
1 

THE BIOORGANOMETALLIC CHEMISTRY OF IRON AND THE 

DIATOMIC LIGANDS CO AND NO AS RELATED TO 

HYDROGENASE ACTIVE SITES AND DINITROSYL IRON 

COMPLEXES 

 

A Dissertation 

by 

RYAN DAVID BETHEL 

 

Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University 

in partial fulfilment of the requirements for the degree of 
 
 

DOCTOR OF PHILOSOPHY 
 

 
 
Chair of Committee,  Marcetta Y. Darensbourg               
Committee Members,   Michael B. Hall     
    Tatyana I. Igumenova     
    Paul A. Lindahl 
Head of Department,   David H. Russell 
 
 
 

December 2014 
 
 
 

Major Subject: Chemistry 
 
 
 

Copyright 2014 Ryan David Bethel



ii 

ABSTRACT 

 

The discovery of a diiron organometallic active site, found in the [FeFe]-Hydrogenase 

(H2ase) enzyme, has led to a revisiting of the classic organometallic chemistry involving 

the Fe-Fe bond and bridging ligands.  This diiron site is connected to a mainstay of 

biochemistry, a redox active 4Fe4S cluster, and the combination of these units is 

undoubtedly connected to the enzyme’s performance.  The regioselectivity of CO 

substitution on the diiron framework of the so-called parent model complex (μ-

pdt)[Fe(CO)3]2, (pdt = propane-1,3-dithiolate), and its derivatives, informs on the 

interplay of electron density in the diiron core of the enzyme active site.  The structural 

isomers (μ-pdt)[Fe(NHC)(NO)(PMe3)][Fe(CO)3]+ and (μ-pdt)(μ-

CO)[Fe(NHC)(NO)][Fe(PMe3)(CO)2]+, synthesized through CO substitution by opposing 

nucleophilic (PMe3) and electrophilic (NO+) ligands provide insight into the reactivity of 

both irons as a function of their π-acidity. 

The intramolecular fluxional processes of a series of (μ-SRS)[Fe(CO)3]2 complexes allows 

for the generation of an open site mimicking the structure of the H2ase where H+ binds in 

the catalytic cycle of H2 production.  Density Functional Theory (DFT) was used to 

support the dynamic 1H and 13C NMR spectroscopic studies that established the energy 

barriers to both the chair/boat interconversion of FeS2C2X, where X = NR or CR2, and the 

rotation of the Fe(CO)3 moiety, a process essential to the formation of an open site.  It was 

determined that the rotation barrier is correlated with the steric bulk of the bridging ligand 
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that can be directed towards the iron.  This is seen with the methyl substituent in both 

N(CH3) and C(CH3)2 producing a lower barrier to Fe(CO)3 rotation than the NH and CH2 

analogues, while the steric bulk of NC(CH3)3 cannot be directed to the iron and results in 

a higher barrier than both NH and N(CH)3. 

Another class of bioorganometallic molecules, the dinitrosyl iron complexs (DNICs), is 

formed in vivo as the product of NO degradation of iron-sulfur clusters; DNICs are thought 

to have possible NO storage and transport roles in the body.  Computational investigations 

utilizing DFT have been used to support synthetic and kinetic studies of the reactivity of 

one such complex, (NHC)(SPh)Fe(NO)2, (NHC = N-heterocyclic carbene) with CO. 
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CHAPTER I 

INTRODUCTION TO HYDROGENASES* 

 

Introduction 

Hydrogenase  

The hallmarks of transition metal-organic chemistry are well represented in the catalytic 

active sites of the hydrogenases.    They include low valent metals that are stabilized by 

π-accepting ligands such as carbon monoxide and cyanide, capable of supporting η2-H2 

or hydrides as substrates or ligands, and found in molecular constructions that likely 

contain metal-metal bonds and bridging carbonyls. Even the air sensitivity of most 

hydrogenases, and light sensitivity of some, are nuisances that synthetic organometallic 

chemists have learned to accommodate.   

In the mid-1990s, six decades after the report of the discovery of hydrogen metabolizing 

enzymes in methanogenic archaea by Marjory J. Stephenson and Leonard H. Stickland,1 

a confluence of techniques, vibrational spectroscopy (with isotopic labeling)2-5 and protein 

crystallography,6-8 provided convincing evidence that the bimetallic active site of [NiFe]-

hydrogenase, [NiFe]-H2ase, surprisingly contained an iron bound to a carbonyl and two 

cyanide ligands.  Shortly thereafter, vibrational spectroscopy in the isolated, diatomic 

                                                           
*Reproduced with permission from Bethel, R. D.; Darensbourg, M. Y. “Hydrogenase” in 
Bioorganometallics Salmain, J., Ed. 2014; Vol. 2.  Copyright 2014 John Wiley and Sons  
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region of the IR spectrum confirmed the presence of ν(CO) and ν(CN) absorbances in the 

“all-iron” or [FeFe]-H2ase, as indicated in protein crystal structures.9-13  That the highly 

light sensitive mono-iron or [Fe]-H2ase likewise contained CO ligands,14-17 recognized in 

2004, made clear that the active sites of the hydrogenase enzymes were most assuredly 

related to organometallic chemistry, Figure I-1.   

Thus, the powerful principles and tenets of transition metal-organic chemistry, a field that 

matured almost concomitantly with the major advances in hydrogenase science, may be, 

and indeed are, used in the design of synthetic analogues that reproduce key features of 

Figure I-1. Ribbon diagrams of the three known classes of hydrogenase; [FeFe]-H2ase (A),9 

[NiFe]-H2ase (B),7,21 and [Fe]-H2ase (C),14,15 from protein crystallography. The bioorganometallic 
active sites, below, demonstrate the unprecedented carbonyl and cyanide ligands, bound to low-
valent iron (I) and iron (II).  
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the active sites and that may lead to understanding the enzymes’ mechanisms.  It has been 

generally anticipated that such synthetic analogues might also be developed as robust, base 

metal catalysts to perform the functions of the [NiFe]- and [FeFe]-H2ase enzymes, that is, 

under the mildest of conditions, the controlled dihydrogen oxidation to protons and 

electrons or proton reduction to dihydrogen. 

The widespread biological significance of hydrogenase enzymes was recognized soon 

after their discovery in the early 1930s.1  Since that time, hydrogenase activity has been 

established in a wide range of microorganisms; primarily within the domains of Archaea 

and Bacteria, but with a presence in Eukarya as well.18  These include, but are not limited 

to, methanogens, rumen bacteria, sulfate reducers, Fe3+ reducers, photosynthetic O2 

reducers, anaerobic fermenters, and aerobic H2 and N2-fixing bacteria.19 A diverse 

community of scientists has contributed to all aspects of their characterization.  Each 

decade since the initial discovery has seen major advances, from Hoberman and 

Rittenberg’s discovery of the inhibitors such as oxygen, carbon monoxide, and cyanide in 

the 1940s19 to the soluble hydrogenases from Clostridium and Desulfovibrio first obtained 

in the 1950s.20,21  In the 1960s, many proteins involved in biological redox processes were 

found to contain cysteine-bound iron and inorganic sulfide.22  By the 1970s, hydrogenases 

were recognized to contain these iron-sulfur clusters, which were implicated in the role of 

transporting electrons to and from the active site.23 

As the major class of hydrogenases contained EPR signals attributed to paramagnetic 

nickel in different redox levels, the 1980s brought contributions from 
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bioinorganic/biophysical chemists that further characterized the isolated, oxidized states 

of [NiFe]-H2ase.24-26 The breakthrough that provided the impetus for traditional 

organometallic chemists to link their expertise with biology came in the 1990s in the form 

of x-ray diffraction analysis of crystalline proteins, coupled with IR spectroscopy, as 

described above.    

Organometallic-like functions of the bifunctional enzyme acetyl-CoA and carbon 

monoxide dehydrogenase, ACS/CODH, also call on nickel in ACS and nickel plus iron in 

the CODH active sites.27  It is noteworthy that both biocatalysts are multimetallic:  two S-

bridged nickels are in ACS and nickel is surrounded by S-ligands and bridges to iron in 

CODH.  Although numerous mechanisms of both ACS and CODH have been proposed, 

one common feature is the inclusion of Ni-C bonds, with both CO and CH3 ligation.28,29  

As of this dissertation, experimental evidence for a naturally occurring Ni-CO is lacking.  

Of course the most widely accepted organometallic in biology is based on cobalt in the 

B12 vitamin.   Methylcobalamin, containing Co3+-CH3, is an established source of methyl 

radicals, formed from the homolytic decomposition of the reduced Co2+-CH3.  The 

resulting Co1+ then regenerates into Co3+-CH3 by nucleophilic attack of the electron rich 

Co1+  on a CH3-X.30 

Myriad functions of iron in biology include roles in catalysis, electron transport and 

storage, and structure stability.  In some metalloproteins, iron is found as an integral 

component of the peptide, attached to amino acid residues with oxygen, nitrogen, and 

sulfur donor atoms assembled so as to achieve fairly regular and recognizable coordination 
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geometries.  Other proteins utilize cofactors, such as iron-bound heme, that are assembled 

whole and delivered to the protein as a stand-alone, often weakly coordinated, unit.  Iron 

is well known to exist in two biologically accessible redox levels, ferrous (Fe2+) and ferric 

(Fe3+).  These are the typically observed oxidation states in such famous systems as the 

iron sulfur clusters and hemoglobin.  Only recently has the veracity of the reactive ferryl 

(Fe4+) oxo species been accepted within bioinorganic chemistry.31  In contrast, the 

fundamental organometallic iron complexes find iron in lowest known oxidation states, 

e.g., Fe2- in Fe(CO)4
2- or Fe0 in Fe(CO)5, HFe(CO)4

− or Fe3(CO)12.    Such low valent iron 

species, requiring toxic CO ligands for electron delocalization, would be reasonably 

assumed to conflict with nature.  Nature’s control of such contradictions is of course the 

stimulus that drives the field of bioorganometallics. 

The Chemistry of Hydrogen 

The deceptively simple reactions facilitated by the hydrogenases are shown in Equations 

I-1, I-2, I-3, and I-4.  The processing of hydrogen is needed in biology for relief of excess 

reducing equivalents, or alternatively, to use H2 as a source of electrons, Equations I-1 and 

I-2.  Indeed, some of the life forms mentioned above utilize H2 as the primary energy 

Equations I-1, I-2, I-3, I-4, and I-5 
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source.  The mid-Indian Ocean hydrothermal vents provide an example of an entire 

ecosystem that uses non-photosynthetic carbon sources with hydrogenase-containing 

microbes as the producers of H2, the energy currency.32,33  Assays, as indicated by 

Equations I-3 and I-4, reflect the heterolytic mechanism of H2 cleavage or formation 

whereby acid/base H/D exchange can take place.34 

The importance of hydrogen as a reagent in biology and in chemistry can hardly be 

overstated.  The chemical industry and synthetic organic chemistry have realized many 

goals by developing homogeneous reduction catalysts, typically based on heavier noble 

metals such as platinum, rhodium, iridium, and palladium.  These metals readily undergo 

two-electron redox level changes; Equation I-5 provides an example of hydrogenation of 

an organic substrate, such as an olefin, by the rhodium (I) based Wilkinson’s catalyst. 

The extraction of electrons from H2 is used for inorganic reduction processes, e.g. sulfate 

to hydrogen sulfide or iron (III) to iron (II).  Thus, the [NiFe]-H2ase, typically biased 

towards H2 uptake is a hydrogenase common to such organisms that perform these 

reactions.18  Hydrogen oxidation is also a prominent feature of fuel cells, requiring 

catalysts for which the most efficient is the expensive and resource-limited platinum.35  

The reverse reaction, generation of H2 from protons in an aqueous solution and the 

direction for which the [FeFe]-H2ase is typically biased, is the desired source of hydrogen 

for the reactions described above.  Hence, a significant target of bioorganometallic 

chemistry is the synthesis of model complexes of the hydrogenase active sites that might 
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reproduce the activity of those enzymes—resulting in cheap catalysts based on first row 

transition metals.   

Dihydrogen Metal Complexes 

The coordination chemistry of the hydrogen molecule has been a critical challenge for 

organometallic chemists.36,37  As the seminal model for molecular bonding, with two 

electrons in a single σ-bonding orbital, H2 is the simplest molecule.  However, the strong 

H-H bond (436 kJ/mol) and lack of non-bonding electrons to act as a “handle” by which 

to manipulate the molecule, renders it relatively inert to further bonding as an intact 

molecule.  The first metal-dihydrogen complex, initially reported by Kubas and coworkers 

in 1980,37 was characterized and accepted as a true molecular hydrogen adduct in 1984.38 

This tungsten(0)-dihydrogen complex, (η2-H2)W(CO)3(PCy3)2,  formed immediately upon 

the exposure of H2 to a five-coordinate d6 tungsten(0), ligated by two bulky phosphine 

Figure I-2. Metal-H2 complexes explored by Kubas,37 
Crabtree,41 and Morris.45 
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ligands and three carbonyls, Figure I-2.  An intramolecular, agostic interaction between 

the C-H of a cyclohexyl moiety of one of the phosphines protected the sixth coordination 

site.  This weak interaction could be displaced by H2, in addition to many other small 

molecules such as N2.  The H2 in this complex is bound to the tungsten side on, in a non-

classical three-center, two-electron bond.  As the two electrons originate in the σ-bonding 

orbital of H2, all such η2 complexes (including H-H, C-H, Si-H, etc.) were termed “σ 

complexes” by Crabtree.39  The elongation of the H-H bond, from 0.74 Å in the free H2 to 

0.89 Å in the bound molecule, indicates the intact H2 is destabilized, or more accurately 

activated, when bound to the metal.  The hydrogen could be removed under vacuum in a 

fully reversible process.  The ability of metal-hydrogen complexes to reversibly associate 

and dissociate H2 is of critical importance to the hydrogenase enzymes, as is the rendering 

of the H2 susceptible to heterolytic (H+/H-) splitting.   

Since this first system, hundreds of metal-(η2-H2) complexes have been synthesized using 

nearly every transition metal, from vanadium to platinum.40  The majority contain 

Figure I-3. H2 binding with H2 σ-donation and π-back donation 
into H2 σ* (center), the oxidative addition of H2, forming a 
Mn+2(H)2 complex (left), and heterolytic cleavage leading to 
deprotonation (right).36,41 
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octahedral, d6 metals that are relatively low-valent, with a relatively accessible open site.  

In such complexes, the metal must be tuned such that its σ-accepting capability will allow 

H2 to bind, while π-back donation from filled metal d orbitals into the σ* orbital of the H2 

must not be excessive, Figure I-3.  Highly Lewis acidic metal centers with insufficient σ-

accepting capacity are unfavorable for H2 binding, while excessive electron density on the 

metal results in full oxidative addition and formation of a metal-dihydride, with increase 

in the oxidation state of the associated metal.  The instability of H2 adducts of strong main 

group Lewis acids, such as CH3
+ and BBr3 support the idea that stabilization of the H2 σ* 

orbital by the acceptor’s d electrons is required.  Even so, the balance of σ-accepting and 

π-back donation is critical. Often, a π-accepting ligand is trans to the H2 to moderate the 

back donation.   

Soon after Kubas’ first report of a dihydrogen-tungsten adduct, Crabtree et al. reported an 

iridium (III) dihydrogen hydride, Figure I-2.41  At the time, it was anticipated that the 

reaction of the iridium (III) aqua complex with H2 would yield the iridium (V) trihydride.  

Instead, 1H NMR below 260 K clearly showed the presence of two protons at δ = -2.9 and 

another single proton at δ = -15.3.  When warmed to room temperature, the signals 

coalesce into a single resonance, indicating rapid exchange between the dihydrogen 

molecule and the hydride.42-44 
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Although both of these metal-hydrogen complexes were synthesized via direct H2(g) 

binding, either to an unsaturated precursor or by displacement of a weakly bound solvent 

molecule, this is not the only technique used.  This straightforward reaction proceeds 

though a characterized hydrogen bond between the incoming acidic proton and the basic 

hydride, Figure I-4.  This scheme has been used on many neutral metal-hydrides, which 

have been found to be good targets for protonation, forming stable, monocationic metal-

hydrogen complexes.  In 1997, Forde et al. demonstrated that a cationic iron-hydride could 

also be protonated, forming a dicationic iron-dihydrogen complex, Figure I-2.45  The iron 

(II) dihydrogen complex is stabilized by a trans π-acidic carbonyl ligand, but the short H-

H bond reported, 0.86 Å, as determined by the NMR coupling within the bound HD, 

indicates that there is little donation into the σ* orbital of the hydrogen.45  Instead, this 

complex is almost exclusively stabilized by the H2 σ-donation.  Although the hydrogen is 

tightly bound, with no loss of H2 under vacuum at 20˚C, it is strongly acidic.  Addition of 

dry ethyl ether results in deprotonation and reformation of the iron-hydride precursor.45  

Tuning the basicity of the hydride and acidity of the dihydrogen in hydrogenase biases the 

enzymes towards either H2 production or oxidation.  Thus, our understanding of the 

organometallic chemistry enlightens our studies of hydrogenase biology, while new 

Figure I-4. Protonation of a metal-hydride.36,41 
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understanding of the biology in turn provides new paradigms for the organometallic 

chemist. 

First Coordination Sphere Ligands 

As described above, a critical balance of electrophilicity and π-back donating ability of 

the metal is required, for the uptake and binding of dihydrogen.  For a mild two electron 

electrochemical process, as in the metal-catalyzed proton reduction to dihydrogen, proton 

coupled electron transfer is required. Both requirements are met for iron in the 

hydrogenase enzyme active sites by a combination of CO, CN- and thiolate sulfur, RS−.  

Well known for its π-backbonding capability, carbon monoxide delocalizes electron 

density from the reduced metal, while the anionic X-type ligands, CN− and RS−, rely on 

their capability to morph between strong σ-donor, dative bonds and covalent one-electron 

bonding.  Cyanide and thiolate may be found combined with metals in higher oxidation 

states; for iron, Fe3+ is common.  As an excellent 4-electron bridging ligand, RS− takes on 

the additional role of maintaining the binuclearity of the [NiFe]- and [FeFe]-H2ase active 

sites.   

That CN− is found in the [NiFe]- and [FeFe]-H2ases and CO is found in all three H2ases, 

and that the three enzymes are phylogenetically distinct, speaks to convergent 

evolutionary processes that recruited these toxic ligands to facilitate the reversible 

reduction/oxidation process for hydrogen metabolism at iron.    
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Structure and Function 

The Active Sites of the Hydrogenases 

Shown in Figures I-5, I-6, and I-7 are graphics depicting the active sites of the 

hydrogenases, derived from the protein crystal structures as indicated in the captions, 

Figure I-1.  These represent the consensus structures that, in all three hydrogenases, 

required committed effort over many years, eventually converging on the conclusions 

shown here; the dedication demonstrated towards this contribution to the hydrogenase 

field by a broad community of scientists cannot be overestimated.    In Figures I-5, I-6, 

and I-7 we have used ball and stick renditions within ribbon protein structures, and 

oriented the configurations so as to emphasize the similarities of the pentacoordinate, 

organoiron units in each.   

Figure I-5.  Active site of [NiFe]-H2ase.7,21 
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[NiFe]- and [FeFe]-Hydrogenase 

The first reported (1995) structure of a hydrogenase, [NiFe]-hydrogenase from D. gigas, 

is a heterodimer in which a large subunit contains the [NiFe] active site and a smaller 

subunit contains several iron-sulfur clusters, Figure I-1.7  The [FeFe]-H2ase protein from 

C. pasteurianum is a mushroom-shaped monomer, Figure I-1, for which a consensus 

active site structure was published in 2000.9  As with the [NiFe]-H2ase, a series of iron-

sulfur clusters are positioned at ca. 12 Å apart and function as the electron transport route 

from the exterior of the protein into the active site.  While the 4Fe4S cluster closest to the 

[NiFe]-H2ase active site is 12 Å away, for [FeFe]-H2ase the final 4Fe4S cluster is directly 

attached to the [FeFe] subsite within the 6Fe6S, H-cluster of the protein.   Its essential 

Figure I-6.  The active site of the [FeFe]-H2ase.9 
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requirement has been established, presumably for both high rates of H2 production, as well 

as for activation and electronic tuning of the 2Fe subsite.46,47  

Thiolate sulfur bridges link the two metals in both the [NiFe]- and the [FeFe]-H2ase active 

sites.     In the former, the sulfurs are from two of the four protein-bound cysteines that 

comprise the coordination sphere of the nickel, producing a Ni(µ-SCys)2Fe butterfly 

shaped core, with Ni-Fe distances that range from ~2.5 Å for the active form (Ni-SI), to 

~2.9 Å in the inactive Ni-A and Ni-B forms.6,8 The larger distance is required for the 

additional bridging oxy-species.  A variant, the [NiFeSe]-H2ase, has one terminal cysteine 

replaced by selenocysteine, otherwise the structures are identical.48  The [NiFeSe]-H2ase 

is found to be more oxygen tolerant relative to the [NiFe]-H2ase, but the basis of the O2 

tolerance is unclear.  Recent studies of membrane-bound [NiFe]-H2ase as in Ralstonia 

eutropha have attributed O2 tolerance to a unique 4Fe3S cluster with additional cysteines 

proximal to the active site that aids in rapid repair.49,50  

Figure I-7.  The active site of the [Fe]-H2ase.14,15 
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For the [FeFe]-H2ase active site, a unique, abiotic dithiolate bridges the two irons, creating 

two 6-membered, cyclohexane-like FeS2C2N rings displaying typical chair/boat 

configurations.  The central, bridgehead atom of this metallo-heterocycle was the subject 

of controversy as protein crystallography at typical resolution cannot differentiate between 

the light atoms: CH2, NH, or O.  Through the use of HYSCORE and ENDOR 

spectroscopy, Lubitz and coworkers have provided definitive proof that the bridging atom 

is nitrogen.51,52  This conclusion has been further supported by Fontecave and coworkers.53  

The mechanistic role played by this pendent amine, or built-in base, for proton shuttling 

will be discussed below.  

[Fe]-Hydrogenase 

The mono-iron, [Fe]-H2ase enzyme is the most recently discovered hydrogenase.  Unlike 

both [NiFe]- and [FeFe]-H2ases, which are spread across multiple domains with hundreds 

of species utilizing one or both, that have been known for many decades, [Fe]-H2ase, the 

so called “third hydrogenase” was first reported by Thauer in 1990.54   It is also called H2-

Figure I-8. The reaction catalyzed by [Fe]-H2ase.54 
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forming methylenetetrahydromethanopterin dehydrogenase (Hmd) and was first isolated 

from methanogenic archaea grown in the absence of nickel.  At the time, the production 

of N5, N10-methylenetetrahydromethanopterin (CH2=H4MPT) from N5, N10-

methenyltetrahydromethanopterin (CH≡H4MPT) and H2, Figure I-8, was found to be 

catalyzed by an unknown enzyme.  Unlike the previously reported hydrogenases, Hmd 

does not catalyze the reversible interconversion of protons and electrons to H2, Equations 

I-1 and I-2, and did not catalyze per se the single or double exchange between H2 and H2O, 

Equations I-3 and I-4.  Also unlike previously examined hydrogenases, this one contained 

no iron sulfur clusters—they are not needed; there is no redox chemistry involved.  In fact, 

it was originally thought to contain no metallocenters at all, and was referred to as the 

“metal-free hydrogenase”.55  It wasn’t until 2004 that Lyon et al. definitively showed both 

the existence and catalytic requirement of a single iron atom per enzyme.15 

The [Fe]-H2ase is produced by methanogenic archaea that lack access to nickel. When the 

[NiFe]-H2ase is not available for the reduction of F420 to F420H2, essential to the production 

of methane, the CH2=H4HMPT produced by the [Fe]-H2ase is capable of carrying out the 

reduction.  It is worth noting that the [Fe]-H2ase of M. marburgensis has a much higher 

Km than the [NiFe]-hydrogenase (0.2 mM vs 0.01 mM), and is therefore less active.56  

Thus, the concentration of the [Fe]-H2ase increases approximately five fold in nickel-

limited conditions. 

