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ABSTRACT

Bayesian inference is based on three evidence components: experimental observations,

model predictions and expert’s beliefs. Integrating experimental evidence into the calibra-

tion or selection of a model, either empirically of physically based, is of great significance

in almost every area of science and engineering because it maps the response of the pro-

cess of interest into a set of parameters, which aim at explaining the process’ governing

characteristics. This work introduces the use of the Bayesian paradigm to construct full

probabilistic description of parameters of spatial processes. The influence of uncertainty is

first discussed on the calibration of an empirical relationship between remolded undrained

shear strength Su−r and liquidity index IL, as a potential predictor of the soil strength.

Two site-specific datasets are considered in the analysis. The key emphasis of the study is

to construct a unified regression model reflecting the characteristics of the both contribut-

ing data sets, while the site dependency of the data is properly accounted for. We question

the regular Bayesian updating process, since a test of statistics proves that the two data

sets belong to different populations. Application of “Disjunction” probability operator is

proposed as an alternative to arrive at a more conclusive Su−r−IL model. Next, the study

is extended to a functional inverse problem where the object of inference constructs a spa-

tial random field. We introduce a methodology to infer the spatial variation of the elastic

characteristics of a heterogeneous earth model via Bayesian approach, given the probed

medium’s response to interrogating waves measured at the surface. A reduced dimension,

self regularized treatment of the inverse problem using partition modeling is introduced,

where the velocity field is discretized by a variable number of disjoint regions defined by

Voronoi tessellations. The number of partitions, their geometry and weights dynamically

vary during the inversion, in order to recover the subsurface image. The idea of treating

the number of tessellation (number of parameters) as a parameter itself is closely asso-

ciated with probabilistic model selection. A reversible jump Markov chain Monte Carlo

ii



(RJMCMC) scheme is applied to sample the posterior distribution of varying dimension.

Lastly, direct treatment of a Bayesian model selection through the definition of the Bayes

factor (BF) is developed for linear models, where it is employed to define the most likely

order of the virial Equation of State (EOS). Virial equation of state is a constitutive model

describing the thermodynamic behavior of low-density fluids in terms of the molar density,

pressure and temperature. Bayesian model selection has successfully determined the best

EOS that describes four sets of isotherms, where approximate (BIC) method either failed

to select a model or fevered an overly-flexible model, which specifically perform poorly in

terms of prediction.
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1. INTRODUCTION

1.1 Problem Statement

In a physical process an inverse problem consists in estimating the key parameters

describing the relevant characteristics that governs it, through a set of directly measurable

responses of the system or experimental observations. In general, these measurements or

experimental observations are random, sparse and limited compared to the dimension or

complexity of the model space. This leads to the ill-posed nature of inverse problems.

That is, no solution might exist in the strict sense, multiple solutions might exist and/or

the solution might not depend continuously on the experimental observations (Engl et al.,

1996). Further complexity might be posed when dealing with functional inverse problems,

where the parameter set (unknowns) constitute a function of spatial coordinates and/or

time (a spatial or temporal field) or stochastic coordinates. Hence, the observations are

used to retrieve essentially infinite number of unknowns (pointwise values of the unknown

field), where, in general, no information is available on spatial variability of the property

of interest. The reconstructed solution is highly uncertain, acknowledging that infinite

solutions are equally compatible with a single data set.

To attain meaningful results to the inverse problem, enforcement of additional assump-

tions or information on the model space is required. Classical deterministic approaches

based on exact matching or least-squares optimizations, minimizes a functional form of

objective function, defined by the deviation between the experimental observations and

model predications (misfit function) (Yan et al., 2009). The well-posedness of the problem

(solution uniqueness) is enforced by ad-hoc constraints on the unknown space, so-called

regularization terms in the objective function. The deterministic inference output is a point

estimate of unknowns, without rigorously considering stochastic nature of the all available

sources of evidence (i.e. experimental observations, theoretical model, and expert’s beliefs).

Meanwhile, the validity of the constructed solution is highly dependent on how accurately
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the underlying physics is simulated (does the model captures all the physics that con-

tribute to the data?). Therefore, the deterministic estimation of the parameters could be

considered of limited use, considering all the sources of uncertainty. The straightforward

recognition of the noted uncertainties has led to introduction of stochastic inverse theory.

Recently, several methods for the inverse analysis under uncertainties have been developed,

such as sensitivity analysis (Sun & Yeh, 1992), the extended maximum likelihood method

(Fadale et al., 1995), the spectral stochastic methods (Ghanem & Spanos, 2003; Marzouk

et al., 2007), and the Bayesian inference approach (Kaipio & Somersalo, 2005). The latter

constructs the basis of this dissertation.

Among the stochastic methods in use, the Bayesian inference has a number of distinctive

attributes. The probabilistic model calibration via the Bayesian paradigm is implemented

to address the later concerns as this allows a systematic exploration of all combinations

of the model parameters within a transparent definition of the impact of the participating

uncertainty sources. During such exhaustive parameter exploration, a probability metric

can assess the likelihood of selecting sets of parameters that approximate the experimental

observations (so called the likelihood function). In addition, a probability metric reflects the

degree of a-priori knowledge about the model parameters (the prior probability). As a result

the output of the Bayesian inference is not a point estimate, but a probability distribution

summarizing all the available evidence (carried by the likelihood function and the prior

density). That is, the solution non-uniqueness is quantitatively treated by considering

all parameter values lying in the support of the prior and the likelihood, where relative

plausibility of each individual parameter value is quantified by the posterior.

Bayesian model calibration yields the following benefits: a transition from determin-

istic to probabilistic model parameters (where the degree of confidence on the predictive

accuracy of the model is quantitative), assessment of the type and degree of correlation

between the model parameters (e.g. linear or non-linear), measurement of the impact of

the varying experimental observations (e.g. the effect of the number of observations on

the prediction of confidence levels), founding a systematic framework to combine/joint the
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states of information derived from the calibration of the different participating sources of

evidence in the probability space, assessment of the model performance (i.e., having a num-

ber of competing models to describe the observations, defining the theory that represents

data “best” in some sense). Moreover, the possibility of modeling the spatial correlation

of the data and non-Gaussian error structures are reserved. Standard prior distributions

which bears smoothness constraints (Gaussian process or Markov random field priors) can

provide more flexible regularization in the sense that the nontrivial task of defining ap-

propriate regularization parameter is resolved through hierarchical Bayesian models (Yan

et al., 2009). Owing to the advances in computational power and significant growth in

efficiency of the Markov Chain Monte Carlo (MCMC) methods, the Bayesian inference has

attracted a great deal of interest in diverse applications of science and engineering. This

dissertation specifically looks into Bayesian inversion and model selection in 1) probabilis-

tic analysis of a submarine clay-rich sediment data to calibrate an empirical relationship

between the remolded undrained shear strength and the liquidity index 2) Full elastic

waveform inversion in one- and two-dimensional heterogeneous half space, and 3) Bayesian

model selection of a thermodynamic constitutive model (Virial equation of state).

1.2 Thesis Outline

This dissertation is organized as follows: In Chapter 2, we discuss probabilistic calibra-

tion of the empirical relationship between the remolded undrained shear strength Su−r and

the liquidity index, IL, as a potential predictor of soil strength. Of special interest is to

assess the site dependency of the fitted empirical model. We address the applicability of the

Bayesian updating where the inference from the first data set is updated, as new data is in-

troduced into the statistical inference, while the data sets belongs to different populations.

Remolded undrained shear strength is used in the assessment of debris stability in retro-

gressive landslides (Kvalstada et al., 2005). It is also widely employed to calculate force

and deformation of seafloor structures (Demars, 1978; Lee et al., 1991; Bang et al., 2000).

Furthermore, drag forces exerted on the submarine structures is found to be proportional

to the Su−r assigned to the sliding masses. These justify an inclusive uncertainty based
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study of the correlation between IL and Su−r. Moreover, since index physical properties

can easily be measured in the laboratory, it is of great interest to approximate a mechanical

parameter, such as Su−r from a state parameter (e.g. IL). Previous studies on clayey soils

statistically prove that a natural relationship between IL and Su−r can be described by an

exponential model in the ‘physical space’ (Liszkowski et al., 2004). Two different data sets

are analyzed: The “global” data set of clayey submarine sediment samples, collected from

twelve different locations around the globe, and the local data set sampled from the sedi-

ments of the Storegga Slide offshore Norway reflecting the regional soil characteristics. The

key interest of the study is to establish a framework to merge the two states of information

(represented by probability density functions) extracted from the global and the local data

sets to reconstruct a more conclusive model space, particularly capable of accounting for

the site dependency effect.

Chapters 3 and 4 set out a Bayesian framework for elastic full wavefrom inversion,

for recovering the stratigraphy in one- and two-dimensional heterogeneous soil medium,

respectively. We are seeking to infer the elastic characteristics of a heterogenous semi-

infinite soil model by leveraging the medium’s response to interrogating waves. A stress

load is applied on the soil’s surface to probe the stratigraphy, and the displacement response

of the medium is directly recorded in the time-domain at the sensors also situated on the

surface. The recorded response is fed to the inverse solver to reconstruct the spatially

variable wave velocity field.

This describes a nonlinear inverse problem in which the object of inference constructs

a spatial random field. Two major modelling and computational challenges are involved

in this construction. First, the number of unknowns (i.e., pointwise values of the field) is

essentially infinite. Hence, the unknown field is approximated by its spatial discretization.

This discretization is often according to the resolution of the forward solver leading to an

often very high dimensional parameter space. Large dimensionality of the input space with

a nonlinear forward mapping lead to multimodal, strongly correlated and skewed posteriors,

which in turn gives rise to major complications in the posterior sampling. Moreover, as the
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number of unknowns increases (at times, higher than the number of data) overfitting the

data might occur which brings about spurious large fluctuations in the inverted material

property values. This results could be completely erroneous and yet very well fit the data.

Such solutions also perform poorly in terms of prediction (Koutsourelakis, 2009). Secondly,

Simulation based inference schemes (Monte Carlo methods) usually requires a high number

of forward model calls in order to arrive at stationary state of the chain and approximate

the estimators. Repeated evaluation of the forward model, particularly when faced with

large-scale inverse problems, even though possible in theory, could be computationally

intractable, rendering the inference impractical for real applications.

One approach to cope with the addressed challenges is reducing the dimensionality of

the parameter space. We opted for a relatively new choice of parametrization, based on

Bayesian partition modeling (BPM) (Denison et al., 2002a,b), which is especially suitable

when dealing with earth models with sharp material interfaces. Partition modeling involves

in discretizing the spatial/temporal random field into a number of disjoint regions, where

the number of regions and their geometry dynamically vary during the inversion to adapt

to the structure and properties of the target model. Therefore, the number, geometry

(shape, size and position), and the weight of the partitions (describing the intensity of

the parametric field of interest) are inversion parameters, directly determined by the data.

Hence, representation of the velocity field is not tied to the resolution of the forward model,

and the latter influences the inference only through the estimation of the likelihood.

The idea of treating the number of partitions (number of parameters) as a parameter

itself is closely associated with probabilistic model selection, where a collection of models

with varying number of parameters are presented for inversion, and the task is to select

the model that most likely describe the experimental observations. The greatest advantage

of treating an inverse problem as a Bayesian model selection is the notion of Bayesian

parsimony, also known as “Occam’s razor” stating that the simplest model consistent with

the data should be favored over more complex models, and optimum complexity of the

model must be inferred from the data. As a result, the smallest model (less parameters) that
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adequately describes the data is chosen. Reducing dimensionality of the parameter space

means that regularizing the solution through global damping procedures (in deterministic

optimization problems) or specific prior distributions which bears smoothness constraints

(in a Bayesian inversion framework), is precluded. A generalization of the simulation-based

Markov Chain Monte Carlo methods, so called reversible jump Green (1995), is used to

sample the posterior distribution of varying dimensionality.

A key advantage of Bayesian analysis of geophysical data, is that the information is

projected into the probability space, casted in form of a posterior density function, where

the basic probability operators could be operated to merge/combine the geophysiacal ev-

idence from varying sources of survey. This idea is developed in chapter 5. We introduce

a methodology to populate probability maps of geomorphological features that can be

applied to characteristics observed in different geophysical investigations over the same

region, where Tarantola’s “collaboration” probability operators, so called Conjunction and

Disjunction, operate across these maps to improve (or enrich) the resulting mechanistic

stratigraphy representing the geological ‘Earth model’. The development relies on the fact

that an Earth model consistent with multiple geophysical datasets is more likely to repre-

sent the true subsurface than a model consistent with only a single survey data (Lelièvre

et al., 2012). Specifically, if data sets are collected from different geophysical methods

(which sense different physical properties) they usually contain complementary informa-

tion about the site’s stratigraphy. The concept is illustrated in a 1D setup, where soil

stratigraphy is recovered by both vertical electrical sounding and acoustic imaging (using

the scheme presented in chapter 3) of the subsurface, and compressional wave velocity, elec-

trical conductivity, and the location of the transition between soil units (geomorphological

information) are recovered.

As previously noted, the transdimensional formulation of elastic full waveform inver-

sion, outlined in chapters 3 and 4, is based on Bayesian model selection. That is, having

a number of competing models (theories) to describe a set of data, it is desired to find the

model that describes the data best while over-fitting the data is avoided. The Bayesian
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model choice is conducted through a quantity called Bayes factor (BF), which offers a

sound criteria to directly compare relative plausibility of a number of competing models.

However, definition of the BF requires calculation of often high dimensional integrations,

which makes the direct use of the BF practically infeasible in general conditions. An ex-

ample is our non-linear inverse wave problem where in order to determine the most likely

number of partitions, a Monte carlo search (RJMCMC algorithm) is applied to perform the

posterior integration. Approximate methods such as BIC (Bayesian information criteria)

are alternative approaches to conduct Bayesian model selection. For normal linear models,

however, the exact analytic evaluation the BF is possible, given a specific (conjugate) fam-

ily of priors is specified to the model parameters. The full development of Bayesian model

selection for linear models is provided in chapter 6, where it is employed to define the most

likely order of the virial Equation of State. Virial equation of state in a constitutive model

describing the thermodynamic behavior of low-density fluids in terms of the molar density,

pressure and thermodynamic temperature (ρ, P, T ). Virial EOS presents the molar com-

pressibility factor Z for a fluid as an infinite power series in the molar density, for which

the number of terms contributing to the fluid behavior (truncation term) must be inferred

from the data. Current practice on the deterministic model calibration techniques applied

to EOS and its corresponding standard statistical inferences overlooks model uncertainty.

Hence, typical EOS parameterizations make use of subjective or optimization-based se-

lections of a truncation term in the virial expansion model. Emphasis is given solely to

a qualitative curve fitting to the data, without questioning the potential influence of the

various sources uncertainties involved in the process. The Bayesian calibration and model

selection sets out a coherent framework to calibrate isothermal experimental curves of pure

Argon (Ar) measurements. Proper characterization of gas models of equation of state is

of critical importance in industrial application, and lack of an uncertainty quantification

may translate into significant economical loses due to the large trading volumes involved.
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2. JOINT STATES OF INFORMATION FROM DIFFERENT

PROBABILISTIC CALIBRATIONS OF UNDRAINED SHEAR

STRENGTH OF SUBMARINE CLAYS

2.1 Overview

The remolded undrained shear strength (Su−r) of submarine clays is a key parameter

in the analysis of retrogressive-type of clay landslides. This is correlated with the liquidity

index IL, for which the quantification of inherent uncertainties becomes of significant value

for a more rational assessment of the stability of this type of structures. The influence of

the uncertainty on the predictions of an empirical relationship between remolded undrained

shear strength and liquidity index is discussed in this work, by utilizing the concept of joint

states of information proposed by Tarantola (Tarantola, 1987), as a generalization of the

Bayesian paradigm for the solution of inverse problems. By using Tarantola’s approach,

this study aims at accounting for the site dependency effect when comparing a global and

a local data set, which is a characteristic that is not captured by traditional probabilistic

methods.

