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ABSTRACT 

 

Isoprenoids are naturally produced compounds in the budding yeast Saccharomyces 

cerevisiae.  They are involved in essential cellular functions of the cell and are also 

further synthesized into pharmaceuticals, carotenoids, and biofuel alternatives. S. 

cerevisiae is a key model eukaryotic organism because it is both tractable and a 

nonpathogenic GRAS organism (Generally Recognized As Safe). S. cerevisiae is used 

extensively in metabolic engineering due to its well-curated and annotated genome and 

the wide range of tools available for genetic modifications. Engineering S. cerevisiae for 

production of heterologous isoprenoid compounds is a sustainable and cost effective 

alternate to production via chemical synthesis.  β-carotene, an abundant isoprenoid 

compound in nature, protects cells from oxidative stress and reactive oxidative species in 

the environment. Through a novel adaptive evolution experiment of S. cerevisiae with 

oxidative stress as the driving force, we obtained a carotenoid hyper-producer strain that 

is able to produce 18 ± 1 mg/g [dry cell weight] β-carotene in 3 ml cultures. To test the 

potential for scale-up β-carotene production in yeast, we fermented the cultures in a 7L 

bioreactor. Optimization of the bioreactor parameters revealed the influence of media 

composition, aeration, and pH on β-carotene production.  

 

We aimed to further optimize β-carotene production in S. cerevisiae with genetic and 

metabolic engineering.  We reintroduced the cytosolic catalase T (CTT1) gene and 

overexpressed the known bottleneck of the isoprenoid biosynthesis pathway, HMG1. 
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The reintroduction of CTT1 into SM14 (carotenoid hyper-producer) demonstrated 

improvement in carotenoid production, where production increased from 15 ± 3.3 mg/g 

[dry cell weight] to 22 ± 2.1 mg/g [dry cell weight]. The overexpression of truncated 

HMG1 in SM14, on the other hand, did not increase β-carotene production.  The 

isoprenoid pathway is of a very complex phenotype and there are many direct and 

indirect variables involved in pathway performance. Even with these modifications to 

the hyper-producer strain, there seems to be limitations on β-carotene production.  

Further studies currently under investigation to increase β-carotene production include 

utilizing the fatty acid β-oxidation pathway for increasing the fatty acid content of the 

cell. 

 

 

 

. 
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1. INTRODUCTION 

 

The synthesis of natural compounds by microbial systems is an emerging field in 

metabolic engineering for the application towards industrial biotechnology and 

production. There are many advantages of microbial-based compound production over 

the chemical synthesis or extraction of compounds including lower toxic waste 

production, carbon dioxide emissions, and energy requirements, as well as simpler 

purification processes, the potential for use of renewable feed stocks such as corn or 

soybeans, and the ability of enzymes to perform chiral synthesis on molecules [1].  

Many natural products, such as active pharmaceutical ingredients (APIs), are not feasible 

for chemical synthesis due to structural complexities and are only able to be produced 

through a cellular means. These compounds have a high market value such that there is a 

desire to produce them in a heterologous host and reap the benefits. Pharmaceutical 

compounds may be the most valuable and have the highest profit margins, but fine 

chemicals and molecules such as vitamins, fragrances, and organic acids are also capable 

of being biologically synthesized. Currently, many precursors for known APIs and fine 

chemicals are successfully being engineered into microbe hosts, which is the next step 

towards tailoring the cell to produce specific compounds [2]. The different types of 

molecules and compounds that can be created through metabolic engineering are only 

beginning to be discovered and there is a potential for break-through product formations. 

Engineered microbial catalysts are becoming the new generation method for a 

sustainable and economical route to produce desired compounds.   

 

Microbial systems that have been explored as heterologous production hosts include 

Escherichia coli and yeast [3-10].  The budding yeast Saccharomyces cerevisiae is the 

key model eukaryotic organism used extensively for metabolic engineering due to its 

well-studied genome and wide range of tools available for genetic modifications [1]. 

These two aspects make S. cerevisiae a great candidate as a biocatalyst for microbial 

production of natural products. S. cerevisiae is also favored for industrial processes due 
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to several factors such as its inherent robustness to high osmotic pressure and low pH, 

both of which are frequently encountered during industrial fermentation [2]. Yeast is 

also an economical organism to use because it grows quickly and at a low startup cost, 

which allows for high production throughput and quick turnaround time between 

batches.  

 

So far, metabolic engineering has converted this microbe into a potential “cell factory” 

for production of a diverse range of chemical compounds [11]. There is continuous work 

being done to genetically control yeast to “debottleneck” the desired pathways and 

maximize desired product titer, yield, and productivity [2]. Isoprenoids, for example, are 

a class of compounds with the potential for microbial-based production. Isoprenoids are 

a diverse group of over 30,000 identified compounds in nature [12-14].  They are 

essential for proper cellular function, but they also have industrial value as 

pharmaceuticals (e.g. taxol, artemisinin), pesticides, and nutriceuticals (e.g. carotenoids) 

[15]. The majority of isoprenoid compounds are components of essential oils that occur 

naturally in plants, but they also function as defensive agents against pathogens, 

reproductive hormones, mating pheromones, pigments, constituents of membranes, and 

components of signal transductions pathways [13]. There are two known pathways for 

isoprenoid biosynthesis in nature: the mevalonate-independent methyl erythritol 4-

phosphate (MEP) pathway and the mevalonate (MVA) pathway. In the MEP pathway, 

pyruvate and glyceraldehyde-3-phosphate (G3P) are synthesized into 1-deoxy-D-

xylulose-5-phosphate (DXP) that is then used to produce MEP.  The MVA pathway, 

most common in eukaryotes and the one utilized in S. cerevisiae, uses acetyl-CoA as the 

precursor to produce isopentenyl diphosphate (IPP) for mevalonate production [16].  The 

MVA pathway provides a promising route for the production of various natural 

compounds biosynthesized from the pathway precursors isopentenyl diphosphate (IPP) 

and dimethylallyl pyrophosphate (DMAPP).   
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Our goal is to focus on the integration and implementation of metabolic engineering 

tools in order to improve the productivity of yeast for maximum isoprenoid production. 

Current approaches generally focus on optimizing gene expressions and enzyme 

activities for the biosynthetic genes; however, genes outside the direct biosynthetic 

pathway of the target compound may play a role in productivity.  Indeed, prior studies 

have revealed the complex phenotype of isoprenoid biosynthesis in microorganisms. For 

example, in a pre-engineered E. coli strain, a combination of gene deletions in the 

genome increased lycopene production [17]. These genes were found by model-based 

and transposon-based approaches. Some of the genes found were outside of the direct 

isoprenoid biosynthesis pathway and they increased the supply of precursors and 

cofactors that are important in the lycopene biosynthesis pathway. Even with the gene 

deletions, the lycopene production was still below the predetermined stoichiometric 

maximum. This demonstrated that there are still unknown limiting kinetic and regulatory 

factors that are not accounted for in the stoichiometric model and that the isoprenoid 

pathway does not have a completely linear relationship [17].  

 

Previously, our lab developed a novel directed evolution approach to optimize the 

isoprenoid pathway in S. cerevisiae.  Increasing oxidative stress has been shown to 

increase β-carotene production in S. cerevisiae [18], so the hypothesis was that oxidative 

stress can be used as a driving force for directed evolution to enhance carotenoids 

production. We integrated a heterologous carotenoid gene cassette crt YB/I/E from the 

red yeast Xanthophyllomyces dendrorhous into S. cerevisiae and used adaptive evolution 

with hydrogen peroxide stress as the selective pressure to select for carotenoid hyper-

producers. The cytosolic catalase gene CTT1 was deleted from the genome to allow for 

more efficient hydrogen peroxide shocking experiments because CTT1 mediates the 

oxidative stress response in yeast. We reached more than 12 mg/g dry cell weight [dcw] 

of β-carotene shortly after the start of the evolution experiments. This was a 100% 

improvement over the unevolved ancestral strain, which had a β-carotene production of 

6 mg/g [dcw]. After the population evolution, single mutants were isolated from each 
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shock time point.  Hyper-producers were selected on the basis of growth (normal colony 

size) and increased carotenoid production in comparison to the population levels. Mutant 

SM14 was one of the highest producers that produced approximately 300% more β-

carotene (18 ± 1 mg/g [dcw]) over the ancestral strain (6 ± 1 mg/g [dcw]).  

 

My work has two primary goals, both of which aim to further optimize carotenoid 

production in S. cerevisiae. First, I will optimize the bioreactor conditions for carotenoid 

productivity in the hyper-producing mutant strain SM14.  My first goal is achieved with 

the following objectives: 1) determine the influence of pH, agitation, bioreactor batch 

run time, and medium on carotenoid production, and 2) perform bioreactor metabolite 

analysis for understanding the influence of growth kinetics and cell metabolite 

consumption on carotenoid production. Second, I will test the hypothesis that the β-

carotene production in the evolved mutant SM14 is limited by fatty acid content of the 

cell. To achieve my second goal, I will pursue the following objectives: 1) use rational 

metabolic engineering to improve carotenoid production (we expect an increase in the 

ancestral unevolved strain, but limited improvements in the evolved mutant) and 2) 

metabolic engineering to increase the fatty acid content of the cell. 
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2. BACKGROUND AND LITERATURE REVIEW 

 

2.1 Isoprenoid biosynthesis pathway 

Isoprenoids, also called terpenoids, are the largest class of naturally occurring molecules. 

The biosynthesis pathway for isoprenoid compounds has been highly conserved 

throughout evolution [19]. Plants have maintained the eukaryotic mevalonic acid (MVA) 

pathway in the cytosol, while evolving the methylerythritol phosphate (MEP) pathway 

from the endosymbiotic plastid ancestor [14]. Being that they are some of the most 

ancient molecules ever identified, isoprenoids and their derivatives have substantial roles 

in many life forms that include regulators of gene expression, reproductive hormones, 

components of membranes, vitamins, and antimicrobial agents [13, 19].  

 

The isoprenoid pathway in yeast begins with acetyl-CoA, which is the product of acetate 

metabolism. Acetyl-CoA is also responsible for initiating the TCA cycle and is a 

precursor to the synthesis of lipids, several amino acids, and histone acetylation [20]. 

Acetyl-CoA synthetase (ACS) catalyzes the reaction of acetate to acetyl-CoA. ACS-2 is 

considered the aerobic version of the enzyme and is not detected under anaerobic 

conditions. ACS-1 is induced under fermentation conditions. Acetyl Co-A is 

metabolized by ERG10 and ERG13 into HMG-CoA.  HMG-CoA is converted to 

mevalonate via the NADPH-requiring enzyme HMG-CoA reductase (HMGR), which is 

the rate-limiting step of the pathway [21-23]. The initial synthesis for isoprenoid 

compounds starts from two basic five carbon units, isopentenyl pyrophosphate (IPP) and 

dimethylallyl pyrophosphate (DMAPP) [24]. These carbon units are isomers of each 

other and are the building blocks for any isoprenoid compounds. Both isomers are 

capable of being further metabolized into geranyl diphosphate (GPP), farnesyl 

diphosphate (FPP), and geranylgeranyl diphosphate (GGPP), as seen in Figure 1 [1]. 

Naturally occurring precursors then convert these compounds into monoterpenes, 

sesquiterpenes, and diterpenes, respectively. 
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Figure 1. Biosynthesis of isoprenoids by the mevalonate pathway [1].  

 

In the budding yeast S. cerevisiae, the isoprenoid pathway is responsible for the 

production of essential molecules such as prenylated proteins, polyprenyl alcohols, heme 

A, ubiquitone, and sterols. Prenylated proteins are proteins that have a farnesyl (C15) or 

geranylgeranyl (C20) isoprenoid covalently linked to the conserved cysteine residues or 

at the C-terminus of proteins [25]. Studies have shown that the Ras proteins, which are 

small G-proteins that play crucial roles in the signaling pathways controlling cell growth 

and differentiation, are farnesylated [25].The other isoprenoid geranylgeranyl is the 

predominant compound found on cellular proteins [25]. Polyprenyl alcohols are 

ubiquitous in minor components of membranes in yeast. They are synthesized from 

DMAPP and IPP and then used for protein N-glycosylation [26]. Ubiquitone (also 

known as coenzyme Q or CoQ) has ten isoprene units and is an isoprenylated 

benzoquinone. CoQ is a well-known component of the electron transport chain, and its 

main role is to transfer electrons from NADH dehydrogenase and succinate 

dehydrogenase to the CoQ:cytochrome c reductase in aerobic respiration and oxidative 

phosphorylation in the mitochondrial respiratory chain. CoQ also contributes 

significantly to ATP synthesis and acts as a lipid-soluble antioxidant in cellular 

membranes that scavenges for reactive oxygen species [27].  Ergosterol is an end 

product of the MVA pathway in S. cerevisiae and is the most prominent sterol in the 
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plasma membrane. Sterols are essential components of the plasma membrane in yeast 

and are used for intracellular endocytosis. Sterols are also important for protection 

against oxidative stress. Genome-wide expression analysis in yeast has identified a 

strong relationship of genes involved in ergosterol biosynthesis and oxidative stress 

protection [28]. Two areas in the cell with the highest concentration of sterols are the 

plasma membrane and secretory vesicles [29]. The cell would not be able to function 

properly without any of these products from the isoprenoid pathway.  

