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ABSTRACT 

 

Standard diagnosis of oral cancer is based on visual inspection and palpation by a 

clinician followed by histological examination of one or more tissue biopsies. Choosing 

the right location for biopsies, which represents the most severe lesion, is difficult and 

subjective to each clinician’s experience, especially for precancer lesions which are often 

diffuse, multifocal, and clinically indistinguishable from benign lesions. This may lead to 

low diagnosis sensitivity. The aim of this dissertation is to design a more sensitive and 

objective screening tool to guide the biopsy of oral cancer and precancer.  

Fluorescence lifetime imaging microscopy (FLIM) is a noninvasive optical 

technique which is able to detect the information of tissue metabolism and biochemistry 

based on fluorescence as a source of contrast. Recently, there is increasing interest in the 

application of multispectral FLIM for medical diagnosis. Central to the clinical translation 

of FLIM technology is the development of compact and high-speed clinically compatible 

systems. In this dissertation, four multispectral FLIM systems were designed and built. A 

bench-top multispectral FLIM system was first built and combined with reflectance 

confocal microscopy (RCM) for the preclinical validation by imaging a hamster cheek 

pouch model of oral carcinogenesis. After that, in order to facilitate in vivo imaging of 

human oral mucosa, three different multispectral FLIM endoscopes were designed. The 

first FLIM endoscope was built based on a fiber bundle and the time-gated implementation 

by an intensified charged-coupled device (ICCD). The system was validated by imaging 

a hamster cheek pouch model of oral carcinogenesis. To achieve faster imaging speed and 
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more accurate lifetime estimation, two rigid handheld FLIM endoscopes were built based 

on a pulse sampling implementation. These two handheld endoscopes were different in 

weight and size. The more compact one might serve as the clinical prototype for oral 

cancer and precancer detection. Both systems were validated by imaging the human oral 

biopsy ex vivo and human oral mucosa in vivo. The development of these systems will 

facilitate the evaluation of multispectral FLIM for oral cancer and precancer detection. 
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NOMENCLATURE 

 

NCI National Cancer Institute 

FLIM Fluorescence Lifetime Imaging Microscopy 

RCM Reflectance Confocal Microscopy 

FOV Field of View 

UV                              Ultra Violet 

VIS                              Visible 

GRIN                           Gradient Index 

ICCD                           Intensified Charged-Coupled Device 

SNR                             Signal to Noise Ratio 

USAF                           United States Air Force 
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BF                                 Bandpass Filter 

NADH                          Nicotinamide Adenine Dinucleotide 

FAD                              Flavin Adenine Dinucleotide 

IRB                               Institutional Review Board 

IACUC                         Institutional Animal Care and Use Committee 

TAMU                          Texas A&M University 
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H&E                              Hematoxylin and Eosin 

DMBA                          7,12-dimethylbenz1/2α_anthracene 

FWHM                          Full Width Half Max 

IRF                                Impulse Response Function 

RLD                              Rapid Lifetime Determination 

DMBA                          7,12-dimethylbenz [α] anthracene 

POPOP                         1,4-bis (5-phenyloxazol-2-yl) benzene 

FRET                            forster resonance energy transfer 
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viii 

 

TABLE OF CONTENTS 

 Page 

ABSTRACT .......................................................................................................................ii 

DEDICATION .................................................................................................................. iv 

ACKNOWLEDGEMENTS ............................................................................................... v 

NOMENCLATURE .......................................................................................................... vi 

TABLE OF CONTENTS ............................................................................................... viii 

LIST OF FIGURES ............................................................................................................ x 

LIST OF TABLES ...........................................................................................................xii 

1. INTRODUCTION .......................................................................................................... 1 

1.1 Motivation ........................................................................................................ 1 
1.2 Objectives and dissertation organization .......................................................... 3 

2. FLUORESCENCE LIFETIME IMAGING MICROSCOPY (FLIM) ........................... 6 

2.1 Fluorescence and fluorescence lifetime ........................................................... 6 

2.2 Intrinsic autoflorophores in oral epithelial tissue ............................................. 8 
2.3 Methods of conducting the time-domain FLIM ............................................... 8 
2.4 Review of previous FLIM endoscopes for in vivo applications ..................... 12 

3. BENCH-TOP COMBINED FLIM-RCM SYSTEM .................................................... 16 

3.1 Bench-top combined FLIM-RCM system ...................................................... 16 

3.2 Tissue phantom imaging ................................................................................ 21 
3.3 Porcine buccal mucosa imaging ex vivo ......................................................... 24 

3.4 Preclinical in vivo imaging of a hamster cheek pouch model of oral cancer . 25 
3.5 Discussion ...................................................................................................... 31 

3.6 Conclusion ...................................................................................................... 33 

4. FLEXIBLE MULTISPECTRAL FLIM ENDOSCOPE .............................................. 35 

4.1 Flexible multispectral FLIM endoscope system ............................................ 35 
4.2 Standard dyes validation ................................................................................ 38 
4.3 Preclinical in vivo imaging of a hamster cheek pouch model of oral cancer . 40 

4.4 Discussion ...................................................................................................... 41 
4.5 Conclusion ...................................................................................................... 42 



 

ix 

 

5. RIGID HANDHELD MULTISPECTRAL FLIM ENDOSCOPE ............................... 44 

5.1 Rigid handheld multispectral FLIM endoscope system ................................. 44 
5.2 Standard dyes validation ................................................................................ 49 
5.3 Normal hamster cheek pouch imaging in vivo ............................................... 51 

5.4 Human oral biopsy imaging ex vivo ............................................................... 53 
5.5 Normal human oral mucosa imaging in vivo ................................................. 59 
5.6 Clinical validation in human subjects in vivo ................................................. 60 
5.7 Discussion ...................................................................................................... 64 
5.8 Conclusion ...................................................................................................... 68 

6. CLINICAL PROTOTYPE OF RIGID HANDHELD FLIM ENDOSCOPE ............... 69 

6.1 Clinical prototype of rigid handheld FLIM endoscope .................................. 69 

6.2 Standard dyes validation ................................................................................ 73 

6.3 Normal human oral mucosa imaging in vivo ................................................. 75 
6.4 Oral biopsy imaging ex vivo ........................................................................... 76 
6.5 Discussion and conclusion ............................................................................. 77 

7. CONCLUSION AND FUTURE WORK ..................................................................... 80 

7.1 Conclusion ...................................................................................................... 80 

7.2 Future work .................................................................................................... 80 

REFERENCES ................................................................................................................. 82 

 

 



 

x 

 

LIST OF FIGURES 

 Page 

Figure 1: Simplified Jablonski diagram illustrating the various electronic and 

vibrational states of a molecule and the transitions between states .................... 7 

Figure 2: Time-resolved measurement techniques ........................................................... 10 

Figure 3: Time-domain FLIM implementations .............................................................. 12 

Figure 4: Schematic of the combined FLIM-RCM system. ............................................. 20 

Figure 5: FLIM-RCM images of the two-layer phantom ................................................. 22 

Figure 6: Ex vivo FLIM-RCM images of the normal porcine buccal mucosa ................. 26 

Figure 7: In vivo FLIM-RCM images of normal hamster cheek pouch ........................... 29 

Figure 8: In vivo FLIM-RCM images of the DMBA-treated hamster cheek pouch ........ 30 

Figure 9: Schematic of the multispectral FLIM endoscope system ................................. 36 

Figure 10: In vitro validation imaging of quartz capillaries loaded with NADH, FAD, 

and POPOP ....................................................................................................... 39 

Figure 11: In vivo imaging of a DMBA-treated hamster cheek pouch ............................ 41 

Figure 12: (a) Phtograph of the handheld rigid endoscope (b) Schematic of the rigid 

FLIM endoscope system ................................................................................... 45 

Figure 13: Zemax simulation for the excitation optical pathway ..................................... 47 

Figure 14: In vitro imaging of quartz capillaries loaded with FAD, NADH, and 

POPOP .............................................................................................................. 50 

Figure 15: In vivo imaging of a normal hamster cheek pouch ......................................... 52 

Figure 16: FLIM images of clinically normal tissue from gingiva .................................. 56 

Figure 17: FLIM images of the benign lesion classified as oral lichen planus ................ 57 

Figure 18: FLIM images of the premalignant tissue ........................................................ 58 

Figure 19: In vivo imaging of the ventral tongue from a normal human volunteer ......... 60 



 

xi 

 

Figure 20: In vivo imaging of the dysplasia tissue ........................................................... 63 

Figure 21: Ex vivo imaging of oral biopsy taken from the same lesion in Fig. 20 ........... 64 

Figure 22: (a) Photograph of the clinical prototype of the handheld probe (b) 

Schematic of the clinical prototype of the FLIM endoscope system ................ 71 

Figure 23: Zemax simulation of the FOV before adding the field lens and after adding 

the field lens ...................................................................................................... 72 

Figure 24: In vitro imaging of quartz capillaries loaded with FAD, NADH, and 

POPOP .............................................................................................................. 74 

Figure 25: In vivo imaging of the ventral tongue from a normal human volunteer ......... 76 

Figure 26: Ex vivo imaging of oral biopsy ....................................................................... 78 

Figure 27: System schematic for the new proposed FLIM endoscope ............................ 81 

 

 



 

xii 

 

LIST OF TABLES 

 Page 

Table 1 Normalized fluorescence intensity and average lifetime for phantom, normal 

porcine mucosa, normal hamster cheek pouch and DMBA-treated hamster 

cheek pouch ...................................................................................................... 33 

Table 2 Comparison of the lifetime estimation with 2-gate, 4-gate and 20-gate 

methods ............................................................................................................. 38 

Table 3 Comparison of resolution and FOV with different focal length objectives and 

excitation fiber core diameters .......................................................................... 47 

Table 4 Comparison of offline and online fluorescence lifetime estimation ................... 51 

Table 5 Comparison table for the MPE and actual deposited energy with different 

laser repetition rate and pixel number per frame .............................................. 79 

 

 

 

 



 

1 

 

1. INTRODUCTION  

1.1 Motivation 

Oral Cancer is defined as cancer that forms in the oral cavity or the oropharynx. The 

National Cancer Institute (NCI) estimates that around 42,440 new cases of oral cancer will 

be found in the United States in 2014 [1]. Although the incidence of oral cancer is lower 

than that of some common cancers, it has a lower average five-year survival rate. The 

average five-year survival rate for oral cancer is 62%, compared to 89% of breast cancer, 

99% of prostate cancer and 64% of colorectal cancer [2]. However, when detected in its 

early stage, the five-year survival rate for oral cancer can be improved to 82% [3]. Thus, 

early detection is crucial. 

The late diagnosis of oral cancer can be mainly attributed to the conventional clinical 

diagnosis method, which is based on visual inspection and palpation by the clinician, 

followed by one or more tissue biopsies for histopathological diagnosis. This conventional 

method has some disadvantages. On one hand, premalignant lesions are often 

undistinguishable from benign tissue by visual examination, making it difficult for early 

premalignant detection. On the other hand, since only a few biopsies can be taken, 

sampling errors introduced by the clinicians on choosing the most severe region to present 

the whole lesion is subjective to their experience and will ultimately decrease the diagnosis 

sensitivity.  

The motivation of this study is to design an objective and reliable screening tool to 

help detect oral cancer in an early stage and guide tissue biopsy to avoid underdiagnosis 

and improve diagnosis yield. 
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Various optical imaging techniques are being explored for noninvasively detecting 

epithelial cancers in vivo due to their specific abilities to exploit tissue contrast 

mechanisms, which is called “optical biopsy”. However, most of these optical imaging 

systems are typically designed to either have a macroscopic view, sacrificing spatial 

resolution, or to have a high resolution with a limited field of view (FOV).  

The ideal optical system to help detect carcinoma should have two main capabilities: 

First, the system should be able to conduct multi-scale imaging which is macroscopic 

surveillance guiding high resolution imaging. Second, since there are both biochemical 

and morphological changes during the progression of dysplasia, the system should also be 

able to characterize these changes as the diagnosis criteria. 

To meet these requirements, a multimodal optical system was designed and built by 

our group. The system combined large-field fluorescence lifetime imaging microscopy 

(FLIM) and high-resolution reflectance confocal microscopy (RCM). It performs fast 

macroscopic FLIM surveillance, followed by depth sensitive, high resolution RCM 

imaging for suspicious locations manifested by FLIM. Since FLIM can provide 

information about tissue metabolism and biochemistry based on fluorescence as a source 

of contrast and RCM can detect morphologic changes based on the reflectivity difference 

between cell cytoplasm and nucleus as a source of contrast, we hypothesize that the 

comprehensive information provided by the combined system will increase the diagnosis 

accuracy of oral cancer in its early stage.  
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1.2 Objectives and dissertation organization 

Although the overall aim of this project is to design and build a combined FLIM-

RCM system, the objective for this dissertation is focused on designing, building and 

validating the FLIM subsystem for the combined FLIM-RCM system. Only one chapter 

in this dissertation describes the combined FLIM-RCM system on a bench-top form. The 

following endoscope systems are for FLIM subsystem only.  

In order to build the FLIM subsystem for oral mucosa imaging in vivo, four major 

milestones were achieved. 

First, a bench-top multispectral FLIM system was built to combine with RCM system 

with a translation stage for image co-registration. A preclinical trial on the hamster cheek 

pouch model of oral carcinogenesis was conducted. 

Second, a flexible FLIM endoscope based on a wide-field time-gated implementation 

was built. The system was validated by the hamster cheek pouch model of oral 

carcinogenesis.  

Third, in order to achieve faster imaging speed and more accurate lifetime estimation, 

a rigid handheld multispectral FLIM endoscope was built based on the pulse sampling 

implementation. The clinical study of human oral tissue was conducted ex vivo and in vivo. 

Fourth, based on the feedback from the physicians who used the system, a compact 

version of the handheld endoscope with smaller size and less weight was built.  

The chapters of this dissertation are organized according to the four milestones 

mentioned above: 
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In the introduction chapter, the motivation of this study and the organization of the 

dissertation are presented. 

In Chapter 2, Section 2.1 introduces the concepts of fluorescence and fluorescence 

lifetime. Section 2.2 introduces the interested autoflorophores in epithelium and 

connective tissue and their changes associated with dysplasia. Section 2.3 introduces the 

three main implementations to conduct time-domain FLIM. Section 2.4 is a review of 

previously published FLIM endoscopes.  

Chapter 3 focuses on the bench-top combined FLIM-RCM system. The design of the 

system is described in Section 3.1. Validation results of phantom imaging, porcine buccal 

mucosa imaging ex vivo and hamster cheek pouch imaging in vivo are presented in Section 

3.2, 3.3 and 3.4, respectively. Section 3.5 and 3.6 are conclusion and discussion. 