2.2 Introduction

Proper assessment of the risk involved in various offshore activities, including the nat-

ural resources field development, calls for an appropriate evaluation of the submarine geo-

hazards specifically slope failure and mass wasting processes. This, inturn, relies on the

clear understanding of the geotechnical behavior and mechanical properties of the seabed

clay-rich deposits.

Normally, limited soil investigation data is available, especially in deep water environ-

ments. This may result in an uncertain estimation of the physical and mechanical design

properties of submarine sediments, and their interrelation. A body of regression type anal-

ysis has been conducted to formalize the relationship between key physical and mechanical

parameters of clay-rich sediments, e.g. (Wroth & Wood, 1978; Carrier & Beckman, 1984;
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Locat & Demers, 1988; Hirata et al., 1990; Terzaghi et al., 1996). However, the significant

uncertainty arising from lack of data (which is naturally contaminated with noise) and the

model error (i.e. whether the adopted regression model is the true process from which the

data is generated) renders point estimates of little use. Moreover, it is essential to quantify

the confidence in the estimates generated. Most importantly, the predictive ability of the

fitted model must be quantified. The majority of the published work do not quantify the

predictive accuracy of the correlation, the necessary piece of information for an engineer

to construct safety factors in slope stability analysis and foundation design.

This paper introduces a probabilistic analysis to calibrate the empirical relationship

between the remolded undrained shear strength Su−r and the liquidity index, IL, as a

potential predictor of soil strength. Of special interest is to quantify the credibility of the

established correlation given the data. The lack of proper uncertainty quantification, the

limited nature of soil exploration data, as well as the rigorous site dependency of the fitted

models tends to restrict the applicability of the deterministic regression relationships to a

narrow range of practices.

Su−r is used in the assessment of debris stability in retrogressive landslides (Kvalstada

et al., 2005). It is widely used to calculate force and deformation of seafloor structures

(Demars, 1978; Lee et al., 1991; Bang et al., 2000). Also, drag forces exerted on the

submarine structures is found to be proportional to the Su−r assigned to the sliding masses.

These justify an inclusive uncertainty based study of the correlation between IL and Su−r.

Moreover, since index physical properties can easily be measured in the laboratory, it is of

great interest to move from a state parameter (e.g. IL) to a mechanical parameter, such as

Su−r, accounting for the inherent uncertainty. Previous studies on clayey soils statistically

prove that a natural relationship between IL and Su−r can be described by an exponential

model in the ‘physical space’ (Liszkowski et al., 2004).

Two different data sets have been analyzed in this paper: The “global” data set of

clayey submarine sediment samples collected from twelve different locations around the

globe, and the “local” data set sampled from the sediments of the Storegga Slide, offshore
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Norway, reflecting the regional soil characteristics. The key interest of this paper is to

establish a framework to merge the two states of information (represented by probability

density functions) extracted from the global and the local data sets to reconstruct a more

conclusive model space, particularly capable of accounting for the site dependency effect,

where applicability of two probability operators is investigated to transfer the state of

knowledge from one site characterization to another.

The paper is organized as follows: In section 2.3 the data sets are introduced. In

section 2.4 we detail the method of analysis. A proper regression model first adopted to

adequately describe the data (section 2.4.1). We formalize the Bayesian regression, specify

the prior distribution and the likelihood function, and briefly cover the Bayesian compu-

tation (section 2.4.2). Section 2.4.3 is devoted to introducing the two basic operators in

the probability space employed as a tool to join states of information from different proba-

bilistic calibrations of the undrained shear strength. The analysis results are presented in

section 2.5. Some conclusions are drawn in section 2.6.

2.3 The Data Sets

Two different data sets have been studied in this paper and earlier works of Yang et

al. and Esmailzadeh et al. (Yang et al., 2010; Esmailzadeh et al., 2011). The first data

set, namely, the global data set retrieved from a previously constructed data base at NGI

(NGI, 2002) also used for the assessment of the correlation among the soil physical and

mechanical parameters of the clay-rich deposits. The global data set has been collected

from twelve sites from the Norwegian sea, the North sea (the North sea petroleum fields

Troll East and Sleipner B, located at the south of the Storegga slide), the Atlantic Ocean,

the west coast of Ireland, offshore Nigeria, offshore Angola, and the Gulf of Mexico.

The second data set, being pointed here as the local data set, is a regional data collected

from the Storegga Slide area out of the Norwegian coastline. The Storegga Slide occurred

8200 years ago (Haflidason et al., 2005). The Slide, considered the largest exposed subma-

rine slide in the world, has affected the region of approximately 95, 000 km2 and involves

displacement of about 3000 km3 of debris (Kvalstada et al., 2005). Since the Ormen Lange
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Figure 2.1: (a) Global data set (b) Local data set

natural gas field as well as several other offshore projects is located in the slide region, the

incident has been thoroughly investigated to secure safe field development (Solheim et al.,

2005; Mienert, 2004). Geotechnical testing have been conducted over the borehole samples

ranging from 20 to 450 m in depth. Despite the relative sparsity of the collected samples,

the drilled sections covers the major lithological units within the slide-prone part of the

region. Both the global and local databases contain Su−r measured by means of fall-cone

test. The both data sets together with the Su−r and IL marginal histograms are presented

in figure 5.10.

2.4 Method of Analysis

The aim of this study is not only to assess a correlation trend between Su−r and IL,

but also to investigate the influence of the inadequate/uncertain nature of the data and

possibly the regression model (i.e., type of the regression model describes the correlation

the best given the available evidence) for prediction purposes. To perform an uncertainty

based analysis of the remolded undrained shear strength data, the response parameter

Su−r and the model parameters (the regression parameters and the calibration error) are

assumed to be random variables.
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The probabilistic model calibration via the Bayesian paradigm is implemented to ad-

dress the later concerns, as this allows a systematic exploration of all combinations of

the model parameters within a transparent definition of the impact of the participating

uncertainty sources. During such exhaustive parameter exploration, a probability metric

can assess the likelihood of selecting sets of parameters that approximate the experimental

observations (so called the likelihood function). In addition, a probability metric reflects

the degree of a-priori knowledge about the model parameters (the prior probability). The

combination of these two states of knowledge about the model of interest yields the follow-

ing benefits: a transition from deterministic to probabilistic model parameters (where the

degree of confidence on the predictive accuracy of the regression model is quantitative),

assessment of the type and degree of correlation between the model parameters (e.g. linear

or non-linear), measurement of the impact of the varying experimental observations (e.g.

the effect of the number of observations on the prediction confidence levels), founding a sys-

tematic framework to combine/joint the states of information derived from the calibration

of the different participating sources of evidence in the probability space (via the proba-

bility operators as will be discussed in this article), assessment of the model performance

(having a number of competing (regression) models that describe the observations equally

well, it is desired to find the theory that describes data “best” in some sense). Moreover,

the possibility of modeling the spatial correlation of the geotechnical data and accounting

for its site dependent nature is reserved. Non-Gaussian error structures can also be easily

incorporated into the analysis. The two latter conditions are not the concern of this paper.

First, we treat each of the two data sets independently. Figure 2.1 shows the two data

sets superimposed by the best-fit regression of exponential type for each case estimated

using nonlinear least squares scheme.

2.4.1 A Model for the Remolded Undrained Shear Strength Data

The model describing the correlation between the remolded undrained shear strength

and the liquidity index is given by

12
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Figure 2.2: (a) Global data set (b) Local data set, including the optimal fits of the expo-
nential model.

S(u−r)j
= µ(ILj

;β) + ǫj; j = 1, . . . , n (2.1)

in which S(u−r) = (S(u−r)1
, . . . , S(u−r)n

) is the vector of undrained shear strength data (the

response variable), and µ is a deterministic exponential regression model as suggested by

figure 2.1 and defined in equation 2.2. n is the number of data points in each data set and ǫ

is the vector of random error term (the discrepancy term between the fitted model and the

actual observations). The error components are assumed to be independent and identically

distributed random variables populated from a normal density with zero mean and variance

of σ2. σ2 is the measure of scatter about the trend curve. Hence ǫ ∼ N (0, σ2In), which

implies that the observations are also populated from a normal density.

The normality assumption of the random error components can be checked by a simple

quantile-quantile (Q-Q) plot (Martinez & Martinez, 2001). The Q-Q test is a graphical

mean of assessing whether a sample is populated from a specific distribution. The quan-

tiles of the residual term ǫ are plotted versus standard normal quantiles and departures

from linearity of the resulting plot determine how the dataset differs from the Gaussianity

assumption. The Q-Q plot is shown in figure 2.4. The inspection of the plot indicates a
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Figure 2.3: Absolute residual plots for (a) Global data set (b) Local data set showing an
exponential trend. Optimal fits of the residual model is superimposed.

reasonable match to the normality assumption, although a clear deviation is observed at

the two extreme values of IL.

The mean regression model is an exponential type as presented in figure 2.2

µ(IL;β) = β0 exp (−β1IL) ; β = (β0, β1)
T (2.2)

in which β is the vector of regression parameters. Nonlinear least squares estimate of the

regression parameters (β0, β1) are equal to (163.66, 3.92) and (210.31, 4.14) for the global

and the local datasets, respectively.

In addition to the regression parameters, in Bayesian parameterization it is possible to

account for the unknown nature of the variability of the data and the goodness of fit by

representing σ2 as a random variable (referred to as a hyper-parameter). By examining

the residuals of the optimal fit for the both data sets in figure 2.3, it is observed that for

the proposed exponential regression model the variance of the error component σ2 is not

constant within the range of variation of IL. The higher data-model deviation corresponds

to the greater values of the predictor variable IL. This observation suggests assuming an

explicit variance model to capture this variance heterogeneity.
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Figure 2.4: Quantile-Quantile (Q-Q) plots of the both data sets (△: Local data set ◦:
Global data set). Also shown are straight lines corresponding to the normal distributions.

Two different variance structures are considered in this study:

First Homoscedastic variance model, where the error variance σ2 is assumed to be identical

for all values of IL. In other words, the scatter about the trend line is assumed to

be constant along the range of variation of IL. This is the underlying assumption in

traditional deterministic regression techniques.

Second Heteroscedastic variance model, where the variance of the error complement is

varying over the IL domain (which is seemingly the case for the both data sets)

A general representation of a heteroscedastic regression model is given by

σ2 = Var(S(u−r)j
) = σ20g

2
(
ILj

;β, η
)

= σ20
[
exp

(
−ILj

η
)]2

(2.3)

The data variance model, in general, can be a function of the regression parameters.

Here, an exponential variance model is suggested by figure 2.3 for the both data sets. A

homoscedastic model is a special case of a heteroscedastic model where g
(
ILj

;β, θ
)
= 1,

which leads to Var(S(u−r)j
) = σ20 . η is also assumed to be a random parameter being
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inferred from the data.

2.4.2 Bayesian Regression

In the preceding section, a regression model was formulated to describe Su−r− IL data.

In this section, the basic elements of the Bayesian regression will be covered.

To proceed with the implementation of the Bayesian regression, a prior distribution

must be assigned to each model unknown, which quantifies the initial uncertainty about the

parameters. Technically, the prior distribution formalizes the a-priori unknown variability

of the model parameters in form of a density function. The prior density p (m) assigned

to the parameters of each model is given by

p (m) =







1
σ2
0
I(0,+∞) (β) , Homoscedastic

1
σ2
0
I(0,+∞) (β) I(0,+∞) (η) , Heteroscedastic

(2.4)

where m = {β, σ20} for the regression model with homoscedastic variance structure, and

m = {β, σ20 , η} for the heteroscedastic condition. IA (x) is an indicator function which

assumes 1 if x ∈ A and zero otherwise. The above equation signifies that the prior on

β0 and β1 is uniform for positive values of the covariate, the prior on log (σ0) is uniform

in (0,∞), and the prior on η for the heteroscedastic model is uniform over (0,∞). This

representation assumes that all the model parameters are independent a priori. This is not

a limiting assumption, since in case the parameters are correlated, the correlation structure

will be formed as the data is introduced to the analysis.

The contribution from the observations is represented by the so called likelihood func-

tion. The likelihood function p (Su−r|m), describing the data-error statistics, is the prob-

ability that the observed realizations Su−r are produced by model µ(IL;β). Under the

assumption that the random error components are such that ǫ
iid∼ N

(
0, σ2In

)
(e.g. uncer-

tainty associated with the data is multi-variate normal, and data points are independent

of each other) the likelihood is defined by
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p (Su−r|m) =
1

[(2π)n|Cd|]1/2
exp

[

−1

2
(µ(IL;β)− Su−r)

T C−1
d (µ(IL;β)− Su−r)

]

(2.5)

where n is the number of observations, and In is an n× n identity matrix, and Cd = σ2In

is the covariance of the error term, with σ2 being defined in equation 2.3. The normality

assumption was assessed in figure 2.4.

By the virtue of the Bayes theorem, the most general solution to a regression problem

is casted in the form of a probability density function, namely the posterior density, which

is the full description of the model parameters given the data is observed. Hence, unlike

the deterministic regression, where the result is a single vector of model parameters: the

optimal, in a probabilistic regression, the solution is composed of all the plausible values

of model parameters each weighted by its corresponding probability of occurrence (Gauer

et al., 2009). According to the Bayes theorem, the posterior density p (m|Su−r) is given by

p (m|Su−r) =
p (Su−r|m) p (m)

∫

M
p (Su−r|m) p (m) dm

(2.6)

The integral in the denominator is defined over the parameter space M. The quantity in

the denominator is a proportionality constant such that the posterior is integrated to one.

The estimation of posterior moments, posterior quantiles, and marginals, requires that

the integral of equation 2.6 is computed. Bayesian inference relies on the ability to compute

probabilities and other quantities which summarizes the statistics of interest associated

with the posterior distribution. If p (Su−r|m) p (m) cannot be integrated analytically some

form of numerical integration is required.

Monte Carlo integration using Markov chains (MCMC methods) has been excessively

employed to integrate over the posterior distribution of the model parameters given the ob-

servations (Gilks et al., 1996; Robert & Casella, 2004). Monte Carlo methods draw samples

from the target distribution, through which the posterior statistics are approximated. The

Markov chain converges to the target density as the number of samples grows. Mainly, the
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samples are drawn by running a Markov chain constructed by Metropolis Hastings (MH)

criteria. The simple MCMC-MH algorithm is illustrated by considering the pseudo-code

listed in A.

2.4.3 The AND and OR Probability Operators

The fundamentals of the Bayesian regression was outlined in the preceding section.

The method will be applied to the two datasets, separately, to infer the parameters of the

empirical exponential relationship of equation 2.1. The next step will be to constitute a

framework to joint the information retrieved from each dataset into a single probability

density. Before launching into the concept of the joint states of information from the

multiple Bayesian calibrations, we introduce the two basic operators in the probability

space as presented by Tarantola (Tarantola, 1987).

