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ABSTRACT

Research about the microstructure of the brain provides important information

to help understand the functions of the brain. In order to investigate large volume,

high-resolution data of mouse brains, researchers from Brain Network Lab (BNL)

at Texas A&M University (TAMU) have been developing the Knife-Edge Scanning

Microscope (KESM) in the past decade. The KESM can simultaneously section

and image brain tissues at sub-micrometer resolution. However, malfunctions of the

system can cause imaging errors, which make images fail to provide valid information.

Moreover, malfunctions, especially due to obstructions (such as tissue fragments) in

the light path of the system, result in continued cutting while the obstructions are

present. Since KESM is generally not attended by a full-time human operator, this

results in data loss.

To solve the problem, I developed an image error detection method to automat-

ically find imaging errors in real-time. The method can detect errors by analyzing

newly acquired images, report results to human operators and even stop the KESM

cutting process if necessary so that data loss is avoided. The basic idea of the method

is to solve error detection problem through image change detection algorithm as the

images acquired by KESM are well-registered and they do not change too much

from one slice to the next when there is no error. As a result, the method can

detect imaging errors with 86% accuracy (F1-score) and finish a detection routine

within 2 seconds, which is sufficient to achieve real-time detection. By integrating

the error detection program into the KESM control system, the method enhanced

the robustness of the system and reduced data loss.
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1. INTRODUCTION

1.1 Motivation

Research about the microstructure of the brain provides important information

to help understand the functions of the brain. In order to investigate large volume,

high-resolution image data of mouse brains, researchers from Brain Network Lab

(BNL) at Texas A&M University (TAMU) developed Knife-Edge Scanning Micro-

scope (KESM) [9, 3] in the past decade. The KESM is an instrument that can

simultaneously section and image brain tissues at sub-micrometer resolution. It has

been successfully used to scan whole mouse brains stained in Golgi (neuronal mor-

phology), Nissl (somata), and India ink (vasculature), generating large amounts of

brain image data that have been visualized and accessible through KESM Brain

Atlas [5].

However, it has been an issue for a while that malfunctions of the system can

cause imaging errors and data loss. Imaging errors are generally caused by different

malfunctions, like floating tissues which obstruct the light path, and interruption of

illuminations. These system malfunctions generate artifacts and errors on the images

that make the images failed to provide valid information. What’s more, sometimes

malfunctions, especially occurring in the light path of the KESM system, result in

continued cutting while the obstructions are still present. Since KESM is generally

not attended by a human operator, this leads to further data loss. To enhance the

robustness of the system and to preserve the integrity of the data, we need to solve

the problem. The current workaround is human intervention during imaging where

the operator checks and eliminates errors every 30 minutes. This helps reduce the

imaging error and data loss to some degree, but it is time consuming and not very
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robust. An automated approach is required.

1.2 Approach

In order to solve the problem, I developed an image error detection method to

automatically find imaging errors in real-time. The method detects imaging errors,

records them and reports to the operators. Additionally when it is necessary, the

method stops the KESM cutting process and notifies the operators to remove the

obstructions so that further data loss is avoided. There are basically two requirements

for the approach: (1) the method should be able to automatically detect imaging

errors; and (2) the method should run in real-time. To be specific, it is necessary for

the method to detect errors in the interval of two consecutive cut, which is usually

around 7 seconds.

The method detects errors by analyzing the acquired images to find abnormal

regions. The basic idea is to solve the error detection problem through image change

detection. Due to the technique in KESM, images acquired by KESM are well-

registered, which sets the foundation of change detection method. Normal consecu-

tive images do not change too much from one slice to the next because the content

does not change dramatically in only 1µm distance. However, abnormal imaging

can cause artifacts and errors on the images which show significant change from the

normal images. Therefore, the error detection problem can be solved by compar-

ing the newly acquired images with the existing images which in fact serve as prior

knowledge.

The change detection program mainly consists of three steps: preprocessing,

change detection, and postprocessing. In the preprocessing step, raw image data

were first down-sampled to reduce computational complexity while keeping the image

content and feature. Then, the images were compensated for illumination variation
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caused by illumination noise and variable-speed cutting. For the change detection

algorithm, I implemented two methods based on image difference. The first method

models the noise in the difference image and sets up a global threshold to find ab-

normal regions. The second method, adapted from [2], is based on Bayes classifier

to classify between change region and no-change region on the consecutive image

pair. In the postprocessing step, isolated change regions, which exist in the result of

change detection, are filtered because most of them are caused just by noise.

Finally the method decides when to stop the cutting process. In some cases, it is

not necessary to stop the cutting when an error is detected. For example, a floating

tissue section, which causes artifacts in one image, can be removed by the pump

very soon. When some other errors like illumination interruption and disk full error

take place, we need to immediately stop cutting. In order to make the method more

precise, a finite-state-machine was designed to confirm such cases based on the recent

change detection results.

1.3 Evaluation

The error detection method was evaluated in terms of accuracy and speed. First,

in order to evaluate its accuracy, I manually labelled three different data sets acquired

by KESM as ground truth and compared the result generated by the method with

the ground truth. The result shows that the method successfully detects imaging

errors with around 86% accuracy (F1-score). Secondly, the speed of the program,

the executing time, was evaluated to test if real-time detection is possible. Program

execution time data was collected to measure the performance of the method. It

shows that the program could finish a routine in less than 2 seconds per slice, which

is sufficient for real-time detection.
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1.4 Outline of the thesis

This thesis is organized as follows. In Chapter 2, background and related work

will be introduced. In chapter 3, I will present the problem formally and then describe

the basic approach to solve the problem. In Chapter 4, detailed steps of the method

will be described. Next, in chapter 5, implementation and results of the method will

be discussed. Finally, in Chapter 6, discussion about the experimental results, open

issues, future work, and conclusion will be presented.
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2. BACKGROUND AND RELATED WORK

In order to investigate the microstructure in the brain, researchers have devel-

oped various techniques and tools to generate high-resolution image data of animal

brains. The Knife-Edge Scanning Microscope (KESM) is one of the first instruments

in literature which was developed to acquire high-resolution, large volume, three

dimensional mouse brain images. In this chapter, technique of KESM will be first

introduced as the background. Due to robustness issue in KESM, malfunctions of

the system cause KESM imaging error and data loss. Related work and techniques

will be reviewed in the second section, including image change detection algorithms

as a potential tool for imaging error detection.

2.1 Background

The KESM is a unique instrument that is able to acquire high-resolution, large

volume image data of the entire mouse brains. It was initially invented as a brain

tissue scanner by Bruce H.McCormick, who was the founding director of Brain Net-

work Laboratory (BNL) in Texas A&M University. Now the instrument is adapted

to be able to scan whole small animal organs at a sub-micrometer resolution so that

it can be applied widely.

The key feature of the instrument is that it serves as a high-resolution imaging

system as well as a high-throughput 3D physical sectioning machine [5, 9]. Accord-

ingly, the instrument mainly comprises four subsystems: (1) a precision positioning

stage, (2) knife assembly, (3) microscope and image capture system, and (4) a com-

puter server. The structure of the instrument is shown in Figure 2.1.

The positioning stage was constructed by stacking three different parts to provide

mechanical movement along the X, Y and Z axises. By adopting an air-bearing stage,
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Figure 2.1: A photo of the Knife-Edge Scanning Microscope (KESM). (1) line-scan
camera, (2) microscope objective, (3) diamond knife with light collimator, (4) spec-
imen tank, (5) three-axes precision stage, (6) white-light illumination device, (7)
water pump (in the back) for the removal of sectioned tissue, (8) computer server,
(9) granite base, and (10) granite bridge. Adapted from [3].