A difficulty in the study of [Fe]-H2ase is its sensitivity to oxygen and light.  Currently, the 

typical isolation of the functional protein requires first the purification of the inactive 
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enzyme from the H. jannaschii gene (as expressed in E. coli), then incorporation of a 

cofactor isolated from M. marburgensis.  This cofactor contains the active site itself, and 

infrared studies have shown that it contains two iron-bound carbonyls in a cis 

configuration.57  A combination of protein crystallography and EXAFS has resulted in the 

presently accepted active site structure, Figure I-7.  The cofactor is bound to a single iron 

atom by a pyridinyl nitrogen and an acyl carbon.  The two carbonyl ligands and a single 

cysteinyl sulfur are bound in a square plane with the nitrogen.  The sixth coordination site, 

trans to the acyl carbon, is the presumptive site of H2 binding and activation.  The iron is 

low-spin, d6, FeII, and the substrate, CH≡H4MPT, is positioned directly over the open site 

on Fe at a distance of ca. 3Å.14 

Figure I-9. Proposed mechanism by which [Fe]-H2ase reduces 
CH≡H4MPT to CH2=H4MPT utilizing H2 (only the CN2C2 
moiety of the cofactor is shown for clarity).58 
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The Mechanisms of the Hydrogenases 

It is noteworthy that despite the separate evolutionary paths and different biosynthetic 

routes to the three hydrogenase active sites, a constant is the ultimate disposition in all 

three of a penta-coordinate iron.  All three enzymes have iron atoms with two sulfurs (or 

one S and one N in the case of the [Fe]-H2ase active site) and diatomic ligands:  two 

cyanides and one carbon monoxide for the [NiFe]-H2ase; two carbon monoxides and one 

cyanide for the [FeFe]-H2ase; and two carbon monoxides and one acyl carbonyl for the 

[Fe]-H2ase.  With further ligation consisting of a single cysteinyl sulfur and a pyridinyl 

nitrogen, the apparent simplicity of [Fe]- H2ase entices us to discern an explanation for its 

modus operandi that is entirely consistent with textbook organometallic chemistry.  As 

hydrogen activation in the three hydrogenases is via heterolysis rather than homolysis of 

the H-H bond, the single iron of the [Fe]-H2ase active site and its adjacent ligands must 

give the minimal mechanism.  Nevertheless, as shown in Figure I-9, the computationally 

investigated catalytic cycle of the [Fe]-H2ase by Yang and Hall, led to an unexpected dual 

pathway.58  After H2 binding, deprotonation of either the hydroxyl group of the pyridinyl 

cofactor or the thiol of the coordinated cysteine produced energetically similar pathways.  

Rearrangement and heterolytic splitting of the H2 by the newly generated base results in 

an iron (II) hydride, stabilized by charge delocalization over the adjacent ligands.  This 

hydride is then transferred to the CH≡H4MPT substrate, generating an equivalent of 

CH2=H4MPT and reforming the catalytic iron center.  
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While the imidazolium carbocation must be optimally positioned to extract a hydride from 

H2, bound to and activated by FeII in [Fe]-H2ase, the other hydrogenases are well set up 

for cooperative interactions and the formation of iron-hydrides. Positioned over the open 

Figure I-10. Proposed mechanism by which [FeFe]-H2ase 
reversibly produces (clockwise) and oxidizes (counterclockwise) 
H2.59,60 
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site for the [FeFe]-H2ase is the pendent nitrogen base built into the bridging dithiolate 

cofactor.  This pendent base is attractively available for rapid intramolecular shuttling of 

a proton into the reduced iron for production of iron hydride in the first step of H2 

formation, followed by a second proton to form FeII-(η2-H2)], Figure I-10.59,60   

Alternatively, in the H2 uptake process, the pendent base also enables rapid heterolytic 

bond cleavage of the H2, forming a protonated amine and iron hydride.   

The “open” site on iron in the [NiFe]-H2ase is oriented towards nickel, hence the 

cooperative effect for hydrogen uptake or production must involve the ability of nickel or 

its thiolate sulfur donor to assist iron in the formation of H-bonded species or bridging 

hydrides.  

Original discussions of [NiFe]-H2ase argued for a Ni-site reactivity based on the 

observations of paramagnetic nickel and EPR signals that correlated with myriad redox 

levels of the enzyme.  On the basis of FTIR, EPR, electrochemistry, 

spectroelectrochemistry and X-ray crystallographic studies, nearly a dozen different states 

of the [NiFe] active site have been assigned.  The EPR silent Ni2+ species that includes the 

Ni-SI, Ni-SU, Ni-CO, and other states, can be oxidized to Ni3+, as Ni-A, Ni-B, or Ni-C, 

or reduced to Ni1+, as Ni-L; however, the iron remains low-spin Fe2+.61 Currently most of 

the redox levels can be ascribed to inactive oxidized, oxy-species in the active sites of the 

enzymes which can be repaired electrochemically as well as by hydrogen reduction.49,62,63  
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The most probable mechanism is shown in Figure I-11, wherein the nickel does indeed 

change oxidation states, involving Ni(I) and Ni(III) as well as Ni(II).  However in the H2 

uptake and oxidation process (the counter-clockwise route), the Fe(II) traps the H2, as it 

does in the [Fe]- and [FeFe]-H2ase, while the roles of the nickel appear to be stabilization 

of the once-formed hydride, and in easing the transfer of electrons to the iron-sulfur 

clusters.    It should also be noted that with changes in the oxidation state of the nickel, the 

bridging thiolates change their donating character to iron, hence the Ni(SCys)4 also serves 

the role of a redox-active, metallodithiolate ligand.  

Figure I-11. Proposed mechanism by which [NiFe]-
H2ase reversibly produces (clockwise) and oxidizes 
(counterclockwise) H2.

59,60 
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Biosynthesis of the Active Sites 

Biosynthesis of Hydrogenase Active Sites 

The assembly of the sulfur-rich hydrogenase active sites is a challenge both in nature and 

at the chemist’s benchtop—or in the chemist’s glove box—as these molecules are usually 

air-sensitive, requiring the exclusion of oxygen in nature and in the laboratory.  While 

nature must cope with the production of all components, including control of the diatomic 

ligands typically toxic to life forms,64 the chemist has CN- and CO ligands readily 

available.  In an insightful microreview, Professor Kaz Tatsumi expresses the great 

challenge to synthetic chemists in strategies to the sulfur-rich [NiFe]-biomimetics is the 

propensity of thiolate sulfur to bridge metals indescrimately, with resulting self-assembly 

of large, and largely insoluble, metal clusters containing all iron, all nickel or mixtures of 

Fe and Ni.65  Nature has the advantage here as the cysteinyl sulfur donor sites that will 

bind the metals in proteins are in an evolutionarily perfected protein matrix that fixes a 

single metal at a time.   
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Biosynthesis of [NiFe]-Hydrogenase 

Given its complexity, it is not surprising that the natural biosynthesis of the [NiFe]-H2ase 

active site requires a suite of proteins, at least seven so-called “maturases”, which carry 

out a variety of tasks.66-68  The order of events along the way to the finished hydrogenase 

proteins is given in the abbreviated cartoon depiction in Figure I-12.  While for [NiFe]-

H2ase the source of carbon monoxide is currently not known, carbamoyl phosphate (CP), 

a natural product of ammonia and bicarbonate, is the source of cyanide.64-66  Two 

maturases, HypE and HypF, hydrolyze the phosphate from the carbamoyl moiety and 

transfer it to a cysteinyl sulfur.  From there, the latter is dehydrated to form a thiocyanate, 

which donates a CN- to the pre-active site iron found in a scaffold protein, HypD.  An 

Figure I-12.  Abbreviated descriptions of biosynthetic paths to [NiFe]- and [FeFe]-H2ase active 
sites.64 
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intact Fe(CN)2(CO) unit is transiently bound before being transferred, prior to the nickel, 

into the apo-[NiFe]-H2ase active site with the assistance of an additional maturase, 

HypC.69  The nickel storage protein SlyD is proposed to donate Ni to the maturases HypA 

and HypB, which act in concert to insert the nickel into the active site, transferred to 

cysteine sulfurs already positioned.  At this point, the [NiFe]-H2ase active site is complete, 

as described above.  Nevertheless, some hydrogenases are not “turned on” until activated 

by an additional enzyme, which snips the end of the protein, resulting in assembly channel 

collapse in the large protein subunit.  Subsequent protein aggregation with the small 

subunit that contains the electron-conducting, iron-sulfur clusters completes the active 

biocatalyst.67,68  

Biosynthesis of [FeFe]-Hydrogenase 

As expected, the biosynthetic path to the 2Fe subsite, the catalytic engine in the H-cluster 

of [FeFe]-H2ase, is simpler than that of the [NiFe]-H2ase active site, see the right side of 

Figure I-12.70  Diiron units are common in metallobiology and an attractive proposal is 

that nature uses a diiron precursor, as of now ill-defined, found in a scaffold protein known 

as HydF, modifying it with the diatomic ligands produced by the HydG protein, and the 

unique bridging dithiolate cofactor that is proposed to be developed on HydE.   Notably, 

HydG has been proven to generate both CO and CN- from the amino acid tyrosine, Figure 

I-12.71,72  The tyrosine undergoes a radical-induced decomposition to yield the carbonyl 

and cyanide, through interaction of either a glycyl radical (formed via a homolytic route) 

or a dehydroglycine moiety (formed via a heterolytic route) with an iron-sulfur cluster on 
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the maturase.73,74  It has been recently predicted that an individual iron atom, with diatomic 

ligands in place, may be inserted into HydF, there to combine with another.75  The 

formation of the dithiolate would then occur after the iron atoms are in place, perhaps even 

using them as a scaffold.  While the structure of this 2Fe complex has not yet been 

established, HydF has been shown to bind the [FeFe]-H2ase model complexes, (µ-

(SCH2)2X)[Fe(CO)2(CN)]2
2-, where X = CH2, NH, or O, and insert them into the 

hydrogenase protein.53,72  In nature, the pre-active site complex is assembled on HydF, 

and subsequently delivered to the apo-hydrogenase, apo-HydA.  This active site location 

already contains a 4Fe4S cluster at the end of a tunnel, which then collapses to form the 

cavity that encloses the fully assembled H-cluster, or the holo-HydA.76,77 

 

Synthetic Analogues of the Active Sites 

Models of the [NiFe]-Hydrogenase Active Site 

While it was known early on in their study that hydrogenases were rich in iron in the form 

of iron-sulfur clusters, it was not until 1980 that the presence of a single nickel atom was 

verified in the predominant class of hydrogenases, so named then as [NiFe]-H2ase, with 

the Fe representing the multiple irons from the clusters.78  From EPR and EXAFS 

spectroscopic studies, the coordination environment about nickel was suggested to contain 

sulfur donors, and so the first reported models of the [NiFe]-H2ase consisted of nickel-

thiolate complexes.79,80  This direction yielded a wealth of information in nickel-sulfur 

coordination chemistry and helped address the control that must be exercised to avoid S-
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aggregation of large clusters.  In retrospect, we now view those homoleptic Ni(SR)4
2- 

compounds as apt models of the distorted geometry of the nickel site in [NiFe]-H2ase.81  

The discovery of the FeII(CO)(CN)2 unit bound to the nickel site gave rise to a focus on 

the synthesis of S-bridged, Ni-Fe heterobimetallics.  This paradigm shift offered a new 

challenge, and a new assay for proof of progress. For the first time in biomimetic synthesis, 

the infrared spectroscopy of diatomic carbonyl and cyanide ligands, mainstays of 

organometallic chemistry, could be utilized to link synthetic models to the biological 

moieties they were made to mimic.  One such model, the piano-stool (η5-

C5H5)Fe(CO)(CN)2
- complex,82 Figure I-13, was shown to have an identical infrared 

stretching pattern to that of the protein in its oxidized, as-isolated form.5  This result fully 

ν(CO) 1947 cm
-1

 (s) 

ν(CN) 2093, 2083 cm
-1

 (w) 

ν(CO) 1949 cm
-1

 (s) 

ν(CN) 2094, 2088 cm
-1

 (w) 

Figure I-13. An organometallic analogue of the 
Fe(CN)2(CO) unit in the as isolated, oxidized  [NiFe]-
H2ase active site.82 
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corroborated the identity and number of the diatomics in the organoiron portion of the 

active site and the oxidation state of iron, FeII.  

Several reviews of hydrogenase active sites have extensive descriptions of models 

prepared over the past two decades and the interested reader is encouraged to explore the 

structures from effective synthetic designs described therein.65,79,81,83,84  As in any natural 

product synthetic effort, selection of precursor is key to success.  The structures selected 

for display in Figure I-14 are largely from recent efforts and were all designed as models 

of the [NiFe]-H2ase active site; core features are bridging dithiolates that reproduce the 

Ni(µ-S2)Fe rhombic or “butterfly” center.85-92  In general the nickel is square planar, and 

the iron has diatomic ligands.   Infrared spectroscopy is useful to monitor extent of 

reaction; vibrational spectroscopy also reports on the match or mismatch of the diatomic 

ligands’ electronic environment with those of the enzyme active sites in various stages of 

oxidation or inhibition by addition of exogenous CN or CO ligands.   In the cases shown 

in Figure I-11, X-ray crystallography has determined Ni- - Fe distances in a range of 2.5 - 

3.3 Å.  

As all thiolate-S bridged heterobimetallics can be considered as metallodithiolate ligands 

complexed to a second metal, we have used that perspective to consider the origin of the 

[NiFe] complexes in Figure I-14.  Complexes on the left have used an intact nickel 

dithiolate added to an iron precursor containing cis leaving groups or labile ligands.  The 

Schröder complex was prepared by reaction of the square planar (dppe)NiII(pdt) complex, 

pdt = propane dithiolate, with a source of Fe0(CO)3.85 Interestingly the (dppe)Ni(µ- 
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pdt)Fe(CO)3 product shows a tetrahedral twist within the Ni coordination geometry that 

implies internal reduction resulting in a NiI(µ-pdt)FeI formulation.  This complex contains 

a Ni—Fe distance of 2.47Å, consistent with a M-M bond.  Further work with this class of 

NiFe bimetallics found that the bridging bidentate dithiolates supported a one-electron 

oxidation, resulting in lengthening of the Ni—Fe distance to 2.82 Å, presumably due to 

reducing the Ni—Fe bond order to 0.5.91  Early designs used square planar NiN2S2 

complexes in combination with iron carbonyls to yield adducts of Fe0(CO)4 and FeII, 

simply illustrating the principle of NiN2S2 as metalloligands to iron in two redox levels.93    

Figure I-14.  A selection of biomimetics of the [NiFe]-H2ase active site. 
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Tetradentate chelating ligands such as Artero’s NiS’2S2 dithiolate has been found to 

displace the labile THF ligand from [(η5-C5H5)Fe(CO)2THF]+ to first add the nickel 

dithiolate as a mono-dentate metallo ligand, followed by CO displacement to arrive at the 

bidentate NiII(µ-SR)2FeII product, with a long Ni---Fe distance of 2.9 Å.92  This complex 

is an electrocatalyst for H+ reduction/H2 production using trifluoroacetic acid as proton 

source and operating at -1.47 V.  The same NiS2S’2 complex was used by Bouwman, et 

al., in the synthesis of NiFe complexes wherein the Fe(NO)2 unit is the iron acceptor.94  

The Fe(NO)2 unit has also been useful to Pohl (1997) and Liaw (2001) in the preparation 

of Fe(NO)2 derivatives.89,95  Notably the Fe(NO)2 unit may be considered as an 

isoelectronic analogue of Fe(CO)3 or a combination of diatomics in Fe(CO)x(CN)3-x.   

Complexes on the right of Figure I-14 were prepared from reactions of intact iron(II) 

dithiolates combined with complexes of nickel containing good leaving groups.  Thus the 

(pdt)Fe(CO)2(CN)2
− complex anion reacts with the dithiocarbamate nickel(II) complex 

containing Br− and PPh3 as leaving groups.87  The resulting complex has cyanide and 

carbonyls on 6-coordinate iron(II) and a Ni---Fe distance of ca. 3 Å.  Jiang and coworkers 

have derived a similar NiII(µ-pdt)FeII core in a neutral complex, again converging on a 

dicyano iron dicarbonyl acceptor with a Ni---Fe distance of 2.81 Å and a cyanide 

positioned as a bridging ligand.88  Both Tatsumi, et al. and Jiang et al. noted that similar 

NiFe bimetallics with monodentate thiolates as bridging ligands had longer NiII - - -FeII 

distances.86 
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In order to achieve an FeII(CN)2(CO) unit thiolate-S bridged to nickel, Tatsumi and 

coworkers incorporated 3-thiapentanedithiolate into the iron precursor.90  In the reaction 

with the dithiocarbamate nickel(II) complex a Ni-Fe complex was achieved that had 

diatomic ligand stretching frequencies almost identical to that of the reduced form of the 

[NiFe]-H2ase enzyme.  As shown in Figure I-14, the thioether sulfur to iron bond was 

retained, and because of the large bite angle of the pentanedithiolate, the Ni(µ-S)2Fe core 

is diamond-shaped, nearly flat rhombus with Ni---Fe distance of 3.30Å.90   

The Rauchfuss group has protonated the Schroeder-type NiIFeI complex of Figure I-14, to 

yield a (µ-H)(µ-pdt)NiIIFeII complex, Figure I-15.96  Likewise a bridging hydride was 

Figure I-15.  Functional biomimetics of the [NiFe]-
H2ase active site. 
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reported by Ogo, et al., as a functional mimic that catalyzes electron and hydride transfer 

from dihydrogen.97  In this case the iron has phosphite ligands replacing the diatomics of 

the active site.  The DuBois catalyst, Figure I-15, was designed to contain several of the 

functional features of the active sites of both [NiFe]- and [FeFe]-H2ase, by making nickel 

the catalytic metal, held in a flexible P4 donor environment.98-100  The pendent base 

nitrogen within a 6-membered NiP2C2N cyclohexane type metallocycles facilitate 

heterolytic H2 cleavage or formation.  The built-in pendent base that serves as a proton 

relay has been further used in an iron complex, developed by Liu, et al., that is a solution 

electrocatalyst for the oxidation of hydrogen at a low overpotential.101  

 

Figure I-16.  Common synthetic route to biomimetics of the [FeFe]-H2ase active site.105 
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Models of the [FeFe]-Hydrogenase Active Site 

The prototypical [FeFe]-H2ase model complex is (µ-SR)2[FeI(CO)3]2, first described by 

Reihlen in the late 1920s.102  This complex and the µ-SRS, bridging bidentate dithiolate 

analogue, may be prepared by oxidative addition of thiols to iron(0) carbonyls, or via the 

route shown in Figure I-16. The bridging persulfide iron carbonyl, (µ-S2)[FeI(CO)3]2, is 

arguably of primordial significance;103 it is as well a prominent molecule in the historical 

development of Hieber’s organoiron carbonyl chemistry.104 The FeIFeI organometallic, 

rendered diamagnetic by the metal-metal bond between two d7 FeI atoms at ca. 2.6 Å, is a 

readily available precursor for both electrophilic addition of alkyl halides to the reduced 

persulfide ligand, or the condensation of aldehydes and amines that leads to the bridgehead 

amine complexes, of obvious closer analogy to the  [FeFe]-H2ase active site.105  

Also shown in Figure I-16 are the CO substitution reactions that typically proceed in 

bimolecular, thermal processes thus adding ligands such as cyanide, phosphines, N-

heterocyclic carbenes and various N-donors.  Sequential additions of monodentate ligands 

proceed with substitutions on alternate iron atoms.  This is the observation with cyanide, 

readily producing the dicyano complex (µ-pdt)[Fe(CO)2(CN)]2
2-.106  This complex is 

remarkably similar to the active site.  A single additional replacement of one carbonyl 

ligand with a 4Fe4S cluster is needed to yield a composition identical to the active site.  

Unfortunately, the dicyano model complex is inert to further substitution. The cyanide 

derivatives are also incompatible with electrochemical proton reduction as the cyanide N 

is readily protonated, leading to decomposition.   Hence phosphines are used as good 
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electron donor surrogates, resulting in many successes in the form (µ-

pdt)[FeI(CO)2(PR3)]2 that mimic some expected properties of the [FeFe]-H2ase active 

site.107,108  

Other complexes with strong σ-donating ligands have been utilized in models, especially 

N-heterocyclic carbenes.109,110  Nitrogen donor ligands such as pyridine and imidazole 

lack stability and only a few model complexes include them.  Isonitrile ligands appear 

promising, as they should permit modifications of their steric and electronic properties.  

However, unlike cyanide, early studies found that isonitrile does not halt at the 

disubstituted product, but rather continues carbonyl substitution beyond what is 

desired.111,112  Multiple substitutions can also occur for PMe3 under stringent, forcing 

conditions113 and the vinyldiphosphine ligand has been highly useful as a scaffold 

bidentate ligand to promote “rotated” structures with an open site on one iron.114  

In addition to the propane dithiolate and the azadimethanethiolate as bridging bidentate 

ligand, other bridgehead modifications extend the list of diiron complexes. The 

condensation of formaldehyde and primary amines on a (µ-SH)2[Fe(CO)3]2 scaffold can 

introduce a variety of amines in the bridgehead position making this a very useful 

functionality for subsequent immobilization on solid supports or electrode surfaces.115,116  

It has also been used for cyclodextrin inclusion adducts.117,118  If the amine is excluded in 

the formaldehyde condensation process, etherdimethanethiolate is obtained.96  Song and 

coworkers have improved the synthesis of the etherdimethanethiolate119 and expanded the 

field with the first reported thioetherdimethanethiolate.120 
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The requirement of good donor ligands lies in enhancing the pKb of the iron site for proton 

uptake and stabilization of higher oxidation states as are needed through the enzyme’s 

catalytic cycle, Figure I-10.   Mimics of the diiron complexes in higher oxidation states 

are shown in Figure I-17  The right column shows structures of protonated (µ-

pdt)[FeI(CO)2(PMe3)]2  and (µ-pdt)[FeI(CO)(PMe3)2]2 yielding a thermodynamically 

favored bridging hydride, FeII(µ-H)FeII,121 and a terminal hydride, FeII(µ-CO)FeII-H,113 

respectively, both in the redox level of FeIIFeII.  The terminal hydride is the expected 

configuration of the hydride species in the [FeFe]-H2ase catalytic cycle.113 

Figure I-17.  Biomimetics of the[FeFe]-H2ase active 
site in oxidized form: Fe2+Fe1+ (left) and Fe2+Fe2+ 
(right). 
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As the open site on iron is a prominent feature of the [FeFe]-H2ase active site, and an 

elusive geometrical isomer of the parent model, considerable effort has targeted such 

structural analogues.122  While the crystal structures of various (µ-SRS)[FeI(CO)3]2 

complexes universally share an edge-bridged square pyramidal geometry, solution 13C 

NMR spectral studies established axial/basal site equilibration of the individual sets of 

three carbonyls at room temperature, but axial/basal site differentiation, as in the solid 

state structures, at low temperatures.  Computational investigation identified a transition 

state that is the square pyramid – inverted square pyramid geometry as is seen in the active 

site, Figure I-18.  Such a structure is a geometrical isomer of the ground state S-bridged 

square pyramids in the butterfly form of the parent models, (µ-SRS)[FeI(CO)3]2 

complexes.  Stabilization of this transition state relative to the ground state of the complex 

would require diminishing the Fe—Fe bond order, by removal of an electron, and 

inclusion of steric hindrance.  The exact combination of steric hindrance that leads to 

reversible one-electron oxidation processes has been reached by accident or by design in 

less than 10 cases, three of which are displayed in Figure I-17, left column.   Steric 

hindrance at the bridgehead carbon of dimethyl- or diethyl- propanedithiolate, in 

combination with the PMe3 ligands, achieve the rotated isomer in the FeIIFeI redox level.59  

Steric hindrance from the ligands, the vinyldiphosphine or the dimesityl-NHC, also 

facilitates these rare isomeric forms.32,58  The impressive change that occurs in the diiron 

complex with bridging propanedithiolate is emphasized in Figure I-18 where the 
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substituent donor ligands are PMe3 and the IMes ligand.  On one electron oxidation the 

huge IMes-NHC shifts from apical to basal positon as a CO shifts from terminal to 

bridging, opening up an open face on iron that is underneath the bridgehead CH2 of the 

boat form of the FeS2C3 6-membered ring.32   Clearly bridgehead steric bulk, provided in 

the protein by the surrounding peptide chain, is capable of maintaining the rotated 

structure even in reduced, FeIFeI forms of the active site.  In fact, the diethylpropane 

dithiolate form of (µ-SRS)[FeI(CO)2PMe3]2 is substantially rotated in the solid state. 