Structure of all the probability distributions space is constructed on two basic opera-

tions AND and OR, symbolically denoted by ∧ and ∨, respectively. For any subset A, and

for any two probability distributions P1 and P2 these operators are defined to satisfy the

set of axioms below:

(P1 ∨ P2) (A) 6= 0⇒ P1 (A) 6= 0 or P2 (A) 6= 0

(P1 ∧ P2) (A) 6= 0⇒ P1 (A) 6= 0 and P2 (A) 6= 0 (2.7)

P1 ∧ P2 and P1 ∨ P2 are called ‘conjunction’ and ‘disjunction’ of the two probabilities,

respectively. The first axiom states that for the disjunction to be different from zero,

either P1 OR P2 (or both) needs to be different from zero. The second axiom indicates

that the conjunction of the two probabilities is zero if the probability of the either of the

events (or both) is zero.

The generalized definitions of the two axioms above for the corresponding probability

density functions p1, p2, . . . , pN are:
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(p1 ∨ p2 ∨ . . . ∨ pN) (x) =
1

N
(p1(x) + p2(x) + . . .+ pN (x)) (2.8a)

(p1 ∧ p2 ∧ . . . ∧ pN ) (x)

ζ(x)
=

1

k

p1(x)

ζ(x)

p2(x)

ζ(x)
. . .

pN (x)

ζ(x)
(2.8b)

where k is a normalization constant. Also a neutral element Z exists for the AND operator

which is interpreted as a probability distribution that carries no information. ζ(x) in

equation 2.8 is the probability density function representing Z, where:

P ∧ Z = P (2.9)

These concepts constitute what is called the inference space. To illustrate these axioms,

figures 2.5a and 2.5b show two probability densities with differing measure of dispersion and

opposite signs. These two input densities are combined via the two introduced probability

operators. Figures 2.5c and 2.5d present the corresponding probability maps of the con-

junction and disjunction states of information created using equation 2.8. The conjunction

of information conveys the same notion as the Bayesian updating with a notable reduc-

tion of uncertainty, whereas the disjunction captures the original features of the sources or

probabilities, which provides a sense for carrying information content where dependency is

required like in the case of using previous knowledge generated from one site investigation

to another.

We emphasize that the AND operator, as pointed out above, resembles the Bayesian

theorem. This could be understood by comparing equations 2.8b and 2.6, where the prior

beliefs regarding a process of interests (the prior density-p1) is updated as the new data

(the likelihood-p2) is introduced into the statistical inference. The updated density (the

posterior density) is the conjunction of the two input densities (p1 ∧ p2).
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Figure 2.5: Representation of the frequency response of the ‘Conjunction’ and ‘Disjunction’
of two synthetic probability functions (a) and (b). Results of (c) conjunction and (d)
disjunction operations over these two probability densities.
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2.5 Case Study

The probabilistic calibration described in the preceding sections will be introduced

to the global and the local datasets for the calibration of an empirical model (shown in

equation 2.1) between Su−r and IL.

We execute the primary analyses in four different categories, composed of the cross-

combination of the two data sets and the two regression models (homoscedastic–heteroscedastic).

In each case the posterior is constructed using equation 2.6 where the elements of the pos-

terior are provided by equations 2.4 and 2.5. A Markov chain Monte Carlo method is used

to approximate the posterior joint distribution of the model unknowns. The MCMC does

not require the constant of proportionality in equation 2.6 to be known. Therefore, the

posterior kernel is constructed up to the proportionality by simply multiplying the prior

and the likelihood p (m|Su−r) ∝ p (Su−r|m) p (m).

The posterior integration is carried out numerically using a Markov chain Monte Carlo

scheme, so called parallel tempering MCMC (Geyer & Thompson, 1995; Earl & Deem, 2005;

Radford, 1996). Parallel tempering is a MCMC algorithm with improved dynamic behavior,

to expedite posterior chain mixing and convergence. A regular Metropolis-Hastings MCMC

may run into trouble fully sampling the posterior parameter space if the target density is

multimodal with widely separated peaks. The situation may even be exacerbated if some

of the modes are significantly narrower than the others. In such cases, the Markov chain

is highly likely to either be trapped in the sharper local minima or not be broad enough

to explore the whole allowed parameter range and detect the unknowns modes of the

target. This problem is similar to the one arises in finding a global minimum in nonlinear

optimization problems. The interested reader is referred to Appendix B for a more detailed

discussion on the sampling methodology.

The solution of the numerical integration of the posterior was obtained after 2 × 106

parallel tempering MCMC simulations where convergence was guaranteed. The initial

2× 105 samples are discarded as burn-in iterations, only after which the MCMC algorithm

is judged to sample from the posterior density. To obtain similar results (e.g., for the
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case of figure 2.8) using regular Metropolis-Hastings MCMC (Appendix A) nearly 50×106

samples had to be collected from the multi modal posterior for the MCMC chain to reach

convergence. The resulting parameter space is illustrated in figures 2.6 to 2.14 for both the

local and global data sets. These figures show the capability of the probabilistic approach

to retrieve a full probability description of the model parameters. From this figure it can be

observed the presence of a significant amount of variability on the local data set compared

with the global data. Bellow, each case will be discussed separately.

2.5.1 Homoscedastic Variance Model

Figure 2.6: Posterior probability projections of the regression parameters, Homoscedastic
model, Global data set
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Figure 2.7: Posterior probability projections of the regression parameters, Homoscedastic
model, Local data set

The parameters of the empirical Su−r − IL relationship is determined from the global

and the local data sets separately, considering the first variance scenario. Figures 2.6 and

2.7 present the parametrization result containing the regression coefficients (β0, β1) and

the variance parameter σ20 and their associated uncertainties. A major advantage of the

probabilistic model calibration is that it makes it feasible to retrieve the correlation struc-

ture defining the degree of association between the regression parameters. This cannot

be achieved by typical deterministic calibrations. The histograms along the diagonal in

these figures illustrate the posterior marginal distribution of the model parameters and

the hyper-parameter. The off-diagonal joint probability maps are cross-plots for all com-

binations of the regression parameters two at a time. The marginal posterior histograms
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(diagonal plots) are scaled to compare the level of uncertainty conveyed by each data set.

A significantly higher variability is observed around the mean parameter estimates for the

local data set. The joint posterior densities depicted in figures 2.6 and 2.7 also indicate

that the regression parameters β0 and β1 are linearly correlated. The regression parameters

dose not show any correlation with the hyper-parameter σ0 in both cases.

Although the homogenous variance assumption does not appear to be realistic according

to figure 2.3, still examining this scenario is instructive since the assumption is the basis

for all the deterministic parameter estimations.

2.5.2 Heteroscedastic Variance Model

Next, we consider the case where the variance heterogeneity is expressed with an ex-

ponential fit as a function of the covariate IL (equation 2.3). Inversion parameters in this

case are the regression parameters (β0, β1), scale parameter σ0, and the structural variance

parameter η. Figures 2.8 and 2.9 illustrate information about the parameter uncertainty, as

well as parameter correlation structure for the global and the local data sets, respectively.

The information in these figures are extracted from 2×106 random realizations drawn from

the posterior density. Calibration of the global data results in a bimodal posterior for all

the model parameters (figure 2.8). This effect can be attributed to the two separate data

clusters observed in the data (figure 2.2a), crudely detected as data points with IL > 0.6

and IL < 0.6, respectively. Inclusion of the additional variance parameter η provides an

extra flexibility to the model that the weaker mode can be evolved. This secondary peak

proves to better describe the data cluster corresponding to the higher values of IL and lower

Su−r. The main peak is close to the one obtained in the homoscedastic model calibration.

These results shows how a set of plausible solutions (as suggested by the additional

mode appeared in marginal posterior densities of β0 and β1; see the diagonal plots of figure

2.8) is possibly ignored by using a customary yet inappropriate homoscedastic variance

model, which is the case in a deterministic scheme such as nonlinear least squares.

β0−σ0, β1−σ0, β0−η, β1−η cross plots in figure 2.8 display strong correlation between

the regression parameters and the hyper parameters σ0 and η.
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Figure 2.8: Posterior probability projections of the regression parameters, Heteroscedastic
model, Global data set

2.5.3 Integrating the Information Content of the Two Model Calibrations

Having two sets of data, each showing a different Su−r−IL behaviour, we are aiming at

constructing a unified regression model reflecting the characteristics of both contributing

data sets. The most natural way of joining the information content of the global and the

local data sets is to merge them prior to any regression is conducted. This way the Bayesian

regression could be performed on the combined global-local data.

Alternatively, one may consider running the Bayesian regression for one data set (say

the global) first by assigning a non-informative type of prior (equation 2.4) to the model

25



0 100 200 300
0

50

100

150

β
0

σ
0

0.5

1

1.5

2

2.5

x 10
−4

0 100 200 300
1

2

3

4

5

β
0

η

0

2

4

6

x 10
−3

2 4 6
0

50

100

150

β
1

σ
0

0

0.005

0.01

2 4 6
1

2

3

4

5

β
1

η

0

0.1

0.2

0.3

Figure 2.9: Posterior probability projections of the regression parameters, Heteroscedastic
model, Local data set

parameters. The posterior density obtained from the first stage will serve as the prior to

the next stage, where the local data set is introduced to the analysis (forming the likelihood

function). The procedure is called the Bayesian updating.

The key interest of this paper is to merge the two states of information extracted

from the global and the local data sets to reconstruct a more conclusive model space,

particularly capable of accounting for the site dependency effect. The discussion of this

very same problem, treated by traditional statistical methods and the Bayesian paradigm,

can be found in Yang et al. (Yang et al., 2010). Herein, the merged parametric space is

reproduced using the probabilistic operators introduced in equation 2.8.
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As previously noted in section 2.4.3, uniting states of knowledge derived from the two

data sets using the AND operator is the same practice as using the posterior from the first

experiment (i.e., global data) as the prior, and updating the model information in light

of the second experiment (which forms the likelihood function). This practice, in turn,

is identical to the second alternative listed above: treating both data sets as a big set of

data which is used to construct the likelihood. This equivalency, however, holds only if

the two data sets are independent, meaning that observing one data set dose not affect

the likelihood of observing the other. The global and the local data sets are independent

according to this definition. A simple proof is provided in Appendix C.

Figures 2.11 to 2.14 depict the resulting parametric “joint” model space constructed

from 2× 106 randomly derived samples from the target distribution. The target density is

constructed using equations 2.8 with p1 and p2 referring to the posterior densities obtained

from the global and local data sets, respectively.

Under the homoscedasticity assumption, results from the use of the AND operator

is presented in figure 2.11. Comparing joint posterior densities in figures 2.6 and 2.11

(e.g., β0 − β1), reveals an increased parameter variability as a result of applying the AND

operator. This findings is in contradiction with the philosophy of Bayesian paradigm;

reducing the uncertainty as a result of updating process (equivalently, reducing the model

uncertainty as the sample size grows).

Reduction of model parameter variability as a result of sample size increase, is an in-

tuitive concept. However, the proof can be found in general Bayesian statistics text books

(see for example Gelman et al. (2003)). The necessary condition for this rule to maintain,

however, is that the observations (in both data sets) must be independent outcomes sam-

pled from a common distribution. In a more precise statistical language, the data points

must be iid (identically independently distributed). We hypothesize that the contradictory

observation of figure 2.11 is due to the fact that the global and the local data belong to

different populations. This hypothesis is examined in the proceeding section.
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2.5.3.1 The Two Dimensional Kolmogorov-Smirnov Test for Two Independent Samples

The question is whether the global and the local data sets belong to the same population

(drawn from same distribution function)? In proper statistical words, is it possible to a

certain level of significance disprove the null hypothesis that the two independent data sets

represent the same population?

The classical Kolmogorov-Smirnov (K-S) test is an efficient non-parametric statistic

for comparing two independent samples base on deviations in cumulative density functions

(cdf). The test involves in the comparison of the largest absolute difference between the two

cumulative distribution functions as a measure of disagreement between two independent

samples. The test protocol is designed such that in case of significant difference at any

point along the two cdfs, it can be deduced that there is a high likelihood that the samples

are derived from different populations (Sheskin, 2004).

K-S test is highly efficient as it is sensitive to any kind of distributional differences (i.e.,

differences with respect to central tendency, dispersion, and skewness). Moreover, K-S

belongs to a class of tests namely distribution free, in which the expected distribution of

the test statistic is not necessarily assumed to belong to a particular distribution (Peacock,

1983).

Within the frame work of the statistical hypothesis testing (Montgomery & Runger,

2010), the definition of the null and the alternative hypothesis are as follows:







H0 : FG(IL, Sr−u) = FG(IL, Sr−u) ∀IL, Sr−u

H1 : FG(IL, Sr−u) 6= FG(IL, Sr−u) ∀IL, Sr−u

H0, and H1 are the null and the alternative hypothesis, and FG(IL, Sr−u) and FL(IL, Sr−u)

represent the population distributions from which the global and the local data sets are

derived, respectively. The null hypothesis states that the distribution of data in the pop-

ulation that the global data set is derived from is consistent with the distribution of data

in the population that the local data set is sampled from. H0 and H1 are complementary
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hypotheses.
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Figure 2.10: Cumulative probability density functions (cdf) for the global and the local
datasets. The Kolmogorov-Smirnov statistical test proves provided that the two data sets
belong to the same population, the probability of observing two samples with the illustrated
level of cdf misfit is 1.79 × 10−20. Therefore, the null hypothesis is rejected.

Provided that the null hypothesis is true (data sets are drawn from the same distri-

bution), the p-value is the probability of obtaining a random sample from the population

that at no point the greatest vertical distance between the cdf for the global data set and

the cdf for the local data set is larger than what would be expected by chance.

The integral probability distribution of the K-S test statistics (D), independent of the

sample size, asymptotically (as the sample size tends to infinity) forms the following infinite

power series (Feldman & Valdez-Flores, 2010):

QK−S (d) = P (D > d) = 2
∞∑

j=1

(−1)j−1 exp
(
−2j2d2

)
(2.10)

This function is a monotonic function with the limiting valuesQK−S (0) = 1 andQK−S (∞) =

0. The significance level of the observed value of d (the largest absolute difference between

29



the global and the local cdfs), as a falsification of the null hypothesis, is given approximately

by

P (D > d) = QK−S

([
√

Ne + 0.12 +
0.11√
Ne

]

d

)

(2.11)

in which Ne =
nGnL

nG+nL
is the effective sample size, and NG and NL are the size of the global

and the local data sets, respectively. The above approximation for the significance level

P (D > d) becomes accurate as Ne →∞, however the approximation is reasonably fair for

Ne ≥ 4.

The P -value from equation 2.11 is found to be 1.79 × 10−20, which indicates that in

case the two data sets belong to the same population, the probability of observing the two

samples with the current level of misfit (see figure 2.10) is 1.79 × 10−20. Therefore, the

two observed cumulative probability distributions (figure 2.10) is an extremely rare event

if the null hypothesis FG(IL, Sr−u) = FG(IL, Sr−u) is actually true. The null hypothesis is

rejected with any significance level greater than 1.79 × 10−20.

Continuing with the application of the conjunction operator, figure 2.12 shows the

merged posterior plots for the case of heteroscedastic variance. Only the mode which is in

common between the two input densities (figures 2.8 and 2.9) is reflected in the conjunction

plot, which results in the reduced variability of the posterior parameter estimates.

Similar plots for the disjunction of input probabilities are introduced in figures 2.13 and

2.14. These figures show that the OR operator is able to incorporate all the information

from the two sets of data to construct all the possible combination of model parameters,

accounting for their corresponding uncertainty. This capability is accommodated by a con-

siderable increase of uncertainty which is clearly observable from the diagonal histograms in

the both figures. This gives a notion of ‘sharing’ at a cost of redistributing the uncertainty.

The first and second order summary statistics of the posterior parameter densities are

provided in tables 2.1 and 2.2, respectively. For the case of the global data-heteroscedastic

model the statistics are provided for each posterior mode separately. The hats denote
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posterior estimate (expected value) of the parameters.

