch decisions that are robust to uncertainties in the system net load.

4.3 Robust Economic Dispatch Formulation

The aim of the SCED is to find the least cost generation dispatch in order to

satisfy the system power balance constraint while at the same time meeting other

constraints such as generator power output and ramping limits.

Some ISOs also procure regulation reserve and contingency reserves through

SCED by means of co-optimization with energy. For simplicity regulation reserve

and contingency reserves are omitted from this presentation. Regulation reserves are

used in the frequency regulation time scale rather than the economic dispatch time

scale. Contingency reserves are used in case of reportable disturbances and not for
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handling normal power system operations.

The robust economic dispatch formulation is as follows.

The objective is to minimize total generation cost over current and next time

interval.

min
P

g
i [t],P

g
i [t+1]

Ng
∑

i=1

Cg
i (P

g
i [t] + P g

i [t+ 1]) (4.20)

s.t.
Ng
∑

i=1

P g
i [t+ 1] ≥ max

P̃ l[t+1]∈U
P̃ l[t+ 1] (4.21)

This constraint is included so that the dispatch solution in the next time interval

will be feasible under even the worst case realization of net load. The net load in

the next time interval is assumed to be an uncertain variable which belongs to a

given deterministic uncertainty set U . The uncertainty in net load arises from its

components viz., system load, renewable generation (such as wind, solar etc.) and

scheduled interchanges.
Ng
∑

i=1

P g
i [t] = P̂ l[t] (4.22)

The current interval net load forecast is assumed to be accurate, and if there are any

deviations they can be handled by the frequency regulation control.

P g
i [t] ≤ Pmax

i ∀ i, t (4.23)

P g
i [t] ≥ Pmin

i ∀ i, t (4.24)

The scheduled output power for each generator must remain within its active power

output limits.

P g
i [t]− P g

i [t− 1] ≤ Ri ∀ i (4.25)

P g
i [t− 1]− P g

i [t] ≤ Ri ∀ i (4.26)
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P g
i [t+ 1]− P g

i [t] ≤ Ri ∀ i (4.27)

P g
i [t]− P g

i [t + 1] ≤ Ri ∀ i (4.28)

The change in power output is limited by the ramping ability of each generator in

the given time period.

−Fmax ≤ F [t] ≤ Fmax ∀ t (4.29)

The transmission line capacity constraints must be satisfied for all the branches in

the transmission network.

U = P̃ l[t+ 1] ∈ [P̂ l[t + 1]−∆P l[t + 1], P̂ l[t+ 1] + ∆P l[t+ 1]] (4.30)

where ∆P l[t+1] is the maximum deviation of net load from the point forecast value

P̂ l[t+1]. The deterministic uncertainty set defines the range of the uncertain future

net load variable.

The real time market bidding and clearing for the robust economic dispatch model

will work as follows. At each time step t the generating resources will submit their

bids for the current and the next time interval, namely t and t + 1, similar to a

look-ahead economic dispatch model. The system operator will perform a uniform

price auction and the cost will be minimized while at the same time ensuring that

all the constraints are satisfied. At each time step the current dispatch solution will

be binding, whereas the future interval dispatch result will be advisory and can be

modified in the subsequent dispatch.

In the general case the robust optimization formulation presented above can be

extended to include more than one future time steps. That is the uncertain net load

variables P̃ l[t + 1], P̃ l[t + 2], P̃ l[t + 3] . . . can be included in the formulation, where

each of these variables can be assumed to belong to a deterministic uncertainty
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set U1, U2, U3, . . . each of which can be defined similar to (4.30). Accordingly, the

objective function can be modified and additional constraints added to account for

these additional variables.

4.3.1 Ramp Capability Reliability Index

In the probabilistic determination of contingency reserves the loss of load prob-

ability (LOLP) is used as a reliability index [79]. It is the probability that the

generation resources combined with reserves will not be able to meet the demand.

Analogous to this concept, in this dissertation we propose a risk index for the system

ramp capability being insufficient to meet the change in net load due to a lack of

available ramp capacity from dispatched generators. This is called the lack of ramp

probability (LORP) and is defined as follows:

LORP up[t] = Pr[

Ng
∑

i=1

{P g
i [t] + min(2Ri, P

max
i − P g

i [t])} < P̃ l[t + 2]] (4.31)

Fig. 4.4 illustrates the concept, where the shaded area under the curve represents

the probability that the system power balance will be violated in the future (second

interval ahead from current) due to insufficient available system ramp capability.

It is assumed that the 10 minute ahead net load P̃ l[t+2] is a normally distributed

random variable with known mean (equal to the point forecast of net load) and known

standard deviation (estimated from historical data). Similar to (4.31) for the ramp

up case, the lack of ramp probability for the ramp down case can be defined as

follows.
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Figure 4.4: Lack of ramp probability

LORP down[t] = Pr[

Ng
∑

i=1

{P g
i (t)−min(2Ri, P

g
i (t)− Pmin

i )} > P̃ l(t + 2)] (4.32)

Next we investigate the link between the ramp capability requirement and the

lack of ramp index in the ramp up case. The link for the ramp down case can be

derived similarly.

Based on (4.4) and (4.9) the cleared ramp capability of each resource i obeys the

following constraints.

RCUi[t] ≤ min(2Ri, P
max
i − P g

i [t]) ∀ i (4.33)

The probability that the cleared ramp capability from all resources is inadequate

to meet system requirement is given by
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Pr

[

∑

i

RCUi[t] < RCUs[t]

]

= Pr

[

∑

i

RCUi[t] < P̂ l[t+ 2]− P̂ l[t] + u

]

= Pr

[

P̂ l[t] +
∑

i

RCUi[t] < P̂ l[t+ 2] + u

]

(4.34)

We now make the following assumptions.

1. The current interval net load forecast is accurate and any deviations are han-

dled in the frequency regulation time scale, thus
∑

i P
g
i [t] = P̂ l[t].