Chapter 4 focuses on the fiber-bundle based FLIM endoscope. The design of the 

system is described in Section 4.1. Validation results of standard dyes and hamster cheek 

pouch imaging in vivo are presented in Section 4.2 and 4.3, respectively. At last, the 

limitations of this system are discussed in detail in Section 4.4 which is the reason for 

designing the rigid handheld FLIM endoscope in Chapter 5 and Chapter 6. 

Chapter 5 focuses on rigid handheld FLIM endoscope. The design of the system is 

described in Section 5.1. Validation results of standard dyes imaging, normal hamster 

cheek pouch imaging in vivo and normal human oral mucosa imaging in vivo are presented 

in Section 5.2, 5.3 and 5.4, respectively. In Section 5.5 and 5.6, results of oral biopsy 

imaging ex vivo and human oral cancer imaging in vivo are presented, respectively. 
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Chapter 6 focuses on the compact version of rigid handheld FLIM endoscope which 

might serve as the clinical prototype for in vivo study in the future. The design of the 

system is described in Section 6.1. Section 6.2, 6.3 and 6.4 present the results of standard 

dye validation, normal human oral mucosa imaging in vivo and oral biopsy imaging ex 

vivo, respectively. 

In Chapter 7, a conclusion is made in Section 7.1. The discussion of the future work 

is presented in Section 7.2. 
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2. FLUORESCENCE LIFETIME IMAGING MICROSCOPY (FLIM) 

2.1 Fluorescence and fluorescence lifetime 

Fluorescence is the emission of light by a molecule which absorbs light or other 

electromagnetic radiation [4]. The absorption of light excites the molecule from its ground 

state to a higher energy state, and its return to the ground state gives rise to fluorescence 

emission. A simplified Jablonski diagram which only consists of two electronic states is 

shown in Fig.1 to demonstrate the generation of fluorescence, in which the ground state is 

labeled as S0 and the first excited electronic state is labeled as S1. In each state, several 

lines are drawn to represent the vibrational energy states within S0 and S1, respectively. 

Absorption happens when the energy of excitation matches the energy difference between 

the lowest vibrational state of S0 and any of the vibrational states of S1. Since there are 

several vibrational states within S1, the absorption spectrum is broad. Likewise, the energy 

of emission equals the difference between lowest vibrational state of S1 and any of the 

vibrational state of S0, resulting in a broad emission spectrum. Because of the vibrational 

relaxation which is a non-radiative process among the vibrational states within S1, the 

emission light has a longer wavelength than that of the excitation.  
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Figure 1: Simplified Jablonski diagram illustrating the various electronic and vibrational 

states of a molecule and the transitions between states. S0: ground state, S1: excited state. 

 

Fluorescence lifetime is defined as the average time the molecule spends in the 

excited state prior to returning to the ground state [4]. The simplest case of a fluorescence 

decay follows a mono-exponential function. In this situation, the lifetime, denoted by τ in 

Eq. 2.1, is the time when the emission drops to 37% of the maximum intensity value I0.  

                                                       𝐼(𝑡) = 𝐼0𝑒−𝑡/𝜏                                                          (2.1) 

For more complicated samples that have several fluorescent components or follow the 

multi-exponential decay, an average lifetime can be calculated as in Eq. 2.2. 

                                           𝜏 =
∫ 𝑡 𝐼(𝑡)𝑑𝑡

∞
0

∫ 𝐼(𝑡)𝑑𝑡
∞

0

                                                              (2.2) 
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2.2 Intrinsic autoflorophores in oral epithelial tissue 

Autofluorophores in biological tissue have been of particular interest in clinical 

research studies. They can serve as label-free indicators of changes associated with 

dysplasia without the administration of contrast agents. In oral epithelial tissue, there are 

two layers which are divided by the basement membrane: the epithelium layer and 

underlying stroma layer. In the epithelium layer, there are metabolic coenzymes 

nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) inside 

the living cells. In stroma layer, there are collagens and collagen crosslinks. During the 

progression of dysplasia, the morphological and biochemical changes, such as the 

increasing epithelium thickness and metabolism activity, will modulate the tissue 

autofluorescence emission. Increased fluorescence from epithelium due to the increased 

cellular metabolism and decreased fluorescence from stroma due to the breakdown of 

collagen crosslinks, infiltration of lymphocytes, and increased epithelial thickness are 

expected.  

2.3 Methods of conducting the time-domain FLIM 

Fluorescence measurements can be classified into two categories: steady-state and 

time-resolved. The steady-state method usually measures the absolute fluorescence 

intensity or the emission spectrum. Compared to time-resolved measurement, it can be 

achieved by a relative simple implementation and cheaper instrumentation. However, in 

biological tissue study, the overlap of the emission spectrums from different 

autofluorophores makes it difficult to resolve individual autofluorophores from the steady-

state data. Also, steady-state method can be easily affected by some external factors during 
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in vivo imaging, such as the changes in light excitation-collection geometries, presence of 

endogenous absorbers, intensity artifacts caused by variation in tissue surface profile, and 

photobleaching effects [5]. The alternative method, time-resolved or lifetime 

measurement, can address those problems by resolving the sample’s fluorescence decay 

dynamics. Since the lifetime of fluorophore is independent of fluorescence intensity, it is 

more robust for the clinical applications. 

The time-resolved measurement can be performed in either time domain or frequency 

domain. As shown in Fig. 2 (a), in the time-domain measurement, the sample is excited 

by a short pulse of excitation and the emission decay is recorded as a function of time for 

lifetime calculation. In frequency-domain measurement as shown in Fig. 2 (b), the sample 

is excited with intensity modulated light at high frequency. The detected fluorescence 

emission is intensity modulated at the same frequency with a phase shift and a decreased 

modulation depth. The lifetime can be computed by the equations shown in Fig. 2 (b). For 

complex samples which have several lifetime components, different excitation modulation 

frequencies are required to cover the entire fluorescent decay dynamics. 
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Figure 2: Time-resolved measurement techniques. (a) Time-domain FLIM is performed 

by exciting the sample with a short light pulse and the fluorescence decay is used for 

lifetime calculation. (b) Frequency-domain FLIM is performed by exciting the sample 

with an intensity modulated light source (sinusoidal signal with angular frequency ω as 

an example in the figure). The recorded emission signal with phase shift φ and intensity 

modulation m with respect to the excitation signal is used for lifetime calculation. τφ and 

τm are the two lifetimes. 

 

In this dissertation, all the FLIM systems were built based on the time-domain 

measurement. There are three common implementations for time-domain FLIM: time-

correlated single-photon counting (TCSPC), time-gated detection and pulse sampling [5].  

In the TCSPC, a fluorescence decay curve is built as a histogram of the arrival time 

of the first detected photon after each excitation pulse as shown in Fig. 3 (a). At each 

spatial position (pixel), lots of photons are required to build up the histogram. It is 

recommended that 100 and 10,000 photons are needed to get a lifetime estimation 

accuracy of 10% and 1%, respectively. The pixel rate is determined by photon counting 

rate (typically a few MHz, smaller than laser repetition rate of tens of MHz) and total 

photon count per decay which is determined by the requirement for lifetime estimation 

accuracy. To give an example, if 10% lifetime accuracy is acceptable, a frame rate of ~0.6 

Hz can be achieved for a 128 × 128 pixels image at 106 photon counting rate. The 



 

11 

 

advantages of the TCSPC include low required pulse energy, free of gain noise and high 

temporal resolution [6]. These advantages make the TCSPC technique ideal to detect 

minor lifetime changes in live cell study, e.g. forster resonance energy transfer (FRET) 

between molecules.  

For time-gated implementation, the imaging is usually accomplished in wide field by 

a gated intensified charge coupled device (ICCD) as shown in Fig.3 (b). The gate of the 

ICCD opens at specific time to detect the fluorescence intensity. During imaging, a 

sequence of fluorescence intensity images is recorded at specific delays relative to the 

excitation pulse. The fluorescence decay curve for each spatial location is reconstructed 

by the multiple gates in the order of delay time. Since the imaging is in wide field and 

does not require scanning mechanism, it is simple for endoscopy implementation and save 

the time for scanning. However, there are several disadvantages. First, since the excitation 

pulse energy is distributed across the whole FOV, summing and averaging is necessary to 

achieve adequate signal to noise ratio (SNR). Second, in order to achieve higher temporal 

resolution, multiple gates are required to accurately reconstruct a decay curve, which will 

cause longer data acquisition time. Another disadvantage is this method is extremely 

sensitive to motion artifact. The sample cannot be moved during imaging in order to 

correctly reconstruct the fluorescence decay for each spatial position. 

Pulse sampling is the most straightforward time-domain FLIM implementation. As 

shown in Fig. 3 (c), it directly records the fluorescence temporal decay after each 

excitation pulse using high-speed detectors and digitizers. If the pulse energy is high 
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enough to get a decent SNR, only one laser pulse is required for each pixel. Thus, the pixel 

rate equals to the laser repetition rate. By 2-D scanning the sample, an image is achieved. 

 

Figure 3: Time-domain FLIM implementations. (a) TCSPC, the decay curve is 

established as a histogram of the arrival time of the first detected photon for each laser 

pulse. (b) Time-gated detection with an ICCD, a sequence of fluorescence images (from 

I0 (x, y) to In (x, y)) are captured with different delays (multiple times of ∆t) with respect 

to the laser pulse. The gate labeled in the figure is the integration time for each image (c) 

Pulse sampling, the decay is recorded by fast detector (e.g. MCP-PMT). 

 

2.4 Review of previous FLIM endoscopes for in vivo applications 

Many FLIM endoscope designs have already been proposed. Wide-field FLIM 

endoscopy was first demonstrated in the frequency domain [7]. It had a limited spatial 

resolution of 32 × 32 pixels and was validated on human healthy mucosa of the bronchi in 
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vivo. With the development of the gated optical intensifier (GOI), several time-gated 

FLIM endoscopes in time-domain were demonstrated. J. Requejo-Isidro et al. built a rigid 

endoscope with a frame rate of 7.2 Hz. It was validated on a bisected lamb kidney ex vivo 

[8]. I. Munro et al. built a flexible endoscope with a frame rate of 5.5 Hz. The system was 

validated on fresh human stomach and lamb’s kidney tissue ex vivo [9]. G. T. Kennedy et 

al. built a hand-held FLIM system based on a rigid clinical arthroscope and a custom-built 

GOI [10]. Recently, a flexible FLIM endoscope utilizing blue excitation light was 

demonstrated [11]. Compared to UV light, the blue excitation has the advantages of less 

concern on phototoxicity and less unwanted background fluorescence from the optical 

components. However, blue light cannot efficiently excite NADH, which is a very 

important autofluorophore for cancer detection. Besides the designs based on the time-

gated implementation, two flexible endoscopes have been proposed using the TCSPC 

module [12, 13]. Both of them were applied to measure FRET in the live cells and were 

limited to visible wavelength excitation, restricting their use to exogenous fluorescence 

imaging. A common limitation of all these designs mentioned above, however, was the 

acquisition of the fluorescence emission was at a single emission band. Since the 

autofluorophores in biological tissue have distinguished spectrums, multispectral imaging 

will help resolve different autofluorophores.  

For the multispectral FLIM endoscopy, one flexible endoscope design based on a 

wide-field time-gated implementation was proposed. The endoscope design was built 

around a flexible imaging fiber bundle, multispectral imaging was realized by placing a 

filter wheel in the emission optical path, and illumination was delivered using an adjacent 
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multimode fiber [14]. This endoscope was recently used to image oral cancer and brain 

cancer in vivo [15, 16]. However, this design presented three main limitations. First, since 

multispectral imaging was sequential, the time required to record FLIM images at multiple 

emission bands increased with the number of spectral bands. Second, since illumination 

light was delivered through a fiber adjacent to the imaging bundle, achieving uniform 

illumination and endoscope compactness could be challenging. Third, like all the wide-

field time-gated FLIM, in order to achieve a fast imaging speed, a rapid lifetime 

determination (RLD) algorithm had to be adopted which limited the temporal resolution. 

This trade-off between temporal resolution and imaging speed was overcome by several 

FLIM systems based on the pulse sampling implementation stated below. 

A multispectral FLIM catheter was designed and combined with ultrasound imaging 

for intravascular diagnosis [17, 18]. Due to the low repetition rate of the laser source (30 

Hz), the imaging speed was slow. The upgrade version of this system was published later 

with a high repetition rate laser (1 MHz). The system was validated on a swine model of 

pig arteries in vivo. However, the average excitation power they used exceeded the 

maximum permission energy (MPE) set by ANSI, which made it not suitable for human 

in vivo imaging. A hyperspectral FLIM was proposed by Nie et al. [19]. The system was 

capable of performing time-resolved measurements at multiple emission wavelengths with 

high spectral resolution by means of an acousto-optic tunable filter (AOTF) which allowed 

rapid random wavelength switching in the collection path. The system was validated on 

porcine skin specimens ex vivo. However, the reported pixel rate was slow (~3 Hz). 

Yankelevich et al. reported a multispectral time-resolved fluorescence spectroscopy 
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(TRFS) system recently [20]. The imaging speed was 9.6s for 1500 pixel which is still not 

fast enough to avoid motion artifact for in vivo imaging. In addition, both systems in [19] 

and [20] were limited to one single point detection. The beam steering mechanism was 

not integrated, and imaging was achieved by an external stage to move the sample.  
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3. BENCH-TOP COMBINED FLIM-RCM SYSTEM 

3.1 Bench-top combined FLIM-RCM system 

In order to determine specific design parameters for the endoscope system and 

characterize the system’s performance for detecting oral precancer and cancer, a bench-

top combined FLIM-RCM system was built before endoscope designs [21].  

In the multi-scale multimodal FLIM-RCM system, FLIM is used to provide real-time 

macroscopic images of the biochemical makeup of the specimen. These images then serve 

as a guide to direct RCM to suspicious sites within the FOV. Co-registered RCM 

facilitates morphological imaging of the sub-cellular structure of the epithelium with small 

FOV, but very high spatial resolution in three dimensions. The greatest contrast source of 

RCM in the epithelium is the variation in tissue refractive index, for example, the cell 

nuclei compared to the surrounding cytoplasm [22]. This enables visualization of cell 

nuclei and quantification of the features such as the nuclear-to-cytoplasmic ratio. The 

nuclear-to-cytoplasmic ratio is one of the morphological features for diagnosis of oral 

epithelial dysplasia and oral squamous cell carcinoma [23].  

The multimodal optical system is designed to probe the biochemical properties of 

tissue on a macroscopic scale and the cellular morphology with a high resolution. 

