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ABSTRACT

Investigation of fluid flow and heat transfer in rotating microchannels is impor-

tant for centrifugal microfluidics, which has emerged as an advanced technique in

biomedical applications and chemical separations. The centrifugal force and the

Coriolis force, arising as a consequence of the microchannel rotation, change the flow

pattern significantly from the symmetric profile of a non-rotating channel. A suc-

cessful design of a centrifugal microfluidic device depends on effectively regulating

these forces in rotating microchannels. Although a large number of experimental

studies have been performed in order to demonstrate the applications of centrifugal

microfluidics in various fields, a systematic study on the effect of rotation, chan-

nel aspect ratio, and wall boundary conditions on the fluid flow and heat transfer

phenomena in rotating microchannels has not yet been conducted.

During the present study, pressure-based finite volume solvers in both staggered

and collocated grids were developed to solve steady and unsteady, incompressible

Navier-Stokes equations. The serial solver in collocated grid was parallelized using

a Message Passing Interface (MPI) library. In order to accelerate the convergence of

the collocated finite volume solver, a non-linear multi-grid method was developed.

The parallel performances of the single and multi-grid solvers were tested on a two-

dimensional lid driven cavity flow. High fidelity benchmark solution to a lid driven

cavity flow problem in a 1024 × 1024 grid was presented for a range of Reynolds num-

bers. Parallel multigrid speedup as high as three orders of magnitude was achieved

for low Reynolds number flows. In addition, the optimal multigrid efficiency was

validated.

The fluid flow in a rotating microchannel was modeled as a steady, laminar in-
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compressible flow with no slip and slip boundary conditions. For no slip boundary

condition, critical values of parameters that determine the extent of the centrifugal

force and the Coriolis force were identified. The critical aspect ratio (=width/height)

that causes the optimal mixing of two liquids was found to be 1.0. For liquid slip

boundary condition, the effect of rotation on liquid slip flow in rotating microchan-

nels with hydrophobic and superhydrophobic surfaces was studied. New correlations

for friction relation (fRe) as a function of slip length (λ) and rotational Reynolds

number (Reω) were proposed. It was also found that, the liquid slip can increase

or decrease the heat transfer depending on the secondary flow effect and the aspect

ratio of the microchannel.

The microscale effects, such as surface tension and contact angle boundary con-

dition, were included in the modeled problem. A level set method was applied to

incorporate these microscale effects, which will enable us to investigate the unsteady

nature of the liquid meniscus during two-phase flow simulations.
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NOMENCLATURE

Roman Symbols

a Finite volume discretization coefficients

a Microchannel width, (m)

a+ Normalized channel width, a
2Dh

b Microchannel height, (m)

b Source term in the discretized equations

b+ Normalized channel height, b
2Dh

C Slope of the curve in Equation 6.17

Cp Specific heat of the fluid (Jkg−1K−1)

D Diffusion strength

Dh Hydraulic diameter (m)

dr Distance of microchannel inlet from the disk center (m)

F Flow strength

f Friction factor

fω Centrifugal force (N)

fc Coriolis force (N)

fe Geometric interpolation factor for east face
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fRe Poiseuille number or friction relation

G Modified axial pressure gradient

G∗ Reduced axial pressure gradient

g Gravitational acceleration (ms−2)

H
∑
CV s

anbφnb

H Water column height in dam breaking simulation

H(ψ) Heaviside function

h Height of the water level in water column breaking simulation

i, j Index variables associated with the grid points

Ih2h Prolongation operator

I2h
h Restriction operator

k Thermal conductivity of the fluid (Wm−1K−1)

Kn Knudsen number

L Length of the microchannel, (m)

L Perimeter enclosed by the interface

lk Kapitza length (m)

N Size of the problem

np Number of processors

Nu Nusselt number
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Nx,Ny Number of control volumes in x and y direction

P Peclet number

p Pressure (Pa)

p′ Pressure correction variable

p∗ Modified pressure (Pa)

p1, p2, p3, p4 Polynomial coefficients for the correlation of C

Pr Prandtl number

R Residual

R Set of real numbers

R2 Regression coefficient

Re Flow Reynolds number

Reω Rotational Reynolds number

Ro Rossby number (Reω/Re)

S Source term

s1, s2, s3 Smoothness estimators for WENO-5 scheme

T Temperature (oC)

t Time (sec)

T Time period (sec)

u, v, w Velocity in x, y, z-directions (ms−1)
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V Velocity vector (ms−1)

V Volume of fluid element

V ′ Volume error

W Non dimensional velocity, w/(D2
h/µ

∂p∗

∂z
)

wslip Slip velocity (ms−1)

X Non dimensional x, x/Dh

x+ Normalized x-coordinate, x/a

xi Distance in x, y, z-directions for i=1,2,3 respectively (m)

Y Non dimensional y, y/Dh

y+ Normalized y-coordinate, y/b

z+ Normalized z-coordinate, z/L

Acronyms

CDS Central Difference Scheme

CV Control Volume

FAS Full Approximation Scheme

FMG Full Multigrid

MG Multigrid

PLS Power Law Scheme

RMS Root Mean Square
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RPM Revolution Per Minute

SG Single Grid

Greek Symbols

α Aspect ratio, a/b

αu, αv, αp Under-relaxation factor for u, v and p variables respectively

β Ratio of the Coriolis force to the centrifugal force

∆x,∆y Control volume length in x and y directions

δx, δy Diffusion length in x and y directions

δ(ψ) Dirac delta function

Γ Diffusion coefficient

γ Finite difference stencils

Γ(t), δΩ Interface between the two fluid regions

κ Curvature of the interface (m−1)

µ Dynamic viscosity of the fluid (Pa-s)

Ω Convergence factor

ω Rotational frequency (rad.s−1)

Ω+,Ω− Two fluid regions separated by the interface

φ Generic flux variable

ψ(x, t) Level set function

xi



ρ Density of the fluid (kgm−3)

σ Surface tension (Nm−1)

θc Contact angle (o)

ε Bandwidth of numerical smearing

ϕk Eigenvalues defined in Equation 6.9

$ Weights of WENO-5 scheme

ξm, ξn Eigenvalues defined in Equation 5.10

n Normal vector to the interface

λ Slip length, or slip coefficient (m)

Subscripts

app Apparent

avg Average

cr Critical

eff Effective

exit Exit/outlet of the microchannel

f Fluid

g Gas

h, 2h Fine and coarse grid respectively

i, j Index variables for the tensor notations
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in Inlet of the microchannel

l Liquid

nb Neighbor node

P,W,E, S,N Center, west, east, south, and north nodal points, respectively

pc Pressure correction

w, e, s, n West, east, south, and north faces, respectively

wall Wall surface

Superscripts

′ Correction to the fine grid variable

′′ Correction to the coarse grid variable

∗ Approximate solution

̂ Coarse grid variable

˜ Restricted quantities in coarse grid

h, 2h Fine and coarse grid respectively

l Value from previous iteration

n Index variable associated with the time step
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1. INTRODUCTION

1.1 Centrifugal Microfluidics: An Overview

Centrifugally actuated miniaturized microfluidic devices have revolutionized the

area of chemical analysis and biomedical diagnostic applications in the recent years

[1–4]. In these devices, an array of microchannels is etched on a circular substrate

which is then rotated at a certain frequency. This kind of arrangement is popularly

known as a Lab–on–a–CD or LabCD [3,5,6]. The objective of this compact disk-like

platform is to combine various liquid handling steps in order to integrate all the

bio-chemical processes in a flexible way [7]. By controlling the rotating frequency

of this platform, different functions such as mixing, separation, routing, capillary

valving, siphoning, volume splitting and droplet generation [2,4,7] can be performed

on various samples.

A successful design of centrifugal microfluidic devices requires a clear understand-

ing of fluid flow inside rotating microchannels. The nature of fluid flow inside rotat-

ing microchannels is primarily governed by the pseudo forces, namely the centrifugal

and the Coriolis forces, arising as a consequence of expressing the governing equa-

tions in rotating reference frame. At low rotation speed, the flow is purely driven

by the centrifugal force. At higher rotation, the Coriolis force becomes dominant

and a significant secondary flow is introduced perpendicular to the primary flow di-

rection. The effective operation of a centrifugal microfluidic platform depends on

regulating these forces in a controlled manner. For example, the working principle

of a capillary burst valve depends on the balance between the centrifugal force and

the surface tension force [8]. On the other hand, mixing is enhanced in microchan-

nels when Coriolis force dominates over centrifugal force [9]. The process becomes

1



more complicated when heat transfer is included in the scenario. In some cases it

is necessary to maintain the fluid within specific temperature zones while rotating

it inside microchannel. For instance, polymerase chain reaction (PCR) requires re-

peated thermocycling of the analyte nucleic acid in a microchamber [6]. With the

secondary flow effect, thermal homogeneity can be achieved for PCR amplification on

a spinning disk. Therefore, in order to compute the correct temperature distribution

of the fluid inside a rotating microchannel, the effect of rotation on convective heat

transfer should be taken into consideration.

1.1.1 Recent Progresses: A Brief Literature Review

A number of researchers performed experimental and numerical investigations of

centrifugal microfluidics using the continuum assumption approach. Duffy et al. [10]

compared the experimental flow rate and Hagen–Poiseuille flow rate of microflu-

idics channels of different widths (20 µm − 500 µm), depths (16 µm − 340 µm), and

lengths (12.5 mm − 182 mm) subjected to different rates of rotation (400 RPM −

1,600 RPM). Comparing the experimental and theoretical flow rates in a log-log

graph, they showed that centrifugally driven microchannel flows can be treated as

Hagen–Poiseuille flows for a wide range of attributes. Siegrist et al. [6] numeri-

cally and experimentally analyzed the rotating polymerase chain reaction (PCR) mi-

crochamber filling behavior at different inlet pressure boundary conditions (0.5 kPa−

2 kPa). Their study has shown that, due to the induced centrifugal and Coriolis

forces, the mechanism of chamber filling is different for the rotating case from that

for the stationary case. Ducree et al. [11] investigated the patterning of flow and mix-

ing in radially rotating microchannels and identified that the key impact parameters

governing the Coriolis force-induced reshaping of the contact surface between two flu-

ids are the channel length, aspect ratio and the rate of rotation. They also invented
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a multilamination technique on a planar split-and-recombine structure to accelerate

mixing of liquids in rotating microchannels [12]. All of the numerical studies used

commercial CFD software to conduct the simulations. A state-of-the-art literature

review on the applications of rotating microchannels can be found in [13].

1.1.2 What is Missing?

Two non-dimensional numbers, namely flow Reynolds number (Re) and rota-

tional Reynolds number (Reω) characterize the physics of rotating channel flows.

Reynolds number
(
Re = ρWavgDh

µ

)
is the ratio of the inertial force to the viscous

force and rotational Reynolds number
(
Reω =

ρωD2
h

µ

)
is the ratio of the rotating in-

ertial force to the viscous force. If a parabolic axial velocity profile is assumed in

the primary flow direction, then it can be shown that [12] the axial velocity (w) is

in the order of
(
∼ρωD2

hdr
8µ

)
. Thus, the ratio of the Coriolis force (2ωw) and the cen-

trifugal force (ω2dr) becomes β =
ρωD2

h

8µ
, which is nothing but a multiple of rotational

Reynolds number (Reω). This means that, a high rotational Reynolds number will

induce a high Coriolis force resulting in a strong secondary flow. In a recent article

on the mixing behavior in rotationally actuated microfluidics devices, Chakraborty

et al. [9] identified three distinct mixing regimes based on the change of mixing pat-

terns with the change of β. The three regimes are: (1) diffusion-based mixing (at

low rotation speeds, 0 ≤ β ≤ 1.0); (2) Coriolis force-based mixing (at intermedi-

ate rotation speeds, 1.0 ≤ β ≤ 2.0); and (3) mixing based on flow instability (at

high rotation speeds, β ≥ 2.0). It is interesting to note that, although the Corio-

lis force-based mixing regime starts at β = 1.0 the efficient mixing occurs when β

exceeds 1.35 which corresponds to Reω ≥ 10.8. Using numerical simulation of flow

through rotating straight pipes, Lei and Hsu [14] showed that, when Reω ≤ 10 and

ReωG ≤ 100, the axial velocity profile is not significantly affected by the rotational
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forces and thus remains parabolic and axisymmetric. Here, G =
G∗D3

h

ρv2
where G∗ is

the reduced axial pressure gradient, which includes the effect of centrifugal force.

The striking similarity of these two reported values of Reω indicates that there must

be a cut-off value of Reω over which the effect of rotation becomes dominant and the

Coriolis force-based secondary flow becomes dominant over the centrifugally driven

axial flow. One of the aims of this work is to establish a criteria for this critical

rotational Reynolds number (Reω,cr, in order to differentiate between the diffusion

dominated region and secondary flow dominated region.

1.2 Liquid Slip in Rotating Microchannels

It is well established that flow in macroscale is governed by the Navier-Stokes

equations with no slip boundary conditions at the solid-fluid interfaces [15]. However,

in microscale, the assumption of the no-slip boundary condition may not be valid [16].

The recent progress in the applications of microfluidic devices has resulted in an

increased interest on the possibility of the slip boundary condition. The size of these

devices is so small that regulating fluid by pressure driven mechanisms becomes

very difficult. This is because, for a fixed flow rate, the pressure gradient along the

microchannel increases exponentially as the characteristic length of the microchannel

is decreased [17]. Exploring the slip boundary condition can be a possible alternative

to reduce the large amount of hydrodynamic resistance encountered in microfluidic

applications.

1.2.1 Liquid Slip: A Continuum Phenomena

The phenomenon of slip can occur for both gases and liquids. However, there is a

fundamental difference between the slip in gas microflows and the slip in liquid flows.

Slip flow in gas results from a possible breakdown of the continuum hypothesis i.e.

when the characteristic length of the microchannel is on the order of the dimension
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of gas molecules, the flow can no longer be considered as a continuum medium and

the gas molecules can exhibit slip at the solid boundary [15]. On the other hand,

slippage in liquid is encountered as a consequence of the interaction between a coated

or structured solid wall and the adjacent liquid particle. Thus, liquid slip can occur

even when the continuum hypothesis is perfectly valid.

Knudsen number (Kn), which is the ratio of the mean free path of the fluid

molecules and the characteristic length, is often used as a validity indicator of the

continuum hypothesis assumption [18–20]. For Kn < 0.01, the fluid can be con-

sidered as a continuum. As the Knudsen number approaches unity, the continuum

equations begin to fail, but for Kn < 0.1 the no slip boundary condition can still be

adjusted using a slip parameter [21]. The region (0.01 < Kn < 0.1) is called the slip

regime, to distinguish it from the transition regime (0.1 < Kn < 10), in which the

Boltzmann equations are solved directly.

For liquid, such as water, Knudsen number Kn falls well within the continuum re-

gion, where Navier Stokes equations with no slip boundary conditions are applicable

for any practical range of microchannel size. However, even for water flow in mi-

crochannels, contradictory results on the validity of the no slip boundary conditions

have been reported in the literature. Garimella and Sobhan [22] conducted a com-

parative study on transport in microchannels and concluded that analyses based on

Navier-Stokes and energy equations can adequately predict the flow and heat trans-

fer characteristics in microchannels having a hydraulic diameter greater than 50 µm,

provided that the experimental conditions and measurements are correctly identi-

fied and simulated. Another critical review on single phase liquid friction factors in

microchannels was performed by Steinke and Kandlikar [23]. By analyzing over 150

papers that directly deal with the pressure drop measurements in microchannels, they

generated a database of over 5,000 data points with the Reynolds number ranging
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from 0.002 to 5,000 and hydraulic diameter ranging from 8 µm to 990 µm. They ar-

gued that the studies which reported a deviation of friction factor from conventional

theory did not account for the entrance or exit effect or the developing region in the

microchannel. Therefore, it was concluded that the classical correlations are reliable

in predicting the flow and heat transfer phenomena in microchannels as long as the

entrance or exit effect and the experimental uncertainties are taken into account.

1.2.2 Experimental Evidence of Liquid Slip in Microchannels

In the studies mentioned above, the microchannel wall was made of one of the

following materials: silicon, stainless steel, copper, aluminum, fiber glass, and glass

- all of which are hydrophilic in nature. A hydrophilic surface has a strong affin-

ity to water with a typical contact angle of less than 90 degrees [24]. In case of a

hydrophilic surface, experimental studies have confirmed the validity of the no-slip

boundary condition down to the resolution of a few nanometers [25], although evi-

dence of slip in hydrophilic surfaces has also been published [26]. On the contrary,

a large number of experimental studies have reported some form of liquid slip at

the solid surface coated with hydrophobic materials. Due to the repellent nature of

the hydrophobic surface, the fluid molecules adjacent to the surface (located at a

distance in the order of the mean free path of fluid molecules) do not stick to the

solid boundary resulting in an overall velocity slip. This slip velocity wslip is related

to the normal velocity gradient of the fluid adjacent to the wall with a slip length

λ. Figure 1.1 shows the diagram of a microchannel with hydrophobic walls and the

equivalent channel with slip flow parameters. Tretheway et al. [27] experimentally

showed an apparent fluid slip in 30 µm × 300 µm microchannels with hydrophobic

walls using micron-resolution particle image velocimetry. The slip velocity at the

wall was approximately 10% of the free stream velocity which produced a slip length
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of about 1 µm. Pit et al. [28] provided experimental evidence of liquid slip at the

wall for hexadecane flowing between two rotating parallel disks kept at a distance of

190 µm. They measured a slip length of 400 nm when the sapphire (solid) surface

was coated with octadecyltrichlorosilane (OTS). Watanabe et al. [29] experimentally

demonstrated slip phenomena of Newtonian fluid over a highly water-repellent wall

of a rectangular duct with a relatively large cross-sectional area (15 mm × 15 mm).

Comprehensive reviews of the recent investigations on the evidence of liquid slip at

solid-liquid interfaces of microfluidic systems can be found in [15,30].

Another way to engineer large slip is to use superhydrophobic surfaces, which

can dramatically reduce the hydrodynamic resistance [31]. The superhydrophobic

surfaces consist of micro-pillars or micro-grooves, coated with a thin hydrophobic

layer, creating very small cavities between these pillars/grooves [32]. The liquid

cannot penetrate these cavities because of its surface tension effect, which induces

an artificial slip over the structured surface. The amount of slip in the solid-fluid

interface and in the air-fluid interface is different. Hence, an effective slip length

λeff is necessary to calculate the slip velocity wslip. Figure 1.2 shows a schematic of

a superhydrophobic microchannel surface and an equivalent microchannel with an

effective slip length λeff . Using these specially engineered surfaces, a drag reduction

of 12-14% has been reported by Watanabe et al. [33,34] and a slip length as high as

185 µm has been reported by Choi and Kim [35]. A review of slip phenomena over

superhydrophobic surfaces can be found in [31].

7



Hydrophobic 

layer
l

wslip

wslip

liquid

Figure 1.1: Hydrophobic layer in a microchannel (left) and equivalent microchannel
with a slip velocity wslip and a slip length λ (right)
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Figure 1.2: Superhydrophobic surface in a microchannel (left) and equivalent
microchannel with a slip velocity wslip and a slip length λeff (right)

1.2.3 Slippage in Rotating Microchannels: A New Concept

In case of centrifugal microfluidics, the primary focus has been on the regulation

of fluid (mixing, separation, and the like) under the influence of rotation assuming no

slip boundary condition. In spite of a large number of published experimental and

a few numerical studies, the investigation of liquid slip in rotating microchannels

has only been recently reported by Roy et al. [36]. Thus, one of the objectives

of this work is to thoroughly investigate the liquid slip flow phenomena inside a

microchannel subjected to a uniform rotation.
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1.3 Numerical Simulation: A Parallel Finite Volume Multigrid Solver

In order to investigate the flow physics in the rotating microchannel, numerical

solutions of the Navier-Stokes equations are necessary. In this work, we aim to de-

velop both serial and parallel codes to solve two-dimensional, and three-dimensional,

steady, and unsteady, incompressible Navier-Stokes equations. A finite volume method

will be applied to discretize the governing equations. A non-linear multigrid tech-

nique will be applied to accelerate the convergence of the solver. The solution to one-

dimensional convection-diffusion equation will be represented by power-law scheme

(PLS) or central difference scheme (CDS). Velocity and pressure variables were linked

by SIMPLE algorithm, details of which can be found in Patankar [37]. A line by

line method, which is a combination of tri-diagonal matrix algorithm (TDMA) and

Gauss-Seidel method, will be used to solve the discretized equations.

1.3.1 Evolution of Interface: A Level Set Method

A level set method is an interface capturing method first introduced by Osher

and Sethian [38]. In this method, a level set function ψ(x, t) is introduced, which im-

plicitly carries the information of the interface and an evolution equation for ψ(x, t),

which is an initial-value advection equation, is solved to track the propagating sur-

face. The evolving interface is embedded as a zero-level set of the level set function

i.e. ψ(x, t) = 0. In this way, the merging and separation of fluid surfaces can be

naturally handled without any special treatment. A smoothed Heaviside function is

used to calculate the fluid properties inside and outside the interface. In our work,

we propose to apply a level set method in the above mentioned finite volume code

to track the fluid meniscus in a microchannel under the influence of different body

forces. The application of the level set method will enable us to implement the

capillary effect, which is of crucial importance in liquid microflows.
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1.4 Objectives of the Study

The primary objectives of the present work are following :

1. To develop serial and parallel finite volume solvers in order to solve two-dimensional,

and three-dimensional, steady, and unsteady, incompressible Navier-Stokes equa-

tions and energy equations with constant, and variable thermo-physical properties.

2. To apply a non-linear multigrid technique for accelerating the convergence of

the finite volume solver and assess the affects of parallelization on the multigrid

elements.

3. To study the effect of rotational speed, hydraulic diameter, and aspect ratio on

the liquid flow inside rotating microchannels, and to define a critical rotational

Reynolds number, above which the effect of secondary flow becomes dominant.

4. To investigate how liquid slip in hydrophobic or superhydrophobic surfaces reduces

the drag in a rotating microchannel flow, and how the convective heat transfer is

affected by a combined influence of rotation and liquid slip.

5. To couple a level set method with the finite volume solver in order to incorporate

the microscale effects in two-phase flow simulations.

1.5 Organization

The dissertation is organized as follows. Chapter 2 presents the numerical method-

ology used to solve the incompressible Navier-Stokes equations. Chapter 3 describes

the parallelization technique of the finite volume solver using distributed memory

processors. The development of a non-linear multigrid solver and its parallel perfor-

mance is presented in chapter 4. The analysis of three-dimensional steady flows in
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rotating microchannels is presented in chapter 5. The effects of the liquid slip bound-

ary condition on rotating microchannel flows are described in chapter 6. Chapter 7

presents a level set method to capture the interface during two phase flow simulations.