2. The cleared ramp up capability from each resource is at its maximum, thus

RCUi[t] = min(2Ri, P
max
i − P g

i [t])

3. We can write P̂ l[t + 2] + u = P̃ l[t + 2] which is an uncertain variable.

Thus from (4.34) we have

Pr

[

∑

i

RCUi[t] < RCUs[t]

]

= Pr

[

∑

i

P g
i [t] +

∑

i

min(2Ri, P
max
i − P g

i [t]) < P̃ l[t + 2]

]

= LORP up (4.35)

In the more general case, from the derivation (4.33)-(4.35) without Assumption

2 we know that

Pr

[

∑

i

RCUi[t] < RCUs[t]

]

≥ LORP up (4.36)

because
∑

iRCUi[t] < RCUs[t] implies that
∑

i(P
g
i [t] + min(2Ri, P

max
i − P g

i [t])) <

P̃ l[t + 2].
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Thus LORP gives a bound on the probability that a ramp shortage event will

occur. Also if Pr [
∑

i RCUi[t] < RCUs[t]] ≤ ǫ, then we can guarantee LORP up ≤ ǫ

but not the other way around.

LORP can be used to calculate the probability of ramp shortage event occurring

under the current SCED formulation. LORP can also be used to obtain the reliability

of the dispatch solution in case we have an empirical probability distribution of net

load.

4.3.2 Numerical

We compare the current single interval economic dispatch to the economic dis-

patch with ramp product and also to the robust economic dispatch by using a nu-

merical in a simple test system.

Table 4.4 shows the generator characteristics for 3 conventional (dispatchable)

generators.

Table 4.4: Generator characteristics

Generator G1 G2 G3
Minimum Output (MW) 10 10 10
Maximum Output (MW) 130 130 100
Ramp Rate (MW/min) 4 1 1
Offer Price ($/MWh) 30 31 36
Initial Output (MW) 100 10 10

Table 4.5 shows the net load forecasts, which are used for calculating the ramp

capability requirements in each interval Tn.

Table 4.6 shows the required ramp capability up and ramp capability down re-

quirements which are based on the change in forecast net load ∆NL and the uncer-
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Table 4.5: Net load forecasts

Forecast T1 T2 T3 T4 T5 T6
@ T1 136 149 164
@ T2 151 163 173
@ T3 160 174 177
@ T4 171 175 179

tainty. Assuming a normal distribution of net load, taking the maximum uncertainty

as ±3σ around the mean value should cover 99.73% of uncertainty cases as per the

theory of the 3 - sigma method.

Table 4.6: Ramp capability requirements

Interval T1 T2 T3 T4
∆ NL (MW) 28 22 17 8

3 σ uncertainty (MW) 8 8 8 8
RCUs (MW) 36 30 25 16
RCDs (MW) 20 14 9 0

Since the system net load is generally increasing in this example we will focus

on the ramp up capability. The total system ramp capability up requirement RCUs

in each time interval is the sum of the change in forecast net load ∆NL and the

uncertainty.

In what follows, we first show a detailed comparison of the three models - con-

ventional, ramp capability and robust, in terms of generators output, total dispatch

cost, LMPs and LORP up.

From Table 4.7 we can see that with conventional economic dispatch, in interval

T4 the total generation is insufficient to meet the net load. We also note the high

LORP up value in interval T2 which means that there is a high probability of such
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Table 4.7: Conventional economic dispatch results

Interval T1 T2 T3 T4
Net Load (MW) 136 151 160 171

G1 (MW) 116 130 130 130
G2 (MW) 10 11 16 21
G3 (MW) 10 10 14 19

Total Output (MW) 136 151 160 170
LMP ($/MWh) 30 31 36 3500

LORP up 0.0122 0.7735 0.1304 ≈ 0

shortage occurring in interval T4. The lack of system ramp capability results in

a violation of the power balance constraint. To avoid this constraint violation the

system operator will have to take some action such as sending a turn-on signal to

a fast start generating unit to bridge the power gap. This shortage results in a

temporary price spike in the real time market. In MISO the price associated with

system power balance constraint violation is assumed to be equal to the Value of

Lost Load (VOLL), which is $3500/MWh [80].

Table 4.8: Results of dispatch with ramp product

Interval T1 T2 T3 T4
Net Load (MW) 136 151 160 171

G1 (MW) 114 120 125 130
G2 (MW) 12 17 22 27
G3 (MW) 10 14 13 14

Total Output (MW) 136 151 160 171
LMP ($/MWh) 31 36 36 36

LORP up 0.0013 0.0013 0.0013 ≈ 0

However, in the economic dispatch with ramp product, as seen in Table 4.8 the

dispatch solution is adjusted to avoid the shortage event. The inclusion of ramp
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capability constraints may lead to higher locational marginal prices (LMPs) in other

non-shortage intervals. For instance we see from Table 4.8 (using u = 3σ = 8MW )

that in the interval T1 due to the different dispatch the LMP has changed from

$30/MWh to $31/MWh.

We evaluate the lack of ramp probability index for the interval T1. As shown

in Fig. 4.5 the total generation in interval T1 is 136 MW, and the total available

two interval ramp capability is 36 MW. The net load is assumed to be a normally

distributed random variable with the mean assumed to be equal to the point forecast

value in interval T3, namely 164 MW and the standard deviation σ = 8/3 MW. Since

the system can’t ramp up to greater than 172 MW the shaded area under the pdf

of the net load represents the lack of ramp probability. Thus for the interval T1 the

LORP up = 0.0013.
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Figure 4.5: Lack of ramp probability for interval T1

Next we consider the robust economic dispatch model. In order to define the
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uncertainty set we choose the maximum deviation ∆P l = 4MW for each interval.

Table 4.9 shows the dispatch results for the robust model. In the robust approach

the shortage in interval T4 is avoided.

Table 4.9: Robust economic dispatch results

Interval T1 T2 T3 T4
Net Load (MW) 136 151 160 171

G1 (MW) 116 124 123 130
G2 (MW) 10 15 20 25
G3 (MW) 10 12 17 16

Total Output (MW) 136 151 160 171
LMP ($/MWh) 31 36 36 36

LORP up 0.0122 0.0669 ≈ 0 ≈ 0

Table 4.10 shows the generation (offer) costs on a 5 minute interval basis for each

economic dispatch approach. For the conventional economic dispatch the generation

cost in interval T4 is high because the committed generators G1 to G3 are not able to

satisfy the net load. Therefore, in this interval the system operator has to dispatch

a fast start unit to ensure that the system power balance constraint is not violated.