6



the system provides ultra-precision movement which can be achieved as precise as

20 nm in X and Y axises and 25 nm in Z axis [10]. The precision movement also

guaranteed the acquired images are well registered.

A custom knife is rigidly mounted to a massive granite bridge over the three-axis

stage. A microscopy objective is aligned with the knife on the other side of the

stage so that they are oriented in 45 degree and 135 degree respectively. When the

objective is perfectly aligned, it focuses on the very tip of the knife.

The image capture system mainly includes a high-speed line-scan camera. The

camera is able to repeatedly sample a line the at the tip of the diamond knife.

Meanwhile, a white light source illuminates the rear of the diamond knife. A stripe

of intense illumination is reflected from the rear of the diamond knife to the objective,

providing illumination for the tissue at the leading edge. This is shown in Figure

2.2b. The diamond knife plays two different roles: an optical prism in the light path

as well as a microtome for physically cutting the thin serial sections.

A computer server is connected to the whole system. In the server, imaging

acquisition board and stage controller board are installed to communicate with the

camera and the positioning stage. In addition, custom software are developed and

installed to precisely control the movement and imaging.

2.1.1 Operation

The operational principle of KESM is to simultaneously section and image the

tissue block. The specimen is usually a whole mouse brain which is embedded in a

hard polymer resin block. It is mounted on the three-axis precision positioning stage.

Instead of moving the knife and objective, the specimen is moved by the stage to be

sectioned against the diamond knife, generating a very thin tissue section (usually

1µm). Meanwhile, the newly cut tissue section, which is illuminated by the custom
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knife-collimator assembly, is scanned through the microscope objective. The tissue

section is imaged at the tip of the knife because the distortion is minimized. In

the end, the image signal is transferred through the image acquisition board in the

computer server.

(a) Close up of KESM (b) Imaging principle

Figure 2.2: (a) A close look at knife, objective, and stage. (b) A specimen of mouse
brain is cut by diamond knife as the illumination passes through the knife. Images
are taken while the tissue is being sectioned. Adapted from [3].

One important technique in KESM is stair-step sectioning. Since the field of view

in microscope objective and width of the knife are limited, the whole face of tissue

block cannot be sectioned in one sweep. We used a lateral sectioning approach called

stair-step sectioning to overcome this limitation. As shown in Figure 2.3, a whole

tissue block is sectioned laterally into different parts, which are called ‘columns’.

The number of columns are determined by the width of the tissue block. In order to

prevent the tissue block from being damaged, the cutting depth varies in different

columns. KESM usually sections and images several piece of tissues in one column

before it goes to the next. The numbers in Figure 2.3 illustrates the sectioning
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Figure 2.3: Stair-step sectioning. Adapted from [8].

order KESM takes. As a result, images in the same column are consistent and

well-registered.

2.1.2 The KESM data sets

By using KESM, we have been able to successfully scan the mouse brain stained in

Golgi (neuronal morphology), Nissl (somata), and India ink (vasculature) at a whole-

brain scale [4]. These results have been reported in [4, 5]. Selected results are shown

in Figure 2.4. Fundamentally, the KESM data set are 3D image stack consisting

of 2D images. Techniques have been developed to achieve 3D visualizations of the

data sets. The results provide important insights into the system-level architectural

layout of microstructures within the mouse brain.

2.2 Related work

In this thesis, I will present an error detection method based on image change

detection. Image change detection is to find regions of change in images of a given

scene acquired at different times [2]. It has been already well-studied in the image

processing field. Change detection is also a foundational image analysis method

that can be applied to many diverse applications, including remote sensing, video
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surveillance and civil infrastructure monitoring. In this section, applications and

methods which are based on change detection will be reviewed.

In remote sensing, change detection methods have been explored in applications

like earth’s surface monitoring and land cover analysis. In [15], the authors proposed

an object-based classification method for change detection in remote sensing. The

goal was to compare remote sensing images acquired at the same location but dif-

ferent times to find changed region and then match with the existing data in a GIS

database. The algorithm adapted an object-based supervised classification approach

in which groups of pixels instead of single pixel were classified. Each object could

be described by an n-dimensional feature vector and could be classified to the most

likely class using maximum likelihood (ML).

Moreover, change detection in video surveillance solves similar problems as what

we are facing in KESM. In [1], Brocke describes their work about detecting abnor-

mal scenes in a video surveillance system. Basically their goal was to detect irregular

welding to control the quality of a mass production laser welding process. By de-

tecting sudden changes in image sequences, their method was able to find brighter

regions which were likely to be abnormal. Their change detection algorithm was

based on statistical method in which change regions and no-change regions were

classified accordingly. Then the change region was segmented from the background

and was analyzed in the next step. The overall result showed that the proposed

method was able to detect abnormal scenes with acceptable recall rate, but it still

suffered from a high false alarm rate. Other applications in video surveillance are

interested in tracking moving objects. For example, in a traffic monitoring system,

moving vehicles are the main concern. Foreground and background analysis are often

adapted in this kind of application. In [6], the authors presented a video surveillance

system based on change detection. The main task was to detect moving objects

10



by comparing image sequences and subtracting objects from the background. By

integrating statistical assumptions about object-level knowledge, they enhanced the

background model. Apparent objects and shadows were also detected to update the

background dynamically. Finally, moving objects were detected in the video stream

by subtracting from the background. Tian et al.[14] pointed out that the compu-

tational complexity of the previously mentioned method was too high to achieve a

real-time workflow. They presented a method to efficiently and effectively analyze

foreground objects based on Gaussian Mixture Model (GMM). The background was

modeled by mixture of Gaussian so that they could be subtracted from the image

and foreground parts could be found. By adapting texture information and illumi-

nation intensity, their method could remove object shadows and work with quick

lighting changes. Instead of using tracking and motion information, foreground was

also described by mixture of Gaussian model.

In video processing, an application similar to the above is the detection of abrupt

scene change in order to segment a video. Video segmentation is useful when separate

clips are characterized, stored and retrieved. A simple idea is to analyze image frames

in the video by computing the sum of absolute pixel-wise intensity difference between

two consecutive frames. An improved method would compute the difference based on

image histogram as different scene shows significantly distinct histogram property. In

[7], the authors presented a method which combined difference features from pixel-

based value and histogram-based value to measure the general difference between

frames. The advantage of their method was to consider the spatial information

provided by pixel-based difference while ignoring changes caused by fast camera and

object motion as much as possible. Based on the idea, they developed a concrete

workflow and set up an adaptive threshold for the difference value. However, Meng

et al.[11] thought that the previously described method required decompressing the
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video first since pixel-based and histogram-based differences were calculated from

pixel-wise. For the MPEG standard, decompressing was a computationally intensive

process. Therefore they presented a different algorithm to detect abrupt scene change

in a compressed MPEG/MPEG-2 bitstream with minimal decoding. Scene change

detection was achieved by computing and comparing the Discrete Cosine Transform

(DCT) coefficients and motion vectors. The idea was somehow similar to histogram

similarity, but it did not require decomprsessing.