Figure I-18.  Rotation of [FeFe]-H2ase model into an isomer with a 
bridging carbonyl is initiated by oxidation of a complex with sterically 
bulky, strong σ-donor ligands.109 
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Clearly the accessibility of a versatile precursor has led to a vast array, in fact, hundreds 

of synthetic analogues of the [FeFe]-H2ase active site as have been already published.  

Some of them are electrocatalysts for proton reduction, the best being the benzene 

dithiolate diiron hexacarbonyl complex extensively explored by Evans, Glass et al.58 

Some have multiple features that relate to individual components of the active site.  The 

only complete Hox cluster mimic is the unique and fragile structure from the Pickett 

laboratory that has a 4Fe4S cluster connected to the diiron carbonyl core by a thiolate 

sulfur, Figure I-19.39  The redox active iron-sulfur cluster is represented by a ferrocenyl 

group on a phosphine ligand in elaborate construct from the Rauchfuss group, Figure I-

19.40  This prize complex also contains the pendent N-bridgehead base, a diphosphine 

ligand to mimic the cyanides as donor ligands for the active site, and it is isolated in a 

Figure I-19.  [FeFe]-H2ase active site and biomimetics displaying 
structural and functional similarities. 
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mixed-valent FeIFeII state that is in the “rotated” structural form seen in the enzyme.  This 

complex is active as a H2 uptake catalyst, rapidly extracting electrons.40   

Models of the [Fe]-Hydrogenase Active Site 

Early model complexes of the [Fe]-H2ase active site, as with the [NiFe]-H2ase, were 

hindered by a lack of structural information.  It was known that the enzyme contained a 

single iron atom, and by its EPR silence the oxidation state could be narrowed down to 

Fe0 or Fe2+.  Mössbauer spectroscopy confirmed the latter.150  The combination of FTIR 

and EXAFS spectroscopies informed organometallic chemists of sulfur ligation as well as 

Figure I-20. Biomimetics of the [Fe]-H2ase active site. 
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the presence of two cis carbonyl ligands with apparent unsaturation about the iron.79  Even 

with the structure of the light-inactivated cofactor, and the addition of a pyridine ligand, 

the composite active site structure revealed by Shima et al. in 2009 had one more surprise, 

an acyl ligand trans to the open site.14  The difficulty in stabilizing a five-coordinate square 

pyramidal Fe2+ species was addressed by Liu, et al. through the reactivity of 

Fe(CO)3(PR3)(I)2 with the redox non-innocent 2-aminothiophenol (ATP) ligand.123  The 

structures of the resulting species revealed that the five-coordinate iron geometry ranged 

from mixed trigonal bipyramid / square pyramid to near-perfect square pyramid, Figure I-

20.  However, the non-innocence of the ATP ligand calls into question the oxidation state 

of the metal.  Through a combination of X-ray crystallography, Mössbauer spectroscopy, 

and density functional theory calculations, it was suggested that the electron density could 

be more accurately described as an Fe1+ antiferromagnetically coupled to an ATP radical.  

Protonation of the amine decreases the electron density on the metal, leaving the Fe2+ more 

reactive and prompting acid-dependent CO uptake.123  

A major focus of organometallic chemists has been the acylmethylpyridinyl unit.  Hu and 

coworkers synthesized a model of the [Fe]-H2ase active site with this bidentate ligand 

from addition of Fe(CO)5 to a methylpyridinyl radical generated in situ.124  This reaction, 

similar to the Fischer synthesis of metal-acyl species, yields an [Fe0(CO)4C(=O)R]- 

complex that binds the pyridinyl nitrogen upon oxidation.  A similar carbamoyl unit can 

be assembled by internal nucleophilic amine attack on FeII-bound CO125,126  Initially, this 

complex was isolated as a six-coordinate iron with the addition of the N,S-ligand:6-

methyl-2-mercaptopyridine, Figure I-20.   A semi-stable five-coordinate species was 
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synthesized utilizing a sterically bulky thiolate.124  This species is a distorted square 

pyramid, in which the acyl group is trans to the open site, as in the protein.  The 

geometrical similarity to the active site is continued with the two cis carbonyl ligands, one 

trans to the thiolate, the other trans to the pyridine.  The H/D exchange of H2 and D2 has 

been observed with this complex as a catalyst.  Unfortunately, the sensitivity of the active 

site is also well-modeled by this complex, with decomposition in solution that is 

accelerated by light.   

 

Comments and Conclusion 

As a final section in this short summary of the organometallic chemistry that is displayed 

in hydrogenase enzyme active sites, I will focus on a few of the recent literature reports.  

Electrochemical studies of oxygen tolerant hydrogenase enzymes making use of protein 

film voltammetry lead to conclusions regarding the importance of rapid repair and 

reactivation processes that are essential to utilizing hydrogenases as practical 

technological catalysts where the complete exclusion of adventitious oxygen would be a 

serious challenge.127 

Modifications continue to proliferate in the [FeFe]-H2ase active site models; they are 

applied towards water solubility,128 spectroscopic probes,129 light-harvesting 

modules,130,131 and proton delivery units.132  Progress has also been made in 

immobilization of the [FeFe] organometallic models in polymers,133,134 dendrimers,135 and 

metal-organic frameworks (MOFs).136  Efforts to reduce over-potential of proton 
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reduction and to understand factors that improve turnover numbers are also continuing in 

electrocatalytic studies of the models.137,138   More accurate models of the [NiFe]-H2ase 

active site that use cyanides as ligands to iron carbonyls have been developed wherein the 

highly reactive cyanide nitrogen is masked by forming arylborane Lewis acid adducts.139     

Protonation studies of reduced [NiFe]- and [FeFe]-H2ase synthetic analogues relevant to 

the enzymes’ catalytic mechanisms explore the role of stable thiols (S-protonation)140 or 

hydrides (Fe-protonation),141 respectively.  The latter is an elegant example of a 

“spectator” bridging hydride, permitting proton-reduction catalysis at a biologically 

relevant oxidation state level, and demonstrating that the initial hydride, a bridging 

hydride, Figure I-21, is not involved in subsequent chemistry. 

The roles of models in bioinorganic chemistry have long been oriented towards providing 

reference points for spectroscopy and for biochemical reactivity.  In terms of catalysis, 

rarely do the models have more than a superficial connection to the evolutionarily 

perfected active sites of enzymes.  However, in the case of the hydrogenases we see the 

possibility for a faithful reproduction of not only the spectroscopic features, but also the 

Figure I-21.  The “spectator hydride” bridging 
between the two iron atoms does not participate in 
the H2 production cycle.141 
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chemical and catalytic reactivity in the form of an easily accessible synthetic analogue.  In 

fact, in 2013 the landmark study mentioned above found the (µ-

SCH2XCH2S)[Fe(CO)2CN]2
2- “models’ of the active site of [FeFe]-H2ase may be inserted 

into the maturation process at a step immediately preceding the activation of the apo-

[FeFe]-H2ase.91  For X = NH, the semi-synthetic enzyme displays full activity for H2 

production, and various spectroscopies indicate the thus formed H-cluster is 

indistinguishable from the natural enzyme, Figure I-22.  This study used the protein to 

inform on the models, as models with X = O or CH2 loaded into the apo-enzyme, but were 

inactive.  New studies have shown that the incorporation of the model complexes into the 

maturase protein is unnecessary, with direct insertion of the model complex into the apo-

hydrogenase yielding a fully functional semi-synthetic enzyme.142 

This presents a challenge to organometallic chemists to not only define the final active site 

structures, but also to use the tenets, principles and characteristics of organometallic 

chemistry to identify other steps in biosynthetic pathways of the hydrogenase enzymes. In 

this dissertation, I have described the synthesis, reactivity, and characterization of the 

parent model complex, (μ-pdt)[Fe(CO)3]2, (pdt = propane-1,3-dithiolate), and derivatives 

in Chapter III.  The unique regioselectivity of CO exchange reactions as governed by the 

choice of nucleophilic or electrophilic ligands provides insight into the interplay of 

electron density in the diiron core of the enzyme.  In Chapter IV, I describe computational 

investigation of the intramolecular fluxional processes of a series of (μ-SRS)[Fe(CO)3]2 

complexes as a part of a study that aimed to quantify the ease of generation of an open site 

on the iron, modeling the distal iron of the enzyme active site.   Finally, Chapter V details  
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Figure I-22. Semi-synthetic production of 
[FeFe]-H2ase from the insertion of an active site 
model complex into the apo-hydrogenase 
enzyme.91 
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my computational search for a plausible mechanism of ligand exchange and reduction of 

another organometallic compound, a dinitrosyl iron complex (DNIC).  I identified two 

possible mechanisms that both involve the iron complex acting as a nucleophile towards 

a CO molecule, which then binds and promotes the reductive elimination of a thiyl radical.  

The role of organometallic chemistry in this dissertation has been to improve the 

knowledge of the selectivity, processes, and mechanisms of intermolecular and 

intramolecular ligand exchange as it relates to this new area in biological chemistry. 
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CHAPTER II 

EXPERIMENTAL SECTION FOR CHAPTERS III - V 

 

Procedures and Physical Methods for Chapter III 

All reactions and operations were carried out on a double manifold Schlenk vacuum line, 

under an N2 atmosphere and an Ar-filled glovebox was used in the manipulation and 

storage of air-sensitive compounds.  All solvents were purchased as reagent grade and 

purified on an MBraun Manual Solvent Purification System, packed with Alcoa F200 

activated alumina desiccant.  The purified solvents were stored under an N2 atmosphere 

prior to use.  The N-heterocyclic carbenes, IMe = 1,3-dimethylimidazole-2-ylidene and 

IMes = 1,3-bis-(2,4,6-trimethylphenyl)imidazole-2-ylidene were obtained by 

deprotonation of the imidazolium salts (IMe+I- and IMes+Cl- respectively), which were 

synthesized according to literature procedures.143,144  The known complexes (µ-

pdt)[Fe(CO)3]2 (pdt = 1,3-propanedithiolate),145 1; (µ-pdt)[Fe(CO)2(IMe)][Fe(CO)3],146 1-

IMe; (µ-pdt)][Fe(CO)2(IMes)][Fe(CO)3],110 1-IMes; (µ-

pdt)][Fe(CO)2(IMe)][Fe(CO)2(PMe3)],147 5-IMe; and (µ-

pdt)][Fe(CO)2(IMes)][Fe(CO)2(PMe3)],109 5-IMes were prepared according to literature 

procedures.  The following materials were purchased as reagent grade and used without 

further purification: trimethylphosphine, nitrosonium tetrafluoroborate, 

tetrabutylammonium cyanide, chloroform-d, methylene chloride-d2. 
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Solution and solid-state infrared spectroscopy was carried out on a Bruker Tensor 27 FTIR 

spectrometer using a 0.1 mm CaF2 sealed cell for all solution measurements.  Solid state 

samples were measured using the Pike MIRacleTM attachment from Pike Technologies 

for Attenuated Total Reflectance (ATR) Infrared Spectra.  Mass spectrometry (ESI-MS) 

was performed by the Laboratory for Biological Mass Spectrometry at Texas A&M 

University.   Elemental analyses were performed by Atlantic Microlab, Inc., Norcross, 

Georgia, United States.  Room temperature 1H and 13C NMR spectra were obtained using 

a Mercury 300 MHz NMR Spectrometer, 31P NMR spectra were obtained using an Inova 

300 MHz NMR Spectrometer.  Variable temperature and low temperature 13C NMR 

spectra were obtained by group member Danielle Crouthers on a Unity+ 500 MHz NMR 

instrument operating between 0 and 30 °C.  Exchange of 12CO/13CO was monitored by in 

situ infrared spectroscopy by Samuel Kyran, using a Mettler Toledo iC10 ReactIR with 

an AgX fiber conduit probe having a SiComp ATR crystal. 

X-ray data for all complexes was obtained by Chung-Hung Hsieh and Jason Denny at low 

temperature (110/150 K) on a Bruker Apex-II CCD based diffractometer (Texas A&M 

University) (Mo sealed X-ray tube, Kα = 0.71073 Å). A crystalline sample was coated in 

mineral oil, affixed to a Nylon loop, and placed under streaming N2. The space groups 

were determined by systematic absences and intensity statistics, and structures solved by 

direct methods and refined by full-matrix least-squares on F2. Anisotropic displacement 

parameters were employed for all non-hydrogen atoms; H atoms were placed at idealized 

positions and refined with fixed isotropic displacement parameters. The following 

programs were used: cell refinement, data collection, data reduction APEX2148 absorption 
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correction SADABS149 structure solutions, SHELXS-97150 and structure refinement, 

SHELXL-97.151 

 

Preparation of Compounds for Chapter III 

Synthesis of (µ-pdt)[Fe(CO)3][Fe(IMe)(NO)(CO)]+[BF4]- (2-IMe) (first prepared by Dr. 

C.-H. Hsieh) 

Complex 2-IMe was prepared from a solution of 1-IMe, (µ-

pdt)[Fe(CO)3][Fe(CO)2(IMe)], (0.440 g, 0.97 mmol), dissolved in 40 mL 

dichloromethane.  This red solution was chilled to 0oC in an ice water bath.  A second 

solution of 0.110 g (0.97 mmol) NOBF4 and 0.260 g (0.97 mmol) 18-crown-6 was 

prepared in 20 mL dichloromethane in an ice water bath at 0oC.  This pale yellow solution 

was magnetically stirred for up to 30 min. to allow for complete dissolution of the 

nitrosonium salt, at which time it was slowly added to the solution of 1-IMe.  The reaction 

was monitored by solution IR until formation of product ceased, after approximately 30 

min.  The resulting dark red solution was anaerobically filtered through Celite into a clean 

flask.  Under N2, the 2-IMe product was isolated from unreacted starting material by 

repeated washes with hexanes and diethyl ether at 0 °C.  Crystals of X-ray quality were 

obtained by layering a soluion of 2-IMe in dichloromethane under diethyl ether at -5 oC.  

Yield:  0.25 g (52 %).  IR (DCM) ν(CO): 2085(s), 2058(s), 2018(s);  ν(NO): 1809(s).  

Anal. Calcd. for C12H14BF4Fe2N3O5S2: C, 26.55; H, 2.60; N, 7.74.  Found: C, 27.20; N, 

3.11; H, 7.10. Mass Spec. Calcd. C12H14Fe2N3O5S2: 455.91. Found: 455.9185 
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Synthesis of (µ-pdt)[Fe(CO)3][Fe(IMes)(NO)(CO)]+[BF4]- (2-IMes) 

In a similar manner to 2-IMe above, complex 2-IMes was prepared from a solution of 1-

IMes, (µ-pdt)[Fe(CO)3][Fe(CO)2(IMes)], (0.200 g, 0.30 mmol), dissolved in 40 mL 

dichloromethane.  This red solution was chilled to 0oC in an ice water bath.  A second 

solution of 0.035 g (0.30 mmol) NOBF4 and 0.080 g (0.30 mmol) 18-crown-6 was 

prepared in 20 mL dichloromethane in an ice water bath at 0 oC.  This pale yellow solution 

was slowly added to the solution of 1-IMes at 0 °C, and the reaction was monitored by 

solution IR until formation of product ceased, after approximately 30 min.  The resulting 

dark red solution was filtered through Celite into a clean flask under an N2 atmosphere.  

The product, 2-IMes, was isolated from unreacted starting material anaerobically by 

repeated washes with hexanes.  Crystals of X-ray quality were obtained by layering a 

solution of 2-IMes in dichloromethane under a layer of hexanes, itself under a layer of 

diethyl ether at 0 oC.  Yield:  0.08 g (35 %).  IR (DCM) ν(CO): 2085(s), 2039(m), 2025(m);  

ν(NO): 1792(m).  Anal. Calcd. C28H30BF4Fe2N3O5S2: C, 43.78; H, 4.03; N, 5.59.  Found: 

C, 43.92; H, 4.10; N, 5.39.  Mass Spec. Calcd. C12H14Fe2N3O5S2: 644.03. Found: 

644.0249. 

Synthesis of (µ-pdt)[Fe(CO)3][Fe(IMe)(NO)(CN)] (3-IMe) (first prepared by Dr. C.-H. 

Hsieh) 

Complex 3-IMe was prepared from 2-IMe (0.20 g, 0.34 mmol), dissolved in 30 mL 

tetrahydrofuran.  This red solution was chilled to 0 oC in an ice water bath, then transferred 

via cannula to a suspension of 0.047 g (0.30 mmol) Et4N+CN- in 10 mL of tetrahydrofuran 
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at 0oC.  The reaction was monitored by solution IR until formation of 3-IMe ceased, after 

approximately 3 hours.  The resulting light red solution was filtered through Celite into a 

clean flask under an N2 atmosphere, removing any unreacted Et4N+CN-.  The product, 3-

IMe, was isolated from unreacted starting material by slow addition of diethyl ether, 

precipitating any remaining unreacted cyanide salts as well as any remaining starting 

material, 2-IMe.  This solution was washed with a 10:1 mixture of hexanes/ether to 

remove impurities until none were visible by IR spectroscopy in the diatomic ligand region 

(2200 – 1600 cm-1).  Crystals of X-ray quality were obtained by layering 3-IMe in 

dichloromethane under a layer of hexanes, itself under a layer of diethyl ether at 0oC.  

Yield:  0.050 g (38%).  IR (DCM) ν(CN): 2112(vw); ν(CO): 2054(s), 1988(s);  ν(NO): 

1755(m).  Mass Spec. Calcd. C20H34Fe2N5O4S2: 584.08. Found: 584.0794. 

Synthesis of (µ-pdt)[Fe(CO)3][Fe(IMe)(NO)(PMe3)]+[BF4]-  (4-IMe) 

Complex 4-IMe was prepared from a solution of 2-IMe (0.20 g, 0.34 mmol) in 40 mL 

dichloromethane under N2.  The solution was chilled to 0 oC in an ice water bath and 35 

μL (0.34 mmol) PMe3 was added via microsyringe.  The reaction was monitored by IR, 

with complete conversion to the product in less than 15 minutes.  The product, 4-IMe, was 

filtered through Celite into a clean flask and washed several times with diethyl ether at 0 

°C, maintaining an N2 atmosphere throughout.  Crystals of X-ray quality were obtained 

by layering 4-IMe in dichloromethane under a layer of diethyl ether at 0 oC.  Yield: 0.15 

g (69 %). IR (DCM) ν(CO): 2062(s), 1996(s);  ν(NO): 1758(m). Anal. Calcd. 
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C14H25BF4Fe2N3O5S2P1: C, 27.37; H, 3.95; N, 6.90.  Found: C, 27.61; H, 4.14; N, 6.90. 

Mass Spec. Calcd. C14H23Fe2N4O4S2P1: 503.96. Found: 503.9367. 

Syntheses of (µ-pdt)(µ-CO)[Fe(IMe)(NO)][Fe(CO)2(PMe3)]+[BF4]-  (6-IMe) and (µ-

pdt)(µ-CO)[Fe(IMes)(NO)][Fe(CO)2(PMe3)]+[BF4]-  (6-IMes) 

Complexes 6-IMe and 6-IMes were prepared from solutions of 5-IMe (0.20 g, 0.37 mmol) 

and 5-IMes (0.20 g, 0.28 mmol), respectively, dissolved in 40 mL dichloromethane.  

These red solutions were chilled to 0oC in an ice water bath, then transferred via cannula 

to suspensions of 0.043 g (0.37 mmol) and 0.033 g (0.28 mmol) NO+BF4
-, respectively, in 

40 mL dichloromethane at 0 oC.  The reactions were monitored by solution IR until 

formation of product ceased, after approximately 3 hours for both reactions.  A similarly 

colored reddish brown solution was obtained for both reactions.  Each solution was filtered 

through Celite into a clean flask under an N2 atmosphere and the products, 6-IMe and 6-

IMes, were purified by repeated diethyl ether washes of the products until no starting 

material (5-IMe and 5-IMes respectively) could be observed in the IR spectrum.  

Characterization of these complexes was limited to infrared spectroscopy, although 

crystals of X-ray quality were obtained by Dr. C.-H. Hsieh who prepared a solution 6-

IMes in dichloromethane under a layer diethyl ether at 0 oC.  6-IMe: Yield: 0.05 g (20 %). 

IR (DCM) ν(CO): 2031(s), 1977(m);  ν(NO): 1784(m). 6-IMes: Yield: 0.05 g (20 %). IR 

(DCM) ν(CO): 2035(m), 1996(s);  ν(NO): 1782(m). 
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Preparation of 13CO labelled 2-IMe 

Illuminating a solution 0.50 g (1.3 mmol) of complex 1, dissolved in hexanes in a Pyrex 

flask, with a 275 W GE ultraviolet Sunlamp for five hours while sealed under a 13CO 

atmosphere produced a sufficiently enriched source for 13C NMR studies.  This compound 

was filtered through a plug of silica gel and the uniformly 13CO enriched 2-IMe was 

synthesized by the methods described above.  The selectively enriched 2-IMe was 

produced by placing a sample of 0.10 g (0.24 mmols) 2-IMe at 22 °C under an atmosphere 

of 13CO for two hours.  This reaction was performed in a 100mL flask, in ~10mL DCM 

leaving 90 mL (4.0 mmols) of headspace to be filled with 13CO(g) at 1 atmosphere.  Under 

N2, the selectively enriched product was filtered through a plug of Celite and dried at 0 

°C.  In order to examine the relative CO exchange of the two Fe(CO)x moieties, aliquots 

were removed and flash-frozen under N2 at the following time points: 0 minutes, 10 

minutes, 20 minutes, 30 minutes, and 2 hours.  

 

Computational Methodology for Chapter III 

Geometry and frequency calculations were performed with the Gaussian 09152 suite of 

programs in the gas-phase with the B3LYP functional153-155 and the 6-311+G(d,p) basis 

set156,157 on all atoms.  Crystallographic coordinates were used as starting geometries for 

optimizations of the ground state structures. Optimizations of the isomeric forms of each 

complex used the ground state bond angles and distances of each ligand as starting 

positions.   Transition state calculations of the Fe(CO)3 rotor were located using the 
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quadratic synchronous transit approach (STQN) implemented by Schledel and 

coworkers,158,159 in which initial guesses of the reactant, product, and transition state 

structures are made.  Enthalpy and free energy corrections to the electronic energy of all 

stable geometries were calculated at 298.15 K by Gaussian, where all energies were 

obtained in hartrees and then converted to kilocalories per mole.  All relative free energies 

were compared to the initial optimized structure based on the crystallographic coordinates.  

Ground state geometries had no imaginary vibrational modes, while transition states were 

located with a single imaginary mode. The Ampac Graphical User Interface (AGUI) 

program160 was used to extract geometric data as well as infrared frequency and bending 

and stretching vector data. 

 

Computational Methodology for Chapter IV 

Geometry and frequency calculations were performed with the Gaussian 09152 suite of 

programs in the gas-phase with the B3LYP,153-155 MPW1PW91,161 TPSSTPSS,162 and 

ωB97x-D163 functionals and the 6-311+G(d,p) basis set156,157 on all atoms.  

Crystallographic coordinates were used for ground state geometries and utilized as starting 

geometries for optimizations. Transition state calculations of the Fe(CO)3 rotor utilized 

starting geometry guesses from previous calculations. Transition states of the FeS2C2X 

chair/boat interconversion and the amine inversion were located through relaxed 

coordinate scans of the Fe(1)−Fe(2)−X (X = bridgehead atom) and Fe(1)−N−C angles, 

respectively. All geometries were located with the B3LYP functional, with subsequent 
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geometry optimizations of the other functionals using the B3LYP structure as an initial 

guess. Enthalpy and free energy corrections to the electronic energy of all stable 

geometries were calculated at 298.15 K by Gaussian, where all energies were obtained in 

hartrees and then converted to kilocalories per mole. To compare to the experimental 

results, ΔG⧧ was recalculated at the coalescence temperature of the corresponding VT 

NMR experiment.  Ground state geometries had no imaginary vibrational modes, while 

transition states were located with a single imaginary mode. The Ampac Graphical User 

Interface (AGUI) program160 was used to extract geometric data as well as infrared 

frequency and bending and stretching vector data. 