Therefore, a large-field FLIM and a high-resolution RCM subsystems are placed 

adjacently with a common sample translation stage for co-registration of images. A 

                                                 

 Reprinted with permission from “Fluorescence lifetime imaging and reflectance confocal microscopy for 

multiscale imaging of oral precancer” by Jabbour. J.M., Cheng S., Malik B.H., Cuenca R., Jo J.A., Wright 

J., Cheng Y-S.L., Maitland K.C., 2013. Journal of Biomedical Optics, 18(4), p. 046012, Copyright [2013] 

by Society of Photo-Optical Instrumentation Engineers. 
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detailed schematic of our integrated system is shown in Fig. 4. For FLIM subsystem, a 

frequency-tripled Q-switched ND: YAG laser (355 nm, <1ns pulse duration, 100 kHz 

maximum repetition rate, AOT-YVO-100QSP/MOPA, Advanced Optical Technology) 

was used as excitation. The laser light was coupled into a multimode fiber with a core 

diameter of 50 µm (FVP050055065, Polymicro Technologies) and delivered to the bench-

top system. The output of the excitation fiber was collimated and then reflected by a 

dichroic mirror (DM1: NC176741-z355rdc, Chroma) to a pair of galvanometer mirror 

scanners (6200HM40, Cambridge Technology) for two-dimensional raster scanning. A 

UV-NIR corrected triplet (f=45mm, NT64-837, Edmunds Optics) was used to focus light 

in the sample. The fluorescence emission was collected by the same triplet and passed the 

dichroic mirror (DM1) to the collection fiber with a core diameter 200 µm (BFL22-200, 

Thorlabs). The output of the collection fiber was launched to a multispectral detection unit 

which consisted of dichroic mirrors (DM2: T>95%@439-647 nm, LM01-427-25, DM3: 

T>95%@492-950 nm, FF484-Fdi01, Semrock), bandpass filters (F1: FF01-390/40, F2: 

FF01-452/45, Semrock), a long pass filter (F3: FF01-496, Semrock) and three multimode 

fibers with lengths of 1m, 13m and 25m (BFL22-200, Thorlabs). The detection unit 

separated the fluorescence emission into three spectral bands which were selected based 

on emission spectrum of the three endogenous fluorophores of interest: collagen (F1: 390 

± 20 nm), NADH (F2: 452 ± 22.5 nm) and FAD (F3: >500 nm). The three multimode 

fibers with different lengths provided a time delay of 60ns with 12 meter length difference 

and helped temperately separate the signals from the three spectral bands. Therefore, for 

each laser pulse, three fluorescence decays for three spectral channels could be detected 

http://www.thorlabs.us/thorProduct.cfm?partNumber=BFL22-200
http://www.thorlabs.us/thorProduct.cfm?partNumber=BFL22-200
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simultaneously with one single detector. The outputs of the three fibers were then detected 

by a high-speed micro-channel plate photomultiplier tube (MCP-PMT, 180 ps rise time, 

90 ps transit time spread, R5916U-50, Hamamatsu), amplified by a preamplifier (C5594-

12, Hamamatsu) and sampled by a digitizer at 6.25 GHz (PXIe-5185, National 

Instruments) using custom software programmed in LabVIEW (National Instruments). 

The FLIM data was then processed with MATLAB (Mathworks, Natick, MA). For each 

sample, nine maps were generated: three absolute intensity maps (I1, I2 and I3), three 

normalized intensity maps (I1n, I2n and I3n) and three average lifetime maps (τ1, τ2 and τ3) 

for three spectral channels, respectively. The I1, I2 and I3 were the time-integrated intensity 

values at corresponding pixels in the 390 nm, 452 nm, and >500 nm spectral bands, 

respectively. The I1n, I2n and I3n were calculated by I1n=I1/(I1+I2+I3), I2n=I2/(I1+I2+I3), 

I3n=I3/(I1+I2+I3) to show the proportion of each spectral channel among the three spectral 

channels. To calculate average lifetime, the measured fluorescence decays were first 

deconvolved from instrument response function (IRF) using the Laguerre deconvolution 

method to get real intrinsic fluorescence decays. The average lifetime τave was then 

calculated from the intrinsic fluorescence decay h(t) with ( ) ( )ave t h t h t    , where t 

is time. 

This bench-top FLIM subsystem had a field of view (FOV) of 16×16 mm2 while 

being able to distinguish element 1 of group 3 of USAF target corresponding to a lateral 

resolution of 62.5 µm using 400×400 pixels per image. For each pixel, only one pulse with 

a pulse energy of 1 μJ/pulse was used. The generated fluorescence signal had a decent 

signal to noise ratio (SNR) and no average was applied. As a result, the pixel rate was 
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equal to laser repetition rate. The acquisition of one single image took 19.2 s with 400×400 

pixels at 10 KHz laser repetition rate. The frame rate was varied depending on the number 

of pixels per frame and the laser repetition rate. The temporal resolution was calculated to 

be 320 ps based on the Nyquist theorem with 6.25 GS/s sampling rate. 

For the RCM subsystem, a near infrared (NIR) continuous wave diode-pumped 

solid state laser (1064 nm, 1 W, CL1064-1W0, Crystalaser, Reno, NV) was used as the 

illumination source. A combination of a half-wave plate and a linear polarizer in the beam 

path served as a variable attenuator to control the optical power incident on the sample. A 

spatial filter in the beam path was used to produce a clean Gaussian beam. An 8 kHz 

resonant scanner and a galvanometer scanner operating at 7 Hz (CRS 8K and 6215HM40, 

Cambridge Technology) were close-coupled to raster scan the NIR beam. A 2× beam 

expander filled the back aperture of a water immersion objective lens (60×, 1.0 NA, 2 mm 

working distance, LUMPLFLN60X/W, Olympus, Center Valley, PA), which focused the 

light onto the sample. A combination of linear polarizer, polarizing beam splitter, and 

quarter wave plate were used to remove specular reflections within the optical system. 

Finally, a spatial filter with a confocal pinhole of 30 µm diameter for optimized system 

characterization and 50 µm diameter for tissue imaging rejected the out of focus light prior 

to signal detection by an avalanche photodiode (APD) module (APD110C, Thorlabs).  

The RCM subsystem was measured to have a 400 μm diameter FOV and a lateral 

resolution of 0.97 μm. The FWHM axial resolution was measured to be 3.5 μm and 4.5 

µm using 30 µm and 50 µm diameter pinholes, respectively. The larger pinhole was used 

for imaging tissue samples in order to increase signal to noise ratio. 
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 An automated translation stage was used to move the sample between the FOVs 

of the FLIM and the RCM subsystems which were approximately 90 mm apart. A 1951 

positive USAF resolution target placed on a white paper was used to acquire co-registered 

images from the two subsystems with lateral accuracy less than the FLIM lateral resolution.  

 

 

Figure 4: Schematic of the combined FLIM-RCM system. Left: FLIM subsystem. DM: 

Dichroic mirror, F: Filter, PD: Photodiode, BS: Beam splitter, L: Lens. OL: Objective 

lens. Right: RCM subsystem. PH: Pinholes, APD: Avalanche photodiode, HWP: Half 

wave plate, POL: Polarizer, QWP: Quarter wave plate, PBS: Polarizing beam splitter. 

An XYZ translation stage co-registers FLIM and RCM images. 
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3.2 Tissue phantom imaging 

The first step to validate the system was tissue phantom imaging. A two-layer tissue 

phantom was developed to test the system’s capability to detect the macroscopic 

biochemical and microscopic morphological properties of a relatively complex sample. 

The phantom was produced with a thin top layer of 100-120 µm consisting of polymer 

beads to model the epithelial nuclei. NADH and FAD (Sigma-Aldrich) were also added 

to the top layer to mimic autofluorescent metabolic coenzymes in the epithelium. The 

NADH powder was concentrated towards the center and FAD was uniformly distributed 

throughout this layer. The top layer was set on top of a thick lower layer of collagen matrix 

which represented of stroma layer. In order to get a homogenous collagen matrix, collagen 

solution (rat tail tendon type I collagen, BD Biosciences) was used instead of collagen 

fiber. The dissolved collagen solution was added to 10× phosphate buffered saline (PBS) 

solution and 1 M sodium hydroxide (NaOH) along with deionized water. The solution was 

allowed to gel at 37
o
C for 30 minutes. However, the collagen gel was later found to have 

minor fluorescence under 355nm which was our excitation wavelength. The tissue 

phantom samples were prepared in a 96-well plate. The diameter of the wells was 

measured to be ~7 mm. The FLIM FOV was adjusted accordingly to capture a single well 

within the image.    
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Figure 5: FLIM-RCM images of the two-layer phantom. FLIM normalized intensity 

maps at spectral channels of (a) 452±22.5 nm (b) >500 nm, and FLIM average lifetime 

maps and lifetime histograms at (c) and (e) 452±22.5 nm and (d) and (f) >500 nm, 

respectively. RCM images at (g) 32 µm and (h) 60 µm depths. Scale bar in (a) is 2 mm 

for FLIM and in (e) is 50 µm for RCM. 

 

2mm 
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Fig. 5 shows the result of the phantom imaging. Since the collagen gel was found to 

be nearly non-fluorescent at 355 nm excitation, the signal in the 390 nm channel is less 

than 5% relative to the 452 nm and >500 nm channels. Therefore, images are shown only 

for the 452 nm (Fig. 5 (a) and (c)) and >500 nm (Fig. 5 (b) and (d)) bands corresponding 

to NADH and FAD emission, respectively. The circular mask shown in Figs. 5 (a) - (d) is 

the boundary of the phantom well in the 96-well plate. At 355nm excitation, peak emission 

wavelengths for NADH and FAD are around 450 nm and 520 nm, respectively. Part of 

the NADH fluorescence signal may be detected in the FAD band, whereas FAD 

fluorescence is limited to the >500 nm band. Fig. 5 (a) and (b) show FLIM normalized 

intensity maps at 452 nm and >500 nm bnads. The center of the phantom, where both 

NADH and FAD are present, provides fluorescence signal in both spectral channels (0.48 

± 0.08 a.u. in 452 nm band, and 0.45 ± 0.08 a.u. in >500 nm band). At the periphery of the 

phantom, the overall signal is dominated by FAD fluorescence in the >500 nm spectral 

channel (0.88 ± 0.09 a.u.). The known average lifetimes for unbound NADH and FAD are 

approximately 0.5 ns and 2 – 2.5 ns, respectively [24].  Fig. 5 (c) and (d) are the average 

lifetime maps, and Fig. 5 (e) and (f) are the corresponding lifetime histograms. As shown 

in the figures, the average lifetime for the center of the phantom in the 452 nm channel is 

0.32 ± 0.15 ns corresponding to the lifetime of unbound NADH. The average lifetime in 

the >500 nm channel is 2.08 ± 0.15 ns at the periphery which represents FAD, and 1.72 ± 

0.14 ns in the center which is the lifetime combination of NADH and FAD. Fig. 5(g) and 

5(h) show the confocal images from the top-layer of the tissue phantom at depths of 

approximately 30 µm and 60 µm, respectively. The polystyrene beads appear as white 
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dots in the reflectance images, and are fairly uniformly distributed over the entire FOV. 

These results demonstrate that such a two-layer phantom is well-suited to validate our 

dual-modality imaging system.  

3.3 Porcine buccal mucosa imaging ex vivo 

Porcine buccal mucosa was used as a model of human oral mucosa due to their similar 

epithelial thickness. Healthy porcine tissue was obtained from a local slaughterhouse or 

through the tissue sharing program at Texas A&M University, and transported to the lab 

for imaging within a couple of hours postmortem. 2×2.5 cm2 buccal mucosa tissue samples 

were excised from the inner cheek and placed in PBS solution prior to imaging. The pig 

tissue was at room temperature (~70ºF) during imaging.  

Fig. 6 shows the result of the porcine buccal mucosa imaging ex vivo. The normalized 

intensity maps (Fig. 6 (a) - (c)) indicates slightly stronger fluorescence signal in the 452 

nm band (0.42 ± 0.02 a.u.), followed by the >500 nm band (0.31 ± 0.03 a.u.) and 390 nm 

band (0.27 ± 0.02 a.u.). The weak signal in the collagen channel (390nm channel) may be 

due to the thick epithelium, which makes it difficult for the fluorescence from collagen to 

reach the surface of the tissue. The thickness of the epithelium is more than 400 µm as 

shown in the H&E histology images in Fig. 6 (j). The average lifetime images (Fig. 6 (d) 

- (f)) show relatively longer values at 390 nm (5.84 ± 0.49 ns), followed by >500 nm (5.09 

± 0.41ns) and 452 nm (4.26 ± 0.41 ns) channels. Both intensity and lifetime maps are 

homogeneous, as expected in normal tissue. The RCM images in Fig. 6 (g)-(i) clearly 

shows the epithelial cell nuclei as bright spots on a darker background. Both the nuclear 
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density and nuclear-to-cytoplasmic ratio increase with depth in the epithelium, which is a 

hallmark of normal epithelium.  

3.4 Preclinical in vivo imaging of a hamster cheek pouch model of oral cancer 

The hamster cheek pouch model of oral cancer was employed to evaluate the 

system’s performance to differentiate dysplasia from normal tissue. Specifically, the 

hamster was imaged during the early stages of 7,12-dimethylbenz [α] anthracene 

(DMBA)-induced oral carcinogenesis. A Golden Syrian hamster was used in this study. 

The animal use protocol was reviewed and approved by the Texas A&M University 

Institutional Animal Care and Use Committee (IACUC), and a veterinarian oversaw the 

clinical aspects of this study. The hamster was housed in pathogen-free conditions and fed 

with rodent chew and water ad libitum. The right buccal pouch of the hamster was treated 

3 times a week for 8 weeks with 0.5% solution of DMBA (Sigma-Aldrich) dissolved in 

mineral oil (Sigma-Aldrich). The left pouch was treated with mineral oil only and served 

as a normal control. At the time of imaging, the hamster was anesthetized using an 

intraperitoneal injection of 10% urethane solution. Once anesthetized, the hamster cheek 

pouch was pulled and clamped into a custom built mount to expose maximum tissue area. 