In the above mentioned applications, change detection was implemented by differ-

ent methods, including statistical model, object-based method, and classifier-based

method. In practice, a simple method to start with is to compute the difference

of two images and then apply a global threshold. This is an easy but widespread

method. Threshold can be chosen empirically and by trial and error to achieve a

specific false alarm rate. However the threshold is chosen, simple difference is not

robust enough. A statistics-based strategy often model the distribution of change

and no-change regions. Then a hypothesis test is applied. Since this method requires

assumptions about the distribution of change and no-change region, a reasonable as-

sumption is dependent on a specific application. More complicated change detection

methods also exist in the recent research work, including predictive models, shadow-

ing model and background model. By adopting spatial, temporal and illumination

information, more complicated change detection methods require higher computa-

tional complexity. In general, Radke et al. systematically investigates image change

detection algorithms in [12]. In their survey, the problem was well defined and the

common processing steps were presented, which is a good starting point for a survey

of specific change detection applications.
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(a) Raw data volume(bar = 1.44 mm) (b) Initial thresholding of (a)

(c) Sagittal view. (d) Coronal view.

(e) Horizontal view. (f) Close-up (1.5 mm-wide block).

Figure 2.4: KESM Vasculature Data. (a) shows a 3D view of raw data in the
sagittal. (b) shows a lightly thresholded version of (a) which reveals the boundary
of the content. (c)-(e) are fully thresholded version of (a). The data were shown
in different views, including sagittal, coronal, and horizontal. (f) Close-up of the
intricate details. Adapted from [4].
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3. PROBLEM DESCRIPTION AND BASIC APPROACH

Although KESM has been successfully used to acquire high-resolution image data

of mouse brains, there is still room for improvement. One of the existing problems is

imaging errors and data loss caused by system malfunctions. The problem impairs

the robustness of the system and the integrity of the data set. In this chapter, I will

describe the problem in detail and present the basic rational of my proposed method.

3.1 Issues in KESM imaging

In the existing KESM system, system malfunctions could lead to imaging error

and data loss. To be specific, malfunctions are system errors that could happen in

positioning stage, linescan camera, light path, diamond knife, and the pump. They

are caused by different reasons, including floating tissues that obstruct the light path,

illumination interruption etc. As a result, the malfunctions damage the quality of the

acquired images, by causing artifacts and errors on the images, as shown in Figure

3.1. Images with artifacts and errors fail to provide valid information about the

tissue. Moreover, since the KESM sectioning process is generally unattended, some

malfunctions are likely to persist and result in the system to continue cutting with

the existence errors. If we do not eliminate the errors in time, large amount of data

can be affected by errors, therefore causing a substantial data loss.

In practice, there are three major causes for imaging errors:

(1) Floating tissue sections between the diamond knife and objective. Ideally,

a newly cut tissue section should be removed by the pump quickly. However, in

practice, floating tissue sections are often not removed in time and obstruct the light

path. As a result, they generate unwanted artifacts on the acquired images, such as

a white abnormal region. When this occurs individually, it does not lead to severe
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Figure 3.1: KESM raw image data. (a) a normal image, (b) an image with artifacts
(c) an image with error caused by floating tissue between objective and knife.

data loss, because the errors usually disappear quickly once the obstructing tissues

are absorbed by the pump in the subsequent run. However, there are cases when the

pump is clogged by sectioned tissues or just not working, causing the error to appear

consistently and a potential data loss. In such a case, we have to stop the cutting

process and clean out the obstructing tissue. The floating tissue problem is the most

frequent error in practice.

(2) Illumination interruption. Illumination interruption can be caused by mal-

functions of the illumination device and obstructions on the light path. With the ex-

istence of illumination interruption, the illumination intensity of the newly acquired

image is changed dramatically. When critical illumination interruption happens, re-

sulting in very dark images, it is necessary to stop the cutting and fix the problem.

Although, there are cases when illumination intensity variations in the image se-

quence are acceptable. Most of the time, they are caused by variable-speed cutting,
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which does not cause significant intensity change.

(3) Disk full issue. This type of error is different from the above as it happens

on the computer server and cannot be solved through image analysis. When there is

no sufficient free space for newly generated images, tissue block will still be cut but

not saved as images, resulting in a potential data loss. We need to stop the cutting

process immediately and make space on the disk.

Our current workaround is human intervention during the cutting process. To be

specific, an operator checks the system status and eliminates errors every 30 minutes

or so. The approach helps reduce the imaging error and data loss to some degree,

but there are some limitations.

(1) The approach is time consuming for human operators. The operators have to

be in the lab or to have access to the computer server during the experiments.

(2) The approach is not robust enough. There are still possibilities that errors

take place in the interval of human intervention, resulting in data loss. Operators

can check the status more frequently to enhance robustness, but it would be more

time consuming.

We need an automated method.

3.2 Basic approach

The basic idea of the proposed method is to automatically detect imaging errors

in real-time through image analysis. Besides, the method is designed to record errors,

report to the human operators, and even stop the cutting process when it is necessary.

As a result, two aspects are improved accordingly:

(1) Operators will have less burden thanks to automatic error detection.

(2) Imaging errors are detected in a more robust way, resulting in a better solution

to prevent data loss.
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We prefer the method to be designed as a software solution so it can be in-

tegrated with the existing KESM control system. There are generally two major

requirements for the method: (1) the method detects imaging errors automatically.

(2) The method detects errors in real-time. To be specific, the method is expected

to execute between the time period of two consecutive KESM cutting passes. The

interval is usually 7 seconds in practice.

To detect imaging errors, image processing and analysis were incorporated into

my method. Although disk full issue is different and it can be monitored by computer

program, imaging errors caused by the other reasons could be found through image

analysis. One approach to start with is object-based detection as error regions could

be viewed as a special kind of object. However, image errors are caused by different

reasons, making the appearance take various shapes: it is hard to extract common

features from the various erroneous shapes.

A more realistic method is to compare newly acquired images with existing im-

ages. The KESM image data hold several characteristics which may prove useful.

One in particular is that the images are generated in strict sequential order, thus

resulting in good registration across the images. Since the KESM only sections tissue

in 1µm for each step and the brain structure does not change dramatically over such

a thin section, the content of a consecutive image pair should be consistent. On the

other hand, images with artifacts and errors are likely to exhibit significant change

compared to the previous images. As shown in Figure 3.2, a normal consecutive

image pair shows little change while the abnormal image sequence often appears to

have a sudden change.

A key insight from the above is that error detection in KESM can be solved

through change detection because imaging errors often come with significant changes

in the image sequence. In our experience, floating sections which obstruct the light
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(a) (b)

Figure 3.2: Examples of consecutive image pairs. (a) is a consistent image pair. (b)
is an image pair with significant change regions.

path often generate a large white region in the error image. In addition, interruption

of illumination and false positioning can also be detected by exploring changes in the

image pairs. The existing images provide prior knowledge so that abnormal regions

can be detected. Therefore, the basic rational behind the method is to adopt change

detection to find error regions.
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4. METHOD

In the previous chapter, I presented the research problem and the basic approach

of my method. In this chapter, I will elaborate on the methodologies. The error

detection method mainly consists of three steps: preprocessing, change detection,

and postprocessing. Based on the results of error detection, I developed a finite-

state machine which decides when to report to the human operators and even stop

the machine in case the situation is critical. The major steps are shown in Figure

4.1.

Figure 4.1: Major steps for error detection.

4.1 Problem statement

To make our following discussion precise, the following mathematical expressions

are involved. Suppose the image sequence acquired by KESM is I1, I2, ..., IN . In
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each image, pixel coordinate (i, j) ∈ R2 has intensity ranging from 0 to 255. In

our application, we mainly focus on two consecutive images whose intensity can be

expressed as I1(i, j) and I2(i, j), respectively. The width and height of the image are

I and J respectively. The histogram of gray-scale image shows the number of pixels

in a particular intensity, which can be expressed as H(x), where 0 ≤ x ≤ 255. A

common intermediate result in change detection is the difference image. A difference

image D(i, j) is generated by

D(i, j) = |I1(i, j)− I2(i, j)|

A change detection algorithm should take Im(i, j) as input and generate a result-

ing binary image B(i,j) where:

B(i, j) =


1 : change detected at pixel (i, j) between image I1 and I2

0 : otherwise

4.2 Preprocessing

Preprocessing is an important step to remove unwanted elements in an image so

that image processing can be more effective in the next step. There are two major

issues with the raw image data. First, the size of the raw images acquired by KESM

is too large for efficient processing. Second, noise and illumination variation that

exist in the KESM images are not the changes we desire to detect. In order to get

rid of these issues, preprocessing is required. Preprocessing mainly consists of two

steps: image downsampling and illumination adjustment.