In chapter 8, the primary contributions of this research work will be summarized.
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2. NUMERICAL METHODOLOGY

2.1 Governing Equations

The conservation equations of mass, momentum and energy for an unsteady,

incompressible flow can be expressed in the following vector form:

∇.V = 0 (2.1)

∂V

∂t
+ V.(∇V) = −1

ρ
∇p+

1

ρ
∇.(µ∇V) + S (2.2)

∂T

∂t
+ V.(∇T ) =

1

ρcp
∇.(−k∇T ) (2.3)

Equation 2.1 is the continuity equation for an incompressible flow which ensures a

divergence free velocity field. Equation 2.2 is the so called Navier-Stokes equations

which contain an unsteady term and a convective term on the left hand side and

a pressure gradient term and viscous diffusion term on the right hand side. For

constant properties fluid and laminar flow, the convective term is the only non-linear

term in the Navier-Stokes equation. Equation 2.3 is the thermal energy equation for

constant thermal properties fluid, which is unsteady and linear in nature.

If we closely examine the momentum and energy equations, we can find that both

of them share some common features e.g. unsteadiness, convective terms, viscous

terms and source terms. As a result, we can express them in the following generic

flux variable form [37]:

∂

∂t
(ρφ) +∇.(ρVφ) = ∇.(Γ∇φ) + S (2.4)

Here, Γ is the diffusion coefficient and S is the source or sink term. The scalar variable
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φ can represent velocities (e.g. u, and v in 2D) or temperature (T). The advantage of

expressing the governing equations in generic scalar form is that once we formulate

a discretization method in order to numerically solve this generic equation, then the

method is readily applicable to all the governing equations.

Before describing the discretization, we note that, the pressure variable only

appears in the momentum equations. For a compressible flow, the equation of conti-

nuity carries a density term and the pressure is related to density by the equation of

state. Consequently, the pressure can be calculated explicitly from the equation of

state at each time step and the numerical solution can be marched in time. But, in

case of incompressible flow, density is not present in the equation of continuity. As

a result, there is no way pressure can be calculated explicitly. This poses a serious

difficulty in solving the incompressible Navier-Stokes equations. Fortunately, this

problem was first overcome by Harlow and Welch [39] and later by Spalding and

Patankar [40], where at each time step momentum equations are solved iteratively

by guessing the pressure and correcting the other primitive variables accordingly.

This is the so called semi-implicit pressure linked equation (SIMPLE) method which

is the basis of current pressure based solvers for incompressible flow.

2.2 Finite Volume Discretization

In this section, we will describe the finite volume discretization scheme of the

generic scalar equation. While discretizing the momentum equations, a straightfor-

ward application of central difference scheme to the pressure gradient term can result

in a checkerboard type pressure field, which might be a wrong depiction of the reality.

Similarly, the discretization of the first derivative of velocity terms in the continuity

equation can lead us to a non-physical wavy velocity field as a solution. One remedy

of this problem is to discretize the pressure and velocity variables in a staggered grid,
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which was first proposed by Harlow and Welch [39]. However, the book-keeping of all

the variables in displaced locations of a staggered grid is cumbersome and difficult,

especially for parallel algorithms, multi-grid techniques or curvilinear coordinates.

The main reason for failure of early attempts to use the collocated grid approach

was the delinking of the pressure and velocities at the node of a given control volume

when discretizing the pressure gradient terms in the momentum equations. Rhie

and Chow [41] developed a special interpolation technique to calculate velocities at

the control volume faces of a collocated grid. The special interpolation technique is

known as ‘momentum interpolation.’ Instead of linear interpolation at the control

volume interfaces, it uses discretized momentum equations of two adjacent control

volumes to calculate the face velocities. Figure 2.1 shows a typical two-dimensional

(2D) control volume for the collocated grid approach. The two-dimensional velocity

vector V contains the x-component u and the y-component v, i.e., V = (u, v, 0). It

can be seen from this figure that both pressure p and velocities u and v are computed

at the same node. On the other hand, in a staggered grid, the pressure p is located

in the control volume nodes whereas the velocities u and v are located in the con-

trol volume faces. In this work, both staggered and collocated grid approaches have

been applied to build the finite volume solvers. However, we will describe only the

collocated grid algorithms since the staggered grid algorithms are well documented

in the literature [37].

14



EP

N

W

S

(i,j)

(i,j+1)

(i,j-1)

(i-1,j) (i+1,j)

dxw dxe

(Dy)j

(Dx)i

dyn

dys

u-velocity

v-velocity

Figure 2.1: A typical control volume (CV) in a collocated grid approach

Equation 2.4 can be rearranged in the following way:

∂

∂t
(ρφ) = −∇.(ρVφ) +∇.(Γ∇φ) + S (2.5)

The above equation can be integrated over the control volume:

∫
CV

∂

∂t
(ρφ)dV = −

∫
CV

∇.(ρVφ)dV +

∫
CV

∇.(Γ∇φ)dV +

∫
CV

SdV (2.6)
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If a backward Euler scheme is applied to discretize the transient term, then the

two-dimensional discretized equation can be written in the following form [37]:

aPφP = aEφE + aWφW + aNφN + aSφS + b (2.7)

where,

aE = DeA(|Pe|) + max(−Fe, 0) (2.8a)

aW = DwA(|Pw|) + max(Fw, 0) (2.8b)

aN = DnA(|Pn|) + max(−Fn, 0) (2.8c)

aS = DsA(|Ps|) + max(Fs, 0) (2.8d)

b = SC∆x∆y +
ρ∆x∆y

∆t
(2.8e)

aP = aE + aW + aN + aS − SP∆x∆y +
ρ∆x∆y

∆t
(2.8f)

Here, Fe, Fw, Fn, and Fs are the mass flow rates and De, Dw, Dn, and Ds are the

diffusion conductance through the east, west, north and south faces of the control

volume, respectively. If ρu is assumed to be uniform over the whole interface, we can

write:

Fe = (ρu)e∆y, Fw = (ρu)w∆y, Fn = (ρv)n∆x, Fs = (ρv)s∆y (2.9)

The corresponding conductances are defined by:

De =
Γe∆y

δxe
, Dw =

Γw∆y

δxw
, Dn =

Γn∆x

δyn
, Ds =

Γs∆x

δys
(2.10)

P is the Peclet number which is defined by the ratio of the strengths of convection

(F ) and diffusion (D). Thus, at the control volume faces the corresponding Peclet
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numbers are:

Pe =
Fe
De

, Pw =
Fw
Dw

, Pn =
Fn
Dn

, Ps =
Fs
Ds

(2.11)

The function A(|P |) is calculated by using a power law scheme (PLS) or a central

difference scheme (CDS) by the following formula:

PLS : A(|P |) = max
(
0, (1− 0.1|P |)0.5

)
(2.12)

CDS : A(|P |) = max (0, (1− 0.5|P |)) (2.13)

The source term S in Equation 2.6 is linearized by:

S = SC + SPφP (2.14)

Equation 2.7 is the discretized form of the Navier-Stokes equations where the value of

the variable φ at point P (refer to 2.1) is calculated from the neighboring φ variables

at points E, W, N, and S. The coefficients aE, aW , aN , and aS carry the information

of convection and diffusion from the neighboring points of P. The non-linearity of the

Navier-Stokes equations are also buried in these coefficients. Although the pressure

gradient term is considered as a source term and included in the expression of b, it

needs special treatment which will be discussed in the subsequent subsections.

Due to the strong non-linear and coupled nature of the momentum equations,

the above discretization method may not result in a converged solution. To avoid

divergence, it is a common practice to use an under-relaxation factor in the discretized

equation which slows down the actual convergence rate but in the mean time ensures

a stable solution [37,42]. Incorporating an under-relaxation factor (αφ) in Equation
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2.7 for a node (i,j) and rearranging, we get:

φi,j = (1− αφ)φli,j +
αφ
ai,j

[Hi,j + bi,j] (2.15)

where

Hi,j = ai+1,jφi+1,j + ai−1,jφi−1,j + ai,j+1φi,j+1 + ai,j−1φi,j−1 (2.16)

Here, φli,j is the value of φ at node (i,j) from the previous iteration. Also, note that,

the neighboring points E, W, N, and S are substituted by the corresponding grid

locations.

2.2.1 Calculation of CV Face Velocities

As stated earlier, in order to avoid the checkerboard pressure or velocity, a mo-

mentum interpolation method first proposed by Rhie and Chow [41] has been used to

calculate the face velocities. In case of the east face of the cell (i,j), the interpolated

face variable has the following form [43]:

φei,j = (1− αφ)φlei,j +
αφ
āei,j

[H̄ei,j + b̄ei,j ] (2.17)

The terms with over-bars represent interpolated values at the east face of the con-

trol volume. These interpolated values can be calculated by the following linear

interpolation formulas:

1

āei,j
=

fe
ai,j

+
(1− fe)
ai+1,j

(2.18a)

H̄ei,j = feHi,j + (1− fe)Hi+1,j (2.18b)

b̄ei,j = febi,j + (1− fe)bi+1,j (2.18c)
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where the interpolation factor fe is calculated by:

fe =
∆xi+1

∆xi + ∆xi+1

(2.18d)

2.2.2 Correction of Velocity and Pressure Fields by Enforcing Incompressibility

Condition

The calculated interface velocities in the previous subsection will not, in general,

satisfy the continuity equation (Eq. 2.1). Thus, the velocity and pressure fields have

to be corrected in each iteration. In order to accomplish this, a pressure correction

equation is solved, which can be derived by expressing the velocities as a summation

of a guessed value (u∗) and a correction term (u′) i.e. u = u∗ + u′ and substitut-

ing them into the continuity equation. After re-arrangement, the equation for the

pressure correction p′ takes the following form:

apci,jp
′ = apci+1,jp

′
i+1,j + apci−1,jp

′
i−1,j + apci,j+1p

′
i,j+1 + apci,j−1p

′
i,j−1 + bpci,j (2.19)

where

apci+1,j = ρ
(∆y)j
āei,j

(∆y)j (2.20a)

apci−1,j = ρ
(∆y)j
āwi,j

(∆y)j (2.20b)

apci,j+1 = ρ
(∆x)i
āni,j

(∆x)i (2.20c)

apci,j−1 = ρ
(∆x)i
āsi,j

(∆x)i (2.20d)

bpci,j = ρ(u∗w − u∗e)(∆y)j + ρ(v∗s − v∗n)(∆x)i (2.20e)

19



The a-coefficients with over-bars are calculated from Equation 2.18a. The source

term for pressure (Equation 2.20e) represents the mass imbalance of the CV at node

(i,j). Once the solution of the pressure correction equation (Eq. 2.19) is obtained,

the interface velocities are corrected with the following expressions:

uei,j = u∗ei,j +
(∆y)j
āei,j

(p′i,j − p′i+1,j) (2.21a)

uwi,j
= u∗wi,j

+
(∆y)j
āwi,j

(p′i−1,j − p′i,j) (2.21b)

vni,j
= v∗ni,j

+
(∆x)i
āni,j

(p′i,j − p′i,j+1) (2.21c)

vsi,j = v∗si,j +
(∆x)i
āsi,j

(p′i,j−1 − p′i,j) (2.21d)

Similarly, the nodal velocities are corrected:

ui,j = u∗i,j +
(∆y)j
ai,j

(p′w − p′e) (2.22a)

vi,j = v∗i,j +
(∆x)i
ai,j

(p′s − p′n) (2.22b)

The nodal pressures are corrected by the following equation:

pi,j = p∗i,j + αpp
′
i,j (2.23)

where αp is the under-relaxation factor for pressure. The interface pressures p′w, p′e,

p′s and p′n are calculated by an interpolation of the nodal values. The interpolation

technique is similar to Equation 2.18c.

2.2.3 Convergence Criteria

Once the pressure and velocities are corrected, the relative changes of these vari-

ables over two consecutive iterations are monitored to check convergence. The details
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of the calculation for convergence criteria can be found in [44]. In this paper, the rel-

ative residuals for the generic variables (u, v, and T) are calculated by the following

formula:

Rφ =
1∑

CV s

|ai,jφi,j|
∑
CV s

|ai,jφi,j−(ai+1,jφi+1,j+ai−1,jφi−1,j+ai,j+1φi,j+1+ai,j−1φi,j−1+bi,j)|

(2.24)

For a converged pressure field, the only solution to the pressure correction equation

is a trivial solution. Thus, instead of checking the relative change in the values of

the pressure correction variable, we check the change in residual for mass imbalance

bpc (refer to Equation 2.19). The relative residual for mass conservation is:

Rpc =

∑
CV s

|ρ(uw − ue)(∆y)j + ρ(vs − vn)(∆x)i|

ρurefLref
(2.25)

where uref is a characteristic or reference velocity and Lref is a reference length, the

values of which depend on the geometry and boundary conditions.
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3. PARALLEL IMPLEMENTATION*

3.1 Introduction

With the rapid progress of computers in the past few decades, high performance

computing (HPC) has become an efficient tool to perform numerical simulations. At

present, researchers are conducting simulations in peta-scale parallel computers and

looking forward to the next generation exa-scale supercomputers, which will enable

them to run simulations in millions of processors. Computational fluid dynamics

(CFD) is an ideal candidate to use the power of HPC because an enormous amount

of computing power is needed to resolve the wide range of time and length scales of

fluid flows. This is due to the unsteady, non-linear, multi-scale and chaotic nature

of the Navier-Stokes equations, that govern the fluid flow phenomena. The effective

use of HPC requires an in-depth knowledge on the parallel programming techniques.

In this chapter we will discuss different parallel programming methods, describe

the parallel implementation of the finite volume algorithm and analyze the parallel

performance of the proposed algorithm.

3.2 Parallel Programming Methods

In order to parallelize the finite volume algorithm described in the previous chap-

ter, two options have been considered:

(a) Shared memory parallelization

(b) Distributed memory parallelization

*Part of this chapter is reprinted with permission from P. Roy, N. K. Anand, and D. Donzis. A
parallel multigrid finite volume solver in collocated grid for incompressible Navier-Stokes equations.
Numerical Heat Transfer, Part B: Fundamentals (in press). Copyright 2014 by Taylor & Francis.

22



In a shared memory multiprocessor, variables are stored in a shared address space

and each processor can access the same variables with relatively low overheads. As

a result, parallel extension of a serial code in a shared memory multiprocessor is

straightforward. OpenMultiProcessing (OpenMP) is a standard application pro-

gramming interface (API) for shared memory parallelization. Barbosa et al. [45]

used OpenMP to parallelize a SIMPLE based finite volume algorithm in a staggered

grid to study the mixed convection over a three-dimensional backward facing step.

Although shared memory parallelization is easy to implement, it becomes increas-

ingly difficult and expensive to increase the number of processors arbitrarily in a

shared memory system.

On the other hand, in a distributed memory multiprocessor, each processor has

its own memory module to store the variables and the modules are connected through

a high speed communication network. There is no concept of global address space

and if one processor needs to access data from another processor, they have to com-

municate explicitly. This makes the programmer responsible for maintaining all the

details of the communication in a distributed memory architecture. Message passing

interface (MPI) is a standard API for inter-process communication in distributed

memory multiprocessors. Although great care is needed to perform parallelization

with MPI, very efficient and scalable programs can be written using this message

passing paradigm in distributed memory multiprocessors [46, 47]. In the following

subsections we will describe the parallel implementation of the finite volume solver

developed in Chapter 2 by using MPI. For detailed descriptions of the shared memory

parallelization and the distributed memory parallelization techniques, the readers are

referred to [48] and [49].
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3.2.1 Domain Decomposition

The first step towards parallelization is to decompose the computational domain

into a number of sub-domains and assign them to different processors. Figure 3.1

presents how the domain is decomposed in two processors. Each processor exchanges

data at the corresponding sub-domain boundaries. To accommodate this exchange

of data at the boundaries, each boundary node has an extra ghost node for each

sub-domain and they overlap each other. In the serial FVM code, the discretized

algebraic equations were solved by a line by line method, which is a combination of

iterative Gauss-Seidel method and Tri-diagonal matrix algorithm (TDMA). The use

of the under-relaxation factor makes the Gauss-Seidel method effectively a weighted

Jacobi iteration method. In a two-dimensional line by line method, a tri-diagonal

matrix is formed along a chosen line (say in x-direction) and it is solved directly by

TDMA. Then a sweeping is performed along the other direction (say in y-direction)

for each line. By solving the tri-diagonal matrix system along a line, the boundary

conditions are transmitted into the interior points. After one whole sweep in a fixed

direction, we can alternate the direction in which TDMA sweeping is employed. In

this process, we can quickly bring the information from all the boundaries into the

interior of the domain [37]. The switching of directions in a line by line method

can accelerate the numerical solution especially for elliptic problems with Dirichlet

boundary conditions. For a parallel code, this is difficult to employ since the sub-

domain has to be transposed alternatively in order to employ the line by line TDMA

in both directions (Figure 3.2). MPI provides a useful collective communication

operation (MPI Alltoall) to perform a domain transpose. To properly conduct the

domain transpose in different processors, three steps are needed: (i) a local in-core

transpose, (ii) an MPI Alltoall operation, and (iii) another local in-core transpose.
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Figure 3.1: Domain decomposition of a 5 × 5 CV grid
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Figure 3.2: Domain decomposition with a transposed 5 × 5 CV grid
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However, the iterative solver for momentum equations will call MPI Alltoall function

every time the domain needs to be transposed. Since it may take thousands of

iterations to get a converged solution at each time step, transposing the domain can

highly increase the communication overhead which may adversely affect the parallel

performance of the code. Another limitation of domain transpose is that the number

of grid points must be a multiple of the number of processors. This problem can

be overcome by using an MPI Alltoallv function which allows different processors

to send a different amount of data and provide displacements for the input and

output messages, increasing significantly the complexity of the code. Taking all

these issues into consideration, domain transpose was avoided and sweeping along

only one direction was performed.

3.2.2 Parallel Algorithm

The following sequence of instructions is carried out by the processes:

1. Read the input data with root processor (processor 0).

2. Broadcast the input data from root processor to all other processors.

3. Perform domain decomposition i.e. map the domain into different processors.

4. Calculate all the relevant thermo-fluid properties, diffusion lengths, and control

volume lengths.

5. Initialize the data in all processors. Store guessed values for pressure and interface

velocities.

6. Impose boundary conditions.

7. Compute the momentum coefficients for u an v velocities by using equations 2.8

through 2.13.

8. Solve the tri-diagonal matrix system of equations for each line in x-direction and

traverse in y-direction. Exchange the updated values of u and v at the sub-domain
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boundaries.

9. Exchange the values of aP , Hu and Hv at the sub-domain boundary nodes. These

values will be used in the subsequent calculations for momentum interpolation coef-

ficients.

10. Calculate the face velocities at each control volume by using the momentum

interpolation technique in Equation 2.17 in fine grid.

11. Calculate the coefficients of the pressure correction equation by using Equation

2.20.

12. Solve the pressure correction equation (Eq. 2.19) using an iterative solver e.g.

line by line method.

13. Correct the interface velocities using nodal pressure correction values by apply-

ing equations 2.21a – 2.21d.

14. Correct the pressure variables at each node using Equation 2.23 .

15. Correct the nodal velocities using equations 2.22a and 2.22b. For evaluating

these equations we will need to interpolate the pressure corrections at interfaces,

which is similar to Equation 2.18c.

16. Solve for other scalar variables such as temperature, species concentration, and

the like.

17. Calculate the relative residuals by using equations 2.24 and 2.25. Perform a

collective reduction operation using MPI Allreduce1 to get the summation of the rel-

ative residuals.

18. Check for convergence. If the solution is converged, go to step 19.

19. Store the velocities from the previous time step. If instructed, write the output

into a file. Proceed to the next time step.

1MPI Allreduce combines data from all processes and distributes the reduced data back to all
processes [50]
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3.3 Code Validation

Lid driven cavity flow has been widely used as a benchmark problem to validate

and verify incompressible Navier-Stokes solvers. The geometric simplicity coupled

with rich flow physics and the ease of applying boundary conditions make it a suitable

candidate for benchmarking the code. The parallel finite volume code has been tested

and validated in several steps. First, the lid driven cavity flow problem was solved

using 10 × 10 control volumes. Both left and right plates were maintained at the

same velocity and no slip boundary conditions were applied to all boundaries. The

symmetry of the steady state solution in the u and v-velocities were checked. Figure

3.3 presents the normalized centerline v-velocity along the x-axis. The symmetry of

the solution was confirmed up to six decimal places. Then the number of processors

was increased to check that the results are processor independent.

Additionally, the unsteady solution of a lid driven cavity flow with the upper

plate moving at a Reynolds number of 400 has been validated against the simulation

results of Ijaz [51]. From Figure 3.4, it can be observed that the present simulation

results are in good agreement with the results of Ijaz [51].
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Figure 3.3: Centerline v-velocity profile along x for Re = 100 with both side plates
moving at the same velocity
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Figure 3.4: Centerline u-velocity profiles along y at different time instants with the
upper plate moving at Re = 400
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3.4 Parallel Performance on Single Grid

Before studying the performance of the parallel multigrid solver, a performance

analysis on a single grid was conducted. Parallel scalability was assessed by per-

forming strong scaling studies, where the number of processors is increased for a

fixed problem size. In ideal scaling, the simulation time is inversely proportional

to the number of processors. Departures from this ideal scaling indicate overheads

associated with parallelism, such as inter-processor communication, which leads to

a degradation in the efficiency of the code. In order to test the strong scaling, three

grid sizes were chosen: 128 × 128, 256 × 256, and 512 × 512 CVs. For each case,

the total CPU time, the average computation time and the average communication

time were calculated. The simulations were conducted using up to 64 processors

on the Texas A&M Eos supercomputer, which is an IBM Linux cluster with 8-core

(Nehalem) nodes connected through a high-speed infiniband fabric.