Once the probability maps are generated for each case, likely realizations of the em-

pirical model can be obtained by randomly sampling different parameters combinations

following the probability distributions obtained in figures 2.6-2.9 and 2.11-2.14 . These

model responses are utilized to generate the posterior predictive estimates such as the

posterior mean estimate, the corresponding confidence levels (figures 2.15, 2.16, 2.17a and

2.17c), and the variability of the posterior predictions (figures 2.17b and 2.17d). To gen-

erate these plots 5× 103 random realizations of the regression parameters are fed into the

regression model 2.2.

Figures 2.15 and 2.16 display posterior mean model µ̂ (IL;β) (black solid curves), to-

gether with 95% credible intervals for the posterior predictions (shaded area), under the

homoscedasticity and the heteroscedasticity assumptions, respectively. The increased vari-

ability around the mean posterior model in figure 2.15c is in agreement with with the

similar observation of figure 2.11, and attributed to the fact that the two datasets are not

identically distributed as discussed in section 2.5.3.1. The increased variability of the model

prediction as a result of the OR operator is clearly observed in the both figures 2.15d and

2.16d.

The observations of figures 2.15 and 2.16 are summarized in figure 2.17. Figure 2.17

presents a comparative analysis between the mean posterior prediction of the regression

model (figures 2.17a and 2.17c) and the measure of uncertainty around the posterior mean

estimate (figures 2.17b and 2.17d) for the ‘conjunction’ and the ‘disjunction’ operations

(the two source models from the global and the local data sets are also included as a

reference).

By studying the homoscedastic condition (figures 2.17a and 2.17b), it is observed that,

the posterior mean prediction in this case perfectly matches the nonlinear least-square

(NLLS) fit for the both data sets (the mean curve completely overlaps the NLLS fit for

the global data), as both the NLLS and the presented homoscedastic Bayesian regression

are based on the same assumptions. The trend mean from the conjunction and disjunction
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falls between the mean global and the mean local model (conjunction mean leans closer

to the mean of the local model). Comparison of the variability of the model performances

as presented in figure 2.17b confirms that the maximum uncertainty corresponds to the

disjunction model (small IL). The conjunction uncertainty is higher than the both global

and the local models for the homoscedastic condition.

The heteroscedastic calibration (figures 2.17c and 2.17d) is of major interest in this

study as it describes the behaviour of the data more realistically. In this case the global

trend mean considerably differs from the NLLS fit. This finding is rational considering

that the posterior densities of β0 and β1 are bi-modal. The added flexibility provided by

the homoscedasticity assumption does not noticeably affect the local model in terms of the

posterior predictions (local mean model and the NLLS fit matches). Again, trends of both

the conjunction and the disjunction models fall between those of the two participating

data sets, indicating a rational behavior on the translation of the knowledge from the

global and the local data sets into a unified predictive model. However, the considerably

lower prediction uncertainty of the conjunction model compared to the disjunction model

suggests that the AND operator (equivalently the Bayesian updating) is the most proper

way to ‘update’ the sate of knowledge from one site characterization to another.

Table 2.1: First order statistics: Expected values of the regression parameters and the
hyper-parameters

Global Local Conjunction

Homoscedastic
β̂0 164.499 216.018 199.791

β̂1 3.942 4.320 4.219
σ̂0 10.834 47.086 25.887

Heteroscedastic

β̂0 (23.328, 131.970) 219.930 164.803

β̂1 (1.604, 3.463) 4.369 3.668
σ̂0 (113.592, 37.010) 91.548 68.513
η̂ (4.261, 2.839) 3.135 3.288
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Figure 2.11: Posterior probability projections of the regression parameters, Homoscedastic
model, AND operator

Table 2.2: Second order statistics: Covariance matrix of the regression parameters and
hyper-parameters

Global Local Conjunction

Homoscedastic
COV(β0, β1)

[

69.310 1.383
1.388 0.0412

] [

935.234 20.700
20.700 0.634

] [

162.592 3.395
3.395 0.102

]

Var(σ0) 0.438 24.183 1.811

Heteroscedastic
COV(β0, β1)

[

26.548 0.863
0.863 0.029

]

,

[

230.415 2.460
2.460 0.029

] [

1392.321 2.264
2.264 0.475

] [

200.315 1.779
1.779 0.021

]

COV(σ0, η)

[

241.757 2.367
2.367 0.029

]

,

[

28.922 0.770
0.770 0.026

] [

350.509 10.357
10.357 0.438

] [

37.305 0.549
0.549 0.0137

]
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(a) (b)

(c) (d)

Figure 2.15: Posterior mean estimates of the Su−r together with 95% credible intervals
around the mean, homoscedastic variance model, (a) Global data set (b) Local data set (c)
merged state of information from the use of AND operator (d) merged state of information
from the use of OR operator
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(a) (b)

(c) (d)

Figure 2.16: Posterior mean estimates of the Su−r together with 95% credible intervals
around the mean, heteroscedastic variance model, (a) Global data set (b) Local data set (c)
merged state of information from the use of AND operator (d) merged state of information
from the use of OR operator
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Figure 2.17: Posterior prediction statistics: (a),(c) Posterior mean estimates of Su−r to-
gether with the optimal fits of the exponential model for the global data, local data, AND,
and OR operators. (b),(d) Degree of variation around the posterior mean estimate.
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2.6 Conclusion

An uncertainty based parametrization has been conducted to study the correlation

between the remolded undrained shear strength and the liquidity index for a global and a

local data set. Once the probability maps of the global and local independent calibrations

were obtained using the Bayesian regression methodology, the conjunction (AND) and

disjunction (OR) operator were introduced as a way to illustrate two different types of

integrating information. Making use of conjunction operator results in the most certain

model with the mean of the model response leaning towards the more certain data set given

by the global response, whereas the disjunction model response showed a better agreement

with the transferring of knowledge form the global to the local data set. The uncertainty

assessment for both operators, show a consistent identification of the conjunction operator

with the Bayesian approach, whereas the model uncertainty when using the disjunction

operator indicates a higher variation on the model response, as a consequence of accepting

the merging of two different sources of information.
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3. VARYING DIMENSIONAL BAYESIAN ACOUSTIC WAVEFORM

INVERSION FOR 1D SEMI-INFINITE HETEROGENEOUS MEDIA

3.1 Overview

This paper introduces a methodology to infer the spatial variation of the acoustic char-

acteristics of a 1D vertical elastic heterogeneous earth model via a probabilistic calibration

approach, given a prescribed sequence of loading and the corresponding time history re-

sponse registered at the ground level. From a Bayesian point of view, the probabilistic

calibration represents a solution to an inverse problem, formulated as a density function

or posterior of a random field of model parameters, which by definition overcomes the in-

version’s inherent non-uniqueness difficulty. Once the probabilistic inversion is completed,

statistical moments of the posterior summarize all the information about the spacial varia-

tion of the unknown material field. Here, the subsurface earth model is defined in the form

of a partition model, where the number of layers, the location of the layers’ interfaces, and

their corresponding mechanical characteristics are presented as random variables. Parti-

tion model parameterization of an inverse medium problem is closely related to Bayesian

model selection, where the likely dimensionality of the inverse problem (number of un-

knowns) is inferred conditioned on the experimental observations. A unique characteristic

of the Bayesian probabilistic calibration, is that it inherently favors the selection of simple

models, resulting in an optimal probabilistic solution to the inverse problem, as opposed

to existing non-Bayesian methods which rely on adding subjective regularization terms to

penalize the complexity of the inverted earth model. Therefore, the main challenge of the

proposed approach is the sampling of the posterior, due to its varying-dimensional nature.

To tackle this problem, the Reversible Jump Markov Chain Monte Carlo (RJMCMC) al-

gorithm is used to sample the target posterior of varying dimension, dependent on the

number of layers. The governing forward physics consist of a 1D transient scalar acoustic

wave propagation, where in order to model the semi-infinite extent of the physical domain,
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a perfectly matched layer (PML) is introduced at the truncation boundary to emulate the

infiniteness of the earth structure. A synthetic case study is provided to indicate the appli-

cability of the implemented technique. Key applications of the proposed approach include

integrated studies for site characterization, since the recovery of geophysical mechanical

parameters allows enhanced geomechanical characterization.

3.2 Introduction

A subsurface earth model is composed of complex geophysical formations, which em-

bodies a wide range of physical and mechanical heterogeneities. The aim of probabilistic

inverse modeling is to reconstruct the random field structure of these subsurface prop-

erties, while accounting for various sources of uncertainty stemming from measurement

errors, aleatory formations, and limited theoretical understanding.

In practice, one of the main goals of geophysical investigations is to identify the main

geomorphological features of an unknown medium, meaning the spatial location and con-

centration of geological features such as the transition between materials, discontinuities

and material concentrations. This, in turn, implies the need to define a likely spatial

distribution of the subsurface’s stiffness/velocity properties. In the case of a vertical 1D

profile, this requires the definition of the location of the sharp transitions between mate-

rial properties (layer interfaces), and the characterization of the corresponding mechanical

properties.

In a horizontally stratified earth model, prior to making an inference about the likely

variation of the elastic parameters within the geological layers, an assumption must be made

concerning the number of layers in a certain depth range of interest. This assumption

defines the dimensionality (i.e., the number of unknowns) of the inverse problem. In

reality, however, such information is rarely available for the dimension and definition of

the parameter space to be fixed. Nevertheless, a subjective imposition of a certain model

parametrization may strongly affect the validity of the inverted profile, as the inference

might be founded on unrealistic assumptions about the “best approximation” to the truth.

To relax the hypothesis about the subsurface structure or spatial layering of the me-
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dia’s mechanical parameters, before the forward model is calibrated, it is proposed to define

the number of layers, their locations, and their corresponding mechanical parameters as

random variables. From a Bayesian perspective, this set up is closely associated with prob-

abilistic model selection, where a collection of models with varying number of parameters

are presented for inversion, and the task is to select the models that most likely describe

the experimental observations.

To illustrate the applicability of the proposed probabilistic calibration method, a one di-

mensional horizontally stratified media is presented in terms of a Bayesian partition model

(Denison et al., 2002b). Partition models, also known as multiple change point problems,

divides the parameter space into an unknown number of disjoint regions, where the distri-

bution of the points in different regions is independent a-priori. Formulating the inverse

medium problem in terms of a partition model may help reduce the dimensionality of

the parameter space. Hence, regularizing the solution through specific prior distributions,

which bears smoothness constraints (in a Bayesian inversion framework (Ulrych et al.,

2001; Dosso, 2002; Huang et al., 2006)), or regularization terms (in deterministic optimiza-

tion problems (Tikhonov, 1963; Na & Kallivokas, 2008; Epanomeritakis et al., 2008)), is

precluded.

A generalization of the simulation-based Markov Chain Monte Carlo methods, so called

reversible jump (Green, 1995), is used to sample the posterior distribution of varying di-

mensionality. In this setting, the Markov chain is capable of undergoing dimension changes

while moving among a number of candidate models. The key aspect of the reversible jump

algorithm is the introduction of some auxiliary random variable to equalize the dimension-

ality of the parameter space across models. A series of one-to-one deterministic functions

are defined to perform dimension matching such that the balance condition is satisfied.

Balance condition is the necessary condition for a Markov chain to converge to the target

density.

Since the introduction of Bayesian inference methods to the geophysical community,

this has received a great deal of attention in a variety of applications (Duijndam, 1988a,b;
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Gouveia & Scales, 1998; Ulrych et al., 2001; Scales & Tenorio, 2001; Tarantola, 2005).

However, a limited number of studies have addressed the subsurface parameter estimation

as a model selection problem, many of which resort to approximate methods to fulfill

the model determination (Dettmer et al., 2009; Dosso & Dettmer, 2011). The varying

dimensional formulation was first introduced to the geophysics literature by Malinverno

(Malinverno, 2002) in a 1D-DC resistivity sounding inversion, and later implemented in a

number of geophysical probing inverse problems such as (Sambridge et al., 2006; Dettmer

et al., 2010; Agostinetti & Malinverno, 2010; Minsley, 2011).

The major impact of utilizing a probabilistic calibration via a Bayesian solution to

solve inverse problems, is the systematic exploration of all combinations of the model

parameters through a transparent definition of the impact of the participating uncertainty

sources (Arson & Medina-Cetina, 2014). During such exhaustive parameter exploration,

a probability metric is defined to assess the likelihood of selecting sets of parameters that

serve to approximate the model predictions with the experimental observations (likelihood);

but also a probability metric is defined to reflect the degree of knowledge on the model

parameters (prior) before the model inversion. The combination of these two states of

knowledge about the model of interest yields the following benefits: a transition from

deterministic to probabilistic model parameters, assessment of the type and degree of

correlation between the model parameters (e.g. linear or non-linear), measurement of

the impact of the varying experimental observations (e.g. the effect of the number of

observations on the prediction confidence levels), assessment of the model performance,

and most importantly, that among a number of competing models to choose from, it

is possible to select the best model which can describe the process that generated the

observations. The latter is the key focus of the present study. The varying parameter

dimensionality is formulated through a Bayesian inversion, to populate likely configurations

of an heterogeneous elastic medium occupying a semi-infinite domain.
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3.3 Forward Model

In this section we briefly introduce the forward model used in the model inversion. We

are seeking to infer the elastic characteristics of a horizontally stratified semi-infinite soil

model by leveraging the medium’s response to interrogating waves. We also are interested

in quantifying the inherent uncertainty of these estimates.

The forward physics describing the phenomenon can be described as a vertical propaga-

tion of compressional waves when the media is subjected to a uniform excitation p (t) over

the surface. This problem can be treated as a one dimensional problem along the depth di-

rection. In a computational setting, a major issue associated with this geo-acoustic inverse

problem is to model the semi-infinite physical domain. In order to arrive at a computation-

ally finite region the medium must be truncated at some depth. If the truncated boundary

is fixed or inadequately modeled, the propagating waves are (partially) reflected in the

domain, and distort the inverted profile (Kang & Kallivokas, 2010a).

To address the issue, a Perfectly-Matched-Layer (PML) approach is adopted, and a

PML buffer zone is introduced at the truncation interface (Kang & Kallivokas, 2010b).

The PML enforces the rapid decay of the wave motion within the buffer zone, with ideally

no reflection back into the domain. Figure 3.1 illustrates the schematic representation of

the problem. We refer to the original work (Kang & Kallivokas, 2010b) for the exten-

sive derivations of the model, however, for the sake of completeness we only include the

governing wave equation: find ν (z, t) and σ (z, t) such that

∂2ν (z, t)

∂t2
+ c (z) g (z)

∂ν (z, t)

∂t
− ∂σ (z, t)

∂z
= 0, for z ∈ (0, Lt) , t ∈ (0, T ] ,

∂σ (z, t)

∂t
+ c (z) g (z) σ (z, t)− c2(z)∂

2ν (z, t)

∂z∂t
= 0, for z ∈ (0, Lt) , t ∈ (0, T ] ,

(3.1)
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Figure 3.1: Schematic presentation of the 1D problem. (a) Original semi-infinite soil media
(b) PML truncated domain

subject to

ν (Lt, t) = 0

σ (0, t) = p (t)

ν (z, 0) = 0

∂ν

∂t
(z, 0) = 0

σ (z, 0) = 0 (3.2)

where ν is the normalized displacement with respect to the soil’s density ρ (i.e., ν = ρu).

g (z) is an attenuation function which accounts for the artificial dissipation of the wave

motion within the buffer zone, and c (z) is the 1D soil compressional wave velocity random

field which is the inverse problem parameter. Equation 3.1 present the displacement (ν) -

stress (σ) mixed equations governing wave propagation in a PML truncated one dimensional

domain.