In most change detection applications, image registration is necessary because
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there are significant intensity changes due to camera motion. They are considered as

real changes if we focus on the change of the content. Image registration, also known

as geometric adjustments, is to align several images into the same coordinate frame

so that the changes due to camera motion can be removed. However, as I mentioned

before, images acquired by KESM are already well-registered, the registration step

can be just skipped. What’s more, any movement in the camera should be detected

as they are likely to be caused by mechanical errors in the system.

4.2.1 Downsampling

In signal processing, downsampling is the process of reducing the sampling rate

of a signal. When it comes to image processing, it means resizing the images to a

smaller size by skipping or averaging pixels. Since the size of the raw image data

acquired by KESM is around 46 MB, it is not ideal for efficient processing. Before

we apply any change detection algorithm, the raw images were downsampled by 16

times in each dimension, generating a resized image of 256× 750. The resulting size

is also suitable for display.

The main reason for downsampling is to achieve a better computational efficiency.

Resized images allow faster image processing and help improve the overall perfor-

mance in the following steps, because the computational cost of an image processing

algorithm often highly depends on the size of the image. By comparison, image pro-

cessing on raw images is highly time-consuming and unaffordable. For example, the

change detection algorithm to be discussed below would need more than 180 seconds

to finish computation on the original-size image when it was tested on a modern PC.

It is impossible to achieve real-time detection in such cases.

Image scaling is not a trivial process because it involves a trade-off between

efficiency, smoothness and sharpness. There are different methods for image sub-
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sampling, including nearest-neighbor sampling, bicubic sampling, and anti-aliasing.

Nearest-neighbor sampling is the simplest method. In downsampling, nearest-

neighbor sampling picks only one pixel from the nearest region in the original image

to generate the rescaled image. An illustration figure is shown in Figure 4.2.

Figure 4.2: Illustration of nearest-neighbor sampling.

In the figure, the original image with dimension 4 × 4 is scaled to small image

with 2×2. The nearest-neighbor sampling just picks one pixel (the pixel highlighted

with orange color) from every 2 × 2 region (highlighted with red line). In our case,

the algorithm will pick one pixel from 16× 16 region. Nearest-neighbor sampling is

the fastest method while the image quality is the lowest. Artifacts and jaggies can

be seen in the rescaled images.

Bicubic sampling is the most common method in image processing softwares. The

idea behind bicubic sampling is using convolution kernel to average the pixel values

of the nearest region in the original-size images. The convolution kernel is composed
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of piecewise cubic polynomial. The output pixel value is a weighted sum of pixels in

the nearest 4× 4 neighborhood. The kernel k(x) :

k(x) =


(a+ 2)|x|3 − (a+ 3)|x|2 + 1 : if x ≤ 1

a|x|3 − 5a|x|2 + 8a|x| − 4a : if 1 < x < 2

0 : otherwise

where a = −0.5 is the common value. Compared with nearest-neighbor sampling,

bicubic sampling can generate smoother images while it is more computationally

expensive.

Spatial anti-aliasing is the technique of minimizing the distortion artifacts known

as aliasing when representing a high-resolution image at a lower resolution. It gen-

erates the best quality images and requires highest computation cost compared to

the above. In image processing, a simple approach to achieve anti-aliasing is using

the average intensity of a rectangular area in the original image corresponding to the

pixel. An example is shown in Figure 4.3.

(a) (b)

Figure 4.3: Examples of anti-aliasing. (a) is a large atmark rendered without an-
tialiasing. (b) is a large atmark rendered with antialiasing. Antialiasing smoothes
out the jaggies.
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In summary, the three different sampling methods have different output image

qualities and different computational cost. I tried all the three methods to test their

speed. Here is the comparison:

Table 4.1: Downsampling methods

Name Image quality Computational cost Execution time(s)

Nearest-neighbor Lowest Lowest 0.87
Bicubic Intermediate Intermediate 0.98

Anti-aliasing Highest Highest 4.12

From the table, the average execution time for anti-aliasing on the computer

server is above 4 seconds, which makes real-time detection difficulty. To balance the

image quality and execution time, bicubic sampling was chosen in our case. If the

aging computer server for KESM is updated in the future, anti-aliasing method can

be adopted.

One of the major concerns with downsampling is the reduced image quality, as

downsampled images lose resolution. However, it is not an issue in our case, as the

low resolution image still maintains the basic image features. Significant changes can

still be detected.

4.2.2 Illumination adjustment

In KESM imaging, illumination interruption errors lead to significant intensity

changes, which need to be detected. However, there are cases where normal illumi-

nation variations take place in image sequence. They are expected and manageable

because normal variations are usually caused by variable-speed cutting. In KESM,

variable-speed cutting is a technique to random the speed of cutting in order to
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improve the image quality. Due to variable-speed, the exposure time of the line-

scan camera changes, causing variation in image intensity. As a result, the normal

illumination variations can still affect the result of change detection. In order to

compensate for these variations, illumination adjustment was applied. By using il-

lumination normalization, the pixel intensity values in one image are normalized to

have the same mean and variance as those in another [12], i.e.,

Ĩ2(i, j) =
σ1
σ2
{I2(i, j)− µ2}+ µ1

where Im(i, j) is the intensity of image i at position (i, j), Ĩ2(i, j) is the normalized

second image intensity and µi, σi are the mean and standard deviation of the intensity

values of Im.

(a) (b) (c)

Figure 4.4: Illumination adjustment examples. (a) and (b) are consecutive images
with illumination variation. (c) is generated from (b) with illumination normalization
relative to (a). Illumination normalization makes pixel-wise change detection more
robust.
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As shown in Figure 4.4, there is apparent illumination difference between image

(a) and (b). However, the illumination difference is considered harmless since there

is no dramatic change on (b) except for illumination. Then, (c) is generated from

(b) using illumination normalization based on statistics of (a) and change due to

illumination is filtered out.

On the other hand, dramatic intensity change caused by illumination interruption

should not be compensated or ignored. Such changes are detected before we apply

illumination adjustment. Due to the restriction of the illumination device, a normal

illumination difference would not exceed 50% of the original image intensity. By

checking the image intensity statistics and comparing with the context, illumination

interruption can be detected.

4.3 Change detection

Change detection is to find regions of change in images of the same scene taken

at different times [12]. In our application, changed regions in consecutive images

acquired by KESM are likely to be caused by imaging errors, which are our major

interest. Various methods and applications of change detection exist in the literature

as we saw in the related work. My main goal is to balance the detection accuracy

and computational complexity in order to achieve automatic detection as well as

real-time detection. In my method, a statistics-based method was employed.

To make the analysis simple, the difference of the image pair (I1(i, j), I2(i, j)) is

expressed by the intermediate result, difference image D(i, j). The basic question

for change detection is whether or not significant change takes place at one pixel

(i, j). Therefore, there are two classes in the difference image, no-change pixels and

change pixels. In order to classify the two classes, we need knowledge of the two

classes. Statistical models try to characterize the distribution of the two classes.
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Those pixels which are better described by change class, are considered to be caused

by real change.