 

Computational Methodology for Chapter V 

Geometry optimizations and frequency calculations were performed with the Gaussian 

09152 suite of programs in the gas-phase utilizing the BP86 functional164,165 with the 6-

311+G(d,p) basis set,156,157 as previously demonstrated to be a suitable combination that 

best describes the electronic and vibrational structure of dinitrosyl iron complexes.166 

Where possible, geometries were obtained from crystallographic coordinates and utilized 

as starting geometries for optimizations. Enthalpy and free energy corrections to the 

electronic energy of all stable geometries were calculated at 298.15 K, where all energies 

were obtained in hartrees, then converted to kilocalories per mole. These calculated 

complexes matched closely with the experimental data provided by X-ray crystallography 

as well as the ν(NO) and ν(CO) IR stretching modes. For computational efficiency, the 
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mesityl groups of the NHC and phenyl group of SPh were replaced by CH3. All stable 

geometries had no imaginary vibrational modes, while transition states were located with 

a single imaginary mode. The Ampac Graphical User Interface (AGUI) program160 was 

used to extract geometric data as well as infrared frequency and bending and stretching 

vector data.  
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CHAPTER III 

REGIOSELECTIVITY IN LIGAND SUBSTITUTION REACTIONS 

GOVERNED BY NUCLEOPHILIC AND ELECTROPHILIC 

LIGAND PROPERTIES* 

 

Introduction 

The surprisingly simple iron carbonyl complex, (μ-pdt)[Fe(CO)3]2, pdt = -S(CH2)3S-, 

complex 1,145 has a broad range of physical and chemical properties that have provided 

understanding of the the natural diiron catalytic site that exists within diiron hydrogenase, 

[FeFe]-H2ase, see Figure III-1, mature HydA for structure of the [FeFe]-H2ase active 

site.85  Although meager, its intrinsic activity as a solution electrocatalyst for proton 

reduction mimics the function of the enzyme, providing impetus for further 

development.87  Modifications via the dithiolate bridging ligand and CO exchange have 

resulted in myriad, well-characterized diiron complexes.14,79  Further adaptations 

including attachment into polymer supports,133,134 inclusion into metal organic 

frameworks,136 etc., have probed the potential for the diiron hexacarbonyl complex to be 

practical as a base metal molecular electrocatalyst replacement for platinum in solar or 

fuel cells. 

                                                           
*This chapter is to be submitted for review and publication with the authorship as follows: Ryan D. Bethel, 
Chung-Hung Hsieh, Jason A. Denny, Danielle J. Crouthers, Michael B. Hall, and Marcetta Y. Darensbourg. 
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The utility of the (μ-adt)[Fe(CO)3]2, adt = -S(CH2NHCH2)S- or azadithiolate,167 as a 

synthetic precursor to the diiron subsite as delivered to apo-[FeFe]-H2ase has been 

demonstrated in recent studies that showed the dicyano derivative, (μ-

adt)[Fe(CO)2(CN)]2
2-, when added to the apo-[FeFe]-H2ase, lacking the 2Fe subsite, fully 

reconstitutes the enzyme in structure and achieves complete reactivity of the wild type 

enzyme, Figure III-1.91,142  Hence the CN- substitution reactions of (μ-pdt)[Fe(CO)3]2,104 

explored over a decade ago for their mechanistic impact, become pertinent again as the 

full significance and possibility of even more organoiron units in biology is revealed 

through their presence in precursor proteins.  In fact, as the [FeFe] site is incorporated into 

the mature HydA enzyme,76,77 there is yet another substitution process when the 4Fe4S 

cluster displaces an additional CO.  A broader question lies in nature’s design of this 

collection of Fe, S, and diatomic ligands and its particular arrangement that undoubtedly 

Figure III-1. The synthetic (μ-(adt)[Fe(CO)2(CN)]2
2- may be 

inserted into the apo-[FeFe]H2ase (apo-HydA, left) generating 
the fully functional enzyme (HydA, right).142 
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involves electron density flow to and from the terminal iron site where hydrogen activity 

occurs.168 

Equations 1 and 2 within Figure III-2 summarize nucleophilic substitution reactions which 

for CN- and PMe3 as entering ligands displace CO ligands on alternate irons.106,169  The 

most common result of an electrophilic attack on the diiron complexes is the formation of 

the bridging (μ-Elec)(μ-SRS)[Fe(CO)2L]2
+, Elec = H+ or SR+, equation 3, Figure III-

2.121,170  However, the kinetic product of electrophilic attack, according to theory and 

corroborated by experiment, is a terminal Fe-H or Fe-SR (from H+ and SR+, respectively, 

Figure III-2. The mechanisms of nucleophilic CO substitution (1 and 2), 
where Ea1 > Ea2 for CN-  and Ea1 < Ea2 for PMe3,106,169 and oxidative addition 
of electrophilic ligands such as H+ and MeS+ (3)121,170 
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as electrophiles).170,171  A less common site of electrophilic attack is the sulfur of the 

bridging thiolate.   The formation of [(µ-SRS(-Elec))[Fe(CO)2(L)]2]n+ has been observed 

in the case of the electrophilic attack of Et+ or O-atoms and has also been implicated as an 

intermediate step in the protonation of the Fe-Fe bond.169,172  

Several studies have addressed the use of NO+ as an electrophile that proceeds with 

isoelectronic CO exchange.173-175  The strongly electron withdrawing NO+ ligand is 

capable of significantly modifying the electronic environment of such complexes; 

additionally, the effect of nitrosylation on the structure of the diiron complex can be 

substantial.  This is seen in the isomerization (a “rotation” or inversion of one 

S2Fe(PMe3)(CO)(L) unit) of (μ-dmpdt)[FeI(CO)2(PMe3)]2 upon NO+/CO substitution, 

yielding a complex that is isostructural with the one-electron oxidized, mixed valent (μ-

dmpdt)(μ-CO)[FeI(CO)(PMe3)][FeII(CO)2(PMe3)]+.175  The electronic assignment in the 

rotated structure was supported by Mössbauer, EPR, and computational studies.  As the 

NO analog was diamagnetic, it was concluded that the diiron core consisted of a spin-

coupled d7-FeI - NO· or {Fe(NO)}8 by the Enemark-Feltham notation176 and an FeII.  

Nevertheless, other possibilities exist for electronic assignment in such a {FeFe(NO)}14 

arrangement.  

Hence it seemed appropriate to further investigate NO+/CO exchange in (μ-

pdt)[Fe(CO)3][Fe(CO)2(NHC)] where NHC = N-heterocyclic carbene, a strong electron 

donor.  Subsequent addition of nucleophiles, CN- or PMe3, should inform on the electronic 

distribution within the diiron organometallic.  Thus we have investigated by synthesis, 
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structure, and computations. We will report that NO+/CO exchange in (μ-

pdt)[Fe(NHC)(CO)2][Fe(CO)3] occurs at the NHC substituted side and subsequent 

addition of CN- or PMe3 as nucleophiles results in the completely dissymmetric (μ-

pdt)[Fe(NHC)(NO)(Nuc)][Fe(CO)3].  Only with the doubly substituted (μ-

pdt)[Fe(CO)2(L)][Fe(CO)2(L’)] was a rotated structural isomer observed on reaction of 

NO+, yielding (μ-pdt)(μ-CO)[Fe(L)(NO)][Fe(CO)2(L’)]+, see Figure III-3. 

 

 

 

 

Figure III-3. Synthetic routes toward symmetric and dissymmetric (μ-pdt)[FeFe] complexes. 
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Results and Discussion 

Synthetic Routes to Symmetric and Dissymmetric [FeFe]-H2ase Model Complexes 

The synthesis of (μ-pdt)[Fe(NHC)(CO)2][Fe(CO)3], 1-NHC, where NHC = IMe, IMes, 

etc., from (µ-pdt)[Fe(CO)3]2 has been reliably established.110,146  The well-characterized 

complexes 1-IMe and 1-IMes were chosen for the current study for their ease of 

purification as well as their stability.  In addition, the IMe and IMes ligands have very 

similar donor properties with considerably different steric bulk.  Figure III-3 outlines the 

derivatives of 1-NHC that were obtained and characterized in this study.  The stick 

drawings of products are in geometries established by X-ray diffraction analysis, vida 

infra.   

The reaction of either 1-IMe or 1-IMes with PMe3 yields the (µ-

pdt)[Fe(CO)2(IMe)][Fe(CO)2(PMe3)] (5-IMe) or (µ-

pdt)[Fe(CO)2(IMes)][Fe(CO)2(PMe3)] (5-IMes) complexes with, consistent with their 

well-known donor properties, nearly symmetric electron density on both irons.109,147  The 

one-electron oxidation of 5-IMes yields the “rotated” [FeFe]-H2ase active site model 

complex (µ-pdt)(μ-CO)[Fe(CO)(IMes)][Fe(CO)2(PMe3)]+PF6
- (5-IMes+), containing a 

bridging carbonyl ligand and a terminal open site.109  The isoelectronic ligand exchange 

of NO+ for CO has been shown to act as a one-electron internal oxidant, as was observed 

with (μ-dmpdt)(μ-CO)[Fe(NO)(PMe3)][Fe(CO)2(PMe3)]+BF4
-.175  Upon NO+/CO 

substitution of 5-IMe or 5-IMes, in DCM at 0 °C, a product, 6-IMe or 6-IMes, was 

isolated.  The structure of 6-IMes was determined by X-ray crystallography, vide infra, to 
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be “rotated”, i e., the (pdt)Fe(IMes)(CO)(NO) square pyramid is rotated by 180° from the 

neutral FeIFeI isomer, such that the apical ligand, now the CO, is in a bridging position 

between the two iron atoms.  Thus, 6-IMes, (µ-pdt)(µ-

CO)[Fe(NO)(IMes)][Fe(CO)2(PMe3)]+BF4
-, is isostructural with 5-IMes+, but with one 

CO replaced by an NO+.  As was seen with 5-IMe+, the use of the less bulky IMe ligand 

yields a product spectroscopically similar to its IMes substituted counterpart that is 

assigned to (µ-pdt)(µ-CO)[Fe(NO)(IMe)][Fe(CO)2(PMe3)]+BF4
-, 6-IMe; however it has 

not yet been crystalized.   

Synthesis of (μ-pdt)[Fe(IMe)(CO)(NO)][Fe(CO)3]+BF4
-, 2-IMe and (μ-

pdt)[Fe(IMes)(CO)(NO)][Fe(CO)3]+BF4
-, 2-IMes 

The addition of the nitrosyl ligand to 1-IMe or 1-IMes was carried out at 0 °C to prevent 

the decomposition of the product, 2-IMe or 2-IMes.  When the nitrosylated product is 

held at 22 °C for only a few minutes, it decomposes and additional infrared bands grow 

into the spectrum at ν(CO) 2055, 2017, and 1984 cm-1 and at ν(NO) 1780 and 1750 cm-1.  

In addition, exposure to air results in the rapid decomposition of solutions of both 2-IMe 

and 2-IMes.  The decomposition of 1-IMe was found to be greatly reduced at low 

temperatures (~0°C) or by replacement of the inert atmosphere with CO(g). The 

degradation is also slower when the reaction is carried out in DCM.  The [NO]+[BF4]- salt 

is all but insoluble in this solvent, which considerably impedes the reaction.  Such 

heterogeneous conditions, even on a small scale (~0.10 g), may take hours to reach 50% 

completion, greatly increasing the byproducts and the need for purification, thereby 



62 

drastically reducing the yield.  A helpful guide to chemical redox agents by Connelly and 

Geiger177 notes that [NO]+[BF4]- is soluble in DCM in the presence of the cyclic ether, 18-

crown-6.178  With the aid of the crown ether, [NO]+[BF4]- fully dissolves in anhydrous 

DCM and reacts rapidly at 0 °C with 1-IMe and 1-IMes, yielding the pure product in 

minutes.   The crown ether acts only to solubilize the NO+, as the reaction goes to 

completion in less than an hour with a sub-stoichiometric amount (10 mol. %) of 18-

crown-6.  Both 2-IMe and 2-IMes are inert to further NO+/CO exchange.   

The addition of 20 equivalents of NOBF4 to 2-IMe does not result in additional 

nitrosylation, while maintaining a solution of the same compound under a blanket of  CO 

for up to 72 hours does not show, by FTIR, any reformation of 1-IMe.  Both 2-IMe and 

2-IMes may be stored as a solid powder under inert atmosphere for days at 0 °C without 

decomposition.   

Synthesis of (μ-pdt)[Fe(IMe)(CN)(NO)][Fe(CO)3], 3-IMe and (μ-

pdt)[Fe(IMe)(PMe3)(NO)][Fe(CO)3]+BF4
-, 4-IMe 

The addition of cyanide or trimethylphosphine to 2-IMe completes the synthetic cycle, 

and results in one fully substituted iron, while the other remains as an intact [Fe(CO)3] 

unit.  The addition of CN- takes place in THF at 0°C where the cyanide salt is sparingly 

soluble, and the reaction is slow.  Although DCM may be used successfully to generate 

the product, (µ-pdt)[Fe(IMe)(CN)(NO)][Fe(CO)3], 3-IMe, the reaction in THF produces 

a cleaner IR spectrum, indicating a single product is present in high purity.  The addition 

of PMe3 to 2-IMe takes place at 0°C in DCM.  The reaction is complete within minutes, 



63 

with a nearly quantitative yield of the product, (µ-

pdt)[Fe(IMe)(PMe3)(NO)][Fe(CO)3]+BF4
-, 4-IMe.  Addition of excess PMe3 does not 

result in a second CO substitution at this temperature.  In contrast to its precursor, 2-IMe, 

and its analogue, 3-IMe, this complex is relatively stable and may be handled under air 

and at ambient temperatures for several minutes without decomposition.  

Table III-1. Experimental CH2Cl2 solution vibrational frequencies of diatomic ligands of 
relevant (μ-pdt)[FeFe] complexes. 

aValues in brackets, [ ], and in braces, { },  are for ν(NO) and ν(CN), respectively. 

 

Complexes Vibrational Frequencies a 

(µ-pdt)[Fe(CO)3]2, 1 2072(m), 2037(s), 1990(s) 

(µ-pdt)[Fe(IMe)(CO)2][Fe(CO)3], 1-IMe 2035(m), 1971(s), 1952(m), 1915(m) 

(µ-pdt)[Fe(IMes)(CO)2][Fe(CO)3], 1-IMes 2035(m), 1969(s), 1947(w), 1916(w) 

(µ-pdt)[Fe(IMe)(CO)(NO)][Fe(CO)3]+BF4
-, 2-IMe 2085(s), 2058(s), 2018(s), [1809(s)] 

(µ-pdt)[Fe(IMes)(CO)(NO)][Fe(CO)3]+BF4
-, 2-IMes 2085(s), 2039(m), 2025(m), [1792(m)] 

(µ-pdt)[Fe(IMe)(CN)(NO)][Fe(CO)3], 3-IMe {2112(vw)}, 2054(s), 1988(s), [1755(m)] 

(µ-pdt)[Fe(IMe)(PMe3)(NO)][Fe(CO)3]+BF4
-, 4-IMe 2061(s), 1996(s), [1759(m)] 

(µ-pdt)[Fe(IMe)(CO)2][Fe(CO)2(PMe3)]-, 5-IMe 1974(s), 1934(s), 1898(m), 1884(sh) 

(µ-pdt)[Fe(IMes)(CO)2][Fe(CO)2(PMe3)]-, 5-IMes 1972(m), 1933(s), 1896(m), 1881(sh) 

(µ-pdt)(µ-CO)[Fe(IMe)(CO)][Fe(CO)2(PMe3)]+PF6
-, 5-IMe+ 2036(s), 2005(s), 1981(s), 1929(w) 

(µ-pdt)(µ-CO)[Fe(IMes)(CO)][Fe(CO)2(PMe3)]+PF6
-, 5-IMes+ 2036(s), 1997(s), 1987(sh), 1861(w) 

(µ-pdt)(µ-CO) [Fe(IMe)(NO)][Fe(CO)2(PMe3)]+BF4
-, 6-IMe 2031(s), 1977(m), [1784(m)] 

(µ-pdt)(µ-CO) [Fe(IMes)(NO)][Fe(CO)2(PMe3)]+BF4
-, 6-IMes 2035(m), 1990(s), [1782(m)] 
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Infrared Spectroscopy of Dissymmetric Complexes 

The infrared stretching frequencies of the diatomic ligands of relevant (μ-pdt)[FeFe] 

complexes are presented in Table III-1 and displays of the diatomic region of the IR 

spectra of 1, 1-IMe, 2-IMe, 3-IMe, and 4-IMe are presented in Figure III-4.  As expected, 

the ν(CO) IR bands of 1 are shifted to lower frequencies on the substitution of a CO ligand 

by either of the good donor ligands IMe or IMes.  Differences of the pattern and position 

of ν(CO) bands between the two NHC derivatives, 1-IMe and 1-IMes, are minor.  The 

products resulting from addition of [NO]+[BF4]- have ν(CO) shifts at higher values with a 

dramatic change in the pattern of CO stretches, Figure III-4.  In addition to the three ν(CO) 

bands, a ν(NO) band appears at 1809 cm-1(2-IMe) and 1792 cm-1 (2-IMe).  Unlike the 

minor differences in the spectra of 1-IMe and 1-IMes, the respective nitrosylated species 

are distinct.  Although both 2-IMe and 2-IMes display an intense, sharp ν(CO) band at 

2085 cm-1, the other two carbonyl bands of 2-IMe are equally intense with minimal 

overlap, being some 40 cm-1 separated at 2058 and 2018 cm-1.  In contrast, the two lower 

ν(CO) bands of 2-IMes are less intense and overlap much more, with only 14 cm-1 

separation at 2039 and 2025 cm-1.   
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Figure III-4. Solution (CH2Cl2) IR spectra for complexes 1, 1-IMe, 2-IMe, 3-IMe, and 4-IMe 
in diatomic ligand region.  The CN band of 3-IMe is marked with a blue box, the NO bands of 
2-IMe, 3-IMe, and 4-IMe are marked with red boxes. 
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The infrared spectrum of 2-IMe was poorly predicted by Density Functional Theory, 

utilizing both pure (BP86) and hybrid (B3LYP) functionals with a 6-311+G(d,p) basis set 

on all atoms.  Accordingly, the ν(CO) band at 2085 cm-1, Figure III-5, is assigned to the 

totally symmetric stretch of the Fe(CO)3 unit with minor coupling to the CO of the other 

Fe(IMe)(CO)(NO) moiety.  In the pseudo-C3v Fe(CO)3 moiety, this would be assigned as 

the A1 band.  The second band, at 2058 cm-1, is primarily due to the lone CO, with minor 

coupling to the Fe(CO)3.  The third CO stretch in the solution IR spectrum at 2018 cm-1, 

Figure III-5.  Solution (CH2Cl2) IR spectra for complexes 2-IMes and 2-IMe in diatomic 
ligand region.  The diatomic vibrational frequencies predicted using B3LYP/6-311+G(d,p) 
(scaling factor: 0.966) shows four ν(CO) bands as does the solid state (ATR) spectrum.  
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which would be the band assigned to the E stretching modes, consists of two overlapping 

bands in the molecule of overall C1 symmetry.  These bands also show minor coupling to 

the CO of the Fe(IMe)(CO)(NO) unit.   

Addition of donor ligands, CN- or PMe3, to 2-IMe results in a shift of ν(CO) and ν(NO) 

bands to lower frequencies.  If cyanide is utilized, a new ν(CN) band appears at 2112 cm-

1, Figure III-4.  The ν(CO) bands for this complex, 3-IMe, shift to 2054 and 1988 cm-1, 

taking on the two-band pattern characteristic of the C3v structure seen, for example, in the 

piano stool complex (η5-C5H5)Fe(CO)3
+.  This pattern is also seen in the ν(CO) bands of 

complex 4-IMe, which contains a PMe3 ligand rather than CN-.  The phosphine is not as 

strong an electron donor as cyanide, and the ν(CO) bands of the PMe3-containing complex, 

4-IMe, are slightly higher in frequency, at 2061 and 1996 cm-1.  The ν(NO) band of 4-

IMe is also slightly higher than that of 3-IMe, at 1759 and 1755 cm-1 respectively. 

Molecular Structures of 2-IMe, 2-IMes, 3-IMe, 4-IMe, and 6-IMes from X-ray 

Crystallography 

Crystals of 2-IMe, 2-IMes, 3-IMe, 4-IMe, and 6-IMes were subjected to X-ray diffraction 

analysis and the structures obtained are shown in Figures III-6, III-7 and III-8, with 

relevant metric parameters shown in Table III-2.  The crystals of 2-IMe, 3-IMe, and 6-

IMes were grown by Dr. Chung-Hung Hsieh.  The structures of 2-IMe, 3-IMe, and 6-

IMes were solved by Dr. Chung-Hung Hsieh while the structures of 2-IMes and 4-IMe 

were solved with the assistance of Jason Denny.  Of the four structures that display an 

intact Fe(CO)3 moiety i.e., the Fe2(CO)3 moiety of three (2-IMe, 3-IMe, and 4-IMe) is   
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Figure III-6. Molecular structures of 2-IMe and 2-IMes from X-ray diffraction analysis with 
side view (top: ball-and-stick rendition) and end view (bottom: capped stick rendition).  
Hydrogen atoms and BF4

- have been omitted for clarity. 
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Figure III-7.  Molecular structures of 3-IMe and 4-IMe from X-ray diffraction analysis with 
side view (top: ball-and-stick rendition) and end view (bottom: capped stick rendition).  
Hydrogen atoms and BF4

- (4-IMe) have been omitted for clarity. 
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 “under” the propanedithiolate bridgehead; i.e., the boat conformation of the FeS2C3 ring 

is on the Fe(CO)3 side of the diiron construct.   

The substituted Fe, Fe1, has an apical NO ligand within one S2Fe(NO)(NHC)(CO) square 

pyramid, slightly bent at ∠Fe1-N-O = 164-166° in all four structures.  The basal ligands 

of Fe1 include both the carbene, IMe or IMes, and the differentiating ligand: CO (2-IMe 

and 2-IMes), CN (3-IMe), or PMe3 (4-IMe). All four complexes display the typical edge- 

Figure III-8. Molecular structure of 6-IMes from X-ray diffraction 
analysis with side view (left: ball-and-stick rendition) and end view (right: 
capped stick rendition).  Hydrogen atoms and BF4

- counterion have been 
omitted for clarity. 
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bridged bi-square pyramidal geometry of the (μ-SRS)[Fe2(CO)x(L)6-x] family.  The Nap-

Fe1-Fe2-Cap dihedral angles of the three compounds bearing the IMe ligand are between 

0.7 and 11.6°, while the analogous angle of 2-IMes is much larger, at 55.6°.  This 

difference in the structure of 2-IMes may be attributed to the distortion of the Fe1, from 

square pyramidal, its τ value is 0.73 (τ = 1 for trigonal bipyramid; τ = 0, square 

pyramid).179,180  The other three structures are more regular square pyramids, with τ values 

ranging from 0.22 – 0.10. The unsubstituted iron, the Fe2(CO)3 moiety, of 2-IMe, 3-IMe, 

and 4-IMe are nearly perfect square pyramids (τ = 0.04 – 0.02), again the 2-IMes shows 

more distortion, τ = 0.15.  The substituted Fe1 is also seen to be pulled further out of the 

S2L2 plane, by up to 0.1 Å when compared to the Fe2 for 2-IMe (S2L2 iron displacements 

of Fe1 = 0.448 and Fe2 = 0.348 Å) and 3-IMe (S2L2 iron displacements of Fe1 = 0.470 and 

Fe2 = 0.383 Å), although 4-IMe shows less difference (S2L2 iron displacements of Fe1 = 

0.396 and Fe2 = 0.347 Å).  There is a subtle elongation of the Fe-Fe bond, from 2.543(2) 

and 2.568(2) Å for 2-IMe and 3-IMe to 2.597(1) and 2.6059(5) Å for 2-IMes and 4-IMe, 

which may be attributed to the steric effects of the larger IMes and PMe3 ligands.  Unlike 

the four structures above, the square pyramid of Fe1 in the structure of 6-IMes is rotated 

such that the carbonyl ligand bridges Fe1 and Fe2.  This rotated structure, analogous to the 

structure of 5-IMes+, has an elongated Fe1 – Fe2 distance of 2.619(2) Å, with the μ-CO 

bent under the Fe1 – Fe2 vector at an ∠Fe1-C-O of 136°.  The NO ligand is in a basal 

position and the ∠Fe1-N-O is 175.4(6)°, in contrast the apical NO of complexes 2-IMe, 3-

IMe, 4-IMe, and 2-IMes with ∠Fe1-N-O nearly 10° less. 
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Regioselective 13CO Subsitution of 2-IMe  

As noted above, the decomposition of 2-IMe occurs in one to two hours at room 

temperature in non-coordinating solvent, DCM, and under inert atmosphere, N2 or Ar.  It 

was anticipated that the loss of CO, resulting from Fe – C(CO) bond cleavage by either 

thermal or hν-induced dissociation may be the initial step in the decomposition pathway.  