3.4 Bayesian Approach to Inverse Problems

An inverse problem is described as the process of estimating some characteristics of a

physical system from a set of directly measurable responses of the system (observations)

(Medina-Cetina & Arson, 2014). The model parameters θ, and the process of interest d
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are related through a so-called forward model. The forward operator G relies on a physical

theory to predict the outcome of a possible experiment, or in other words to approximate

the reality: dobs ≈ G (θ), or

dobs = G (θ) + ǫ (3.3)

where ǫ is the random error component which quantifies the deviation between model pre-

diction and data. This random term contains both theoretical and measurement errors

(assuming the forward model is an unbiased estimate to the true physical process). Ex-

plicit distinction, however, could be made between model and observational errors in a full

uncertainty quantification framework (UQ) (Medina-Cetina, 2006).

The basis of this UQ framework is founded on the definition of a ‘true process’ vector

d, which in general represents values of observable variables (in this case displacement

time history response of earth at the surface level). Notice that in typical geomechanical

problems or processes, d is not known a-priori. However, if the true process is assumed

to be random, d can be defined as a vector of random variables. On the other hand,

what the modeler can determine are: (1) a vector of physical observations dobs, and (2) a

vector of model predictions dpred (prescribed at the same control points in space and time).

dpred represents a vector of predictions stemming from the forward model, conditioned on

a vector of control parameters θ. dpred could deviate from the true process (d) as a result

of the model not fully capturing the underlying physics, due, for example to the fact that

either the governing PDE is an inadequate idealization of the true process, initial/boundary

conditions are insufficiently modeled, or due to the deficiency of the computational scheme

or lack of resolution of the numerical solver. Physical random deviations between d and

dobs (observation error), and between d and dpred (model error) are denoted by ∆dobs and

∆dpred, respectively (∆dobs = d− dobs and ∆dpred = d− dpred = d−G (θ)).

Therefore the following relation holds
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dobs = dpred +∆dobs +∆dpred (3.4)

In general, the error components ∆dobs and ∆dpred are not identifiable, meaning several

different combinations of values could be equally consistent with the observed data. How-

ever, this does not mean that all the possible values are equally likely (Koutsourelakis,

2009). For example, error trends that significantly deviate from zero most likely imply

either a bias in the model or a mis-calibration of the data acquisition instrument. The

Bayesian method provides a basis for quantifying a priori and a posteriori measures of

plausibility of each type of error (Kennedy & O’Hagan, 2001). In this study, the model

discrepancy term vanishes, since the data is synthesized by perturbing the model output.

Therefore, the error component can be defined by a single uncertainty metric as shown

in equation 3.3. Notice that this latter formulation is valid also when the model predic-

tions are unbiased along the domain of interest (where d is defined). That is, when the

probabilistic expectation E[∆dobs −∆dpred] = 0 (Medina-Cetina, 2006).

In a Bayesian approach to inverse problems, a prior distribution p (θ) is incorporated

in estimating each model unknown, which quantifies the initial uncertainty about the pa-

rameter. Ideally, this density limits the space of plausible parameters by giving higher

probability to those which can help to describe the system’s response more accurately.

The objective of the inversion is to sample the posterior distribution p (θ|dobs), build to

fully describe the model parameters in terms of a density function, given the data dobs is

observed. According to the Bayes theorem

p (θ|dobs) =
p (dobs|θ) p (θ)

∫

Θ
p (dobs|θ) p (θ) dθ

(3.5)

where the likelihood function p (dobs|θ) is the probability that the observed realization

dobs is produced by model θ. Under the customary assumption that the random error

components ǫ = (ǫ1, . . . , ǫn)
T are such that ǫ

iid∼ N
(
0, σ2In

)
(i.e., uncertainty associated

with the data is multi-variate normal with mean zero and standard deviation σ, and data
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points are independent of each other), the likelihood function is found with reference to a

multivariate normal density

p (dobs|θ) =
1

[(2π)n|Cd|]1/2
exp

[

−1

2
(G (θ)− dobs)

T C−1
d (G (θ)− dobs)

]

(3.6)

where n is the number of observations, In is an n × n identity matrix, and Cd = σ2In is

the covariance of the error term. The quantity in the denominator of equation 3.5 (the

probability of observing the data dobs) is a normalizing constant, such that the posterior

is integrated to one.

3.5 Bayesian Partition Models

As described in the preceding section, our geo-acoustic inverse problem requires the

identification of the spatially-dependent coefficient of a PML augmented wave equation,

given the probed medium’s response to a known excitation. This describes a functional

inverse problem where the unknown quantity is a function of the spatial coordinate. Hence,

in our Bayesian probabilistic setup, the inverse problem parameter comprises a real-valued

random field c (z) (of infinite dimensionality), which assigns a probability density function

to the subsurface property of interest at each point in the spatial domain. In order to

arrive at a computationally feasible problem, this random field (and the forward model)

must be approximated by its discretized version. Hence the velocity field is approximated

with an N -dimensional joint probability density p(c1(z1), . . . , cN (zN )|dobs), with N being

the number of grid blocks in the domain.

One way of treating the problem is to assign a prior to each random variable c =

(c1, . . . , cN )T , and directly apply the Bayesian formulation to form the posterior density of

c|dobs, and implement MCMC methods to explore the resulting, often high-dimensional,

posterior density. Although MCMC methods converge to the posterior by definition as

the number of samples grows, in such high dimensional, highly correlated target density

configurations, slow chain mixing and serious lack of convergence arise, which render the

whole inversion procedure almost computationally impractical.
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Instead of exploring the value of c(z) at each of the N grid blocks, we opt for a varying

dimensional Bayesian model to parameterize the velocity random field. We introduce a

Bayesian partition model for which it is a-priori assumed that the underlying process that

takes the form of a step function (Denison et al., 2002a; Holmes et al., 2005). This setting

is well suited to our 1D heterogeneity assumption.

The Bayesian partition model can be defined by

c (z) = Zc+ ε (3.7)

Z =












I
(
z(1) ≤ z1

)
I
(
z1 < z(1) ≤ z2

)
· · · I

(
z(1) > zk−1

)

I
(
z(2) ≤ z1

)
I
(
z1 < z(2) ≤ z2

)
· · · I

(
z(2) > zk−1

)

...
...

. . .
...

I
(
z(N) ≤ z1

)
I
(
z1 < z(N) ≤ z2

)
· · · I

(
z(N) > zk−1

)












(3.8)

where Z is called the basis matrix, and where each column forms a basis function. This

formulation states that the true layered profile is made up of a linear combination of these

basis functions and the corresponding coefficients (c). c = (c1, . . . , ck)
T hold the value of

partition weights (i.e. wave velocity at each layer), and I (.) is the indicator function which

assumes the value one, if its argument is true, and zero otherwise. The vector (z1, . . . , zk−1)

denotes the k − 1 change point locations (position of the layer interfaces), where k is

unknown number of partitions (layers). z(1), . . . , z(N) are the coordinates of N prespecified

grid points, which not necessarily coincide with the forward model discretization mesh.

Figure 3.2 shows the partition model presentation of a 1D velocity random field. ε is the

error component accounting for the deviation between the true stratified earth model and

its partition model representation. Notice that this error term directly propagates to the

misfit between observations and the physical model predictions.
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Figure 3.2: Partition model presentation of the 1D velocity random field

3.6 Bayesian Model Selection

In an inverse medum problem it is very common to find situations where there is

very limited knowledge about the subsurface formations and stratifications available. Such

processes call for a more general and usually broader set of models to be considered to

reconstruct the subsurface characteristics.

The proposed Bayesian partition model is categorized within a special class of models

namely variable dimension models. A variable dimension model is defined as a model with

apriori unknown number of unknowns. This definition by nature pertains to the spatial

case of a Bayesian model selection problems, where the competing models belong to the

same family, with differing number of parameters, namely, nested models (Robert, 2007).

A Bayesian variable dimension model is defined as a set of plausible models Mk =

{f (dobs|Mk,θk) ; θk ∈ Θ}; k = 1, . . . ,K, each reflecting a hypothesis about the data

dobs = (d1obs , . . . , dnobs
)T . Each modelMk is defined by a set of model specific vector θk of

dimension k, and sampling density f (dobs|Mk,θk). Having K such competing models, it

is desired to find the model stratigraphy that best describes the observations. Oftentimes,

due to the lack of knowledge about the true underlying process, the number of components,
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k, can not be arbitrarily fixed to infer the parameters θ.

A variable dimension model can be formulated as an extension to the standard Bayesian

modeling (see § 3.4), where a prior distribution is assigned on the model indicator Mk,

which implies extending the prior modeling from parameters to models. The parameter

space associated with the set of modelsMk is given by

Θ =
⋃

k∈K

{k} ×Θk (3.9)

Having defined priors πk on the indicator parameter Mk (being considered now part

of the parameters), and parameter subspace Θk, by virtue of Bayes’s theorem

p (Mk,θk|dobs) =
p (dobs|Mk,θk) p (θk|Mk)πk

∑

k∈K
πk

∫

Θk
p (dobs|θk,Mk) p (θk|Mk) dθk

(3.10)

Bayes factors in the Bayesian model selection context offers a thorough criteria to

pairwise comparison of members in {Mk}. The relative plausibility of model i versus

model j having experimental observations dobs is determined by the Bayes factor given by

BF [Mi :Mj] =
p (Mi|dobs) /p(Mi)

p (Mj |dobs) /p(Mj)
(3.11)

This, by definition, is the posterior to prior odds ratio. Here p (Mi) and p (Mi|dobs) are the

prior and the posterior probability ofMi being the true model, respectively. Equivalently

BF [Mi :Mj ] =
p (dobs|Mi)

p (dobs|Mj)
(3.12)

where p (dobs|Mi) is the marginal likelihood of data under model Mi, which is the nor-

malizing constant of the posterior density and defined as follows:

p (dobs|Mi) =

∫

Θi

p (dobs|Mi,θi) p (θi|Mi) dθi (3.13)

The above quantity (equation 3.13) is the basis for the Bayesian method’s natural
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penalty against complex models, also known as Occam’s razor. The Bayesian embodiment

of Occam’s razor is briefly explained in Appendix D. Note that in a frequentist hypothesis

testing setup, the criteria to compare the relative merits of one model over another is the

likelihood ratio statistics (Vuong, 1989). A more flexible model is able to describe the data

better, hence, it gives rise to a higher likelihood measure. This is under the assumption of

the error being i.i.d Gaussian, this criteria equates to comparing the response misfits, in

a least square sense, which is always reduced by increasing the flexibility of the model. It

is proved that a criterion solely based on the likelihood ratio test fails to chose a model if

M1 ⊂ M2, and M1 is the true hypothesis (which is the case in our varying dimensional

model) (Lehmann & Casella, 1998).

This is where terms are added to the (log)likelihood ratio to penalize the inclusion

of unnecessary model dimensions. For instance, the Akaike Information Criteria (AIC)

(Akaike, 1974), the Bayes Information Criteria (BIC) (Schwarz, 1978), or Jeffrey’s variant of

it are all based on such developments (Kass & Raftery, 1995). Despite all the modifications,

all the latter methods still tend to overestimate the dimensionality of the model. For a

further discussion the interested reader is referred to (Kass & Raftery, 1995).

3.7 Reversible Jump MCMC

A customary burden of using Bayes factors (equation 3.12) is the computation of,

oftentimes, high dimensional marginal likelihood integrals (equation 3.13). To circumvent

this difficulty, one may resort to alternative solutions such as Monte Carlo simulation based

methods (e.g., pseudo-priors (Carlin & Chib, 1995; Chib & Jeliazkov, 2001)), or asymptotic

approximation to Bayes factors (e.g., Schwartz’s criteria also known as BIC) (Schwarz,

1978). The later is widely used in variety of application including geophysical modeling

(e.g., see (Dosso & Dettmer, 2011; Dettmer et al., 2009; Ulrych et al., 2001)) due to the

ease of its implementation. BIC provides a first-order approximation to the logarithm

of the Bayes factor as the sample size grows. In contrast to what its name suggests,

BIC is barely considered a Bayesian model selection protocol, as the method overlooks

the dependence of the BF to the prior assumptions ((Robert, 2007), §7). Moreover, the

53



applicability of the approximation is restricted to models with regular likelihoods, and

i.i.d. data structures. Also the method calls for the derivation of maximum likelihood

estimates for the parameters of all models, which is an unfavorable fact when K is large.

Due to the aforementioned shortcomings, reversible jump MCMC has recently become

increasingly popular in geophysical inversion as a robust tool for subsurface modeling. A

detailed introduction to geophysical transdimensional Bayesian inversion can be found in

Sambridge et al. (Sambridge et al., 2013).

3.7.1 Reversible Jump MCMC Algorithm

Suppose we want to generate samples from a varying dimensional target distribution

p (θ, k), where k ∈ K = {1, . . . ,K} and θ ∈ Θk (Θk denotes the parameter space of the k

dimensional model). k is also a random variable which denotes the dimension of random

vector θ, and K is a finite integer. This joint probability density p (θ, k) can be written in

its conditional form

p (θ, k) = p (θ|k) p (k) (3.14)

We seek to construct a reversible Markov chain {(θ, k)n} which has a stationary dis-

tribution p (θ, k). At the (s)th iteration the chain state is (θ(s), k(s)). A new model of

(possibly different) dimension k∗ is proposed with probability q(k∗|k(s)) = qk(s),k∗, where

∑

k∗∈K qk(s),k∗ = 1. The basis of Green’s idea (Green, 1995) is to supplement each of the

current parameter space Θk(s) , and the candidate parameter space Θk∗ , with adequate

artificial spaces in order to create a bijection between them. To this end, given k∗, we draw

a dk(s),k∗ dimensional auxiliary variable u from a proposal distribution ψk(s),k∗(u|θ(s)). The

new state of the chain θ∗ is found from the transformation T such that θ∗ = Tk(s),k∗(θ(s), u).

Tk(s),k∗ is a deterministic mapping, so called dimension matching transformation such that

Tk(s),k∗ : R
k(s)+d

k(s),k∗ → R
k∗, where R

k∗ denotes the proposed parameter space of k∗

dimension. This transformation ensures that the balance condition (necessary condition

for Metropolis-Hastings algorithm to converge to the target density) holds in this setting
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(Mondal et al., 2010). The equality k(s) + dk(s),k∗ = k∗ + dk∗,k(s) must be satisfied, in

order to perform reversible moves form (θ(s), k(s)) to (θ∗, k∗) = (Tk(s),k∗(θ(s), u), k∗) and

conversely, from (θ∗, k∗) to (θ(s), k(s)) = (Tk∗,k(s)(θ∗, u′), k(s)).

The proposed state (θ∗, k∗) is accepted with probability rk(s),k∗(θ
(s),θ∗)

rk(s),k∗(θ
(s),θ∗) = min

{

1,
p(θ∗, k∗)

p(θ(s), k(s))

qk∗,k(s)

qk(s),k∗

ψk∗,k(s)(u
′|θ∗)

ψk(s),k∗(u|θ(s))

∣
∣
∣
∣
∣

∂Tk(s),k∗(θ(s), u)

∂θ(s)∂u

∣
∣
∣
∣
∣

}

(3.15)

which states that the new state of the chain is (θ∗, k∗) with probability rk(s),k∗ , or (θ
(s), k(s))

with the complement probability (1− rk(s),k∗).