The cost associated with this generator is assumed to be the VOLL.

Table 4.10: Generation cost comparison

Interval Conventional ($) Ramp Capability ($) Robust ($)
T1 345.83 346 345.83
T2 383.42 385.92 384.75
T3 408.33 408.33 410.17
T4 727.92 436.75 437.58

Total 1865.5 1577 1578.33
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As shown in Table 4.10 the total generation cost associated with the robust

approach (Table 4.9), is higher than that of the dispatch with ramp product approach

(Table 4.8), due to the conservative nature of the robust approach. However, this

approach avoids the shortage situation that we encounter in the conventional dispatch

approach (Table 4.7).

Table 4.11: Generation cost and reliability comparison of dispatch methods

Dispatch with ramp product Robust dispatch

u
∑

GenCost
∑

LORP up ∆P l
∑

GenCost
∑

LORP up

8 1577 0.0039 8 1581 0.0026
4 1575.33 0.1460 4 1578.33 0.0792
2 1862.5 0.3694 2 1576.33 0.2403
1 1863.25 0.4966 1 1576.33 0.2403

In Table 4.11 the total generation cost for the 4 intervals and the total LORP up is

shown for different levels of uncertainty in net load, for both the dispatch with ramp

product approach and the robust dispatch approach. From Table 4.11 we see that the

robust dispatch solutions have higher reliability (i.e., lower aggregate LORP up) for

all four cases and slightly higher generation costs for u = 8MW and u = 4MW . In

the dispatch with ramp product cases with uncertainty u = 2MW and u = 1MW we

find that a shortage event occurs in interval T4, which requires the system operator

to dispatch a fast-start unit and therefore incurs high cost.

For a more direct comparison between the two methods we consider the first two

rows of Table 4.11. We see that with the robust model the generation costs are only

slightly higher, but we get significant improvement in the reliability level as measured

by LORP up. The system operator can adjust the choice of ∆P l keeping in mind this

trade-off.
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Next we use Monte Carlo simulation to assess the performance of the robust

approach relative to the conventional economic dispatch and the economic dispatch

with ramp product. To generate the net load scenarios each net load forecast in

Table 4.5 is assumed to be a random variable. In each case the net load forecast

is chosen at random from a truncated Gaussian distribution with the mean values

indicated in Table 4.5, the standard deviation σ = 8/3, and maximum deviation

±8MW . Thus 1000 scenarios are generated for a 20 minute real time dispatch time

frame, and thus with 4 consecutive dispatch intervals in each scenario we simulate a

total of 4000 intervals.

In the conventional economic dispatch, shortages occur in 983 intervals, in the

economic dispatch with ramp product (taking u = 8MW ) they occur in 540 intervals

and in the robust economic dispatch (taking ∆P l = 4MW ) shortages occur in 42

intervals. Further we calculate the mean and the standard deviation of the total

generation cost of 4 intervals for the scenarios. In case of the dispatch with ramp

product the mean generation cost = $2, 208.33 and standard deviation = $717.25,

whereas for the robust dispatch approach the mean generation cost = $1600.92 and

standard deviation = $238.75. The mean lack of ramp probability for a single interval

across all scenarios (i.e., mean LORP up) for dispatch with ramp product is 0.1890,

whereas for the robust dispatch mean LORP up is 0.0512. Table 4.12 provides a

summary of the results of the Monte Carlo simulations for the different economic

dispatch methods.

Thus with robust dispatch on average the total generation cost is expected to be

lower since there is lower probability of a shortage event occurring. Additionally, the

variance in the robust dispatch approach is lower than that in the dispatch with ramp

product approach. Finally, the robust dispatch solutions yield a lower mean lack of

ramp probability compared to the dispatch with ramp product solutions, indicating
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Table 4.12: Summary of monte carlo results

Dispatch Method Conventional ($) Ramp Capability ($) Robust ($)
Ramp Shortage Events 983 540 42
Mean Scenario Costs ($) 2398 2208 1601

Standard dev. ($) 733 717 239
Mean LORP up 0.2415 0.1890 0.0512

that the robust model is more reliable than the dispatch with ramp product.

4.4 Zonal Robust Economic Dispatch with Tie-Line Limits

In this subsection we present a robust optimization based economic dispatch

model which includes tie-line constraints for implementation in multi-zonal systems.

Fig. 4.6 shows a comparison of this model to the look-ahead dispatch model presented

earlier in this section as well as the conventional dispatch model. This formulation

can be extended to consider multiple future time intervals in the economic dispatch

horizon. The net load for each future time step can be considered as uncertain. For

defining the robust dispatch problem we can consider the uncertain net loads in the

future time intervals as belonging to the uncertainty sets U1,U2, . . . ,Un.

t-1 t t+1 t+2 t+n 

Time  

(5 min) 

Conventional 

Look-ahead 

Robust 

Figure 4.6: Comparison of economic dispatch models
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Table 4.13: Notation for multi-zonal robust dispatch

Indices:
n Index of all buses in the network.
z Index of all zones in the network.
i Index of all dispatchable generators.
j Index of all loads.
m Index of all transmission lines.
t Index of real time dispatch (5 min. intervals).

Sets:
N Set of buses.
Z Set of zones.

I ⊂ N Set of generators.
J ⊂ N Set of loads.
Iz Set of generators in zone z ∈ Z.
Jz Set of loads in zone z ∈ Z.
M Set of transmission lines.

Deterministic Forecast:

P̂ l
j [t] Net load forecast of bus j at time t.

P̂ l
z[t] Net load forecast of zone z at time t.

Random Variables:

P̃ l
j [t] Net load at bus j.

P̃ l
z[t] Net load in zone z.
us Uncertainty of system-wide net load.
uz Uncertainty of net load in zone z.

Decision Variables:
P g
i [t] Dispatched output of generator i at time t.

Functions:
Cg

i () Cost function of generator i.
Parameters and Constants:

T Number of intervals in dispatch horizon.
Pmax
i Maximum output of generator i.

Pmin
i Minimum output of generator i.
Ri One interval (5 min.) ramp rate of generator i.