This was supported by the observation that a solution of 2-IMe under a carbon monoxide 

atmosphere displayed little decomposition after 24 hours at room temperature.  The CO 

dissociation is presumed to be thermal in nature, as decomposition ceases upon cooling 

the complex to 0 °C, under N2 and ambient light, while at 22 °C, even in complete 

darkness, decomposition of 2-IMe is observed within hours. 

In order to test its CO lability, a solution of 2-IMe in DCM was placed under a blanket of 

13CO.  When this reaction mixture was held at 0 °C, no change was observed in the IR 

spectrum, but when allowed to warm to room temperature, the spectrum changed within 

minutes, even in the dark.  The ν(CO) band at 2058 cm-1 was seen to decrease in intensity 

with a concomitant growth of a new band at 2023 cm-1, Figure III-9.  At the same time, 

the CO stretch at 2085 cm-1 was seen to shift only 5 cm-1, to 2080 cm-1, while the band at 

2018 cm-1 overlapped with the growing band at 2023 cm-1 and no shift in the IR frequency 

could be observed.   

The lone carbonyl of the Fe(IMe)(CO)(NO) moiety is, by calculations, primarily 

associated with the band at 2058 cm-1 that changes dramatically while the two bands at 

2085 and 2018 cm-1, strongly associated with the Fe2(CO)3 unit are minimally affected, 
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indicating that the 13CO substitution is site selective, exchanging exclusively with the 

Fe1(CO).  The position shift is in agreement with that expected, as the 12CO/13CO 

Figure III-9.  Three-dimensional stacked plot of the reaction of 2-
IMe with 13CO(g) at 295 K in DCM showing the three CO bands 
of the all-12CO spectrum (red shapes) shifting to the two band 
pattern of the selectively substituted complex.   
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exchange of a single, uncoupled carbonyl ligand at 2058 cm-1 is predicted by the ratio of 

reduced masses of a single, uncoupled, CO to shift to 2012 cm-1. 

In the absence of light, CO adduct formation is observed to take place on the open site of 

the distal iron in the active site of the [FeFe]-H2ase.  When illuminated, the active site 

Figure III-10. Top is the reaction profile of IR bands corresponding to the 12CO 
at 2058 cm-1 (blue), the 13CO at 2023 cm-1 (green), and the NO at 1809 cm-1 
(red).  The vertical lines show the times when 13CO, argon, and 12CO were 
flushed into the solution of 2-IMe.  Below are the observed rate constants 
obtained from linear natural log plots taken over 2-3 half lives.  
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undergoes 12CO/13CO exchange only on that iron.  An analogue of the active site reported 

by Thomas et al.,181 the mixed-valent, FeIFeII, complex (μ-pdt)(μ-

CO)[Fe(IMes)(CO)][Fe(PMe3)(CO)2]+, 5-IMes+, is known to exchange CO ligands but 

only on the “rotated” iron that contains an open site.  When this species is exposed to 1 

atm. of 13CO for 15 minutes in the dark, then reduced back to the diamagnetic FeIFeI, 

complex (μ-pdt)[Fe(IMes)(CO)2][Fe(PMe3)(CO)2], 5-IMes, 13C NMR spectroscopy 

shows that the two carbonyl ligands attached to the same iron as the IMes ligand are 

labeled while the two carbonyl ligands attached to the same iron  as the PMe3 ligand are 

not.181  This regioselective 12CO/13CO exchange is similar to what is observed with the 

complex 2-IMe. 

The 12CO/13CO exchange reaction was monitored by in situ IR spectroscopy and found to 

have a half-life of 22 minutes at 23 °C in DCM; the rates are provided in Figure III-10.  

The labeling of the single Fe1(CO) of 2-IMe is effectively complete in two hours.  At this 

point, the system may be purged with argon and the atmosphere replaced with natural 

abundance carbon monoxide.  The reverse reaction, substitution of the 12CO for the single 

13CO occurs cleanly, regenerating the all-C-12 IR spectrum at the same rate, Figure III-

10. 

The photo-dissociation of carbon monoxide from (μ-pdt)[Fe(CO)3]2 is a well-known 

method for promoting 13CO/12CO exchange for the enhancement of 13C NMR studies.   

This technique does not allow for selective CO lability, either in the iron on which the CO 

is exchanged or the number of CO ligands exchanged.  The thus-obtained 13CO substituted 
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complex was used as the precursor to synthesize 2-IMe in which all of the CO ligands are 

equally enriched.  The 13C NMR spectrum of this complex at 0 °C reveals four resonances 

in the CO region as all four carbonyls are distinct, including the two basal carbonyls of 

the Fe(CO)3 unit, which are distinguished as being transoid or cisoid to the NHC on the 

opposite iron, Figure III-11.  On warming this compound to 30 °C, no change is observed 

in the positions or intensities of the resonances, although the three peaks assigned to the 

Fe(CO)3 carbonyls broaden slightly.  This result is in agreement with the high (ca. 19 

kcal/mol) calculated barrier to the rotation of the Fe(CO)3 unit, vida infra.   

The regioselective exchange of only the Fe1-CO is equally productive in total darkness 

and under ambient light at room temperature and takes place at a single site.  The 13C 

NMR spectrum of this regioselectively enriched complex at 0 °C shows the same four 

resonances as above, but the peak at 207.1 ppm, assigned to the Fe1(CO), is much more 

intense, Figure III-12.  Integration of this spectrum reveals that the ratio of 13CO that has 

been exchanged for the Fe1(CO) relative to the Fe2(CO)3 carbonyls is 9:1.  This was less 

than anticipated, as the predicted 13C/12C molar ratio is 17:1, assuming full exchange of 

the Fe1(CO) and no exchange of the Fe2(CO)3 carbonyls.  There are three possible 

explanations for the lower than expected ratio.   

The first possibility is an incomplete labelling of the Fe1(CO) due to less than full 

exchange with the 13CO(g) atmosphere.  However, FTIR spectroscopy of this sample 

confirms a nearly quantitative conversion to Fe1(13CO) as seen in the absence of a ν(CO) 

peak at 2058 cm-1.   
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Figure III-11.  The uniformly enriched 
13

C 
NMR spectra of 2-IMe in CD2Cl2 in the 
carbonyl region displaying four resonances, 
from 0 °C to 30 °C.  The peak at 207.1 ppm is 
attributed to the Fe

1
(CO) and remains sharp at 

higher temperatures while the three peaks at 
206.2, 204.0 and 202.9 ppm are attributed to 
the Fe

2
(CO)3 and broaden at higher 

temperatures. 
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The second explanation of the NMR spectrum is intramolecular site exchange, whereby 

the labelled 13CO on the Fe1(CO) is exchanged with an unlabeled 12CO on the Fe2(CO)3.  

This hypothesis was tested by monitoring a sample of the regioselectively labelled 2-IMe 

by 13C NMR spectroscopy at 20 °C.  If the carbonyl ligands were undergoing exchange 

between the iron atoms, a leveling of the four CO resonances would be observed.  

However, there was no change in the relative intensities of the Fe1(CO) and Fe2(CO)3 

resonances after two hours, indicating that no site exchange is occurring. 

Figure III-12.  The selectively enriched 
13

C NMR spectra of 2-IMe in CD
2
Cl

2
 

in the carbonyl region at 0 °C.  The peak at 207.1 ppm is ~9 times the intensity 

of the three peaks at 206.2, 204.0 and 202.9 ppm, showing selective 
13

CO/
12

CO 

exchange at a single site. 
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The third possible explanation of the NMR spectrum is that the Fe2(CO)3 slowly undergoes 

13CO/12CO exchange independently of the Fe1(CO) exchange.  As described in Chapter II, 

an experiment was performed in which a solution of complex 2-IMe in CD2Cl2 was placed 

under a blanket of 13CO at room temperature and aliquots were removed at 0, 10, 20 and 

30 minutes and flash-frozen under N2. The 13C NMR spectra of these samples show a rapid 

increase of the intensity of the carbonyl band assigned to the Fe1(CO) and a much slower 

increase of the intensity of the three carbonyls assigned to the Fe2(CO)3.  This indicates 

that the Fe2(CO)3 is exchanging with the 13CO atmosphere in the reaction flask, but at a 

much slower rate than the Fe1(CO). 

This thermal exchange of this single carbonyl is presumed to be due to the weakened Fe1-

C bond upon coordination of an NO ligand to the iron.  As mentioned above, the thermal 

dissociation of CO from 2-IMe is expected to be the source of the instability of the 

complex in solution.  The reduction in bond strength of the Fe1-CO can be attributed to 

the increased electron-withdrawing effects of the NO ligand, as the Fe1(IMe)(CO)(NO) 

moiety is more electron poor than the Fe2(CO)3 unit, vida infra.  

Density Functional Theory Investigation of Structure Isomer Stability of 2-IMe, 3-IMe, 

and 4-IMe 

In order to gain insight into the structures of 2-IMe, 3-IMe, and 4-IMe, a series of isomers 

of formula (μ-pdt)[Fe2(CO)3(NO)(IMe)(L)]n+, L = CO (2-IMe), CN (3-IMe), and PMe3 

(4-IMe) were optimized using the B3LYP functional153-155 with the 6-311+G(d,p) basis 

set156,157 on all atoms.  The calculated free energies reported relative to the isomer 
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corresponding to the X-ray crystal structure of each, Figures III-13, III-14, III-15 and III-

16.  The specific questions addressed by the calculations are as follows: 

 What is the effect on the stability of complex 2-IMe if there is no structural 

rearrangement or if the carbene and NO ligands are on separate irons? (Figure III-

13) 

 What is the difference between CO and NO bridging the two iron atoms for complex 

2-IMe and what is the effect of the Fe(IMe)(NO)(CO) unit on the rotation of the 

Fe(CO)3 moiety? (Figure III-14) 

 What is the effect on the stability of complex 3-IMe if the two strong donor ligands 

are on a different iron than the NO or if they are on a different iron than each other? 

(Figure III-15) 

 What is the difference in stability between complex 4-IMe and 6-IMe?  Is the 

bridging CO isomer of 6-IMe more stable than the all-terminal isomer? (Figure III-

16) 

The various permutations of the strong σ-donating ligands (IMe, CN, and PMe3) and π-

withdrawing ligand (NO) on each of the iron atoms were investigated to find the most 

thermodynamically stable form of each structure.  The most stable forms of 2-IMe have 

the IMe and NO ligands on the same iron, as is observed in the crystal structure.  However, 

this calculation can only inform on the thermodynamic stabilities; there is no way for this 

study to determine if this is the kinetic product as well.   
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The structures of in which there are two strong σ-donors, 3-IMe (IMe and CN) and 4-IMe 

(IMe and PMe3), are generally more stable if the donating ligands are on separate irons.  

Despite the thermodynamic stability of the symmetric distribution of the strong donor 

ligands, this is not what is observed in the crystal structures, which are both the 

dissymmetric complexes.  This is evidence that the result of addition of CN or PMe3 to 2-

IMe is the kinetic product, rather than the thermodynamic product.   

All possible permutations of the formula (μ-pdt)[Fe2(CO)4(NO)(IMe)]+ in which the 

bridging propane dithiolate ligand is positioned away from the Fe1(NO), are displayed in 

Figure III-13, which contains the all-terminal or unrotated structures, and Figure III-14, 

which contains the rotated structures.  All energies are reported relative to the structure 

corresponding to the X-ray crystal structure, 2-IMe-1.  The isomer resulting from 

positioning the IMe ligand apical (2-IMe-2) or CO apical (2-IMe-3) is less stable than 2-

IMe-1 by 1.3 and 2.0 kcal/mol, respectively.  Isomers resulting from moving the IMe 

ligand onto Fe2 in either the apical (2-IMe-4) or basal (2-IMe-5) position are also higher 

in energy, by 1.8 and 1.7 kcal/mol, respectively.  Finally, leaving the IMe ligand on Fe2, 

but moving the NO into a basal position yields three possible isomers that are 2.0 (2-IMe-

6), 2.5 (2-IMe-7), and 3.2 (2-IMe-8) kcal/mol less stable than 2-IMe-1. 



83 

Structures corresponding to the “rotated” structure, with an inverted square pyramid about 

one iron atom and a carbonyl ligand bridging the two iron atoms, are known to exist as 

transition states along the rotation of the Fe(CO)x(L)3-x moiety, Figure III-14.  A full 

description of the rotations of the Fe(CO)3 unit may be found in Chapter IV.  Thus, the 

rotation of the [Fe(IMe)(CO)(NO)]+ moiety has a single bridging CO structure, the 

Figure III-13. Calculated relative energies of all-terminal 
isomers of (μ-pdt)[Fe2(CO)4(NO)(IMe)]+, relative to 2-IMe-1, 
the structure corresponding to 2-IMe.  
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transition state of the rotation that exchanges NO and IMe as apical ligands.  This 

transition, 2-IMe-9ǂ, at 10.6 kcal/mol, is only slightly higher in energy than the calculated 

rotation barrier of an Fe(CO)3 unit in complex 1 (9.6 kcal/mol).122,182  The rotation of the 

Fe2(CO)3 unit of 2-IMe has a much higher energy barrier.  If the apical ligand on the 

opposite iron is NO, 2-IMe-12ǂ, the barrier is 19.1 kcal/mol; there is little difference when 

the apical ligand on Fe1 is either IMe (2-IMe-10ǂ, 19.2 kcal/mol) or CO (2-IMe-11ǂ, 19.3 

kcal/mol).  Attempts to locate a transition state with the NO in a bridging position were 

unsuccessful; however, a structure with the bridging NO was located as a ground state 

isomer, 2-IMe-13, which was 0.2 kcal/mol more stable than 2-IMe-1.  This isomer, 

calculated in the gas phase, is not experimentally observed, as the expected NO stretch in 

Figure III-14. Calculated relative energies of rotated structures of (μ-
pdt)[Fe2(CO)4(NO)(IMe)]+, consisting of four transition states and one 
ground state isomer, relative to 2-IMe-1. 
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the IR spectrum near 1500 cm-1,174 much lower than the observed 1809 cm-1 is not found. 

Additional CO stretches would also appear at higher frequencies than the three ν(CO) 

bands observed for 2-IMe. 

In the same manner as the study of 2-IMe, investigations of the isomers of 3-IMe and 4-

IMe were performed with the free energy of various isomers of (μ-

pdt)[Fe2(CO)3(NO)(IMe)(CN)] reported relative to 3-IMe-1, Figure III-15, and of (μ-

pdt)[Fe2(CO)3(NO)(IMe)(PMe3)]+ reported relative to 4-IMe-1, Figure III-16.  Isomers 

resulting from separation of the electrophilic NO ligand and nucleophilic IMe and CN 

ligands onto separate Fe atoms are less stable than 3-IMe-1 by 3.2 kcal/mol if NO is apical 

Figure III-15. Calculated relative energies of selected isomers of (μ-
pdt)[Fe2(CO)3(NO)(IMe)(CN)] relative to 3-IMe-1, the structure corresponding to 3-
IMe. 
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(3-IMe-3), and 3.3 kcal/mol if NO is basal (3-IMe-4).  A more stable series of isomers 

involves separation of the nucleophilic ligands onto the two irons.  If the two nucleophiles 

are transoid, the isomeric structures are very close in energy to 3-IMe-1, being 0.2 

kcal/mol more stable if IMe is on the same Fe1 as NO (3-IMe-5) and 0.3 kcal/mol less 

stable if CN is on Fe1 instead (3-IMe-6).  When the NO is moved from an apical position, 

3-IMe-5, to a basal position, 3-IMe-2, the calculated structure is 3.7 kcal/mol higher in 

energy.  If the nucleophilic ligands are cisoid instead, the isomers are more stable by 3.4  

kcal/mol, with the IMe ligand on the Fe with NO, Fe1, (3-IMe-7) and 1.5 kcal/mol, with 

the CN ligand on Fe1 (3-IMe-8).  The increased stability of the isomers of 3-IMe that 

separate the nucleophilic ligands onto different irons is also seen with the isomers of 4-

IMe, Figure III-16.  Moving the PMe3 ligand onto Fe2, 4-IMe-2, results in greater stability 

than the fully dissymmetric 4-IMe-1, by 3.6 kcal/mol.  An even lower energy isomer, 

obtained by the rotation of the Fe1, resulting in a bridging CO, 4-IMe-3, is more stable 

Figure III-16. Calculated relative energies of selected isomers of (μ-
pdt)[Fe2(CO)3(NO)(IMe)(PMe3)]+, a comparison of the stability of 4-NHC (4-IMe-1) 
and 6-NHC (4-IMe-3) relative to 4-IMe-1. 
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than 4-IMe-1 by 5.0 kcal/mol.  This isomer corresponds to the X-ray structure of 6-IMes 

sans the bulky mesityl groups on the carbene.  Another rotated isomer, in which the 

carbene and phosphine ligands of 4-IMe-3 are switched, 4-IMe-4, is yet more stable at 

9.0 kcal/mol less than 4-IMe-1. 

 

Concluding Remarks 

The Regioselectivity of Nucleophilic and Electrophilic Ligand Substitution on a Diiron 

Carbonyl Framework  

The regioselective PMe3/CO substitution of 1-IMe and 2-IMe offers insight into the diiron 

core’s electronic response to its ligand environment.  In an associative ligand exchange on 

the [FeFe] framework, the incoming nucleophile preferentially attacks the iron with the 

more π-acidic ligand set, which is more polarizable and may be considered the “softer” 

iron, Figure III-17.  The softer iron is apparent in the case of 1-IMe, as the Fe(CO)3 unit 

is more capable of accommodating the nucleophile than the Fe(IMe)(CO)2 moiety.  Upon 

PMe3/CO substitution, the resulting complex, 5-IMe, is symmetric with regard to the 

number of strong σ-donor ligands on each iron.  If the incoming ligand is more 

electrophilic, attack is expected to take place on the iron with the less π-acidic ligand set, 

i.e., the less polarizable or “harder” iron, Figure III-12.  Thus, NO+/CO substitution of 1-

IMe would be favored to take place on the Fe(IMe)(CO)2 moiety, generating 2-IMe.  

Figure III-13 shows that the calculated thermodynamic difference in NO+ coordination on 

the two iron atoms is small, only 1.7 kcal/mol, but the observation of a single reaction 
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product indicates the IMe ligand is much less π-acidic than a CO.  In the PMe3/CO 

substitution of 2-IMe, two possible isomers can be imagined.  If the Fe(IMe)(CO)(NO) 

unit is more π-acidic, the totally dissymmetric product, 4-IMe, will be synthesized.  If 

Figure III-17. The Fe(IMe)(CO)2 is less π-acidic than the Fe(CO)3.  
An incoming nucleophile, such as PMe3, will attack the more π-
acidic Fe(CO)3 (top) while an electrophile like NO+ is prone to 
substitution on the less π-acidic Fe(IMe)(CO)2. 
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instead, the Fe(CO)3 is more π-acidic, the more symmetric 6-IMe will be observed   At 0 

°C, the only product observed of the PMe3/CO exchange is 4-IMe.  Therefore, the Fe(CO)3 

moiety is less π-acidic than the Fe(IMe)(CO)(NO) unit.  Figure III-15 shows that this is 

not the most stable isomer of the formula (μ-pdt)[Fe2(CO)3(IMe)(PMe3)(NO)]+, indicating 

kinetic control of the reaction.    
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CHAPTER IV 

COMPUTATIONAL STUDIES RELATING TO (μ-SRS)[Fe(CO)3]2 

AS INFORMANTS ON THE [FeFe]-HYDROGENASE ACTIVE 

SITE: INTRAMOLECULAR SITE EXCHANGE* 

 

Preface 

Chapter IV describes my contributions to the following co-authored manuscript: 

“Conformational Mobility and Pendent Base Effects on Electrochemistry of Synthetic 

Analogues of the [FeFe]-Hydrogenase Active Site” Crouthers, D. J.; Denny, J. A.; Bethel, 

R. D.; Munoz, D. G.; Darensbourg, M. Y.; Organometallics, DOI: 10.1021/om500023j 

(2014).  My computational results, found within that publication, were used to identify the 

transition states corresponding to the processes investigated by VT NMR and to support 

the assignment of the fluxional processes observed experimentally.  All of my published 

results are provided herein, as well as an extended description and discussion of those 

findings. 

 

                                                           
*This chapter is reproduced in part with permission from Crouthers, D. J. D., J. A.; Bethel, R. D.; Munoz, 
D. G.; Darensbourg, M. Y., Conformational Mobility and Pendent Base Effects on Electrochemistry of 
Synthetic Analogues of the [FeFe]-Hydrogenase Active Site. Organometallics DOI: 10.1021/om500023j 
(2014). Copyright 2014 ACS Publications 
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Summary of the Paper 

The investigation of the (μ-SRS)[Fe(CO)3]2 series of complexes as mimics of the [FeFe]-

H2ase active site has been a focus of organometallic chemists since the enzymatic structure 

was elucidated some 15 years ago.104,106,183  Figure IV-1 is adapted from our paper182 and 

displays the active site of the [FeFe]-H2ase as determined by protein crystallography, 

Figure IV-1 (A).  One area of investigation of the simple models involves the 

intramolecular site exchange processes as it has been suggested that the well-known 

dynamics122,184-186 of such compounds may relate to the requirement for configurational 

mobility in order to function as solution electrocatalysts for the reduction of protons to 

produce H2.  The structure in Figure IV-1 (B) is that of the so-called parent model complex 

(μ-pdt)[Fe(CO)3]2, pdt = propane-1,3-dithiolate,183 from which numerous derivatives have 

been prepared.  This complex, perhaps more than any other, has provided an entry point 

Figure IV-1. Depiction of (A) the 6Fe H-cluster of the [FeFe]-H2ase active site;9 (B) the 
(µ-pdt)[Fe(CO)3]2 parent model complex, in the eclipsed, “all-terminal” geometry and its 
fluxional processes: i. chair/boat interconversion, ii. apical/basal CO site exchange;122 (C) 
(µ-adt)[Fe(CO)3]2 with a N bridgehead;167 (D) the expected transition state during 
protonation of reduced (µ-adt)[Fe(CO)3]2

n-.122 

Introduction 
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into biomimetic chemistry for the organometallic community.  In particular, its 

spectroscopic handle, FTIR in the diatomic region, permitted the close monitor of electron 

density at the iron centers. Carbon-13 and proton NMR spectroscopy has been used to 

interrogate the fluxional processes involved in the chair/boat interconversion of the 

FeS2C3 metallacycle, as the 6-membered ring flips from one side to the other, Figure IV-

1 (B, i), and the apical/basal CO site exchange through a turnstile type Fe(CO)3 rotation, 

Figure IV-1 (B, ii).106 

In the neutral FeIFeI redox level, the (μ-pdt)[Fe(CO)3]2 complex is in an edge-bridged bi-

square pyramidal geometry with the CO ligands in an eclipsed, “all-terminal” geometry.  

The HOMO of this complex well delineates the Fe—Fe bond.122  Theory has shown that 

this bond may be weakened by either oxidation, removing an electron from the bonding 

orbital, or reduction, adding an electron to the LUMO, which is Fe—Fe antibonding in 

character.122  According to theory, both lead to an easier access to the so-called “rotated” 

isomer.  This isomeric form results from the reorientation of one of the Fe(CO)3 units by 

rotation, or inversion, maintaining the μ-SRS unit, in order to expose that iron to attack at 

the now revealed terminal open site.   