The algorithm can be completed with additional steps within a given model Mk, or

about hyperparameters that are not model dependent, which is the case for our hierarchical

Bayes model implementation. These additional states are presented in section 3.7.3. We

implement the preceding algorithm to reconstruct the spatial distribution of the acoustic

wave velocity random field c (z).

3.7.2 Prior Elicitation

We dedicate this section to thoroughly examining the prior elicitation. This effort is

justified considering the great sensitivity of Bayesian model selection results to the choice

of priors. Since in an standard Bayesian point estimation, the influence of the prior dis-

tribution vanishes as the sample size grows, while in a model selection problem rich data

availability dose not remedy adverse effects of poor prior specification (Berger & Pericchi,

1996).

The first step in a Bayesian data analysis setting is to specify prior densities to the model

parameters θ (given the model representation (M) is chosen). The prior distribution p (θ)

is basically a tool to summarize the initially available information on the process, and to

quantify the uncertainty associated with this information. In a scientific inference problem,

due to objectivity requirements, we tend to select standard vague or non-informative priors

in order to base the inference merely on the experimental observations.
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A number of techniques are currently available for constructing such standard priors

(Kass & Wasserman, 1996). The use of these priors, however, is rather delicate for varying

dimensional model settings, since the majority of non-informative priors are improper,

defined up to a constant of proportionality. In general, improper priors can not be assigned

to model specific parameters in Bayesian model determination, as the choice of the arbitrary

normalizing constant will influence the Bayes factor (equation 3.12). Notice that the Bayes

factor is a multiple of this normalizing constant (equations 3.12, 3.13). Proper vague priors

(proper priors with large dispersion parameter) also do not address the difficulty, for they

give rise to the so called Jeffreys-Lindley paradox (Lindley, 1957; Kass &Wasserman, 1995).

The Jeffreys-Lindley paradox is a problem related to the stability of the Bayes factor, which

causes the simplest model (which might be a very poor reflection of the data)to always be

favored by the Bayes factor.

We address the aforementioned concerns in our choice of priors. We use a hierarchical

Bayes approach to model the lack of information on the parameters of the prior distribution,

by a second level of prior distributions on these parameters. Hence we refrain from using

improper priors, yet avoiding any subjective input to the inference by introducing unground

informative priors. The posterior kernel (of varying dimension) according to the Bayes rule

is

p (mk, k|dobs) ∝ p (dobs|mk, k) p (mk, k) (3.16)

where mk is the parameter vector associated to the k layer soil model. dobs denotes a

vector of experimental observations, which is the n× 1 vector of normalized displacement

response, recorded at the soil surface. Introducing the second layer of hierarchy will lead

to
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p (mk, k|dobs) ∝ p (dobs|mk, k) p (mk|k) p (k) (3.17)

∝ p (dobs|mk, k) p
(
c|σ2, v, k

)
p (z|k) p(σ2)p (v) p (k|λ) p (λ)

For the ease of notation, we define vectors mP , andmH which contain the model specific

parameters, and the global hyperparameters, respectively. The global parameters are un-

knowns, which bear on parameters common to all models. Thus mP = (cTk×1, z
T
(k−1)×1)

T ,

mH = (σ2, v, λ)T , and mk = (mT
P ,m

T
H)T , and m = (mT

k , k)
T . Superscript T denotes

transposition. The definition of the priors are

c|σ2, v, k ∼ N
(
c0, σ

2vIk×k

)
(3.18a)

σ2 ∼ IG (α0, δ0) (3.18b)

v ∼ Ga (ζ0, η0) =
ηζ00

Γ (ζ0)
v(ζ0−1)e(−η0v) (3.18c)

p (z|k) ∝
(

T

k − 1

)−1

(3.18d)

k|λ ∼ 1
∑K

i=1 (λ
i/i!)

λk−1

(k − 1)!
, k = 1, . . . ,K (3.18e)

λ ∼ Ga (ι0, κ0) (3.18f)

In the above, c represents the log-velocity random field. We, a priori, assume that the

velocity field within each layer is populated from a log-normal type distribution. Hence,

the log-velocity field has a multi-variate Gaussian prior density (equation 3.18a). This

assumption ensures that velocity is a positive-valued random filed. We further suppose

that c1, . . . , ck are a priori independent. The correlation structure of the layered elastic

properties will be reconstructed a posteriori (if there exists any). c0 is set to ln (200),

meaning that before the inversion, the media is assumed to be homogeneous. From here

on c refers to the log-velocity of the soil layers.
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The hyper parameters σ2 and v are noise variance and precision parameter respectively.

We opt for broadly non-informative priors for these parameters (α0 = δ0 = 0.01 and

ζ0 = η0 = 0.01), (equations 3.18b, and 3.18c). Setting v is not a trivial task, since an

unground specification of this parameter (relatively large values) may lead to Jeffreys-

Lindley’s paradox (Denison et al., 2002b). By considering it as a random variable we

elevate the robustness of the method against poor choices of v.

Notice that there is no restriction in using improper priors for the global parameters

(which are common among all the models), since in marginal likelihood calculation (equa-

tion 3.13) common parameters can be integrated out using the same prior, even when

the prior is improper (Berger & Pericchi, 1998). Hence, the problem with the arbitrary

proportionality constant, which brings about Lindley’s paradox, is removed.

z is the position vector of the k−1 layer interfaces. p(z|k) (equation 3.18d) reflects the

prior assumptions about the position of the material interfaces. We define an underlying

grid of T points (which coincides with the finite element discretization of the physical

domain). This prior suggests that given a k layer model is the true process, and there are

T candidate nodes to locate k − 1 interfaces, any combination of (z1, . . . , zk−1) is equally

likely. A prior of the form (equation 3.18d) does not place an explicit penalty on the model

complexity. However, as stated earlier, the marginal likelihood contains a built-in penalty

on the model dimension, which strongly depends on the prior variance v of the coefficients

c (Denison et al., 2002b).

We assign a hierarchical truncated Poisson prior on k|λ, with K being the maximum

number of layers in partitioning (equation 3.18e). This setting controls the prior weights

given to over-parameterized models, while avoiding to subjectively regularize the solution

by freeing λ. λ is a hyperparameter to be elicited from the data. A natural choice of prior

on this parameter is a flat Gamma distribution (ι0 = κ0 = 0.01).

3.7.3 Reversible Jump MCMC Implementation as Birth-Death Process

In this section we extract the details involved in the RJMCMC algorithm for our specific

inversion setup, once the prior densities are assigned to the model unknowns. In order to
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traverse the varying dimensional posterior surface, we perform four types of move: Birth

(B), Death (D), Move (M), and Perturb (P). Different search strategies have been designed

depending on the application (e.g., see the original work by Green (Green, 1995), and

Denison et al. (Denison et al., 1998)). As long as the algorithm satisfies the balance

condition, and the acceptance ratio remains computationally efficient, we assume that our

approach offers a flexible design.

Let us suppose that at the (s)th step the chain is at k(s),m
(s)
P ,m

(s)
H (denoting number

of layers, model specific parameters c(s) = (c
(s)
1 , . . . , c

(s)
k )T , z(s) = (z

(s)
1 , . . . , z

(s)
k−1)

T , and

hyper-parameters σ2
(s)
, v(s), λ(s) respectively). The possible transitions are: (B) add an

intersection at a random location with probability p
(B)

k(s)
. (D) Delete a randomly chosen

intersection with probability p
(D)

k(s)
. (M) Swap a randomly chosen intersection for a randomly

chosen available node in T with probability p
(M)

k(s)
, where T is the set of candidate node

locations, and T is the size of the set T (|T | = T ). (P) Perturb velocity of a randomly

chosen layer with probability p
(P )

k(s)
. Where p

(B)

k(s)
+p

(D)

k(s)
+p

(M)

k(s)
+p

(P )

k(s)
= 1, ∀k(s). Notice that

(B) and (D) involve dimension changes in m
(s)
P , while (M), and (P), proposes moves within

the current dimension, hence the later proceeds similar to regular Metropolis-Hastings

algorithm (Robert & Casella, 2004). Below is the definition of each transition:

• Birth

k∗ = k(s) + 1

With probability p
(B)

k(s)
= qk(s),k∗, a Birth move is proposed, and a layer interface i is

added at an available random grid location. This random location is proposed from

the probability qz(z
∗|z(s), k(s)).

Here dk(s),k∗ = 1, and dk∗,k(s) = 0, so an auxiliary variable is needed for the dimension

balance. We draw u from ψk(s),k∗(u|c(s)).

Next, we determine the proposed layer velocities c∗ from the transformation Tk(s),k∗(c(s), u)

given by
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Tk(s),k∗(c(s), u) =







ck
(s)+1

1 = ck
(s)

1

...

ck
(s)+1

i−1 = ck
(s)

i−1

ck
(s)+1

i = ck
(s)

i − ςcu

ck
(s)+1

i+1 = ck
(s)

i + ςcu

...

ck
(s)+1

k(s)+1
= ck

(s)

k(s)

(3.19)

This implies that the velocity of the chosen layer is perturbed from a Gaussian pro-

posal to attain the velocity of the two emerged layers. ςc is a variance measure,

defining size of the search step. Notice that the hyperparameters remain unchanged

in the Birth (also in Death) move. The candidate state is accepted with probability

rk(s),k∗(m
(s)
P ,m∗

P ) = min

{

1,
p(m∗

P , k
∗)

p(m
(s)
P , k(s))

︸ ︷︷ ︸

prior ratio

p(d|m∗
P ,m

(s)
H , k∗)

p(d|m(s)
P ,m

(s)
H , k(s))

︸ ︷︷ ︸

likelihood ratio

×
qk∗,k(s) ψk∗,k(s)(u

′|c∗) qz(z(s)|z∗, k∗)
qk(s),k∗ ψk(s),k∗(u|c(s)) qz(z∗|z(s), k(s))
︸ ︷︷ ︸

proposal ratio

×
∣
∣
∣
∣
∣

∂Tk(s),k∗(c(s), u)
∂c(s)∂u

∣
∣
∣
∣
∣

︸ ︷︷ ︸

Jacobian

}

(3.20)

where the prior ratio is

p(m∗
P , k

∗)

p(m
(s)
P , k(s))

=
p(c∗|σ2(s), v(s), k∗)p(z∗|k∗)p(k∗|λ(s))

p(c(s)|σ2(s), v(s), k(s))p(z(s)|k(s))p(k(s)|λ(s))
(3.21)

and
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qz(z
(s)|z∗, k∗) ∝ 1

k∗ − 1
(3.22a)

qz(z
∗|z(s), k(s)) ∝ 1

T −
(
k(s) − 1

) (3.22b)

ψk∗,k(s)(u
′|c∗) ∝ 1 (3.22c)

ψk(s),k∗(u|c(s)) ∼
1

ςc
N (0, 1|u) (3.22d)

qk(s),k∗ =







1/2 k(s) = 1

1/4 otherwise

(3.22e)

qk∗,k(s) =







1/3 k(s) = K

1/4 otherwise

(3.22f)

∣
∣
∣
∣
∣

∂Tk(s),k∗(c(s), u)
∂c(s)∂u

∣
∣
∣
∣
∣
= 2ςc (3.22g)

p(d|mP ,mH , k) is the likelihood function, which is constructed according to equation

3.6.

• Death

k∗ = k(s) − 1

With probability p
(D)

k(s)
= qk(s),k∗, a Death move is proposed. A current interface i is

randomly chosen from the probability qz(z
∗|z(s), k(s)) and removed. The proposed

velocity profile c∗ is determined from the deterministic Death transformation (which

is the reverse Birth transformation)
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Tk(s),k∗(c(s), u) =







ck
(s)−1

1 = ck
(s)

1

...

ck
(s)−1

i−1 = ck
(s)

i−1

ck
(s)−1

i = 1
2

(

ck
(s)

i + ck
(s)

i+1

)

ck
(s)−1

i+1 = ck
(s)

i+2

...

ck
(s)−1

k(s)−1
= ck

(s)

k(s)

(3.23)

The acceptance probability is the same as equation 3.20, with the following modifi-

cations

qz(z
(s)|z∗, k∗) ∝ 1

T −
(
k(s) − 1

) (3.24a)

qz(z
∗|z(s), k(s)) ∝ 1

k∗ − 1
(3.24b)

ψk∗,k(s)(u
′|c∗) ∼ 1

ςc
N (0, 1|u) (3.24c)

ψk(s),k∗(u|c(s)) ∝ 1 (3.24d)

qk(s),k∗ =







1/3 k(s) = 1

1/4 otherwise

(3.24e)

qk∗,k(s) =







1/2 k(s) = K

1/4 otherwise

(3.24f)

∣
∣
∣
∣
∣

∂Tk(s),k∗(c(s), u)
∂c(s)∂u

∣
∣
∣
∣
∣
=

1

2ςc
(3.24g)

• Move
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k∗ = k(s)

With probability p
(M)

k(s)
= qk(s),k∗, a “Move” move is proposed. A layer interface in

randomly chosen from a uniform probability, and moved to an available knot location.

A new set of hyper parameters m∗
H is drawn from the probability q(m∗

H |m
(s)
H ). Log-

normal proposals are used to update all the hyperparameters.

In a Move step, as the number of material layers is fixed, the algorithm reduces to the

regular Metropolis-Hastings MCMC with the acceptance probability of the following

form: (Notice that the hyperparameters of the model are also updated in Move and

Perturb).

rk(s),k∗(m
(s),m∗) = min

{

1,
p(m∗)

p(m(s))
︸ ︷︷ ︸

prior ratio

p(d|m∗
P ,m

∗
H , k

(s))

p(d|m(s)
P ,m

(s)
H , k(s))

︸ ︷︷ ︸

likelihood ratio

q(m
(s)
H |m∗

H)

q(m∗
H |m

(s)
H )

︸ ︷︷ ︸

proposal ratio

}

(3.25)

• Perturb

k∗ = k(s)

With probability p
(P )

k(s)
= qk(s),k∗, a Perturb move is proposed. A layer is randomly

picked from a uniform density, and its material property is perturbed with a Gaussian

proposal. It is also attempted to update the model hyperparameters from log-normal

proposal densities (similar to the M move). The probability of accepting the can-

didate state is found from equation 3.25. Notice that the uniform and Gaussian

proposals to update mP do not appear in this ratio (also in the M step), for reasons

of symmetry.

3.8 Application to a Synthetic Case

The inversion scheme outlined in the preceding sections is applied to a synthetic data

set to deduce the subsurface elastic properties of a soil model. We consider the horizontally

stratified semi-infinite soil medium depicted in figure 3.3. The medium is modeled as a one-
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Figure 3.3: Benchmark soil velocity profile

dimensional PML-truncated domain, with the regular domain extending to z = 100m, and

the PML buffer zone thickness being 10m. Figure 3.3 illustrates the target wave velocity

profile, which reflects sharp transitions between different materials in depth. The medium

is probed with a Gaussian pulse-type excitation p (t) applied at the soil surface as shown

in figure 3.4a. Figure 3.4b depicts the frequency spectrum of the excitation.

Figure 3.5a shows the displacement time history response of the medium given the

soil model depicted in figure 3.3, which is obtained by solving the forward problem 3.1

and 3.2 using a mixed finite element method. 220 elements of length 0.5m are used in

the analysis. Displacement response, as a measurable characteristic of the wave field, will

serve as the input to our inversion scheme. We generate the synthetic data by perturbing

the displacement response v (0, t) of the soil model with 20% Gaussian noise. Figure 3.5b

illustrates this data set. The attenuation effect is disregarded in this study, and the soil

density is assumed to be known a priori (ρ = 2000 kg/m3).
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Figure 3.4: (a) Time history of the applied stress p (t) (b) Frequency spectrum of the
applied stress p (t)
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Figure 3.5: (a) Measured displacement response at the surface (b) Synthetic data: Mea-
sured displacement response at z = 0 perturbed with 20% Gaussian noise
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3.9 Results

In this section, we give a demonstration of the Bayesian varying dimensional inversion,

and model determination using the methodology introduced in the preceding sections. The

inversion allowed for the maximum of 40 soil layers (up to the truncation interface), which

indicates maximum number of 83 model unknowns. This maximum resolution is attributed

to the frequency of the exerted load (maximum frequency 40 Hz). The simplest earth

model is k = 1, which corresponds to the state of a homogenous medium. No additional

assumption is made concerning the regularization of the deduced velocity profile.