Figure 3.5 shows the comparison of communication and computation time for a

grid size of 128× 128 CVs. For this coarse grid size, a good scalability is found only

up to eight processors. As the number of processors increase, the communication

time increases relative to the computation time which decreases on a per-core basis,

resulting in a reduction of the parallel performance. Figure 3.6 shows the comparison

of simulation time for a grid size of 256× 256 CVs. In this case, a better scalability

can be observed than the previous case, as the percentage computation time is much

higher than the percentage communication time. The scalability increases up to

sixteen processors and performance degrades after the choke point as the communi-

cation overhead becomes dominant. From Figure 3.7, it can be observed that strong

scalability can be achieved up to sixty-four processors for a grid size of 512 × 512

CVs.
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Figure 3.8 presents the comparison of parallel speedup for all three cases. The

parallel speedup indicates how much faster the code runs using multiple processors as

opposed to the single processor. It is evident from this graph that superior speedup

can be achieved for finer grid size. An ideal speedup curve is a starlight-line with a

unit slope, passing through the origin. For the grid size of 512 × 512 CVs, almost

linear speedup can be observed. The reason is - for finer grid size, the ratio of com-

putation time to the communication time is very high. Although the communication

time increases with the increase in number of processors, the portion of communi-

cation overhead in comparison to the computation time is low. Therefore, as long

as the communication time is a small percentage of the total execution time, good

speedup is more likely to be achieved. In Figure 3.8, it can also be seen that in the

case of twenty-four processors, the speedup deviated a bit from the regular trend

of the curves. This might be due to the load imbalance among the processors. In

the finite volume formulation, the total number of grid points is two more than the

number of control volumes. So, all the grid points may not be equally distributed

among the processors, which may result in a load imbalance situation.

3.5 Conclusion

A parallel finite volume solver was developed to simulate two dimensional incom-

pressible Navier-Stokes equations. The code was tested and verified by conducting lid

driven cavity flow simulations. Good parallel scaling was observed up to 64 proces-

sors for a grid size of 512× 512 CVs on single grid simulations. The analysis showed

that, as long as the communication time is small compared to the computation time,

the parallel speedup can be achieved up to a large number of processors.
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Figure 3.5: Strong scaling for lid driven cavity flow with top plate moving for
128× 128 CVs (Re = 10, 000)
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Figure 3.6: Strong scaling for lid driven cavity flow with top plate moving for
256× 256 CVs (Re = 10, 000)
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512× 512 CVs (Re = 10, 000)

36



0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Number of Processors, np

P
a
ra
ll
el

S
p
ee
d
u
p

 

 

128 x 128 CV
256 x 256 CV
512 x 512 CV
Ideal Speed up

Figure 3.8: Comparison of parallel speedup with different grid sizes for lid driven
cavity flow problem (Re = 10, 000)

37



4. MULTIGRID TECHNIQUES*

4.1 Introduction

Multigrid methods are increasingly being used as an acceleration technique for

the solution of Navier-Stokes equations. The basic idea of the multigrid technique

lies on the principle of error smoothing of iterative solvers. A simple analogy can be

the propagation of sound in air. The high frequency component of sound, commonly

known as ‘treble’, dissipates quickly due to the friction of sound waves with the air.

However, the low frequency component, known as ‘bass’ is not easily damped by the

air medium and can propagate through a long distance. Few animals e.g. elephants

can detect these low frequency components which helps them to communicate with

each other over a long distance. The computational grid of iterative solvers act like

the air medium and the solution error resembles the sound wave in this example.

Similar to the sound wave, the solution error of iterative solvers are composed of

high frequency components and low frequency components. During the initial phase

of iterations, the iterative solvers tend to smoothen the high frequency components

(treble) of the solution errors quickly, resulting in a high convergence rate. However,

the low frequency parts of the solution error (bass) are not easily damped by the

solver and propagates a long way before dying down completely. For this reason, the

convergence rate of most iterative solvers decreases significantly after exhibiting fast

convergence during the initial stage of iterations1.

As most of the standard iterative methods tend to smoothen out the high fre-

quency or oscillatory components of the error, they are commonly known as smoothers.

*Part of this chapter is reprinted with permission from P. Roy, N. K. Anand, and D. Donzis. A
parallel multigrid finite volume solver in collocated grid for incompressible Navier-Stokes equations.
Numerical Heat Transfer, Part B: Fundamentals (in press). Copyright 2014 by Taylor & Francis.
1A physical explanation of this smoothing property has been given in Appendix A.
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After a few iterations of these smoothers, the high frequency errors are quickly elim-

inated while the low frequency errors remain unchanged. These low frequency errors

can be adequately represented on a coarse grid due to the inherent smoothness. How-

ever, the low frequency errors in a fine grid are treated as high frequency errors in

the coarse grid, and hence iterations in a coarse grid can remove the low frequency

errors quickly. The basic idea of multigrid methods is to accelerate the convergence

of iterative solvers by eliminating high and low frequency errors through repeated

application of fine and coarse grid iterations.

As depicted by Achi Brandt [52], the golden rule of multigrid methods is the

following: “The amount of computational work should be proportional to the amount

of real physical changes in the computed system.” In a single grid, the computational

work increases as O(Nd), where N is the number of grid points and d is the dimension

of the system. Thus, for a two-dimensional system, the computational work increases

quadratically whereas for a three-dimensional system, the increase is cubic in nature.

The golden rule of Brandt predicts that an efficient multigrid method should be

linearly dependent on the number of grid points N i.e. it should exhibit an O(N)

increase in the computational work. One of the objectives of this study is to achieve

this O(N) increase in computation time for pressure based incompressible Navier-

Stokes solvers in multiple processors.

The pressure based solvers of the incompressible Navier Stokes equations rely on

a predictor corrector technique to reach the final solution. As the velocity and pres-

sure variables are not known a priori, guessed values are used to solve the momentum

equations to predict new velocities. Since the predicted velocities are not divergence

free as required by the incompressibility condition, a pressure correction equation is

solved to correct them. A number of researchers investigated the application of multi-

grid methods in pressure based incompressible Navier-Stokes solvers. Hortmann et
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al. [53] presented a finite volume multigrid solution of the laminar natural convection

problem in a square cavity for different Rayleigh numbers. High fidelity benchmark

solutions on a grid size as fine as 640×640 were provided. As desired, the computation

time for multigrid solution in a collocated grid increased linearly as the grid is re-

fined, whereas the single grid computing time showed a quadratic increase. Lien and

Leschziner [54] incorporated multigrid acceleration techniques into a non-orthogonal

collocated finite volume solver for laminar and turbulent flows. Compared to single

grid solution, the computation speedup for multigrid solution was as high as 70 times

for 2D flows, and 10 times for 3D flows. They concluded that, the effectiveness of

the multigrid scheme can be affected by the type of flow (i.e. laminar or turbu-

lent, two-dimensional or three-dimensional), boundary conditions, turbulence-model

equations and Reynolds number. A multigrid solution for lid driven cavity flow was

presented in recent work by Kumar et al. [55]. Multigrid acceleration into SIMPLEC

algorithm was applied in a collocated grid to produce a benchmark solution on a

uniform 513× 513 grid. Pressure based multigrid methods in staggered grids for re-

circulating and complex fluid flows were developed by Shyy and Sun [56] and Thakur

et al. [57]. CPU time speedup ratio for the multigrid method was as high as 25 for

second-order upwind convection scheme on a 81× 81 grid. Multigrid procedures for

three-dimensional laminar incompressible flows on non-orthogonal collocated grids

were presented by Smith et al. [58]. They emphasized the consistent evaluation of

coarse grid mass fluxes after solving the momentum equations. CPU time speedup

of 4 to 5 was achieved for three-dimensional curved pipe flow. Yan and Thiele [59]

developed a modified full multigrid method and applied it to the SIMPLE algorithm

on collocated grids. They demonstrated a maximum speedup of 25 for lid driven

square cavity flow.

In all of the above mentioned studies, segregated pressure based solvers were
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used to solve the incompressible flow equations. Multigrid methods were successfully

applied to another type of pressure based solvers, namely coupled solvers, primarily

developed by Vanka [60]. The initial attempts were limited to the staggered grid

approach [60,61]. However, as the complexity of the problem and the computational

power of the CPUs increased, multigrid procedures for coupled solvers in collocated

grids were developed [62,63].

With the rapid progress of computers in the past few decades, parallel multi-

grid methods have been developed to solve large-scale computational problems. At

present, researchers are conducting simulations in massively parallel computers and

looking forward to the next generation of peta-scale supercomputers, which will en-

able them to run simulations in millions of processors. The question – whether

parallel processors should be used in conjunction with multigrid methods, is jus-

tified in the review on parallel multigrid methods by Jones and McCormick [64].

Durst and Schäfer [65] presented a parallel block-structured multigrid finite volume

solver for incompressible flows in complex geometries. Their results indicated that

the combination of parallel computers and the multigrid acceleration technique can

produce an improved computational performance. A parallel multigrid finite volume

solver for three-dimensional thermal convective flows was studied by Wang and Fer-

raro [66]. Good parallel scaling up to 128 processors was achieved for a 1283 grid

size. However, the effect of parallel processing elements on multigrid speedup was not

reported. In a recent survey on parallel multigrid solvers, Chow et al. [67] provided a

brief account on the treatments of computationally efficient parallel multigrid meth-

ods. They discussed the parallel computation issues of standard multigrid algorithms

such as spatial partitioning, parallel coarsening and complexity, and coarse grid solu-

tion strategy. In spite of the above mentioned studies, a comprehensive investigation

on the influence of parallel processing elements on a finite volume multigrid solver
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in collocated grid has only been performed recently by the author [68], which forms

the primary topic of this chapter. In particular, we:

(i) describe a non-linear multigrid algorithm with modified coarse grid equations

using the momentum interpolation method to solve incompressible Navier-

Stokes equations in collocated grid, and

(ii) develop a parallel multigrid algorithm and investigate the effect of parallel

processing elements on multigrid efficiency. The chapter is arranged as follows.

Section 4.2 presents the multigrid method and the derivation of the coarse grid

equations using SIMPLE algorithm [37]. The parallel multigrid algorithm is

described in section 4.3. The results are presented and discussed in section

4.4, and finally the conclusions are given in section 4.5.

4.2 Multigrid Algorithm

The basic principle of the multigrid algorithm is to eliminate the approximate

solution error efficiently by alternatively iterating on fine and coarse grids. The first

step of this algorithm is to derive a set of coarse grid equations from the existing

fine grid discretized equations. It is important to note that, in the coarse grid, the

original discretized equations for SIMPLE algorithm are not solved, rather correction

equations are solved. Due to the non-linear nature of the governing equations, the

correction equations are derived from the discretized equations for SIMPLE algo-

rithm. This process of obtaining the correction equations is known as Full Approxi-

mation Scheme (FAS). After deriving the coarse grid correction equations with FAS,

suitable grid transfer operators are chosen to interchange the coarse and fine grid

values without losing essential information. Transferring the fine grid information to

the coarse grid is known as restriction. On the other hand, transferring the coarse
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grid information into the fine grid is called prolongation. In the next subsections,

these essential multigrid elements will be described.

4.2.1 Coarse Grid Equations

The system of linear equations (Eq. 2.7) can be expressed in the following form:

Aφ = b (4.1)

Here, φ is the exact solution of the problem, A is the coefficient matrix and b is the

source term. A is composed of a linear part, L(φ) (pressure difference term) and a

non-linear part, N(φ) (convection-diffusion term). Thus, we can write:

Nφ+ Lφ = b (4.2)

After a few outer iterations (ν1), the approximate solution φ∗ satisfies the following

equation:

N∗φ∗ + Lφ∗ = b∗ +R (4.3)

where R is the residual. By subtracting 4.3 from 4.2, we get:

Nφ−N∗φ∗ + Lφ′ = b− b∗ −R (4.4)

Here, φ′ is the difference between the exact and approximate solution, i.e. φ′ = φ−φ∗.

The coarse grid equation is assembled from Equation 4.4 by restricting the fine grid

variables and using them as a fixed source term on the coarse grid:

N̂ φ̂ = b̂− L̂(φ′) + Ñ φ̃− b̃− R̃ (4.5)
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The coarse grid variables are denoted by caret ‘ˆ’, and the restricted quantities are

denoted by tilde ‘˜’. The underlined terms are kept frozen during the coarse grid

iterations. Thus, Equation 4.5 estimates the difference (φ̂ − φ̃) that is driven by

residual R. This difference (φ̂− φ̃) is known as the coarse grid correction. In view of

Equation 4.5, the coarse grid correction equations for u-velocity and v-velocity are

as follows:

âP ûP =
∑
nb

ânbûnb + ∆y(p′w − p′e) + Ŝu + ãP ũP −
∑
nb

ãnbũnb − S̃u − R̃u (4.6)

âP v̂P =
∑
nb

ânbv̂nb + ∆x(p′s − p′n) + Ŝv + ãP ṽP −
∑
nb

ãnbṽnb − S̃v − R̃v (4.7)

Denoting the underlined terms with f̃u and f̃v, we can compute the face velocities

similarly:

(âP )eûe =

(∑
nb

ânbûnb

)
e

+ (∆y)e (p′P − p′E) + (Ŝu)e + (f̃u)e (4.8)

(âP )nv̂n =

(∑
nb

ânbv̂nb

)
n

+ (∆x)n (p′P − p′N) + (Ŝv)n + (f̃v)n (4.9)

The coarse grid steps for SIMPLE algorithm can be summarized as follows:

1. Start with the guess:

û = ũ, v̂ = ṽ, p′ = 0 (4.10)

2. A number of relaxation sweeps on coarse grid momentum equations are performed

to get approximate solutions û∗ and v̂∗.
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3. Face velocities are calculated with the modified momentum interpolation method:

û∗e = (1− αu)ûle +
αu

(âP )e

((∑
nb

ânbûnb

)
e

+ (∆y)e (p′P − p′E) + (Ŝu)e + (f̃u)e

)
(4.11)

v̂∗n = (1− αv)v̂ln +
αv

(âP )n

((∑
nb

ânbv̂nb

)
n

+ (∆x)n (p′P − p′N) + (Ŝv)n + (f̃v)n

)
(4.12)

4. An equation for correction to pressure correction is solved:

aPp
′′
P =

∑
nb

anbp
′′
nb + b′′p (4.13)

b′′p = ρ[(û∗w − ũw)− (û∗e − ũ)](∆y) + ρ[(v̂∗s − ṽs)− (v̂∗n − ṽn)](∆x) (4.14)

5. Nodal and face velocities are corrected by using p′′:

ûe = û∗e +
(∆y)

(âP )e
(p′′P − p′′E) (4.15)

v̂n = v̂∗n +
(∆x)

(âP )n
(p′′P − p′′N) (4.16)

ûP = û∗P +
(∆y)

(âP )
(p′′w − p′′e) (4.17)

v̂P = v̂∗P +
(∆x)

(âP )
(p′′s − p′′n) (4.18)

Similarly, the pressure correction variables are updated through:

p′P = p′P + αpp
′′
P (4.19)

6. Return to step 2 to complete one outer relaxation sweep.

The coarse grid sequence may look similar to the ones described by Lien and
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Leschziner [54]. However, there is a subtle difference which lies in the expression of

coarse grid face velocities. In their coarse grid formulations, the cell-face velocities

become equal to the average of the node velocities when the pressure correction terms

are zero. This is not the case in the present coarse grid formulation.

4.2.2 Grid Transfer Operators

In order to achieve the favorable O(N) convergence behavior, as predicted by

Brandt [52], a multigrid method should satisfy the smoothing property and the ap-

proximation property [69]. The smoothing property is responsible for the rapid elim-

ination of the oscillatory or high frequency modes of the error leaving the smooth

modes [70]. Most iterative solvers including the one used here (line by line method)

exhibit the smoothing property. It should be noted that, although in single grid

methods, this smoothing property can be seen as a serious drawback, for multigrid

methods, this smoothing property is desirable. The approximation property requires

that mP + mR > M , where mP and mR are the order of accuracy plus one for the

prolongation and restriction schemes, respectively and M is the highest derivative

of the variable under consideration in the governing equations [69, 71]. In the in-

compressible Navier-Stokes equations, M = 1 for pressure, and M = 2 for velocity

components. Thus, first order accurate interpolation schemes (e.g. bilinear inter-

polation for a 2D problem and trilinear interpolation for a 3D problem) should be

sufficient to satisfy the approximation property.

In the collocated grid arrangements, the variables are located at the center of the

control volumes (CVs). In this type of cell-centered discretization, the coarse grid

points do not coincide with the fine grid points (as shown in Figure 4.1). As a result,

special care is needed for grid transfer operations i.e. for restriction and prolongation.

A four-point average was used for restriction and a bilinear interpolation was used for
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Figure 4.1: Finite volume collocated grid with symbols explaining the grid transfer
operators. Red circles denote the coarse grid points and all other symbols denote
the fine grid points. For restriction and prolongation: (a) Interior cells (b) West

boundary cells (c) North-west cells
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prolongation [54,72]. During the restriction for the 2D case, the coarse grid variables

are calculated as an area-weighted average of the surrounding fine grid variables. For

the 3D case, volume weighted average is used. Mathematically, the fine to coarse

grid operation can be expressed as:

φ2h = I2h
h



φ1

φ2

φ3

φ4



h

(4.20)

For inner region (excluding the boundary cells), the restriction operator is:

I2h
h =

1

4

[
1 1 1 1

]
(4.21)

For west boundary cells:

I2h
h =

1

4

[
2 2 0 0

]
(4.22)

For north-east corner cell:

I2h
h =

1

4

[
4 0 0 0

]
(4.23)

The residuals are restricted differently from the variables. In the finite volume for-

mulations, the residuals represent flux imbalances through the CV faces. Therefore,

the coarse grid residual must be computed as the sum of the surrounding fine grid

residuals. The resulting prolongation operator for residuals is:

I2h
h =

[
1 1 1 1

]
(4.24)
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The fine grid variables are corrected in the following way:

φnewh = φoldh + αMGδφh = φoldh + αMGI
h
2h(φ̂2h − φ̃2h) (4.25)

where, αMG is an under-relaxation factor. The coarse grid to fine grid operation i.e.

prolongation can be expressed as:



δφ1

δφ2

δφ3

δφ4



h

= Ih2h



δφ1

δφ2

δφ3

δφ4



2h

(4.26)

The prolongation operators are as follows:

For the interior region:

Ih2h =
1

16



9 3 3 1

3 9 1 3

3 1 9 3

1 3 3 9


(4.27)

For west boundary cells:

Ih2h =
1

8



0 0 6 2

0 0 2 6

3 1 3 1

1 3 1 3


(4.28)
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For north-west corner cell:

Ih2h =
1

4



2 2 0 0

0 0 0 4

1 1 1 1

0 2 0 2


(4.29)

4.2.3 Multigrid Cycles

Once the coarse grid correction equations are derived and suitable grid transfer

operators are chosen, the multigrid algorithm can be applied by a recursive operation

of smoothing and inter-grid transfer. This recursive process is commonly known as

multigrid cycle (MGC). The most basic cycle is called a V-cycle. In a V-cycle, the

fine grid errors are restricted to the coarse grid. After a few iterations, namely

pre-smoothing operations, the coarse grid errors are restricted to the next coarser

level. This process is continued until the coarsest grid level is reached, where the

computational work for solving the residual equation is so cheap that a converged

solution to the discretized equation can easily be calculated, either by using a direct

solver or an iterative solver. Once the converged solution is found in the coarsest

grid the error is prolongated into the next fine grid and the old error on the fine grid

is corrected using this prolongated value. After a few post-smoothing operations on

the corrected error, it is further prolongated to the next finer level, and the process

is continued until the finest grid level is reached. A schematic of the V-cycle is shown

in Figure 4.2. The down arrow indicates a restriction, whereas the up arrow indicates

a prolongation. The circles at each level imply smoothing operations to obtain an

approximate solution. The square box at the coarsest level signifies a converged

solution of the residual equation.

There are a number of variations to the V-cycle, of which Full Multigrid (FMG)
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V-cycle is the most popular one [53, 54]. Instead of starting the MG V-cycle on

a given fine grid, we can first apply it on a very coarse grid, where a few number

of cycles would produce converged solution. This converged solution on the coarse

grid then can be prolongated on the next fine grid to provide a good initial guess to

the solution of the next level. If this process is applied consecutively, then we will

already have a very good initial guess when the finest grid level is reached. Thus,

a faster convergence rate than a V-cycle can be achieved by using FMG V-cycle.

Figure 4.3 presents a schematic of the FMG V-cycle. In terms of computational

complexity, the MG V-cycle has a cost of O(N), where N is the number of unknown

variables in the fine grid system, as described earlier. However, the initial guess for

the pressure/velocity variables introduce an error of O(1), and it takes O(NlogN)

V-cycle operations to reduce the error below the convergence criteria [64]. Although

this is a large reduction in the computational work from O(Nd) operations in a single

grid, it does not exactly satisfy the ‘golden rule’ of multigrid [52, 73]. Fortunately,

this limitation is overcome by FMG V-cycle which can effectively reduce the number

of operations to O(N) by successively introducing good initial guesses on each fine

grid.

As discussed above, during FMG V-cycle, the converged solution in the coarse

grid is prolongated to the next fine grid. The prolongation can be performed in several

ways, of which the bilinear interpolation described in the previous subsection and the

upwind based interpolation are very common. In this work, a bilinear interpolation

was used for node velocities and pressures. A momentum interpolation was applied

to obtain the face velocities. It was observed that, the momentum interpolation

method results in better initial guesses for the fine grid iterations than the upwind

based interpolation scheme.
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4.3 Parallel Multigrid Algorithm

The following sequence of instructions are carried out by the processes:

1. Read the input data with root processor (processor 0).

2. Broadcast the input data from root processor to all other processors.

3. Perform domain decomposition i.e. map the domain into different processors.

4. Calculate all the relevant thermo-fluid properties, diffusion lengths, and control

volume lengths.

5. Initialize the data in all processors. Store guessed values for pressure and interface

velocities.

6. Impose boundary conditions.

7. At each multigrid level, execute the following steps:

a) Compute the momentum coefficients for u and v velocities by using equations 2.8

through 2.13.

b) Solve the tri-diagonal matrix system of equations for each line in x-direction and

traverse in y-direction. Exchange the updated values of u and v at the sub-domain

boundaries.

c) Exchange the values of aP , Hu and Hv at the sub-domain boundary nodes. These

values will be used in the subsequent calculations for momentum interpolation coef-

ficients.

d) Calculate the face velocities at each control volume by using the momentum in-

terpolation technique in Equation 2.17 in fine grid or by equations 4.11 and 4.12 in

coarse grid.

e) Calculate the coefficients of the pressure correction equation by using Equation

2.20. Use Equation 4.14 for coarse grid mass imbalance calculation.

f) Solve the pressure correction equation (2.19 in fine grid or 4.13 in coarse grid)
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using an iterative solver (e.g. line by line method).

g) Correct the interface velocities using nodal pressure correction values by applying

equations 2.21a - 2.21d.

h) Correct the pressure variables at each node using Equation 2.23.

i) Correct the nodal velocities using equations 2.22a and 2.22b. For evaluating these

equations we will need to interpolate the pressure corrections at interfaces, which is

similar to Equation 2.18c.

j) Solve for other scalar variables such as temperature, kinetic energy, and the like.

k) Calculate the relative residuals by using equations 2.24 and 2.25. Perform a collec-

tive reduction operation using MPI Allreduce 2 to get the summation of the relative

residuals.