 

2.2 Oxidative stress response in yeast 

Yeast depends on oxygen for survival and aerobic respiration; however, they have had to 

evolve a multitude of defense systems to protect themselves from oxygen’s toxic 

properties to the cell [30]. The extracellular environment of yeast is highly oxidative, 

providing for the need to maintain a reduced intracellular atmosphere. The reduced 

atmosphere is needed for proper protein formation and maintaining protein function 

[31]. Yeast cells generate a range of reactive oxidative species (ROS), which are usually 

the result of their aerobic metabolism but can also stem from environmental stress 

triggers [30, 32]. Known ROS that cause an inducible stress response are hydrogen 

peroxide, superoxide anion, and lipid peroxidation products [33]. Environmental stress 

triggers include the depletion of nutrients, increases in ambient temperature, or sudden 

xenobiotic contamination. Environmental changes invariably cause some stress on the 

cell, and this stress is frequently associated with ROS, which consume the antioxidants 

in the cell or further induce ROS accumulation [30].  

 

Accumulation of ROS results in oxidative damage to crucial biomolecules such as 

proteins, DNA, and lipids. The accumulation of oxidized proteins has been associated 

with cellular aging and compromises cell viability. The result of protein oxidation is the 

formation of protein carbonyls, which can form large protein aggregates that cannot be 

degraded by proteolytic mechanisms. Non-degraded large protein aggregates eventually 

disrupt cell homeostasis completely [30]. ROS has the ability to cause mistranslation of 
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mRNA (for dysfunctional protein synthesis), and can also target the actin cytoskeleton of 

yeast (this results in accelerated aging and cell apoptosis). Oxidative DNA damage can 

result in base modification, abasic sites, protein-DNA cross linkage, and single or double 

stranded breaks in DNA. Oxidized DNA then interferes with the normal response to 

oxidative stress, which causes further ROS accumulation and programmed cell death 

(PCD). Lipid peroxidation is often the result of lipid oxidative damage and is initiated by 

the oxidation of polyunsaturated fatty acids (PUFAs) into lipid hydroperoxides, by OH• 

radicals. S. cerevisiae produces saturated and monosaturated fatty acids of 16- and 18-

carbon atoms and PUFAs of no more than two double bonds [34]. Most yeast are not 

capable of synthesizing long chain PUFAs, but will readily incorporate them into their 

membranes if cultured with PUFA rich medium. This further increases the risk of 

oxidative stress to the cell [30].  
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Figure 2. Cellular responses to oxidative stress in Saccharomyces cerevisiae. Oxidative 

stress can result in either cell survival (shown in green) or cell death (shown in red). 

ROS can activate enzymatic (catalases) and non-enzymatic antioxidants (such as GSH). 

These response systems work together with the targeted removal of small, oxidized 

proteins by the ubiquitin-dependent proteasome system (UPS) to keep cells alive. Cells 

can activate cytoprotective autophagic pathways (yellow) that remove irreparable 

oxidized macromolecules or dysfunctional organelles, such as mitochondria. An 

abnormally high degree of autophagy will result in programmed cell death (PCD). If the 

cell is exposed to severe oxidants, lethal response pathways such as apoptosis and 

necrosis will be activated [30]. 
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There are both non-enzymatic and enzymatic stress responses in yeast, as seen in Figure 

2 [30]. Non-enzymatic defense systems include but are not limited to the tripeptide 

glutathione (GSH), polyamides, lipid-soluble antioxidants, trehalose, metallothioneins, 

and glutaredoxin [33]. A study showed that glutathione deficient mutants are 

hypersensitive to H2O2 and also exhibit a slower growth rate and a longer lag phase than 

typical wild type cells. Glutathione has also been linked with protecting mitochondria 

from oxidants in the aerobic respiratory chain process [33]. Lipid soluble antioxidant 

molecules in yeast are also important for resistance to ROS. Cells with membranes 

containing higher amounts of saturated fatty acids are more resistant to oxidation effects 

than those cells with a higher concentration of PUFAs [33]. Autoxidation of PUFAs is a 

natural consequence of an oxygen rich environment and the lipid peroxidation products 

deteriorate membrane fluidity and cause oxidative damage to other biomolecules [35].  

 

Enzymatic stress responses in yeast include catalase genes, pentose phosphate pathway 

enzymes, glutathione reductase and peroxidase, thioredoxin peroxidase and reductase, 

and the methionine reductase.  The catalase genes CTA1 and CTT1 in S. cerevisiae play 

a role as peroxide scavengers and are responsible for the breakdown of H2O2 into O2 and 

H2O. H2O2 is a product of the fatty acid β-oxidation pathway and both catalase genes 

help in resistance towards H2O2 [33]. Cytosolic catalase T (CTT1) gene in S. cerevisiae 

has shown to be regulated by the supply of essential nutrients around the cell. Expression 

levels of CTT1 are low when grown in rich and complete media, but if any of the 

essential nutrients become limiting, expression levels rise substantially [36]. 

Overexpression of the CTT1 gene in S. cerevisiae has been shown to reduce overall ROS 

levels in the cell, which further helps maintain a normal amount of fatty acids in the cell 

[37]. The pentose phosphate metabolic pathway, which also aids in ROS protection in 

cells, produces nucleotides, antioxidants, and some lipids. The pathway includes glucose 

6-phosphate dehydrogenase (ZWF1), transketolase (TKL1) and ribulose 5-phosphate 

epimerase (RPE1). All are involved in cellular reduction via the production of NADPH, 

which promotes more antioxidant presence that results in increased tolerance to H2O2 
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stress. Glutathione and thioredoxin are both powerful antioxidants. The glutathione 

reductase maintains a high ratio of reduced to oxidized components in the cell and 

glutathione peroxidase catalyzes the reduction of hydroperoxides via GSH as a 

reductant. Thioredoxin peroxidase works in conjunction with thioredoxin reductase to 

reduce both H2O2 and alpha hyperperoxides inside the cell [33]. 

 

2.3 The role of carotenoids 

Carotenoids are naturally occurring terpenoid compounds of various pigments and serve 

many roles in microorganisms.  They have the ability to protect cells against various 

ROS by catalytically quenching singlet oxygen species (O2) that are generated from 

cellular metabolism. Carotenoids are present in both photosynthetic and non-

photosynthetic organisms, where they carry very diverse functional roles. In 

nonphotosynthetic organisms, one of the main functions is to isolate toxic oxygen 

species from the environment [38]. Carotenoids also increase membrane rigidity to help 

reduce the penetration of singlet oxygen species from the extracellular environment [39]. 

 

Carotenoids consist of a polyene chain of conjugated bonds with varying amounts of 

isoprene units. They are responsible for the different pigmentations seen in nature that 

absorb at a wavelength from 300 to 600 nm. The absorbance of the molecule is 

correlated to the number of conjugated bonds and functional groups. Two broad 

classifications of carotenoids include hydrocarbons (carotenes) and oxygenated 

derivatives (xanthophylls). Phytoene (C40H56) is a symmetrical acyclic C40 hydrocarbon 

structure that is formed by the condensation of two geranylgeranyl diphosphate (GGPP) 

molecules. It is the initial “colorless” carotenoid from which other carotenoid 

compounds are derived via various biochemical reactions. This group consists of about 

600 natural carotenoids and are mostly formed by enzyme mediated reactions [38]. 

Important carotenoids produced from microorganisms include β-Carotene, α-Carotene, 

β-Cryptoxanthin, Lutein, Zeaxanthin, Astaxanthin, Canthaxanthin, Neoxanthin, 

Violaxanthin, Antheraxanthin, and Fucoxanthin, as seen in Figure 3 [39].  



 

12 

 

 

 

Figure 3. Carotenoid biosynthesis pathway [1]. 

 

The evolutionary origins of carotenoids are thought to be from ancient anoxygenic 

photosynthetic microorganisms, long before the time of eukaryotes.  The phylum of 

bacteria known as cyanobacteria is the earliest record of oxygenic carotenoid producing 

bacteria that dates back 3.5 billion years with fossil and molecular evidence. Through 

microbe evolution, the carotenoid biosynthetic pathways diversified, which resulted in 

different structural forms of carotenoid molecules. The earths transition from an 

anaerobic to aerobic environment also impacted carotenoid diversity and their 

dependence on oxygen-dependent enzymes [39]. Carotenoids are believed to have 

evolved similar to sterols, which evolved in parallel to the appearance of atmospheric 

oxygen [38]. Eukaryotes then acquired the mechanism for carotenoid production either 
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by symbiotic growth with bacteria or via eukaryotic chloroplasts [38]. Prochlorophytes, 

which is another group of oxygenic photosynthetic bacteria, have similarities in 

carotenoid pigments to that of algae and eukaryotic plants. This also suggests crossover 

of evolutionary relations between species [39].  

 

Carotenoids form a unique medicinal and biotechnological class of natural pigments. 

They are structurally very diverse and are involved in many biological functions such as 

species coloration, photo protection, light harvesting, and are precursors to many 

hormones. Commercially, carotenoids are used in pharmaceuticals, cosmetics, food 

colorants, and in animal feed supplements [40]. The health benefits of carotenoids are 

becoming increasingly more understood. Carotenoids are not synthesized in animals, but 

act as pro-vitamin A compounds and can be metabolized into vitamin A and retinoids as 

a nutrition source.  Studies have shown that carotenoid compounds also exhibit disease-

fighting power and are able to prevent or slow down the presence of cancer or other 

chronic diseases such as multiple sclerosis, cataracts and arteriosclerosis [38].  

 

The market for carotenoid supplements is large and constantly growing. As of 2010, 

commercially used carotenoids had a value at nearly $1.2 billion with a projected value 

of $1.4 billion by 2018. Of that total value, β-carotene had a market value of $261 

million in 2010, which is roughly 20 percent of the total carotenoid value [41].  The 

majority of carotenoids on the global market are chemically synthesized or extracted via 

solvents from non-microbial sources [39]. In lieu of non-organic means of obtaining 

carotenoids, there are few viable options for microbe-based carotenoids that give 

competition to the chemically synthesized molecules. There is a growing consumer 

preference for natural additive supplements and an economical preference for production 

of carotenoids in microbes because of a potentially lower production cost [39]. 

Currently, the most commonly used microbes for natural carotenoid synthesis are 

Dunaliella salina for β-carotene and Haematococcus pluvialis or X. dendrorhous for 
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astaxanthin [42]. Further research is still needed to develop more technologies and to 

metabolically engineer other organisms to produce carotenoids.  

In general, factors affecting carotenoid production in microorganisms include light, 

temperature, chemical compounds, metals ions and salts, and solvents [42]. In the 

organism X. dendrorhous, astaxanthin production is proposed to be photo-inducible 

because an increase of carotenoid production is observed when exposed to strong light 

illumination. Reactive oxygen species are also seen as active participants and linked to 

improvements in carotenoid production [18, 42]. Temperature influences the growth and 

development of living organisms. It has the potential to alter the activity and 

concentrations of the enzymes involved in biosynthetic pathways, which reflects the 

activity of the isoprenoid production pathways. Across microorganisms, a lower 

temperature generally promotes a higher rate of carotenoid production. The hypothesis 

behind this phenomenon is that as temperature decreases, the membrane fluidity and 

functionality also decrease. This decrease in fitness is then compensated in the cell by 

overproduction of carotenoids and unsaturated lipids [42].  

 

To further understand the carotenogenic biosynthesis pathway in various organisms, 

researchers have explored chemical compounds and their impact on the pathway. For 

example, in the fungi species Blakeslea trispora, when penicillin (1 mg/L) was added to 

the culture after 24 hours of growth, carotenogenesis was stimulated by 50 percent 

without disrupting the total protein and carbohydrate synthesis. Authors suggested that 

penicillin stimulates the early stages of the isoprenoid pathway because mevalonate 

kinase was close to double in concentration under the presence of penicillin [42]. 