The difference image could be described by two different models: (1) Noise model

that assumes the difference image is from a no-change distribution. It assumes all the

differences are solely generated by random noise in the case of no-change. (2) Mixture

model takes into account both change and no-change distribution to be responsible

for the difference image. Both of the models make reasonable assumptions describing

the intensity distribution of the difference image.

4.3.1 Noise model

Noise model characterizes the no-change pixels. As a result, it makes an assump-

tion that the intensity difference between two consecutive image are caused by noise

alone in the absence of any change. Any difference that could not be described by

random noise can be considered as actual change. Therefore by adopting a signifi-

cance test, the method could decide whether the intensity difference is a change or

not.

Figure 4.5: Noise distribution.
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The above figure shows the intensity distribution of the difference image D(i, j),

solely caused by random noise. As shown in the figure, most pixels in the difference

image are low intensity differences. Those with high intensity differences tend not

to be caused by noise. In our case, a reasonable assumption was that the difference

image D(i, j) under noise could be modeled by a zero mean Normal distribution

N(0, σ2). In order to classify the changed regions, I applied the three-sigma rule.

In statistics, three-sigma rule states that nearly all values (99.73%) lie within three

standard deviations of the mean in a normal distribution. All values outside of the

three-sigma area were considered not to be solely caused by noise, which means they

were caused by significant changes. This can be written as

B(i, j) =


1 : D(i, j) > 3σ

0 : otherwise

, where B(i, j) is the binary image that marks change regions.

Parameter σ could be estimated offline from the unchanged regions in the previous

image sequence. Using an online method [13], I estimated parameters by median

value µ̄ and σ̄ instead. Figure 4.7 shows an example of noise model.

The noise model made a reasonable assumption that difference in images caused

by noise can be modeled by a Gaussian distribution. In addition, since the only

parameter that need to be estimated were mean and variance of the difference image,

the computational complexity was acceptable.

4.3.2 Mixture model

The mixture model characterizes both the no-change pixels and change pixels.

In the difference image, there are two opposite classes, W0 and W1, no-change and

change, respectively. Our goal was to classify each pixel into these two classes. A

28



reasonable assumption was that the difference intensity at pixel (i, j), D(i, j), was

caused by a combination of W0 class and W1 class. Therefore, the probability density

function of the difference image D(i, j) could be described as a mixture density

distribution consisting of W0 and W1. The mixture density distribution p(D) for the

difference image can be written as:

p(D(i, j)) = p(D(i, j)|W0)P (W0) + p(D(i, j)|W1)P (W1)

Before we try to solve the classification problem, the first task is to estimate the

likelihood functions p(D(i, j)|W0), p(D(i, j)|W1) and the prior probabilities P (W0),

and P (W1). By modeling class W0 and W1 as two different Gaussian distributions,

I was able to calculate the likelihood functions and prior probabilities. In order

to define the Gaussian distribution, mean µ and standard deviation σ should be

estimated. I adopted Bruzzone and Prieto’s method [2] to estimate the means and

standard deviation of the class conditional distribution p(D(i, j)|Wk).

Figure 4.6: Histogram of difference image distribution.
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Figure 4.6 describes the mixture distribution of the two classes. The two classes

are model by a Gaussian distributions with different mean and variance. From the

figure, no-change pixels tend to be in low intensity while the change regions are in

higher intensity. In order to estimate the parameters, Expectation-Maximization

(EM) algorithm was used.

EM algorithm is an iterative process for finding maximum likelihood (ML) or

maximum a posteriori (MAP) estimates of parameters in statistical models. It can

be computationally expensive. Its iterative step is described as,

pt+1(Wk) =

∑
(i,j)∈D

pt(Wk)p
t(D(i,j)|Wk)

pt(D(i,j))

I × J

µt+1
k =

∑
(i,j)∈D

pt(Wk)p
t(D(i,j)|Wk)

pt(D(i,j))
D(i, j)∑

(i,j)∈D

pt(Wk)pt(D(i,j)|Wk)
pt(D(i,j))

σt+1
k =

∑
(i,j)∈D

pt(Wk)p
t(D(i,j)|Wk)

pt(D(i,j))
[D(i, j)− µt

k]2∑
(i,j)∈D

pt(Wk)pt(D(i,j)|Wk)
pt(D(i,j))

where t and t+1 stand for current and next iteration respectively, p(Wk) is the

probability of a class Wk, and p(D(i, j)) is the probability of a specific intensity in

the difference image.

From the expression, it was found that the algorithm would traverse through the

whole image in each iteration, which was computationally expensive. In practice, I

adapted an improved method by using histogram information to do the estimation,

because pixels with same intensity at different location would have the same effect

on the final calculation result. This reduced the computational complexity to a

large constant number in theory and made the iteration speed up significantly. The
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improved estimation equations are shown below:

pt+1(Wk) =

∑
0≤x≤255

pt(Wk)p
t(x|Wk)

pt(x)
H(x)

I × J

µt+1
k =

∑
0≤x≤255

pt(Wk)p
t(x|Wk)

pt(x)
xH(x)∑

0≤x≤255

pt(Wk)pt(x|Wk)
pt(x)

σt+1
k =

∑
0≤x≤255

pt(Wk)p
t(x|Wk)

pt(x)
H(x)[x− µt

k]2∑
0≤x≤255

pt(Wk)pt(x|Wk)
pt(x)

With the estimated parameters, classification could be done using Bayes decision

rule. Let W (i, j) denote the class at pixel (i, j), then W (i, j) can be written as:

W (i, j) = arg max
Wi

{P (Wi|D(i, j))}

= arg max
Wi

{P (Wi)P ((D(i, j)|Wi))}

. Therefore, the generated binary image can be written as,

B(i, j) =


1 : P (W1|D(i, j)) > P (W0|D(i, j))

0 : otherwise

.

Figure 4.7 shows the result generated by mixture model in a consecutive image

pair that contained changed regions.
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(a) (b)

(c) (d)

Figure 4.7: Change detection results from noise model and mixture distribution. (a)
and (b) are consecutive images with obvious change regions. (c) and (d) show the
highlighted change regions after using change detection algorithm. (c) is the change
detection result generated using the noise model. (d) is the change detection result
generated using the mixture model.
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(a) (b)

(c) (d)

Figure 4.8: Change detection results with large change regions. (a) and (b) are
consecutive images with large change regions. (c) is the change detection result
generated using the noise model. (d) is the change detection result generated using
the mixture model. Mixture model is performing better.
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Mixture model was a stronger assumption about the distribution in the difference

image. It can detect smaller changes as well as dramatic changes. Noise model

performs worse when the change region is large. As shown in Figure 4.8, change

regions are barely detected by noise model.

I implemented the mixture model in my method.

4.4 Postprocessing

Postprocessing step took the result generated by the change detection method as

input and then generated the final result by highlighting the change detected regions

in the image. This was a necessary step because of the existence of noise. Noise

such as isolated change regions would appear in the result of the change detection

step, as we could see in Figure 4.7. Besides, considering change regions caused by

real errors were likely to appear as a large connected region, those large regions were

our major interest while the small size change regions are mostly due to image noise.

Therefore, I applied postprocessing to remove isolated change regions and to filter

out any change regions that are small in size. The postprocessing mainly consists

two steps: (1) erosion and dilation to remove noise and (2) region filtering to filter

out change regions that are small in size.

4.4.1 Erosion and dilation

In image processing, erosion and dilation are basic morphological operations.