Fmax Vector of flow limits for transmission lines.
Fmax
z Vector of flow limits for inter-zonal tie-lines.
Us Uncertainty set for system-wide net load.
Uz Uncertainty sets for net load in zone z.
∆P l

z Maximum deviation of net load in zone z from point forecast value.
H Shift factor matrix (m× n).
Hz Reduced shift factor matrix considering only inter-zonal tie-lines.
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The conventional economic dispatch model is used to find a least-cost dispatch

solution that satisfies the system power balance constraint as well as other constraints

such as the generator resource limits and inter-temporal ramping limits. This is a

single interval deterministic optimization problem which does not consider either

uncertainty in load or the forecast for future time intervals.

The robust dispatch formulation presented earlier in this section considers one

future time interval in the economic dispatch horizon. The net load in the future

time interval is assumed to be uncertain and to belong to a predefined deterministic

uncertainty set. Also we consider the inter-zonal transmission line flow limits in

the dispatch formulation. Based on this idea we can extend the robust economic

dispatch formulation to span multiple future time intervals each with an uncertain

net load belonging to an uncertainty set. Thus, we can formulate a multi-interval

robust dispatch model.

The robust multi-zonal economic dispatch model with transmission line con-

straints is formulated as follows, and the notation is given in Table 4.13:

min
P

g
i [t]

T
∑

t=1

∑

i∈I

Cg
i (P

g
i [t]) (4.37)

s.t.

∑

i∈I

P g
i [t] =

∑

j∈J

P̂ l
j [t], t = 1 (4.38)

∑

i∈I

P g
i [t] ≥

∑

j∈J

P̃ l
j [t], ∀ t = 2, . . . , T (4.39)

Pmin
i ≤ P g

i [t] ≤ Pmax
i ∀ i, t (4.40)

−Ri ≤ P g
i [t]− P g

i [t− 1] ≤ Ri ∀ i, t (4.41)
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−Fmax
[1:m] ≤ H(P g

[1:n][t]− P̂ l
[1:n][t]) ≤ Fmax

[1:m], t = 1 (4.42)

−Fmax
z ≤ Hz(

∑

i∈Iz

P g
i [t]− (P̂ l

z[t] +uz[t])) ≤ Fmax
z , ∀ t = 2, . . . , T, uz ∈ Uz, ∀z (4.43)

The objective is to minimize total generation cost over all the time intervals

(4.37). (4.38) gives the system power balance constraint for the current time inter-

val. The constraints (4.39) ensure that the dispatch solutions for the future time

intervals are feasible even under the worst cases of net load uncertainty, as defined

by their respective uncertainty sets. The dispatched output power for each generator

must remain within its active power output limits (4.40). Constraints (4.41) spec-

ify the inter-temporal ramping limits of each generator. The transmission line flow

limits must be satisfied for all the lines in the transmission network, represented by

constraints (4.42). For ensuring deliverability of ramp capability we consider only

the inter-zonal tie-line limits for the future time intervals (4.43). We do not consider

the line limits within the zones for the future time intervals. The entire load and

generation of the zone is represented as a single net injection. For buses which do

not have generators P g
n = 0, and similarly for buses which do not have loads P l

n = 0.

The uncertain system net load variable can be written as a combination of the

deterministic point forecast and an uncertain variable us. Thus we have
∑

j∈J P̃
l
j [t] =

∑

j∈J P̂
l
j [t]+us[t], where us[t] ∈ Us[t]. We define uncertainty sets for each zone based

on historical data for net load uncertainty. For instance we can use the previous

day’s zonal net loads to find the information about the uncertainty.

Uz[t] = [P̂ l
z[t]−∆P l

z[t], P̂
l
z[t] + ∆P l

z[t]], ∀t = 2, . . . , T, ∀ z (4.44)

We can assume that ∆P l
z[t] = αzσz, where αz is a constant of proportionality and

σz is the standard deviation for the zonal net load, obtained from historical data.
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αz can be selected by the system operator. It can be higher or lower based on the

confidence in the net load forecast. For instance we could select αz = 3 and hence

have an uncertainty set covering ±3σ deviations from the mean.

Thus, the deterministic uncertainty sets (4.44) define the range of the uncertainty

in the net load for the future time intervals.

To ensure deliverability of ramp capability we consider only the inter-zonal tie-

line flow limits in (4.43). The network can be reduced to find an equivalent network

using bus aggregation method. Using the approach given in [81] the network can be

reduced to one where each zone is reduced to a single bus with an aggregated net

injection. The intra-zonal flow limits are ignored and the inter-zonal tie-lines are

aggregated to a single equivalent tie-line in each case. Then the reduced shift factor

matrix Hz is obtained for the reduced equivalent zonal system.

4.4.1 Nodal Robust Dispatch

We can also formulate a nodal version of the robust dispatch. The uncertainty

sets would have to be defined at the bus level rather than at the zonal level. The

nodal robust economic dispatch model with line constraints is as follows:

min
P

g
i [t]

T
∑

t=1

∑

i∈I

Cg
i (P

g
i [t]) (4.45)

s.t.
∑

i∈I

P g
i [t] =

∑

j∈J

P̂ l
j [t], t = 1 (4.46)

∑

i∈I

P g
i [t] ≥

∑

j∈J

(P̂ l
j [t] + uj[t]), ∀t = 2, . . . , T, ∀ uj[t] ∈ Uj [t] (4.47)

Pmin
i ≤ P g

i [t] ≤ Pmax
i ∀ i, t (4.48)

−Ri ≤ P g
i [t]− P g

i [t− 1] ≤ Ri ∀ i, t (4.49)
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−Fmax ≤ H(P g

[1:n][t]− P̂ l
[1:n][t]) ≤ Fmax, t = 1 (4.50)

−Fmax ≤ H(P g

[1:n][t]− (P̂ l
[1:n][t] + u[1:n][t])) ≤ Fmax, ∀ t = 2, . . . , T (4.51)

Uj [t] = [P̂ l
j [t]−∆P l

j [t], P̂
l
j [t] + ∆P l

j [t]], ∀t = 2, . . . , T, ∀ j (4.52)

Here again the deterministic uncertainty sets (4.52) can be defined using historical

data on the uncertainty of net load at each bus in the system.