Similarly in Rhodotorula mucilaginosa, which is a unicellular pigmented yeast, 

chloramphenicol (1,000 mg/L) had a positive effect on total carotenoid production [42]. 

The yeast genus Rhodotorula also demonstrated an improvement of carotenoid 

volumetric production (mg/L) and yield when exposed to calcium, copper, zinc, and 

ferrous ions in the growth medium. The explained rationale behind this behavior is that 
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there is either a stimulation of carotenoid-synthesizing enzymes from the cations or that 

there is an increase in active oxygen free radicals in the surrounding medium [42].  

 

Solvents in the extracellular environment may also affect carotenoid production in 

microorganisms. The addition of ethanol, methanol, isopropanol, and ethylene glycol to 

the culture medium has been shown to help increase carotenoid production in microbes. 

When 2% (v/v) ethanol was added to the culture of Rhodotorula, there was a reported 

increase in β-carotene and a decrease in torulene. Torulene is a hydrocarbon carotenoid 

compound with only one cyclic end (versus two cyclic ends in β-carotene) [43]. It has 

been proposed that there is ethanol-mediated inhibition of torulene oxidation, which 

suggests that the there is a metabolic pathway shift to favor ring closure (as seen in β-

carotene). There was also a similar phenomenon seen in the red yeast X. dendrorhous 

(Phaffia rhodozyma) when 0.2% (v/v) ethanol was added to the culture medium [43]. 

Further detailed studies then indicated that ethanol activates oxidative metabolism with 

the induction of HMG-CoA reductase. HMG-CoA reductase is a key enzyme in the 

isoprenoid biosynthesis pathway. The activation of this enzyme naturally results in 

enhanced carotenoid production [43].  

 

The study of the natural red yeast X. dendrorhous has provided more knowledge about 

the factors affecting carotenoid yield. Additives to culture medium such as ethanol, 

acetate, and mevalonate have all resulted in an increase of carotenoid formation; 

however, any supplement such as mevalonate is not economically feasible for long-term 

industrial production. When X. dendrorhous is grown with additional ethanol, carotenoid 

production was continuously enhanced as ethanol was added and the effect of ethanol 

was greatest at 3 and 5 days. From this result, it is assumed that ethanol increases the 

carotenoid production once cells are in the stationary phase [43]. A decrease in pH is 

also observed in X. dendrorhous cultures when they are grown with added ethanol. This 

pH drop is possibly the result of acetate accumulation in the culture, but regardless the 

carotenoid levels increase [43].  
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2.4 Metabolic engineering of S. cerevisiae 

The baker’s yeast Saccharomyces cerevisiae is a model organism for genetic and 

metabolic engineering. It is a Generally Recognized As a Safe (GRAS) organism, has a 

short life cycle, and is easy to culture [9].The genome is highly malleable and is 

responsive to rearrangements and manipulations by recombinant DNA technology, 

which is even further expedited by the availability of the complete genome sequence of 

S. cerevisiae published in 1996 [44]. It is a fairly robust and genetically stable host that 

is capable of production of fine and bulk chemicals with proper engineering [2, 9]. 

Strains are also being engineered for increased tolerance to ethanol and other end 

products, which makes S. cerevisiae more conducible to large scale fermentation [45].  

 

Development of more sophisticated methods in the field of recombinant DNA 

technology has enabled researchers to manipulate a given pathway of interest. This 

manipulation is a more direct approach for cell improvement and involves introducing 

specific genome perturbations such as modifying promoter strength of a gene, gene 

deletions, or establishing new genes and/or new metabolic pathways into the cell [44]. 

Metabolic engineering is a directed approach, which distinguishes it from classical 

applied molecular biology. Metabolic engineering generally includes two aspects. The 

first aspect is the analytical side, which involves analysis of the cells to identify the most 

promising targets for genetic manipulation. The second aspect is the genetic engineering 

of the cell that encompasses the actual construction of the genetic modifications into the 

cell [44]. Different targets for metabolic engineering in S. cerevisiae are as follows: 

improvements of productivity and yield, elimination of by-products, improvements of 

cellular properties and process performance, extension of substrate range, and extension 

of product range including heterologous protein production [44].  

 

The molecular toolset for transforming S. cerevisiae is constantly expanding. Over the 

past several decades, technologies have rapidly evolved enabling yeast to produce a 

broad range of molecules by synthetically altering the genome [46].  A large majority of 
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these systems involve plasmid DNA and vectors with tunable parameters such as 

promotor/terminator, selection markers, and CEN/ARS origins of replication [47]. The 

transformation of yeast with these unique plasmids often comes at a metabolic cost to 

the cell, which may include a decreased growth rate or a decrease in production of the 

desired products [48]. The choice of selection marker, for example, has varying side 

effects to the cellular metabolic burden. Auxotrophic markers (out of the various 

selectable markers available) dramatically changed the specific growth rate of the strain 

and the most significant plasmid load was found to be in a diploid S. cerevisiae yeast 

strain [47]. The same study showed that plasmid copy number is not always determined 

by the origin of replication. They demonstrated that the use of the dominant antibiotic 

marker KanMX completely masks the effects of different origins of replication but 

surprisingly does not affect the specific growth rate of the strain [47]. Research has also 

shown that introduction of centromeric plasmids may result in higher heterologous 

protein expression, which may cause a negative gene dosing effect on the cell [47, 49]. 

Indeed, there seems to be a large disconnect between the use of plasmid-borne systems 

and integrated DNA cassettes that should be taken into consideration when utilizing 

metabolic engineering for product formation in yeast.  
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Figure 4. Various aspects of metabolic engineering [44]. 

 

 

Metabolic engineering is rarely a straightforward process. Cellular metabolism, for 

example, has a high level of complexity in S. cerevisiae and is a limiting factor for 

analytical methods of metabolic engineering.  The two aspects of metabolic engineering 

(as seen in Figure 4) are both crucial in order to fully understand the interactions 

between enzyme concentrations, metabolite levels, and gene expression [44]. The 

isoprenoid production pathway in Saccharomyces is affected by a multitude of direct and 

indirect factors including the overexpression of HMG-CoA, the effect of ethanol on 

HMG-CoA activity, and yeast growth substrates. The regulation of HMGR has been the 
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main focus for isoprenoid biosynthesis ever since it has been shown to be the rate-

limiting step in the pathway [21-23]. This natural bottleneck observed in the pathway 

has been a target for overexpression in S. cerevisiae to increase mevalonate pathway 

product yields [10]. This approach has been shown to moderately increase the flux 

towards the mevalonate pathway for isoprenoid production such as carotenoids and non-

isoprenoid compounds like bisabolene ( as seen in Figure 5), a precursor to biofuel 

bisabolane [10, 50].  

 

 

 
Figure 5. Mevalonate pathway in yeast and the carotenoid biosynthesis pathway in X. 

dendrorhous [15]. 

 

 

Both E. coli [3] and S. cerevisiae [43] have been studied to understand the impact of 

overexpressing the isoprenoid biosynthesis pathway. E. coli has physical limitations for 
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accumulation of carotenoids in the cell membrane that is most likely already reached 

without any modifications to the cell storage capabilities. Yeast, on the other hand, are 

capable of storing large amounts of ergosterol inside of the cell [51]. The ergosterol 

pathway has been diverted for carotenoid production in noncarotenogenic species such 

as S. cerevisiae and Candida utilis. The knowledge of a number of carotenoid 

biosynthetic pathways has also provided for a unique toolbox of carotenogenic (crt) 

genes that can be used for carotenoid production in S. cerevisiae via strain engineering 

of the terpenoid biosynthesis pathway [51]. The strains have been successfully 

engineered to produce carotenoids and optimized through overexpressing the bottleneck 

HMG1 and deleting ERG9. The ERG9 gene encodes for squalene synthase, and deleting 

it disrupts the ergosterol biosynthesis pathway, thus increasing the flux towards 

carotenoid production [51].  

 

Carotenoids are intracellular components and are not naturally secreted outside of the 

cell during fermentation [45]. The most effective ways to increase β-carotene production 

involves either increasing the biomass production or to increase the efficiency of the 

carotenoid production pathway. Carotenoid synthesis is governed by the activity of the 

isoprenoid pathway enzymes [45]. Balancing enzyme expression and relative expression 

levels are still crucial to the stability of the cell and its natural metabolic functions [2]. 

Altering the copy number of the gene is a standard approach for increasing metabolic 

flux; however, changing the promotor strength, ribosomal binding strength, and stability 

of the mRNA and resulting proteins are all variables to test in the optimization process 

[2].  
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3. MATERIALS AND METHODS 

 

3.1 Materials 

3.1.1 Medium 

All medium was autoclaved at 121ºC. Heat sensitive antibiotics were sterile filtered and 

added to cooled media (56 ºC). For all agar plates, final agar concentration is 2% 

(wt/vol). Escherichia coli medium included Luria-Bertani broth (18 g/L tryptone broth, 5 

g/L yeast extract, 2 g/L NaCl) and Super Optimum (SOC) broth (20 g/L tryptone, 5 g/L 

yeast extract, 0.5 g/L NaCl, 2.5 mL/L 1M KCl, 10 mL/L 1M MgCl2, 10 mL/L 1M 

MgSO4, 20 mL/L 1M dextrose). 100 µg/mL Ampicillin (100 mg/mL) was used for 

selection purposes. S. cerevisiae medium included YPD medium (10 g/L yeast extract, 

20 g/L peptone, 20 g/L dextrose), YNB medium (1.7 g/L yeast nitrogen base without 

amino acids and ammonium sulfate, 20 g/L dextrose, 5 g/L ammonium sulfate). 300 

µg/mL of Hygromycin B (100 mg/mL, H2O) and 100 µg/mL Nourseothricin (100 

mg/mL, H2O) were used for selection. Buffer and solutions included LiAc/TE (100 mM 

LiAc, 1X TE pH 7.5), SS DNA/PEG/TE/LiAc (0.26 µg/µL salmon sperm DNA, 0.4 g/L 

PEG 3350, 1X TE pH 7.5, 100 mM LiAc), TE (100 mM Tris-Cl, 10 mM EDTA). All 

chemicals used in this work may be seen in Table 1. 
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Table 1. Chemicals 

Manufacturer Location Chemicals 

ACROS USA D(+)-glucose, agar 

Amresco USA Peptone, Yeast Nitrogen Base 

BDH Aristar USA HCl, Ammonium Sulfate 

Electron Microscopy Science USA PEG 3350 

EMD Chemicals Inc. Germany Yeast Extract 

Enzo Life Sciences USA Hygromycin B 

Fisher Scientific USA EDTA 

Jena Biosciences Germany Nourseothricin 

JT Baker  USA Antifoam B Silicone Emulsion, 

NaCl 

MP Biosciences USA LiAc 

Promega USA Tris-Cl 

Teknova USA NaOH, Tryptone Broth 

Tokyo Chemical Industry Co., 

LTD 

Japan Dodecane 

Trevigen Inc. USA Salmon Sperm DNA 
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3.2 Methods 

3.2.1 Cultivation and storage of E. coli 

The E. coli strain BW25113 (Table 2) was used for all plasmid constructions and 

cultivated in Luria-Bertani medium at 37ºC at 225 rpm. For selection and cultivation of 

transformants, LB agar plates and LB medium were supplemented with 100 µg/mL 

ampicillin. For long term storage, frozen stocks were made of each transformant by 

suspending cells in a ~17% glycerol solution followed by storage in cryogenic tubes at   

-80 ºC. 

 

3.2.2 Transformation of E. coli by electroporation 

The E. coli strain BW25113 was grown overnight at 37ºC in a 3 ml culture of LB 

medium. After 12 hours, 500 µL of the culture was back diluted into 50 mL of fresh LB 

medium. The diluted cells were incubated at 37ºC until they reached an OD600 of 0.4. 

The cells were harvested by centrifugation at 5000 rpm, washed twice with 20 mL ice 

cold sterile milliQ water, once with 10 mL ice cold sterile 10 % glycerol solution. After 

the final wash step, cells were resuspended in ~500 µL of 10% glycerol and added into 

sterile microcentrifuge tubes in 50 µL aliquots. Any extra aliquots were stored in the       

-80 ºC freezer. For electroporation, 2 µL of cleaned DNA was added to 50 µL of 

competent cells and allowed to sit on ice for 5 minutes. The mixture was pipetted into a 

sterile cuvette and contents were electroporated at 25 µF, 200 ohms, and 1800 V. 1 mL 

of SOC recovery medium was added to the cuvette and cells were incubated at 37ºC for 

one hour.  