8. Check for convergence. If the solution is converged, prolongate the velocities and

pressures into the next fine level and go to step 7. If the solution is converged at the

finest multigrid level, go to step 9.

9. Store the velocities from the previous time step. If instructed, write the output

into a file. Proceed to the next time step.

4.4 Results and Discussions

4.4.1 Multigrid Performance on Parallel Machines

In order to assess the multigrid performance of the parallel code, steady two-

dimensional lid driven cavity flow simulations were conducted for a range of Reynolds

number (Re = 100-7,500). The simulation parameters including the under-relaxation

factors and the number of coarse grid iterations are tabulated in Table 4.1. It should

be noted that, for high Reynolds numbers (Re > 6, 000), the flow becomes inher-

2MPI Allreduce combines data from all processes and distributes the reduced data back to all
processes [50]
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ently unsteady, three-dimensional, and turbulent [74]. Thus, a steady state two-

dimensional laminar solution of high Reynolds number lid driven cavity flow may

not be physically accurate, but has been reported in the literature for benchmark-

ing purposes [75, 76]. Since in the coarsest level the number of grid points is very

low, it is not possible to increase the number of processors arbitrarily. Otherwise,

a degradation of parallel performance would happen and the number of processors

may well exceed the number of coarse grid points. Therefore, in the present study,

the maximum number of processors for parallel multigrid code has been limited to

eight. However, there are ways to overcome this limitation. Interested readers are

directed to Chow et al. [67] for a survey of specialized parallel multigrid methods.

Table 4.1: Specifications of simulation parameters

Reynolds

Number
αu αv αp αpc αMG

Coarse

Grid

Iterations

100 0.5 0.5 0.8 1.0 0.8 45

400 0.5 0.5 0.8 1.0 0.8 50

1, 000 0.5 0.5 0.8 1.0 0.8 50

3, 200 0.4 0.4 0.7 1.0 0.8 120

5, 000 0.4 0.4 0.6 1.0 0.7 150

7, 500 0.4 0.4 0.6 1.0 0.7 180

From this point on, single grid will be referred to by SG and multigrid by MG. Two

parameters are commonly used as MG performance indicators: CPU Time and Work
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Unit (WU). CPU Time is defined as the total execution time of the problem. While

CPU Time is a machine dependent measurement, WU is machine independent. As

shown in Figure 4.2, in one v-cycle, ν1 iterations are performed during pre-smoothing

and ν2 iterations are performed during post-smoothing in the finest grid. One WU is

defined as the computation work needed to complete one MG cycle, in this case which

is ν1 + ν2 iterations during one outer relaxation sweep over the finest grid. Table

4.2 compares the multigrid performance of a lid driven cavity flow simulation with

the top plate moving for different Reynolds numbers and grid sizes. The simulations

were conducted using four processors. It can be observed that, significant speedup

over single grid performance can be achieved both in CPU Time and WU with the

multigrid method. As the number of grid points increases, the speedup increases.

For 512× 512 CVs, the CPU Time in single grid is about 400 times higher than that

in multigrid. The MG performance declines with the increase of Reynolds number,

which is in accordance with the findings of other researchers [54,56]. It is surprising

that, the SG/MG ratio of WU is much higher than the ratio of CPU Time in all

the cases. Since WU is a machine independent measure of the work done in each

MG cycle, it’s ratio should be close to the speedup in CPU Time, as reported in the

literature [54]. This seemingly contradictory result can be explained by looking at

the communication time of the parallel processors in Table 4.3. The communication

time has been presented as a percentage of total execution time for all the SG and

MG cases. As shown in Table 4.3, the percentage of communication time for MG is

considerably higher than that of SG due to the very few number of nodes on each

processor in the coarsest MG level. Thus, for the grids under consideration, the CPU

time of multigrid simulations is dominated by the communication overhead resulting

in a low parallel efficiency. Consequently, a higher number of computational work is

done on a single grid than predicted by the CPU Time ratio.
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Table 4.2: MG performance for different Reynolds numbers
(Number of processors = 4)

Re = 100 Re = 400 Re = 1,000

Grid Size
CPU Time

SG/MG

WU

SG/MG

CPU Time

SG/MG

WU

SG/MG

CPU Time

SG/MG

WU

SG/MG

128× 128 13.9 75.2 11.41 49.54 4.5 13.71

256× 256 89.3 283.66 64.9 190.6 19.95 45.92

512× 512 404.1 1040.11 307.8 643.75 110.99 264.77

1024× 1024 1371.6 2940.7 1182.7 2297.92 509.04 1100.93

Table 4.3: Percentage of communication time for different Reynolds numbers
(Number of processors = 4)

Re = 100 Re = 400 Re = 1,000

Grid Size
%Comm

Time (SG)

%Comm

Time (MG)

%Comm

Time (SG)

%Comm

Time (MG)

%Comm

Time (SG)

%Comm

Time (MG)

128× 128 15.83 67.80 10.68 79.13 10.44 58.31

256× 256 3.82 51.54 3.58 41.11 3.88 35.28

512× 512 1.93 21.23 2.08 22.62 2.11 20.25

1024× 1024 1.39 7.74 1.25 6.18 1.51 9.50

4.4.2 Convergence Rate and Convergence Factor

Figures 4.4-4.6 demonstrates the convergence of residuals as a function of WU for

single grid and multigrid simulations with Re = 400. A steep decrease of multigrid

residuals are observed from these graphs, whereas the single grid exhibits very slow

convergence. To quantify the convergence rate, we can introduce a convergence
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factor which is roughly the maximum factor by which the error is reduced by each

work unit [70]. In other words, the lower the convergence factor, the greater the

convergence rate. Since in practice the exact solution is not known, the error cannot

be computed during the iterations. Thus, we define a convergence factor Ω based on

the residuals which indicates the number of iterations required to reduce the residual

by a factor of 10−ζ . Let K be the smallest integer that satisfies -

‖R(K)‖
‖R(0)‖

≤ 10−ζ (4.30)

The condition is approximately satisfied if -

ΩK ≤ 10−ζ (4.31)

Thus, we can approximate Ω from the following equation:

−log10(Ω) ≤ ζ

K
(4.32)

Figure 4.7 shows the asymptotic value of the convergence factors as a function

of the number of grid points. For relatively low Reynolds number cases (Re = 100-

1,000), the convergence factor is lower and it decreases with the increase of grid points

resulting in a fast convergence rate. But, for a higher Reynolds number case (Re =

3,200), the convergence factor remains very close to 0.98 indicating a degradation of

FMG performance. The reason is, the prolongation of converged coarse grid values

to the next finer grid may not be very accurate due to the effect of large convection

at a higher Reynolds number. Thus, although in theory we are expecting a “good”

initial guess for the next finer level, in practice this may not be achievable at a higher
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Figure 4.4: u-velocity residuals on a 512× 512 CV grid as a function of Work Units
(WU) for Re = 400
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Figure 4.5: v-velocity residuals on a 512× 512 CV grid as a function of Work Units
(WU) for Re = 400
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Figure 4.6: Pressure residuals on a 512× 512 CV grid as a function of Work Units
(WU) for Re = 400
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Reynolds number. For the same reason, degradation of multigrid performance has

been observed for turbulent flows. This observation is in complete accordance with

the previous work of Lien and Leschziner [54] and Muzaferija [77].

4.4.3 Computational Complexity

In order to compare the computational work between single grid (SG) and multi-

grid (MG) methods, we plotted the CPU Time against the number of grid points

in Figure 4.8. For single grid simulations with eight processors, the CPU Time in-

creases almost quadratically (O(N2)), as expected. On the other hand, for multigrid

simulations, the increase in CPU Time follows an O(N) trend for both four and

eight processors. The slight deviation of the curves from their ideal behavior may be

attributed to the communication overhead due to the use of parallel machines.

Figure 4.9 demonstrates the effect of Reynolds number on the computational

complexity. Although the CPU Time increases with the increase of Reynolds number,

the increase of computational work follows an O(N) trend for a fixed Reynolds

number. The variation of trend for Re = 3,200 at lower grid sizes is again due to the

very high communication overhead (74% and 45% respectively) which occurs during

a large number of coarse grid iterations.

4.4.4 Benchmark Results for Lid Driven Cavity Flow

One of the objectives of multigrid simulations is to conduct simulations in very

fine grids and produce high fidelity results. This is due to the fact that several orders

of magnitude of speedup in CPU Time can be achieved with the multigrid method as

compared to the single grid method. In this study, lid driven cavity flow simulations

were performed using a grid of 1024 × 1024 CVs. Figures 4.10 – 4.14 present the

centerline u-velocity and v-velocity profiles along y and x directions, respectively

for Reynolds numbers ranging from 400 to 7,500. The results are compared with
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Ghia et al. [75] and Erturk et al. [76]. Very good agreement can be observed for low

Reynolds number case Re = 400. For Re = 1,000 and 3,200, small deviations from

Ghia et al. [75] near the peak values of the velocity profiles can be identified. As

the Reynolds number increases further, these deviations become more prominent. It

should be noted that, the numerical scheme used by Ghia et al. is spatially second

order accurate and the benchmark results were presented for 256×256 grid. Thus, it

is quite possible that at high Reynolds numbers, the results may not be very accurate.

Erturk et al. [76] also used a second order accurate spatial discretization scheme, but

they presented the benchmark results for a relatively fine grid of 601 × 601. The

velocity profiles from present simulations match very well with the results of Erturk

et al. [76] for Re = 1,000 and 5,000. For Re = 7,500, slight differences near the

peak regions are seen. It has been tested in the present study (not shown though)

that 1024× 1024 CVs form a suitable grid to sufficiently capture the large gradients

at high Reynolds numbers. Tables 4.4 and 4.5 tabulates the velocity profiles along

the vertical and horizontal centerlines of the cavity at different Reynolds number.

Since a second order accurate central difference scheme (CDS) has been applied to

generate the simulation results, they can be used as benchmark values for future

code validation.
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Figure 4.10: Centerline velocity profiles for Re = 400
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(a) u-velocity for Re = 1,000
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Figure 4.11: Centerline velocity profiles for Re = 1,000
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(a) u-velocity for Re = 3,200
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Figure 4.12: Centerline velocity profiles for Re = 3,200
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(a) u-velocity for Re = 5,000
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(b) v-velocity for Re = 5,000

Figure 4.13: Centerline velocity profiles for Re = 5,000

70



0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

Dimensionless Y

D
im

en
si
o
n
le
ss

u
-v
el
o
ci
ty
,
U

 

 

Re = 7,500

Present Simulation (1024× 1024)
Ghia et al. [75]
Erturk et al. [76]

(a) u-velocity for Re = 7,500
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(b) v-velocity for Re = 7,500

Figure 4.14: Centerline velocity profiles for Re = 7,500
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Table 4.4: Non-dimensional u-velocity along the y-centerline for different Reynolds
numbers. The top plate is moving with a uniform velocity. No slip boundary

conditions were used at the walls. The grid size is 1024× 1024 CVs.

Y Re = 400 Re = 1,000 Re = 3,200 Re = 5,000 Re = 7,500

0.0000 0.00000 0.00000 0.00000 0.00000 0.00000

0.0200 -0.03177 -0.07603 -0.17777 -0.22495 -0.27754

0.0405 -0.06189 -0.14120 -0.29262 -0.35426 -0.39631

0.0601 -0.08923 -0.19577 -0.37658 -0.43066 -0.43509

0.0806 -0.11732 -0.24927 -0.42746 -0.44392 -0.41603

0.1001 -0.14410 -0.29689 -0.43339 -0.41856 -0.38573

0.1206 -0.17257 -0.33989 -0.41101 -0.38853 -0.36219

0.1401 -0.19996 -0.36975 -0.38285 -0.36682 -0.34424

0.1606 -0.22849 -0.38617 -0.35711 -0.34766 -0.32580

0.1802 -0.25458 -0.38717 -0.33688 -0.32978 -0.30805

0.2007 -0.27956 -0.37527 -0.31763 -0.31067 -0.28948

0.5005 -0.11446 -0.06151 -0.03633 -0.03149 -0.02628

0.9009 0.35427 0.38479 0.41898 0.41901 0.39897

0.9106 0.37502 0.39215 0.43189 0.43391 0.41373

0.9204 0.40187 0.40008 0.44321 0.44822 0.42854

0.9302 0.43679 0.41073 0.45216 0.46100 0.44270

0.9409 0.48695 0.43021 0.45838 0.47176 0.45607

0.9507 0.54512 0.46149 0.46082 0.47691 0.46438

0.9604 0.61626 0.51371 0.46447 0.47686 0.46695

0.9702 0.70001 0.59432 0.48617 0.47842 0.46387

0.9800 0.79419 0.70664 0.56396 0.51934 0.47856

0.9907 0.90472 0.85977 0.76162 0.70875 0.64723

1.000 1.00000 1.00000 1.00000 1.00000 1.00000
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Table 4.5: Non-dimensional v-velocity along the x-centerline for different Reynolds
numbers. The top plate is moving with a uniform velocity. No slip boundary

conditions were used at the walls. The grid size is 1024× 1024 CVs.

X Re = 400 Re = 1,000 Re = 3,200 Re = 5,000 Re = 7,500

0.0000 0.00000 0.00000 0.00000 0.00000 0.00000

0.0151 0.05951 0.10292 0.18196 0.21956 0.24578

0.0308 0.11028 0.18283 0.29182 0.33292 0.35341

0.0454 0.14906 0.23661 0.34983 0.39131 0.40595

0.0600 0.18047 0.27521 0.39019 0.42905 0.431754

0.0747 0.20578 0.30403 0.41760 0.44543 0.43417

0.0903 0.22746 0.32819 0.43135 0.44258 0.42059

0.1049 0.24397 0.34645 0.43078 0.42821 0.40201

0.1206 0.25854 0.36149 0.41957 0.40821 0.38208

0.1352 0.27001 0.37111 0.40330 0.38937 0.36494

0.1450 0.27667 0.37494 0.39111 0.37749 0.35419

0.5005 0.05146 0.02526 0.01373 0.01119 0.00988

0.8501 -0.44994 -0.40326 -0.36762 -0.36416 -0.34357

0.8647 -0.45381 -0.44028 -0.38430 -0.38208 -0.36106

0.8804 -0.44362 -0.48158 -0.40198 -0.40059 -0.37991

0.8950 -0.41888 -0.51369 -0.42160 -0.41680 -0.39706

0.9106 -0.37613 -0.52674 -0.45415 -0.43483 -0.41371

0.9253 -0.32251 -0.50508 -0.50317 -0.46228 -0.42972

0.9399 -0.25931 -0.44280 -0.55640 -0.51565 -0.46188

0.9546 -0.19118 -0.34384 -0.55560 -0.57221 -0.532543

0.9702 -0.11873 -0.21597 -0.42028 -0.50375 -0.54975

0.9849 -0.05590 -0.09848 -0.19571 -0.24939 -0.30553

1.000 0.00000 0.00000 0.00000 0.00000 0.00000
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4.5 Conclusions

A parallel multigrid finite volume solver was developed for simulating two-dimensional

incompressible Navier-Stokes equations. In the multigrid framework, the maximum

number of processors is limited by the coarse grid size. The parallel multigrid code

showed superior convergence over the single grid counterpart. Multigrid speedup

as high as 1370 was achieved for the finest grid size (1024 × 1024). The ratio of

work units between single grid and multigrid is not close to the ratio of CPU time.

This is due to the large communication overhead occurring at the coarsest grid level

during the multigrid iterations. It has been shown that the computational effort on

a multigrid increases proportionally to the number of grid points. Thus, the ‘golden

rule’ of the multigrid method, as proposed by Brandt [52], has been validated for a

range of Reynolds numbers. The convergence factors for different Reynolds numbers

were analyzed and a favorable convergence rate has been shown for low Reynolds

number flows. Using the parallel multigrid solver, very high fidelity solution for lid

driven cavity flow has been documented, which can be used for future benchmarking

purposes.
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5. STEADY FLOW IN ROTATING MICROCHANNELS*

5.1 Introduction

In this chapter we will analyze the steady flow inside an array of radially rotating

microchannels by introducing a model problem. In particular, we want to accomplish

the following tasks:

(i) By varying the rotational speed, hydraulic diameter, and aspect ratio we want

to demonstrate how the rotational Reynolds number is affected by these pa-

rameters, which in turn affect the extent of secondary flow.

(ii) By comparing the root mean square (RMS) deviation of the axial velocity

profiles with the approximate analytical results of purely centrifugal flow for

different aspect ratios, we want to identify the critical values of the flow pa-

rameters in order to demarcate the secondary flow dominant regions.

5.2 Model Problem

In most of the centrifugal microfluidic devices, the fluid is placed in a microcham-

ber connected to an array of microchannels. Figure 5.1a depicts a simplified diagram

of an array of rectangular microchannels aligned radially on a circular disk. As the

disk is rotated around an axis perpendicular to the plane of the disk, the liquid ad-

vances through the microchannels along the radially outward direction due to the

induced centrifugal force fω. This is analogous to a pressure driven flow in a mi-

crochannel where the driving force of the liquid is pressure difference between the

*Part of this chapter is reprinted with permission from P. Roy, N. K. Anand, and D. Banerjee. Nu-
merical simulation of fluid flow and heat transfer in radially rotating microchannels. Microfluidics
and Nanofluidics, 15(3):397-413,2013. Copyright 2013 by Springer.
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inlet and outlet of the channel instead of the centrifugal force. At this stage, the

velocity of the liquid and the shape of the liquid meniscus are primarily governed by

the centrifugal force and the surface tension force. Once the microchannel is filled

up with the liquid, a continuous flow of liquid is established along the microchannel

and the surface tension effect can be neglected. The rotation induces another force,

which acts in the perpendicular direction to the centrifugal force on the disk plane,

and is known as the Coriolis force fc. As can be seen later, this Coriolis force (fc) is

responsible for generating secondary flow phenomena in rotating microchannel flow.

The model problem can be simplified by taking the advantage of the repetitive

nature of the microchannel array and considering the fact that the angle between

two successive microchannels is very small. A single microchannel can be used as a

solution domain with repeated thermal boundary conditions at the side walls [78].

Since the wall thickness is very small, the wall conduction effect can be neglected. The

schematic diagram of the solution domain and the corresponding coordinate system

and boundary conditions are depicted in Figure 5.1b. The inlet of the microchannel

is located at a radial distance dr from the disk center and the rotating frequency of

the disk is ω. The three-dimensional rectangular microchannel has a width a, height

b, and length L. The aspect ratio (α) of the channel is defined by the ratio of the

width to height i.e. α = a/b. Water (Pr = 7.0) was considered as the test fluid.

Table 5.1 shows the independent parameters used for the simulations performed in

this study.
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Table 5.1: Geometrical and rotational parameters

Channel

Width

a (µm)

Channel

Height

b (µm)

Channel

Length

L (mm)

Hydraulic

Diameter

Dh(µm)

Aspect

Ratio

α

Rotational

Speed

(RPM)

Reynolds

Number

(Re)

180 57 10 86.58 3.16 57 - 2,847 50-400

110 1,000 20 200.0 0.11 400-4,200 8-896

125 500 20 200.0 0.25 400-4,200 9-1,056

150 300 20 200.0 0.50 400-4,200 11 -1,239

200 200 20 200.0 1.00 400-4,200 12 -1,354

300 150 20 200.0 2.00 400-4,200 11 - 1,239

500 125 20 200.0 4.00 400-4,200 9-1,056

1,000 110 20 200.0 9.09 400-4,200 9-1,056

5.2.1 Governing Equations

The liquid flow in the microchannel was assumed to be steady, laminar and

incompressible with constant thermo-physical properties. Conduction effects inside

the channel walls were assumed to be negligibly small. Effects of buoyancy forces

and viscous dissipation were neglected. Under these assumptions, the conservation

of mass, momentum and energy equations can be written in the following Cartesian

tensor form:

Continuity :
∂ui
∂xi

= 0 (5.1)
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Momentum : ρui
∂uj
∂xi

= − ∂p

∂xj
+ µ

∂2uj
∂xi∂xi

+ ρSj (5.2)

Energy : ρCpui
∂T

∂xi
= −k ∂2T

∂xi∂xi
(5.3)

The source terms in the momentum equations for an orthogonal rotation mode can

be expressed as [79]:

S1 = −2ωw + ω2x (5.4a)

S2 = 0 (5.4b)

S3 = 2ωu+ ω2(dr + z) (5.4c)

From the expressions of the source terms, it can be seen that the centrifugal and

the Coriolis forces appear in only x and z-directions. Further inspection reveals

that, as the primary flow direction is in the z-direction and the microchannel is

rotating clockwise around the y-axis, the centrifugal force acts in the z-direction

(fω,z = ω2(dr + z)) and the Coriolis force acts in the x-direction (fc,x = −2ωw).

However, a portion of the centrifugal force acts in the x-direction (fω,x = ω2x)

and similarly a portion of the Coriolis force acts in the z-direction (fc,z = 2ωu).