4.4.2 LMP Formulation in Robust Dispatch

Converting the set of equations (4.45)-(4.51) to the standard form we get the

Lagrangian function of the robust economic dispatch as

L =
T
∑

t=1

∑

i∈I

Cg
i (P

g
i [t])− λ

[

∑

i∈I

P g
i [t]−

∑

j∈J

P̂ l
j [t]

]

+
T
∑

t=1

δ[t]

[

−
∑

i∈I

P g
i [t+ 1] +

∑

j∈J

(P̂ l
j [t+ 1] + uj)

]

+

T
∑

t=1

∑

i∈I

τmin
i [t](Pmin

i − P g
i [t]) +

T
∑

t=1

∑

i∈I

τmax
t [t](P g

i [t]− Pmax
i )

+

T
∑

t=1

∑

i∈I

ωmax
i [t](P g

i [t]− P g
i [t− 1]− Ri)

+

T
∑

t=1

∑

i∈I

ωmin
i [t](P g

i [t− 1]− P g
i [t]−Ri)

+

T
∑

t=1

∑

m∈M

µmax
m [t]

(

Hm(P
g

[1:n][t]− P l
[1:n][t])− Fmax

m

)

+
T
∑

t=1

∑

m∈M

µmin
m [t]

(

−Fmax
m −Hm(P

g

[1:n][t]− P l
[1:n][t])

)

(4.53)

where P l
n[t] = P̂ l

n[t] for t = 1, ∀n, and P l
n[t] = P̂ l

n[t] + un[t] for t > 1, ∀n.

Ignoring the line flow constraints (4.50) and (4.51), and taking the partial deriva-
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tive with respect to the current time step dispatch solution, we have

∂L
∂P g

i [1]
=
∂Cg

i (P
g
i [1])

∂P g
i [1]

− λ− τmin
i [1] + τmax

i [1]

+ωmax
i [1]− ωmax

i [2]− ωmin
i [1] + ωmin

i [2] (4.54)

By the first order condition, setting the partial derivative to zero we get the

locational marginal price (LMP) at the slack bus as

λ =
∂Cg

i (P
g
i [1])

∂P g
i [1]

− τmin
i [1] + τmax

i [1] + ωmax
i [1]− ωmax

i [2]− ωmin
i [1] + ωmin

i [2] (4.55)

We observe from (4.55) that the generator ramp limits corresponding to the next

time step have an impact on the LMP value. Whereas in the conventional economic

dispatch model since the future time steps are not considered these two terms will

not exist in the breakdown of the LMP equation. When the future time step ramping

constraints are not binding the LMPs in the robust dispatch case will match those

in the conventional dispatch case.

4.4.3 Zonal Configuration and Ramp Requirements

Under current ISO procedures reserves are dispatched on a zonal basis. Reserve

zones are usually divided on the basis of geography, utility boundaries or significant

congested transmission lines. However, deliverability of reserves is a concern.

We assume that the scheduled imports and exports for a zone remain fixed. Thus

we define the ramp capability for each zone as

RCz[t] =Zonal Generator Ramp Power[t]

+(Imports[t+1]-Imports[t])− (Exports[t+1]-Exports[t])) (4.56)
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where the Zonal Generator Ramp Power is the total available ramp capability from

all the dispatched generators in a zone subject to inter-zonal tie-line flow limits. Thus

accordingly we can calculate the zonal LORP as.

LORP up
z [t] = Pr

(

∑

i∈Iz

P g
i [t] +RCz[t] < P̃ l

z[t + 1]

)

, ∀z (4.57)

Unlike the system-wide LORP here inter-zonal tie-line flow limits are considered.

Given the reserve zone groupings of the buses, we can calculate the LORPz for

each zone for a given dispatch solution, while at the same time satisfying line flow

limits on the tie-lines between the zones. This value can be used by the system

operator as an index for the reliability of the dispatch solution with regards to the

ramp capability in a particular zone. If the LORPz value is too high the operator

may choose to import power from other zones or other ISOs in order to maintain

ramp capability.

We can also define a system-wide LORP index as

LORP up
s [t] = Pr

(

∑

i∈I

(P g
i [t] + min(Ri, P

max
i − P g

i [t])) < P̃ l
s[t + 1]

)

(4.58)

The difference between LORPs and LORPz is that LORPz uses the zonal ramp

capability incorporating inter-zonal tie-line limits, whereas the system-wide index

considers the total system ramp capability ignoring the tie-line limits.

We can use historical information from the past day of actual net load data for

all the zones in the system. From this data we extract the mean, standard deviation

and correlation information for the net load in all zones. Then using the correlation

information we calculate the standard deviation of the net load uncertainty for the

system using the following relationship.
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σ2(
∑

i

xi) =
∑

i

σ2(xi) +
∑

i 6=j

cov(xi, xj) (4.59)

cov(xi, xj) = corr(xi, xj)σ(xi)σ(xj) (4.60)

where cov() is the covariance, corr() is the correlation, σ represents the standard

deviation of the random variable and σ2 represents its variance.

Thus we can calculate σs from σz values. We can define the uncertainty set Us[t]

for the system-wide uncertainty us[t], similar to the definition for zonal case. This

can be used to calculate the system-wide LORP.

4.4.4 Case Study

In this subsection a case study is presented on a modified 24 bus IEEE Reliability

Test System (RTS) [82]. There are a total of 15 generators of which 3 are wind

generators which we treat as negative load, while the rest are dispatchable (Fig.

4.7). Table 4.14 shows the parameters for the generators including maximum and

minimum power output limits, offer costs and ramp rates. There are 32 transmission

lines and the flow limits on all are assumed to be 200 MW. To ensure deliverability of

ramp capability, for the future time intervals we neglect the intra-zonal transmission

line flow limits by forming a reduced equivalent 4 bus network. For the reduced

system we aggregate the generation and loads in each zone at a single bus. Thus

the entire 24 bus system is reduced to 4 buses each representing one zone. In the

reduced system the intra-zonal transmission line constraints are ignored while the

inter-zonal flow limits are considered.