 

3.2.3 Cultivation and storage of S. cerevisiae 

All yeast strains were grown at 30ºC in solid or liquid YPD growth medium with 2% D-

glucose. For selection of hygromycin B resistant transformants, YNB agar plates 

supplemented with 300 µg/mL of hygromycin B were used. For selection of 

nourseothricin resistant transformants, YNB agar plates supplemented with 100 µg/mL 

of nourseothricin were used. Yeast were plated on YPD agar plates at room temperature 
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for short term storage. All yeast strains used in this work may be seen in Table 2. For 

long term storage, frozen stocks were made of each transformant by suspending cells in 

a ~17% glycerol solution followed by storage in cryogenic tubes at -80 ºC. 

 

 

Table 2. Organisms 

Organism Strain Genotype Reference 

E. coli BW25113 rrnB3 ΔlacZ4787 hsdR514 

Δ(araBAD)567 

Δ(rhaBAD)568 rph-1 

Barry Wanner 

S. cerevisiae FY2 

(GSY1136) 

Matα, ura3-52, gal+ in S288c 

background, 

YBR209W::Act1p-GFP-

Act1t-URA3 

Kao and 

Sherlock 

(2008) [52] 

 YLH1 GSY1136::YIplac211YB/I/E Reyes et al. 

(2014) [53] 

 YLH2 GSY1136::YIplac211YB/I/E 

ΔCTT1 

Reyes et al. 

(2014) [53] 

 SM14 YLH2 mutant P1A2. Isolated 

hyper-producer from 

evolution experiment. 

Reyes et al. 

(2014) [53] 

 YMO1 SM14::CTT1 This work 

 YMO3 YLH2::CTT1 This work 

 YMO2 SM14::CTT1, 

pAG36::TDH3p-tHMG1-

ACTp 

This work 

 YMO4 YLH2::CTT1, 

pAG36::TDH3p-tHMG1-

ACTp 

This work 
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3.2.4 Transformation of S. cerevisiae by heat shock 

A modified lithium-acetate method was used for heat shock transformations [54, 55]. 

Cells were grown overnight at 30ºC in 3 mL of YPD medium. After 12 hours, roughly 

500 µL of overnight culture was added to 50 mL of YPD medium for an OD600 of 0.05. 

Diluted cells were incubated at 30ºC for 4-5 hours until the OD600 was 0.6. Cells were 

harvested by centrifugation, washed twice with 30 mL sterile water, once with 10 mL 

LiAc/TE, resuspended in 100 µL of LiAc/TE, and incubated at 30ºC for 30 minutes 

without agitation. To a sterile microcentrifuge tube, components were added in the 

following order: 20 µL DNA, 10 µL of 10 mg/mL single stranded salmon sperm DNA, 

300 µL of PEG/LiAc/TE, 50 µL of competent cells. Tubes were gently inverted to mix 

and incubated at 30ºC for 30 minutes without agitation. Cells were then heat-shocked for 

20 minutes at 42ºC, pelleted, and resuspended in 1 mL of YPD medium. After one hour, 

cells were washed and resuspended with 1 mL of sterile water. 100 µL of culture was 

plated on selective plates and plates were incubated at 30ºC for 2-3 days. 

 

3.2.5 Construction of CTT1 integration plasmid 

Plasmid pAG26 with hygromycin B selection (Table 3) was used as the backbone vector 

for construction of the CTT1 integration plasmid. The CTT1 sequence was amplified 

from genomic DNA of wild type FY2 S. cerevisiae using primers F-CTT1-HindIII and 

R-CTT1-SalI, digested with HindIII and SalI and ligated into pAG26 cut with the same 

enzymes. The downstream portion of CTT1 for marker recycling purposes was 

amplified using primers F-DSCTT1-ClaI and R-DSCTT1-SpeI (Table 4), digested with 

ClaI and SpeI and ligated into pAG26 cut with the same enzymes. Once constructed, the 

plasmid was electroporated into E. coli strain BW25113 and plated on LB agar plates 

supplemented with 100 µg/mL of ampicillin. The plasmid was digested with StuI and 

PvuII prior to transformation to ensure proper integration at the CTT1 gene site. 

Transformation colonies were selected and grown in 3 ml LB with 100 µg/mL 

ampicillin. A frozen stock was saved for long term storage and plasmid extractions were 



 

26 

 

verified using PCR. Once confirmed of having the right construct, plasmids were 

transformed into yeast strains using the lithium-acetate method [54, 55].  

 

3.2.6 Construction of truncated HMG1 overexpression plasmid 

The truncated HMG1 gene involved in the mevalonate pathway was PCR amplified 

from genomic DNA of wild type FY2 S. cerevisiae using AccuraTM High Fidelity DNA 

Polymerase. The overexpression plasmid was constructed by first digesting the 

yEpGAP-cherry plasmid (containing the TDH3 promotor) with EcoRI and XhoI, and gel 

extracting the plasmid without the yeast enhanced monomeric red fluorescent protein 

(yEmRFP). The tHMG1 PCR was digested with EcoRI and XhoI and ligated into the 

backbone vector of yEpGAP. The ligation product was transformed into BW25113 E. 

coli and selected on LB plates with 100 µg/ml ampicillin. Transformants were verified 

via colony PCR. Primers F-ACTt-XhoI and R-ACTt-SalI were used to amplify the ACT 

terminator sequence from plasmid pKKGS4 (Table 3 and 4). The PCR amplified ACT 

terminator and the yEpGAP::tHMG1 plasmid were digested with XhoI and SalI and 

ligated at room temperature for 2 hours. The ligated plasmid was transformed and 

propagated into BW25113 E. coli in LB with ampicillin. The TDH3p:tHMG1:ACTt 

construct was cut from the yEpGAP plasmid using restriction enzyme BamHI and 

ligated into pAG36 with nourseothricin resistance. The ligated plasmid was transformed 

and propagated into BW25113 E. coli under ampicillin selection, and further 

transformed into yeast using the lithium-acetate method [54]. 
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Table 3. Plasmids  

Name Marker Description Reference 

yEpGAP-cherry Amp, RFP Source for TDH3 

promoter 

Neta Dean 

pKKGS4 Amp Source for ACT 

terminator 

Katy Kao 

pAG26 (Addgene 

35127) 

Amp/hph/URA3 CEN plasmid with 

Hygromycin B 

selection 

John McCusker 

[56] 

pAG36 (Addgene 

35126) 

Amp/NAT/URA3 CEN plasmid with 

Nourseothricin 

selection 

John McCusker 

[56] 
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Table 4. Oligonucleotides  

Name Sequence Description 

F-CTT1-HindIII 5’-TGAGAAGCTTGAGC 

TGCTAAACATTAA-3’ 

Forward primer to amplify CTT1 

gene from FY2 

R-CTT1-SalI 5’-TGAGGTCGACTTAA 

TTGGCACTTGC-3’ 

Reverse primer to amplify CTT1 

gene from FY2 

F-DSCTT1-ClaI 5’-TGAGATCGATGGCA 

GCACTATTTATT-3’ 

Forward primer to amplify 

downstream of CTT1 gene from 

FY2 

R-DSCTT1-SpeI 5’- TGAGACTAGTGAGA 

TAGGTGGAATCTTA -3’ 

Reverse primer to amplify 

downstream of CTT1 gene from 

FY2 

F-tHMG1-EcoRI 5’-TGAGGAATTCATGG 

ACCAATTGGTGAAAA-3’ 

Forward primer to amplify 

tHMG1 from FY2 

R-tHMG1-XhoI 5’-TGAGCTCGAGTTAG 

GATTTAATGCAGG-3’ 

Reverse primer to amplify 

tHMG1 from FY2 

F-ACTt-XhoI 5’-TGAGCTCGAGCAAA 

TAGGCGGC-3’ 

Forward primer to amplify ACTt 

from pKKGS4 

R-ACTt-SalI 5’-TGAGGTCGACTTAC 

GCGCTTTTCC-3’ 

Reverse primer to amplify ACTt 

from pKKGS4 
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3.2.7 Quantitative characterization of carotenoid levels 

Quantification of carotenoids was done as described previously with the following 

modifications [53]. 500 μL of cell culture was transferred to a 2 mL collection tube and 

cells were collected via centrifugation at 12,000 rpm for 2 minutes. Supernatant was 

aspirated and the pelleted cells were disrupted in 1 mL of dodecane and approximately 

250 μL of 425-600 μm acid-washed glass beads (Sigma). Disrupted culture was 

centrifuged for 2 minutes at 12,000 rpm and 200 μL of the supernatant was transferred to 

a Corning® 96 well black-wall clear-bottom plate for further quantification.  

 

3.2.8 Bioreactor studies 

Both YPD and YNB media supplemented with 2% (wt/vol) D-glucose were used for 

bioreactor studies. The seed cultures for fermentation were started using a 1 mL frozen 

culture stock (thawed) into 50 mL of media. Frozen culture starter stocks were created 

from an initial YPD batch-mode bioreactor run, which were then used to inoculate 50 

mL baffled flasks. Seed cultures were grown for 48 hours at 30°C and 170 rpm. The 50 

mL culture was used to inoculate 3 L of media in a 7 L bioreactor. Bioreactor studies 

were conducted in a 7 L glass bioreactor (Applikon®) for 72 hours. Bioreactor pH was 

maintained at set point using 2 M NaOH and 2 M HCl. The temperature was maintained 

at 30°C with an agitation speed of 800 rpm and continuous air flow.   
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4. RESULTS 

 

4.1 Impact of bioreactor parameters on carotenoid production 

β-carotene production and the metabolic profiles of each batch run varied based on 

media composition, agitation speed, and pH. Bioreactor runs were conducted with either 

YPD or YNB media and at an agitation speed of 400 or 800 rpm. The pH levels tested 

were 4, 4.5, and 5. YPD is a complete media, which results in a high titer (mg β-

carotene/L) and biomass (g/L); however, it also results in performance variability due to 

the yeast extract in the culture medium. Conversely, YNB is a defined media that allows 

for reproducibility and higher β-carotene production (mg β-carotene/g [dcw]) at the 

exchange of a lower final biomass. Another variable is agitation speed, which affects the 

amounts of aeration and dissolved oxygen (DO) levels in the bioreactor. 

Carotenogenesis is an aerobic process [57], so the agitation speed influences both 

carotenoid production and metabolite concentrations. The maximum observed drop in 

DO for each run happens during the exponential growth phase when cells are consuming 

the most oxygen. The maximum DO drop for runs at 400 rpm is 80-90% and only 40-

50% for runs at 800 rpm. At 800 rpm, the β-carotene production follows a linear trend 

throughout the run. When the agitation speed is lower, there is an evident lag time in β-

carotene production, as shown in Figure 6. This lag time is most likely the result of 

limiting oxygen in the bioreactor.  Despite the different production profiles, the final 

amounts of β-carotene produced are similar between the two agitation speeds. Aeration 

level also affects the ethanol consumption rate in the bioreactor. For most runs at 800 

rpm, ethanol is consumed within 24 hours; however, ethanol takes about twice as long to 

be consumed when agitation is at 400 rpm.  
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Figure 6. Effect of aeration on SM14 carotenoid titer in correlation with pH. YNB 

medium, varying agitation speed and pH.  
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Figure 7. Effect of aeration on SM14 carotenoid production with respect to growth 

medium and pH. 

 

pH is the variable that has the most affect on β-carotene production and metabolite 

concentrations. In YPD media, pH has very little if any affect on carotenoid production. 

The deviations of carotenoid production in YPD media are based on substrate 

irregularities, specifically in yeast extract. YNB media, however, responds to pH 

fluctuations and the results are consistent between each replicate of specific run 

conditions. The natural pH of the carotenoid S. cerevisiae yeast cultures in the bioreactor 

is around pH 3.0. β-carotene production in YNB media is highest at pH 4.0 and 

production decreases as pH increases, as shown in Figures 7 and 8. In YNB media at pH 

4.5 and 5.0, glucose exhaustion happens around 12 hours and ethanol consumption ends 

around 24-30 hours. In YNB media at pH 4.0, metabolite analysis reveals a trend of 

slower glucose and ethanol consumption in comparison to the higher pH counterparts. 