Erosion transforms a binary image to shrink by eroding the boundary pixels of an

existing foreground object. On the contrary, dilation transforms a binary image to

grow by adding the boundary pixels of an existing foreground object. The illustra-

tions of erosion and dilation are shown in Figure 4.9.
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(a)

(b)

Figure 4.9: Examples of erosion and dilation. (a) shows the result of erosion. Objects
are shrinked. (b) shows the result of dilation. Objects are growing.

Erosion and dilation can be combined to find a specific component without image

distortion. Opening is defined as erosion followed by dilation, which removes sharp

peaks and thin connections with various structural elements (diamond, disk, rectan-

gle, line, and square) to smooth out the contour. Closing is the opposite operation

defined as dilation followed by erosion. As a result, closing links narrow breaks, fills

long thin gulfs, and fills holes smaller than the structural elements.

In postprocessing, I applied opening to remove noise as well as isolated regions

by erosion and dilation. An example of the result is shown in Figure 4.10 .

35



(a) (b)

(c) (d)

Figure 4.10: Results of openning. (a) and (c) are images before we apply openning.
(b) and (d) are the result of openning. Most of the noise is removed.
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4.4.2 Region filtering

Region filtering was a step to filter any changed region whose size was small

and considered unimportant. By setting the size threshold, users were allowed to

control the change tolerance on size, as large connected change regions were our

major concern. By comparison, small change regions in the image were less likely to

be caused by a real error.

In order to check the size of every connected change region, I used a traverse

method based on depth-first-search. The basic idea was to go through the whole

image to calculate each connected component’s size. The algorithm would go to four

directions (positive X, negative X, positive Y, and negative Y) in the image to check

the connectivity. An example is shown in the Figure 4.11,

Figure 4.11: An example of region filter. Region 1 will expand in positive Y and
negative X direction. Region 2 is fully explored and it will be removed because of
the limited size.
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While the algorithm explore the regions, it kept updating informations of the

connected component, like size, width, height etc. By using the connected component

information, smaller regions were filter out. Figure 4.12 shows an example:

In practice, the size of region filter is highly dependent on the tolerance of change

regions. For example, in experiments which have a lot of knife chatters, it is likely to

generate uncleared images. In such cases, we have higher tolerance of change regions

considering knife chatters are not real errors. On the other hand, a lower region

filter size would be better when clean images are generated. Generally, choosing a

higher region filter size would result in lower false alarm rate but relatively higher

missing rate. In our experiments, we chose the region filter size from 500 to 1300

empirically. The number is the minimum size of an error region that could attract

human operators’ attention.

4.5 Error detection

From the previous discussion, error detection based on change detection helps

find change regions between two consecutive images, which are likely to be caused

by imaging errors. However, in practice, it is not necessary to stop the cutting process

every time an error is detected. There are generally two reasons: (1) Image artifacts

and errors caused by floating tissues often disappear if they are removed by the pump

in the following run. (2) Some image errors are tolerable as long as no data loss is

caused. On the other hand, stopping the cutting process is also time-consuming

especially when the error could have been removed by itself quickly. Therefore, in

practice, we have to balance the different aspects.
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(a) (b)

(c) (d)

Figure 4.12: Results of applying region filter. (a) and (c) are images before we apply
region filter. (b) and (d) are result images after applying region filter (size=1300).
The small regions are removed.
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In order to solve the problem, I developed an error detection strategy to enhance

the robustness of the system. There are three different actions the strategy would

take based on the severity of the problem: (1) recording the error, (2) reporting to

the operators, and (3) stopping the cutting process. Recording the error is easy to

understand. Whenever an error is detected, it is recorded in the change detection

log. This helps us to locate the error and remove the unnecessary images when we

are processing the acquired images. In the next part I will discuss the strategy and

cases when we need to inform the operators and even stop the cutting.

4.5.1 Continuing errors

In most cases, one-time imaging errors are likely to disappear soon, so we do not

need to pay too much attention to them. However, continuing errors are more likely

to be caused by a severe obstruction in the light path, which should be informed to

the operators. What follows is a detailed analysis of continuing errors.

Looking into one image pair is not sufficient to know if continuing errors take

place. The basic idea is to look at the image sequence and change detection history.

By combining the change detection results, we can make a more confident decision.

To be specific, change detection results include two different types of knowledge: (1)

change detection history in the same column (column is introduced in background),

which is the local knowledge and (2) combinational results in different columns,

which provides global knowledge. Global knowledge is also important because severe

errors which has appeared in one column are likely to spread to the next column.

Considering the change detection histories, there are generally three important

cases.

(1) Isolated change in one column. Isolated change means a detected error which

appears in one image and disappears immediately in the next image. When the
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change is first detected, my method continues to check the next acquired image to

see if the change has disappeared. To be precise, let I1, I2 and I3 be three consecutive

images. I1 is a normal image. A change region caused by floating tissues appeared

in I2, which can be detected by comparing between I1 and I2. Then the change

disappeared in I3 and this was detected as well. In such case, comparing I1 and I3

directly would allow us to know whether or not the error caused by floating tissue

has disappeared. In this way, comparing the newly acquired image with multiple

previous images would allow us to find isolated change. In practice, isolated change

is the most common case so that only recording the error is sufficient. We don’t

need to report to operators nor to stop cutting in such cases. By comparison, there

is a different case when a constant change first occurred, causing only one change

detection in the image sequence. This happens not frequently. Looking into one

column is not sufficient to confirm the error. It is necessary to check the change

detection results in the neighboring columns. This will be also discussed in case (3).

(2) Consecutive changes in one column. Other than isolated change in the same

column, consecutive changes (more than two) means the acquired images change

continuously. By checking the image sequence and change detection history, we

can find consecutive changes in the same column. In most cases, the consecutive

changes are likely to be caused by floating tissues which are not removed in time. In

such cases, it is highly recommended for the operators to check the system status.

Therefore, it is necessary to report to the operators.

Note that isolated change will also generate two consecutive change detections

(one for appearance and the other for disappearance). However, we should not count

those changes as consecutive changes. My method would keep comparing the newly

acquired images with multiple previously images to eliminate such cases.

(3) Continuing changes in two columns. This is the case when an error first
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appeared in one column, causing a change detection, and then spread to the next

column. This type of error is likely to be caused by a constant error. Although it is

not very frequent, we need to take care. By combining the detection results in the

neighboring columns, we are more confident to detect such a potential error spread.

In this case, it is also necessary to inform the operators.

In order to find continuing errors and report to the operators, I developed a

finite-state machine to implement the strategy. There are seven statuses in total for

the machine, representing different change detection cases. Two types of actions are

involved: (1) change detection between newly acquired image and the immediately

preceding image; (2) change detection between the newly acquired image and the

previous images in the same column. In addition, for checking status in different

columns, it is necessary to check if a column shift has taken place. The finite-state

machine is shown below:

The implementation of the finite-state machine allowed us to detect continuing

errors, including (1) consecutive changes in the same column and (2) continuing

errors in different columns. Besides, isolated change and change detection event

caused by false alarm are ignored. When continuing errors are detected, it is still

not sufficiently convincing to stop the cutting process. Therefore, the method will

simply inform the operators.
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Figure 4.13: Error detection finite-state machine. The machine has two types of
actions: (1) change detection between newly acquired image and the immediately
preceding image; (2) change detection between the newly acquired image and the
previous images in the same column. There are totally five events: (1) E0 is under
action (1), resulting in no-change, (2) E1 is under action (1), resulting in change
detected, (3) E2 is under action (2), resulting in no-change, (4) E3 is under action
(2), resulting in change detected, and (5) E4 is column shift. There are seven statuses
representing different change detection cases: (1) S0 is the start status, indicating
no error is detected and everything is working fine, (2) S1 is the case when change is
detected only in the newly acquired image. The system was working fine previously.
(3) S2 is the case when two consecutive changes are detected in the newly acquired
images. It can be isolated change or a actual continuous change. We have to check
with the previous images in this case. (4) S3 is the case when change detection is
followed by no-change detected in the most recent image, (5) S4 is the case when
two consecutive changes are detected and it is not an isolated change (error does not
disappear), (6) S5 is the case when column shift takes place, (7) S6 is the case when
at least three consecutive changes or error spread are detected. We need to report
the errors in S6.
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4.5.2 Cutting termination

Forced cutting-session termination happens when severe errors are detected and

serious data loss would be caused if the cutting is not stopped immediately. We have

to stop the cutting process so that further data loss can be prevented. There are

basically three different reasons to stop the cutting.