These forces appear as a result of expressing the governing equations in an Eulerian

frame, fixed to the rotating microchannel. Since the width of the microchannel (in

x-direction) and the secondary velocity (u) are very small, the values of fω,x and

fc,z are negligible. Thus, any future reference to the centrifugal force will mean the

centrifugal force is acting in z-direction, i.e. fω = fω,z. Similarly, reference to the

Coriolis force will mean the Coriolis force is acting in the x-direction, i.e. fc = fc,x.
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5.2.2 An Approximate Analytical Solution

For low rotational Reynolds numbers (Reω ∼ O(1)), the Coriolis force (fc) is very

small and hence can be neglected. Furthermore, the centrifugal force term (fω) can

be included in the pressure gradient term to produce a modified pressure gradient in

the z-momentum equation. If a steady laminar fully developed flow with negligible

Coriolis force is assumed, the flow can be considered as a purely centrifugal flow. As

a result, the z-velocity (w) becomes a function of x and y only and the z-momentum

equation simplifies to the following Poisson equation:

∂2w

∂x2
+
∂2w

∂y2
=

1

µ

∂p∗

∂z
(5.5)

where p∗ is the modified pressure defined by:

p∗ = p− ρω2

(
drz +

z2

2

)
(5.6)

The corresponding boundary conditions at the walls are:

w(0, y) = w(a, y) = 0 (5.7)

w(x, 0) = w(x, b) = 0 (5.8)

As there is no Coriolis force term in Equation 5.5, the velocity profile w(x, y) is

perfectly symmetric about the centerlines x = a/2 and y = b/2 at any cross-section

of the microchannel. Equation 5.5 can be solved with the given boundary conditions
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to yield the following analytical solution:

w(x, y) =
16

π2µ

(
−dp
dz

+ fω

) ∞∑
m=1

∞∑
n=1

1

(2m− 1)(2n− 1)Θm,n

sin

(
ξmy

a

)
sin

(
ξny

b

)
(5.9)

where

fω = ρω2 (dr + z) (5.10a)

Θm,n =
ξ2
m

a2
+
ξ2
n

b2
(5.10b)

ξm = (2m− 1)π, ξn = (2n− 1)π (5.10c)

The above solution given in Equation 5.9 is slightly different from that of Liu et

al. [80] and Chakraborty et al. [81] due to the shifting of the coordinates. The

average velocity can be derived by taking an area weighted average of the axial

velocity distribution:

wavg =
1

ab

∫ a

0

∫ b

0

w(x, y)dxdy (5.11a)

=
64

π4µ

(
−dp
dz

+ fω

) ∞∑
m=1

∞∑
n=1

1

(2m− 1)2(2n− 1)2Θm,n

(5.11b)

The above analytical results will be useful for verifying the numerical results in the

fully developed region when the Coriolis effect is negligible. From Eqs. 5.9 and

5.11b, it can be observed that for purely centrifugal flow, the ratio of the axial

velocity to the average velocity is independent of the pressure gradient. Thus, a

comparison of w/wavg between the simulation results and the analytical results for a

purely centrifugal flow can reveal whether the flow is centrifugal flow dominated or

the Coriolis force dominated.

81



5.3 Numerical Solution Method

A finite volume technique described in Chapter 2 was used to discretize the

governing equations. Solution to the one-dimensional convection-diffusion equation

was represented by the power-law scheme. Velocity and pressure variables were

calculated at staggered locations and they were linked by the SIMPLE algorithm

[37]. A line-by-line tri-diagonal matrix algorithm (TDMA) was applied to solve the

discretized equations in each plane of y and z directions. A cyclic tri-diagonal matrix

algorithm (CTDMA) was applied to solve the repeated thermal boundary condition

in the cross-stream (x) direction [82]. The convergence of the iterative procedure was

declared when the residuals reached arbitrarily small epsilon values (∼ 1×10−6). The

solution of energy equation was decoupled from the solution of momentum equations

i.e. the temperature field was calculated once the converged solution for velocity

and pressure fields were obtained. The serial solver was developed in FORTRAN 90

and a typical simulation took two to five hours on the Texas A&M University Eos

supercomputer, which consists of 3168 cores (each 2.8 GHz) with a total memory of

9056 GB and a peak performance of 35.5 TFlops.

5.3.1 Treatment of the Source Terms

The presence of source terms in the discretized momentum equations reduces the

diagonal dominance of the solution matrix, resulting in a decrease of the numerical

stability of the scheme. Hence, special treatment was needed to get a stable converged

numerical solution of the rotating microchannel flow. At the beginning of simulation,

a very small rotating frequency was given. As the iteration of the pressure based

solver progressed, the rotating frequency was also ramped up by a constant factor

with each iteration. Eventually, the desired value of the rotational frequency was

reached after a number of iterations. In this way, the numerical stability of the code
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was confirmed and high rotational speed could be achieved using the above numerical

scheme.

5.4 Grid Independence and Code Validation

A uniform grid was considered in the x, y and z directions. As the exact analytical

solution to the governing equations is not known, a grid independence test was

performed by increasing the grid size until the relative difference between the results

for two successive grids is negligible. Table 5.2 demonstrates the results from the

grid independence study for a square microchannel rotating at 3000 RPM with a

Reynolds number of 691. The top and bottom wall was maintained at a constant

temperature whereas a thermally repeated boundary condition was applied in the

cross stream direction. From Table 5.2, it can be seen that the percentage differences

among the results (wmax/win and Nuavg) for 35 × 35 × 90, 41 × 41 × 100 and 43 ×

43 × 120 meshes are very small. Considering the computational efficiency, the grid

size 41 × 41 × 100 was declared as grid independent and this grid size was used

for all other subsequent simulations in this chapter. For larger aspect ratios, this

grid size was scaled accordingly to ensure the grid independent result. In order to

ensure its dependability, the code was tested against benchmark problems and the

results were reproduced to certain accuracy. For the non-rotating case, the simulation

results of a fully developed steady laminar flow through a square duct with uniform

wall temperature boundary conditions were compared with Shah and London [83],

which are presented in Table 5.3. Another validation of the code was performed

by comparing the apparent friction coefficient values with the experimental results

of single-phase forced convective flow of water in an array of parallel microchannels

etched on a silicon substrate by Kawano et al. [84]. The comparison shown in Figure

5.2 shows that the numerical results are in good agreement between Re = 80 to Re
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= 250. For Re > 250, the deviation between experimental and simulation results are

high. However, in the original work, Kawano et al. [84] reported that for Re > 200,

the experimental results may be affected by the external disturbances. Thus, the

present simulation results can be considered satisfactory considering the experimental

uncertainty. These results also closely match with the numerical results of Mlcak et

al. [78] for identical geometry and boundary conditions. To validate the rotating

channel case, the code was compared against the steady laminar forced convection

in rotating square duct solutions by Hsieh et al. [85]. Figure 5.3 presents the fully

developed axial velocity profiles along the x axis at y/H = 1/2 for Re = 300 and

Ro = 0.0167, 0.333, and 1.667. The results of the present simulation are in good

agreement with the fully developed axial velocity profiles of rotating smooth duct

reported by Hsieh et al. [85].

Table 5.2: Grid independence study for a laminar flow in a microchannel rotating
at 3,000 RPM with a Reynolds number of 691

Grid Size

(CV)

Number

of CVs
% Diff

wmax

win % Diff

Nuavg

(bottom

wall)

% Diff

11× 11× 20 2,420 - 1.770 - 20.365 -

15× 15× 30 6,750 178.93 1.796 1.469 18.088 11.18

21× 21× 40 17,640 161.33 1.802 0.334 14.894 17.65

31× 31× 60 57,660 226.87 1.819 0.943 12.987 12.81

35× 35× 90 110,250 91.21 1.820 0.055 12.695 2.25

41× 41× 100 168,100 52.47 1.821 0.055 12.420 2.17

43× 43× 120 221,880 31.99 1.822 0.055 12.365 0.44
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Table 5.3: Code validation for laminar forced convection through
a square channel with uniform wall temperature

Results
wmax

win
fRe Nuavg

Present Simulation 2.092 14.16 3.007

Shah and London [83] 2.096 14.23 2.976

% Difference 0.19 0.49 1.04
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Figure 5.2: Benchmarking of present computational results with the numerical
results of Mlcak et al. [78] and the experimental results of Kawano et al. [84]
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Figure 5.3: Comparison of present simulation results for fully developed axial
velocity profiles along x with the numerical results of Hsieh et al. [85]

5.5 Results and Discussions

In this section we will discuss the primary findings of the numerical simulation

of liquid flow in radially rotating microchannels with no slip boundary conditions at

the walls. The detailed modeling, analysis and results on flow and heat transfer can

be found in a recent article published by the author [86].

5.5.1 Flow Analysis

During the numerical simulation it is possible to vary the flow Reynolds number

and rotational speed independently. Thus, we can vary one of these two parameters
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keeping the other constant. Our first numerical experiment will be based on this

method. The geometry chosen for this case is the same as that of the experimental

work of Kawano et al. [84]. The rotational speed was varied between 0 RPM (no

rotation) to 2,850 RPM and for each rotation, the Reynolds number was varied

between 50 and 800 in a controlled manner. The case of 0 RPM corresponds to

a straight stationary channel flow and the inlet velocity for this case was specified

based on the flow Reynolds number. Figure 5.4 shows the fully developed axial (w)

velocity profiles along x-axis at y-mid-plane (y = b/2) for Re = 400 and different

rotating speeds. Since the Coriolis force term (2ωw) in Equation 5.4 scales directly

with |w|, we can get an idea of the variation of the Coriolis force from the variation

of the w-velocity profile with increase in rotational speed. From Figure 5.4, it can

be observed that for low rotation (∼57 RPM), the velocity profile is almost exactly

the same as that of a non-rotating (0 RPM) microchannel. As the rotational speed

is increased to 570 RPM, the w-velocity profile starts to deviate from its symmetric

nature but the deviation is very small. Even at a relatively high rotation speed of

2,850 RPM, the difference from the 0 RPM w-velocity profile is low. Consequently,

the flow is not much affected by the Coriolis force for this particular geometry (a =

180 µm and b = 57 µm). Another interesting observation is that, at a lower Reynolds

number, this difference is even smaller. The reason behind this small deviation

lies in the dimensionless rotational Reynolds number (Reω). Since the height and

width of the microchannel is very small, the hydraulic diameter is also very small (∼

86.58 µm). Consequently, even if the rotational speed is increased up to 2,850 RPM,

the rotational Reynolds number Reω has a very low value of 3.0. For this case, the

Coriolis force is roughly one-third of the centrifugal force (β=0.375). Thus, the flow

is dominated by the primary flow direction (a combination of inertia and centrifugal

force), and the Coriolis force is negligible. This implies that if this microchannel
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is used to mix two fluids, the mixing will be diffusion dominated even at a high

rotational speed. However, in practice, for microfluidic devices, it is not possible
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Figure 5.4: Axial velocity profiles along x axis at y-mid-plane (y = b/2) of channel
outlet for low rotational Reynolds number. Channel width = 180 µm, Channel
height = 57 µm, α = 3.16, Re = 400. The three-slice of velocity contours for

Reω = 3.0 is shown in the inset.

to simultaneously control both the rotational speed and Reynolds number. In most

of the centrifugal microfluidic devices, the fluid is kept in a reservoir and the disk

is rotated at a certain rotating frequency. As a result, fluid from the reservoir flows

through the microchannel due to the centrifugal force just like a pressure driven flow
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outlet for high rotational Reynolds number. Channel width = 200 µm, Channel

height = 200 µm, α = 1.0. The three-slice of velocity contours for Reω = 17.86 and
4,200 RPM is shown in the inset.
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occurs due to the pressure difference between channel inlet and outlet. Once the

rotating frequency is fixed, the velocity (and the Reynolds number) of the fluid inside

the microchannel is also fixed. Thus, the rotating speed and the Reynolds number

or fluid velocity is coupled in a centrifugally driven flow. In order to account for this

coupled nature, first we chose a certain rotating speed (RPM) of the disk. With this

rotating speed, we then calculated the average fluid velocity inside the microchannel

using Equation 5.11b. As the fluid properties and channel dimensions are known,

the Reynolds number can be easily calculated at this point. This Reynolds number

or the average velocity is given as the boundary condition at the channel inlet.

Our next chosen geometry has a relatively large hydraulic diameter of 200 µm.

By applying the procedure discussed above, the average velocities and Reynolds

numbers are calculated for rotational speeds ranging from 400 RPM to 4,200 RPM

(Table 5.1). For each case, the calculated average velocity is used as the inlet velocity

boundary condition. Figure 5.5 shows the variation of axial (w) velocity profiles along

x-axis at y-mid-plane (y = b/2) for different rotational speeds for a 200 µm×200 µm

microchannel flow (aspect ratio α = 1.0). Comparing Figures 5.4 and 5.5, it is

evident that for the same rotational speed, the deviation of velocity profiles from a

non-rotating channel flow is much higher for a microchannel with a larger hydraulic

diameter. Since the hydraulic diameter is larger in this case, even a low rotational

speed can produce a high rotational Reynolds number hence a strong secondary

flow can be induced by Coriolis force. The effect of Coriolis force is to generate

a transverse velocity component perpendicular to the main flow direction which

causes the flow profile to deviate from the usual symmetric profile of a non-rotating

channel flow. As a result, the maximum axial velocity shifts from the centerline and

the direction of shifting depends on the sense of rotation. In this case, the disk is

rotating clockwise around the y-axis and thus the maximum point of axial velocity
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profile shifts to the left. Consequently, the Coriolis force attains its maximum value

at that location since it is directly proportional to the axial velocity, w. The shifting

of maximum w-velocity and Coriolis force is more evident in Figure 5.6. It represents

the pseudocolor of w-velocity at the cross-section of the channel outlet for different

rotational speeds and rotational Reynolds numbers. The minimum and maximum

velocities are represented by blue and red regions respectively. It can be seen from

Figure 5.6 that at low rotational speeds (∼ 400 RPM−800 RPM), the velocity is lower

in the near wall region (marked by blue region) due to the no slip velocity boundary

conditions at the walls. In the center of the channel cross-section, a higher velocity

region (marked by red region) is observed which is similar to the velocity profile of a

non-rotating channel flow. Thus, for low rotational speeds (∼ 400 RPM−800 RPM),

a weak secondary flow is generated which has negligible effect on the primary flow.

As the rotation increases (> 1, 200 RPM), the secondary flow becomes stronger,

which drives the axial flow from the center towards the left wall of the microchannel.

At a higher rotational speed (∼ 3,600 RPM), the core of the maximum velocity

starts to form a concave shape near the left wall region (Figure 5.6j). This shape

is more clearly visible for 4,000 and 4,200 RPM. This observation in Figure 5.6(k-l)

is an indication of the onset of secondary vortices (transition from two cell state

to four cell state), which has been already reported in the literature of roll cell

instabilities in rotating channel flow (Hwang and Jen [87]; Tien-Chien et al. [88]). The

secondary vortices can be clearly seen from the streamline plot of velocity magnitude

at 4,200 RPM in Figure 5.7. In our study, the appearance of secondary vortices have

also been proven by simulating rotating flow in a channel with a larger dimension

(500 µm × 500 µm) where rotational Reynolds number is much higher (not shown

here). In a recent numerical study of rotating channel flow by Zhang et al. [89], time-

dependent and force-dependent transition of secondary flow from two cell states to
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four cell states and even six cell states have been reported at low rotational Reynolds

number (Reω < 0.1). They applied periodic boundary conditions at the inlet and

outlet of the channel and assumed that the flow field is independent of the axial

direction. However, in their study, as the rotational Reynolds number Reω was very

low (< 0.1), the secondary vortices were not strong enough to distort the symmetric

nature of the primary flow. On the contrary, as reported in our study, at higher

Reω the generation of secondary vortices shifts the axial flow which can significantly

enhance the mixing of two fluids. Thus, when mixing is the purpose of a centrifugal

microfluidic device, triggering recirculation zones by secondary vortices at higher

rotational Reynolds number can be of crucial importance. In order to analyze

the secondary flow strength of the rotating microchannel flow, secondary velocity

profiles in a transverse plane have been plotted in Figure 5.8. In this figure, the

variation of u-velocity profile along x-axis at y-mid-plane (y = b/2) indicates the

effect of Coriolis force. At low rotational speed (∼ 800 RPM), the Coriolis force

is small and hence the magnitude of secondary velocity is also very small. As the

rotational speed increases, the Coriolis force increases resulting in an increase of the

secondary velocity. For example, at 2,400 RPM, the maximum value of u-velocity

is approximately two times higher than the inlet or average axial velocity. When

the rotational speed is increased further (∼ 4,200 RPM), a flow reversal of u-velocity

can be observed near the left wall. This again indicates the generation of secondary

vortices at high rotational Reynolds number.

Thus, to effectively utilize the Coriolis force or secondary flow phenomena in a

centrifugal microfluidic device, we should choose such a geometry where the rota-

tional Reynolds number is high. For smaller channel dimensions, even if we operate

the disk at a high rotating speed, the rotational Reynolds number will still not be so

high as to impact the transverse flow. For example, if water flows through a channel
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Figure 5.6: Velocity contour plots at the outlet of a rotating microchannel
with α = 1.0
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Figure 5.7: Streamline plot of velocity magnitude at the channel outlet for RPM =
4200, Reω = 17.56 with α = 1.0

with a hydraulic diameter of 100 µm, even rotating at 3,000 RPM it will produce a

rotational Reynolds number of 3.14 which is still low for generating enough Coriolis

force to affect the primary flow in the axial direction. On the other hand, if the

channel has a hydraulic diameter of 400 µm, the same rotating speed of 3,000 RPM

can produce a rotational Reynolds number of 50.26, which is 16 times higher. This

is also intuitive as Reω scales with the square of the hydraulic diameter.

In addition to the above geometries, six more geometries with aspect ratios α

= 0.11, 0.25, 0.5, 2.0, 4.0, and 9.9 have been considered in this study keeping the

hydraulic diameter constant (see Table 5.1). In these channels, the velocity profiles

exhibit a similar kind of behavior as stated above.
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5.5.2 Critical Rotational Reynolds Number

Using the approximate analytical solutions of a purely centrifugal flow described

in [86], we can determine for what values of rotational Reynolds number Reω the an-

alytical expressions are applicable. To do this, we took the root mean square (RMS)

deviation of normalized axial velocity of rotating microchannel flow simulation from

that of approximate analytical solution for the same dimension at each rotating fre-

quency. As the Coriolis force increases with the increase of rotating frequency, the

deviation of a velocity profile from its symmetric nature will be more prominent.

The RMS deviations from purely centrifugal flow velocity profiles against rotational

speeds and rotational Reynolds numbers have been plotted in Figure 5.9 for channel

aspect ratios of α = 0.11, 0.25, 0.5, 1.0, 2.0, 4.0, and 9.09. In general, the deviation

is small for low rotational speeds and low rotational Reynolds numbers. But, it in-

creases depending upon the aspect ratio of the channel as the rotational frequency

is increased. For higher aspect ratio (α > 1.0) the deviation is lower. The reason

behind this is that for high aspect ratio channel, the cross-sectional area is large and

thus for a certain rotating frequency the amount of fluid entering the microchannel

is higher compared to the low aspect ratio channel resulting in a decrease of average

velocity hence a lower Reynolds number. Since the Coriolis force is not affected by

rotating frequency alone but a combination of Reynolds number and rotating speed,

the secondary flow effect on axial (w) velocity profiles for higher aspect ratio is lower.

As a result, the RMS deviation from analytical result increases for α = 9.09 − 1.0.

However, as the channel aspect ratio is decreased from 1.0, the RMS deviation de-

creases and the decrease is far more prominent than wide high aspect ratio channels.

For α = 0.5, the RMS deviation is almost similar to the RMS deviation curve for

α = 4.0. For α = 0.25 and 0.11, the RMS deviation is much lower than α = 9.09.
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Thus, for a fixed hydraulic diameter, the effect of rotation is maximum for a square

microchannel (α = 1.0). At high and small aspect ratios, one of the dimensions of the

rectangular channel will be very small. This increases the viscous diffusion effects,

which in turn suppress the secondary flow due to rotation. For α > 1.0, the viscous

diffusion effect is dominant in y-direction, which is perpendicular to the direction of

the Coriolis force, and for α < 1.0, the viscous diffusion effect is dominant in the

x-direction, which acts along the direction of the Coriolis force. That is why, the

RMS deviation is much smaller for α < 1.0 than the corresponding RMS deviation

in microchannels with α > 1.0.

If we consider a 10% tolerance in RMS deviation, we can define a critical rotational

Reynolds number (Reω,cr) above which the predictions of the analytical expressions

will be inaccurate. For α = 0.25, 0.5, 1.0, 2.0, 4.0, and 9.09, the cut-off values of

Reω, cr are 14.0, 5.5, 3.8, 4.7, 6.5, and 10.0, respectively. For α = 0.11, the effect

of Coriolis force is so small, that the RMS deviation is only about 3% even for a

high rotational Reynolds number, Reω = 17.2. The geometry with aspect ratio

9.09 is similar to the geometry used in the experimental work of Chakraborty et

al. [9]. Using a 1,000 µm × 100 µm microchannel, they observed that the Coriolis

force-based mixing region between two fluids starts at β = 1.0 or Reω = 8.0, but the

effective mixing process (determined by the mixing length) occurs beyond β > 1.35 or

Reω > 10.8. However, no explanation was given for why the mixing length increased

between 1.0 < β < 1.35. The mixing length was defined as the axial length of the

channel required to decrease the standard deviation of the pixel intensity across the

channel by 90% of the value at the inlet [9]. The increase of the mixing length

for 1.0 < β < 1.35 can be explained with the RMS deviation curve of the present

simulation for α = 9.09. When the rotational speed is low (between 400 and 2,000

RPM), the RMS deviation is small (within 6%) and any mixing in this region will
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be diffusion dominated (named as diffusion-based mixing in Chakraborty et al. [9]).

Above 2,000 RPM, although rotational frequency is high, the RMS deviation is still

small (< 10%) and the flow will be regulated by the centrifugal force which will

dominate over the diffusion process since its direction is along the primary flow

direction. Consequently, a reduction in mixing process will occur in this region

(8.0 < Reω < 10; 2, 000 < RPM < 2, 500; 1.0 < β < 1.35) until the Coriolis force

becomes strong enough to dominate over the centrifugal force. Above Reω > 10,

the RMS deviation is greater than 10% and it increases rapidly with the increase of

rotational speed. The effective Coriolis force-based mixing is observed in this region.

Another implication of Figure 5.9 is that, the transverse flow effect by Coriolis

force is more prominent for relatively lower aspect ratio channels (α = 1.0 and

4.0). This observation may seem contradictory from the results of Ducree et al. [11],

where they have shown that mixing is enhanced by using wide high aspect ratio

channels. However, in studying the effect of aspect ratio, they increased the width

of the channel keeping the height fixed resulting in an increase of cross sectional

area. Thus, the hydraulic diameter for wide high aspect ratio channel was increased

which in turn increased the rotational Reynolds number and consequently favorable

mixing behavior was observed. For example, when the channel width a = 250 µm and

height b = 100 µm (α = 2.5), the hydraulic diameter Dh is approximately 143 µm,

resulting in a rotational Reynolds number Reω = 1.0 for a rotational speed ω = 50

rad/s. On the other hand, when the channel width is increased to 500 µm keeping

all other parameters unchanged (α = 5.0), the hydraulic diameter Dh = 167 µm

and the rotational Reynolds number Reω= 1.4. Thus, even the aspect ratio has

been increased in this case, the rotational Reynolds number increases, which in turn

increase the effect of Coriolis force and hence effects the mixing favorably.
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5.5.3 Critical Aspect Ratio and Experimental Validation

From the results of the Subsection 5.5.2, it is possible to plot the variation of

the critical Reynolds number with the aspect ratio, which is shown in Figure 5.10.