Another series of model complexes utilize the azadithiolate (adt) bridging ligand,167 as 

seen in the complex (μ-adt)[Fe(CO)3]2, Figure IV-1 (C).  These complexes have an amine 

in the “bridgehead” position of the bridging dithiolate cofactor that facilitates proton 

transfer to and from the catalytic iron site, as shown in Figure IV-1 (D).122  This pendent 

amine, within 3.5 Å of the open faced iron, is critical to the function of the enzyme, as 
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demonstrated by recent reports of the hybrid synthesis of an [FeFe]-H2ase enzyme with 

an active site derived from small molecule compounds containing either CH2 or NH 

bridgeheads.  Only the azadithiolate-bridged diiron subsite is capable of reducing protons 

to generate H2.53,142  

The experiments in this study investigated the fluxional processes of a series of diiron 

hexacarbonyl complexes, using variable temperature NMR spectroscopy, and looked for 

a correlation with their function as solution proton reduction electrocatalysts, determined 

by cyclic voltammetric responses to added acid.107  It was found that the energy barriers 

of the fluxional processes related to the steric bulk of the bridging dithiolate ligand that 

can be directed towards an Fe(CO)3 unit.  However, differences in the mobility of the 

diiron complexes did not correlate with their electrocatalytic reduction of protons.  Instead, 

the presence of an amine in the bridgehead position of the dithiolate ligand was responsible 

for a 1.5- to 2- fold increase in electrochemical response to acid when compared to the 

species with carbon in the bridgehead of comparable steric bulk. 

1H and 13C VT NMR Studies 

In addition to the proton signals from the substituent in the bridgehead position of the 

bridging dithiolate ligand, the rapidly equilibrating methylene (elbow carbon) protons for 

NH, NMe, NtBu, pdt, and dmpdt show a single resonance in the 1H NMR spectra at 

room temperature.106  For many of the complexes, these signals are observed to resolve 

into two broad resonances when cooled to the slow exchange regime, reflecting the 

nonequivalency of the axial and equatorial H atoms.  From this, the energy barrier of the 
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chair/boat interconversion of the FeS2C2X metallacycle can be experimentally 

determined.187   

The Fe(CO)3 rotor fluxionality was measured by VT 13C NMR spectroscopy.  From the 

values for the chair/boat interconversion, Figure IV-1 (B, i), and CO intramolecular site 

exchange, Figure IV-1 (B, ii), energy barriers of all complexes were obtained using the 

formulas ΔG‡ = -(RT)ln[kth/kbTcoal] and kt = (πΔν)/21/2, where the coalescence temperature 

(Tcoal) and peak separation (Δν) were found from analysis of the spectra.187 

Computational Investigation of the Structures and Fluxional Processes of Diiron 

Hexacarbonyl Complexes 

Density Functional Theory was utilized in the study of the (μ-SRS)[Fe(CO)3]2 complexes.  

Specific questions asked of the calculations were: 

 Can the calculations provide structures with both the geometry and vibrational 

frequencies comparable to the experimental data? 

 Can the calculations locate the transition state structures of the fluxional 

processes known to take place in the (μ-SRS)[Fe(CO)3]2 system? 

 Do the calculated energies of those transition states compare favourably to the 

experimental energy barriers of those processes? 

 Does the choice of functional affect the calculated geometries of the ground 

state and transition state structures and their relative energies? 

 Can the calculations provide insight into the experimental results that are 

ambiguous or, because of certain limitations, cannot be measured? 
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The structures and fluxional processes of the (μ-SRS)[Fe(CO)3]2 complexes have been 

previously investigated by DFT.  Hall and co-workers have shown that the rotation of the 

Fe(CO)3 moiety leads to a transition state, observed by a ca. 60 degree twist of the Fe(CO)3 

unit.122  This disrupts the Fe – Fe bond, making the two irons asymmetric in their 

calculated charges and positions a CO ligand between the iron atoms in a semi-bridging 

position.  It has been shown that addition of steric bulk on the bridging ligand decreases 

the barrier to rotation; changing the “bridgehead” atom from carbon to nitrogen, as in 

Figure IV-1 (B) and (C), does not have a notable effect on the rotation barrier for (μ-

(SCH2)2X)[Fe(CO)3]2, where X = CH2 or NH.  The effects of ligands other than CO on 

the structure of diiron dithiolate have been investigated by Hall, who has demonstrated 

that good donor ligands, such as phosphine, may subtly raise the rotation energy barrier if 

the donor ligand is trans to the bridging site.122  The computational investigations of de 

Gioia have also been utilized in the investigation of (μ-pdt)[Fe2(CO)5(CN)]-, where the 

transition state corresponding to the bridgehead flip was located and the interconversion 

of isomers varying by cyanide position were compared.185  The calculated ring flip energy 

was reported to be slightly higher (8.7-9.8 kcal/mol) than the experimental energy barrier  

(9.3 kcal/mol).   



96  

T
ab

le
 IV

-1
. E

xp
er

im
en

ta
l a

nd
 c

al
cu

la
te

d 
sp

ec
tro

sc
op

ic
 a

nd
 m

et
ric

 p
ar

am
et

er
s o

f (
μ-

SR
S)

[F
e(

C
O

) 3
] 2 

a Ex
pe

rim
en

ta
l I

R
 sp

ec
tra

 o
bt

ai
ne

d 
in

 h
ex

an
es

, c
al

cu
la

te
d 

IR
 sp

ec
tra

 o
bt

ai
ne

d 
us

in
g 

TP
SS

TP
SS

 fu
nc

tio
na

l a
nd

 6
-3

11
+G

(d
,p

) b
as

is
 se

t 
on

 a
ll 

at
om

s. 
 b C

O
ap

-F
e-

Fe
’-

C
O

ap
’ an

gl
e.

  c D
is

ta
nc

e 
fr

om
 th

e 
ce

nt
ra

l a
to

m
 o

f t
he

 b
rid

ge
he

ad
 (C

 o
r N

) t
o 

th
e 

cl
os

es
t i

ro
n;

 th
e 

S-
S  

an
d 

ed
t 

m
ol

ec
ul

es
 h

av
e 

no
 b

rid
ge

he
ad

.  
d C

al
cu

la
te

d 
to

rs
io

n 
an

gl
e 

is
 e

xa
ct

ly
 0

 a
s 

th
e 

dm
pd

t 
on

ly
 o

pt
im

iz
ed

 in
to

 a
 m

in
im

um
 w

he
n 

co
ns

tra
in

ed
 to

 C
s s

ym
m

et
ry

. 

 



97 

In this chapter, I provide computational support for the experimentally observed effect of 

steric bulk in lowering the Fe(CO)3 rotation barrier and the negligible effect of carbon 

versus nitrogen in the bridgehead position, while showing that the bridgehead atom does 

correspond to a difference in the ring flip.  The primary focus of the computational 

investigation was the identification of the transition states of all fluxional processes 

involved in the dynamic intramolecular site exchange processes for all complexes as well 

as the assignment of 1H and 13C NMR resonances at various temperatures.  In total, 8 

ground states and 21 transition states were located for each of four functionals, resulting 

in a total of 116 relevant structures.  A summary and comparison of experimental and 

computed ν(CO) stretching frequencies and important metric parameters is provided in 

Table IV-1.   

The four functionals selected for this investigation were B3LYP,153-155 TPSSTPSS,162 

MPW1PW91,161 and ω-B97xD163 and each utilized the 6-311+G(d,p) basis set156,157 on all 

atoms.   

The B3LYP functional was originally selected for this investigation as it was utilized by 

Hall, de Gioia, and others for their investigations into the [FeFe]-H2ase active site and the 

myriad model complexes thereof.60,122,184,186,188,189  In the B3LYP functional, the B3 

exchange functional,153,154 which contains partial Hartree-Fock exchange, is paired with 

the correlation functional of Lee, Yang, and Par (LYP).155  This combination has been 

specifically optimized as a hybrid functional, and is immensely popular.190  As an example 

of its popularity, Sousa et al. analysed the titles and abstracts of every paper in the Web 
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of Science from 1990 to 2006, and found that 80% of the functionals listed were 

B3LYP.191 

The TPSSTPSS functional developed by Tao, Perdew, Staroverov, and Scuseria combines 

their exchange and correlation functionals.162  This pure-DFT functional does not contain 

any Hartree-Fock exchange, but it has been reported to improve on the overestimated bond 

lengths and poor vibrational frequencies of previous functionals of this type.192    

The MPW1PW91 functional is essentially the Perdew-Wang 1991 functional193,194 in 

which the exchange component has been modified by Adamo and Barone,161 in order to 

improve the performance of the overall functional.  This functional has been found by 

Truhlar and coworkers to accurately model both covalent and nonconvalent 

interactions.195 

The fourth functional, ω-B97xD, is a standalone functional and is not split into exchange 

and correlation components.163  Originally devised by Grimme to include dispersion 

forces, we expected this functional to accurately model the noncovalent interactions 

between the bridging ligand and the iron carbonyls.196 

Finally, these calculations provide a means to clarify ambiguous experimental results, 

such as the low temperature 13C NMR of NtBu, in which a single peak may be due to 

exchange of the carbonyl ligands or a serendipitous overlap of the peaks of non-

exchanging COs.   The results below provide evidence that the ligands are not exchanging 

at temperatures lower than -60 °C, but the non-exchanging COs happen to have the same 

chemical shift.  Another benefit of the calculations is the ability to estimate energy barriers 
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that have not been determined experimentally.  For example, the ring flip of dmpdt has 

been observed to continue at temperatures as low as -120 °C.197 The combination of 

calculated structures and energies with the experimental energies obtained from VT NMR 

spectroscopy, the fluxional processes of (μ-SRS)[Fe(CO)3]2 are identified and described 

below. 

Figure IV-2. Overlays of the seven diiron hexacarbonyl complexes investigated in this chapter 
are displayed above with the X-ray crystal structures in red and calculated structures, optimized 
in the gas phase using the B3LYP functional, in blue.   
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Results and Discussion 

Structural Features of Diiron Hexacarbonyl Species 

The molecular structures of the following diiron hexacarbonyl complexes (μ-

(SCH2)NH)[Fe(CO)3]2, NH;167 μ-(SCH2)2N(Me))[Fe(CO)3]2, NMe;96 μ-(SCH2)2N(t-

Bu))[Fe(CO)3]2, NtBu;167 (μ-S2)[Fe(CO)3]2, S-S;198 (μ-(SCH2)2)[Fe(CO)3]2, edt;199 (μ-

(S(CH2)3S)[Fe(CO)3]2, pdt;183 and (μ-(SCH2)2C(Me)2)[Fe(CO)3]2, dmpdt;197 were 

optimized in the ground state and compared to the structures determined by X-ray 

diffraction analysis.  Selected experimental and calculated metric parameters are provided 

in Table IV-1 along with ν(CO) IR data.  The seven complexes investigated in this study 

are displayed in Figure IV-2, where the B3LYP calculated structures (blue) are overlaid 

with the X-ray crystal structures (red).  By visual inspection, there is little difference in 

the structures optimized using any of the four functionals: TPSSTPSS, B3LYP, 

MPW1PW91, and ω-B97xD.   

The crystal structures of both NH and NMe have the pyramidal amines cocrystalized in 

both the axial (where the N-R is pointed down, towards the Fe(CO)3) and equatorial 

(where the N-R is pointed up, away from the Fe(CO)3) positions.96,167  In contrast, the 

NtBu was experimentally found to crystalize only in the equatorial position.182  For 

simplicity, the structures in Figure IV-2 are all shown with the N-R in the equatorial 

position.  This explains the most apparent discrepancy in the overlaid structures, where 

the apical CO of NMe, directed away from the bridgehead, is bent further away from the 

dithiolate bridge in the crystal structure than in the calculated structure.  This is due to the 



101 

partial occupancy of an axial N-CH3 bridgehead that is above that iron, which provides 

steric repulsion for the apical CO in a manner similar to the C-CH3 in the dmpdt 

bridgehead.197  Because the calculated structure does not have this isomer in any 

occupancy, the unhindered CO is not bent down.  Finally, the experimental observation of 

NtBu only in the equatorial conformation is consistent with computational data, for which 

the axial conformation of the tert-butyl group did not converge for all four functionals, 

vide infra.   

The four remaining structures are either totally symmetric with respect to the bridging 

dithiolate and have no bridgehead atom; i.e., the S-S and edt complexes, or they have CR2 

bridgehead atoms, where R = H (pdt) or CH3 (dmpdt).  The only minor discrepancy 

between these calculated and crystal structures is the dmpdt, which was optimized as Cs 

symmetric.  Thus, the COap-Fe-Fe’-COap’ dihedral angle is exactly 0°, while the reported 

dihedral from the crystal structure is 6.5(2)°.197  Finally, as indicated by almost identical 

ν(CO) values, Table IV-1, the electron density on the iron centers is the same throughout 

the series.    

Fluxional Processes of edt and S-S 

The edt and S-S complexes are the simplest of the diiron hexacarbonyl class in terms of 

their fluxional processes.  The absence of a 6-membered metallacycle eliminates the ring 

flip process, and without the bridgehead to distinguish the iron atoms, the two Fe(CO)3  
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rotors are identical.  Both edt and S-S display a single 13C NMR resonance at room 

temperature, which splits into two peaks with an integration of 2:4 at 0 °C for edt and -60 

°C for S-S.   

Computational investigation of both complexes has revealed a single ground state 

structure in which the six carbonyl ligands are in the eclipsed “all terminal” geometry, 

Figure IV-3. Calculated structures of the all-terminal ground 
states of edt and S-S, edta and S-Sa respectively, and the transition 
states of the Fe(CO)3 rotation, edtb and S-Sb with free energies of 
the calculation with the TPSSTPSS functional reported. 
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edta and S-Sa respectively, Figure IV-3.  For both complexes, the single transition state of 

a fluxional process consists of the rotation of an iron in which one of the Fe(CO)3 units is 

inverted, with one CO in a bridging or semi-bridging position between the two iron atoms, 

Figure IV-3.  This transition state for the edt bridged complex, edtb, is calculated to be 

12.1 – 15.3 kcal/mol higher in energy than edta; the transition state for the disulfide 

complex, S-Sb, is 9.0 – 12.0 kcal/mol higher in energy than S-Sb, Table IV-2.  With both 

iron units identical by symmetry, the rotation of either Fe(CO)3 is the same.  These are the 

simplest complexes with respect to fluxional processes, requiring the consideration of only 

a single Fe(CO)3 rotation each.  Therefore the only coalescence event observed by VT 

NMR is the splitting of the two equivalent apical and four equivalent basal COs when the 

Fe(CO)3 rotation ceases. 

Fluxional Processes of NH 

The 13C NMR spectrum of NH at room temperature in the CO region reveals a single 13C 

resonance at δ = 208.3 ppm for NH, Figure IV-4, indicating both Fe(CO)3 units are freely 

rotating and the chair/boat interconversion is making both Fe(CO)3 rotors equivalent. 

Upon cooling to 0 °C, the single peak separates into two resonances that integrate as three 

carbons each. At -60 °C the 13CO resonances have split into three , observed at δ = 208.3, 

208.2, and 206.8 ppm with relative intensities of three carbons at δ = 208.3, one carbon at 

δ = 208.2 and two carbons at 206.8. Four resonances are seen at -80 °C, which have 

relative intensities of 2:1:1:2.  At this temperature, the apical and basal COs, both under  
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Figure IV-4. Variable temperature 13C NMR spectra at 500 MHz in CD2Cl2 of NH in the 
low-field CO region with depiction of the fluxional processes at the various temperatures, 
reproduced with permission.182 
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and away from the bridgehead are distinct, indicating that all fluxional processes have 

ceased.  This is shown in Figure IV-4, reproduced with permission from our paper.182 

The computational investigation of the fluxional processes of NH located two ground state 

and five transition state structures, the greatest number for the series of (μ-SRS)[Fe(CO)3]2 

complexes.  The two ground state structures have the expected structure of the two 

FeS2C2N metallacycles, with one iron in the chair conformation and the other iron in the 

boat conformation. The six carbonyl ligands are in the “all terminal” geometry, with the 

only significant difference of the two structures being the position of the N-H hydrogen.   

If the hydrogen is in an axial position of the FeS2C2N metallacycle, pointed “up” away the 

iron atoms, the structure NHa’ is 3.4 - 4.7 kcal/mol higher in energy than if the hydrogen 

is axial, pointed “down” towards the iron atoms, NHa”, Figure IV-5.  The lowest energy 

isomer NHa” is set as 0.0 kcal/mol, with all other structure energies reported relative to it.  

Of the five transition states located, four are the transition states of the rotations of the 

Fe(CO)3 moiety in which the iron is in the boat conformation, under the NH bridgehead, 

or in the chair conformation, away from the bridgehead.  In both structures, the N-H may 

be either axial or equatorial.  If the N-H is axial, Figure IV-5 (right side), there is a 

substantial difference in the rotation barrier of the two irons.  The transition state  
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corresponding to the rotation of the iron in the boat conformation, NHb”, is the lowest in 

energy at 9.5 – 12.9 kcal/mol, while the transition state structure corresponding to the chair 

Figure IV-5. Calculated structures of the all-terminal ground states of NH with the N-
H in the equatorial and axial positions, NHa’ and NHa” respectively, and the transition 
states of the rotation of the iron in the boat conformation, NHb’ and NHb”, the rotation 
of the iron in the chair conformation, NHc’ and NHc”, and the ring flip, NHf, with free 
energies of the calculation with the TPSSTPSS functional reported. 
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conformation, NHc”, is higher in energy at 12.0 – 16.0 kcal/mol.  If the N-H is equatorial, 

both iron units have a higher barrier to rotation, similar to each other at 15.8 – 17.9 

kcal/mol for the boat conformation, NHb’, and 15.7 – 17.9 for the chair conformation, 

NHc’, Figure IV-5 (left side).   

The fifth calculated transition state structure corresponds to the chair/boat interconversion, 

in which the C2S2 and C2N planes are coplanar as the bridgehead moves from one side to 

the other.  In this transition state geometry, the bridgehead amine remains pyramidal with 

amine inversion occurring either before or after the ring flip, Figure IV-5 (bottom).  This 

final transition state was calculated to be 14.0 – 15.1 kcal/mol.  Because the two rotational 

transition states and the ground state all containing the N-H in the axial position are higher 

in energy than their equatorial counterparts, they are not the most energetically preferred 

route to Fe(CO)3 rotation.  Thus, the chair/boat interconversion is predicted to be the 

highest energy process observed.  This is in agreement with the split of the single NMR 

resonance observed at room temperature into two peaks of equal intensity at 0 °C.  The 

two Fe(CO)3 units are still rotating at -30 °C but because the bridgehead is locked on one 

side, the two rotors are slightly different, resulting in two NMR resonances of equal 

intensity, one for each Fe(CO)3 rotor.  The next highest energy process is the rotation of 

the chair iron, which corresponds to the splitting of a single three carbon peak into a 2:1 

ratio at -60 °C.  At this temperature, the only the Fe(CO)3 moiety under the NH bridgehead 

continues to rotate.  This rotation is the lowest energy process, but upon cooling NH to -

80 °C, this motion is also frozen out. 
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Fluxional Processes of NMe 

The 13C NMR spectrum of NMe at room temperature reveals a single resonance at δ = 

208.4 ppm that, upon cooling to -40 °C, splits in a manner indicating a distinction in the 

two Fe(CO)3 units, Figure IV-5 (A).  However, unlike NH, which showed two signals of 

equal intensity, cooling the NMe sample reveals that the higher field resonances become 

distinct between -40 and -50 °C.  In contrast the broad lower field resonance does not split 

apart, collapsing into the base line, until -80 °C. The resonances at δ = 208.0 and 207.1 

ppm have relative intensities of 2:1, with the third peak having a relative intensity of 3. 

This may be seen in Figure IV-6 (A), reproduced with permission from reference 34.  This 

indicates that the rotation of one Fe(CO)3 unit has ceased at the higher temperature, ca. -

45 °C, while the other Fe(CO)3 unit has a much lower rotation  barrier , and remains in 

motion until cooled to temperatures lower than -80 °C. The sample of NMe could be 

further cooled in the solvent CDFCl2 to temperatures as low as -120 °C.  At that 

temperature, four 13C resonances are seen at δ = 209.5, 208.4, 207.7, and 207.5 ppm, 

indicating that both Fe(CO)3 units have ceased rotation.   

The calculated ground state of NMe corresponds to the X-ray crystal structure in which 

the N-CH3 is equatorial, NMea’, Figure IV-7.96  The rotation of the iron in the boat 

conformation results in two possible transition states.  The first, NMeb’, in which the N-

CH3 is equatorial, has a higher energy, 11.4 – 15.6 kcal/mol, while the second, NMeb”, in 

which the amine has inverted, has a lower energy, 6.6 – 11.6 kcal/mol, putting the methyl 

group in an axial position over the open site.  In the ground state, the N-CH3 inversion 
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barrier corresponding to the change from equatorial to axial, was found to be 1.1 kcal/mol, 

making this lower energy rotation easily accessible.  A transition state for the rotation of 

the iron in the chair configuration was only located with the aminomethyl group in the 

equatorial position. NMec’, at 10.9 – 14.8 kcal/mol.  The transition state for final fluxional 

process, the chair/boat interconversion, NMef, was located at a similar energy, 10.4 – 12.6 

Figure IV-6. Variable temperature 13C NMR spectra at 500 MHz in CD2Cl2 in the low-
field CO region (A) NMe,  (B) NtBu, and (C) pdt.182 
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kcal/mol.  Thus, the Fe(CO)3 rotation of one of the irons ceases at the same temperature 

as the ring flip, resulting in the single resonance splitting into three peaks concurrently as 

the NMR sample was cooled.  This makes the NMR peaks with an intensity of 2:1 the 

basal and apical COs, respectively, of the iron in the chair conformation. The third peak 

is the Fe(CO)3 unit under the N-CH3 bridgehead, which is only split into two distinct 

Figure IV-7. Calculated structures of the all-terminal ground state of NMe with the N-CH3 in 
the equatorial position, NMea’, and the transition states of the rotation of the iron in the boat 
conformation, NMeb’ and NMeb”, the rotation of the iron in the chair conformation, NMec’, and 
the ring flip, NMef, with free energies of the calculation with the TPSSTPSS functional 
reported. 
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resonances at -120 °C as the low energy process for apical/basal site exchange is frozen 

out. 

Fluxional Processes of NtBu 

The single 13C CO resonance of NtBu at 25 °C, Figure IV-6 (B), broadens and collapses 

upon cooling to -30 °C.  In a similar manner as observed with the NMe, the NMR spectrum 

at temperatures -40 °C and below shows three sharp resonances at δ = 209.3, 207.8, and 

206.8 ppm, which integrate in a 2:3:1 pattern.  This is consistent with the possibility that 

one Fe(CO)3 unit is fixed while the other is still in flux, as is observed with NMe. 

However, as all three resonances remain sharp, with no hint of additional coalescence 

events even at temperatures as low as -80 °C, there is a second possibility.   It may be that 

the fluxional processes all stop at the same temperature and that the NMR resonance of 

the apical CO of one iron overlaps with the basal COs of the other.  

Computational investigation of NtBu found a single ground state, NtBua, and three 

transition states, one for each Fe(CO)3 rotation as well as one for the ring flip, Figure IV-

8.  In all four structures, the bridgehead amine is in a pyramidal geometry with the tert-

butyl group in the equatorial position, in agreement with the crystal structure.  Attempts 

to optimize the all-terminal CO ground state or either bridging CO transition state with an 

axial tert-butyl group always resulted in an amine inversion, generating the structure with 
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an equatorial tert-butyl.  If the bridgehead is forced into the axial position, pointed towards 

the Fe(CO)3 unit, there is no way to position the carbonyls such that they are not highly 

destabilized by the steric bulk of the tert-butyl group  The transition state for the rotation 

Figure IV-8. Calculated structures of the all-terminal ground 
state of NtBu, NtBua, and the transition states of the rotation of 
the iron in the boat conformation, NtBub, the rotation of the iron 
in the chair conformation, NtBuc, and the ring flip, NtBuf, with 
free energies of the calculation with the TPSSTPSS functional 
reported. 
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of the Fe(CO)3 unit under the bridgehead, the iron in the boat configuration, NtBub, was 

found to be 10.5 – 16.9 kcal/mol.  The rotation of the other Fe(CO)3 moiety, NtBuc, was 

found to have a higher transition state energy, at 12.0 – 15.6 kcal/mol.  The transition state 

of the ring flip was calculated to be at a slightly lower energy than the Fe(CO)3 rotations, 

with NtBuf at 10.4 – 12.6 kcal/mol.   