Both glucose and ethanol took twice as long to be consumed: glucose in around 24 hours 
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and ethanol in around 60 hours. This trend was seen in other isolated mutants from the 

two different populations (SM12 and SM22) as well as the ancestral strain (YLH2) runs. 

SM12 is from the same population as SM14 and SM22 is from a separate evolved 

population [53], demonstrating that the metabolic profile result is consistent across 

different genetic backgrounds.  

 

 

 
Figure 8. Maximum β-carotene produced in batch bioreactor. Agitation at 800 rpm, YNB 

medium, 72 h run time. 

 
 
 
Acetic acid, which was another measured metabolite, also had varying concentrations 

throughout the run time and differed between runs of different parameters. At 400 rpm 

there is an observed spike in acetic acid concentration by hour 60, which is reproducible 

across all runs at 400 rpm and different media types. By 60 hours the ethanol is depleted, 

acetate concentration rises, and the β-carotene productivity rate increases as seen in 

Figure 9. Acetate concentrations in YPD batch runs with an agitation of 800 rpm stay 
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around 2-4 mM and there is not a very clear trend for correlating acetate to carotenoid 

production levels.  In YNB media with 800 rpm agitation and pH range of 4 to 5, the 

acetate concentration increases with carotenoid production levels. After 12-18 hours post 

ethanol depletion, the acetate is consumed and the bioreactor biomass reaches a 

maximum, as seen in Figure 9. This phenomenon is observed in SM14, the ancestral 

strain YLH2, and the two other isolated single mutants tested (SM12 and SM22).  

 

 

 

Figure 9. Carotenoid titer, biomass, and metabolite comparison of YNB batch run of 

SM14 and YLH2 (ancestral strain). 800 rpm, pH 4. ----: denotes ancestral strain values. 
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4.2 Metabolic engineering of S. cerevisiae 

In previous work, the CTT1 catalase gene was removed from the genome in order to 

have more effective hydrogen peroxide shock experiments. The removal of the CTT1 

gene reduced carotenoid expression in the unevolved ancestral strain by ~43% decrease 

[53]. To test whether carotenoid levels would increase with the CTT1 gene back in the 

genome, we reintegrated CTT1 into the isolated single mutant SM14 and the ancestral 

strain YLH2. What we saw was that reintroduction of CTT1 increased β-carotene titer 

only in the SM14 strain. The increase was from 15.1 ± 3.25 mg/g [dcw] to 22 ± 2.1 mg/g 

[dcw], as seen in Figure 10.  

 

The second aim to further increase carotenoid production in our strains utilized 

metabolic engineering to introduce tHMG1, which is the known rate-limiting step in the 

mevalonate pathway. To our surprise, overexpression of tHMG1 did not substantially 

increase β-carotene production in the strains. The presence of the empty plasmid in the 

strains also reduced carotenoid production, as seen in Figure 10. This may demonstrate 

that the self-replicating plasmid poses a metabolic burden on the cell and negatively 

influences carotenoid production.  
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Figure 10. β-carotene quantification comparison between strains with tHMG1 and 

CTT1. All strains were in 3 ml YPD cultures grown at 30°C for 72 hours. EP: empty 

plasmid control. tHMG1 p1, p2, p4: “p” represents plasmid and 1, 2, 4 are three different 

isolated transformants with the tHMG1 overexpression plasmid construction. Each strain 

contains at least three biological replicates. ** = p < 0.01; (two-tailed Student’s t-test 

with unequal variance). 
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5. DISCUSSION 

 

Yeast cells are exposed to a multitude of stress and metabolic challenges through 

industrial fermentation. There are physical stresses such as pressure and cell shearing, 

and chemical stresses in the form of osmotic shock, oxidative stress, and feedstock, 

metabolite, and product toxicities [28].  Increased stress has been shown to effect the 

metabolic activity and longevity of yeast, which ultimately hinders fermentation 

performance [28]. Both redox homeostasis and cell rescue/defense/virulence were found 

to be functionally enriched in the initial stages of fermentation. Both of these functions 

use genes involved in oxidative stress protection [28]. The ergosterol biosynthesis 

pathway, which has the same precursors as the carotenoid biosynthesis pathway, is 

highly connected to oxidative stress of the cell. A deficiency in ergosterol production 

elevates oxidative stress in yeast, demonstrating the importance of a well-functioning 

mevalonate pathway for cellular homeostasis [28, 58, 59]. 

 

The main objective of this work was to increase β-carotene production in our isolated 

hyper-producer carotenoid S. cerevisiae strains. The first goal was to optimize the 

growth conditions in the bioreactor to determine which parameters most affect β-

carotene production. Despite the similar metabolic profiles of the evolved mutants and 

the ancestral strain, there is a very drastic difference in the β-carotene titer productivity 

rates between the two strains. In the evolved mutants, from the initial start of 

fermentation and consistently throughout the run, there is a large positive upward slope 

of β-carotene production. The β-carotene production in the ancestral strain appears to 

stay at a near constant level within a 72-hour fermentation, as seen in Figure 9. Studies 

have shown an enriched cellular defense response in the initial hours of fermentation 

[28], which in combination with our evolved strains may encourage the higher 

productivity rates.  
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We found that metabolite concentrations in the bioreactor are somewhat dependent on 

media composition, agitation, and pH. The different parameters and resulting metabolic 

profiles also reflect the extent of β-carotene production in the cell. In our experiments, a 

dramatic increase in the production of β-carotene occurs after the glucose substrate has 

been consumed. A similar trend was seen in a study using S. cerevisiae for bisabolene 

production, which used the same pathway and precursor enzymes as those for β-carotene 

production [15]. During the time of glucose exhaustion and the beginning of ethanol 

consumption at around 12 hours, the carotenoid titer undergoes a dramatic shift towards 

higher productivity rates. Research has correlated ethanol and acetate concentration to 

increased activity in the isoprenoid pathway in yeast [19]. Ethanol enhances the activity 

of HMG-CoA reductase and increases the amount of mevalonate in the cell. Acetate is 

the precursor to acetyl-CoA, which is the center of cellular metabolism and is also the 

first compound of the MVA pathway. If both ethanol and acetate increase the activity of 

the MVA pathway, there will be an increase in the activity of the pathway enzymes and 

accumulation of the pathway precursor compounds. This heightened activity translates to 

increased formation of the downstream products of the MVA pathway such as β-

carotene.  

 

The second approach to increase β-carotene production was through metabolic 

engineering of our yeast strains. Reintroduction of the cytosolic catalase T (CTT1) gene 

and overexpressing the truncated HMG1gene provided varied results for β-carotene 

production in our strains. It has been previously demonstrated in E. coli that the 

isoprenoid pathway is a complex phenotype and that combinations of gene deletions or 

expressions have the potential to increase lycopene production [17]. This complexity 

may also be seen in our carotenoid strains for the production of β-carotene. When CTT1 

was reintroduced into YLH2 and SM14, only SM14 responded with an increase in β-

carotene. It may be possible that catalase reduces oxidative stress in the cell, which then 

prevents oxidation of the carotenoids [37]. However, the reintroduction of CTT1 into the 
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ancestral strain did not increase carotenoids production; the reason for the different 

observations between the two strains is currently not known.  

 

To further increase the fatty acid content and carotenoid content of the cell, tHMG1 was 

overexpressed on a self-replicating CEN plasmid. The transformation of the plasmid was 

only stable with the yeast strains containing CTT1 (YLH1). For strains lacking CTT1 

(such as the hyper-producers and the ancestral strain), the transformation did not work 

and either the cells did not grow or they were petites. Once the CTT1 gene was 

reintroduced into the strains, only then was the transformation successful. The reason for 

this result is still unknown. The carotenoid hyper-producer SM14 with CTT1 does not 

respond to overexpression of tHMG1, which has been previously shown to increase β-

carotene production in S. cerevisiae by over 400% when the gene was integrated into the 

yeast genome [10]. An explanation for our negative result may be a gene dosage effect 

or that the CEN plasmid creates excess metabolic burden on the cell [49]. 

 

Our mutant strain SM14 produces the highest amount of β-carotene in S. cerevisiae 

reported to date [10], 18 ± 1 mg/g [dcw] β-carotene compared to the current highest 

reported value of 5.9 mg/g [dcw].  There are other routes currently under investigation to 

further improve β-carotene production in yeast. One route is the fatty acid β-oxidation 

pathway. This pathway is not directly involved in the mevalonate pathway and includes 

genes involved in fatty acid synthesis as well as genes involved in the degradation of 

fatty acids. Indeed, more thorough investigation is needed in order to optimize our 

strains for carotenoid production.  
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6. CONCLUSIONS 

 

Carotenoid production in S. cerevisiae is of a complex phenotype. The goal of our 

experiments was to increase the β-carotene production of our current hyper-producer 

strains. We targeted two aspects: optimizing growth conditions in the bioreactor and 

metabolically engineering the mevalonate pathway in our strains. We determined the 

effect of various bioreactor parameters on β-carotene production in our hyper-producer 

SM14 mutant strain that included aeration, pH, and media composition. Dissolved 

oxygen content inside the bioreactor influenced the profile of carotenoid production, but 

final titer of carotenoids was independent of the aeration. The pH level only influenced 

batch runs using defined media (YNB), where runs at pH 4 resulted in β-carotene 

production of 16.2 ± 1.4 mg/g [dcw] and pH 5 resulted in lower β-carotene production at 

10 ± 0.1 mg/g [dcw]. The cytosolic catalase T (CTT1) gene was reintegrated back into 

the yeast genome; however, improvement in β-carotene production was only observed in 

SM14 and not the ancestral strain. Overexpression of the bottleneck HMG1 in the MVA 

pathway did not increase carotenoid production in the strains, suggesting that there may 

be a gene dosage effect or the introduced CEN plasmid creates too high of a metabolic 

burden on the cell. This work demonstrates that bioreactor culture parameters as well as 

genome manipulations influence the production of carotenoids in S. cerevisiae. 
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APPENDIX* 

 
 

1. Evolved Osmotolerant Escherichia coli Mutants Frequently Exhibit Defective N-

Acetylglucosamine Catabolism and Point Mutations in Cell Shape-Regulating 

Protein MreB. Winkler, J., C. Garcia, M. Olson, E. Callaway, and K. C. Kao. Appl. 

Environ. Microbiol. 2014, 80(12): 3729-3740. 

 

Escherichia coli, an important industrial microorganism for the production of a wide 

variety of fine chemicals, fuels, and proteins, has been extensively targeted to improve 

its suitability as a biofactory. Strain development efforts have focused on improving 

tolerance of feedstocks containing toxic compounds [60, 61] or products [62, 63]. Many 

environmental variables, including osmotic pressure, can negatively impact biocatalyst 

performance [64]. Use of nonconventional waste streams, such as waste glycerol or 

brackish water sources, to support microbial growth can also reduce process costs [65, 

66] while reducing pressure on fresh water resources; however, these carbon and water 

sources generally contain high concentrations of salt that may be inhibitory to microbial 

growth. In addition to osmotic stresses, excess Na+ can disrupt the ion homeostasis in E. 

coli as well [67]. Previous studies have attempted to engineer improved osmotic 

tolerance in E. coli [68, 69], but overall, knowledge of the genetic mechanisms that 

confer tolerance of osmotic stress in general or to specific osmolytes remains limited. A 

detailed analysis of E. coli osmotolerance to osmolytes would therefore provide new 

insight into the molecular mechanisms underlying this complex phenotype. 

 

Adaptive laboratory evolution [70] is a promising approach to identify potentially novel 

osmotic tolerance mechanisms, as this technique requires no assumptions about the 
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underlying genotype-phenotype relationship. Complex phenotypes, such as enhanced 

resistance to biofuels [62, 63, 71], lignocellulosic hydrolysates [61, 72], antibiotics [73, 

74], and environmental conditions [75], have all been successfully characterized using 

this approach. In this study, sodium chloride (NaCl) was selected as the osmotic 

inhibitor. A recent evolutionary study aimed at characterizing cross-adaptation between 

several different stressors detected several potential mechanisms in a single evolved 

NaCl-tolerant isolate [76], but due to the possible existence of multiple adaptation 

mechanisms, additional information is needed to better understand the genetic bases of 

osmotolerance. 

 

In order to identify novel genetic mechanisms for osmotic (NaCl) tolerance, we have 

utilized adaptive laboratory evolution to generate osmotic-tolerant mutants of two 

distinct E. coli strains: one capable of in situ recombination to reduce clonal interference 

between osmotolerant mutants and another, completely asexual strain [74]. These strains 

will enable a comparison between the sexual evolution system and typical evolutionary 

engineering approaches for an industrially relevant phenotype. After being propagated 

for approximately 150 generations in the presence of increasing concentrations of NaCl, 

osmotolerant mutants were isolated, characterized, and sequenced to identify any genetic 

changes that occurred during evolution. The elucidated resistance mechanisms were then 

explored phenotypically to better understand their potential impact on E.coli physiology. 