During the imaging procedure, the anesthetized hamster was kept warm with a heating 

pad. The exposed cheek pouch was likely between room temperature and body 

temperature of the hamster. After imaging of the buccal mucosa, the hamster was 

euthanized with a solution of pentobarbital. The cheek pouches were then excised, fixed 

in 10% formalin, and processed for H&E histology.  
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Figure 6: Ex vivo FLIM-RCM images of the normal porcine buccal mucosa. Normalized 

intensity maps at (a) 390±20nm, (b) 452±22.5nm, and (c) >500 nm. FLIM average 

lifetime maps at (d) 390±20nm, (e) 452±22.5nm, and (f) >500 nm. Arrows in (a) - (f) 

identify the RCM imaging location at the center of the FLIM FOV. RCM images 

obtained at (g) 60 µm, (h) 120 µm, and (i) 190 µm depths. Arrows in (g) - (i) point to 

individual nuclei. (j) 10× H&E histology image of tissue. Scale bar is 2 mm in (a), 50 

µm in (g), and 100 µm in (j).  
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Fig. 7 and Fig. 8 show the results for the normal and the DMBA-treated hamster 

cheek pouch, respectively. Fig. 7 (a)-(f) show the normalized fluorescence intensity and 

average lifetime maps for the normal hamster cheek pouch. The normalized fluorescence 

intensity values are 0.42 ± 0.04 a.u., 0.3 ± 0.01 a.u., and 0.28 ± 0.03 a.u., and lifetimes 

values are 5.61 ± 0.13 ns, 4.06 ± 0.25 ns, and 4.22 ± 0.29 ns for the 390 nm, 452 nm, and 

>500 nm bands, respectively. These results are consistent with a dominant collagen 

fluorescence emission that peaks at 390 nm and has an average lifetime of 5-6 ns. This is 

expected for the normal hamster cheek pouch, since the epithelium is very thin as shown 

in Fig. 7 (k) and most of the autofluorescence emission should come from collagen in the 

connective tissue. In comparison to the weak collagen signal in the thick porcine buccal 

mucosa, the fluorescence intensity in the 390 nm band is relatively high in the hamster 

cheek pouch tissue due to the very thin epithelium. The RCM images taken from the center 

of the FLIM FOV at approximate depths of 18 µm (Fig. 7 (h)) and 39 µm (Fig. 7 (i)) show 

scattering from the keratin at the surface, and epithelial nuclei beneath this superficial 

layer. Fig. 7 (j) is a zoomed in view of Fig. 7 (i) to more clearly show the cell membranes 

and nuclei identified by arrows. 

Fig. 8 (a)-(f) show the normalized fluorescence intensity and the average lifetime 

maps for the DMBA-treated hamster cheek pouch. As seen in the corresponding 

photograph of the tissue in Fig. 8 (g) and in the FLIM images, a tumor is visible in the 

lower right quadrant of the tissue. In each FLIM map, two locations are marked by arrows 

labeled as Region 1 and Region 2. Region 1 was later diagnosed as cytologic atypia as 

shown in Fig. 8 (h) and Region 2 was diagnosed as low-grade dysplasia as shown in Fig. 
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8 (i) by histopathology. In these lesions, the fluorescence lifetime in the 452 nm channel 

is shorter (4.32 ± 0.18 ns and 4.29 ± 0.29 ns in Regions 1 and 2, respectively) compared 

to the normal tissue (>5 ns). Since NADH has a much shorter fluorescence lifetime (~0.5 

ns) and its peak emission is at 450 nm, the resulting fluorescence in the pre-cancerous 

lesions is expected to have shorter lifetimes at 452 nm than in normal tissue. In the tumor 

region, the epithelium is so thick that all the fluorescence contribution is coming from this 

layer. Since the collagen in the connective tissue is either deconstructed or no longer 

excited due to the increasing epithelial thickness, the signal at 390 nm is insignificant (0.06 

± 0.03 a.u.). Strong emission is observed at >500 nm (0.75 ± 0.14 a.u.) and significant 

emission is also observed at 452 nm (0.19 ± 0.11 a.u.) in the tumor region. The extremely 

low signal in 390 nm band in the tumor region results in inaccurate lifetime measurements; 

therefore, the lifetime map in Fig. 8 (d) is masked in this tumor region. The fluorescence 

lifetime at 452 nm is much shorter (2.62 ± 0.79 ns) compared to normal tissue indicating 

a greater fluorescence contribution from NADH. The fluorescence lifetime in the 500 nm 

channel is longer (5.62 ± 1.27 ns) compared to normal tissue indicating contribution of 

both FAD and porphyrin; porphryin has relatively long lifetime (>6 ns) [15]. The RCM 

images of Region 1 just below the surface (Fig. 8 (j)) and deeper in the epithelium (Fig. 8 

(l) and Fig. 8 (m) zoomed in) show very small features that may be epithelial nuclei or 

possibly nucleoli that can be seen in the corresponding histology section in Fig. 8 (h). In 

contrast, the RCM images of the epithelium in Region 2, shown in Fig. 8 (n), 8 (m) and 

Fig. 8 (o) zoomed in, show much larger nuclei indicative of precancerous changes. Arrows 

in RCM images identify cell nuclei.  
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Figure 7: In vivo FLIM-RCM images of normal hamster cheek pouch. Normalized FLIM 

intensity maps at (a) 390±20nm, (b) 452±22.5nm, and (c) >500 nm. FLIM average 

lifetime maps at (d) 390±20nm, (e) 452±22.5nm, and (f) >500 nm. (g) Photograph of 

imaging areas. RCM images (h and i) taken at different depths below the surface. Zoom 

in RCM image (j) taken from dotted squares in (i).  Arrows in RCM images point to 

individual nuclei. (k) 25× H&E histology image. Scale bar is 2 mm in (a) and 50 µm in 

(k). 
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Figure 8: In vivo FLIM-RCM images of the DMBA-treated hamster cheek pouch. 

Normalized FLIM intensity maps at (a) 390±20nm, (b) 452±22.5nm, and (c) >500 nm. 

FLIM average lifetime maps at (d) 390±20nm, (e) 452±22.5nm, and (f) >500 nm. (g) 

Photograph of imaging areas. (h) and (i) 25× H&E histology images for region 1 

(cytologic atypia) and region 2 (low-grade dysplasia), respectively. RCM images (j, l, n 

and o) taken at different depths below the surface. Arrows labeled 1 and 2 in the FLIM 

images in (a-f) correspond to regions for subsequent RCM images in (j-m) and (n-p), 

respectively. Zoom in RCM images (m and p) taken from dotted squares in (l and o) 

respectively.  Arrows in RCM images point to individual nuclei. Scale bar is 2 mm in (a) 

and 50 µm in (h). 
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3.5 Discussion 

This work shows that our dual-modality multispectral FLIM and RCM imaging 

system can effectively image biochemical and morphological features in tissue. While 

large-field FLIM enables fast macroscopic tissue evaluation, it lacks the ability to provide 

optical sectioning and high spatial resolution for cellular evaluation. The RCM subsystem 

can provide much higher spatial resolution and optical sectioning necessary for cellular 

imaging but has a limited FOV. The combination of these two imaging techniques on a 

single platform offers an important and powerful tool utilizing the strengths of the 

individual subsystems. The complementary information acquired from the integration of 

the two modalities is important for the study of biological changes such as those seen in 

the progression of early cancer. 

In all instances, FLIM imaging provides macroscopic biochemical maps which 

represent the relative contribution of the endogenous fluorophores, both with respect to 

fluorescence intensity and lifetime. While the FLIM images of the tissue phantom show 

some physical features due to the geometry of the phantom and the distribution of NADH 

and FAD, the images of the biological samples showed differences in intensity and 

lifetime signals between normal and cancer. The FLIM maps of healthy pig mucosa are 

relatively homogeneous, as expected, due to the uniform nature of the normal tissue. The 

detected collagen signal from the pig mucosa with thick epithelium and the clear nuclei 

seen with RCM at different depths of tissue demonstrate the potential for translation to 

human oral tissue. Normal human oral mucosa, with an epithelial thickness ranging from 

190 to 580 µm depending on the site in the oral cavity and cell nuclear diameters on the 
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order of 10 µm, has similar tissue architecture and cell morphology to pig oral mucosa 

[25]. In comparison, the hamster tissue has a wide range of pathologies, resulting in spatial 

features in both the intensity and lifetime images. Additionally, the spectral and lifetime 

data of the DMBA-treated pouch is different than the normal control pouch, indicating the 

ability to detect precancerous changes. By comparing the normalized intensity and average 

lifetime values in Table 1, differentiation between normal and tumorous tissue may be 

achieved with intensity measurements alone. However, based on some similarity in 

normalized intensity values and differences in lifetimes between normal tissue and the 

DMBA-treated RCM Regions 1 and 2, the more challenging and relevant problem of 

distinguishing between benign and precancerous lesions may be realized with FLIM. It 

should be noted that the histopathological difference between the normal and pre-

cancerous lesions being compared are very subtle; yet, difference in the FLIM signal could 

already be observed. Nevertheless, the high resolution of RCM is still necessary for 

identifying cellular changes indicative of precancer. 

The results from the high-resolution reflectance confocal microscope demonstrate 

the potential of the imaging system towards characterization of sub-cellular morphological 

features of the epithelial tissue. The brighter nuclei against the darker background can be 

delineated in the RCM images. The normal cell nuclei in the porcine tissue are on the same 

scale as the normal human epithelial cell nuclei. Although the normal hamster epithelial 

nuclei are smaller, they are still detectable with our RCM imaging system. An increase in 

nuclear size is distinguished between normal and dysplastic tissue in hamster cheek pouch. 

RCM images of the epithelial nuclei can be further analyzed either manually or through 



 

33 

 

automated image processing to calculate more objective parameters defining epithelial 

tissue characteristics such as nuclear size, nuclear density and nuclear-to-cytoplasmic ratio 

[26]. The RCM system was able to distinguish between two pathologically different 

regions that look similar using FLIM. This shows the importance of these two 

complementary techniques.  

 

Table 1 Normalized fluorescence intensity and average lifetime for phantom, normal 

porcine mucosa, normal hamster cheek pouch and DMBA-treated hamster cheek pouch 

Sample 
λem 390 nm 452 nm >500 nm 

 Intensity Lifetime Intensity Lifetime Intensity Lifetime 

Phantom 
Center -- 0.48 ± 0.08 0.32 ± 0.15 0.45 ± 0.08 1.72 ± 0.14 

Outer -- -- 0.88 ± 0.09 2.08 ± 0.15 

Normal 

Pig 

Entire 

FOV 
0.27 ± 0.02 5.84 ± 0.49 0.42 ± 0.02 4.26 ± 0.41 0.31 ± 0.03 5.09 ± 0.41 

Normal 

Hamster 

Entire 

FOV 
0.42± 0.04 5.61 ± 0.13 0.30 ± 0.01 4.60 ± 0.25 0.28 ± 0.03 4.22 ± 0.29 

DMBA-

Treated 

Hamster 

Tumor 0.06 ± 0.03 5.43 ± 0.14 0.19 ± 0.11 2.62 ± 0.79 0.75 ± 0.14 5.62 ± 1.27 

Region 

1 
0.49 ± 0.02 5.49 ± 0.16 0.28 ± 0.01 4.32 ± 0.18 0.23 ± 0.02 4.23 ± 0.21 

Region 

2 
0.42 ± 0.02 5.43 ± 0.14 0.27 ± 0.01 4.29 ± 0.29 0.30 ± 0.01 5.16 ± 0.34 

 

3.6 Conclusion 

In summary, we have presented the design and development of a dual-modality 

multi-scale bench-top FLIM-RCM imaging system applied to the characterization of oral 

epithelial tissue. The integrated system is capable of identifying both morphological 

features and the biochemical composition of mucosal tissue, which together can 

potentially serve as a powerful diagnostic aid towards classification of pathological 

condition of the tissue. Such a simultaneous characterization of tissue physiology may be 
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used to assess if the sample is normal, benign, premalignant or malignant, and may 

ultimately be used as a guiding tool for standard screening and intervention methods.  

We are currently evaluating the system described here for differentiation of 

precancer from benign lesions in the hamster cheek pouch model. Following validation of 

this technology in an animal model and in human biopsies, the system can be miniaturized 

for in vivo imaging in humans using lens relays, fiber bundles, and miniature lenses. 
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4. FLEXIBLE MULTISPECTRAL FLIM ENDOSCOPE 

4.1 Flexible multispectral FLIM endoscope system 

In order to translate the FLIM technique to the clinical arena, an endoscope or probe 

based design to access the oral cavity is required. To this effect, a compact FLIM 

endoscope based on fiber-bundle capable of simultaneous multispectral FLIM imaging at 

an imaging speed of ~2 fps was developed [27].  

The system was built based on wide-field time-gated detection implementation. The 

system schematic is shown in Fig. 9. Since tissue endogenous fluorescence is best excited 

with UV light, a frequency-tripled Q-switched Nd:YAG laser was used as the excitation 

source (355nm, <1ns pulse duration, maximum repetition rate of 100KHz, AOT-YVO-

100QSP/MOPA, Advanced Optical Technology). The endoscope was built around an 

imaging fiber bundle suitable for UV-VIS light transmission (10,000 elements, NA of 

0.22, 1.1mm active area diameter, 1 m long, FIGR-10, Fujikura). A Lithium-based GRIN 

lens (Gradient Index lens, NA of 0.2, 1 mm diameter, GRINTECH) was placed at the 

distal end of the bundle with an air gap. Although the air gap gave rise to a loss of laser 

power from air-lens interface, it eliminated the background autofluorescence introduced 

by the glue which could corrupt the signal. A metal tube was used to connect the fiber 

bundle and the GRIN lens and to serve as a protective housing for the endoscope tip. The 

GRIN lens provided a working distance of 5 mm and a circular FOV of 2.25 mm in 

                                                 

 Reprinted with permission from “Flexible endoscope for continuous in vivo multispectral fluorescence 

lifetime imaging” by Cheng S., Rico-Jimenez J.J., Jabbour J., Malik B.H., Maitland K.C., Wright J., 

Cheng Y-S.L., Jo J.A., 2013. Optics Letters, 38(9), p. 1515-1517, Copyright [2014] by The Optical 

Society. 
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diameter (2.25 × magnification). A dichroic mirror (DM1: NC176741-z355rdc, Chroma), 

placed at the proximal end of the imaging bundle, was used to reflect the laser beam into 

the fiber bundle and transmit the fluorescence emission to the detection arm. The laser 

beam size was allowed to be slightly larger than the active area of the bundle to achieve 

relative uniform illumination at the cost of coupling efficiency (~35%). The proposed 

endoscope design thus allowed both small diameter and uniform illumination.  

 

Figure 9: Schematic of the multispectral FLIM endoscope system. BS: Beam sampler, 

DM: Dichroic mirror, M: Mirror, F: Filter, L: Lens. 