(1) Floating tissues could clog the pump circulation, generating continuing arti-

facts and errors on the newly acquired images. It is necessary to stop cutting in this

critical case. Since the pump is not clogged very often, we don’t have enough data

to analyze. Instead, I manually turned off the pump in the experiment to mimic

the status of pump clogging. The results showed that errors appear on more than

80% of the newly acquired images in such cases. Therefore, by checking the change

detection history, my method could find out how frequently errors are detected. If

the frequency reaches a threshold set by the users, the method would decide to stop

the cutting process. In the experiments, we set up the threshold to 80% empirically.

(2) Illumination Interruption. By checking the illumination statistics of the newly

acquired image and comparing with the context, the method could detect interrup-

tion in illumination. In most cases, the error images become very darker than normal

value. It is necessary to stop the cutting process immediately.

(3) Disk malfunction and disk full errors are different from image errors because

they cannot be detected directly through image analysis. A simple workaround is to

check the disk status every time before the KESM starts a cutting. Users are allowed

to set up the minimum free space to be warned. This feature is also integrated in

my program.

To summarize, the error detection method would inform operators when continu-

ing errors are detected. In addition, it will also stop the cutting process when it is in
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a critical situation. In this way, the method enhanced the robustness of the system

and preserved the integrity of the data.
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5. IMPLEMENTATION AND RESULTS

In the previous chapter, a detailed description of KESM error detection method

was presented. In this chapter, the implementation of the method will be presented

at the beginning. Then I will present the results of error detection in section 2. In

section 3, the method will be evaluated.

5.1 Implementation

The implementation of image error detection in KESM integrates several com-

plicated components. The workflow in the error detection and interaction with op-

erators as well as existing KESM control system must be properly executed. It is

necessary to develop a program to achieve image error detection.

There are four requirements for the error detection program.

(1) Since the main purpose of the program is error detection, the first requirement

is to implement the error detection method that I described in the previous chapter.

This mainly includes image downsampling and change detection.

(2) The program must display and records the error detection results properly.

The program was designed to utilize a graphic user interface (GUI) to interact with

users. Users should be allowed to see the results and configure the detection param-

eters.

(3) As one component of the whole KESM control system, the program was

designed to integrate with the existing system. Interactions with the existing control

system, including loading newly cut images and handshaking with stage controller,

are required.

(4) The program is required to inform operators and even terminate the KESM

cutting when necessary to protect the data integrity.
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I developed a KESM image error detection program to fulfill the requirements

above. It was developed in Python, which provides useful packages and libraries,

including image processing library, system functions, and graphic user interface li-

brary. Besides, the program was developed as a lightweight module, which makes it

easy to integrate with the existing KESM control software.

The architecture of the program is shown in Figure 5.1

Figure 5.1: The architecture of KESM image error detection system.

According to the requirements, the architecture of the program can be described

mainly as four components:

(1) The image processing module takes care of the error detection and image

downsampling. It was built on Python Pillow, a python image processing library

which provides basic image operations, such as image loading, resizing, erosion and

dilation. In the program, image processing module is called from upper layer to

generate the error detection results.
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(2) A logging module was specially developed to record the error detection results.

Important information is shown on the user interface and recorded in a log file. To

display and interact with users, a GUI was built based on TKinter, a standard python

GUI package. Users can see the comparison results of error detection and any other

monitoring status, such free space in the disk. In addition, users are allowed to

interact with the interface by configuring different parameters. Configuration options

include whether to inform operators or not and whether to stop the cutting when

necessary or not, and the region filter size etc. An example of the interface is shown

in Figure 5.2.

(a) (b)

Figure 5.2: (a) GUI of the KESM error detection system. Panel 1 displays the
consecutive images and error detection results. Panel 2 is the system status indicating
whether an error is detected and the volume free space. Panel 3 is the system log.
Panel 4 provides configuration options to the users. Panel 5 includes buttons to start
and stop the program, to choose the directory, and to clean the log. (b) Screenshot
of the program when a change is detected.
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(3) Stage controller handshake module was designed to interact with the existing

KESM control system. The module finds newly acquired images and interacts with

the stage controller program.

(4) An finite-state machine (FSM) module was developed to inform operators

and even stop the KESM cutting process if necessary. Operators can add their email

address to the list so that they will be informed through email when an error was

detected. In addition, the module decides to terminate the cutting process when it

is necessary.

The program works as follows. In the beginning, users can start the error de-

tection program from the existing stage controller program or they can choose the

directory where the KESM project is located. After the program is started, it keeps

checking every image folder continuously to monitor if a new image is acquired. When

a new image is found, the program launches the error detection module to compare

it with the previous images. Results with highlighted regions will be displayed on

GUI while important information is recorded in the log file. The FSM module will

check to see if it is necessary to inform operators by email or even stop the cutting

process. Meanwhile, the program keeps checking the free space on the disk to make

sure enough free space is available.

5.2 Results of change detection

By using the error detection program, error regions in the images acquired by

KESM can be detected. Figure 5.3 shows some selected results.

In Figure 5.3, regions highlighted by red lines were detected as change region. (a)

is an example of imaging errors caused by tissue rolling. When the knife was cutting

the tissue, the sectioned part was distorted badly. In the result, a large white region

was detected. In (b), a small piece of floating tissue resulted in the error region. (c)
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(a) (b)

(c) (d)

Figure 5.3: Selected error detection results.
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shows a dramatic illumination change in a rectangle region. In (d), an irregularly

shaped error region was detected. The error was possibly caused by cutting fault.

5.3 Evaluation

The error detection method was evaluated in terms of two aspects: accuracy and

speed. Accuracy was evaluated to show the effectiveness of the detection method.

In order to evaluate accuracy, I manually labeled three groups of data as ground

truth and compared them with the result generated by the proposed method. Then

speed was evaluated to measure the execution time of the program to test if real-time

detection is possible.

5.3.1 Accuracy

The idea of accuracy evaluation is to compare the results with ground truth. Here

‘ground truth’ means a comprehensive data set which includes the correct answers

the program should produce. Therefore, I manually labeled three groups of image

data acquired by KESM. All three groups of data included around 1,000 images. The

first two groups were from existing data sets, acquired in 2008 and 2010, respectively.

The third group of data was from the zebrafish experiment which was conducted in

2014. All the images in the data set were labeled either as error image or as clean

image. The format of the image was gray-scale with a dimension of 4096 × 12000.

Detailed information about the data set is presented in Table 5.1:
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Table 5.1: Data set for evaluation of change detection

Data set Creation time Number of images Images with error or artifacts

1 Jan, 2008 1024 85

2 Feb, 2010 1018 20

3 May, 2014 959 179

After establishing the ground truth, I adopted standard measurements for com-

paring the results. The following quantities are used in the evaluation: (1) True

Positive (TP): image with errors correctly identified as error image; (2) false positive

(FP): image without error incorrectly identified as error image; (3) True negative

(TN): image without error correctly identified as clean image; (4) False negative

(FN): image with errors incorrectly identified as clean image.

