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ABSTRACT 

Simulation games may be used to introduce lean principles to those who are considering 

implementing them. However, they can also function as controlled experiments against 

which to calibrate a computer model and they can even be adapted to serve as the gold 

standard of scientific experimentation, the randomized-controlled trial. Results generated 

from a live playing of the Airplane Game validate an EZStrobe computer-based 

simulation model representing one part of the game. Close alignment of results suggests 

that the computer model will likely be able to accurately predict outcomes from similarly 

structured, real life activities, such as those encountered in a design office or on a 

construction site. 
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INTRODUCTION 

Lean construction methodologies, such as those implementing production schedule 

levelling, pull (kanban), just-in-time delivery, Last Planner™, mistake proofing (poka 

yoke), and continuous improvement, are gaining widespread acceptance within the 

construction industry (e.g., Salem et al. 2006). Case studies suggest that application of 

lean principles can favourably impact a construction project's budget and schedule (e.g., 

Khanzode et al. 2005; Kim et al. 2007; Koerckel and Ballard 2005; Pasqualini and 

Zawislak 2005; Seppanen and Aalto 2005; Simonsson and Emborg 2007). Case studies 

are helpful because they illustrate the application of lean principles to environments for 
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communities of interest, such as design and construction. However, case studies also 

represent microcosms of complexity. Confounding variables exist and case studies 

generally lack key elements of rigorous scientific inquiry, such as the establishment of an 

experimental control group for testing the impact of a single variable. Therefore, it is 

difficult to quantify the relative magnitude of benefits of individual lean principles and 

assess the best order in which to introduce them. Detty and Yingling (2000) argue that 

adopting lean methodologies based on reported experiences of others requires relying on 

general rules of thumb and "faith-based justification." To systematize the quantification 

of lean, they used discrete-event simulation to measure the relative impact of the more 

easily modelled aspects of lean, such as continuous flow, just-in-time inventory 

management, quality at the source, and production schedule levelling. Aspects of lean 

applied to the architecture-engineering-construction industry (AEC), such as the impact 

of variation, multi-tasking, and batching on production system performance have also 

been simulated using computers (Arbulu et al. 2002a, 2002b; Disney et al. 1997; Farrar et 

al. 2004; Tommelein 1999). Pioneering computer simulations of matching problems and 

standardization in a production system for pipe-spool supply and installation (Tommelein 

1998, 2006) demonstrate relationships between both product and process variability on 

buffering and productivity, and show the benefits of using real-time control, aka. "pull" 

(kanban), to improve performance. While computer simulations offer a level of control 

that case studies lack, sceptics may argue it is difficult to know if their output accurately 

represents magnitudes obtained on actual projects. 

To overcome some of these limitations, Tommelein et al. (1999) developed a game to 

simulate the impact of workflow variability on the productivity of construction trades. 

The simulation, called the Parade of Trades Game, introduced random variation by 

rolling a die by hand, but the game could also be played using a computer. The Lean 

Construction Institute has been using a "teaching simulation" from Visionary Products 

Inc. (2007, 2008) and refers to it as the "Airplane Game" to introduce concepts of lean to 

construction project teams. Inspired by the Airplane Game, Sacks et al. (2005, 2007) 

subsequently developed a computer model of a live simulation game called LEAPCON™. 

The LEAPCON™ model helps to investigate the separate and combined influences of 

specific lean interventions and monitor them through time. Independent variables 

included batch size, multi-skilling, pull versus push; and dependent variables such as 

work in progress (WIP), completed units, and cash flow were measured. A number of 

other lean simulation games have been documented by Verma (2003). By their decision 

to use a simulation game as a testing ground for combinations of lean principles, the 

researchers implied their belief that such games can serve as models for real life scenarios. 

More investigations using various lean simulation games, similar to those described 

would enhance our understanding of lean. 

This paper focuses on the Airplane Game. This game tests lean principles in four 

separate phases, adding new principles to each phase successively, and using the prior 

phase as the successive phase's control for most, though not all, of the phases. The game 

tests several lean concepts, including cellular layout versus traditional plant layout, one-

piece flow versus batching, pull versus push, uni-skilling versus multi-skilling, unequal 

load versus load levelling, and quality control. The rules of the game are printed in the 

manufacturer's instruction manual (Visionary Products Inc. 2007). The purpose of this 

paper is to demonstrate the importance of scientific experimentation when attempting to 
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quantify benefits obtained from following lean principles. As an example, this paper 

addresses the lean principles introduced during Phase 2 of the game: (1) one-piece flow 

versus batching, and (2) pull versus push. 