 

Wide-field time-gated FLIM was implemented using an intensified charge-coupled 

device (ICCD camera, 200-800 nm spectral range, 14.4 x 10.8 mm2 active area, minimum 

200 ps gate width, 33.8 Hz frame rate, 4Picos, Stanford Computer Optics). Simultaneous 

multispectral FLIM was implemented as follows: based on a similar approach previously 

proposed by Siegel et al. [28]. The fluorescence emission exiting the proximal end of fiber 

bundle was first collimated by an achromatic lens (L1: f=35 mm, Thorlabs). Then, a 

combination of two dichroic mirrors and one reflective mirror (DM2: T>95%@439-
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647nm, DM3: T>95%@492-950nm, Semrock, M1: Ravg>97.5%@450-2000 nm, 

Thorlabs) with three band pass filters (F2: 390±20 nm, F3: 450±20 nm, F4: 560±20 nm, 

Semrock) were used to separate the fluorescence emission into three spectrally resolved 

collimated beams. Each beam was then directed and focused on different regions of the 

active area of the ICCD by means of three reflective mirrors (M2: Ravg>90% from 250 - 

450 nm, M3-4: Ravg>97.5%@450-2000 nm, Thorlabs) and an achromatic lens (L2: f=150 

mm, Thorlabs). The three spectral channels were selected based on the peak emission of 

three fluorophores of interest (collagen, NADH and FAD); however, they can be 

customized for a given specific application. The lateral resolution in all three spectral 

channels was measured to be ~35µm by imaging a USAF resolution target (NT57-895, 

Edmund Optics). 

The fluorescence lifetime maps were obtained by three methods: the rapid lifetime 

determination (RLD) with 2-gate protocol [29], the 4-gate protocol with a linearized least-

squares lifetime determination method [30] and 20-gate method. The 2-gate protocol 

requires only two time-gated fluorescence images recorded at different delays with respect 

to the excitation pulse whereas the 4-gate and 20-gate methods require 4 and 20 time-

gated images, respectively. The 2-gate and 4-gate methods treat the fluorescence decays 

as single exponentials, which is seldom the case for tissue autofluorescence. Nevertheless, 

the approximated average lifetime can still provide fluorescence lifetime contrast in 

biological tissue. The 2-gate method in our wide-field FLIM system allows an imaging 

speed of ~1 fps compared to ~0.5fps and ~0.1fps for 4-gate and 20-gate methods, 

respectively. Although in principle the frame rate for the 2-gate method should be faster 
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and equal to half of the frame rate of the ICCD (33.8 Hz), the time required to change the 

delays between gates at each consecutive frame is still too long (~500 ms) with the current 

control software of the ICCD.  

4.2 Standard dyes validation 

The FLIM endoscope was first validated with a set of three quartz capillary tubes 

loaded with 1 mM solutions of POPOP (in ethanol), NADH and FAD (both in PBS). The 

lifetime estimations from the three methods are listed in Table 2.  

 

Table 2 Comparison of the lifetime estimation with 2-gate, 4-gate and 20-gate methods  

(unit: ns) 
 390nm 450nm 560nm 

 POPOP NADH POPOP FAD 

2-gate 0.93  ±0.21 0.51  ±0.06 1.07  ±0.24 2.32  ±0.56 

4-gate 0.95  ±0.17 0.63  ±0.07 1.09  ±0.19 2.35  ±0.54 

20-gate 1.50  ±0.11 0.55  ±0.07 1.60  ±0.20 2.49  ±0.11 

 

As shown in Table 2, the 2-gate method provides smaller values than the 20-gate 

method, which is expected under the assumption that the fluorescence decays follow 

single exponential decays. However it does provide lifetime contrast among the three 

fluorescent dyes. Since the 4-gate and 20-gate methods take longer time and are not 

suitable for in vivo application, they were not adopted for the later studies in this chapter. 

In Fig. 10, the fluorescence intensity and average lifetime images from the three spectral 

channels with the 2-gate method are shown. As can be seen in Fig. 10 (a), strong emission 
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from POPOP is observed in both the 390±20 nm and 450±20 nm bands, while NADH and 

FAD emission is only observed in the 390±20 nm and 560±20nm bands, respectively. As 

shown in Fig. 10 (b), the average lifetime for POPOP, NADH, and FAD are estimated to 

be 1.07±0.24 ns, 0.51±0.06 ns, and 2.32±0.56 ns, respectively. The results from the three 

FLIM channels are in good agreement with the emission spectrums and lifetimes of the 

three fluorophores in literatures [24, 31, 32]. 

 

Figure 10: In vitro validation imaging of quartz capillaries loaded with (top to bottom) 

NADH, FAD, and POPOP. (A) Fluorescence intensity maps (B) Lifetime maps 

(colorscale in ns).  

 

In order to demonstrate the system’s potential for in vivo applications, continuous 

multispectral imaging was performed whereby two quartz capillary tubes loaded with 1 

mM solutions of POPOP (in ethanol) and NADH (in PBS) were continuously imaged. A 
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total of ten consecutive fluorescence intensity and lifetime frames for the 450±20 nm 

channel are shown in Media 1 in the supplemental material. The lifetime maps clearly 

show longer lifetimes for the POPOP capillary (bottom) compared to the NADH capillary 

(top). To investigate the robustness of the imaging system to motion artifacts, the position 

of the capillaries was shifted at the 6th frame. While the intensity maps are not affected, 

the lifetime values are underestimated for part of the POPOP capillary during the shift in 

the capillary position; however, the lifetime maps are stabilized after one frame. 

4.3 Preclinical in vivo imaging of a hamster cheek pouch model of oral cancer 

The FLIM endoscope was further validated by imaging in vivo a lesion from a 

DMBA-treated hamster check pouch, which was diagnosed by histopathology as 

dysplasia. The imaging protocol for this study was approved by the Institutional Animal 

Care and Use Committee (IACUC) at Texas A&M University (TAMU). Multispectral 

FLIM images of the oral lesion surrounded by healthy tissue are displayed in Fig. 11, 

where it can be seen that the fluorescence intensity images have stronger fluorescence in 

the surrounding healthy tissue relative to the lesion area for all spectral channels. The 

fluorescence lifetime images for the 390±20 nm and 450±20 nm channels show longer 

values in the surrounding healthy tissue (~2-3 ns) relative to the lesion area (~1.2-1.6 ns), 

whereas for the 560±20nm channel, longer values in the lesion area (~1.6-1.7 ns) relative 

to the surrounding healthy tissue (~1.2-1.3 ns) can be seen. These fluorescence intensity 

and lifetime values in the lesion are similar to those of NADH and FAD, whereas the 

intensity and lifetime values of the surrounding healthy tissue suggest the presence of a 
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collagen rich area. These results are also consistent with the biochemical composition of 

normal and cancerous epithelial tissue.  

Continuous multispectral FLIM imaging was also demonstrated in vivo on the same 

hamster cheek pouch lesion. A total of ten consecutive fluorescence intensity and lifetime 

frames for the three spectral channels are shown in Media 2 in the supplemental material. 

 

Figure 11: In vivo imaging of a DMBA-treated hamster cheek pouch. (A) Fluorescence 

intensity maps (B) Lifetime maps (colorscale in ns). The arrows indicate a small 

malignant lesion showing distinct fluorescence intensity and lifetime values than those 

from the surrounding tissue.  

 

4.4 Discussion 

Our in vitro and in vivo results clearly demonstrate that simultaneous multispectral 

FLIM imaging can be implemented using the spectral separation scheme proposed in our 

endoscope design. This flexible FLIM endoscope represents the first design in which both 
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UV illumination and visible (VIS) fluorescence emission can be transmitted through the 

same optical path. Although its compact design and fast imaging speed is suitable for 

clinical application, it suffers from two main disadvantages. First, while the fiber bundle 

used in this study is the most flexible commercially available bundle with adequate 

transmission in the UV-VIS range with the added advantage of low UV-induced 

autofluorescence, its flexibility (minimum bending radius of 200mm) is still far from ideal 

for many clinical applications. In the future, it is quite possible that more flexible imaging 

bundles will be custom-fabricated for subsequent designs. For applications where UV 

illumination is not critical, other more flexible imaging bundles are already commercially 

available. Second, the fast imaging speed (1 fps) is achieved by utilizing RLD algorithm 

which only requires two gates for lifetime calculation. The relatively poor temporal 

resolution of this method may not provide sufficient contrast to detect and differentiate 

normal, precancer and cancer. To overcome the second disadvantage, we adopted pulse 

sampling implementation with MCP-PMT instead of ICCD as described in the following 

chapters. 

4.5 Conclusion  

We have presented a compact flexible FLIM endoscope system based on a coherent 

optical fiber bundle suitable for both UV excitation and VIS collection. This system is 

capable of continuous lifetime imaging for up to three fluorescence emission bands 

simultaneously.  This novel endoscope design was validated by standard fluorescent dyes 

and a dysplasia lesion from a DMBA-treated hamster cheek pouch. Although it is compact 

and fast enough for in vivo application, the disadvantages discussed in Section 4.4 make 
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us continue to design another probe based on pulse sampling implementation for the 

following clinical trial. The new endoscope design will be described in the following 

chapters.  
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5. RIGID HANDHELD MULTISPECTRAL FLIM ENDOSCOPE 

5.1 Rigid handheld multispectral FLIM endoscope system 

In the previous chapter, we described the design of a fiber bundle based endoscope 

and discussed its limitations. To overcome these disadvantages, a rigid handheld FLIM 

endoscope was designed [33]. The system was based on time-domain pulse sampling 

implementation, similar to the bench-top FLIM system in Chapter 3. 

The system consists of a handheld box (volume: 7×13×5 cm3, mass: 450 g) fitted 

with a custom-designed rigid endoscope (length: 14 cm, diameter: 1.7 cm) as shown in 

Fig. 12 (a). The schematic of the proposed system is shown in Fig. 12 (b). A frequency-

tripled Q-switched Nd:YAG laser (355 nm, <1 ns pulse width, 100 kHz maximum 

repetition rate, Advanced Optical Technology) was used as the excitation source. A 

multimode fiber with core diameter of 25µm (0.10 NA, HPSC25, Thorlabs) or 50 µm 

(0.22 NA, FVP050055065, Polymicro Technologies) delivered the excitation light to the 

handheld box. The excitation light was collimated (L2: f = 11 mm, ARC 350-700 nm, 

CFC-11X-A, Thorlabs) and scanned by a pair of galvonometer mirrors (5 mm beam 

aperture, ±5 mechanical degrees, Cambridge Technology) on the proximal end of the rigid 

endoscope. The rigid endoscope was built using standard ½” lens tubes (Thorlabs) and 

consisted of three lenses. The first two lenses (L3, L4: f = 30 mm, LB003, Thorlabs) 

worked as an image relay to extend the length of the endoscope, while the third lens (L4: 

                                                 

 Reprinted with permission from “Handheld multispectral fluorescence lifetime imaging system for in 

vivo applications” by Cheng S., Cuenca R.M., Liu B., Malik B.H., Jabbour J.M., Maitland K.C., Wright J., 

Cheng Y-S.L., Jo J.A., 2014. Biomedical Optics Express, 5(3), p. 921-931, Copyright [2014] by The 

Optical Society. 
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Near UV achromat doublet, f = 30 mm, 50 mm or 60 mm; Edmund Optics) worked as an 

objective to focus the light on the sample. In this configuration, the excitation fiber core 

diameter and the focal length of the objective determined the lateral resolution and the 

FOV of the system.  A lens tube with a length equal to the objective’s focal length was 

added at the distal end of the probe which allowed the sample to be in contact with the 

probe, which can help reduce motion artifact during in vivo imaging.  

 

Figure 12: (a) Phtograph of the handheld rigid endoscope (b) Schematic of the rigid 

FLIM endoscope system. DM: Dichroic mirror, L: Lens, F: Filter, AMP: Amplifier. 

 

An optical simulation of the rigid endoscope design was performed by Zemax 

(Radiant Zemax) as follows, results of which are presented in Fig. 13. The excitation 

wavelength for the simulation was set to 355 nm. The setup consisted of a point source 

(object NA=0.1), a collimator (f=11mm, CFC-11X-A, Thorlabs), a pair of mirror scanners 

(5 mm in diameter for active area) and the three-lens combination for the endoscope 

described above. In this configuration, we were able to simulate the FOV by changing the 
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scan angle of the mirror scanners. By using objective lens with focal lengths of 30mm, 

50mm and 60mm, we could vary the FOV. The three colors in Fig. 13 represent light 

coming from three different scanning angles. The Zemax simulation estimated the 

numerical aperture of the endoscope at ~0.028 and the maximum FOV of ~5 mm for 30 

mm focal length objective, ~10 mm for the 50 mm focal length objective and ~12 mm for 

the 60 mm focal length objective, which were close to the measured FOV. We also 

analyzed an intensity line profile across the features of a 1951 USAF resolution target to 

quantify the lateral resolution [34]. The intensity profile represented the edge-response 

function and its first-order derivative was the line-spread function (LSF) which was also 

the cross section of the lateral point spread function (PSF). As an example, for the 25 μm 

excitation fiber and the 50 mm focal length objective, the FWHM of the PSF was 

calculated to be 44.8 um, which was in close agreement with the corresponding value 

experimentally determined by imaging the USAF resolution target as shown in Table 3. 

Table 3 also provides FOV and lateral resolution values for different combinations of fiber 

core size and objective’s focal length. 
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Figure 13: Zemax simulation for the excitation optical pathway. Different colors 

represent light from different scan angles. 

 

Table 3 Comparison of resolution and FOV with different focal length objectives and 

excitation fiber core diameters 
Excitation fiber core 

diameter 
( µm) 

Objective focal length 
( mm) 

Lateral resolution 
( µm) 

FOV diameter 
(mm) 

25  

f=30  ~35  ~6.5 

f=50  ~50  ~11  

f=60  ~88  ~13  

50  

f=30  ~70  ~6.5  

f=50  ~110  ~11  

f=60  ~140 ~13  

 

The time-resolved fluorescence emission was spectrally divided in three separate 

emission bands by the same detection unit as described in Chapter 3. Briefly, as shown in 

Fig. 12 (b), a set of dichroic mirrors (DM2, DM3) and filters (F1-F3) separated the 

emission into three spectral bands, each one was coupled into one of the three multimode 

fiber with different lengths. Thus, for a single excitation pulse, multiple decays 

corresponding to different spectral bands could be recorded using a single detector. The 

spectral bands could be customized based on the targeted fluorophores.  We selected the 
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390±20 nm, 452±22.5 nm, and >500 nm bands to optimally distinguish emission from 

three tissue endogenous fluorophores: collagen, NADH, and FAD, respectively. The 

multispectral fluorescence signal was detected by a multichannel plate photomultiplier 

tube (MCP-PMT, 25 ps transient time spread, R3809U-50, Hamamatsu), followed by a 

preamplifier before being digitized at 6.25 GS/s by a high-speed digitizer (PXIe-5185, 

National Instruments) resulting in a temporal resolution of 320 ps. 