In the previous examples, NH and NMe, the difference in the energy barriers to rotation 

of the Fe(CO)3 units, distinguished by the chair and boat conformations of the irons, 

resulted in two different coalescence events as the two sides of the molecule ceased 

rotation at different temperatures. However, experimental results from NMR spectroscopy 

clearly show a single coalescence event, Figure IV-6 (B).  This apparent discrepancy can 

be accounted for by considering all of the fluxional processes of the NtBu molecule.  With 

sufficient energy the NtBu molecule is in constant flux, as is observed at room 

temperature, with three fluxional processes making all six carbonyls equivalent at the 

NMR timescale.  Upon cooling to the point that the rotation of the Fe(CO)3 unit away 

from the bridgehead has ceased, there are still two fluxional processes available to the 

NtBu.  If the rotation of the Fe(CO)3 unit under the bridgehead is still possible, there is 

enough energy to flip the bridgehead as well.  This chair/boat interconversion allows both 

iron atoms to spend some time in the boat conformation, which allows both Fe(CO)3 units 

to rotate on the NMR timescale.  With the lower energy rotation and the ring flip ceasing 

at roughly the same temperature, the single room temperature resonance splits into all four 

peaks at the same time as the apical and basal COs are frozen out and the Fe(CO)3 units 

are distinguished by the bridgehead.  That only three peaks are visible, in a 2:3:1 ratio, is 
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happenstance as the apical CO from one iron has the same chemical shift as the basal COs 

from the other. 

Fluxional Processes of pdt and dmpdt 

The Fe(CO)3 rotors of pdt also cease rotation at the same temperature, as the single room 

temperature resonance broadens and collapses at -60 °C and reforms into four distinct 

resonances at -80 °C, Figure IV-5 (C).  The computational investigation of pdt was 

simplified by the presence of a methylene carbon at the bridgehead rather than an amine, 

eliminating the possibility of bridgehead inversion.  Thus a single ground state structure, 

pdta, and three transition states that correspond to the rotation of the iron in the boat 

configuration, pdtb, the rotation of the iron in the chair conformation, pdtc, and the 

chair/boat interconversion, pdtf, were located, Figure IV-9.  Like the NtBu Fe(CO)3 

rotors, the rotation of the boat iron was found to be easier, with a calculated energy of pdtb 

at 9.6 – 13.0 kcal/mol, than the rotation of the chair iron, with pdtc calculated to be 12.4 

– 16.1 kcal/mol.  Also like the NtBu, the ring flip was found to have a transition state, 

pdtf, with a lower energy than the rotations, 8.8 – 10.7 kcal/mol.  The much larger 

difference in the energies of the two rotors of pdt makes it clear that so long as the 

bridgehead can continue to flip, both sides continue to rotate until both the chair and boat 
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rotations are frozen out.  This leads to two equivalent apical COs and four equivalent basal 

COs, like edt or S-S, until the bridgehead stops flipping.  Once that motion also ends, all 

four NMR peaks may be observed.  For pdt, the second rotation and bridgehead flip are 

Figure IV-9. Calculated structures of the all-terminal ground 
state of pdt, pdta, and the transition states of the rotation of the 
iron in the boat conformation, pdtb, the rotation of the iron in the 
chair conformation, pdtc, and the ring flip, pdtf, with free 
energies of the calculation with the TPSSTPSS functional 
reported. 
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both frozen out at a similar temperature, but the two NMR peaks with an intensity ratio of 

2:4 can just be observed at -60 °C. 

A more obvious example may be seen in the case of dmpdt.  The 13C CO resonance of 

dmpdt splits into two at low temperature, with an integration of 2:4.  As the calculations 

Figure IV-10. Calculated structures of the all-terminal 
ground state of dmpdt, dmpdta, and the transition states of 
the rotation of the iron in the boat conformation, dmpdtb, the 
rotation of the iron in the chair conformation, dmpdtc, and the 
ring flip, dmpdtf, with free energies of the calculation with 
the TPSSTPSS functional reported. 
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show, with the same single ground state, dmpdta, and three transition states as pdt, one 

rotor (the iron in the chair configuration) has a much higher barrier, with dmpdtc  

calculated to be 13.3 – 17.0 kcal/mol, than the other, Figure IV-10.  The calculated 

transition state for the iron in the boat conformation, dmpdtb, is only 6.6 – 9.6 kcal/mol.  

Thus, at a sufficiently low temperature (less than -87 °C), both irons will stop rotating and 

only the ring flip, with a transition state, dmpdtf, calculated to be 5.2 – 6.1 kcal/mol, 

continues.  Therefore, the two NMR resonances are assigned to the apical and basal COs 

on both Fe(CO)3 units, as the chair/boat interconversion barrier in the dmpdt is too low 

to differentiate the two Fe(CO)3 units, even cooling the complex to -120 °C.197  

Effect of the Functional on Structure and Energy 

There is little difference in the optimized structures of the (μ-SRS)[Fe(CO)3]2 complexes 

in either the ground or excited states.  As a comparison, MPW1PW91 single point 

calculations were performed using the structures of the energy barrier to rotation of the 

Fe(CO)3 unit that had been optimized with the B3LYP functional, and they were less than 

0.2 kcal/mol different than the structures optimized with the MPW1PW91.  The energy 

barrier of the ring flip was similar for each functional, typically with differences of less 

than 1 kcal/mol, with a maximum difference between functionals of 2.2 kcal/mol. The 

four functionals formed a trend, in which the TPSSTPSS functional was usually the lowest 

in energy and the ωB97xD functional was the highest.  The B3LYP and MPW1PW91 

functionals reported energies within 0.5 kcal/mol of each other and tended to be between 

the other functionals in energy.  However, the TPSSTPSS functional did not always report 
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the lowest energy, the NtBu and NH complexes were exceptions.  In fact, the TPSSTPSS 

functional reported an energy barrier ~1 kcal/mol higher than the other three functions for 

the NH complex.  This complex was notable for being the only one to have all four 

functionals report greater energy barriers than the NMR spectroscopy experiment. When 

the five complexes with an FeS2C2X (X = NR, CR2) metallacycle are ranked in order of 

increasing ring flip energy, the overall computational results are in agreement with the 

experimental data: dmpdt < pdt < NMe ≈ NtBu < NH.182 

The energy barrier of the rotation of the Fe(CO)3 unit as calculated by each functional 

followed a trend similar to the ring flip.  The TPSSTPSS functional was consistently lower 

in energy than the B3LYP and MPW1PW91 functionals, which were energetically close 

to each other, with the B3LYP functional being between 0.2 and 1.1 kcal/mol higher in 

energy.  The ωB97xD functional was the highest in energy for all seven complexes 

investigated.  The difference between each functional is best seen in the degree of 

overestimation of each rotation barrier.  The TPSSTPSS functional was a close match to 

the experimental energy values, typically within 1 kcal/mol.  The B3LYP and 

MPW1PW91 functionals consistently overestimated the experimental energies by 1 – 2 

kcal/mol, while the ωB97xD functional reported rotation barrier some 2.5 – 3.5 kcal/mol 

higher than the experimental data.  These errors were systemic in nature, and a correction 

factor of 1.5 kcal/mol for the B3LYP and MPW1PW91 energies and 3.0 kcal/mol for the 

ωB97xD energies place all four functionals in close agreement with the energies obtained 

by NMR spectroscopy.   
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When ranked by increasing energy barriers to Fe(CO)3 rotation, all four functionals 

predicted the order obtained experimentally with a single exception.  The B3LYP 

functional reported the energy of the rotation of the edt complex, calculated to be 14.1 

kcal/mol, as lower than the rotation of the NtBu complex, calculated to be 14.4 kcal/mol, 

when the experimental data and the three other functionals are in agreement that the edt 

complex has a higher barrier of rotation.  That all four functionals were essentially correct 

in ranking the energy barriers of the series of (μ-SRS)[Fe(CO)3]2 complexes indicates that 

the fluxional processes of these complexes are well-described by Density Functional 

Theory. 

  

Conclusions   

The Density Functional Theory study of the intramolecular fluxional processes of a series 

of (μ-SRS)[Fe(CO)3]2 complexes was one portion of a paper in which these compounds 

were also investigated by VT NMR spectroscopy and cyclic voltammetry.182  The goal 

was to answer the question of how might the bridging ligand affect their fluxional 

processes and proton reduction capacities through changing the bridgehead atom to carbon 

or nitrogen or increasing the steric bulk at that position.  The calculations I provided 

reproduced the structures of the ground states of each complex as well as the transition 

states that correspond to each fluxional process.  The relative energies of those transition 

states provided a computational basis for confirming the assignment of the energy barriers 

of those processes as determined by VT NMR spectroscopy.   
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By utilizing four different functionals,190 I was able to determine that the choice of 

functional, while important, did not have an effect on the ability of DFT to match the 

experimental energy barrier trends across the series of complexes.  The major difference 

in the functionals was seen to be a systematic offset in the energy of the rotational barrier 

in all of the complexes.  Finally, with the positive correlation between experimental and 

calculated numbers, I was able to provide estimations of the energies of processes that 

could not be observed by NMR spectroscopy, such as the ring flip of dmpdt or the rotation 

barriers of the Fe(CO)3 units in which the iron is in the chair conformation of the FeS2C2X 

metallacycle, and clarify NMR spectroscopic results that were ambiguous, such as the 

overlapping resonances of the NtBu complex. 
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CHAPTER V 

A DENSITY FUNCTIONAL THEORY INVESTIGATION OF THE 

MECHANISM OF CARBON MONOXIDE INDUCED REDUCTIVE 

ELIMINATION OF A DISULFIDE IN AN N-HETEROCYCLIC 

CARBENE (NHC) / THIOLATE DINITROSYL IRON COMPLEX 

(DNIC)* 

 

Preface 

The chemistry of dinitrosyl iron complexes (DNICs) has been an area of interest to the 

Darensbourg research group in the past several years.200-203  Recently, we have taken our 

investigations in a more fundamental direction, prompting a study of the processes 

involved in the changes to the reduction level of these complexes.  When the reduction of 

an oxidized DNIC was found to be induced by CO(g), members of the Darensbourg group 

began a study of the kinetics of the reaction.  With my own interests in computational 

chemistry and my investigations of complexes containing iron-bound carbon monoxide, 

nitric oxide, and cyanide; Chapter III, I joined the DNIC effort.  Through the use of DFT 

a plausible mechanism for this unusual reaction was derived.  My contributions are 

described in the following co-authored manuscript: “Carbon Monoxide Induced Reductive 

                                                           
*This chapter is reproduced in part in permission from Pulukkody, R.†; Kyran, S. J.†; Bethel, R. D.†; Hsieh, 
C.-H.; Hall, M. B.; Darensbourg, D. J.; Darensbourg, M. Y.; Carbon Monoxide Induced Reductive 
Elimination of Disulfide in an N-Heterocyclic Carbene (NHC)/Thiolate Dinitrosyl Inron Complex (DNIC). 
Journal of the American Chemical Society, 135, 8423-8430 (2013). Copyright 2013 ACS Publications 
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Elimination of Disulfide in an N-Heterocyclic Carbene (NHC)/ Thiolate Dinitrosyl Iron 

Complex (DNIC)” Pulukkody, R.†; Kyran, S. J.†; Bethel, R. D.†; Hsieh, C.-H.; Hall, M. 

B.; Darensbourg, D. J.; Darensbourg, M. Y.; Journal of the American Chemical Society, 

135, 8423-8430 (2013).204  

 

Introduction 

An Introduction to Dinitrosyl Iron Complexes (DNICs) 

Though it has been considered a toxic pollutant for many years, nitric oxide has been more 

recently found to play a key role in biochemistry as a small molecule messenger.205,206  

The functions of NO in humans may be regulatory, as with its ability to regulate of blood 

pressure and smooth muscle relaxation as well as protective, as it is known to take part in 

an immune response.  Nitric oxide is produced in vivo by a family of enzymes known as 

Nitric Oxide Synthase (NOS), which convert L-arginine to L-citrulline, releasing an NO 

molecule.206  However, as NO is a radical whose lifetime in the cellular environment is on 

the order of 2 ms to 2 s, the transport and storage of this molecule are of interest.207  

It has been observed that the presence of NO can degrade iron-sulfur clusters in proteins.208  

One product of this degradation is a protein-bound Fe(NO)2 unit, the dinitrosyl iron 

complex (DNIC).209  These complexes were first observed in the 1960s, when the livers 

and other organs of rats that had been fed carcinogens were found to have a characteristic 

signal in the EPR spectrum at g = 2.03.210,211  This signal is ubiquitous for DNICs with S 
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= ½.  However, in addition to the multiple redox levels possible for iron, both the oxidized 

NO+, nitrosyl, species (isoelectronic with CO) and reduced NO-, nitroxyl, species 

(isoelectronic with O2), as well as the neutral ·NO radical, are readily accessible.  As the 

redox levels of iron and NO are similar, orbital interactions lead to “non-innocence” of 

the NO ligand and thus determination of the oxidation states of the components of the 

Fe(NO)2 unit is non-trivial.  In an effort to allow for the simple identification and 

classification of the overall redox level of metal complexes with nitric oxide ligands, 

Figure V-1.  Depiction of (A)214 anion and (B)200 neutral 
oxidized dinitrosyl iron complexes that are EPR active as well 
as the EPR silent, reduced, (C)215 anionic and (D)200 neutral 
DNICs.  
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Enemark and Feltham devised a notation system in which the sum of metal d electrons 

and NO π* electrons is written as a superscript outside a pair of braces that contain the 

M(NO)x unit in question, where M is the metal and x is the number of NO ligands.176  In 

this scheme, the S = ½ DNIC is written {Fe(NO)2}9.  Depending on the other ligands 

coordinated to the iron, this complex may be reduced to the S = 0, {Fe(NO)2}10, species. 

In the past decade, numerous small molecule dinitrosyl iron212,213 complexes have been 

synthesized in an effort to understand the chemistry of this system.  These complexes have 

been synthesized in both the oxidized and reduced states, as seen on the left and right 

respectively of Figure V-1.200,214,215  

Summary of the Paper 

Reduction of the oxidized, {Fe(NO)2}9, DNIC in the form (RS)2Fe(NO)2
- to the 

{Fe(NO)2}10 species is known to require harsh conditions, with both a strong reducing 

agent, such as sodium-biphenyl, and a good incoming nucleophile, such as phosphine.  In 

Figure V-2. Conversion of oxidized (NHC)(SR)Fe(NO)2, 1, to (NHC)(CO)Fe(NO)2, 2, in the 
presence of CO 
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contrast, the reduction of (NHC)(SR)Fe(NO)2, 1, NHC = 1,3-bis(2,4,6-

trimethylphenyl)imidazolidin-2-ylidene, SR = thiophenyl, to (NHC)(CO)Fe(NO)2, 2, was 

discovered by Chung-Hung Hsieh and Randara Pulukkody to proceed without external 

reductant, requiring only the presence of CO(g) as the incoming ligand and  generating 

phenyl disulfide as the oxidized byproduct, Figure V-2.204  As the rate of conversion of 1 

to 2 is amenable to kinetic monitoring, a series of measurements were performed by 

Samuel Kyran, in a toluene solution via in situ IR, Figure V-3.  Under a constant 

Figure V-3. Three-dimensional stacked plot of the reaction of complex 1 with 
CO(g) at 333 K in toluene, taken with permission from our paper204 and overall 
rate expression for the production of 2 
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concentration of CO(g), the reaction was found to be first order in the DNIC starting 

material, 1.  By varying the pressure of CO(g), the reaction was monitored at various levels 

of CO concentration, with the finding that the formation of 2 is first order in CO as well, 

giving an overall bimolecular rate expression, first order in both CO and DNIC, Figure V-

3.  The activation parameters were determined by Eyring analysis and found to have values 

for ΔHǂ of +7.80 ± 0.16 kcal/mol and ΔSǂ of -45.0± 0.5 e.u., making ΔGǂ +21.2 ± 0.2 

kcal/mol at 298.15 K.  With a small, positive enthalpy of activation and a large, negative 

entropy of activation, the Eyring analysis is indicative of an associative mechanism, 

consistent with the second order rate law. 

Preliminary investigations of the reduction of 1 have been performed by Randara 

Pulukkody, using better donor ligands:  triphenylphosphine, PPh3; trimethylphosphine, 

PMe3; and trimethylphosphine, P(OMe)3.204  Triphenylphosphine was not observed to 

react with 1, likely due to its excessive steric bulk, leading us to investigate the smaller 

phosphine and phosphite reagents.  In an unexpected development, the strongest σ-donor 

ligand, PMe3, was the slowest to react with 1, with the rate of reaction with P(OMe)3, a 

ligand intermediate in σ-donor strength, falling between the phosphine and carbonyl 

reaction rates.  The CO-induced reduction of 1 was then investigated by DFT in an effort 

to determine a mechanism consistent with both the second order rate law and Eyring 
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activation parameters.  This mechanism should also explain the inverse relationship 

between the rate of reaction and the σ donor strength of the incoming ligand. 

Figure V-4.  Structures derived by DFT and explored as intermediates in CO addition to 
complex 1.  In DFT study, R = R’ = Me; in kinetics study, R = Ph, R’ = Mes. 
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Computational Investigation of the Mechanism of CO Induced Reduction of 1 

Density Functional Theory was utilized in the study of the mechanism of the CO-induced 

reduction of 1.  As described in Chapter II, all calculations were performed using the BP86 

functional164,165 with the 6-311+G(d,p) basis set156,157 on all atoms.  These were selected 

for use in this study for their effectiveness at modeling DNICs, as determined by Brothers, 

et al.166 The strength of DFT is the ability to locate the structures of all intermediates and 

transition states along a presumed reaction profile.  However, in order to certain that the 

mechanism is correct, all possible reaction pathways must be analyzed.  As in 

experimental studies of a mechanism, the exact mechanism can never be known with 

absolute confidence; a mechanism may never be proven, it can only be disproved.  In fact, 

two mechanistic pathways, similar in energy, were identified in which the oxidized DNIC 

first attacks a CO molecule, generating an intermediate structure with a five-coordinate 

iron.  This was followed by either homolytic Fe – S bond cleavage or thiolate migration 

onto the carbonyl ligand, then homolytic C – S bond cleavage, Figure V-4.  In both 

mechanisms, the product 2 is generated along with a thiyl radical, two of which must 

combine to form a disulfide.  The calculated energies are all reported relative to 1 and a 

free CO throughout this chapter, with the electronic, free, and enthalpic energies of all 

stable and pseudostable complexes, described below, provided in Table V-1.  The relevant 

metric parameters of the calculated structures along the reaction profile are provided in 

Table V-2. 
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Results and Discussion 

A Comparison of the Experimental and Calculated Structures of (NHC)(SR)Fe(NO)2, 1, 

and (NHC)(CO)Fe(NO)2, 2. 

The complexes (NHC)(SR)Fe(NO)2, 1, and (NHC)(CO)Fe(NO)2, 2, where NHC = sIMes 

(1,3-bis(2,4,6-trimethylphenyl)imidazolidin-2-ylidene) and SR = SPh (phenylthiolate) for 

Table V-1. Calculated electronic energy, free energy, and enthalpies of 
converged transition states and minima in Figure V-3 

aAll energies relative to the sum of 1 and a free CO ligand, which was defined 
as 0.0 kcal/mol. bIntermediates 4 and 5 were only located by freezing the S-N 
bond of the RSNO as described in the text. 
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the experimental structure, were optimized in the gas phase, both as the full experimental 

structures and in a truncated form, where NHC = sIMe (1,3-dimethylimidazolidin-2-

ylidene) and SR = SMe (methylthiolate).  A comparison of the metric parameters of the 

full and truncated optimized geometries with the X-ray crystal structures of 1 and 2 shows 

that there is little difference in the iron coordination environment between the full and 

truncated structures, Table V-1.204  As observed by Brothers, et al. in a DFT study that 

benchmarked a series of functionals and basis sets with multiple DNICs, the structures 

optimized with the BP86/6-311+G(d,p) are consistent with the experimental structures.166  

However, the truncation of the mesityl groups of the NHC and phenyl group of the thiolate 

reduces the number of basis functions by over 50%, making the calculations much more 

efficient.  The truncated structure does show that the Fe – N – O angles of the oxidized 

DNIC, 1, are slightly more bent, 171.9° and 169.6°, than the same angles of the reduced 

DNIC, 2, 171.4° and 174.9°, and in both instances are oriented towards each other in the 

“attracto” conformation seen in nearly all DNICs, while important distances such as the  
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Fe – S, Fe – C(NHC), and Fe – C(CO) bonds show only minor deviations between the 

calculated and experimental structures.  The greatest difference between the truncated and 

full calculated structures are the C(NHC) – Fe – S and C(NHC) – Fe – C(CO) angles, 

which are several degrees larger in the truncated structure (102.6° vs. 106.4° and 97.3° vs. 

99.2° respectively), likely due to the loss of steric bulk that would otherwise push the other 

ligands towards each other and away from the NHC.  However, while the mesityl groups 

of the sIMes in the experimental structure shield the iron center from incoming ligands on 

one side, the actual steric bulk is more than 3.5 Å distant from the iron, reducing the 

ligand’s impact on coordinated ligand geometries to minimal.  In addition to the subtle 

differences in coordination geometry, there is a change from an aryl thiolate to an alkyl 

thiolate in the truncated structure. This was examined experimentally. Unpublished results 

by Randara Pulukkody have shown that the mercaptoethane derivative of 1, 

(sIMes)(SCH2CH3)Fe(NO)2, also reacts with CO(g) to generate the reduced product 2.  

Finally, the Fe(NO)2 moiety is well-known to be redox non-innocent with the infrared 

stretching frequencies of the diatomic ligands acting as a sensitive reporter on the electron 

density in the Fe-NO π-system.  As seen in Table V-3, the calculated ν(NO) bands of 1 

are a near perfect match to the experimental data, while the calculated ν(CO) and ν(NO) 

bands of 2 are within the expected range, < 25 cm-1 from the experimental values.  This 

provides evidence that the DFT calculations accurately reproduce the overall electronic 

structure of the DNIC complexes in this study. 
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Investigation of the Mechanism of the Reduction of the DNIC: Possible Intermediates 

Prior to Fe-CO Bond Formation 

Although the rate determining step was experimentally determined to be first order in both 

CO and DNIC, Figure V-3, it was proposed that a site may be opened up by a process in 

which an iron-bound S-nitrosothiol (Fe-RSNO) exists in an equilibrium with the starting 

material, 1.  This would open up a site on the 17-electron tetrahedral iron and, depending 

on the route by with the RSNO is produced, could yield either the N-bound or S-bound 

forms.  Therefore, both nitrosyl insertion into the Fe – S bond, forming the N-bound RSNO 

(intermediate 4), and nitrosyl migration onto the thiolate, producing the S-bound RSNO 

(intermediate 5), were examined, Figure V-5. Although the structures shown are the most 

stable calculated forms of each, neither is stable with respect to the starting material 1, and 

Figure V-5. Calculated structures of the three-coordinate iron 
intermediates formed by NO insertion into the Fe-SR bond (4) 
or NO migration onto the SR (5) 
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will revert to 1 upon reoptimization unless the N-S distance of the RSNO is constrained.  

These intermediates are far too high in energy, more than 36 kcal/mol when compared to 

1, and thus they are not reasonably in the reaction pathway.   

A third possiblity considered was thiolate S/CO adduct formation, intermediate 8, 

followed by CO insertion between the sulfur and iron.  However, positioning a CO at the 

sulfur of the Fe – SR produced niether S-CO nor Fe-C(=O)SR interactions and no stable 

or constrained minimum could be located.   

Five-Coordinate Intermediates Derived from Fe-CO Bond Formation 

With the failure to locate an intermediate structure in an equilibrium with 1, which may 

be more easily attacked by the poor nucleophile CO, direct coordination of the CO to Fe 

resulting in a five-coordinate 19 electron iron was examined.  A trigonal bipyramidal 

Figure V-6. Calculated structures of the two lowest energy 
five-coordinate iron intermediates formed by CO addition 
across from the SR (3’) or NHC (3”) 
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complex of the formula ML2L’L’’L’’’ could exist in seven possible geometric isomers.  