Simulation games have been used to teach principles of operations management (e.g., 

Heineke and Meile 1995), but controlled experimentation is relatively rare in engineering 

project management. This is not true for the physical and social sciences, and in 

engineering at large, where controlled experimentation is commonplace.  

It is the premise of this paper that lean principles can be quantified with greater 

confidence if individual lean principles are modelled using computers and those models 

are calibrated against results from rigorous scientific experimentation using human 

subjects. Testing individual lean principles one at a time, using appropriate controls, 

facilitates a greater understanding of the relative magnitude of impact of each 

intervention in socio-technical systems such as those managed by lean construction 

practitioners. It also enables lean practitioners to determine in which order principles are 

best introduced and which combination of lean principles best serve specific needs. 

Although experimental methodology varies by field and an investigation may be 

limited by real constraints, valid scientific experimentation generally follows five steps: 

(1) formulate a hypothesis, (2) randomly assign participants to the intervention group or 

to the control group, (3) measure the dependent variable(s) in one or both groups, 

(4) introduce the treatment or intervention, and (5) measure the dependent variable(s) 

again (Bernard 2000). A hypothesis is a testable, proposed explanation for an observed 

phenomenon that predicts a relationship between an independent variable and the 

dependent variable(s). A control group is a group against which results from an 

experimental group are compared, such that there are no systematic differences between 

the groups except for the intervention being tested. Systematic bias is avoided by 

randomly assigning individuals being tested to either the experimental group or control 

group (Bernard 2000; Myers and Well 2003). Reproducibility is ensured by 

implementing statistical measures to test the hypothesis. The desired outcome of rigorous 

scientific inquiry is predictability. 

The most rigorous form of experimentation, the randomized, controlled trial (RCT) is 

primarily used in clinical research, but its principles can be applied to social science 

research as well. RCTs are often considered to offer the highest degree of reliability 

(lowest confounding) of results because, in addition to the requisite control group and 

randomization of participants, there is "double blinding" of both experimenters and 

subjects (Leandro 2005; Sandercock 1993). During double blinding, neither 

experimenters nor subjects know whether they are part of either the experimental or 

control group; therefore, they cannot (sub)consciously influence the results—a 

phenomenon sometimes referred to as a "placebo effect." Promotion of the conduct of 

RCTs sits at the heart of The Cochrane Collaboration (Cochrane 2008), an organization 

dedicated to enhancing reliability of research results. While The Cochrane 

Collaboration's expressed mission is improve health care decision-making, their 

methodology can be applied to any field seeking to improve the rigor of its research 

methodology. For example, van der Molen et al. (2007) assessed research on injury 

prevention in the construction industry. 
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METHODOLOGY 

DESCRIPTION OF EXPERIMENT 

An experiment was conducted on Phase 2 of the Airplane Game (Figure 1) as described 

by the manufacturers, but with some modification. According to the instruction manual, 

players should be seated around a table in four assembly workstations, one quality control 

station, and one teardown station. Workstations are arranged in cellular layout, each 

station with a supply of specific Lego
®

 blocks. Completed Lego
®

-block assemblies from 

each workstation are passed, sequentially, to the next workstation for further 

transformation, until a Lego
®
 airplane is assembled, checked for defects, and torn down. 

Figure 2 shows, at the centre, the seating layout as illustrated in the instruction manual. 

Because the purpose of this paper is to show how a lean game might serve as 

controlled experiment against which to calibrate a computer model, only two lean 

principles were tested: the concepts of (1) pull vs. push and (2) batching. The processes 

were modelled using EZStrobe (Martinez 1996, 2001; Martinez and Ioannou 1999) and 

calibrated against a run with actual players. To keep this paper short, only workstations 1 

through 4 are shown in Figure 2. Workstations 5 and 6 for quality control and teardown 

were not included in the live simulation as described, nor added to the computer model. 

We may extend the model at a later time to include additional workstations.  

Playing the game required three types of Lego
®

 blocks: 4-pin, 8-pin, and 16-pin. 

Quantities for each block type were initialized to the amounts available to the researchers 

(the number available will affect how many units can be completed). The blocks were 

then assembled in respective workstations. 

 
Figure 1: First Four Workstations from the "Airplane Game" (Reprinted with permission 

from Visionary Products, Inc. 2008). 

LIVE SIMULATION 

Before beginning the game, a facilitator measured individual workstation assembly times 

with the players. This was done by measuring the time needed for each player to create 5 

assemblies and computing an average time per assembly.  

The experiment should be extended by having different players each make a greater 

number of assemblies, and then characterizing the assembly times by means of a 

probability distribution (such as a beta or PERT distribution). The researchers did not do 

this as they first wanted to deliver proof of concept of the methodology to be followed. 