FLIM data obtained from the proposed design was processed using the methods 

described in Chapter 3. For each sample, nine maps were generated: three absolute 

intensity maps (I1, I2 and I3), three normalized intensity maps (I1n, I2n and I3n) and three 

average lifetime maps (τ1, τ2 and τ3). For average lifetime calculation, the relatively broad 

excitation pulse width (FWHM: ~1 ns) necessitated the temporal deconvolution of the 

instrument response from the measured fluorescence decay in order to obtain accurate 

estimation of the fluorescence lifetime. Time deconvolution was performed offline using 

an optimized Laguerre expansion technique algorithm [24]. The average lifetime τave was 

then estimated from the intrinsic fluorescence decay h(t) using the formula 

( ) ( )ave t h t h t    , where t is time. Besides the offline lifetime estimation, in order to 

demonstrate real-time visualization of the multispectral FLIM results, an online 

deconvolution method was applied, in which the recorded time-resolved decay for each 

pixel was compared against a lookup table of decays generated by convolving the 

instrument response with single exponential decays with time constants ranging from 0.2 

to 8 ns (in steps of 0.2 ns). The best match in terms of the minimum normalized means 

squared error provided a single exponential estimation of the fluorescence lifetime. 
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For all the experiments in this chapter, the following parameters were used. The laser 

pulse energy at the sample was set at ~1 µJ/pulse, resulting in an adequate signal-to-noise 

ratio (SNR ≥ 30 dB). Since only one pulse was required per pixel, the pixel rate was equal 

to the laser repetition rate. The laser repetition rate was set at 30 kHz and the total number 

of pixels per frame was set at 150150, corresponding to a frame rate of ~1.33 Hz. The 

combination of an excitation fiber with a core diameter of 50 µm and an objective with a 

focal length of 50 mm were adopted, which provided a FOV of ~10mm and a lateral 

resolution of ~110µm. This FOV and resolution were suitable for imaging oral cancer. 

5.2 Standard dyes validation 

The handheld imaging system was first validated with 1 mM solutions of POPOP (in 

ethanol), NADH and FAD (in PBS). The standard dye solutions were loaded in three 

quartz capillary tubes and placed side by side under the probe.  

The normalized intensity maps (Fig. 14 (a)) confirm strong emission of POPOP at 

both the 390 nm and 452 nm channels, strongest emission of NADH at the 452 nm 

channel, and emission of FAD only at the >500 nm channel. The average lifetime maps 

(Fig. 14 (b)) are also in good agreement with the previously published values for the 

corresponding fluorophores [24, 32]. The average lifetimes are 1.26 ± 0.05 ns, 0.67± 0.06 

ns and 2.75± 0.03 ns for POPOP, NADH and FAD, respectively. 
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Figure 14: In vitro imaging of quartz capillaries loaded with FAD, NADH, and POPOP. 

(a) Normalized fluorescence intensity maps, and (b) Fluorescence lifetime maps. 

 

In order to demonstrate the system’s potential for in vivo applications, continuous 

multispectral imaging was conducted at ~1.33 frames per second. A video, named Media 

3 in the supplemental material, was recorded with the online lifetime estimation. The 

average lifetime values for the dyes using the offline and the online methods are compared 

in Table 4 (calculated pixel-to-pixel for the areas corresponding to the entire capillary). 

The offline method provides smaller values than the online method, which is expected 

because of the assumption for online estimation that the fluorescence decays followed 
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single exponential decays. But the lifetime value calculated from online method does 

provide contrast among three fluorescent dyes. 

All the videos showed in this chapter were processed with this online method, 

whereas all the figures in this chapter were processed offline with the Laguerre 

deconvolution algorithm. 

 

Table 4 Comparison of offline and online fluorescence lifetime estimation  

(mean ±standard deviation) 
 Offline Estimates (ns) Online Estimates (ns) 

POPOP (390 nm) 1.26 ± 0.07 1.03 ± 0.13 
NADH (452 nm) 0.67 ± 0.04 0.32 ± 0.08 
FAD (>500 nm) 2.75 ± 0.03 1.91 ± 0.14 

Pouch (390 nm) 5.86 ± 0.17 3.91 ± 0.58 
Pouch (452 nm) 4.44 ± 0.13 2.36 ± 0.45 

Pouch (>500 nm) 3.40 ± 0.19 1.92 ± 0.41 

 

5.3 Normal hamster cheek pouch imaging in vivo 

To demonstrate the ability for in vivo application, the handheld system was validated 

by imaging a normal hamster cheek pouch in vivo. The imaging protocol was approved by 

the IACUC at TAMU. During imaging, the hamster was first anesthetized, a cheek pouch 

was pulled out and extended, and the rigid probe was gently placed on the mucosa surface.  
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Figure 15: In vivo imaging of a normal hamster cheek pouch. (a) Absolute fluorescence 

intensity maps, (b) Normalized fluorescence intensity maps, and (c) Fluorescence 

lifetime maps. 

 

Results from an imaged region are shown in Fig. 15. The FLIM maps indicate strong 

fluorescence intensity at the 390 nm and 452 nm channels (Fig. 15 (a) - (b)), and lifetime 

values between 4-6 ns (Fig. 15 (c)), reflecting a collagen-dominant autofluorescence 

expected in normal epithelial tissue. Notice that the vasculature network can be observed 

in the absolute fluorescence intensity maps, as blood absorption attenuated the 

fluorescence signal. The normalized intensity and lifetime maps, on the other hand, are 
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insensitive to blood absorption, and indicate spatially uniform spectral and lifetime 

properties of the autofluorescence emission of the normal epithelial tissue of a hamster 

cheek pouch. This is expected, since both the layered structure and the relative 

concentration of endogenous fluorophores (NADH and FAD in the epithelium, and 

collagen in the underlying stroma) are maintained throughout the normal epithelial tissue.  

A video, named Media 4 in the supplemental material, was recorded during the 

movement of the probe on top of the mucosa tissue with the real-time online data 

processing at ~1.33 frames per second. The average lifetimes using either offline or online 

method are compared in Table 4. In the table, the number are calculated pixel-to-pixel for 

the area corresponding to the entire FOV. The online method provides smaller values than 

the offline method, which is expected. But these values does provide a contrast among the 

different fluorescent components (collagen, NADH and FAD) in epithelial tissue. 

5.4 Human oral biopsy imaging ex vivo 

The clinical potential of this system was further demonstrated by imaging human oral 

biopsies ex vivo. The respective imaging protocols were approved by the Institutional 

Review Boards (IRB) at TAMU and Baylor College of Dentistry. Tissue samples were 

obtained from consenting patients who presented themselves either for removal of 

clinically normal excess tissue or were suspected to have benign, premalignant or 

malignant lesions. After extraction, the tissue was immediately placed in iced phosphate 

buffered saline (PBS) solution and transported to the imaging system within 10 minutes. 

During imaging, the tissue samples were placed in a quartz petri dish. A single FLIM 

image was recorded with the epithelium in contact with the probe distal end. One part of 
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the biopsy was sutured to mark the image orientation to allow comparison with the 

respective histology section. Finally, the tissue specimen was fixed in 10% formalin and 

processed for hematoxylin and eosin (H&E) histological analysis. The whole procedure 

was performed within half an hour. Three different types of tissue were imaged, which 

were classified as normal, benign and premalignant tissue. The results are shown in Fig. 

16, Fig. 17 and Fig. 18, respectively.  

Fig. 16 shows the FLIM images from a clinically normal oral tissue. For the intensity 

maps, strong emission are observed at the 452 nm channel, followed by comparatively 

lower fluorescence at the 390 nm and >500 nm channels. The normalized intensity is 0.27 

± 0.08, 0.51 ± 0.05, and 0.23 ± 0.04 across the normalized intensity maps in Fig. 16 (b) 

for three spectral channels, respectively. The average lifetime is 4.84 ± 0.43 ns, 3.95 ± 

0.38 ns and 3.79 ± 0.28 ns across the lifetime maps in Fig. 16 (c) for the three spectral 

channels, which indicates collagen is the predominant fluorophore in the sample. 

Although the absolute fluorescence intensity maps in Fig. 16 (a) show variability across 

the area of the tissue, the corresponding normalized intensity and lifetime images are 

relatively uniform. The left border of the tissue has a region where the epithelium layer is 

absent and underlying connective tissue is exposed. As a result, the normalized intensity 

and average lifetime in that specific region are increased at the 390nm channel.  

Fig. 17 shows FLIM images taken from an oral biopsy of lichen planus, which is a 

benign inflammatory condition and is usually attributed to a form of autoimmune 

response. The maps are very similar to those from the normal tissue. The top region is also 

lack of epithelium layer, which gives variability across the field of view. 
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Fig. 18 shows FLIM images of an oral biopsy representative of premalignant tissue. 

The absolute intensity, normalized intensity and average lifetime maps are shown in Fig. 

18 (a), 18 (b), and 18 (c), respectively. For the intensity maps, strong emission is observed 

at the 452 nm channel, followed by comparatively lower fluorescence at the 390 nm and 

>500 nm channels. For the average lifetime maps, the 452 nm channel show relative 

shorter lifetime than 390 nm channel attributed to NADH, which show a short lifetime 

and peak emission at ~450 nm. While most of the FLIM parameters (intensity and lifetime) 

do not show significant variation across the biopsy, a small region (marked as Region 1 in 

Fig. 18 (c)) in the lifetime map for >500 nm channel shows a larger value of lifetime (5.19 

± 0.30 ns) in contrast to the rest of the biopsy. This area was later diagnosed as superficial 

invasive squamous cell carcinoma. The corresponding histology image is shown in Fig 18 

(d). For comparison, the histology image of a region which representes the rest area of this 

biopsy (marked as Region 2 in Fig. 18 (c)) with relatively lower lifetime values (4.03 ± 

0.19 ns) is shown in Fig. 18 (e). This particular region in Fig. 18 (e) was diagnosed as 

dysplasia as most of the biopsy. The increased lifetime in Region 1 can be attributed to 

poryphirin, the presence of which is known to increase with the progression of precancer 

and has a relatively long lifetime (>6 ns) [18]. 
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Figure 16: FLIM images of clinically normal tissue from gingiva. (a) Absolute 

fluorescence intensity (b) Normalized fluorescence intensity, and (c) Average lifetime 

maps for 390nm, 450nm and >500nm spectral channel, respectively. (d) Image of the 

corresponding histology section. 

100 μm 
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Figure 17: FLIM images of the benign lesion classified as oral lichen planus. (a) 

Absolute fluorescence intensity (b) Normalized fluorescence intensity, and (c) Average 

lifetime maps for 390nm, 450nm and >500nm spectral channel, respectively. (d) Image 

of the corresponding histology section. 

100 μm 
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Figure 18: FLIM images of the premalignant tissue. (a) Absolute integrated fluorescence 

intensity maps, (b) Normalized integrated fluorescence intensity maps, and (c) Aerage 

lifetime maps. The thread at the bottom of (a), (b) and (c) is the suture used to mark the 

tissue orientation for histology study. (d) Histology image for the position marked in (c) 

as Region 1 which was diagnosed as superficial invasive squamous cell carcinoma. (e) 

Histology image for the position marked in (c) as Region 2 which was diagnosed as 

dysplasia. Both Region 1 and Region 2 are squares of 600×600 μm2. The scale bars in 

both (d) and (e) represent 200μm. 
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5.5 Normal human oral mucosa imaging in vivo 

The system was further validated by imaging human oral mucosa from normal 

volunteers. The imaging protocols were approved by the Institutional Review Boards 

(IRB) at TAMU and Baylor College of Dentistry. The ventral surface of a normal human 

tongue was imaged in vivo. The probe was inserted into the volunteer’s month and gently 

placed on the target location. Only one frame was collected to minimize exposure to UV 

radiation. 

The absolute intensity, normalized intensity and average lifetime maps are shown in 

Fig. 19. Strong emission is observed in 452 nm channel, followed by comparatively lower 

fluorescence at 390 and >500 nm channels. The average lifetime maps show similar 

lifetime of 4.04±0.29 ns, 4.22±0.28 ns and 4.19±0.28 ns for 390 nm, 452 nm and >500 nm 

channels, respectively. Notice also here that spatial contrast is evident in the absolute 

fluorescence intensity maps, while little contrast is observed in the normalized intensity 

and lifetime maps, as expected for normal epithelial tissue.  
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Figure 19: In vivo imaging of the ventral tongue from a normal human volunteer. (a) 

Absolute integrated fluorescence intensity maps, (b) Normalized integrated fluorescence 

intensity maps, and (c) Fluorescence lifetime maps. 

 

5.6 Clinical validation in human subjects in vivo 

Patients with suspected lesion were included for this study. The diseased human oral 

mucosa was imaging in vivo. The imaging protocols were approved by the Institutional 

Review Boards (IRB) at TAMU and Baylor College of Dentistry. Only one frame was 

collected to minimize exposure to UV radiation. The laser power deposited on tissue 
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surface was calculated to be below the maximum permissible exposure (MPE) of the tissue 

damage threshold by referring the American National Standards Institute (ANSI) 

standards for the safe use of lasers on skin. The detailed calculation can be found in Section 

5.7. In order to facilitate this imaging process, the system was moved to bedside in the 

clinic. The patients were first inspected by physicians and the ones who were referred for 

a biopsy or oral surgery were asked whether they were willing to join our study. The 

consented patient was imaged in vivo by the physician on the lesion. After the in vivo 

imaging, the patient would be sent for either biopsy collection or oral surgery to remove 

part or the whole lesion where we did the in vivo imaging. The incised tissue was imaged 

ex vivo under our system as comparison and sent for H&E histological analysis.  

Fig. 20 and Fig. 21 show the results of the in vivo and ex vivo imaging for the same 

lesion of a patient. The absolute intensity, normalized intensity and average lifetime maps 

for in vivo imaging are shown in Fig. 20 (a), 20 (b), and 20 (c), respectively. For the 

intensity maps, strong emission is observed at the 452 nm channel, followed by 

comparatively lower fluorescence at the 390 nm and >500 nm channels. For the average 

lifetime maps, a change of lifetime is shown across the FOV in the 390 nm channel in Fig. 

20 (c). The left part which is normal tissue shows longer lifetime than the right part which 

was diagnosed as dysplasia by histologist. White arrows indicate the margin between the 

normal tissue and dysplasia tissue. The longer lifetime value suggests that the dominant 

fluorophore is collagen, and the shorter lifetime of dysplasia tissue can be attributed to the 

increase of NADH. These results are consistent with the biochemical composition of 
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normal and dysplasia tissue. The average lifetime for the right part in 390 nm channel is 

4.02±0.28 ns in contrast to 2.70±0.27 ns for the left part. 