From this figure, we can clearly observe that the lowest critical rotational Reynolds

number occurs for the aspect ratio α = 1.0 i.e for a microchannel with a square

cross-section. Below α = 1.0, there is a rapid increase in critical Reynolds number

with aspect ratios indicating a rapid reduction of the secondary flow effect. Above

α = 1.0, the critical rotational Reynolds number also increases, but this time the rate

of increase in Reω,cr with the aspect ratio is much more gradual than the previous

case. From this observation, sub-critical and super-critical modes of operations for

rotating microchannel flow can be defined based on the lowest or critical value of

the aspect ratio αcr = 1.0. In the sub-critical mode (α < αcr), a small reduction

in aspect ratio will lead to a large increase in viscous force which will suppress the

Coriolis force resulting in a decrease in mixing phenomena between fluids. In the

super-critical mode (α > αcr), a small increase in aspect ratio will decrease the effect

of Coriolis force, but this time the effect of viscous force is not as dominant as it

was in the sub-critical mode for a corresponding aspect ratio. Thus, optimal effect

of secondary flow e.g. optimal mixing between two fluids will be experienced near

αcr. However, it should be noted that, the mixing process in micorchannels will also

be affected by other factors such as retention time and the width of the channel.

Nevertheless, the above findings can be very useful in designing microchannel for

enhancing mixing operations in centrifugal microfluidics.

The scale-up on mixing in rotating microchannels under sub-critical and super-

critical modes has also been reported and experimentally validated by Leung and Ren
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[90]. By studying the mixing quality1 of two fluids in a T-microchannel for various

aspect ratios, they identified a similar critical aspect ratio where optimal mixing was

observed (shown in Figure 5.11). From the numerical simulations, they determined

that the critical aspect ratio is approximately 0.40 i.e αcr ≈ 0.40. However, from

their experimental data, the optimal mixing was observed for a width-to-height ratio

of unity i.e. αcr = 1.0, which is exactly what we predicted and reported in [86].
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Figure 5.10: Variation of critical rotational Reynolds number with aspect ratios

1A zero value of mixing quality indicates no mixing and a value of unity indicates a perfect mixing
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5.6 Conclusions

A numerical investigation was performed for a steady flow inside a rectangular

microchannel rotating around the y-axis assuming no slip boundary conditions. The

rotational mode was orthogonal i.e. the rotation axis (y) was perpendicular to the

main flow direction (z). Steady state incompressible Navier-Stokes equations were

solved computationally by using a pressure based finite volume method. The main

findings of this investigation can be summarized as follows:
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(i) In a radially rotating microchannel flow, the effect of Coriolis force or secondary

flow is primarily determined by the value of rotational Reynolds number Reω.

Even with a high rotational speed, the flow can deviate little from the symmet-

ric parabolic profile of a non-rotating channel flow due to the small size of the

microchannel, which results in a low rotational Reynolds number. Thus, for

a fixed rotational speed, the strategy to increase the effect of secondary flow

(e.g. in mixing process) is to increase the cross sectional area or the hydraulic

diameter of the microchannel.

(ii) For a clockwise rotation around y-axis, the axial velocity profile (w) along

x-axis shows asymmetric behavior with a maximum value near the left wall.

Consequently the maximum of Coriolis force (2ωw) also shifts to the left wall.

A pair of vortices appears as a result of this Coriolis force induced secondary

flow. At higher values of Re and Reω, a secondary pair of vortices can appear.

(iii) The RMS deviation of the velocity profile for a rotating microchannel flow

from that of a purely centrifugal flow increases with the increase in rotational

Reynolds number, Reω. The approximate analytical solution for velocity dis-

tribution of a purely centrifugal flow is valid only when the RMS deviation is

below 10%. It was observed that, for α = 0.25, 0.5, 1.0, 2.0, 4.0 and 9.09,

the RMS deviation is within 10% when Reω is less than 14.0, 5.5, 3.8, 4.7, 6.5

and 10.0, respectively. For very high or low aspect ratio microchannels, the

viscous diffusion effect is strong enough to suppress the secondary flow effect.

However, the diffusion effect is more prominent for low aspect ratio channels

(α < 1.0) than high aspect ratio channels (α > 1.0).

(iv) By plotting the critical rotational Reynolds number (Reω,cr) for different aspect

ratios, a critical value of aspect ratio (αcr) can be defined and sub-critical
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and super-critical modes of operations for rotating microchannel flow can be

identified. From our numerical experiments, we have found the critical aspect

ratio to be 1.0 i.e. αcr = 1.0.
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6. LIQUID SLIP AND HEAT TRANSFER*

6.1 Introduction

In this chapter, we will study the liquid slip phenomena inside a microchannel

subjected to a uniform rotation. The present work has been already reported by the

author in [91]. The objectives of this chapter are:

(i) To obtain a numerical solution to the momentum equations of a liquid flow

through an array of rotating rectangular microchannels subjected to the slip

boundary condition at the walls.

(ii) To numerically solve the energy equation with a thermally repeated boundary

condition in the cross-flow direction and study the heat transfer characteristics.

(iii) To obtain an approximate analytical solution for a fully developed purely cen-

trifugal flow with the slip boundary condition at the walls.

(iv) To explore the combined effect of rotation and slip flow on fluid flow and heat

transfer.

6.2 Model Problem and Analysis

6.2.1 Geometry and Independent Parameters

The model problem considered in this chapter is the same as the previous chapter.

Table 6.1 shows the independent parameters used for the simulations performed in

this study. Microchannels of five different aspect ratios with a hydraulic diameter of

*Part of this chapter is reprinted with permission from P. Roy, N. K. Anand, and D. Banerjee.
Liquid slip and heat transfer in rotating rectangular microchannels. International Journal of Heat
and Mass Transfer, 62:184-199,2013. Copyright 2013 by Elsevier.
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200 µm were considered. For each aspect ratio, the rotational frequency was varied

from 0 RPM (i.e. no rotation) to 3,200 RPM in a step of 400 RPM. For each of

these cases (1-5), the slip length was also varied from 0 0 µm (i.e. no slip boundary

condition) to 10 µm. The remaining case (6) was considered for benchmarking the

code against the experimental results of liquid slip in a non-rotating microchannel

[27].

Table 6.1: Geometrical and rotational parameters

Case

Aspect

Ratio

α

Channel

Width

a (µm)

Channel

Height

b (µm)

Hydraulic

Diameter

Dh(µm)

Rotational

Speed

(RPM)

Slip

Length

λ(µm)

1 1.0 200 200 200 0-3,200 0-10

2 2.0 300 150 200 0-3,200 0-10

3 4.0 500 125 200 0-3,200 0-10

4 10.0 1,100 110 200 0-3,200 0-10

5 20.0 2,100 105 200 0-3,200 0-10

6 10.0 300 30 54.54 0 0-1
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No Slip Partial Slip Perfect Slip

l = 0 0 < l < ¥ l = ¥

l
Figure 6.1: Significance of slip length λ (adapted from Lauga et al. [15])

6.2.2 Boundary Conditions

A uniform fluid velocity with prescribed temperature was applied at the inlet.

As the microchannel length to hydraulic diameter ratio was very high, the flow

at the channel outlet was treated with a locally parabolic boundary condition i.e.

∂w/∂z
∣∣∣
z=L

= 0. The microchannel walls were considered hydrophobic or superhy-

drophobic and slip boundary conditions were used at the microchannel walls. The

slip boundary condition was first proposed by Navier [92] in 1823 , where he stated

that the tangential fluid velocity at a solid surface is linearly proportional to the rate

of strain (also known as shear rate) i.e. the velocity gradient at the surface:

wslip = wxi=0 = λ
∂w

∂xi

∣∣∣
xi=0

, i = 1, 2 (6.1)

Here, the proportionality constant, λ, has a unit of a length and is commonly

known as the slip length or slip coefficient. This slip length (λ) can be defined as

the distance inside the wall, at which the extrapolated fluid velocity would equal to

the wall’s velocity [93]. Figure 6.1 illustrates the significance of slip length (λ). For

λ = 0, the standard no slip boundary condition can be obtained. Partial slip occurs
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for 0 < λ < ∞ and a perfect slip condition corresponds to λ = ∞. For further

interpretation of slip length (λ), interested readers are referred to [16].

Due to the presence of hydrophobic/superhydrophobic surface, the temperature

of the fluid particle adjacent to the wall is different from the temperature of the wall.

This ‘temperature jump’ is determined by a thermally equivalent interfacial thermal

resistance known as Kapitza resistance, Rk [16, 94], and [95]. In analogy with slip

velocity (Equation 6.1), the temperature jump can be expressed as:

Tf − Twall = lk
∂T

∂xi

∣∣∣
xi=0

, i = 1, 2 (6.2)

Here, Twall is the prescribed wall temperature and Tf is the temperature of the fluid

particle adjacent to the wall. lk is called the interfacial thermal resistance length or

Kapitza length [95]. Similar to the slip length (λ), the Kapitza length (lk) can be

interpreted as the distance inside the solid to which the temperature profile must

be extrapolated to reach the wall temperature. For a hydrophilic surface (with a

contact angle of less than 90 degree), the Kapitza length (lk) is indeed very small [94].

But, for a hydrophobic or superhydrophobic surface, the Kapitza length (lk) can be

comparable to the slip length [15]. If we compare the temperature jump in a solid-

liquid interface to that in a gas microflow [21], the following relationship between

the slip length (λ) and the Kapitza length (lk) can be deduced:

lk ≈
λ

Pr
(6.3)

where Pr is the Prandtl number. From the above relationship, it can be observed

that, for water (Pr ≈ 7), even if the slip length λ is as high as 10 µm, the Kapitza

length lk will have a value of approximately 1.4 µm. Thus, the Kapitza length or
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temperature jump is very small for most of the practical applications, especially for

liquids with a high Prandtl number.

In the present simulation, a temperature jump boundary condition was used for

the top and bottom walls and the Kapitza length lk was approximated using Equation

6.3. The bottom and the top walls were maintained at constant temperature. A

thermally repeated boundary condition was applied at the left and the right walls.

This means that the temperatures at both the left and the right walls are equal and

the heat flux leaving the left wall is equal to the heat flux entering the right wall [78].

Mathematically, the thermally repeated boundary condition can be expressed as

follows:

Tx=0 = Tx=a,−keff
∂T

∂x

∣∣∣
x=0−

= −keff
∂T

∂x

∣∣∣
x=a+

(6.4)

Here, keff is the effective thermal conductivity which accounts for the conductivity of

the water and the conductivity due to the Kapitza resistance of a thermally equivalent

interface.

6.2.3 An Approximate Analytical Solution

Let us recall the governing equation (Eq. 5.5) for purely centrifugal flow men-

tioned in subsection 5.2.2. If we non-dimensionalize the x and y-coordinate with the

hydraulic diameter (Dh) and the velocity w with D2
h/µ

∂p∗

∂z
, Equation 5.5 becomes:

∂2W

∂X2
+
∂2W

∂Y 2
= 1 (6.5)

where X = x/Dh, Y = y/Dh and w/(D2
h/µ

∂p∗

∂z
). The corresponding boundary

conditions are:

WX=0 =
λ

Dh

∂W

∂X

∣∣∣
X=0

(6.6a)
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∂W

∂X

∣∣∣
X=a+

= 0 (6.6b)

WY=0 =
λ

Dh

∂W

∂Y

∣∣∣
Y=0

(6.6c)

∂W

∂Y

∣∣∣
Y=b+

= 0 (6.6d)

where a+ = a
2Dh

and b+ = b
2Dh

. The equation (6.5) with the above boundary con-

ditions is in the same form as proposed by Ebert and Sparrow [96] for slip flow in

rectangular ducts. The only difference is that their equations were derived for rarefied

gas flows and hence Knudsen number (Kn) was used in place of non-dimensional slip

length (λ/Dh). Following the procedure of Ebert and Sparrow [96], the analytical

solution for fully developed velocity profile in a rotating rectangular microchannel

with negligible Coriolis force becomes:

W (X, Y ) =
a+b+

4A

∞∑
k=1

cos(ϕk(Y − b+

2
))

ϕ3
k

(
sin(ϕkb

+)

b+ + ( λ
Dh

)sin2(ϕkb+)

)

×

(
1−

cosh(ϕk(X − a+

2
))

cosh(ϕka+) + ( λ
Dh

)ϕksinh(ϕka+)

)
(6.7)

where

A =
∞∑
i=1

ϕ−5
i

(
sin2(ϕib

+)

b+ + ( λ
Dh

)sin2(ϕib+)

)
×

(
ϕia

+ − tanh(ϕia
+)

1 + ( λ
Dh

)ϕisinh(ϕia+)

)
(6.8)

and the eigenvalues ϕk are evaluated solving the following transcendental equation:

cot(ϕkb
+) =

λ

Dh

ϕk (6.9)

When there is no rotation, i.e. ω = 0, the modified pressure p∗ is equal to the pressure

p. Thus, for a non-rotating microchannel, the above equation corresponds to the
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exact analytical solution of a fully developed laminar flow of liquid in a rectangular

duct with slip boundary conditions at the wall.

6.3 Numerical Solution Method

The numerical solution method is the same as mentioned in Section 5.3. As the

implementation of slip boundary condition requires special attention, it is described

in the following subsection.

6.3.1 Treatment of the Velocity Slip and Temperature Jump Boundary Conditions

Wall

(Dy)1

wslip

(dy)1=(Dy)1/2

Wall

(Dy)1

Twall

P

(dy)1=(Dy)1/2TS

W

N

E

S

TP we

Figure 6.2: A two-dimensional control volume adjacent to the solid boundary

The implementation of the velocity slip and temperature jump boundary con-

ditions in the present study is similar to the technique described by Hettiarachchi

et al. [97] for gas microflows with the Knudsen number (Kn) replaced by the slip

length (λ). Figure 6.2 shows two dimensional control volumes adjacent to the solid
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boundary in yz plane. The node under consideration is P and the neighboring west,

east, south and north nodes are denoted by W, E, S and N respectively. The size of

each control volume in y-direction is ∆y and the distance between each node in y-

direction i.e. the diffusion length is δy. For a boundary control volume the diffusion

length is half of the length of the control volume i.e. (δy)1 = (∆y)1/2. The scalar

variables such as temperature (T) and pressure (p) are calculated at the cell center

whereas the velocities are calculated in control volume faces. If we discretize the

velocity gradient in Equation 6.1 with a first order Taylor’s series expansion, then

we get the following expression,

wslip = λ
we − wslip

(δy)1

(6.10)

where we is the fluid velocity at the center of the east face of the control volume.

After rearranging, the following relationship among the slip velocity (wslip) and the

east face velocity (we) can be obtained:

wslip =

(
λ/(δy)1

1 + λ/(δy)1

)
we (6.11)

Thus, in each iteration, the slip velocity at the wall changes with the velocity of the

fluid at the adjacent node in a coupled manner. The temperature jump in Equation

6.2 can be treated in a similar fashion. A first order approximation of the normal

temperature gradient results in the following relationship among the temperature

values at nodes P, S and wall:

TS − Twall = lk

(
TP − TS

(δy)1

)
(6.12)
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Rearranging the above equation, TS can be expressed as a function of the wall tem-

perature Twall and TP , values of which are known after each iteration.

TS =

lk
(δy)1

TP + Twall(
1 + lk

(δy)1

) (6.13)

Thus, the temperature of the fluid node adjacent to the boundary can be calculated

using the above relationship. An alternative approach is to incorporate the tempera-

ture values in the coefficients of the discretized energy equation for boundary control

volume as described in [97].

6.4 Grid Independence and Code Validation

Grid independence tests were performed to ensure that the numerical solution

is reproducible. Due to the asymmetric pattern of fluid flow in a rotating channel,

the whole domain was used for simulation. Table 6.2 presents the grid independence

study of a laminar flow in a microchannel (α = 2.0) rotating at 800 RPM with a slip

length λ = 1 µm. From Table 6.2, it can be observed that the percent differences

among the results (wmax

win
, fRe,Nuavg) for 54×27×120, 60×30×120 and 60×30×130

control volumes are very small. Considering the computational efficiency, the grid

size 54 × 27 × 120 was declared as grid independent and this grid size was used for

all other subsequent simulations for α = 2.0. For other aspect ratios, the number of

control volumes in x and y directions were scaled accordingly.

The numerical code was tested against benchmark problems and the results were

reproduced within certain accuracy. Table 6.3 demonstrates the results of a fully

developed steady laminar flow through rectangular ducts with walls maintained at

uniform temperature. The grid independent results e.g. the ratio of the centerline

velocity to the inlet velocity (wmax

win
), the product of the friction factor and Reynolds
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number (fRe) i.e. the Poiseuille number (Po) and the average Nusselt number

(Nuavg) for different aspect ratios were compared with the exact analytical results of

Shah and London [98]. The fully developed velocity profiles for different aspect ratios

are presented in Figure 6.3. It can be observed from Table 6.3 and Figure 6.3 that the

present simulation results are in good agreement with the exact solutions given by

Shah and London [98]. In order to verify the slip flow boundary condition, a simula-

tion for water flowing through a 300 µm× 30 µm microchannel was conducted with a

slip length λ = 1 µm. The test parameters are identical to the experiment performed

by Tretheway and Meinhart [27], except that the microchannel length used in the

simulation was 2 cm whereas in the actual experiment the length was 8 cm. Since the

Reynolds number is very low (∼ 0.34 µm) and the hydraulic diameter is very small

(∼ 54.54 µm) in this case, the hydrodynamic entrance length is also very small and a

microchannel length of 2 cm is sufficient to compute the fully developed velocity pro-

files. The apparent slip length λ = 1 µm was determined experimentally which was

about 10% of the free stream velocity [27]. Figure 6.4a shows the comparison of the

velocity profiles in the vicinity of hydrophobic walls. Although the present simulation

results slightly underpredict the experimental results, they are in excellent agreement

with the analytical solution given in Equation 6.7 for the non-rotating case (ω = 0).

A simulation of water flow inside a microchannel with a hydrophilic surface was also

performed using the same geometry and compared with the experimental results

of [27] (Figure 6.4b). The experimentally measured slip length λ = 0 i.e. no slip

boundary condition was used for the simulation. In this case, the simulation results

slightly overpredict the experimentally measured velocity profile, but match almost

exactly with the analytical solution of Shah and London [98]. The reported velocity

error in the experimental measurement was within 2% and the uncertainty of the

wall location i.e. slip length was approximately 0.45 µm [27], and [99]. Considering
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the experimental uncertainty, it can be concluded that the developed code is working

properly and producing realistic results. Further validation of steady laminar forced

convection in a rotating square duct can be found in [36].

Table 6.2: Grid independence study for a laminar flow in a microchannel rotating
at 800 RPM with a slip length λ = 1.0 µm and aspect ratio α = 2.0

Grid Size

(CV)

wmax

win % Diff fRe % Diff

Nuavg

(bottom

wall)

% Diff

20× 10× 20 1.906 - 14.449 - 6.067 -

24× 12× 40 1.921 0.781 14.586 0.939 5.962 1.761

30× 15× 60 1.940 0.979 14.706 0.816 5.863 1.689

40× 20× 80 1.942 0.103 14.806 0.675 5.797 1.138

50× 25× 100 1.949 0.359 14.854 0.323 5.786 0.190

54× 27× 120 1.949 0.010 14.877 0.155 5.759 0.469

60× 30× 120 1.949 0.005 14.880 0.020 5.795 0.621

60× 30× 130 1.949 0.000 14.880 0.001 5.797 0.034
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Table 6.3: Comparison of normalized maximum velocities, friction factors,
and Nusselt numbers for fully developed laminar flow in rectangular channels

with Shah and London [98]

Aspect Ratio, α 1.0 2.0 4.0 10.0 20.0

wmax

win
, Present Simulation 2.092 1.986 1.764 1.592 1.539

wmax

win
, Exact Solution [98] 2.096 1.992 1.774 1.601 1.552

fRe, Present Simulation 14.17 15.46 18.11 20.93 22.21

fRe, Exact Solution [98] 14.23 15.55 18.23 21.17 22.48

CfRe, Present Simulation 58.11 63.13 73.20 84.24 89.34

CfRe, Exact Solution [98] 56.91 62.19 72.93 84.68 89.92

Nuavg, Present Simulation 3.01 3.48 4.62 6.09 6.78

Nuavg, Exact Solution [98] 2.98 3.39 4.44 5.91 6.65

6.5 Results and Discussions

The key parameters that affect the velocity and temperature variables in this

study are the centrifugal force and the Coriolis force and the discontinuity of the

variables at the solid boundary i.e. the velocity slip and the temperature jump. The

effect of rotation was investigated by varying the rotational frequency ω (0 RPM −

3,200 RPM). The effect of liquid slip was studied by varying the slip length λ (0 µm−

10 µm).

6.5.1 Velocity Profiles

Figure 6.5 shows the surface plot of the velocity magnitude at the channel outlet

for a rotating frequency ω = 2,800 RPM and channel aspect ratio α = 2.0. With

the slip boundary condition, clear slip is visible at the channel walls, the extent of
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Figure 6.3: Velocity profiles of fully developed laminar channel flow for different
aspect ratios with no slip boundary condition. The simulation results are compared

with the analytical solution of Shah and London [98]
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Figure 6.4: Comparison of velocity profiles with the experimental results of
Tretheway and Meinhart [27]
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which depends on the value of the slip length, λ. For a particular cross-section of

the microchannel, the slip velocity varies in a parabolic manner along the periphery

with a minimum value at the corner region and a maximum value near the center

of the wall region. A similar observation was reported by Hettiarachchi et al. [97]

and Renksizbulut et al. [100] in their studies of rarefied gas slip flow in non-rotating

rectangular microchannels. However, due to the rotational effect, the slip veloc-

ity along the x-axis is asymmetric as opposed to the symmetric slip velocity for a

non-rotating channel. Figure 6.6a shows the comparison of normalized w-velocity

profiles at y-midplane (y = b/2) of channel outlet for different slip length and for

ω = 2400 RPM. Because of the Coriolis force, the velocity profiles in the rotating

microchannel are skewed to the left. As a result, the velocity gradient at the left

wall is greater than the velocity gradient at the right wall. Since the slip velocity is

directly proportional to the normal velocity gradient at the wall, the slip velocity at

the left wall becomes higher than the slip velocity at the right wall, which can be

clearly observed from Figure 6.6a. As the slip length increases, the slip velocity also

increases, but the magnitude of the maximum velocity decreases and the location of

the maximum velocity shifts to the right. Thus, the velocity profile becomes more

uniform or flattened when fluid slip occurs as compared to the velocity profile with

no slip boundary condition. The trend becomes more prominent for higher values

of slip length. This is due to the overall mass conservation inside the channel. The

normalized w-velocity profiles along y at x-midplane (x = a/2) for ω = 2,400 RPM

is shown in Figure 6.6b. By inspecting the figure, it can be seen that the velocity

profiles are symmetric with respect to the mid-line y = b/2, because the Coriolis

force acts only in the x-direction. For the same reason, the slip velocities at the

bottom (y = 0) and top walls (y = b) are identical.