We started the inversion with homogenous initial guess (k = 1, c = ln(200m/s)). The

RJMCMC sampler was run, and a total of 100K iterations were stored as the generated

samples. The first 20K samples were discarded as burn-in iterations. Every fifth visited

sample was kept in the chain as high dependency is expected, especially between successive

values of k, since the difference between the current and the proposed k values could be at

most one. Figure 3.6 illustrates the first 300 RJMCMC sampling sequence for the model

index (number of layers), starting from k = 1. This figure shows that k increases rapidly

up to k = 10 and in about 200 iterations, then it settles down to the five layer target model.

This figure also implies that even though our sampling strategy dose not force the model

to undergo dimension changes at every iteration (we are pointing to M, and P moves) the

waiting time at a single model is not long. Hence the sampler promptly explores the space

of plausible models until it converges to the target model k = 5. The rest of the simulation

effort is committed to arriving at the stationary condition in sampling the parameters of

the few favored models. This observation confirms the efficiency of the algorithm design

and of the proposal density formulations.

Figure 3.7a depicts the full sampling history for the same parameter, to further em-

phasize the stability of the RJMCMC chain. The marginal posterior probability mass

function of k is shown in figure 3.7b, which quantifies the level of certainty in accepting

each hypothesis. According to this figure, 6 layer profile is also a likely model to describe

the observations with much less probability. The figure manifests the Bayesian inversion
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Figure 3.7: Number of layers (k) in the partition model
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capability to deduce the true nature of the underlying process without imposing any reg-

ularization constraint to penalize overly complex models.

Figures 3.8 and 3.9 illustrate the marginal posterior densities of the model specific

parameters, given the true model k = 5. Figure 3.8 shows the posterior estimates for the

layer thicknesses p (z|dobs, k = 5), and their associated uncertainties. The target values are

also superimposed on each histogram (dashed lines). The figure indicates the ability of the

inversion scheme to deduce the target parameters. Notice that the deviation of the posterior

mean from the target values are about one to two element dimensions. The thickness of

the fifth layer is not included here, as it is considered semi-infinite. Theoretically, the PML

is assumed to be located at a depth beyond which homogeneity is ascertained. Figure 3.9

shows the inverted acoustic soil velocities of the true model p (c|dobs, k = 5), together with

the target values.

Figure 3.10 shows inference for model hyperparameters. Although these parameters

might not be incorporated directly in model predictions, they are highly influential in

attaining reliable parameter estimates. In figure 3.10a the standard deviation of the obser-

vational error term σ2 is displayed, which is relatively centered around the target added

Gaussian noise (signal to noise ratio, SNR= 5).

Figure 3.10b depicts the dispersion parameter v. This parameter is of crucial sig-

nificance in our model determination framework, since fixing v to small values (choice of

relatively sharp priors on c) limits the flexibility of each basis function coefficient, therefore

many partitions (layers) are required to adequately model the target process (E (k|dobs)

grows). The definition of the basis functions in a Bayesian partition model is given in

equation 3.8. By contrast, large v (relatively diffuse prior on c) results in a more flexi-

ble regression function posterior mean c̃ (z) (see equation 3.7), which can accommodate

wilder oscillations in its behavior. Hence, fewer basis functions are needed to reflect the

true underlying process (E (k|dobs) becomes increasingly small), as each basis function has

more degrees of freedom. Notice that here we did not choose to set up a fixed value for v,

rather this parameter is considered as a random variable (equation 3.18c), and its value is
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Figure 3.8: Marginal posterior density of the layer thicknesses given k = 5 and the corre-
sponding target values (dashed line)
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(a) (b)

(c) (d)

(e)

Figure 3.9: Marginal posterior density of the layer velocities given k = 5 and the corre-
sponding target values (dashed line)
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(a) Noise standard deviation (σ) (b) Precision parameter (v)

(c) Rate parameter in poisson prior (λ)

Figure 3.10: Marginal posterior density for model hyper-parameters
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deduced from the data such that the marginal likelihood is maximized.

The marginal posterior density of the rate parameter λ in the Poisson prior (equation

3.18e) is provided in figure 3.10c. We can see that the Bayesian point estimate for λ is

closely approximated by λ̂ ≅ 5. This parameter is the mean of the Poisson prior equation

3.18e, which reflects the numbers of layers k accommodated in the model c (z).

Figure 3.11 demonstrates the essence of Bayesian updating and uncertainty reduction

as a result of introducing the experimental observations. Figure 3.11a presents 5 × 102

superimposed likely prior soil models (equation 3.7), with the coefficients of each curve

drawn directly from the definition of the priors (equation 3.18). These curves show the

state of minimum knowledge about the subsurface structure. No stratification and velocity

measure is discernible at this initial state. Figure 3.11b depicts 5×103 posterior soil model

realizations, which mimic accurately the general trend of the target process.

Figure 3.12 quantifies the observations of the previous figure. The posterior mean soil

profile c̃ (z) (black solid curve) is illustrated together with 95% credible intervals for the

posterior predictions (dark shaded area). The prior credible region is also included in

the figure (light shaded area), which occupies the entire space (and extends to infinity).

The mean posterior prediction of the displacement time history response of the media

v (z = 0, t) is pictured in figure 3.13. The figure also provides a measure of uncertainty

around the posterior mean estimate ṽ (0, t). This plot accentuates the high fidelity of the

posterior estimates to the experimental observations.
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Figure 3.11: Prior and posterior model predictions

Figure 3.12: Posterior mean estimate together with 95% credible intervals for the mean
posterior and the mean prior
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Figure 3.13: Posterior displacement prediction together with 95% credible intervals around
the mean

3.10 Concluding Remarks

This paper introduces a probabilistic calibration approach via a Bayesian formulation

for the solution of inverse problems, defined by the random field characterization of het-

erogeneous media, for an acoustic one-dimensional velocity field with horizontally layered

structure. A self-regularized varying structure forward model is formulated based on the

notion of Bayesian partition models in order to parameterize the acoustic wave velocity

random field. The method offers a reduced dimensional inversion technique by dividing

the velocity random field into an unknown number of soil layers within a certain depth in-

terval. Number of layers, their velocities and thicknesses are inverse deduced, conditioned

on the observations. The reward of the approach is that the explicit regularization of the

inverted profile by global damping procedures or even through imposition of priors, which

carry smoothness constraints, (and might introduce subjectivity to the inference process),

is not required. The reversible jump MCMC algorithm was implemented to carry out the

simulation of the resulting varying dimensional posterior density. The provided synthetic

case indicates significant functionality of the inversion scheme to retrieve the benchmark
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subsurface profile.
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4. VARIABLE DIMENSIONAL BAYESIAN FULL WAVEFORM INVERSION

FOR 2D SEMI-INFINITE HETEROGENEOUS MEDIA

4.1 Overview

This paper introduces a methodology to infer the spatial variation of soil elastic char-

acteristics of a heterogeneous unbounded medium, via a probabilistic calibration approach,

given a prescribed sequence of loading and the corresponding time history response regis-

tered at the ground level. This involves solution of an inverse medium problem, where the

object of inference constructs a continuous spatial random field. The shear wave velocity

field is presented on a discrete grid as a proxy for the continuous model. In a grid-based

inversion, the pointwise values of the field is explored at each of the grid-blocks with a

Monte Carlo search, leading to a very high dimensional parameter space. This, in turn,

gives rise to major complications in posterior sampling. In order to reduce the dimen-

sionality of the inverse problem, we opt for partition model description of the velocity

field. That is, the field is decomposed into a number of non-overlapping subregions, so

called Voronoi tessellations, where the number of tessellations, their geometry, and weights

dynamically change to adapt to the features of the target model. A Gaussian Markov Ran-

dom field prior formalizes the correlation structure among the tessellations. The idea of

treating the number of tessellations (number of unknowns) as an unknown itself, is closely

related to Bayesian model selection, where the likely dimensionality of the inverse problem

is inferred conditional on the experimental observations. A reversible jump Markov chain

Monte Carlo (RJMCMC) scheme is applied to sample the posterior distribution of varying

dimension. The governing forward physics consist of propagation of 2D scalar (SH) waves

travelling in the heterogeneous Earth, where in order to model the semi-infinite extent

of the physical domain, a perfectly matched layer (PML) is introduced at the truncation

boundary. Synthetic data examples are set to illustrate the capabilities of the proposed

methodology.
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4.2 Introduction

Methods of constructing subsurface images of the Earth’s internal structure and com-

position has been actively developed in variety of fields such as geophysical probing applica-

tions, geotechnical site characterization, oil and mineral resource assessment, groundwater

remediation and non-destructive testing, among others. This imaging process essentially

involves solution of an inverse problem. An inverse problem is described as the process

of estimating some characteristics of a physical system from a set of directly measurable

responses of the system (observations). The basis of all the above applications is stimu-

lating the domain by a physical/mechanical excitation and recording the response as the

observable parameter which is fed to the inverse solver to reconstruct the spatially variable

characteristic of interest. In this article the aim is to infer the elastic characteristics/shear

wave velocity field of a two dimensional arbitrarily heterogeneous Earth model from sur-

ficial measurements of displacement time history response of the domain to prescribed

dynamic excitation also located at the ground level.

Full waveform inversion consists in a data fitting procedure based on modeling the

propagation of wave-field through subsurface earth to extract quantitative images of elas-

tic moduli (and/or density and/or attenuation properties) where the entire information

embedded in the waveform from the onset of the wave to the final recognisable oscillations

in the wave train (typically recorded directly in the time-domain and on the probed do-

main’s surface) is exploited (Fichtner, 2010). Full waveform inversion was introduced to

the geophysical community by the early work of Bamberger et al. (Bamberger et al., 1977)

and has been pursued afterwards in wide range of disciplines as diverse as geophysical

exploration, medical imaging, oil and gas exploration, etc. in both frequency-domain and

time-domain for nearly four decades now. The majority of the literature, however, has

focused on deterministic approaches. More recently, owing to the advances in computa-

tional power of the computers, statistical inversion methods has been emerged to address

the essential need for incorporating the various sources of uncertainty stemming from mea-

surement errors, aleatory formations, and limited theoretical understanding.
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Waveform inversion could be classified as migration velocity analysis methods (MVA)

(Plessix et al., 1998; Chavent & Jacewitz, 1995) or full waveform based schemes (Plessix,

2008). MVA is based on the analysis of the kinematic of reflections and is an iterative

process of the following two-step workflow: (1) the data are migrated by prestack migration

and (2) the velocity profile is updated based on the migration output. The iteration is

repeated until the optimal migration velocity that best flattens the reflection “Common

Image Gathers” (CIG) is achieved (Biondi, 2006).

Symes (Symes, 2008) in a comparative discussion reviewed the superiority of the MVA

over deterministic full waveform approaches. Despite the remarkable ability of the full

waveform inversion techniques to reconstruct detailed models of subsurface structure, they

tend to become trapped in local minima associated with the waveform misfit function,

as the misfit function is highly nonlinear with respect to the changes in velocity model.

Hence, the solution is overly sensitive to the initial estimate of velocity structure. On

the other hand, MVA requires decomposition of the sought properties into the, so-called,

background and reflectivity components, followed by a fairly complex forward modeling,

and an expensive optimization process in order to recover the reflectivity. The reader

is referred to Virieux and Operto and Plessix (Virieux & Operto, 2009; Plessix, 2008)

for a review of available (deterministic) full waveform inversion techniques in exploration

geophysics.

The information contained in seismic measurements are naturally limited, sparse and

noise-contaminated. These observations are used to retrieve essentially infinite number

of unknowns (pointwise values of the velocity field), where generally no information is

available on spatial variability of the property of interest. These lead to the inherent

non-uniqueness of the reconstructed image. That is, the reconstructed image is highly

uncertain, acknowledging that infinite solutions are equally compatible with the data. On

the other hand, the validity of the constructed image is highly dependent on how accurately

the propagation of waves through strongly heterogeneous Earth is simulated (does the

model captures all the physics that contribute to the data?). Therefore, deterministic
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estimation of the velocity model could be considered of limited use considering all the

sources of uncertainty. The straightforward recognition of the noted uncertainties has led

to introduction of probabilistic inverse theory, and the Bayesian method to be specific, to

the geophysical literature (Keilis-Borok & Yanovskaya, 1967; Press, 1968; Tarantola, 2005)

where each plausible solution is assigned a probability of representing the true Earth.

We refer to some of major earlier geophysical literature on the subject of Bayesian

inversion. Duijdnam (Duijndam, 1988a,b) presents an excellent introduction and reference

to the subject, specifically in seismic applications. Scales and Tenorio (Scales & Tenorio,

2001) gives a overview on fundamental concepts of uncertainty based data fitting and

model parameter estimation with a comparative discussion on Bayesian and frequentist

methodologies with specific emphasis on means of formalizing the prior density. Ulrych

etal (Ulrych et al., 2001) gives a tutorial on concepts central to the Bayesian approach to

inverse problems. Some standard references on applied probability theory and Bayesian

data analysis are (Box & Tiao, 1992; Gelman et al., 2003; Jaynes & Bretthorst, 2003).

We consider Bayesian formulation of a nonlinear inverse problem in which the object

of inference constructs a spatial random field. Two major modelling and computational

challenges are involved in this construction. First, the number of unknowns (i.e., pointwise

values of the field) is essentially infinite (Rechenmacher & Medina-Cetina, 2007). Hence,

the unknown field is approximated by its spatial discretization. This discretization is often

according to the resolution of the forward solver leading to an often very high dimensional

parameter space. Large dimensionality of the input space with a nonlinear forward mapping

lead to multimodal, strongly correlated and skewed posteriors, which in turn gives rise to

major complications in the posterior sampling. Moreover, grid based parametrization of the

unknown field artificially enforce a minimum length scale of variability which is generally

imposed by the discretization size of the governing PDE (Lee et al., 2002). If the scale of

variation of the unknown spatial field is higher than the resolution of the mesh, the scheme

constitutes a waste of computational resources, since the forward model has to run on a

unnecessarily fine mesh. Moreover, as the number of unknowns increases (at times, higher
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than the number of data) overfitting the data might occur, which generates spurious large

fluctuations in the inverted material property values. This results could be completely

erroneous and yet very well fit the data. Such solutions also perform poorly in terms

of prediction (Koutsourelakis, 2009). In a deterministic setup, eliminating such solution

somewhat becomes a subjective choice. A popular option to select the best model is to

impose an auxiliary constraint on the model parameters in order to minimize the norm of

the solution. This produces the smallest model that minimizes the misfit function (also

referred to as minimum norm solution) (Everett, 2013).

Secondly, Simulation based inference schemes (Monte Carlo methods) usually requires

a high number of forward model calls in order to arrive at stationary state of the chain

and approximate the estimators. Repeated evaluation of the forward model, particularly

when faced with large-scale inverse problems, even though possible in theory, could be

computationally intractable, rendering the inference impractical in real applications.