For comparison, the biopsy taken from the same lesion was imaged ex vivo. The 

absolute intensity, normalized intensity and average lifetime maps for ex vivo imaging are 

shown in Fig. 21 (a), 21 (b), and 21 (c), respectively. For the intensity maps, strong 

emission is observed at the 452 nm channel, followed by comparatively lower 

fluorescence at the 390 nm and >500 nm channels. For the average lifetime maps, a change 

of lifetime is shown in the 390 nm channel in Fig. 21 (c), in which the center part shows 

a shorter lifetime than the rest of the tissue. This specific region with shorter lifetime 

corresponds to the left part of the tissue in Fig. 20 (c), was histopathologically diagnosis 

as dysplasia (histology image shown in Fig. 21 (d)). White arrows indicate the same 

margin between the normal tissue and dysplasia tissue as in Fig. 20 (c). The shorter 

average lifetime in 390 nm channel is 3.08±0.26 ns in contrast to 4.62±0.26 ns of the 

longer average lifetime, which are in agreement with the results from the in vivo imaging. 

In addition, the absolute intensity maps of Fig. 20 (a) and Fig. 21 (a) also show similar 

structure for in vivo imaging and ex vivo imaging, which is also an indicator to correlate 

in vivo imaging and ex vivo imaging.  
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Figure 20: In vivo imaging of the dysplasia tissue. (a) Absolute integrated fluorescence 

intensity maps, (b) Normalized integrated fluorescence intensity maps, and (c) Average 

lifetime maps. White arrows show the margin between the normal and dysplasia tissue. 
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Figure 21: Ex vivo imaging of oral biopsy taken from the same lesion in Fig. 20. (a) 

Absolute integrated fluorescence intensity maps, (b) Normalized integrated fluorescence 

intensity maps, and (c) Average lifetime maps. White arrows show the margin between 

the normal and dysplasia tissue. 

 

 

5.7 Discussion 

As stated before, a pulse energy of 1 µJ at the sample provides an adequate SNR per 

pixel; thus, the pixel rate equates to the laser repetition rate. Since the frame rate is 

determined by the pixel rate and the number of pixels per frame, imaging speed can be 

increased by either increasing the laser repetition rate or decreasing the number of pixels 
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per frame. The number of pixels per frame can be reduced without sacrificing lateral 

resolution if the FOV is also reduced accordingly; thus, higher frame rates can be achieved 

at smaller FOV. Increasing the laser repetition rate while maintaining the pulse energy 

will increase the average power transmitted through the excitation fiber and ultimately 

deposited on the sample. Thus, the maximum average power that can be practically 

applied is ultimately limited by the damage threshold of both the excitation fiber and the 

sample. For all the experiments, the laser repetition rate was limited to 30 kHz in order to 

avoid rendering permanent damage to the input facet of the excitation fiber (observed at 

higher repetition rates). To increase the frame rate, the use of other excitation fibers 

capable of handling higher average power levels (thus higher pixel rate) is currently being 

explored. 

The tissue damage threshold can be estimated in terms of the maximum permissible 

exposure (MPE) provided by the American National Standards Institute (ANSI) standards 

for the safe use of lasers on skin [35]. Since the excitation we use is a repetitive-pulse 

laser. There are two rules to follow: the exposure of the skin shall not exceed the MPE 

based upon a single-pulse exposure, and the average irradiance of the pulse train shall not 

exceed the MPE applicable for the total pulse train. In our case, the single-pulse limit for 

a 1 ns pulse exceeds 300 µJ in the limiting aperture (φ = 3.5 mm) which is much higher 

than the energy we use. As a result, we will be limited by the total energy deposited over 

the dwell time. According to the standard, there are thermal and photochemical effects, 

between which the smaller MPE value should be follow. According to the standard, the 
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thermal MPE yields smaller value. The equation to calculate the thermal MPE is in Eq. 

5.1 

                                              𝑀𝑃𝐸 = 0.56 𝑡0.25 (𝐽/𝑐𝑚2)                                          (5.1) 

It is defined in a limiting aperture φ = 3.5 mm. The equation should be modified as in Eq. 

5.2 if the aperture are is considered. 

                     𝑀𝑃𝐸 = 0.56 × 𝜋 𝑟2𝑡0.25 = 0.56 × (3.14) × (0.175)2 × 𝑡0.25 (𝐽)     (5.2) 

The dwell time t in Eq. 5.1 and Eq. 5.2 is equal to s/f, where s is the total number of pulses 

applied inside the limiting aperture, and f is the laser repetition rate. Since only one pulse 

is applied per pixel, s equates to the total number of pixels inside the limiting aperture. In 

our in vivo experiments, the laser repetition rate was 30 kHz with a pulse energy of ~1 μJ, 

and the number of pixels per frame was set at 150 × 150 for a FOV of 10 × 10 mm2. Thus, 

based on the Eq. 5.2, the MPE is E (J) = 5.39 × 10-2 × (s/f) 0.25 = 5.39 × 10-2× (2164 / 

30,000) 0.25 = 27.9 mJ. The actual energy deposited is E (J) = 53 × 53× 10-3 mJ = 2.2 mJ, 

which is an order of magnitude lower than the MPE. We are thus confident that in vivo 

imaging can be performed safely with the proposed handheld FLIM imaging system. 

One significant advantage of the proposed multispectral FLIM probe design is that, 

unlike previous implementations [8-10, 27], it can achieve relatively high imaging speed 

without sacrificing temporal resolution. The achieved high temporal resolution allows 

correcting for the non-ideal instrument response through time deconvolution. In addition, 

since the entire fluorescence decay is directly measured, the full complexity of its temporal 

dynamics can be captured and is no longer limited to a single exponential approximation.  
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Although our imaging systems allows measuring time-resolved fluorescence data 

with high temporal resolution, accurate estimation of fluorescence lifetimes still requires 

computationally expensive iterative deconvolution methods. Our fully validated Laguerre 

deconvolution method is significantly faster than standard nonlinear least square 

deconvolution algorithms, but it is still not suitable for online processing and visualization 

of FLIM data [24]. To take advantage of the relative high pixel rate achieved by our system 

and to demonstrate real-time FLIM data processing and visualization (as shown in Media 

3 and Media 4 in the supplemental material), the online deconvolution method described 

above was proposed. An interesting observation was the fact that the online processing 

and visualization of the multispectral FLIM maps were insensitive to movement (as shown 

in the videos). In Table 4, the values of the online lifetime estimations are compared 

against the offline estimations obtained with the Laguerre deconvolution method. As 

expected, the online values were underestimated with respect to the offline values due to 

the single exponential approximation. Nevertheless, the online FLIM maps provided 

fluorescence lifetime contrast similar to that of the offline FLIM maps. 

While the >500 nm emission band was provided to target and isolate fluorescence 

from FAD, there can be a significant contribution of fluorescence from poryphrin in 

precancerous and cancerous areas, and can potentially confound the signal in that band. 

The presence of poryphrin is usually attributed to changes associated with malignant 

transformation, and wherein the level of poryphrin is usually elevated in the effected tissue 

[36]. In our study, the effect of poryphrin manifested in Fig. 18 where the fluorescence 

lifetime in the region with invasive carcinoma showed a relative increase due to longer 
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lifetime of poryphrin [36]. For the future, we will consider adding another emission 

window corresponding to poryphrin (peak emission: ~630 nm). In addition to isolating 

fluorescence from FAD, adding of fourth spectral window can offer us another parameter 

to characterize the progression of precancer.  

As mentioned above, our target application was to image the oral mucosa in vivo. 

Our clinical collaborators (Dr. Lisa Cheng and Dr. John Wright) have indicated that the 

length of our current endoscope (14 cm) is appropriate to image the oral cavity, as we have 

successfully imaged a lot of patients in vivo. Nevertheless, the doctors indicated an 

endoscope design with even smaller size and less weight would be more convenient for 

handling and easily to access some specific narrow location inside the oral cavity 

according to their experience to operate the current system.  

5.8 Conclusion 

In summary, we reported the first demonstration of a time-domain multispectral 

FLIM endoscope that required only one excitation pulse per pixel; thus, the pixel rate was 

equal to the laser repetition rate. Taking advantage of this relatively high pixel rate, we 

were able to perform the fastest in vivo multispectral FLIM imaging in the human oral 

cavity reported thus far. Finally, we also reported the first demonstration of real-time 

deconvolution of the instrument response from the fluorescence decay at each pixel of the 

image, which allowed real-time lifetime map estimation and visualization at multiple 

spectral bands simultaneously. This design will facilitate the evaluation of multispectral 

FLIM for detecting oral cancer and precancer. 
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 6. CLINICAL PROTOTYPE OF RIGID HANDHELD FLIM ENDOSCOPE 

6.1 Clinical prototype of rigid handheld FLIM endoscope 

As described in Section 5.7, reducing the size and the weight of the handheld system 

can potentially aid in probing most of the oral cavity in vivo. To this end, we constructed 

a relatively smaller version of the rigid handheld FLIM system with MEMS scanning 

mirrors and lenses with smaller diameters (6.25mm in diameter). This system will be 

served as the clinical prototype for in vivo study in the future. A photograph of the 

handheld part of the new system is shown in Fig. 22 (a). It was approximately 250 gram 

in weight with a handheld package of 10 × 5 × 3 cm3 in volume. A rigid probe (length: 

11cm, diameter: 0.8cm) was fitted onto the handheld package. The system schematic is 

shown in Fig. 22 (b). Pulsed UV excitation light from a frequency-tripled Q-switched 

Nd:YAG laser (355 nm, <1 ns pulse width, 100 kHz maximum repetition rate, Advanced 

Optical Technology) was delivered to the system through a multimode fiber (50µm core 

diameter, FG050LGA, Thorlabs), and collimated by an aspherical lens (f = 8mm, 

A240TM-A, Thorlabs). The collimated excitation was reflected by a dichroic mirror (1/2 

inch diameter, 377drz, Chroma) which was used to separate the UV excitation and visible 

fluorescence emission, and deflected by a two dimensional MEMS scanning mirror 

(4.2mm active area, -5° to +5° mechanical angle, Mirrorcle) onto the rigid probe. The 

dichroic mirror and MEMS scanning mirror were mounted at a 45° angle to the incoming 

excitation light in a custom-machined housing. A three-adjuster kinematic mirror mount 

(KCB05, Thorlabs) was integrated in the housing to mount the dichoric mirror. It allowed 

slight angle adjustment in order to compensate for any inaccuracies introduced during 
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machining of the housing. The housing was made from aluminum. The rigid probe was 

custom-designed with four achromat lenses (f = 30 mm, 6.25 mm diameter, Edmund 

Optics). Two of these lenses formed an image relay to extend the length of the probe as 

described in the previous handheld system. Another lens at the distal end worked as an 

objective to focus the light onto the sample. A fourth lens was placed in the intermediate 

image plane of the relay lens pair to serve as a field lens which increased the FOV from 

~3.6 mm to ~5 mm. Fig. 23 shows the Zemax simulation for the rigid probe both with and 

without the field lens. The three colors in Fig. 23 represent three different scanning angles. 

As seen in the three-lens system, the marginal light is out of the range of the second lens 

of the relay lens pair. After adding the field lens between the relay lens pair, the clipping 

of beam at the edge is eliminated. As a result, the scan angle is enlarged after adding the 

field lens.  

To assemble the probe, the four lenses were fixed with UV cured glue (NOV 63, 

Edmund Optics) inside a tube (Inner diameter = 6.35 mm, outer diameter = 7.14mm, 

McMaster Carr). The distance between the lenses should be decided by Zemax simulation 

and free-space test in order to optimize the optical performance of the probe. Small slits 

were made in specific positions on the tube to apply the UV glue. An outer tube (inner 

diameter = 7.41mm, outer diameter = 7.93mm, McMaster Carr) was used to seal the probe.  

The fluorescence emission was collected by the same rigid probe, de-scanned by the 

MEMS mirror and passed the dichroic mirror (DM1 in Fig. 22(b)) to the multispectral 

detection unit which was the same as described in Section 3.1 and Section 5.1. The time-

resolved fluorescence emission was spectrally divided in three separate emission bands: 
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390±20 nm, 452±22.5 nm, and >500 nm bands corresponding to peak emission 

wavelength of endogenous fluorophores of collagen, NADH and FAD, respectively. The 

multispectral fluorescence signal was detected by a multichannel plate photomultiplier 

tube (MCP-PMT, 25 ps transient time spread, R3809U-50, Hamamatsu), followed by a 

preamplifier before being digitized at 6.25 GS/s by a high-speed digitizer (PXIe-5185, 

National Instruments) resulting in a temporal resolution of 320 ps. 

 

Figure 22: (a) Photograph of the clinical prototype of the handheld probe (b) Schematic 

of the clinical prototype of the FLIM endoscope system. DM: Dichroic mirror, L: Lens, 

F: Filter, AMP: Amplifier. 
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Figure 23: Zemax simulation of the FOV (top) before adding the field lens and (bottom) 

after adding the field lens. 

 

Data processing was similar to that described in Chapter 3 and Chapter 5. For each 

sample, nine maps were generated: three absolute intensity maps (I1, I2 and I3), three 

normalized intensity maps (I1n, I2n and I3n) and three average lifetime maps (τ1, τ2 and τ3). 

For average lifetime calculation, the relatively long excitation pulse width (FWHM: ~1 

ns) necessitated the temporal deconvolution of the instrument response from the measured 

fluorescence decay in order to obtain accurate estimation of the fluorescence lifetime. 

Time deconvolution was performed offline using an optimized Laguerre expansion 

technique algorithm [24]. The average lifetime τave was then estimated from the intrinsic 

fluorescence decay h(t) with ( ) ( )ave t h t h t    , where t was time. Besides the offline 
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lifetime estimation, in order to demonstrate real-time visualization of the multispectral 

FLIM maps, an online deconvolution method was applied, in which the recorded time-

resolved decay for each pixel was compared against a lookup table of decays generated 

by convolving the instrument response with single exponential decays with time constants 

ranging from 0.2 to 8 ns (in steps of 0.2 ns). The best match in terms of the minimum 

normalized means squared error provided a single exponential estimation of the 

fluorescence lifetime. 

For all the experiments in this chapter, the following working parameters were used. 