Figure 6.7a presents the outlet u-velocity profiles along x at y-midplane (y =
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b/2) and Figure 6.7b presents the outlet v-velocity profiles along y at x-midplane

(x = a/2). The velocities are normalized by using the inlet velocity, win. As the

Coriolis force acts along x-direction, strong secondary flow effect can be observed

from Figure 6.7a. The effect of secondary flow is less prominent in y-direction as

can be seen from Figure 6.7b. For example, at a rotating frequency of 2,400 RPM

with no-slip boundary condition, the maximum value of u-velocity is about 10% of

the inlet velocity whereas the maximum value of v-velocity is about 1% of the inlet

velocity. As the slip length is increased, the secondary flow effect decreases and both

the u-velocity and v-velocity decrease in magnitude. The reason is following. With

the increase in slip length, the w-velocity gets more flattened and the maximum of

w-velocity decreases as it was observed from Figure 6.6a. Since the Coriolis force,

fc is directly proportional to the w-velocity, an increase in the slip length results in

a decrease in the maximum value of the Coriolis force which in turn decreases the

secondary flow effects.
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(a) No slip, λ = 0 µm (b) λ = 2 µm

(c) λ = 5 µm (d) λ = 10 µm

Figure 6.5: Velocity magnitude for different slip length λ (α = 2.0, ω = 2, 800 RPM)
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6.5.2 Slip Velocity

The effect of rotation on the slip velocity in a square microchannel is shown

in Figure 6.8. When there is no rotation i.e. ω = 0, for a fixed slip length, the

slip velocities at all four walls of a square microchannel is the same due to the

symmetric parabolic profile of a non-rotating channel flow. As the rotational speed

is increased, the slip velocity at the left wall increases whereas the slip velocity at

the right wall decreases for a fixed slip length. This is because, with the increase in

rotational speed, the Coriolis force becomes stronger and hence the secondary flow

effect becomes more dominant. The slip velocities at the top and bottom wall have

the same values, because there is no rotational force acting in the y-direction and

the w-velocity profile is symmetric along the y-axis. With the increase in rotational

speed, the slip velocities at the top and bottom walls increase slightly. For a fixed

rotational speed, the magnitude of the slip velocity increases with the increase in slip

length.

6.5.3 Friction Factor

At a given cross-section of the microchannel, the friction factor f is calculated by

taking the average along the periphery. The friction relation (fRe), also known as

the Poiseuille number, is computed for different rotational speeds with varying slip

length. First, we will examine the effect of rotation on the friction factor. Lei and

Hsu [14] carried out a numerical simulation on flow through rotating straight pipes

and showed that, for Reω > 1, the ratio of friction factor for rotating pipe to the

friction factor for non-rotating pipe asymptotically scales with Re0.5
ω . In the present

study, similar behavior of the ratio, (fRe)λ,Reω/(fRe)λ,Reω=0 has been observed.

Here, (fRe)λ,Reω=0 denotes the friction relation for a non-rotating microchannel with

a specified slip length λ. Figure 6.9a presents the friction relation ratio scaled with
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Figure 6.6: Comparison of w-velocity profiles at the channel exit for different slip
lengths
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Re0.5
ω for a rotating square microchannel (α = 1.0). The results agree well with the

following correlations of friction factors for a rotating pipe flow given by Lei and Hsu

(Equation 6.14) [14] and Ito and Nanbu (Equation 6.15) [101]:

Re−0.5
ω

(fRe)λ=0,Reω

(fRe)λ=0,Reω=0

= 0.9655Re−0.4368
ω , for 1 ≤ Reω ≤ 12 (6.14)

(fRe)λ=0,Reω

(fRe)λ=0,Reω=0

= 0.0883(ReωRe)
1/4
[
1 + 11.2(ReωRe)

−0.325
]

for Reω/Re < 0.5, 2.2× 102 < ReωRe < 107 (6.15)

From the Figure 6.9a, it can be seen that, for a fixed aspect ratio, the scaled friction

factor is a function of both rotational Reynolds number and slip length. By using a

multiple regression method, the following correlation for the scaled friction relation

can be determined for α = 1.0 with a coefficient of determination, R2 = 0.998:

Re−0.5
ω

(fRe)λ,Reω
(fRe)λ,Reω=0

=
0.9741Re−0.4374

ω[
1 +

(
λ
Dh

)]0.779 , for 1 ≤ Reω ≤ 13.34 (6.16)

Figure 6.9b shows the surface plot of the proposed correlation (Equation 6.16) along

with the numerical results. Inspecting the plot, it can be concluded that the proposed

correlation matches well with the numerical data. For no slip boundary condition,

i.e. λ = 0, Equation 6.16 becomes almost identical to the correlation given by Lei

and Hsu (Equation 6.14) [14].

Figure 6.10a shows the variation of (fRe)λ=0,Reω/(fRe)λ,Reω with the nondimen-

sional slip length (λ/Dh) as a function of rotational speed and aspect ratio. Here,

fReλ=0,Reω is the friction relation for the no-slip boundary condition at a given ro-
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tational Reynolds number Reω. It can be noticed that, with a slip length of 10µm,

the friction factor can be reduced down to 28.5−36% depending on the aspect ratio.

It can also be observed that, for a fixed rotational speed and aspect ratio, the term

(fRe)λ=0,Reω/(fRe)λ,Reω varies linearly with the non-dimensional slip length (λ/Dh).

Thus, for a given aspect ratio and rotational speed (or rotational Reynolds number),

the ratio can be expressed as a linear function of λ/Dh in the following form:

(fRe)λ=0,Reω

(fRe)λ,Reω
= 1 + C

(
λ

Dh

)
(6.17)

Equation 6.17 is identical to the relationship between fRe and Kn given by Ebert

and Sparrow [96] in their study of rarefied gas flow in rectangular ducts with slip

boundary conditions. From Figure 6.10a, it can be observed that, the ratio of the

friction relations is strongly dependent on the aspect ratio. For low aspect ratios

(α = 1, 2), the friction relation varies slightly with the rotational speed. As the

aspect ratio increases (α = 4, 10, 20), this variation in friction relation diminishes.

Thus, for higher aspect ratio microchannel, the slope of the curve i.e. C is very

weakly dependent on the rotational Reynolds number Reω.

From the numerical results of the present study, it is possible to calculate C using

Equation 6.17 for different values of slip length and rotational speed. Figure 6.10b

presents the variation of C as a function of aspect ratio for different rotational speeds.

For a fixed rotational speed, a best fit curve can be generated to get the relationship

between C and α. The correlation for these curves for a particular rotational speed

can be expressed by the following formula:

C = p1 + p2

(
1

α

)
+ p3

(
1

α2

)
+ p4

(
1

α3

)
(6.18)
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The coefficients of the above formula are tabulated in Table 6.4. Using equations

6.16, 6.17, and Table 6.4, the friction factor for all the cases considered in the present

study can be calculated.

Table 6.4: Correlation coefficients for C = p1 + p2

(
1
α

)
+ p3

(
1
α2

)
+ p4

(
1
α3

)
Rotational

speed, ω

(RPM)

Rotational

Reynolds

number,

Reω

p1 p2 p3 p4

Coefficient

of determi-

nation,

R2

0 0.00 11.802 -9.722 7.847 -2.082 0.999

400 1.67 11.797 -9.632 7.461 -1.729 0.999

800 3.34 11.819 -9.500 7.029 -1.115 0.999

1, 200 5.00 11.845 -10.152 9.543 -2.935 0.999

1, 600 6.67 11.832 -9.751 8.933 -2.514 0.999

2, 000 8.34 11.946 -10.937 12.850 -5.252 0.997

2, 400 10.00 11.864 -10.445 12.853 -5.489 0.999

2, 800 11.67 11.921 -10.910 14.623 -6.601 0.999

3, 200 13.34 11.933 -10.149 12.490 -5.068 0.999

6.5.4 Nusselt Number

The Nusselt number (Nu) considered in this section refers to the average Nusselt

number of the top and bottom wall based on the hydraulic diameter (Dh) of the

microchannel. Figure 6.11 shows the variation of Nusselt number along the channel

for different rotational speeds and a slip length λ = 1 µm. At the channel entrance,

128



0 2 4 6 8 10 12 14
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rotational Reynolds Number, Reω

R
e ω−

0.
5 (f

R
e λ,

R
e ω

/fR
e λ,

R
e ω

=
0)

 

 

Lei and Hsu [14]
Ito and Nanbu, Re = 100 [101]
Ito and Nanbu, Re = 200 [101]
No Slip, Re = 100
λ = 1 μm, Re = 100
λ = 2 μm, Re = 100
λ = 5 μm, Re = 100
λ = 10 μm, Re = 100
No Slip, Re = 200
λ = 1 μm, Re = 200
λ = 2 μm, Re = 200
λ = 5 μm, Re = 200
λ = 10 μm, Re = 200

D
h
 = 200 μm, α = 1.0

 d
r
 = 2 cm

(a) Comparison with the existing correlations

(b) Comparison of proposed correlation for fRe with the present numerical data

Figure 6.9: Variation of friction factor fRe with rotational Reynolds number Reω
for α = 1.0

129



0 0.01 0.02 0.03 0.04 0.05
1

1.1

1.2

1.3

1.4

1.5

1.6

Non-dimensional slip length, λ/Dh

(f
R
e)

λ
=
0,
R
e ω
/
(f

R
e)

λ
,R

e ω

 

 

Re = 100, dr = 2 cm
Dh = 200 μm

α = 20
α = 10

α = 4

α = 2

α = 1

No Rotation, Reω = 0
400 RPM, Reω = 1.67
800 RPM, Reω = 3.33
1200 RPM, Reω = 5.00
1600 RPM, Reω = 6.67

(a)

1 4 7 10 13 16 20
7

8

9

10

11

12

Aspect Ratio, α

C

 

 

Rotational speed increasing
from 0 to 3200 RPM with
a step of 400 RPM

3200 RPM

0 RPM

(b)

Figure 6.10: Poiseuille number fRe as a function of non-dimensional slip length
λ/Dh, rotational Reynolds number Reω and aspect ratio α: (a) Variation of

(fRe)λ=0,Reω/(fRe)λ,Reω and (b) Correlations for C with α

130



the Nusselt number is high as large temperature gradient exists in the entry region.

Close to the entry region, the flow is developing and the secondary flow is very

small. As the flow develops, the secondary flow becomes stronger and an effective

convective mixing occurs inside the channel due to the rotation. For this reason, the

Nusselt number first attains a minimum value close to the entry region and as the

flow progresses, it increases again to reach a fixed value near the channel exit. For

a given cross-section, the Nusselt number increases with the increase in rotational

speed due to the enhanced mixing originating from the secondary flow effects.

Figure 6.12 depicts the variation of Nusselt number along the channel as a func-

tion of slip length for different aspect ratios. The rotational speed considered in this

case is 2,400 RPM (Reω = 10.0). Again, it was observed that, for aspect ratios α = 1

and 2, the Nusselt number increases after reaching a minimum value in the entry

region due to the increase in temperature gradient near the channel walls. The mixed

mean temperature of the liquid increases in this region and as the flow progresses,

the difference between the wall temperature and liquid temperature diminishes. As

a result, the Nusselt number reaches a maximum value and then decreases again.

It was also observed that, for lower aspect ratios (α = 1 − 4), as the slip length

increases, the value of Nusselt number near the entrance region increases whereas it

decreases near the exit region. This is because, within the entry region, the effect of

rotation is small and thus, the slip velocity increases the convection process in the

fluid particles adjacent to the walls. But, as the flow develops, the effect of rotation

becomes stronger, and the flow is dominated by the secondary flow effects. In this

region, increasing the slip length decreases the Coriolis effect, thereby decreasing the

enhanced advection process resulting in a decreased value of Nusselt number. As

the aspect ratio is increased (α = 10 − 20), the effect of rotation decreases result-

ing in a decrease of secondary flow effects. As a result, the effect of the slip length
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gets stronger and increasing the slip length increases the Nusselt number even near

the exit of the channel. Although for all the values of aspect ratio α, the rota-

tional Reynolds number Reω = 10.0 is fixed, the effect of rotation decreases with

the increase in aspect ratio α. It indicates that, for channels of higher aspect ratios

(α ≥ 4), the microchannel height b is a more suitable characteristic length than the

hydraulic diameter Dh.

Figure 6.13a - 6.13e shows the variation of Nusselt number at the channel exit

(Nuexit) with varying rotational speed (ω) for α = 1 − 20. For α = 1.0 i.e. for a

square microchannel, the fully developed Nusselt number of a non-rotating channel

flow increases with the increase in slip length. When the rotation is introduced, this

trend is reversed after approximately 300 RPM. Thus, for a secondary flow dominated

region, the slip length has a diminishing effect on the Nusselt number. For α = 2.0,

the magnitude of Nusselt number at the channel exit is higher than that for α = 1.0.

In this case, the slippage of liquid enhances the Nusselt number at the channel exit,

for up to 700 RPM. After that, it decreases the Nusselt number. For α = 4.0, a

similar effect can be observed around 1,450 RPM. For α = 10.0 and α = 20.0, the

Nusselt number at the channel exit increases with the increase in slip length for the

whole range of rotational speed (0 RPM− 3,200 RPM).
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135



6.6 Conclusions

A numerical investigation has been performed for flow and heat transfer of a

Newtonian liquid inside rotating rectangular microchannels with slip boundary con-

ditions. The steady, incompressible Navier-Stokes and energy equations were solved

computationally by using a pressure based finite volume method. A thermally re-

peated boundary condition was applied to replicate the periodic arrangement of the

radial microchannels. The findings of this study can be summarized as follows:

(i) For an orthogonally rotating microchannel, the slip velocity at the left wall

is higher than that at the right wall, because of the induced Coriolis force

in x-direction. However, the slip velocities at the bottom and top walls are

identical, since there is no forcing term in the y-direction.

(ii) For a fixed rotational speed, as the slip length increases, the slip velocity

increases, but the peak of the w-velocity decreases, which results in a more

uniform w-velocity profile. This is due to the momentum balance inside the

microchannel.

(iii) In the fully developed flow region of a low aspect ratio microchannel, the in-

crease in slip length decreases the effect of the Coriolis force, thereby reducing

the magnitude of u and v-velocities. In other words, the secondary flow dimin-

ishes as the slip length is increased.

(iv) Scaled friction relations were plotted against the rotational Reynolds number

for different slip lengths and Reynolds numbers. Their values are in good

agreement with the existing correlations with the no slip boundary condition.

Based on the numerical data of the present study, a new correlation for cal-

culating the friction factor as a function of rotational Reynolds number (Reω)
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and non-dimensional slip length (λ/Dh) for a rotating square microchannel

(α = 1.0) has been proposed.

(v) For a given slip length and rotational speed, the friction relation (fRe) nor-

malized to its no slip boundary condition counterpart varies linearly with the

slip length. The slope of this line was expressed as a function of aspect ratio

(α) and correlation coefficients were computed for the range of rotational speed

considered in this study. A reduction of about 28.5 − 36% in hydrodynamic

resistance was observed using a slip length of 10 µm for α = 1.0− 20.0.

(vi) The rotational effect enhances the convective mixing in the liquid, thereby

enhancing the Nusselt number. For low aspect ratio microchannel (α = 1−4),

the Nusselt number increases with the increase in slip length in the entry region.

However, near the exit, the Nusselt number decreases with the slip length. As

the aspect ratio is increased (α > 4), the effect of rotation decreases, and the

effect of slip length along the channel becomes more similar to the entry region.
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7. SIMULATION OF TWO-PHASE FLOW: LEVEL SET METHOD

7.1 Introduction

Gas-liquid two-phase flow is a common occurrence in microchannels. In order

to simulate the two-phase flow, an accurate representation of the interface between

the two fluid region is necessary. There are a number of methods to accomplish this

task and they can be divided into two groups based on the type of grids used: (a)

moving grid methods and (b) fixed grid methods [102]. In moving grid methods, the

interface is treated as a free surface boundary and the grid is reconstructed at each

time step with the motion of the free surface. This way the interface location can

be computed accurately without any smearing and the sharpness of the interface

can be maintained [103]. However, when the interface goes under strong topological

deformation during merging and fragmentation, maintaining the mesh quality to

resolve the complex geometrical features is difficult. In addition, the stretching

and distortion of the mesh results in a reduction of the accuracy of the overall

solution. In fixed (Eulerian) grid methods, the evolution of the interface is computed

in a fixed grid by defining an indicator function in the computational domain. The

interface location can be identified using the values of the indicator function. Thus,

the topological deformation can be handled easily in fixed grid methods and grid

related problems encountered in moving grid methods can be avoided. However, the

sharpness of the interface can not be maintained due to the smearing, which poses

difficulties in computing the surface tension force accurately.

The two-phase flow simulation algorithms can also be divided into three cate-

gories depending on the numerical scheme used for computing the interface : (a)

Interface fitting methods, (b) Interface tracking methods and (c) Interface captur-
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ing methods. Interface fitting methods fall under the group of moving grid methods

whereas interface tracking methods and interface capturing methods fall under the

group of fixed grid methods. For a brief description of these methods the interested

readers are referred to [104] and [105]. The level set method, first introduced by

Osher and Sethian [38], is a type of interface capturing method. In this method, the

interface between the two fluids is computed as an isocontour of a level set function.

The first successful application of level set method to two phase flow problems was

reported by Sussman et al. [106]. In this chapter we will describe the level set formu-

lation and the numerical discretization technique. A number of example problems

will be solved to show the effectiveness of the level set method in two-phase flow

simulations.

7.2 Level Set Method

(t)





 



Figure 7.1: Level set function ψ defining the regions and boundary

A level function ψ(x, t) defining the two fluid regions and the interface is shown

in Figure 7.1. The interface Γ(t) is embedded in Rndim defined by the zero isocontour
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of the level set function, where ndim is the dimension of the space. In this particular

case shown in Figure 7.1, ndim = 2. The two fluid regions are separated by the

implicit level set function as follows:

ψ(x, t) > 0 for x ∈ Ω+ (7.1a)

ψ(x, t) = 0 for x ∈ δΩ (7.1b)

ψ(x, t) < 0 for x ∈ Ω− (7.1c)

In particular, the level set function is expressed as a signed distance function,

which is a special kind of implicit function. For a signed distance function ψ(x),

|ψ(x)| implies the shortest distance from x to the interface location ψ(x) = 0. In

addition to having different signs at the opposite sides of the interface as described

in Equation 7.1, it possesses the property that |∇ψ| = 1.

The fluid properties, such as density and viscosity can be computed from the

value of the level set function:

ρ(ψ) =ρg + (ρl − ρg)H(ψ) (7.2a)

µ(ψ) =µg + (µl − µg)H(ψ) (7.2b)

where the subscripts ‘l’ and ‘g’ denote liquid and gas, respectively. The Heaviside

function H(ψ) is defined as follows:

H(ψ) =


1 if ψ < 0

1
2

if ψ = 0

0 if ψ > 0

(7.3)
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The derivatives of ρ(ψ) with respect to t and xi are:

∂ρ

∂t
= (ρl − ρg)

∂H(ψ)

∂t
= (ρl − ρg)

∂H(ψ)

∂ψ

∂ψ

∂t
= (ρl − ρg)δ(ψ)

∂ψ

∂t
(7.4)

∂ρ

∂xi
= (ρl − ρg)

∂H(ψ)

∂xi
= (ρl − ρg)

∂H(ψ)

∂ψ

∂ψ

∂xi
= (ρl − ρg)δ(ψ)

∂ψ

∂xi
(7.5)

where, the Dirac delta function δ(ψ) is defined as the derivative of the Heaviside

function. Once the above relations are plugged into the continuity equation, we

arrive at two equations: one is the divergence free velocity condition and the other

is the evolution equation for the level set function ψ(x, t):

∂ψ

∂t
+ ui

∂ψ

∂xi
= 0 (7.6)

The surface tension force is approximated using the continuum surface force (CSF)

model introduced by Brackbill et al. [107]. In this model, the surface tension is

assumed to be a volume or body force and the surface tension σ can be included in

the momentum equations by using a Dirac delta function δ(ψ):

ρ
∂uj
∂t

+ ρui
∂uj
∂xi

= − ∂p

∂xj
+ µ

∂2uj
∂xi∂xi

+ ρSj + fσjδ(ψ) + Fbody (7.7)

Here, force due to surface tension is,

fσj = σκnj (7.8)

and the curvature of the interface is,

κ = −∇.n = −∇. ∇ψ
|∇ψ|

(7.9)
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where n is the normal vector to the interface.

7.3 Numerical Discretization

The level set equation (Eq. 7.6) is numerically solved by using a higher order

upwind scheme.

(
∂ψ

∂t

)
i,j

+
(
u+ψ−x + u−ψ+

x + v+ψ−y + v−ψ+
y

)
= 0 (7.10)

u+ = max(ui,j, 0), u− = min(ui,j, 0) (7.11)

v+ = max(vi,j, 0), v− = min(vi,j, 0) (7.12)

Here, ψ−x is the backward difference operator for approximating ψx, ψ
+
y is the forward

difference operator for approximating ψy, and so on. A first order accurate upwind

scheme can be used to compute the difference operators although the accuracy may

not be sufficient to correctly resolve the interfacial features. The first order upwind

scheme can be improved by using an essentially non-oscillatory (ENO) scheme in-

troduced by Harten et al. [108]. The basic idea of the ENO scheme is to compute

the numerical flux functions based on the local smoothness of the solution [109].