Transcriptomic analyses of several mutants were subsequently conducted to better 

characterize the genotype-phenotype connection that resulted in enhanced 

osmotolerance. 

 

 

MATERIALS AND METHODS 

 

Bacterial strains and growth media. All strains used for evolution in this study were 

previously developed BW25113 derivatives [74]. Briefly, Hfr-2xSFX− is a conjugation-
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proficient, surface exclusion-deficient Hfr strain with an operon of F transfer proteins 

integrated at the trp locus [77]. Recombination is therefore more frequent for the Hfr-

2xSFX− strain than for an Hfr strain with intact surface exclusion, which acts to prevent 

redundant transfer between Hfr and F+ strains [78]. 2xOriT, an F− strain, was used as an 

asexual control. Knockout strains were obtained from the Keio collection [79], while 

ASKA overexpression plasmids were transformed into BW25113 from the original AG1 

host [80] for both overexpression and compensatory assays. The kanamycin resistance 

marker in the Keio strains was also removed by transformation with pCP20 as needed 

for strain construction and screening [81]. The full list of strains and plasmids used in 

this study is given in Table S1 in the supplemental material. Minimal M9 medium 

supplemented with 0.5% (wt/vol) glucose and 50 μg/ml tryptophan [74, 77] was used for 

routine cultivation and growth assays, while Luria-Bertani (LB) broth and agar plates 

were used for strain isolation, transformation, and other analyses where indicated. 

Sodium chloride (JT Baker) was utilized to adjust the osmotic strength of the medium 

during the evolution and for subsequent growth assays. 

 

Evolution experiment. Adaptive laboratory evolution was conducted via serial batch 

transfer experiments to improve the osmotic stress tolerance of Hfr-2xSFX− and 2xOriT 

in parallel. Six replicate populations for each strain were inoculated from independent 

colonies to initiate the evolution experiment in 0.55 M (32 g/liter) NaCl and increased to 

0.6 M (35 g/liter) NaCl after one serial transfer. Approximately every 24 h, a proportion 

(typically 1 to 3%, based on cell density) of each replicate population was diluted into 

fresh medium to ensure that each population underwent approximately 6 or 7 

generations per transfer for a total of 150 generations. Sodium chloride concentrations 

were periodically increased from 0.6 M to 0.75 M (32 to 35 to 44 g/liter), as fitness 

increases were observed in population level data every 24 generations (Fig. 1); the daily 

concentration of NaCl in each replicate set is shown in Fig. S1 in the supplemental 

material. The initial NaCl concentration was chosen to reduce the growth rates of the 

ancestral strains by approximately 50%. The fitness (S; equation 1) of the evolving 

http://aem.asm.org.lib-ezproxy.tamu.edu:2048/content/80/12/3729.full#F1
http://aem.asm.org.lib-ezproxy.tamu.edu:2048/content/80/12/3729.full#disp-formula-1
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populations relative to their ancestral parents was determined every 24 generations using 

growth assays in microtiter plates to track their rates of adaptation; 0.6 M (35 g/liter) 

NaCl was used for the initial fitness measurement at generation zero to account for the 

lower initial tolerance of the Hfr strains, and 0.65 M (38 g/liter) NaCl was used 

thereafter. The specific growth rate (μ) was calculated by linearizing the measured 

growth curves and calculating the slope in exponential growth phase using standard 

regression procedures. The subscript i refers to the measured growth rate for the ith 

population or mutant under investigation. 

 

A logarithmic model (equation 2) was then fitted to the fitness measurements (S; see 

below) for each population and used to calculate their overall rate of improvement 

throughout the evolution experiment based on the expected shape of the improvement 

curve [75], where the constant α is a shape parameter for the logarithmic curve. The 

variable t refers to the number of generations that have occurred since the initial 

inoculation of the experiment. Potential external contamination and cross-contamination 

of the experiment were monitored as described by Winkler and Kao [74]. 

𝑆 =  
𝜇𝑖

𝜇2𝑥𝑜𝑟𝑖𝑇
− 1            (1) 

𝑆(𝑡) =  𝛼 log (𝑡)             (2) 
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Figure 1. Average fitness improvements for the Hfr-2xSFX− and 2xOriT populations, 

relative to the 2xOriT parent strain during evolution in the presence of high sodium 

chloride concentrations. NaCl concentrations used during fitness assays were 0.6 M (35 

g/liter) for the first measurement and 0.65 M (38 g/liter) for all subsequent 

measurements. Fitness is defined as S = μpop/μ2xOriT − 1 in this case, where pop refers 

to the population average growth rate for each evolving population under NaCl 

challenge. Error bars are 95% confidence intervals using the Student t distribution [82]. 

Mutant isolation and screening. One clonal isolate was randomly obtained from each 

evolved population (to ensure mutational independence) at the end of the evolution 

experiment after streaking the evolved populations onto LB agar for single colonies. 

Isolates from the Hfr- 2xSFX−  and 2xOriT populations are prefaced with G and A, 

respectively. All isolates were propagated in M9 minimal medium without excess NaCl 

for at least 10 generations prior to any phenotypic analysis. All cultures were grown in 

glucose minimal medium with tryptophan overnight and diluted 100-fold (optical 

density at 600 nm [OD600] ≈ 0.04) into medium containing various stressors for growth 

over 24 to 36 h. Cross-adaptation was analyzed using several general stress conditions 

(excess glucose [54 g/liter], n-butanol [0.8% vol/vol], mild acid stress pH [pH = 6.0], or 

elevated temperature [42°C]) with two biological and 4 technical replicates per strain per 

condition. While these stressors would be more severe in an industrial fermenter, the 

purpose of this assay is to analyze incidental phenotypic changes associated with 

osmotic tolerance. All growth assays were performed in 96-well microtiter plates using a 

plate shaker and incubator (TECAN Infinite M200) at 37°C (except for thermal stress 

assays). Relative fitness (S) and improvement (RI) of the ith mutant were, respectively, 

calculated for each condition using equations 1 and 3. Subscripts C and U refer to 

challenged and unchallenged maximum growth rates, respectively, where C can be any 

of the stress conditions listed above and sodium chloride stress. 

Fitness assays for knockout, overexpression, and compensatory assays were conducted 

in screw-cap tubes with 5 ml of M9 minimal medium, supplemented with glucose, 
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tryptophan, and 0.55 M (32 g/liter) NaCl. A lower concentration of NaCl was used for 

these assays to permit gathering of a full growth curve within 24 h. OD600 readings 

were taken every 2 h until exponential growth had been sustained for at least 3 

doublings. Fitness of the overexpression and knockout strains relative to the appropriate 

references (empty vector controls for the overexpression strains, BW25113 for knockout 

strains) was then calculated using equation 1. Three biological replicates per strain were 

analyzed. 

𝑅𝐼 =  
𝜇𝑖,𝐶 𝜇𝑖,𝑈⁄

𝜇2𝑥𝑂𝑟𝑖𝑇,𝐶 𝜇⁄
2𝑥𝑂𝑟𝑖𝑇,𝑈

− 1    (3) 

 

Fitness distribution analysis. Six randomly isolated clones were obtained by streaking 

from each of the evolved Hfr-2xSFX− and 2xOriT replicate populations (for a total of 36 

random isolates per strain). Each colony was inoculated into 2 ml glucose minimal 

medium supplemented with tryptophan and allowed to grow for 24 h. The fitness of each 

isolate (relative to 2xOriT) was then determined using growth in a microtiter plate under 

0.65 M (38 g/liter) NaCl challenge, as described previously. Four technical replicates 

were used per screened isolate. 

Mutation rate under osmotic stress. The mutation rates of Hfr- 2xSFX− and 2xOriT 

were measured using a standard fluctuation test [83] under 0.55 M (32 g/liter) NaCl 

stress to determine if the strains have unequal mutation rates under osmotic stress, which 

would influence their relative adaptation rates. For 2xOriT, the mutation rate is 1.43 

mutants per 109 cells (95% confidence interval of 0.72 to 2.31); for Hfr-2xSFX−, the 

mutation rate is 1.52 mutants per 109 cells (95% confidence interval of 0.71 to 2.54). 

The difference in mutation rate between the strains is not statistically significant. 

Hyperosmotic shock tests. Single colonies of each isolate (G1 to G6 and A1 to A6) and 

the parental controls were inoculated into glucose minimal medium and allowed to grow 

overnight. The stationary-phase cultures were then diluted in fresh medium and 
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propagated until mid- exponential phase (OD600 ≈ 0.3 to 0.6). The cultures were then 

normalized to equivalent optical densities, pelleted, and resuspended in glucose minimal 

medium supplemented with 5.45 M (319 g/liter) NaCl and incubated at 37°C for 2 h. 

Each sample was then serially diluted up to 10,000-fold in minimal medium, spotted on 

LB plates, and incubated overnight at 37°C. The numbers of colonies in each 1,000X to 

10,000X dilution were then counted. Each assay was performed in duplicate with 

independent biological replicates. 

Genome sequencing and verification. The evolved Hfr-2xSFX− (G1 to G6) and 

2xOriT (A1 to A6) isolates, along with the unevolved parental strains, were sequenced to 

discover the genotype underlying the observed sodium chloride tolerance. Genomic 

library preparation and sequencing were performed by The Texas A&M Genomics 

Center for sequencing on the Illumina HiSeq 2500 platform using 100-bp single-end 

reads. An average of 286-fold coverage was obtained for each isolate. Reads were 

assembled against the MG1655 reference genome, and each mutant genome was 

compared to the parental sequences to identify any de novo mutations. The approach to 

mutation verification depended on the type of mutation; 11 single nucleotide 

polymorphisms (SNPs) and deletions were verified with Sanger sequencing, and other 

large deletions were verified with junction-specific PCR (see Table S2 in the 

supplemental material). 

Transcriptional analysis. Two biological replicates of A2, A4, G2, G3, G5, and G6 

were used for microarray analysis. Two colonies of each strain along with the 2xOriT (A 

parent) and Hfr-2xSFX− (G parent) were inoculated into glucose minimal medium 

supplemented with tryptophan and grown overnight at 37°C with shaking. A total of 500 

μl of each overnight culture was diluted 50-fold (OD600 ≈ 0.02) into 250-ml baffled 

flasks containing 25 ml of glucose minimal medium, supplemented with tryptophan and 

0.55 M (32 g/liter) NaCl. Samples were grown until reaching an OD600 of 

approximately 0.5 and were then harvested by rapid filtration (Nalgene) followed by 

immediate resuspension in 5 ml of RNAlater (Sigma). RNA processing was done as 
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described previously [84]. 

Indole and biofilm measurements. The G2, G3, G5, G6, A2, and A4 mutants, along 

with the Hfr-2xSFX− and 2xOriT parental strains, were grown in M9 medium 

supplemented with 0.55 M (32 g/liter) NaCl, 0.5% (wt/vol) glucose, and 50 μg/ml 

tryptophan until reaching stationary phase. Extracellular indole concentrations were 

measured using standard procedures with Kovac’s reagent [85]. Biofilm formation was 

measured in 96-well plates with 2 biological and 8 technical replicates per strain in 

either LB or glucose minimal medium supplemented with NaCl (0.55 M, 32 g/liter) and 

tryptophan using a previously established protocol [86]. Biofilm data are normalized by 

final biomass density (OD600) and by specific biomass formation of the parental strains. 

Microarray data accession number. Microarray data were deposited in the Gene 

Expression Omnibus (GEO) database under accession number GSE51611. 

 

RESULTS AND DISCUSSION 

Evolution under NaCl challenge. Six replicate populations of 2xOriT and Hfr-2xSFX− 

were subjected to gradually increasing NaCl concentration (0.55 to 0.75 M, 32 to 44 

g/liter) over the course of approximately 150 generations. Over this time course, 

significant fitness improvements were observed in all evolving populations (Fig. 1), 

indicating the successful selection for osmotolerant mutants in each population. 