The laser pulse energy at the sample was set at ~1 µJ/pulse, resulting in an adequate signal-

to-noise ratio (SNR ≥ 30 dB). Since only one pulse was required per pixel, the pixel rate 

was equal to the laser repetition rate. The laser repetition rate was set at 10 kHz and the 

total number of pixels per frame was set at 160160, corresponding to an acquisition 

speed of ~0.4 Hz. The lateral resolution was measured to be ~100 μm by USAF target 

(#53715, Edmund Optics). 

6.2 Standard dyes validation 

The new handheld imaging system was first validated with 1 mM solutions of 

POPOP (in ethanol), NADH and FAD (in PBS). The standard dye solutions were loaded 

in three quartz capillary tubes and placed side by side under the probe.  

The normalized intensity maps (Fig. 24 (a)) confirm strong emission of POPOP at 

both the 390 nm and 452 nm channels, strongest emission of NADH at the 452 nm 

channel, and emission of FAD only at the >500 nm channel. The average lifetime maps 

(Fig. 24 (b)) are also in good agreement with the previously published values for the 
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corresponding fluorophores [24, 27, 33].  The average lifetime for POPOP is 1.23±0.03 

ns for 390 nm channel and 1.12±0.02 ns for 452 nm channel. The average lifetime for 

NADH is 0.30±0.05 ns for 452 nm channel and 0.21±0.09 ns for >500 nm. The average 

lifetime for FAD is 2.14±0.05 ns for >500 nm channel.  

 

Figure 24: In vitro imaging of quartz capillaries loaded with FAD, NADH, and POPOP. 

(a) Normalized fluorescence intensity maps, and (b) Fluorescence lifetime maps. 

 

 

(a) 

(b) 

(c) 
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6.3 Normal human oral mucosa imaging in vivo 

The system was validated by imaging human oral mucosa in vivo from normal 

volunteers. The imaging protocols were approved by the Institutional Review Boards 

(IRB) at TAMU and Baylor College of Dentistry. The ventral surface of a normal human 

tongue was imaged in vivo. The probe was inserted into the volunteer’s month and gently 

placed on the target location. Only one frame was collected to minimize exposure to UV 

radiation. 

The absolute intensity, normalized intensity and average lifetime maps are shown in 

Fig. 25. Strong emission is observed in 452 nm channel, followed by comparatively lower 

fluorescence at 390 and >500 nm channels. The average lifetime maps show similar 

lifetime of 4.12±0.20 ns, 4.12±0.24 ns and 3.66±0.17 ns for 390 nm, 452 nm and >500 nm 

channels, respectively. Notice also here that spatial contrast is evident in the absolute 

fluorescence intensity maps, while little contrast is observed in the normalized intensity 

and lifetime maps, as expected for normal epithelial tissue.  
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Figure 25: In vivo imaging of the ventral tongue from a normal human volunteer. (a) 

Absolute integrated fluorescence intensity maps, (b) Normalized integrated fluorescence 

intensity maps, and (c) Fluorescence lifetime maps. 

 

6.4 Oral biopsy imaging ex vivo 

Fig. 26 shows FLIM images of a tissue biopsy. The absolute intensity, normalized 

intensity and average lifetime maps are shown in Fig. 26 (a), Fig. 26 (b), and Fig. 26 (c), 

respectively. For the intensity maps, strong emission is observed at the 452 nm channel, 

followed by comparatively lower fluorescence at the 390 nm and >500 nm channels. For 

(a) 

(b) 

(c) 



 

77 

 

the average lifetime maps, the 452 nm channel shows relative shorter lifetime than the 390 

nm channel attributed to NADH, which shows a short lifetime and peak emission at ~450 

nm. This indicates collagen is the predominant fluorophore in the sample which is similar 

to that in normal tissue or a benign lesion. At first, this lesion was clinically diagnosed as 

dysplasia and/or squamous cell carcinoma by visual inspection and palpation. Later 

histopathological diagnosis indicated that it was not premalignant or malignant but a 

hyperorthokeratosis and chronic mucositis, which was benign lesion and inflammatory. 

The histopathological diagnosis is in good agreement with our FLIM results.  

6.5 Discussion and conclusion 

As described in Chapter 5.7, the total energy deposited over the whole field of view 

should be smaller than the maximum permissible exposure (MPE) provided by the 

American National Standards Institute (ANSI) standards for the safe use of lasers on skin 

[35]. Based on Eq. 5.2, the MPE for this system is E (J) = 5.39 × 10-2 × (s/f)0.25= 5.39 × 

10-2× (9847 / 10,000) 0.25 = 53.7 mJ in a limited aperture of 3.5 mm. The actual energy 

deposited in an aperture of 3.5 mm is E (J) = 9847 × 10-3 mJ = 9.8 mJ, which is lower than 

the MPE. We are thus confident that in vivo imaging with one frame can be performed 

safely with the proposed handheld FLIM imaging system. The MPE is related to the pixel 

number per frame and the laser repetition rate. The MPE for different combinations of 

pixel number per frame and laser repetition rate is summarized in Table 5. 
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Figure 26: Ex vivo imaging of oral biopsy. (a) Absolute integrated fluorescence intensity 

maps, (b) Normalized integrated fluorescence intensity maps, and (c) Fluorescence 

lifetime maps. White arrows indicate a piece of hair on the tissue. 

 

In summary, we reported a compact multispectral FLIM endoscope system with rigid 

probe. This compact version of the handheld FLIM system can help access locations inside 

the oral cavity which may otherwise be difficult to reach with the larger probe described 

in previous chapter. We have validated the system with standard fluorescent dye, normal 

oral mucosa in vivo and human biopsy ex vivo. This design will be used as clinical 
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prototype for in vivo study in the future and it will facilitate the evaluation of multispectral 

FLIM for oral cancer and precancer detection. 

 

Table 5 Comparison table for the MPE and actual deposited energy with different laser 

repetition rate and pixel number per frame 

Pixel number per 

frame 

MPE Actual Energy 

10K 20K 30K  

80 × 80 38.0 mJ 31.9 mJ 28.8 mJ 2.4 mJ 

100 × 100 42.4 mJ 35.7 mJ 32.3 mJ 3.8 mJ 

160 × 160 53.7 mJ 45.1 mJ 40.8 mJ 9.8 mJ 
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7. CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

In this dissertation, four specific aims were achieved: 

First, a bench-top combined FLIM-RCM system was built to determine specific 

design parameters for endoscope system and characterize the system’s performance for 

detection of oral precancer and cancer. Experiments on hamster cheek pouch model of 

oral carcinogenesis were conducted. Dysplastic and normal tissue were successfully 

differentiated. 

Second, a flexible endoscope based on a wide-field time-gated implementation was 

built. The system was validated by a hamster cheek pouch model of oral carcinogenesis. 

Due to the limitations of this setup, we continued to build a multispectral FLIM system 

based on pulse sampling implementation for in vivo application. 

Third, a rigid handheld probe based on pulse sampling was built. Clinical study of 

human oral tissue was conducted ex vivo and in vivo. 

Fourth, based on the feedback from the physicians who used the handheld FLIM 

system, a smaller version of the rigid handheld probe was built in order to easily operate 

and access most of the area inside the oral cavity. The system was validated by imaging 

normal human oral mucosa in vivo and oral biopsy ex vivo. 

7.2 Future work 

More compact design based on novel scanners can be achieved. One possible 

mechanism is employing a fiber scanner which holds and vibrates the fiber. This design is 

under investigation by our group. Besides, the dichroic mirror which is used to separate 
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excitation and emission light can be removed from the handheld box. If a fiber can be used 

to deliver excitation and emission, the dichroic mirror can be moved to the laser side as 

shown in Fig. 27. The handheld probe will be modified as a pen-shape device which will 

be more user-friendly. 

More in vivo and ex vivo imaging of human oral cancer and precancer need to be 

conducted in order to establish the database for quantitative analysis of the specificity and 

sensitivity of the FLIM system. 

 

Figure 27: (left) System schematic for the new proposed FLIM endoscope. (right) 

Photograph to show the appearance of the fiber scanner (FS). DM: Dichroic mirror, L: 

Lens, F: Filter, AMP: Amplifier. 

 



 

82 

 

REFERENCES 

1. National Cancer Institute, http://www.cancer.gov/cancertopics/types/oral (2014). 

2. R. Siegel, D. Naishadham, and A. Jemal, "Cancer statistics, 2013," CA: A Cancer 

Journal for Clinicians 63(1), 11-30 (2013). 

3. National Cancer Institute "Seer cancer statistics review, 1975-2011," 

http://seer.cancer.gov/csr/1975_2011/sections.html (2012). 

4. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, (Springer, New York, 

1983), pp. 1-25. 

5. L. Marcu, "Fluorescence lifetime techniques in medical applications," Annals of 

Biomedical Engineering 40(2), 304-331 (2012). 

6. W. Becker, The bh TCSPC Handbook, (Becker & Hickl GmbH, Germany, 2008), 

pp. 50-350. 

7. J. Mizeret et al., "Instrumentation for real-time fluorescence lifetime imaging in 

endoscopy," Review of Scientific Instruments 70(12), 4689-4701 (1999). 

8. J. Requejo-Isidro et al., "High-speed wide-field time-gated endoscopic 

fluorescence-lifetimeimaging," Optics Letters 29(19), 2249-2251 (2004). 

9. I. Munro et al., "Toward the clinical application of time-domain fluorescence 

lifetime imaging," Journal of Biomedical Optics 10(5), 051403 (2005). 

10. G. T. Kennedy, A. J. Thompson, D. S. Elson, M. A. A. Neil, G. W. Stamp, A. 

Thillainayagam, B. Viellerobe, F. Lacombe, C. Dunsby, and P. M. W. French, 

"Fluorescence lifetime imaging endoscopy," Proceedings of SPIE, 789308 (2011). 

http://www.cancer.gov/cancertopics/types/oral
http://seer.cancer.gov/csr/1975_2011/sections.html


 

83 

 

11. H. Sparks et al., "A flexible wide-field FLIM endoscope utilising blue excitation 

light for label-free contrast of tissue," Journal of Biophotonics 1-11 (2014). 

12. G. O. Fruhwirth, R. Cook, T. Watson, T. Ng, and F. Festy, "Fluorescence lifetime 

endoscopy using TCSPC for the measurement of FRET in live cells," Optics 

Express 18(11), 11148-11158 (2010). 

13. G. T. Kennedy et al., "A fluorescence lifetime imaging scanning confocal 

endomicroscope," Journal of Biophotonics 3, 103-107 (2010). 

14. D. S. Elson, J. A. Jo. and L. Marcu, "Miniaturized side-viewing imaging probe for 

fluorescence lifetime imaging (FLIM): validation with fluorescence dyes, tissue 

structural proteins and tissue specimens," New Journal of Physics 9(5), 127 (2007). 

15. Y. Sun et al., "Fluorescence lifetime imaging microscopy: in vivo application to 

diagnosis of oral carcinoma," Optics Letters 34(13), 2081-2083 (2009). 

16. P. V. Butte et al., "Fluorescence lifetime spectroscopy for guided therapy of brain 

tumors," NeuroImage 54, S125-S135 (2011). 

17. J. Bec et al., "Design, construction, and validation of a rotary multifunctional 

intravascular diagnostic catheter combining multispectral fluorescence lifetime 

imaging and intravascular ultrasound," Journal of Biomedical Optics 17(10), 

1060121 (2012). 

18. Y. Sun et al., "In vivo validation of a bimodal technique combining time-resolved 

fluorescence spectroscopy and ultrasonic backscatter microscopy for diagnosis of 

oral carcinoma," Journal of Biomedical Optics 17(11), 116003 (2012). 



 

84 

 

19. Z. Nie et al., "Hyperspectral fluorescence lifetime imaging for optical biopsy," 

Journal of Biomedical Optics 18(9), 096001 (2013). 

20. D. R. Yankelevich et al., "Design and evaluation of a device for fast multispectral 

time-resolved fluorescence spectroscopy and imaging," Review of Scientific 

Instruments 85(3),  034303 (2014). 

21. J. M. Jabbour et al., "Fluorescence lifetime imaging and reflectance confocal 

microscopy for multiscale imaging of oral precancer," Journal of Biomedical 

Optics 18(4), 046012 (2013). 

22. A. K. Dunn et al., "Sources of contrast in confocal reflectance imaging," Applied 

Optics 35(19), 3441-3446 (1996). 

23. J. J. Pindborg et al., Histological Typing of Cancer and Precancer of the Oral 

Mucosa, (Springer, Berlin, 1997). 

24. P. Pande, and J. A. Jo, "Automated analysis of fluorescence lifetime imaging 

microscopy (FLIM) data based on the Laguerre deconvolution method," IEEE 

transactions on bio-medical engineering 58(1), 172-181 (2011). 

25. M. J. Rathbone, Oral Mucosal Drug Delivery, (Marcel Dekker Inc., New York 

1996). 

26. B. L. Luck et al., "An image model and segmentation algorithm for reflectance 

confocal images of in vivo cervical tissue," IEEE Trans Image Process 14(9), 1265-

1276 (2005). 

27. S. Cheng et al., "Flexible endoscope for continuous in vivo multispectral 

fluorescence lifetime imaging," Optics Letters 38(9), 1515-1517 (2013). 



 

85 

 

28. J. Siegel et al., "Whole-field five-dimensional fluorescence microscopy combining 

lifetime and spectral resolution with optical sectioning," Optics Letters 26(17), 

1338-1340 (2001). 

29. C. Moore et al., "Comparison of methods for rapid evaluation of lifetimes of 

exponential decays," Applied Spectroscopy 58(5), 603-607 (2004). 

30. C. W. Chang, and M. A. Mycek, "Enhancing precision in time-domain 

fluorescence lifetime imaging," Journal of Biomedical Optics 15(5), 056013 

(2010). 

31. P. Urayama et al., "A UV–Visible–NIR fluorescence lifetime imaging microscope 

for laser-based biological sensing with picosecond resolution," Applied Physics B 

76(5), 483-496 (2003). 

32. S. Shrestha et al., "High-speed multispectral fluorescence lifetime imaging 

implementation for in vivo applications," Optics Letters 35(15), 2558-2560 

(2010). 

33. S. Cheng et al., "Handheld multispectral fluorescence lifetime imaging system for 

in vivo applications," Biomedical Optics Express 5(3), 921-931 (2014). 

34. D. G. Ouzounov et al., "Miniature varifocal objective lens for endomicroscopy," 

Optics Letters 38(16), 3103-3106 (2013). 

35. American National Standard Institute, "Safe Use of Lasers, ANSI Z136.1-2007" 

(2007). 



 

86 

 

36. M. Yuvaraj et al., "Fluorescence spectroscopic characterization of salivary 

metabolites of oral cancer patients," Journal of Photochemistry and Photobiology 

B: Biology 130, 153-160 (2014). 

 