Based on the quantities, accuracy is first evaluated on the Percentage Correct

Classification(PCC) which is expressed as following:

PCC =
TP + TN

TP + FP + TN + FN

PCC evaluates the accuracy by calculating the proportion of correct detection. In

our case, one disadvantage of PCC is that images with errors and artifacts are only

a small portion of the entire data set. A large TN usually generates a good PCC

result, which only evaluates on the overall accuracy. Therefore, I also adopted F1-

measure to calculate more precise evaluation on images with errors. F1-measure is

the harmonic score of precision and recall. Precision is the proportion of correctly

error detected images among all the error detected images. Recall is defined as the

proportion of correctly error detected images among all the images with true error.
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They can be expressed as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2TP

2TP + FP + FN

First of all, the accuracy of error detection is evaluated on the two models and

different region filer sizes. Data set 1 was split into three groups to evaluate. The

following tables show the result.

Table 5.2: Accuracy on different models

Data group in set 1 Model PCC Precision Recall F1

1 Noise 98.09% 93.75% 88.23% 90.91%

1 Mixture 98.41% 96.77% 88.23% 92.31%

2 Noise 95.15% 67.74% 80.76% 73.68%

2 Mixture 96.76% 83.33% 76.23% 80.00%

3 Noise 97.74% 83.33% 80.00% 81.63%

3 Mixture 98.74% 95.45% 84.00% 89.36%

Table 5.2 shows the comparison between noise model and mixture model with

region filer size fixed at 900. From the table, it shows that mixture model is generally

performing better than noise model by having a higher PCC and F1 score, which

confirms theoretical analysis in the previous chapter. In the final implementation of

error detection program, I adopted the mixture model.
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Table 5.3: Accuracy on different region filter sizes

Data group in set 1 Region filter size PCC Precision Recall F1

1 500 98.41% 91.67% 94.28% 92.95%

1 900 98.41% 96.77% 88.23% 92.30%

1 1300 97.14% 96.42% 77.14% 85.71%

2 500 94.35% 60.00% 92.30% 72.72%

2 900 96.86% 83.33% 76.23% 80.00%

2 1300 96.23% 84.00% 72.41% 77.78%

3 500 97.49% 74.19% 92.00% 82.14%

3 900 98.74% 95.45% 84.00% 89.36%

3 1300 98.74% 95.45% 84.00% 89.36%

Table 5.3 shows the accuracy of mixture model different region filter sizes. It

indicates that the detection result also highly depends on the region filter size. When

the filter size increases, precision gets higher and recall becomes lower. In clean image

sequences, small filter size is acceptable while in images with more noise, a large filter

size is better. Therefore in practice, users should adjust the region filter size to fit

the specific need.

Finally, the overall accuracy was evaluated on three different data sets. Table 5.4

shows the final result.
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Table 5.4: Evaluation result of error detection

Data set PCC Precision Recall F1

1 98.24% 94.67% 83.53% 88.75%

2 99.51% 94.11% 80.00% 86.48%

3 94.79% 85.25% 87.15% 86.19%

To sum up, the error detection method is able to automatically detect imaging

error with PCC around 95% and F1 score around 86%.

5.3.2 Speed

The other important requirement for the program is real-time detection. It means

that the method should finish detection within the time period of two consecutive

cutting, which is around 7 seconds. In order to achieve this goal, the implementation

of the program was optimized. I conducted speed evaluations in different machines

and different experiments. Table 5.5 shows the result.

Table 5.5: Speed evaluation

Machine Experiment Average(s) Minimum(s) Maximum(s)

1 1 1.819 1.265 3.828
1 2 1.817 1.233 3.202
1 3 1.873 1.250 3.578
2 4 0.304 0.241 0.676
2 5 0.311 0.259 0.680
2 6 0.334 0.233 0.672

In the table, machine 1 is the aging KESM server (Dell PowerEdge 2800, 3.8 GHz

Dual Intel Xeon, 6GB DDR2, Windows Server 2003) and machine 2 is a modern
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laptop (Apple Macbook Pro, 2.5 GHz Intel Core i5, 4GB DDR3, OSX 10.9.3). The

speed evaluation result shows that the program is able to finish a detection routine in

less than two seconds on average, which is sufficient to achieve real-time detection.

If the KESM server is updated in the future, the error detection will be greatly

improved.
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6. DISCUSSION

The new KESM image error detection algorithm and its implementation enables

the detection of imaging errors in real-time. It will help enhance the robustness of

the system and to reduce the data loss. In this chapter, the contributions of the

KESM image error detection, its limitations, and future work will be discussed.

6.1 Contribution

In order to solve the imaging error problem in KESM and to enhance the ro-

bustness, I designed and implemented the KESM image error detection method.

The major contribution of my research is the image error detection method: (1) By

achieving real-time error detection, the method detects errors and reduces data loss,

enhancing the robustness of KESM imaging. (2) The method largely reduces the

burden of human operators through automatic error detection. Human operators

will be notified when an error is detected, and the cutting process can be terminated

when it is in a critical situation.

6.2 Limitation and future work

There are several open issues: (1) limitation of parameter configuration in change

detection algorithm, and (2) lack of an advanced method to decide critical situation

when cutting termination is necessary. I will discuss these open issues and the

corresponding future work.

6.2.1 Limitation of paramter configuration in change detection

In my method, one parameter in change detection algorithm needs to be set up

by users. By setting up the parameter region filter size properly, we can achieve a

better result. The reason behind this is that the tolerance of error size varies from one
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experiment to another. In the experiment which has a lot of knife chatter, generating

unclear images, a large region filter size would be better. In our experiments, we set

up the filter size empirically. However, the manual parameter configuration is still

limited.

In the future, I will work on improvements of the parameter configuration. The

pixel-wise change detection algorithm is the main reason why the parameter need

to be set up manually. I will explore other methods that do not need parameter

settings. An alternative approach is to decide the filter size by using data training

methods. In such a case, we need more data to support the methods.

6.2.2 Limitation on cutting termination

In critical situations, we need to stop the cutting process so that further data

loss is avoided. In the proposed method, a critical situation is defined as a case

where several consecutive errors appear or errors appear very frequently. This kind of

situation can be forcefully reproduced by cutting off the pump manually. In practice,

critical situations happen rarely and we do not have enough data to characterize the

real cases. Moreover, although stopping the cutting often helps reduce data loss, it

is also time consuming that one of the goals of KESM is high-throughput imaging.

This poses a tradeoff when defining a critical situation. In the proposed method, we

determined empirically when to stop cutting. A more precise method is required.

In the future, I will develop a more precise method to decide the situation when

we need to actually stop cutting. Other than just looking into the frequency of

errors, there should be an error pattern which indicates a critical situation. This will

help balance between reduction of data loss and the extra time needed after cutting

termination.
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6.3 Conclusion

The aim of this research was to develop a method to solve the imaging error issues

in KESM. I developed a real-time image error detection method to complement the

existing human intervention workaround. The method detects errors automatically,

reports to the human operators, and stops the cutting process when it is necessary.

Using an image change detection algorithm, the method detects imaging error with

86% accuracy. The method also runs in real-time. High accuracy and real-time

operation allows the method to greatly reduce data loss in KESM imaging. Moreover,

through automatic error detection, human operators now have less burden during the

experiments. In summary, the proposed real-time image error detection method for

KESM helps enhance the robustness of the system.
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