Compared to the observed rates of fitness improvement in the 2xOriT populations (4.54 

X 10-3/generation), the rates of fitness improvement in Hfr- 2xSFX− populations are 

significantly larger (6.70 X 10-3/generation, P < 0.003, Student’s t test). However, it is 

possible that due to the initial higher sensitivity of Hfr-2xSFX− to NaCl, mutants with 

larger fitness improvements tended to arise in the sexual populations as a result of 

stronger selection, leading to an apparent increase in the adaptation rate independent of 

recombination. Interestingly, mutant isolates from the Hfr-2xSFX− populations tended 

to have higher relative fitness values than those from the 2xOriT populations, as 
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discussed below. All populations reached similar phenotypic endpoints by the 

conclusion of the experiment. No loss of mating competence was observed in the Hfr- 

2xSFX− populations over the course of the experiment. 

 

Figure 2. Relative fitness of Hfr-2xSFX− and 2xOriT isolates under several abiotic 
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stressors, including 0.65 M (38 g/liter) NaCl (A), 0.3 M glucose (B), 0.8% n-butanol (C), 

growth at 42°C (D), pH 6 (E), and without abiotic stressors (F). Error bars are 95% 

confidence intervals using the Student t distribution [82]. 

Mutant characterization. A single randomly isolated clone from each Hfr-2xSFX− (G1 

to G6) and 2xOriT (A1 to A6) population was subjected to detailed analyses to identify 

any novel phenotypes that arose during evolution alongside osmotolerance. All mutants 

had significant improvements in relative fitness under NaCl challenge (Fig. 2A), though 

is it possible that mutations that enhance growth in minimal medium [87] are responsible 

for the apparent tolerance increase. However, only G3 and G4 had significantly 

improved growth rates in the absence of stress (Fig. 2F). When the observed general 

fitness benefits in the absence of abiotic stressors were accounted for by calculating 

mutant relative improvements under NaCl stress (see equation 3), all mutants remained 

significantly more tolerant than the unevolved 2xOriT strain; these strains likely have 

acquired mutations beneficial to both growth in minimum medium and in NaCl-

challenged conditions. Furthermore, all isolated mutants were capable of growth at 0.80 

M (47 g/liter) NaCl, a concentration that completely inhibits growth of the 2xOriT and 

Hfr-2xSFX− parent strains. In light of the improved NaCl tolerance of the mutants, we 

also examined their ability to withstand prolonged shocks under hyperosmotic 

conditions (5.45 M, 319 g/liter NaCl). While most mutants had no improvements in 

survival relative to 2xOriT under these conditions (data not shown), G3 and G6 rapidly 

lost viability, exhibiting a 10-fold or more decrease in shock tolerance. It is possible that 

survival under extreme NaCl concentrations versus growth at lower concentrations 

requires divergent tolerance mechanisms. 

Osmotic tolerance and other complex phenotypes. Resistance to osmotic stress is 

known to affect other phenotypes of industrial interest, such as n-butanol or low pH 

tolerance [76, 88] and growth at elevated temperatures [89]. Growth assays of the 

mutants in the presence of inhibitory levels of glucose, 0.8% n-butanol, mild acidic pH, 

and thermal stress (Fig. 2B to E) revealed that the observed tolerance phenotypes are 
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mostly specific to NaCl resistance alone. The G3 and G4 isolates exhibited increased 

tolerance of stress-inducing glucose concentrations [69]. Glucose and thermal tolerance 

levels of the other isolates were generally similar to or slightly below that of the wild-

type reference, so it is unlikely that there is a fundamental incompatibility between 

osmotic tolerance and these phenotypes in general. The acid tolerance of the mutants 

varied widely for the Hfr mutants, with G5 and G6 exhibiting large (25 to 37%) declines 

in fitness even under mildly acidic pH. Significant but small decreases in relative fitness 

under acid stress were also observed in all A mutants. These results imply that there is 

some degree of antagonistic pleiotropy between tolerance of high osmotic pressures and 

acid stress, but additional investigation is needed to confirm this hypothesis. 

Interestingly, no isolate had improved n-butanol tolerance in this case, contrary to 

previous examples of n-butanol-osmotic stress cross-adaptation[62, 76]. The reasons for 

this apparent incompatibility are unclear, especially given that Dragosits et al. observed 

a slightly increased level of n-butanol tolerance in an isolate evolved under continuous 

0.3 M NaCl stress [76]. Stronger NaCl selection could disfavor mutations that also 

improve n-butanol resistance, as it is reasonable to expect that different levels of osmotic 

stress select for distinct tolerance mechanisms. n-Butanol tolerance is also not always 

associated with improved osmotic stress resistance in evolved mutants [88], so there are 

at least some evolutionary paths on both the NaCl and n-butanol landscapes that lead to 

divergent tolerance phenotypes. The overall lack of significant cross-adaptation for the 

isolates in this case does indicate that specialist mutants with adaptations specific only to 

NaCl tolerance are favored under these evolutionary conditions. 

Genetic patterns of adaptation. In order to better understand the genetic bases for the 

observed osmotolerance phenotypes and to compare tolerance mechanisms between the 

sexual and asexual populations, we sequenced the genomes of A1 to A6 (2xOriT parent) 

and G1 to G6 (Hfr-2xSFX− parent) isolates. A complete list of mutated genes, their 

putative functions, and the structure of each mutation in the isolates is given in Table 1. 

Many isolates (8/12) harbor likely inactivating frameshift mutations or large deletions 
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within the N-acetylglucosamine (NAG) catabolic operon (nag), either in the gene 

encoding the transcriptional repressor nagC or the deacetylase nagA. Amino sugar 

catabolism may therefore have been altered in these strains. Although this adaptation has 

not been previously observed in strains evolved under continual osmotic stress, NAG 

forms a crucial component of peptidoglycan [90], and it is readily conceivable that 

adaptation to high osmotic stress would involve alterations to cell wall biosynthesis or 

peptidoglycan recycling. Mutations affecting glucosamine-6-phosphate biosynthesis 

have also been identified in evolved isobutanol-tolerant E. coli [71], so this may be a 

common mechanism of adaptation to certain membrane-disrupting environmental 

conditions. Mutants A1, A2, and A3, all containing mutations in nagA, were unable to 

metabolize NAG as a sole carbon source as expected [91]. G4 unexpectedly failed to 

grow as well, despite the fact that the strain harbors no mutations affecting NAG genes; 

it is possible that this strain has a large genomic rearrangement affecting nagA 

expression that was not detected in our analysis. 
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Table 1. Mutations identified with genome sequencing [82]. 

 

Besides alterations in NAG metabolism, genes encoding cell shape regulators are 

frequently mutated in the evolved strains. Nonsynonymous SNPs in the cell shape-

regulating actin homolog mreB [92] and the peptidoglycan transpeptidase mrdA genes 

[93] were identified in five different mutants, suggesting that changes in cell 

morphology might also reduce osmotic stress on the cell. Microscope examination of the 

affected strains showed neither a gross difference in cell shape compared to parental 

controls (data not shown) nor abnormal filamentation, so the precise effect of these 
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mutations remains unclear. Coincidentally, a previous study examining mreB and mrdA 

mutations that suppressed an abnormal shape phenotype caused by RodZ deficiency [94] 

detected an identical SNP in mrdA, implying that RodZ activity may also be deficient 

under osmotic stress. It is difficult to speculate on how nag and mreB mutations might 

interact in the A1, A2, A5, and A6 mutants, as they affect related but distinct cellular 

processes; changes in mreB-chromosomal interactions may result in altered cell division 

or chromosomal segregation, which may in turn affect the amount of NAG precursor 

generated from peptidoglycan recycling. Given the seeming ubiquity of mutations 

affecting both pathways, it is clear that perturbation of cell shape proteins or 

peptidoglycan metabolism is important for osmotic tolerance. 

While both groups of mutants had similar mutation rates (see Materials and Methods), 

transposon insertions in fimA (type I fimbriae) and proV (the ATP binding cassette for 

the proVXW glycine betaine transporter) were observed only in the A strains. Fimbrial 

components, including fimA, are highly upregulated under osmotic stress [95], and a 

mutation that inactivates fimA presumably results in conservation of carbon and energy. 

The relationship between nagA, nagC, and surface fiber expression may also play a role 

in the fitness benefit of fimA inactivation, as the fimA insertions in A3 and A5 are 

associated with nag mutations as well. The inactivation of proV is more peculiar, given 

its extensively studied role in importing osmoprotectants into the cell [96]. Nonsense 

mutations affecting proV have been previously observed in osmotolerant mutants [76], 

providing additional evidence that proV is under negative selection in hyperosmotic 

glucose minimal medium. 

Mutations in several other genes, while not specifically known to affect osmotic 

tolerance, were also detected. G1 exhibited both a synonymous mutation in the cadB 

lysine transporter and an intergenic SNP between nmpC (an outer membrane protein 

associated with peptidoglycan) and essD, a holin for the integrated prophage DLP12. 

The latter gene has been shown to be important for cell wall maintenance and biofilm 

formation [97], which may explain the distinct mechanism behind G1’s osmotic 
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tolerance. G3 and G4 were found to have an 84-bp in-frame duplication (amino acids 

370 to 396) within the rpoC subunit of RNA polymerase. The duplications occur in 

region 2 of the protein, which is responsible for RNA polymerization [98]. Due to the 

role of rpoC in promoter recognition and sigma factor binding [99], this mutation should 

result in significant transcriptional and ultimately phenotypic alterations. Mutations in 

rpoC (along with rpoB) have been observed previously in other long-term evolution 

studies [87] as well, indicating that a wide range of phenotypes can be improved via 

alteration of RNA polymerase components. A small in-frame duplication was also 

observed in the essential but un- characterized hydrolase gene yejM, but the effect of this 

mutation is unclear. A range of SNPs in intergenic regions and the coding sequences of 

various other genes were also detected, including a synonymous substitution in treR, a 

negative regulator of trehalose biosynthesis, in G3 and the S6 ribosomal protein rpsA in 

G6. Other mutations of ribosomal proteins have been found to confer salt tolerance as 

well [100] by impairing ribosome maturation, but further investigation is needed to 

understand the functional consequences of this particular point mutation. 

In order to better understand the effect of these mutations on osmotolerance, we 

performed three tests to quantify the fitness effect of gene overexpression, 

compensation, and knockout on an unaltered host strain (BW25113) and the isolated 

evolved mutants. Eleven genes (nmpC, yobF, ydjK, mreB, fimA, nagC, nagA, proV, treR, 

ydhP, and cadB) were selected for overexpression studies due to their frequency of 

mutation or nearby intergenic or synonymous SNPs (results shown in Fig. 3A). Of all 

genes tested, only ydjK overexpression conferred a statistically significant improvement 

in osmotolerance. YdjK is annotated as a putative metabolite transporter, and due to the 

inclusion of tryptophan in the evolution medium, we reasoned that it might be an 

uncharacterized tryptophan transporter. However, YdjK did not confer a benefit in the 

absence of stress (P = 0.25, Student’s t test), so its true function remains unclear. 

Overexpression of proV, nagC, or nagA is also somewhat deleterious under these growth 

conditions, though fimA, which underwent transposon insertions in several independent 

mutants, did not have a significant effect on host fitness under these conditions. 
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Figure 3. Batch growth screening of overexpression, knockout, and compensatory strains 

to identify their osmotolerance phenotypes in glucose minimal medium supplemented 

with 0.55 M NaCl. (A) Fitness of overexpression strains relative to the empty vector 

pCA24N control. Only ydjK expression results in a significant tolerance improvement. 

(B) Fitness of knockout strains relative to BW25113; strain genotypes are denoted as 

follows: C, ΔNagC; A, ΔNagA; F, ΔFimA; and P, ΔProV. (C) Overexpression of NagC 

and NagA in mutants with possibly inactivating mutations in these genes; fitness is 

relative to the corresponding mutant with pCA24N. (D) Overexpression of FimA and 

ProV in mutants with possibly inactivating mutations in these genes, with the empty 

vector as a reference. All error bars are 95% confidence intervals based on the Student 

distribution [82]. 

Likely inactivating mutations in a small set of genes, including nagC, nagA, fimA, and 

proV, were identified in several of the G and A mutants. Various combinations of these 
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mutations were found in the evolved mutants, suggesting the presence of potential 

epistatic interactions that affect osmotic tolerance. We tested this hypothesis by 

systematically reconstructing double and triple mutants containing defined nagA or 

nagC disruptions, along with knockouts in fimA and proV. Figure 3B shows the relative 

fitness of these knockout mutants versus an unmodified BW25113 strain. Of the single 

mutants, only the proV strain is fitter than the reference. Interestingly, the nagA 

knockout has a large negative impact on strain fitness, suggesting that the insertion and 

deletion mutations identified in the sequenced mutants were not completely inactivating 

or the inactivation of nagA has a positive synergistic effect with other mutations in these 

mutants. As potential evidence for the presence of synergistic interactions between 

mutations, double knockouts of nagC and proV or nagA and fimA were found to be 

beneficial in the presence of NaCl challenge. Only the nagC fimA proV triple mutant 

showed improved osmotolerance relative to BW25113. These combinations did not 

occur in any mutant, and it is possible structural differences between the defined 

knockouts and mutations in the osmotolerant isolates could also influence these results. 