The simulation duration is 24 hours with dispatch performed for 5-min intervals,

using scaled real load profile data taken from New York ISO [83]. The uncertainty
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set for the net load in each zone is defined by considering deviations of ±2.5σz from

the forecast net load values. The standard deviation σz for each zone is obtained

from the previous day’s actual net load data. The robust optimization dispatch is

modeled and solved in MATLAB using linprog solver and the YALMIP toolbox [63].
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Figure 4.7: Modified IEEE 24 bus RTS system

Fig. 4.8 shows the total electric load for the system for the entire day.

The real-time economic dispatch is simulated using the conventional model, the

look-ahead model and the robust model (T=2). Fig. 4.9 shows the total wind power

output for the system. In these simulations wind is considered as a negative load,

and it is assumed that wind is not curtailed. Assuming no imports and exports from

outside the system the Net Load faced by the generators is the difference between

the electrical load and the wind. The total electrical load and the total net load

profiles are shown in Fig. 4.10.

The generation profiles of the different fuel types for conventional and robust

dispatch are shown in Fig. 4.11 (Gas), Fig. 4.12 (Nuclear), Fig. 4.13 (Coal) and
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Table 4.14: Generator parameters for IEEE 24 bus system

Bus Type
Pmax Pmin Cost Ramp Rate Zone
MW MW $/MWh % MW/min

1 Nuclear 140 50 15 0.8 N
2 Coal 540 40 20 2 N
4 Gas 300 30 40 5 N
5 Gas 510 25 27 6.5 N
6 Nuclear 150 45 14 0.9 E
7 Gas 490 24 49 7 E
8 Coal 165 15 23 1.9 E
10 Oil 60 0 250 20 E
13 Oil 90 0 220 20 S
14 Gas 170 34 48 9 W
15 Wind 200 0 4 9 W
18 Wind 240 0 6 10 W
21 Coal 300 30 21 1.8 S
22 Gas 725 50 36 11 S
23 Wind 70 0 5 11 S
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Figure 4.8: System total electric load profile for entire day

Fig. 4.14 (Oil-fired Peakers).

It is observed that the conventional dispatch relies to a greater extent on the
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Figure 4.9: System total wind profile for entire day
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Figure 4.10: System total electrical load and net load profiles for entire day

Gas generators to meet the system peak net load, whereas in the robust dispatch

they are backed down. This is done to provide additional ramp capability from fast

ramping units. At the same time the robust dispatch does not back down the nuclear
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Figure 4.11: System total gas generator profile for entire day

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

Real−time dispatch intervals (5 min)

M
W

 

 

Conventional Dispatch
Robust Dispatch

Figure 4.12: System total nuclear generator profile for entire day

generators as is done in the conventional dispatch approach.

For most of the non peak load intervals the robust model dispatches more power

from Gas, whereas the conventional model relies more on Coal generators. It can be

seen that the robust dispatch model will have an impact on the dispatch of different
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Figure 4.13: System total coal generator profile for entire day
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Figure 4.14: System total peaker (oil-fired) profile for entire day

types of generators depending on their ramp rates. Thus, it will have an impact

on emissions relative to the conventional dispatch model, for a given generation

portfolio.

Fig. 4.15 shows the comparison of the dispatch costs for all the generators (except
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Figure 4.15: System dispatch costs for entire day

wind) for both the conventional and robust dispatch simulations. The costs are close

for most of the day but it can be seen that the costs for the robust dispatch are

higher. This is as expected since the robust solution is in general more conservative.

The dispatch costs in robust dispatch depend on the uncertainty set. For smaller

size of uncertainty set the robust dispatch costs will be lower.

Fig. 4.16 compares the LORP of the North zone of the IEEE 24 bus RTS for

the conventional and the robust dispatch approach for the entire day of real time

dispatch simulation. Similarly Fig. 4.17 shows the LORPs of the the conventional

and robust model for the entire day for the East zone. For the North zone while

both the LORPs are low the robust model gives much lower LORPs in most time

intervals compared to the conventional approach indicating that the procurement of

ramp capability in the North zone is greater under the robust model. While in the

East zone due to peak loading the ramp capability for both approaches is the same

for many time intervals during the day. The average LORP values for both zones are

lower with the robust model than the conventional model indicating that the robust
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Figure 4.16: North zone LORP for entire day
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Figure 4.17: East zone LORP for entire day

approach is more reliable in regards to ramp capability.

Fig. 4.18 shows the mean LORP index values for the day for the North and

South zones, whereas Fig. 4.19 shows the mean LORP values for the East and West
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zones. The robust approach has lower LORP values than both conventional as well

as look-ahead dispatch. Thus, it is more reliable in terms of zonal ramp capability.
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Figure 4.18: Mean LORP comparison for north and south zones
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Figure 4.19: Mean LORP comparison for east and west zones
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Figure 4.20: Mean LORP comparison for different zones using robust dispatch

Fig. 4.20 shows the system-wide LORP as well as the zonal LORP values. The

system-wide value is low, however it does not give a complete picture of the ramp

capability since it does not consider inter-zonal tie-line flow limits.

Thus we can calculate the LORPz for each zone for a given dispatch solution,

while at the same time satisfying line flow limits on the tie-lines between the zones.

This value can be used by the system operator as an index for the flexibility of the

dispatch solution with regards to the ramp capability in a particular zone. If the

LORPz value is too high the operator may choose to take some action to maintain

dispatch flexibility.

The proposed robust optimization based economic dispatch model is implementable

in multi-zonal systems and ensures the deliverability of procured ramp capability be-

tween operating zones.
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5. CONCLUSIONS

This dissertation introduces a robust optimization-based decision making frame-

work in electric power systems with high penetration of variable renewable resources.

The notion of risk is included in the decision making framework to provide the de-

cision maker with a reliable as well as cost effective decision. Both the problems

of market participant’s bidding and of system operator’s scheduling are formulated

using robust optimization. For the case of the market participant’s bidding, the risk

is related to the loss of revenue in the sales of electricity due to uncertainty from

renewable resources as well as uncertainty in electricity market clearing price. From

the system operator’s point of view the risk is related to power shortages when the

system power balance requirement is not met due to inadequate system ramp capa-

bility. In both cases there is a trade-off between the optimality of the solution in

terms of profit or cost versus the risk.