The ENO scheme can be further improved by using a combination of weighted ENO

stencils. The weighted essentially non-oscillatory (WENO) scheme, proposed by Liu

et al. [110], is as follows:

ψ−x = $1ψ
1
x +$2ψ

2
x +$3ψ

3
x (7.13)
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Three possible 3rd order ENO stencils are:

ψ1
x =

γ1

3
− 7γ2

6
+

11γ3

6
(7.14a)

ψ2
x = −γ2

6
+

5γ3

6
+
γ4

3
(7.14b)

ψ3
x =

γ3

3
+

5γ4

6
− γ5

6
(7.14c)

Here,

γ1 =
ψi−2,j − ψi−3,j

∆x
(7.15a)

γ2 =
ψi−1,j − ψi−2,j

∆x
(7.15b)

γ3 =
ψi,j − ψi−1,j

∆x
(7.15c)

γ4 =
ψi+1,j − ψi,j

∆x
(7.15d)

γ5 =
ψi+2,j − ψi+1,j

∆x
(7.15e)

For ψ+
x ,

γ1 =
ψi+3,j − ψi+2,j

∆x
(7.16a)

γ2 =
ψi+2,j − ψi+1,j

∆x
(7.16b)

γ3 =
ψi+1,j − ψi,j

∆x
(7.16c)

γ4 =
ψi,j − ψi−1,j

∆x
(7.16d)

γ5 =
ψi−1,j − ψi−2,j

∆x
(7.16e)
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The smoothness estimates are calculated as follows:

s1 =
13

12
(γ1 − 2γ2 + γ3)2 +

1

4
(γ1 − 4γ2 + 3γ3)2 (7.17a)

s2 =
13

12
(γ2 − 2γ3 + γ4)2 +

1

4
(γ2 − γ4)2 (7.17b)

s3 =
13

12
(γ3 − 2γ4 + γ5)2 +

1

4
(3γ3 − 4γ4 + γ5)2 (7.17c)

The weights are given by:

ξ1 =
1

10

1

(ε+ s1)2
, $1 =

ξ1

ξ1 + ξ2 + ξ3

(7.18a)

ξ2 =
6

10

1

(ε+ s2)2
, $2 =

ξ2

ξ1 + ξ2 + ξ3

(7.18b)

ξ3 =
3

10

1

(ε+ s3)2
, $3 =

ξ3

ξ1 + ξ2 + ξ3

(7.18c)

with

ε = 10−6 max{γ2
1 , γ

2
2 , γ

2
3 , γ

2
4 , γ

2
5}+ 10−99 (7.19)

Here, 10−99 term is added to avoid a division by zero while computing ξk.

In order to integrate the unsteady term in the level set equation, a total variation

diminishing (TVD) Runge-Kutta method has been used [111]. The third order accu-

rate TVD Runge-Kutta method is a combination of Euler explicit steps at different

time intervals. It can be expressed as follows:

ψ(1) = ψ(n) −∆t.V(n).∇ψ(n) (7.20a)

ψ(2) =
3

4
ψ(n) +

1

4
ψ(1) − 1

4
∆t.V(1).∇ψ(1) (7.20b)

ψ(n+1) =
1

3
ψ(n) +

2

3
ψ(2) − 2

3
∆t.V(2).∇ψ(2) (7.20c)

Ideally, the interface between the two fluids has a zero thickness and in prac-
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tice, it can not be computed exactly using any standard numerical approximation.

Therefore, the fluid properties are smoothed using a smeared-out Heaviside function,

Hε(ψ):

Hε(ψ) =


1 if ψ < −ε
1
2
[1 + ψ

ε
+ 1

π
sin(πψ/ε)] if |ψ| ≤ ε

0 if ψ > ε

(7.21)

The smoothed or modified delta function δε(ψ) is given by:

δε(ψ) =
dHε(ψ)

dψ
=


1
2ε

[1 + cos(πψ/ε)] if |ψ| ≤ ε

0 if otherwise
(7.22)

The smeared-out approximations of the Heaviside and delta functions improve the

stability of the numerical scheme. Here, ε is a parameter that determines the extent

or bandwidth of the numerical smearing. Typically, the value of the ε is taken equal

to 0.5∆x− 1.5∆x.

7.3.1 Reinitialization Method

Although initially ψ(x, t) is defined as a signed distance function, it does not

necessarily remain so during the advection process. In order to maintain the level

set function as a signed distance function, reinitialization of ψ(x, t) is performed by

the following equation [106]:

∂ψ

∂t
+ sign(ψ0)(|∇ψ| − 1) = 0 (7.23)

Here,

sign(ψ0) =
ψ0√

ψ2
0 + (∆x)2

(7.24)

and ψ0 is the initial value of the level set function.
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The reinitialization equation is also discretized using a higher order upwind

scheme.

(
∂ψ

∂t

)
i,j

+
(
max(sign(ψ0), 0)∇+

ij + min(sign(ψ0), 0)∇−ij
)

= sign(ψ0) (7.25)

where,

∇+
ij = [max(ψ−x , 0)2 + min(ψ+

x , 0)2 + max(ψ−y , 0)2 + min(ψ+
y , 0)2]1/2 (7.26a)

∇−ij = [min(ψ−x , 0)2 + max(ψ+
x , 0)2 + min(ψ−y , 0)2 + max(ψ+

y , 0)2]1/2 (7.26b)

7.3.2 Error Measurement

There are typically two ways to evaluate the error in the interface calculation

with the level set method: (i) error in the level set function, and (ii) error in the vol-

ume enclosed by the interface (or area enclosed by the interface for two-dimensional

problem). The error in ψ indicates how much the interface location derived from

the solution of the level set equation differs from the actual location of the interface.

Sussman and Fatemi [112] proposed the following formula to measure the error in

the level set function:

Eψ =
1

L
∑
i,j

|Hε(ψexact)−Hε(ψ)|∆x∆y (7.27)

Here, L is the perimeter enclosed by the interface of the exact level set function,

ψexact. The volume error at any time can be defined as,

V ′(t) =
V(t)

V0

(7.28)
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The volume of fluid can be estimated by the following formula:

V(t) =

∫
Ω

Hε(ψ)dV =
n∑
j=1

m∑
i=1

(Hε(ψ))i,j∆x∆y (7.29)

7.4 Test Cases

7.4.1 Motion with Prescribed Velocity

The accuracy and effectiveness of the level set code was first tested by solving

the discretized level set equation with a prescribed velocity field, thus obviating the

need for solving momentum equations. In these test cases, the initial zero isocon-

tour of level set function undergoes complex topology changes due to the prescribed

velocity field. One such test case is shown in Figure 7.2, where a circular interface

is advected in a time-reversed non-uniform vorticity field. The steady flow test was

first introduced by Bell et al. [113] and later extended to a time reversed problem by

Leveque [114]. The velocity field is given by:

u(x, y, t) = −sin2(πx)sin(2πy)cos(πt/T ) (7.30a)

v(x, y, t) = sin2(πy)sin(2πx)cos(πt/T ) (7.30b)

The computational domain is a unit square and the circular interface with a radius

of 0.15 is initially located at (0.5, 0.75). The swirling flow rotates around the center

of the domain and satisfies u = v = 0 at the boundaries. Due to the strong vortical

nature of the velocity field, the interface is stretched into long filament and eventually

takes a spiral shape. Because of the time function cos(πt/T ), the flow slows down and

reverses the direction at t = T /2 such that the initial interface should be recovered

at time T (refer to Figure 7.2). The extent of recovery would indicate the accuracy
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of the discretization schemes. Figure 7.2 presents the test for a grid size of 320×320.

The distortion of the circular interface into a spiral shape can be observed in Figure

7.2b. Since a very fine grid is used in this case, the circular interface is almost fully

recovered at time T , as shown in Figure 7.2c. The area loss for different grid sizes

are tabulated in Table 7.1. For a relatively coarser grid size of 160 × 160, the area

loss is as high as 9.82 %. As the grid size is increased to 320 × 320, the area loss

is minimized to less than 1 %. It implies that, for strong vortical flows, a very fine

grid should be used to minimize the area or volume error in level set method. It also

justifies the use of higher order upwind schemes (such as WENO-5) to discretize the

level set equation.

Table 7.1: Area loss for circular interface placed
in a time reversed single vortex field

Case Grid Size Area Loss (%)

1 160× 160 9.82

2 320× 320 0.376
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(a) t = 0

(b) t = T /2

(c) t = T

Figure 7.2: Circular interface in time reversed single vortex field.
Grid size = 320× 320
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7.4.2 Collapse of a Water Column

In this test case, a two-dimensional water column surrounded by air is kept in a

5 m × 2 m domain. The water column dimension is 1 m × 1 m. The computational

domain was divided with a grid size of 256 × 64 CVs. The properties of the fluids

are presented in Table 7.2. The surface tension water (σ) is assumed to be 0.0728

Nm−1. The simulation starts with a zero velocity inside both fluid regions. Although

the wall is stationary i.e. it has a zero velocity, the interface in contact with the

walls moves with a finite velocity. This poses a problem in specifying the velocity

boundary conditions at the walls, which is commonly known as a moving contact line

problem [115]. In this case, the problem was overcome by assuming a slip boundary

condition on the free surface contact wall, which allows tangential slip along the wall

surface while maintaining the non-permeability condition perpendicular to the wall

surface. Mathematically, this condition can be represented by [116]:

V.n = 0 (7.31)

∇V.n = 0 (7.32)

With the start of the simulation, the water column breaks down due to the

gravity and the water level height at the left wall decreases with time. Meanwhile,

the water front gradually approaches the right wall. After hitting the right wall, the

water splashes back and merges with itself forming cusps. Snapshots of water-air

interface position at different times are shown in Figure 7.3. The variation non-

dimensional front position and height as a function of time are plotted in Figure

7.4. The simulation results were compared with the experimental results of Martin

and Moyce [117]. From Figure 7.4a, a slightly faster spread rate can be observed
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in the present simulation results as compared to the experimental results. This can

be attributed to the contact angle (in this case θc = 90o) boundary condition of

level set function. However, the water height position with time shows an excellent

agreement with the experimental results, as can be observed from Figure 7.4b. It

should be noted that, a conservative form of the momentum equations were used in

the finite volume solver. A non-conservative form of the momentum equations can

introduce errors in momentum transfer across the interface resulting in a non-physical

spread rate of water in this case. This was demonstrated by Raessi and Pitsch [118]

in their work on modeling interfacial flows with large density ratios using level set

technique.

In addition, a 3D dam breaking simulation was conducted. The domain size is

0.4 m×0.1 m×0.1 m. The water column size is 0.1 m×0.1 m×0.05 m. The grid size is

240×60×60 CVs. Figure 7.5 shows how the three-dimensional water column breaks

under gravity and the water front propagates with time inside a closed container.

Initially two-dimensional (2D) flow is observed when the front advances towards the

right wall. After hitting the wall, the front splashes back and quickly forms three-

dimensional (3D) breaking wave patterns. Similar observations were reported for a

3D dam breaking simulation by Yu [105].

Table 7.2: Properties of fluids for two phase flow problems

Fluid
Density

(kg m−3)

Dynamic

Viscosity

(Pa-s)

Thermal

Conductivity

(Wm−1K−1)

Specific

Heat

(Jkg−1K−1)

Prandtl

Number

Water 997.0 8.71× 10−4 0.563 4179.0 6.46

Air 1.20 1.83× 10−5 0.0258 1005.0 0.712
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(a) t = 0.00 sec

(b) t = 0.50 sec

(c) t = 1.00 sec

(d) t = 2.12 sec

Figure 7.3: 2D water column breaking under gravity, Grid size = 256 × 64 CVs
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(b) Water height with time

Figure 7.4: Water front position and height as a function of time
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(a) t = 0.0 sec (b) t = 0.2 sec

(c) t = 0.4 sec (d) t = 0.6 sec

(e) t = 0.8 sec (f) t = 1.0 sec

(g) t = 1.2 sec (h) t = 1.4 sec

Figure 7.5: 3D water column collapsing under gravity, Domain size = 40 cm × 10
cm × 10 cm, Column size = 10 cm × 10 cm × 5 cm, Grid size = 240× 60× 60 CVs
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7.4.3 Droplet Splashing on Water Pool

In this problem a static circular water droplet is allowed to fall under gravity into

a water pool. Numerical solution of this problem with a the level set method was first

reported by Sussman et al. [106]. The present geometry is similar to the simulation

conducted by Li et al. [119]. The domain size is 3 cm × 5 cm. The droplet radius is 3

mm, the water surface height is at 6*radius, and the droplet center is located at (1.5,

9*radius) position. A contact angle boundary condition has been used for the level

set function at the solid walls. The properties of the air and water are the same as

the collapsing of 2D water column problem, given in Table 7.2. The surface tension

of water is 0.0728 Nm−1. Figure 7.6 shows how the droplet falls under gravity and

splashed into the water body. The merging of the droplet with the water surface

is implicitly captured by the level set method without imposing explicit boundary

conditions at the interface.

A 3D simulation of a water droplet splashing on a water body is shown in figure

7.7. The domain size is 3 cm × 3 cm × 4 cm and the grid size is 90 × 90 × 120

CVs. The droplet diameter is same as the 2D test case i.e. 6 mm. A reduction

in droplet volume can be observed as the droplet falls under gravity and touches

the water surface. This is due to the calculation of body force and surface tension

force terms at the CV nodes. In order to avoid this problem, the external forces

should be first calculated at the CV faces. Then, the cell-center or node values of

the forces should be obtained by taking the area or volume weighted average of the

face values. This is commonly known as the balanced force algorithm [120, 121]. A

dramatic improvement in the volume or mass conservation enclosed by the interface

was observed using the balanced force algorithm (not shown here).
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(a) time = 0.0 sec (b) time = 0.0275 sec

(c) time = 0.04 sec (d) time = 0.05 sec

Figure 7.6: 2D water droplet splashing on water, Grid size = 120× 200 CVs

156



(a) time = 0.0 sec (b) time = 0.025 sec

(c) time = 0.05 sec (d) time = 0.075 sec

(e) time = 0.10 sec

Figure 7.7: 3D water droplet splashing on water, Grid size = 90× 90× 120 CVs
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7.4.4 Liquid Meniscus in a Vertical Capillary Channel

The meniscus of a liquid column in a vertical capillary channel takes a definite

form due to opposing effects of the surface tension and the gravitational forces. In

this simulation, initially a water column is kept in a static state with the water

surface in a horizontal position as shown in Figure 7.8a. The test specifications are

the same as mentioned in Garrioch and Baliga [122]. The width of the channel is 1.25

mm and the height of the channel is 3.75 mm. No-slip and impermeability boundary

conditions are applied at the wall boundaries. Contact angle boundary conditions

were applied at the side walls, which can be represented as follows:

n.nwall = cos θc (7.33)

where n is the outward normal to the interface, nwall is the outward normal to the

solid wall, and θc is the contact angle. In this case, the contact angle (θc) between the

water and the solid wall was assumed to be 10 degrees. The simulation starts with a

quiescent water meniscus. As the time progresses, the meniscus shape deforms due

to the surface tension effects and eventually attains a near half-circular shape at t =

0.05 sec.
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(a) t = 0.000 sec (b) t = 0.0.005 sec

(c) t = 0.010 sec (d) t = 0.050 sec

Figure 7.8: Meniscus shape changing in a vertical capillary channel,
Channel width = 1.25 mm, Channel height = 3.75 mm
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7.4.5 Rayleigh-Taylor Instability

When a heavy fluid is placed over a light fluid, the light fluid penetrates the

heavy fluid and an instability occurs at the interface due to the density differences.

This phenomena is commonly known as Rayleigh-Taylor instability [123]. In this

subsection, the evolution of Rayleigh-Taylor instability will be presented using the

level set method. Similar tests were performed by a number of researchers. Among

them, Bell and Marcus [124], and Puckett et al. [125] used the VOF method, Popinet

and Zaleski [126] used the front tracking method, and Gomez et al. [127] used the

level set method to simulate the Rayleigh-Taylor instability. In this test case, the

density of the heavy fluid is 1.225 kgm−3, and the density of the light fluid is 0.1694

kgm−3. The dynamic viscosity is the same for both fluids (3.13 × 10−3 Pa-s). The

surface tension was assumed to be σ = 0.1337 Nm−1. The computational domain is

1 m wide and 4 m high. Initially a small perturbation is introduced at the interface in

a cosine function form with an amplitude of 5 cm: y(x) = −0.05cos(πx/ζ), where ζ is

the width of the computational domain. Free slip boundary conditions were imposed

at all the sides. A grid size of 64 × 256 CVs was used for this simulation. Figure

7.9 presents the evolution of the interface at different instants. The thin filaments

of the interface characterizing the Rayleigh-Taylor instability can be captured with

the present level set method.

7.4.6 Spreading of Droplet on Hydrophilic and Hydrophobic Surfaces

The spreading of a liquid droplet on a solid surface forms an interesting test case,

since the nature of the spreading will depend on the contact angle between the droplet

and the solid surface. For a hydrophilic surface, where the contact angle is less than

90 degrees, the droplet will spread uniformly on the solid surface forming a void

space in the middle. Such a test case of a water droplet spreading on a hydrophilic
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(a) t = 0.00 sec (b) t = 0.50 sec (c) t = 1.00 sec

Figure 7.9: Rayleigh Taylor instability, Grid size = 100× 400 CVs
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surface is shown in Figure 7.10. The contact angle between the water droplet and the

solid surface was assumed to be 60 degrees. On the other hand, for a hydrophobic

surface, where the contact angle is higher than 90 degrees, the droplet will try to

retain its shape and for superhydrophobic surface it will produce a lotus leaf effect.

A water droplet spreading and retaining its shape on a superhydrophobic surface is

shown in Figure 7.11. The contact angle used in this case was 160 degrees. Thus,

the level set method can also be applied efficiently to investigate the microchannel

flow phenomena where contact angle plays an important role.

7.5 Conclusions

A level set method introduced by Osher and Sethian [38] was described to cap-

ture the interface in two phase flow simulations. In order to validate the level set

method, a number of test cases were presented, both with and without prescribed

velocities. These test cases are - circular interface in a time reversed single vortex

field, collapse of a water column, droplet splashing on a water pool, liquid menis-

cus in a capillary microchannel, Rayleigh-Taylor instability and spreading of liquid

droplet in hydrophilic and hydrophobic surfaces. The application of the free slip

boundary condition and contact angle boundary condition for different cases were

also presented. From these test cases, the applicability of the level set method for

complex two phase flow phenomena with surface tension and large body forces has

been demonstrated. The effectiveness of the level set method in simulating two-

dimensional and three-dimensional test cases implies that it can be easily extended

to investigate the two phase flow features in microchannels subjected to rotational

forces.
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(a) t = 0.00 sec (b) t = 0.02 sec

(c) t = 0.04 sec (d) t = 0.06 sec

(e) t = 0.08 sec (f) t = 0.10 sec

Figure 7.10: Spreading of water droplet on hydrophilic surface, Domain size = 2 cm
× 2 cm × 1 cm, Droplet diameter = 6 mm, Grid size = 96× 96× 48 CVs
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(a) t = 0.00 sec (b) t = 0.02 sec

(c) t = 0.04 sec (d) t = 0.06 sec

(e) t = 0.08 sec (f) t = 0.10 sec

Figure 7.11: Spreading of water droplet on hydrophobic surface, Domain size = 2
cm × 2 cm × 1 cm, Droplet diameter = 6 mm, Grid size = 96× 96× 48 CVs

164



8. SUMMARY

Pressure-based finite volume solvers using both staggered and collocated grid

approaches were developed to solve two-dimensional and three-dimensional, steady

and unsteady, incompressible Navier-Stokes equations. The programming language

used for this purpose was FORTRAN 90. The collocated grid solver was parallelized

using a Message Passing Interface (MPI) library and good parallel scalability was

demonstrated up to 64 processors for a two-dimensional lid driven cavity flow with

a grid size of 512 × 512 CVs. In order to accelerate the convergence rate of the

finite volume solver, a non-linear multigrid technique was developed. Parallel im-

plementation of the proposed multigrid algorithm was presented and the effects of

parallelization on multigrid properties were analyzed. Superior convergence rate for

parallel multigrid solver as compared to parallel single grid solver was demonstrated

and multigrid speedup as high as 1370 times was attained for a 2D lid driven cavity

flow using a grid size of 1024× 1024.

Next, the effects of rotational speed and aspect ratio on a steady, three-dimensional,

rotating microchannel flow were analyzed. By studying the RMS deviation of the

velocity profiles of rotating flows from that of a purely centrifugal flow, a critical rota-

tional Reynolds number was defined, above which the secondary flow effects become

dominant. In addition, a critical aspect ratio was identified for which the optimal

secondary flow effect was observed. The sub-critical and super-critical operating

modes of rotating microchannel flows were discussed.

In the next step, the effect of liquid slip on the rotating microchannel flow was

investigated. An analytical solution for a purely centrifugal flow with slip boundary

condition was presented and its accuracy was validated for a non-rotating microchan-
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nel flow case by comparing it with the available experimental results. New correla-

tions for friction factors or Poiseuille number (fRe) were derived incorporating the

effects of rotation and liquid slip for different aspect ratios. The affects of liquid slip

and rotation on the heat transfer characteristics of the fluid were also presented.

A level set method coupled with the finite volume solver was described to cap-

ture the interface during two-phase flow simulations. The implementation of bound-

ary conditions for velocity and level set function was narrated. A number of test

cases were performed to demonstrate its effectiveness and limitations of the level set

method.
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APPENDIX A

SMOOTHING PROPERTY OF ITERATIVE METHODS

Recalling Equation 4.1 for a system of linear equations:

Aφ = b (A.1)

Here, φ is the exact solution of the problem, and A is the coefficient matrix. Let us

assume that, A is a stationary matrix that means A is not changing with iterations.

Thus, at any point of iteration, the approximate solution φ∗ satisfies the following

equation:

Aφ∗ = b+R (A.2)

where R is the residual term. Subtracting A.2 from A.1, we get the following residual

equation:

Ae = −R (A.3)

where e is the algebraic error defined by e = φ− φ∗.

Now, for the standard iterative techniques such as Gauss-Seidel or Jacobi meth-

ods, the iteration equation can be written in the following form (refer to Eq. 2.15):

φ∗(l+1) = φ∗(l) +BR(l) (A.4)

Here, B is an approximation to A−1. Subtracting Equation A.4 from the exact

solution φ, we get the following iteration equation for the error:

e(l+1) = e(l) −BR(l) (A.5)
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We can observe from Equation A.5 that, at each iteration the error is corrected

by the spatially local corrections through the residual. When the residual is small,

the error correction is also small and vice versa. At the beginning of the iterations,

the high frequency error components tend to produce large residuals which in turn

correct the errors significantly with each iteration. After a few iterations the high

frequency error components are eliminated and the remaining low frequency error

components tend to produce small residuals resulting in a slow decrease of the error.

This is commonly known as the smoothing property of iterative methods. For an in

depth discussion on this smoothing property of the standard iterative techniques, the

readers are referred to [70].
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