Overall, as was the case with overexpression analysis, these results indicate that these 

four genes affect the E. coli osmotolerance phenotype. 

An additional way of confirming that the mutations in nagA, nagC, proV, and fimA play 

a role in modulating osmotolerance is to complement the mutations in trans with an 

expression plasmid and then reassay their fitness under osmotic stress. The results of this 

test are shown in Fig. 3C and D and indicate that the effect of compensation depends 

heavily on the genetic background of the particular mutant. Relative fitness of only two 

nagC mutants (G5 and A4) out of five is decreased by nagC overexpression, while nagA 

complementation decreased osmotic tolerance of A1 to A3. The structure of the nagC 

mutations does vary significantly between the mutants, which may explain the lack of 

concordance in complementation results. Complementing the proV mutations in A3 and 

A4 had no significant fitness effect. While fimA overexpression decreased the fitness of 

A3, it also improved the fitness of A5 slightly, despite their identical IS186 insertions 

into the gene. It is likely that genetic differences between the various mutants and 
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interactions between other mutations not screened in this assay also play a significant 

role in determining the fitness impact of gene complementation.  

Though genome sequencing has revealed several novel loci involved with 

osmotolerance, the genotype-phenotype relationship remains unclear. To gain a more 

complete understanding of how these mutations translate into improved osmotic stress 

tolerance, we applied microarray technology to several A and G mutants with distinct 

underlying mutations to identify transcriptional perturbations that may result from their 

underlying mutations or altered stress responses. 

Mutation-induced transcriptional perturbations. Six sequenced mutants, G2, G3, G5, 

G6, A2, and A4, were selected for transcriptomic analysis based on their distinct 

underlying genotypes and varied levels of osmotolerance and therefore are likely to have 

diverse tolerance mechanisms. Genes commonly upregulated in these mutants, along 

with those representing possibly novel mechanisms, are listed in Table 2. The gene 

encoding AcrZ, a small protein associated with the AcrAB-TolC efflux pump complex 

known to affect AcrB substrate recognition [101], is upregulated in all mutants except 

A4, suggesting that it may be an important transcriptional adaptation. Sulfonate transport 

and metabolism genes (tauABC, ssuEADC) are also frequently upregulated in the 

mutants. Ordinarily, these proteins are intended to scavenge sulfur from the 

environment, but under osmotic stress, they can also import osmoprotectants such as 

taurine [102]. This upregulation cannot be explained as simple sulfur starvation, as the 

mutants and references were in exponential growth before RNA harvesting. The 

proVXW operon, positively regulated by hyperosmotic conditions [103], is also 

overexpressed by G3 and G5, though proX and proW are also overexpressed in A4, G3, 

G5, and G6. This expression pattern may explain the fitness benefit of proV deletion 

found in A3 and A4 in terms of energy conservation, as discussed previously. 
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Table 2. Overexpressed genes of interest [82]. 

 

Though the 2xOriT and Hfr-2xSFX− parental strains are for the most part isogenic, the 

latter is a tryptophan auxotroph due to insertion of the tra operon into the trp locus [77]. 

These four G strains all exhibited overexpression of the genes encoding the tryptophan 

transporter tnaB and tryptophanase tnaA, which converts tryptophan into indole and 

pyruvate, as has been previously observed in medium containing tryptophan [104]. 

Indole is a potent signaling molecule involved with various aspects of biofilm and cell 

cycle regulation [105], so the physiological effect of excess indole is likely to be 

complex. G2, G5, and G6 exhibit statistically significant increases (P < 0.05, Student’s t 

test) in indole accumulation compared to the Hfr-2xSFX− parent (Fig. 4) under osmotic 

stress. A4 produces significantly less indole (P <  0.045,Student’s t test) than its 2xOriT 
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ancestor as well. Despite the fact that G3 has roughly equivalent upregulation of tnaA 

transcription to these strains, indole production is similar to that of the wild type; it could 

be that the unusual in-frame duplication in rpoC in this strain results in increased tnaA 

transcription, but the resulting mRNA is poorly translated into protein or degraded 

rapidly due to posttranscriptional regulation. 

 

Figure  4. Levels of indole, normalized by biomass density, for G2, G3, G5, G6, A2, and 

A4 mutants, along with the G parent Hfr-2xSFX− and A parent 2xOriT. Error bars are 

standard deviations. G2, G5, and G6 (with asterisks) have statistically significant 

increases in indole accumulation compared to Hfr-2xSFX− (P < 0.05, Student's t test) 

[82]. 

Due to the intertwined nature of indole and biofilm regulation, we also examined the 

biofilm formation propensity of the evolved mutants. Most G and A mutants under 

osmotic stress form significantly less biofilm than their ancestral parents (Fig. 5), though 

G mutants typically had larger decreases than the A strains. Perturbations in the nag 

pathway may play a role in modulating biofilm formation, as both nagA and nagC 

deletions have been shown to affect surface fiber synthesis, including curli [106] and 

fimbriae [107], due to the accumulation of intracellular NAG-6-phosphate. Given the 
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large number of detected mutations that may affect biofilm formation or cell wall 

properties, this evolutionary route for tolerance improvement clearly warrants further 

research to better understand selection pressures on biofilm synthesis. 

 

Figure 5. Relative biofilm formation by G1 to G6 and A1 to A6 mutants in glucose 

minimal medium with 0.55 M (32 g/liter) NaCl. Data are ratios of mutant-specific 

biofilm formation to parental formation (G, Hfr-2xSFX−; A, 2xOriT) under these 

conditions. Data are normalized by biomass yield (OD600). Error bars are 95% 

confidence intervals [82]. 

Beyond metabolite transporters, several genes involved with iron uptake (entCEFH, 

feoB, fepG, fiu) were overexpressed in G3 and G5 as well. Increased expression of iron 

transport and metabolism genes has been found in evolved mutants with improved 

osmotic or n-butanol tolerance[62, 76]. Perturbation of iron metabolism may therefore 

be a contributor to osmotic tolerance, though the gene encoding the siderophore receptor 

fiu is also downregulated in G2 and G6. Genes involved in membrane composition were 

also upregulated in many mutants, particularly certain outer membrane porins 

(ompACGL) along with the ompX gene. These transcriptional disturbances may represent 

an attempt by the mutants to change membrane-sieving properties in order to reduce 

osmotic pressure on the cell. The peptidoglycan-outer membrane tether gene, lpp 
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(murein lipoprotein), was also overexpressed in four different mutants (A2, A4, G2, G3), 

which may indicate that the peptidoglycan wall is more strongly attached to the outer 

membrane in these mutants to protect the cell against high external osmotic pressure. 

Several genes that encode hypothetical or predicted proteins (ydcH, yodC) are 

consistently overexpressed in the G mutants, but no information about their biochemical 

roles or relationship with osmotolerance is known. 

In contrast to the relative similarities in gene overexpression under osmotic stress 

between these six mutants, less similarity is observed for genes repressed relative to the 

parental references (Table 3). The few commonly repressed genes include those coding 

for several hypothetical or conserved proteins (yegR, ydeMN, rtcB) and the 

transcriptional activator ydeO, known to regulate acid resistance in concert with EvgA 

[108]. Their repression may be associated with the reduced osmotic stress experienced 

by the mutants compared to that of their parents under these conditions, as these genes 

are not known to be directly regulated by osmotic stress. Downregulation of several 

siderophores and enterobactin transporters was observed in G2, G5, and G6, including 

fepA, which was found to be strongly overexpressed in a previously evolved 

osmotolerant E. coli strain [76]. 
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Table 3. Repressed genes of interest [82]. 

 

As was the case for upregulated genes, repression of genes involved with peptidoglycan 

and membrane biosynthesis was significantly enriched in the mutant transcriptomes 

according to gene ontology analysis. NAG catabolism genes, nagA, nagB, and nagE, 

were repressed in A4 and several G mutants. Repression of many other peptidoglycan or 

outer membrane-related genes was observed in A2 and A4, particularly those genes 

involved with cell wall maturation (mltD, murC) or lipopolysaccharide synthesis (rfaZ, 

kdsB, wbbK). Membrane remodeling therefore appears to be a significant adaptive 

response in these mutants. Fimbriae synthesis and assembly genes were also repressed in 

G5 and G6, lending credence to the hypothesis that fimA inactivation may be part of an 

energy conservation response during laboratory evolution. Porin synthesis also is 
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perturbed in G3 and G6 by simultaneous repression of ompF and overexpression of 

ompC, as is typically observed under high osmotic pressure [109]. The totality of these 

transcriptional responses point to wide-ranging changes in gene expression affecting 

membrane composition, transport activity, iron metabolism, and other systems stemming 

from various underlying genetic changes, to alleviate osmotic stress in these mutants. 

Comparison of sexual, asexual adaptation. Evolving populations are generally 

genetically heterogeneous and therefore contain competing mutant lineages that have 

arisen independently. Clonal interference will generally reduce this diversity, possibly 

resulting in a more narrow distribution of mutant fitnesses within asexual populations. 

To test this hypothesis, we isolated random clones from the Hfr-2xSFX− and 2xOriT 

populations to evaluate the degree of fitness heterogeneity within each population and to 

determine whether horizontal gene transfer had a detectable effect on the population 

structure. The fitness distributions for these populations, shown in Fig. 6, show that Hfr-

2xSFX− lines tended to have a slightly higher mean relative fitness but with significantly 

more variance than the 2xOriT replicates at a high level of significance (P =1.81 X10-4, 

Kolmogorov-Smirnov test). Genetic diversity within Hfr-2xSFX− lines may therefore be 

greater than that of the 2xOriT populations; a likely explanation is that horizontal gene 

transfer reduces the extinction of beneficial clones due to clonal interference and drift, 

resulting in a maintenance of heterogeneity that is less likely to occur in an asexual 

population [110, 111]. However, as all populations reached similar fitness endpoints 

during the experiment, further adaptation beyond that observed here could be mutation 

limited.  
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Figure 6. Histogram of relative fitness (to 2xOriT) in randomly screened isolates from 

six Hfr-2xSFX− (A) and 2xOriT (B) populations. All isolates were challenged with 0.65 

M (38 g/liter) NaCl. Differences in the underlying fitness distributions in the Hfr-

2xSFX− and 2xOriT populations are highly significant (P = 1.81 × 10−4, Kolmogorov-

Smirnov test) [82]. 

In an attempt to further improve the observed NaCl tolerance levels of the mutants, we 

performed a short-term mating experiment where the G1 to G6 isolates were mixed 

together to facilitate genetic transfer and then propagated under NaCl selection for 5 

days. Surprisingly, analysis of clonal isolates from the mixed G population revealed that 

the fittest clones were no better than the original fittest Hfr-2xSFX− mutant G6 (data not 

shown). Genome sequencing revealed that many of the G mutants have mutations in 

close proximity or actually overlapping in the case of the independent nagC mutations. 

Recombination events capable of combining these genotypes may therefore be rare. 

Negative epistasis between other mutations may have also prevented successful 

generation of recombinants. 

Conclusions. These results provide new insight into the E. coli osmotolerance 

phenotype. All isolates exhibited high levels of osmotolerance as expected, and a 

surprising lack of cross-adaptation to other stressors, such as excess glucose, n-butanol, 
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low pH, and thermal stress. Genomic sequencing revealed novel mutations in genes 

related to n-acetylglucosamine catabolism, cell shape regulation, uptake of 

osmoprotectants, and global regulators such as rpoC. Many of the mutations occurred in 

genes known to affect cell wall or peptidoglycan maintenance. On a transcriptional level, 

membrane and peptidoglycan synthesis, porin expression, sulfonate uptake, and iron 

metabolism are all significantly perturbed in various evolved mutants relative to their 

parental references and might be targets of interest for future studies of this phenotype. 

Future work will continue to explore the transcriptomic data in hopes of identifying 

additional loci influencing osmotic tolerance, in addition to reconstructing the observed 

mutations in the A and G isolates in industrial E. coli strains to improve their 

osmotolerance under industrial conditions. 

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

   