In Section 2 we discuss robust optimization and provide background on power

system scheduling. In Section 3 we discuss the robust optimization-based bidding

strategy formulation for the combination of a wind farm and energy storage acting

as a price taking market participant. In Section 4 we discuss the robust economic

dispatch model from the perspective of the independent system operator making the

optimal dispatch decision for all the conventional generators in the system. The

conclusions and proposed future work for both of these problems are discussed in the

following two subsections.
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5.1 Robust Optimization Based Bidding Strategy

5.1.1 Summary

Section 3 presents the application of robust optimization to determine the optimal

bidding strategy for the combination of a wind farm and energy storage, under

uncertainty due to wind power forecast error and electricity market clearing price

forecast error. The wind farm combined with an on-site energy storage device can

bid into the day-ahead electricity market. The combination of wind and storage

leads to better utilization of the uncertain wind resource and increased economic

performance through participation in price arbitrage.

In the worst case scenario of wind power forecast error and electricity price fore-

cast error, the robust optimization based bidding strategy gives a better economic

performance than the deterministic approach. However, when forecast error is low

the robust optimization based approach gives a more conservative result. Further,

the robust optimization based strategy has an increasing probability of yielding bet-

ter economic performance than the deterministic approach as the forecast error in

electricity price increases. This is important because wind producers who bid into

day-ahead electricity markets have to deal with uncertainty due to large forecast

errors.

As compared to stochastic optimization the robust approach gives a more con-

servative result. But the advantage of the robust optimization approach is that it

does not require detailed information about the probability distribution of the uncer-

tain variable. Further, the robust linear programming problem is computationally

tractable and requires significantly lower computational effort than the stochastic

approach. The conservatism of the robust method can be adjusted by changing the

size of the uncertainty set selected. The robust approach also ensures feasibility of
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the solution for all realizations of the uncertain variable that fall within the chosen

uncertainty set.

The uncertainty set for the robust optimization approach can be determined based

on historical data of forecast error of the uncertain variable as well as the decision

maker’s risk preference. The uncertainty set can be defined based on risk measures

commonly used in the finance industry.

The economic performance of the bidding strategy is evaluated using Monte Carlo

simulations by making suitable assumptions about the probability distribution of the

electricity price and wind power forecast errors.

5.1.2 Future Work

This work opens the door for many future research opportunities. One direction

is to investigate the coupling between longer-term hour-ahead and shorter-term real-

time markets in a model predictive control manner. Another research direction is the

application of the robust method for obtaining the bidding strategy for multi-stage

markets, such as the day-ahead and real-time electricity markets common in US ISOs.

In order to improve the utilization of the renewable resource other applications of

the renewable generator and energy storage combination could also be considered,

including ancillary services such as frequency regulation.

5.2 Robust Optimization Based Economic Dispatch

5.2.1 Summary

In Section 4 we propose and evaluate a robust optimization based approach to

managing system ramping requirement in real-time economic dispatch. The robust

model is compared both with the existing conventional economic dispatch model as

well as with a new model recently proposed by the industry called ramp product. In

order to assess the performance of different dispatch models targeted at managing the
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increasing system-wide ramping requirements, we propose Lack of Ramp Probability

(LORP) as a flexibility metric. This index measures the probability of insufficient

system ramp capability event occurring, thereby resulting in system power supply-

demand imbalance.

The trade-off of reliability and dispatch cost for both the ramp product approach

as well as the robust approach is shown through a numerical on a simple test system.

Additionally, the generation dispatch costs and reliability of dispatch are evaluated

using Monte Carlo simulations for both the ramp product model as well as the robust

economic dispatch model. It is shown that our proposed robust model yields a higher

reliability of dispatch as well as lower mean and variability of generation dispatch

cost relative to the ramp product model for the same level of uncertainty in net load.

Further, in this dissertation a robust economic dispatch model including inter-

zonal tie-line flow limits is proposed. The proposed formulation is demonstrated

through a case study on a multi-zonal IEEE 24 bus Reliability Test System. The

robust model is compared to the deterministic economic dispatch model as well as

the look-ahead economic dispatch model in terms of dispatch costs and the proposed

LORP index. The proposed robust economic dispatch model is implementable in

multi-zonal systems and ensures the deliverability of procured ramp capability be-

tween operating zones.

5.2.2 Future Work

Based on the work in this dissertation a future avenue of research could be to

construct a proper market mechanism that enables the implementation of the robust

dispatch with guaranteed system ramping capability.

Another direction is the multi-objective optimization based dispatch which con-

siders both cost and emissions. The robust framework can also be applied to address
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the coordination of both conventional generation and renewables with new technolo-

gies such as Plug-in Hybrid Electric Vehicles (PHEVs) and Demand Response. The

uncertainties involved in decision making in such applications include those aris-

ing from consumer behavior. The risk aware robust decision making framework is

suitable if the consumers are assumed to be risk averse.
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[22] M. D. Ilić, J.-Y. Joo, L. Xie, M. Prica, and N. Rotering, “A decision-making

framework and simulator for sustainable electric energy systems,” IEEE Trans-

actions on Sustainable Energy, vol. 2, pp. 37–49, Jan. 2011.

[23] F. Rahimi and A. Ipakchi, “Demand response as a market resource under the

smart grid paradigm,” IEEE Transactions on Smart Grid, vol. 1, pp. 82–88,

June 2010.

115



[24] J. D. Rogers, R. I. Schermer, B. L. Miller, and J. F. Hauer, “30-MJ supercon-

ducting magnetic energy storage system for electric utility transmission stabi-

lization,” Proceedings of the IEEE, vol. 71, pp. 1099–1107, Sept. 1983.

[25] A. A. Thatte, F. Zhang, and L. Xie, “Coordination of wind farms and flywheels

for energy balancing and frequency regulation,” in Proceedings of the IEEE

Power and Energy Society General Meeting, (Detroit, MI), pp. 1–7, July 24-29,

2011.

[26] M. Black and G. Strbac, “Value of bulk energy storage for managing wind power

fluctuations,” IEEE Transactions on Energy Conversion, vol. 22, pp. 197–205,

Mar. 2007.

[27] P. Denholm and R. Sioshansi, “The value of compressed air energy storage

with wind in transmission-constrained electric power systems,” Energy Policy,

vol. 37, no. 8, pp. 3149–3158, 2009.