Optimizations of all seven possibilities found five stable isomers with similar free 

energies, all within 3 kcal/mol of each other, Table V-4.  The two isomers with any of the 

π-acidic ligands (NO or CO) in both axial positions underwent Berry pseudorotations to 

generate lower energy isomers.  The most stable isomer of 3, 3’, Figure V-6,  has the 

carbonyl and thiolate ligands in the axial position of a largely trigonal bipyramidal 

structure, τ = 0.75.  As expected, the Fe – C – O angle is linear, 174.7°, but the two Fe – 

N – O angles are quite significantly bent, 158.2° and 145.9°.  This bending is caused by 

the excess electron density on the 19 electron iron being pushed onto the NO ligands, 

aFree energy is defined with 3’ set to 0 kcal/mol 

Table V-4. Isomers of the five-coordinate intermediate, 3, grouped by axial 
ligands in a TBP structure, which are defined as the longest L-Fe-L angle. 
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reducing them from a more neutral NO· to a more negative NO-.  The increased electron 

density on the iron is also seen in the elongation of the Fe – S bond to 2.346 Å, as well as 

elongations of the Fe – N (NO) bonds, with one increasing by ~0.045 to 1.704 Å and the 

other by ~ 0.10 to 1.760 Å.  Another isomer of 3, 3”, Figure V-6, is only 0.22 kcal/mol 

less stable than 3’.  The geometry of 3” is largely square pyramidal, τ = 0.31, with the CO 

and NHC ligands comprising the largest angle across the iron, in what would be the axial 

positions if the structure were trigonal bipyramidal.  The metric parameters of this 

intermediate are similar to 3’, with a linear Fe – C – O, 178.4°, two significantly bent Fe 

– N – O angles, at 142.8° and 143.3° and elongated Fe – S (2.341 Å) and Fe – N (1.717 

and 1.774 Å) bonds.  The three other isomers of 3 are not significantly higher in energy, 

ranging from 0.85 to 2.75 kcal/mol above 3’.   

Transition States Leading to the Formation of 3’ and 3” 

The search for transition states leading to the formation of 3’ and 3”, [1-3’]ǂ and [1-3”]ǂ 

respectively, was carried out by performing a relaxed coordinate scan along the Fe – 

C(CO) bond, using the appropriate five-coordinate intermediate as a starting geometry.  

By reoptimizing the full structure while elongating the Fe – C bond by 0.1 Å repeatedly, 

a structure was located near the appropriate Fe – C distance for a transition state.  A Berny 

calculation then located the transition states for CO addition to the DNIC, [1-3’]ǂ and [1-

3”]ǂ, Figure V-7.  The addition of a fifth ligand to (NHC)(SR)Fe(NO)2 can occur on any 

of the four faces of the tetrahedron, yielding a structure with the incoming CO ligand in 

an axial position, with the DNIC ligand across from the face of the tetrahedron that was 
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attacked in the other axial position.  Thus, the CO would be anticipated to approach the 

DNIC across from the thiolate, [1-3’]ǂ, or NHC, [1-3”]ǂ, as no stable intermediate could be 

located with both CO and NO in the axial positions of the five-coordinate intermediate.   

Upon examination of the two transition states, an immediately apparent feature is the long 

Fe – C(CO) interaction, 2.452 Å for [1-3’]ǂ and 2.376 Å for [1-3”]ǂ, with a severe bend in 

the Fe – C – O angle, 134.8° and 137.2° respectively.  Such a sharp bend is atypical for 

the usually linear metal-carbonyl bond unless the CO bridges two or more metals, which 

is not the case with these transition states. The reason the CO is bent on its approach to 

the DNIC may be more clearly seen in the SOMO, where the unpaired electron moves 

from the iron, its residence in the starting material, 1, out onto the CO.  As shown in Figure 

V-8, the unpaired electron on the [Fe(NO)2] captures the incoming ligand by donating into 

Figure V-7. Calculated structures of the transition states 
leading to the five-coordinate iron intermediates formed by 
CO addition across from the SR ([1-3’]ǂ) or NHC ([1-3”]ǂ) 
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the π* orbital of the carbonyl, pulling the CO onto the DNIC, where it can then straighten 

and bind in the typical σ-donating, π-withdrawing fashion.    

Another feature of these transition states is the subtle elongation of the Fe – S(SR) bond 

by ca. 0.1 Å, from 2.225 Å in 1 to 2.334 Å in [1-3’]ǂ  and 2.343 Å in [1-3”]ǂ.  At the same 

time, the Fe – N – O angles decrease as the nitrosyl ligands bend to accept more electron 

density.  These transition states are similar in energy, at 19.2 and 19.6 kcal/mol for [1-3’]ǂ 

and [1-3’]ǂ respectively, making them indistinguishable within the accepted accuracy of 

DFT.  With less than 2 kcal/mol difference between the energies of these transition states, 

calculated for the truncated structure, and the experimental ΔGǂ of reaction, as well as the 

Figure V-8. SOMO of [1-3’]ǂ showing overlap of the unpaired 
electron orbital of the [Fe(NO)2] with the π* of the CO. 
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experimental rate law being first order in both CO and DNIC, it is reasonable to assign 

either or both [1-3’]ǂ and [1-3”]ǂ as the transition states for the rate determining step. 

Possible Intermediates Subsequent to Fe-CO Bond Formation 

With the knowledge that the 19 electron, 5-coordinate iron in intermediate 3 is less stable 

than a 17 electron, 4-coordinate iron, another search for iron-bound RSNO was carried 

out.  Two intermediate structures were located, one of which has an N-bound RSNO, 6, 

similar to 4, while the other has an S-bound RSNO, 7, similar to 5, Figure V-9.  The 

differences between these four-coordinate iron-bound RSNOs and the previous, three-

coordinate iron-bound RSNOs is substantial, with a more than 10 kcal/mol stabilization 

Figure V-9. Calculated structures of the four-coordinate iron intermediates formed by NO 
insertion into the Fe-SR bond (6), NO migration onto the SR (7), or CO insertion into the Fe-
SR bond (9) 
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seen when the open site on the iron is occupied by a CO ligand, at 22.6 and 24.0 kcal/mol 

for 6 and 7 respectively.  Despite being much more stable than 4 and 5, these intermediates 

are still too high in energy to be on a productive reaction pathway. 

A third possible intermediate, 9, was examined in which the thiolate is moved from the 

iron to the carbonyl ligand, rather than NO, as in intermediate 6.  The regeneration of the 

tetrahedral geometry about the iron generates a more stable structure, Figures V-4 and V-

9, with a free energy of +10.4 kcal/mol, than the five-coordinate intermediate, 3”, that 

precedes it.  With the removal of the thiolate from the iron core, the DNIC is once more a 

17 electron species, and the excess electron density is removed from the NO ligands, as 

confirmed by the more linear Fe – N – O angles, which have straightened to 172.6° and 

170.9°.  As a consequence of the formation of a thiocarbonyl, the Fe – C(CO) distance 

increases by ~0.1 Å to 1.965 Å and the Fe – C – O angle reduces to 130.6°.  

Transition States Leading to the Formation of 9 and 2 

The search for transition states leading to the formation of 9 was carried out and the lowest 

energy transition state was located by performing a Berny calculation, using the input from 

a relaxed coordinate scan that increased the S – Fe – C (CO) angle of 9 in a step-wise 

manner.  This transition state, [3”-9]ǂ, shows the thiolate migrating from the iron to the 

carbonyl ligand as the iron shifts back to a more tetrahedral coordination geometry, with 

a free energy of 18.4 kcal/mol, Figure V-10.  The Fe – S bond elongates from 2.341 to 

2.455 Å while the S – Fe – C (CO) angle decreases from 86.8° to 64.0°.  As the Fe – N – 
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O angles remain bent, at 143.3° and 142.8°, the NO ligands can still be considered to store 

the excess electron density of a 19-electron iron.   

The transition states leading to the generation of the reaction product, 2, both develop from 

S – X homolytic bond cleavage, where X = C (CO) if the preceding intermediate is 9, and 

where X = Fe if the preceding intermediate is 3’, Figure V-10.  Both transition states were 

located through Berny calculations in which a structure guess was found through relaxed 

coordinate scans along the S – C (CO) and S – Fe bonds for [9-2]ǂ and [3’-2]ǂ, respectively.  

In both transition states, the S – X bond lengthens by ca. 0.3 Å, from 3.114 to 3.379 Å for 

[9-2]ǂ and from 2.346 to 2.745 Å for [3’-2]ǂ.  However, the other structural changes from 

the preceding intermediates, 9 and 3’, are not similar, owing to the differences in the 

intermediates.  The most significant change observed between 9 and [9-2]ǂ is the 

straightening of the Fe – C – O bond, from 130.6° to 162.2° as the thiyl radical leaves the 

 Figure V-10. Calculated structures of the transition states in which the SR migrates from the 
Fe to the CO, [3”-9]ǂ,  The ·SR radical leaves by C – S homolytic bond cleavage, ([9-2]ǂ), and 
the  ·SR radical leaves by Fe – S homolytic bond cleavage, [3’-2]ǂ 
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carbonyl ligand, which is not present in the other transition state.  The S – C bond cleavage 

is only +17.0 kcal/mol, while the S – Fe bond cleavage is significantly higher in energy, 

at +21.2 kcal/mol.  The [3’-2]ǂ transition state more closely resembles the thiolate 

migration in [3”-9]ǂ  than the S – C cleavage transition state, [9-2]ǂ.  The difference in 

energies of these final transition states leading to the synthetic product, 2, indicates that 

the reaction pathway in which the thiolate migrates onto the carbonyl ligand, by way of 

intermediate 9, is favoured by ~1.5 kcal/mol.   

As can be observed in the reaction profiles in Figures V-11 and V-12, the generation of a 

thiyl radical is +9.4 kcal/mol. Although the thermodynamic free energy of this reaction is 

uphill to this point, the coupling of two thiyl radicals to form a stable disulfide produces a 

large driving force (ΔG = −12.8 kcal/mol) for the overall reaction.216  The reaction profiles 

also show that the rate determining step involves the Fe(NO)2 unit as a nucleophile toward 

the empty π* orbitals of CO.  This explains the unusual, inverse dependence of the rate of 

reaction on the strength of the incoming nucleophile that was observed experimentally. 
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Figure V-11. Calculated reaction pathway in which the DNIC reactant, 1, performs a 
nucleophilic attack on a CO molecule, generating a five-coordinate intermediate.  The product, 
2 is formed by homolytic Fe – S bond cleavage.  The energies provided for each minimum and 
transition state structure in black are free energies, while those energies in red and bracketed 
are the enthalpies. 
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Figure V-12. Calculated reaction pathway in which the DNIC reactant, 1, performs a 
nucleophilic attack on a CO molecule, generating a five-coordinate intermediate.  In this 
scheme, the product, 2 is formed by homolytic C – S bond cleavage after thiolate migration on 
the the carbonyl ligand. The energies provided for each minimum and transition state structure 
in black are free energies, while those energies in red and bracketed are the enthalpies. 
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Conclusions 

Density Functional Theory predicted two plausible reaction pathways, by which the CO 

induced reductive elimination of a disulfide might proceed under the mild reaction 

conditions observed.   The experimental activation energy at 298.15 K, determined by 

Eyring analysis is within 2 kcal/mol of both calculated reaction pathways, Figures V-11 

and V-12, while the associative mechanism predicted by experiment, being first order in 

both 1 and CO, was supported.  However, a mechanism in which the Fe(NO)2 unit acts as 

a nucleophile, grabbing the CO by its empty π* orbital, was not anticipated.  That the 

Fe(NO)2 moiety remained intact, even with Fe – C (CO) bond formation leading to a five-

coordinate, 19-electron iron, speaks to the stability of the dinitrosyl iron unit.   

A recent paper from the Darensbourg research group performed further investigation of 

the CO induced reduction of 1, by Hammett analysis.  Varying the phenylthiolate ligand 

by substitution of electron donating or withdrawing groups in the para position allowed 

for kinetics studies to be carried out with subtle perturbations of the electron density at the 

iron.  This study supported the mechanisms I have described above, in which the DNIC 

acts as the nucleophile.  Unfortunately, the differences in the rates of reactions for the 

series of complexes investigated were small, usually within an order of magnitude of the 

rate of reaction of complex 1.  Although attempts to continue computational correlations 

were made, the activation barriers for both [1-3’]ǂ  and [1-3”]ǂ  were too similar in energy 

across the series, ranging from 19.5 to 21.1 kcal/mol, and no clear trend could be 

established.  
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CHAPTER VI 

CONCLUDING REMARKS* 

 

As our knowledge of the properties of hydrogenase enzymes grows, we have found that 

the fundamental chemistry of iron with diatomic ligands continues to find new relevance 

on the cutting edge of research.  The hydrogenase field is easily one of the best examples 

of the explosive growth of bioorganometallic chemistry, with a June 2014 search for the 

term “hydrogenase” using the Scifinder locating more than 3200 references in the past 

five years alone.  A new and rapidly growing field of hydrogenase research is the 

biosynthesis of the [FeFe]-H2ase and its active site.  I have been particularly interested in 

the development of this subject during my graduate studies at Texas A&M, highlighting 

some of the most important discoveries in the field.  That the 2Fe portion of the active site 

is a genuine organometallic species, replete with carbon monoxide, cyanide, and a 

previously biologically unknown dithiolate cofactor, coupled with the impressive rate of 

the [FeFe]-H2ase catalysis of H2 production from mild potential electrons and water as 

proton source,217 has brought global attention of chemists in search of an optimal synthetic 

analogue of the active site, without protein, as prospective molecular electrocatalysts for 

hydrogen production.   

                                                          

 
*This chapter is reproduced in part in permission from Bethel, R. D.; Singleton, M. L.; Darensbourg, M. Y.;  .  
The Modular Assembly of Clusters is the Natural Synthetic Strategy for the Active Site of [FeFe] 
Hydrogenase Angewandte Chemie, International Edition, 49, 8567-8569 (2010). Copyright 2010 Wiley-VCH 
Verlag GmbH& Co. KGaA, Weinheim.
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The presence of those diatomic ligands and their coordination in the active site has raised 

a number of questions: How does nature generate and manage CN- and CO, known to 

poison metal sites if uncontrolled? How is the azadithiolate that connects the irons within 

the 2Fe subsite made? How is the active site assembled? Does a 6Fe supercluster precede 

and extrude the 2Fe subsite, or is the assembly modular? What can the study of synthetic  

analogues inform chemists of the reactivity of the 2Fe subsite?168 

Insights into the first two questions have been provided by recent discoveries from Britt 

and coworkers and their studies of the HydG maturase,75 which utilizes radical SAM (S-

adenosyl methionine) pathways to degrade tyrosine into p-cresol and the diatomic ligands, 

CO and CN-.71,72,218 This is presumed to occur through the generation of a glycyl radical, 

which is observed by freeze-quench EPR spectroscopy to bind to the iron of a second 

4Fe4S cluster in the HydG protein.  This HN=CH-COO moiety is then split into an iron-

bound cyanide and carbonyl through an unknown mechanism.75  Upon addition of another 

CO ligand, thought to require a second tyrosine, an Fe(CO)2(CN) unit has been observed 

by FTIR spectroscopy.  The current hypothesis is that two of these units are linked together 

by a bridging azadithiolate ligand, perhaps provided by the HydE maturase,219,220 

generating an active site precursor similar to the synthetic (μ-adt)[Fe(CO)2(CN)]2
2-.   

Guidance to answers to the next two questions has been provided by Mulder, Peters, 

Broderick et al., and additional biosynthetic and spectroscopic results on the nature of the 

2Fe2S subsite precursor.76,183 They obtained the [FeFe]-H2ase (also known as HydA) 

protein expressed in the absence of the HydE, HydF, and HydG proteins, known to be 

required for the synthesis of the 2Fe subsite and the maturation of the enzyme into active 
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form.76 The immature protein, produced without the accessory proteins and known as 

HydAΔEFG. 

Whereas structures of the native HydA show the full active site H-cluster in the form of 

cysteine-bridged subsites, that is, 4Fe4S(μ-SCys)2Fe, only the 4Fe4S cluster is found in 

HydAΔEFG. The structure of HydAΔEFG shows the already-present 4Fe4S cluster resides 

in a cavity at the end of a channel (8–15 Å wide and 25 Å long; Figure VI-1). Overlays of 

the structures of the immature or apo-protein that lacks the 2Fe subsite with the complete 

or holo-protein show that the channel has closed in the latter, thus wrapping up the 

completed active site. 

Analysis of the channel composition in HydAΔEFG indicates that positive amino acid 

residues (an arginine and two lysines) flank the entrance, thus most likely attracting the 

2Fe subcluster with its negatively charged cyanides; another lysine within the channel is 

purported to form hydrogen bonds to the 2Fe subsite once it is in place as a constituent of 

the H-cluster.76 Yet another clue as to the guidance mechanism is a cysteine near the end 

of the cavity, the sulfur side chain of which is exposed and might be expected to swap out 

with a labile ligand on the 2Fe unit, becoming the bridge between the 4Fe4S and the 2Fe 

subunits. 

Without a doubt, the ligand substitution processes of the (μ-SRS)[Fe2(CO)x(L)6-x] 

complexes that I have performed on the benchtop and investigated in silico, as reported in 

Chapter III, are necessary to the attachment of the 4Fe4S cluster in the apo-HydA enzyme 

to the 2Fe subsite.  My own investigations have found that the displacement of a CO by 
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an incoming ligand, such as what is seen by the attachment of a (μ-adt)[Fe(CO)2(CN)]2
 

unit to the iron-sulfur cluster bound thiolate buried in the HydA enzyme, has shown that 

a nucleophilic ligand will prefer to attack the electron-poor iron site.  If the diiron subunit 

Figure VI-1. This figure, adapted from reference 168 with permission, shows 
the pre-assembled 2Fe organometallic unit as itinserts into apo-HydA. 
Positively charged residues help direct the precursor unit to the already present 
4Fe4S, possibly with assistance of a cysteine sulfur atom within the channel. 
When the 2Fe units bind to the 4Fe4S cluster at the base of the channel, 
completing the H-cluster, the cavity collapses, burying the active site within 
the protein.66  
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is to bind to a thiolate, either the 2Fe unit has been oxidized, allowing for SR/CO 

exchange, or perhaps the Fe-bound thiolate has been sufficiently masked by the electron-

withdrawing iron-sulfur cluster to allow for a more electrophilic attack to occur. 

Indeed, we (Professor Marcetta Darensbourg and I) have highlighted221 the results of 

Fontecave, Happe, and coworkers, who reported in a pair of papers,53,142  the symmetric, 

synthetic (μ-SRS)[Fe(CO)2(CN)]2
2- synthon was found to bind to HydF, the maturase 

thought to act as a scaffold for active site delivery to apo-HydA.  FTIR and EPR 

spectroscopic studies of HydF bound to a series of diiron molecules, varying by the 

bridgehead: CH2, NH, or O, have shown that this protein can carry and deliver the 2Fe site 

analogues to the HydA, completing the biosynthesis and generating an intact [FeFe]-H2ase 

enzyme.53  Although the enzymes with the CH2 and NH bridgeheads were virtually 

indistinguishable by spectroscopy, only the enzyme with the amine in the dithiolate bridge 

was functional in H+ reduction studies, producing H2 at a rate comparable to the native 

enzyme.  An even more recent report has shown that the HydF scaffold may be 

unnecessary for H2ase activation, as the (μ-adt)[Fe(CO)2(CN)]2
2- molecule can bind to and 

activate the apo-HydA enzyme without the need for its so-called “chaperone”.142  That the 

diiron unit, which becomes the 2Fe subunit of the active site, does not require assistance 

to obtain the correct geometry in the active site may be attributed to the fluxional motions 

that I described in Chapter IV.  At room temperature, the Fe(CO)2(CN) moieties are free 

to rotate, but the presence of non-carbonyl ligands may provide a means for the enzyme 

active site to “lock” into the optimal geometry.  This geometry in which the distal iron has 

generated an open site may be achieved through the introduction of a hydrogen bond 
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between the cyanide ligand and an N-H proton from an amino acid lining the active site 

cavity.9 

The implications of this stepwise assembly mechanism are profound for biologists and for 

chemists. Mulder et al. note a similarity between the structural features described above 

and the nitrogenase protein that lacks the FeMo cofactor and the holo-protein.76  This 

could signal that the ability of such proteins to incorporate a pre-existing abiotic catalyst 

could be a wide spread motif in early metalloenzyme development. 

For chemists, the speculation that the original 2Fe subsite was a standalone ancient 

catalyst, recognized by evolving microorganisms as beneficial to their growth and 

prosperity, reinvigorates designs to use synthetic ligands to reproduce the electronic 

environment about the prebiotic iron sulfide catalyst. However, despite reports of more 

than 400 model complexes; none perform the 2H+ + 2e- → H2 catalysis as does the H-

cluster. Is there a requirement for the 4Fe4S cluster to be attached? This feat has been 

demonstrated to be feasible in an elegant synthetic analogue of the full 6Fe cluster;222 

however, with no greater catalytic success.  In another highlight of a recent hydrogenase 

model complex,223 I have shown an example of the progress that has been made in the 

synthesis of complexes that better mimic this function through the inclusion of the redox-

active ligand derived from ferrocene, which Rauchfuss and coworkers have linked to a 

diiron hydrogenase model complex through a phosphine ligand, Figure VI-2.224  With the 

addition of the cis-1,2-bis(diphenylphosphino)ethylene (dppv) ligand, known to promote 

the “rotated” isomeric form upon oxidation of the diiron core, as well as the inclusion of 
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an amine in the bridgehead position of the dithiolate ligand, this model complex has shown 

catalytic H2 oxidation without the massive over-pressurization that previous generations 

Figure VI-2.  In this figure adapted from reference 223, a 
cartoon of the 6Fe, hydrogen producing cluster in the [FeFe]-
hydrogenase is shown with the redox-active 4Fe4S cluster, 
pendent amine, and electron donating cyanide ligands 
indicated (A).47 The bridgehead position in the dithiolate 
cofactor within the 2Fe subsite is replaced by a nitrogen, and a 
bridging carbonyl is inserted between the two iron atoms, 
reflecting the current understanding of the [FeFe]-
Hydrogenase active site. The parent model complex, (μ-
pdt)[Fe(CO)3]2 (B) is modified into a better model of the active 
site40 (C), with key functionalities of the active site modeled as 
indicated by red, blue and green arrows.  
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of model complexes have required. Thus it indeed appears to be the 2Fe subsite that must 

be strategically tuned in electronic and steric properties, both at the metal site where the 

reaction occurs and in the coordination spheres surrounding it.  

The natural approach to the synthesis begins with oxidized iron, possibly from the iron-

sulfur clusters, whereas the synthetic analogues typically use reduced iron in (μ-

SRS)[FeI(CO)3]2 as precursor.  These complexes achieve stable rotated forms in only a 

few cases,109,225,226 which in nearly every instance return to the “unrotated” isomeric form 

on reduction. This suggests that the chemists’ efforts might profitably be directed in 

pursuit of 1) alternative FeFe precursors and 2) supramolecular constructs that will 

collapse around the 2Fe synthetic analogue and maintain it in the rotated form throughout 

its electrocatalytic cycle.  

The role of organometallic-like iron moieties in nature is further emphasized in the 

physiologically significant Fe(NO)2 complexes.  As this unit in its reduced form, 

{Fe(NO)2}10, is isoelectronic with Fe0(CO)x(CN)3-x, the chemistry mediated by complexes 

containing L2Fe(CO)x(CN)3-x or L2Fe(NO)2 can be comparable.  Hence, through studies 

of CO addition to (NHC)(SR)Fe(NO)2 as explored in Chapter V,204 the possibility of an 

associative process giving rise to the displacement of a thiyl radical is relevant to the 

processes observed in the assembly of the hydrogenase enzymes as well as the redox 

processes of DNICs in vivo.    

In conclusion, the role of the chemist in the growing bioorganometallic field is to provide 

insight into the native behavior of the small molecules that are key to the activity of an 
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enzyme or the form in which a more reactive unit may be stored.  My own studies have 

added to our knowledge of the regioselective CO displacement reactions of diiron model 

complexes and their fluxional processes, which may help to explain how this unique 

biological unit is generated, as well as my proposed mechanism for CO induced reductive 

elimination of a thiyl radical by way of a five-coordinate intermediate.  It is my hope that 

these papers may prompt new investigations to continue to explore this rich and growing 

field. 
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