They recognize that in this very issue of repetition lies one of the challenges of 

conducting statistically valid RCTs. 

Four trials were run as follows: (1) batch size of 5 with push, (2) batch size of 5 with 

pull, (3) batch size of 1 with push, (4) batch size of 1 with pull. Players were instructed to 

assemble pieces in their workstations as evenly and systematically as possible. 
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Batch size refers to the number of assemblies that must be completed before 

transferring assemblies from one workstation to the next. Push refers to a process 

whereby players make and transfer assemblies to the next player, regardless of that next 

player's needs (i.e., regardless of how many assemblies pile up in-between players). In 

contrast, pull refers to a process whereby players make and transfer assemblies to the 

next player, only as needed by that player. For example, a "batch size of 5 with pull" 

means that (a) players cannot transfer their pieces to the next workstation until they have 

completed 5 assemblies, whereupon they transfer all 5 assemblies in one batch together, 

and (b) players do not begin to make new assemblies until their customer—the 

succeeding workstation—has emptied its work area of incoming assemblies, thereby 

implicitly placing an order (aka. submitting a kanban) to request a new batch of 5 

assemblies. Here, the number of units requested to be replenished (production batch) 

equalled the number of units in the batch transferred (transfer batch); in general, such 

equality is not required. The game was played for six minutes (360 seconds). 

COMPUTER SIMULATION 

A computer model was designed and implemented in EZStrobe to mimic the actions of 

the live simulation game (Figure 2). Measured workstation assembly times from the live 

simulation were input to the computer simulation. The purpose of the live simulation was 

to calibrate and reasonably validate the computer simulation. The same metrics were 

gathered for the EZStrobe simulations as for the live simulations. The model is controlled 

using the parameters of batch size B, kanban size K, batch transfer durations, and 

workstation activity durations. Here, B = K. The same model with different parameters 

can simulate a variety of lean principles. 

Figure 2 shows durations as being deterministic for the sake of simplicity. However 

EZStrobe can model a duration by means a probability distribution, based on data 

availability (e.g., a beta or PERT distribution), from which the program will the sample a 

duration each time the corresponding activity gets instantiated (Martinez 2001, Law and 

Kelton 2000). A stochastic model would be more realistic in nature and exhibit 

characteristics not observed in a deterministic model like the one shown in this paper. 

Push and pull can be simulated by changing the K and B parameters. The flow of 

assemblies through the simulation is controlled by operators OperatorWSi (one at each 

workstation WSi) and supply ThexxPinSupply queue sizes. Each workstation draws the 

number of Lego® blocks as required per the game instructions from its Supply queue, and 

then outputs assemblies. An initial value of 1 in each OperatorWSi queue ensures that 

only one assembly is worked on at a time.  

The queues labelled KanbanFromWSj restrict workstation activities. A push system 

exists when there is no limit to the number of items a workstation's can work on. This is 

modelled here by a value of K = 1,000 so that the resource in this queue does not 

constrain the assembly process: a workstation can continue making more assemblies as 

long as supplies are available. (i.e., K is set to a number much larger than the number of 

4-pin, 8-pin, or 16-pin Lego® blocks in any of the supply queues. Another way to model 

"push" is to remove the KanbanFromWSj queue from the model altogether.). In contrast, 

a pull system (build-on-demand) exists when a workstation can output only up to a set 

number of assemblies and then has to wait for a kanban from down the line, signalling a 
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request for more (quantity K) assemblies to be made. In this case, the previous 

workstation must wait to start making its next batch until the next workstation completes 

and transfers its current batch. 

The effect of cellular layout can be modelled by changing the durations for the 

TransferBatchi activities. In this model, all batch transfers take 2 seconds and it is left it 

unspecified as to who actually performs the transfer. The transfer time is consistent with 

the assumption of cellular layout where there is a short, consistent piece transfer time 

between the workstations. A non-cellular layout would be reflected by longer times and 

different times for different workstations, and may include walking and other 

transportation time between the stations. 

The first start of the PlaneDone activity captures the time of the first completed 

airplane. The number of airplanes completed in the total simulation time is equal to the 

total count of the number of assemblies that have entered the OutputWS4 queue. Work-

in-process (WIP) at each workstation n is measured at the end of the simulation by 

summing the number of assemblies in the queue with input for workstation n+1, the 

number of assemblies in the queue with output (not yet transferred) for workstation n, 

and the contents of the workstation n assembly activity. Since quality control was not 

modelled here, the contents of the output of workstation 4 is not included in the WIP. 

Nevertheless, that queue was modelled in order to control the kanban KanbanFromWS4. 

RESULTS 

Table 1 shows data collected from the live simulation versus the computer simulation. 