[28] Y. M. Atwa and E. F. El-Saadany, “Optimal allocation of ESS in distribution

systems with a high penetration of wind energy,” IEEE Transactions on Power

Systems, vol. 25, pp. 1815–1822, Nov. 2010.

[29] D. S. Kirschen, “Demand-side view of electricity markets,” IEEE Transactions

on Power Systems, vol. 18, pp. 520–527, May 2003.

[30] K. Natarajan, D. Pachamanova, and M. Sim, “Constructing risk measures from

uncertainty sets,” Operations Research, vol. 57, no. 5, pp. 1129–1141, 2009.

[31] L. Xie, P. M. S. Carvalho, L. A. F. M. Ferreira, J. Liu, B. H. Krogh, N. Popli,

and M. D. Ilić, “Wind integration in power systems: operational challenges and

possible solutions,” Proceedings of the IEEE, vol. 99, pp. 214–232, Jan. 2011.

116



[32] S. Takriti, B. Krasenbrink, and L. S.-Y. Wu, “Incorporating fuel constraints and

electricity spot prices into the stochastic unit commitment problem,” Operations

Research, vol. 48, no. 2, pp. 268–280, 2000.

[33] M. P. Nowak, R. Schultz, and M. Westphalen, “A stochastic integer program-

ming model for incorporating day-ahead trading of electricity into hydro-thermal

unit commitment,” Optimization and Engineering, vol. 6, pp. 163–176, 2005.

10.1007/s11081-005-6794-0.

[34] N. P. Padhy, “Unit commitment-a bibliographical survey,” IEEE Transactions

on Power Systems, vol. 19, no. 2, pp. 1196–1205, 2004.

[35] V. Gabrel, C. Murat, and A. Thiele, “Recent advances in robust optimiza-

tion and robustness: An overview,” tech. rep., LAMSADE, Universite Paris-

Dauphine, Paris, France, 2012. Available: http://www.optimization-online.org/

DB\ HTML/2012/07/3537.html.

[36] D. Bertsimas, E. Litvinov, X. A. Sun, J. Zhao, and T. Zheng, “Adaptive ro-

bust optimization for the security constrained unit commitment problem,” IEEE

Transactions on Power Systems, vol. 28, pp. 52–63, Feb. 2013.

[37] M. Zhang and Y. Guan, “Two-stage robust unit commitment problem,” tech.

rep., University of Florida, Gainesville, FL, 2009.

[38] L. Zhao and B. Zeng, “Robust unit commitment problem with demand response

and wind energy,” tech. rep., University of South Florida, Tampa, FL, 2010.

[39] R. Jiang, M. Zhang, G. Li, and Y. Guan, “Two-stage robust power

grid optimization problem,” tech. rep., 2010. Available: http://www.

optimization-online.org/DB\ HTML/2010/10/2769.html.

117



[40] R. Jiang, J. Wang, and Y. Guan, “Robust unit commitment with wind power

and pumped storage hydro,” IEEE Transactions on Power Systems, vol. 27,

pp. 800–810, May 2012.

[41] D. B. Patton, “2010 state of the market report Midwest ISO,” tech. rep., Po-

tomac Economics, Midwest ISO Independent Market Monitor, Carmel, IN,

May 2011. Available: https://www.potomaceconomics.com/uploads/midwest

presentations/2010 State of the Market Presentation - Final.pdf.

[42] N. Navid and G. Rosenwald, “Ramp capability product design,” tech. rep.,

MISO, Carmel, IN, July 2013. Available: https://www.misoenergy.org/Library/

Repository/CommunicationMaterial/KeyPresentationsandWhitepapers/

RampProductConceptualDesignWhitepaper.pdf.

[43] L. Xu and D. Tretheway, “Flexible ramping products,” CAISO Pro-

posal, Oct. 2012. Available: http://www.caiso.com/Documents/

SecondRevisedDraftFinalProposal-FlexibleRampingProduct.pdf.

[44] D. Bertsimas, D. Brown, and C. Caramanis, “Theory and applications of robust

optimization,” Arxiv preprint arXiv:1010.5445, 2010.

[45] D. Pachamanova, A Robust Optimization Approach to Finance. PhD thesis,

Massachusetts Institute of Technology, Cambridge, MA, 2002.

[46] D. Bertsimas and M. Sim, “The price of robustness,” Operations Research,

vol. 52, no. 1, pp. 35–53, 2004.

[47] G. Lagos, D. Espinoza, E. Moreno, and J. Amaya, “Robust planning for an open-

pit mining problem under ore-grade uncertainty,” Electronic Notes in Discrete

Mathematics, vol. 37, no. 0, pp. 15 – 20, 2011.

118



[48] A. J. Conejo, R. Garcia-Bertrand, M. Carrion, A. Caballero, and A. de Andres,

“Optimal involvement in futures markets of a power producer,” IEEE Transac-

tions on Power Systems, vol. 23, pp. 703 –711, May 2008.

[49] P. Artzner, F. Delbaen, J. M. Eber, and D. Heath, “Coherent measures of risk,”

Mathematical Finance, vol. 9, no. 3, pp. 203–228, 1999.

[50] R. T. Rockafellar, “Coherent approaches to risk in optimization under uncer-

tainty,” Tutorials in Operations Research, INFORMS, pp. 38–61, 2007. Avail-

able: http://pubsonline.informs.org/doi/pdf/10.1287/educ.1073.0032.

[51] R. T. Rockafellar and S. Uryasev, “Optimization of conditional value-at-risk,”

Journal of Risk, vol. 2, pp. 21–42, 2000.
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[60] L. Xie and M. Ilić, “Model predictive dispatch in electric energy systems with

intermittent resources,” in Proceedings of the IEEE International Conference on

Systems, Man and Cybernetics, pp. 42–47, Oct. 2008.

[61] Y. Gu and L. Xie, “Look-ahead coordination of wind energy and electric vehicles:

a market-based approach,” in Proceedings of the 42nd North American Power

Symposium, (Arlington, TX), Sept. 26-28, 2010.

[62] M. Kraning, Y. Wang, E. Akuiyibo, and S. Boyd, “Operation and configuration

of a storage portfolio via convex optimization,” in Proceedings of the 18th IFAC

World Congress, vol. 18, (Milano, Italy), pp. 10487–10492, 2011.
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