Computer vs. live results match quite well. Differences may be attributed to factors such 

as simplifying assumptions made in the computer simulation (incl. deterministic 

durations), and transitional behaviour of the players in the live simulation (e.g., players 

began to get bored or tired toward the end of the game and slowed down their assembly 

times). Clearly, further data collection and computer model refinement are in order to 

more accurately capture the live simulation.  

Table 1: Results from the Airplane Game based on Computer and Live Simulation 
 

 Transfer Planes Time elapsed WIP WIP WIP WIP WIP 
 type completed until  from  from  from  from  Total 
   first plane WS1 WS2 WS3 WS4  
 (system) (# of units) (sec) (# of units) 
Batch Size 5         

Computer Push 15 138 54 4 5 0 63 
Live Push 12 150 30 4 7 1 42 

Computer Pull 10 138 5 1 4 0 10 
Live Pull 10 145 5 2 3 0 10 

Batch Size 1         
Computer Push 20 46 55 0 3 0 58 

Live Push 20 43 51 1 5 0 57* 

Computer Pull 12 46 1 0 1 0 2 
Live Pull 12 39 1 1 0 0 2 

*WS1 ran out of pieces at 5'20"  

DISCUSSION 

A purpose of many lean production simulations is to educate players and increase 

receptivity to change through play (Tommelein et al. 1999, Verma 2003; Visionary 
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Products Inc. 2007). Consultants and managers wishing to introduce lean principles to a 

production situation facilitate playing the game so that workers can see for themselves 

that application of lean principles enhances productivity, diminishes WIP, reduces the 

need for rework, and offers other benefits.  

In addition to providing lean experience to participants, the structure of the Airplane 

Game embodies many of the critical features of controlled experimentation, similar to 

those found in psychological, sociological, and medical research (Bernard 2000). Results 

of this research suggest that, if administered properly, lean games can function as 

scientific experiments or even RCTs. In fact, the EZStrobe simulation can also be 

structured to mimic an RCT by providing a (1) control group, (2) randomization of 

participant activity times through the use of a random number generator, and (3) double 

blinding, since a computer program remains indifferent to the psychological forces that 

contribute to a placebo effect in traditional clinical and social science research. A 

computer model eliminates problems that may confound an experiment using human 

subjects, such as assembly time variations due to a learning curve or fatigue. The 

computer model can isolate the effect of these human factors from the effect of 

implementing individual lean principles. This improves the researcher's ability to 

accurately quantify the impact of lean principles. 

Using a computer simulation increases the reliability of results since any 

enhancement of productivity of the experimental group vis-à-vis the control group can be 

said to be mathematical and capable of being generalized, and not purely due to the 

human variability or the particularities of the environment under examination. 

The researchers found that comparing results from the live simulation—even a 

deterministic one—against those generated by a computer (here, using EZStrobe), 

enhanced their understanding of lean. In fact, misaligned results during early trials 

revealed inaccuracies in the initial version of the computer model that the researchers 

might not have noticed otherwise. The modelling effort forced the researchers to spell out 

system characteristics and the model was subsequently adjusted until validated by results 

from the live game. This calibration lends confidence that the computer simulation is 

likely accurate as designed and can serve as a reasonable predictor of outcomes during 

"what if" scenario testing.  

CONCLUSION 

Lean simulation games offer educational benefits that cannot be found in textbooks. 

Additionally, relative simplicity makes lean games ideally-suited to serve as controlled 

scientific experiments or even as RCTs for testing lean principles. 

For this research, a computer model representing parts of the airplane game was 

created, and then refined and tested against a live simulation. The close agreement of live 

game play and computer simulation validates the model, so the model can be used 

confidently to test outcomes that involve varying pull versus push and batch size. The 

simplicity and repeatability of the game makes it easy to test the computer model's 

accuracy because it is unfettered by multiple confounding variables. 
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Figure 2: EZStrobe Computer Simulation of the Airplane Game 
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Additional rigor may be introduced into the validation process by undertaking 

multiple RCTs with experimental subjects, by characterizing assembly times using 

probability distributions for each workstation, and by making other refinements to the 

EZStrobe model. When seeking to apply the computer model to represent an actual 

sequence of activities, it is best for RCTs to be performed on the actual processes 

being studied so that standard deviations for individual activity times can be 

established. This being said, it must also be acknowledged that properly performing 

RCTs requires time and resources to reward experimental subjects. Performing such 

experiments also entails obtaining Institutional Review Board approval. Because of 

these constraints, we did not undertake to perform actual RCTs in this experiment. 

However, we found that, for the purpose of validating a process pathway, at least one 

live run of a controlled experiment helped enormously to validate the computer model. 
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