Three key approaches might be adopted to cope with the addressed challenges: (1)

reducing the dimensionality of the parameter space, (2) reducing the computational cost of

the forward simulations, and (3) increasing the acceptance rate of the sampling algorithm

(reducing the number of forward model calls required to infer the estimators of interest)

(Frangos et al., 2010). This article particularly focuses on the first approach, while the

proposed prior setup stabilizes the inverse problem, such that an increased acceptance rate

in Monte Carlo sampling is obtained.

A number of techniques have been developed based on reducing dimensionality of the

model. As noted earlier, in a gridded parametrization of a spatial inverse problem, the di-

mensionality of the parameter space is basically tied to the dimensionality of the numerical

discretization (Koutsourelakis, 2009). That is, if finite element method is used to discretize

the equation of motion, the vector of unknowns is of same dimension as the number of el-

ements. More efficient basis could be adopted, in case there is a knowledge of smoothness

or specific structure in the material field. A popular means of reducing dimensionality of

the unknown field is via Karhunen-Loeve (KL) expansion based on the random field prior.

80



This transforms the inverse problem to inference on a truncated sequence of weights of the

KL modes (Marzouk & Najm, 2009). In a work by Li and Cripka (Li & Cirpka, 2006) KL

expansion is employed in a geostatistical inverse problem adopted on an unstructured grid

for the identification of transport parameters. In a number of articles (e.g. Effendiev et al

(Efendiev et al., 2006) and Mondal etal (Mondal et al., 2010)) KL is used to parameterize

the permeability field in a porous media model. The primary emphasis is on a two-stage

MCMC scheme that utilizes upscale models and multi-scale data that poses constraints

among the KL weights in order to match known values of the permeability at the specific

locations. Higdon (Higdon, 2002) proposed another alternative to arrive at a lower dimen-

sional representation of the field via a process convolution prior for the underlying image

(given the filed is stationary Gaussian process).

If the variability of the parameter field is not smooth enough to be adequately de-

scribed through a simple geostatistical model with a given variogram, different methods

has been proposed. Cardiff and Kitanidis (Cardiff & Kitanidis, 2009) suggested a Bayesian

level set inversion protocol framework for imaging of zoned parameter fields with abrupt

changes (jumps) in the parameter values which reduces the problem to the estimation of

“metaparameters” that control the shape and location of the geological facies. That is, the

deformation of the level set function leads to evolution of the boundaries between zoned

geologic units.

We opted for a relatively new choice of parametrization, based on Bayesian partition

modeling (BPM) (Denison et al., 2002a,b), which is especially suitable when dealing with

earth models with sharp material interfaces. Partition modeling involves in discretizing

the spatial/temporal random field into a number of disjoint regions, so-called Voronoi tes-

sellations, where the number of tessellations and their geometry dynamically vary during

the inversion to adapt to the structure and properties of the target model. Therefore,

the number, geometry (shape, size and position), and the weight of the tessellations (de-

scribing the intensity of the parametric field of interest) are inversion parameters, directly

determined by the data. The idea of treating the number of partitions (number of param-
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eters) as a parameter itself is closely associated with probabilistic model selection, where

a collection of models with varying number of parameters are presented for inversion, and

the task is to select the model that most likely describes the experimental observations.

The greatest advantage of treating an inverse problem as a Bayesian model selection is the

notion of Bayesian parsimony, also known as “Occam’s razor”, stating that the simplest

model consistent with the data should be favored over more complex models, and opti-

mum complexity of the model must be inferred from the data. As a result, the smallest

model (less parameters) that adequately describes the data is chosen, without sacrificing

the accuracy of the recovered image. This capacity owes to the flexibility provided by the

mobile number, size, shape and position of the Voronoi cells.

Reducing dimensionality of the parameter space means that regularizing the solution

through global damping procedures (in deterministic optimization problems, e.g. (Na &

Kallivokas, 2008; Epanomeritakis et al., 2008; Tahvildari & Kaihatu, 2011)) or specific

prior distributions which bears smoothness constraints (in a Bayesian inversion framework

e.g. (Ulrych et al., 2001; Dosso, 2002; Huang et al., 2006)), is precluded.

A generalization of the simulation-based Markov Chain Monte Carlo methods, so called

reversible jump (Green, 1995), is used to sample the posterior distribution of varying di-

mensionality. In this setting, the Markov chain is capable of undergoing dimension changes

while moving among a number of candidate models. The key aspect of the reversible jump

algorithm is the introduction of some auxiliary random variable to equalize the dimension-

ality of the parameter space across models. A series of one-to-one deterministic functions

are defined to perform dimension matching such that the balance condition is satisfied.

Balance condition is the necessary condition for a Markov chain to converge to the target

density.

The varying dimensional (transdimensional) formulation in a 1D application was first

introduced to the geophysics literature by Malinverno (Malinverno, 2002) in a DC resistivity

sounding inversion, and later implemented in a number of geophysical probing inverse

problems such as (Sambridge et al., 2006; Dettmer et al., 2010; Agostinetti & Malinverno,
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2010; Minsley, 2011). Partition modeling in two dimensions has been used in Earth sciences

with applications in geostatistics (Stephenson et al., 2004), thermochronology (Stephenson

et al., 2006), paleoclimatology, climate variation reconstruction (Hopcroft et al., 2007,

2009), transport in porous media and reservoir modeling (Efendiev et al., 2011). These

applications are substantially different from our development, in that, in all these previous

studies, following the original work of Denison et.al (Denison & Holmes, 2001), the BPM

is applied for fitting a surface throughout a set of spatially distributed observational data.

That is, the Voronoi tessellations are utilised to partition the spatial data field, not the

parameter/unknown model space. The former is a more standard application of BPM,

as the geometry, concentration, and weight of the partitions are directly guided by the

information carried by the spatially distributed data. Hence, the regions are defined such

that the points nearby in the data space have the same distributions. Central to this

approach is the ability to assign conjugate priors within the partitions, which significantly

eases the posterior inference.

We propose partitioning the unknown velocity field (as a dimensionality reduction tool)

in the absence of any direct observation of spatially distributed velocity values. Probably

the closest development to this work is that of Bodin and Sambridge (Bodin & Sambridge,

2009) where they adopted the transdimensional framework in a seismic travel time to-

mography application. The work later extended to include the data noise as an unknown

parameter (Bodin et al., 2012). In their study, the use of BPM was motivated by heteroge-

nous nature and uneven spatial distribution of data, such that cell concentration and the

discretization resolution is led by intensity of seismic rays.

Motivated by the computationally intensive nature of the forward model (which strictly

limits the number of calls to the forward solver), instead of a uniform prior model (as

suggested in previous studies, e.g. (Bodin & Sambridge, 2009; Bodin et al., 2012)), a proper

Gaussian Markov Random field (GRMF) (Ferreira & Oliveira, 2007) prior is assigned within

the disjoint regions, to alleviate the inherent ill-posedness and enhance the stability of

the inverse problem. The GMRF model formalizes the correlation structure among the
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tessellations, which implies that the measure of velocity at a particular cell depends only

on the velocity value at the neighboring cells. We adopt a Hierarchical Bayes approach

where intensity of the correlation (level of smoothness) is tuned by random variables to

be inferred from the data. In a hierarchical approach, the lack of information on the

parameters of the prior distribution is modeled by a second level of priors. This way, any

subjective input through explicit regularization of the model parameters is avoided.

The numerical solution of the equations of motion is a key defining characteristic of full

waveform inversion. The governing forward physics involves in propagation of 2D scaler

(SH) waves travelling in the heterogeneous Earth, when the medium is probed by a stress

load on the surface. In order to model the semi-infinite extent of the physical domain, a

perfectly matched layer (PML) (Kang & Kallivokas, 2010b) is introduced at the truncation

boundary to emulate the infiniteness of the Earth’s structure. A displacement-stress mixed

finite element scheme is used for numerical solution of PML-augmented wave PDE.

4.3 The Forward Model

In this section we introduce the forward wave propagation problem, originally appeared

in (Kang & Kallivokas, 2010b). The forward model represents the mathematical relation

which maps the parameter space (velocity field) into the predicted observation values (do-

main’s displacement response to the prescribed source condition).

We are seeking to recover the spatial variation of soil elastic characteristics of a heteroge-

nous unbounded medium, given a prescribed sequence of loading and the corresponding

time history response registered at the ground level. The forward physics involves in prop-

agation of 2D scaler (SH) waves travelling in the soil when the medium is probed by a

stress load p (t) on the surface.

A major challenge involved in radiation problems is to sufficiently model the open

boundaries of the physical domain. Computational tools based on domain discretization

require the unbounded domain be reduced to finite. Hence, the physical domain must be

truncated at some distance from the source. If the truncated interface simply fixed or

insufficiently modeled, the outgoing radiations reflect back to the computational domain
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and contaminate the solution, which in turn affect the viability of the inverted image.

To avoid spurious reflections caused by the truncation, a so called Perfectly-Matched-

Layer (PML) buffer zone is enforced at the edge of the computational domain that absorbs

the incident radiation with ideally no reflection into the domain. The introduced boundary

enforces the rapid attenuation of the wave motion within the absorbing layer. The PML has

been widely used among other numerical radiation boundary conditions, since it has proved

excellent absorbtion over a wide range of incident angles and not particularly sensitive to

the shape of the wave front and the frequency of the excitation (Basu & Chopra, 2003,

2004).

Two dimensional scalar wave equation over a heterogenous un-bounded Earth is

∇. (µ∇u) = ρ
∂2u

∂t2
(4.1)

where u(x, t) is anti-plane displacement, µ(x) is the shear modulus, and ρ(x) is the soil

density. Numerical solution of equation 4.1 is obtained by truncating the semi-infinite

domain, and surrounding the finite computational domain by PML slabs, as illustrated in

figure 4.1. The full derivation of the governing wave equation in a PML-truncated domain

can be found in the original work (Kang & Kallivokas, 2010b), also briefly included here

for the sake of completeness.

The construction of PML is based on the concept of physical coordinate stretching, such

that the space in the absorbing layer is stretched by a complex function, and attenuation

of motion is enforced within the PML. This leads the transient propagating waves to

exponentially decay as they enter the PML zone. The stretched coordinates are defined as

x̃j =

∫ xj

0

[

{1 + f ej (s)} − i
fpj (s)

a0

]

ds, j = 1, 2. (4.2)

where a0 = ksb is the non-dimensional frequency and b is the characteristic length of the

system. ks = ω/cs is the wave number, with cs =
√

µ/ρ denoting the phase velocity of

the wave. fpj and f ej are the attenuation functions, which serve to decay propagating and
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Figure 4.1: Benchmark soil velocity profile

evanescent waves, respectively, along (xj , j = 1, 2) directions, and are defined as follows

fp,ej (x) =







0, |xj| < |xitfj |

3b
2LPML

j

log
(

1
|R|

)(
xj−xitf

j

LPML
j

)2

, |xj| ≥ |xitfj |
; j = 1, 2. (4.3)

which suggests a positive attenuation within the PML, and zero value in the regular domain.

LPML
j and xitfj are thickness of the PML and coordinate of the PML-regular domain interface

in xj direction, as shown in figure 4.2. R denotes the reflection coefficient which tunes the

amount of reflection from the edge of the fixed boundary into the regular domain. By

virtue of equations 4.2 and 4.3, the stretched and the original coordinates match at the

regular domain-PML boundary which ensures no reflection of the outgoing waves occurs

at the edge of the absorber.

The governing 2D scalar wave equation within a PML truncated domain is given by:
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Figure 4.2: Schematic of a 2D computational domain surrounded by a PML absorbing
boundary

fmv̈ + csgcv̇ + c2sgkv −∇.
(

F̃
e
ṡ+ F̃

p
s
)

= 0, (4.4a)

Fes̈+ Fpṡ− c2s∇v̇ = 0, (4.4b)

in Ω× (0, T ],

subject to

v (x, t) = 0 on Γfixed × (0, T ], (4.5a)

ṡ2 (x, t) = p (x, t) on Γfree × (0, T ], (4.5b)

v (x, 0) = 0 on Ω, (4.5c)

v̇ (x, 0) = 0 on Ω, (4.5d)

s (x, 0) = 0 on Ω, (4.5e)

ṡ (x, 0) = 0 on Ω. (4.5f)
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v (x, t) = ρu (x, t) is normalized displacement with respect to the material’s density with u

being the anti-plane displacement. x and t denote location and time, respectively. s (x, t)

is stress memories and is given by:

s (x, t) =

∫ t

0
σ (x, τ) dτ (4.6)

where s = [s1 s2]
T . Hence

ṡ (x, t) = σ (x, t) , (4.7a)

s̈ (x, t) = σ̇ (x, t) . (4.7b)

σ = [σ31, σ32] is the vector of shear stress components. fm, gc and gk are PML attenuation

functions, given by

fm = [1 + f e1 ] [1 + f e2 ] , (4.8a)

gc = gp2 [1 + f e1 ] g
p
1 [1 + f e2 ] , (4.8b)

gk = gp1g
p
2 . (4.8c)

where gp1 = fp1 /b and g
p
2 = fp2 /b are normalized attenuation functions. F̃

e
, F̃

p
, Fe, and Fp

are stretch tensors given by
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F̃
e
=






1 + f e2 0

0 1 + f e1




 , (4.9a)

F̃
p
=






csg
p
2 0

0 csg
p
1




 , (4.9b)

Fe =






1 + f e1 0

0 1 + f e2




 , (4.9c)

Fp =






csg
p
1 0

0 csg
p
2




 . (4.9d)

Equations 4.4 present the mixed displacement (v) -stress memory (s) equations governing

the propagation of the SH waves in the PML-truncated domain.

4.4 Methodology

We are seeking to recover the heterogeneous shear wave velocity profile cs (appeared

in equation 4.4) within the PML-truncated domain. This involves solution of an inverse

medium problem, described as the task of inferring the spatial variability of a physical

characteristic of the medium from limited and noisy measurements/observations. The

uncertainty stemming from lack of data, its random nature and the model error (i.e. the

discrepancy between the true process from which the data is generated and the theory

approximating the reality, so-called the forward model) renders point estimates of limited

use. Moreover, it is essential to built the confidence intervals for the generated estimates

which quantify the inferential uncertainties about the unknowns. Most importantly, the

predictive ability of the retrieved model must be assessed. We adopt a Bayesian perspective

to inference, in which the model unknowns are treated as random variables. As a result,

the solution to the inverse problem is not point estimates but probability density/mass

functions. Furthermore, Bayesian approach sets out as a way to facilitate the integration
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of geo-evidence, since it allows for a translation of information content (observational,

theoretical, experts judgment) in form of a probability function (Tarantola, 2005).

4.4.1 Hierarchical Bayesian Inverse Modeling

Consider a n dimensional vector of observable quantities-data dobs and a k dimensional

vector of model parameters-inputs θ, both assumed to be real valued and finite-dimensional,

and G being the forward model, mapping θ into dobs. Here, G is the discretized version

of the initial boundary value problem presented in equations 4.4 and 4.5. The following

relationship holds:

dobs = G (θ) + ǫ (4.10)

where ǫ is the random error component which quantifies the deviation between model

prediction and measurements. This random term encompass both theoretical and mea-

surement errors (assuming the forward model is an unbiased estimate to the true physical

process). Explicit distinction, however, could be made between model and observational

errors in a full uncertainty quantification framework (UQ) (Medina-Cetina, 2006).

In a Bayesian approach to inverse problems, a prior distribution p (θ) is incorporated

in estimating each model unknown, which quantifies the initial uncertainty about the pa-

rameter. Ideally, this density limits the space of plausible parameters by giving higher

probability to those which can help to describe the system’s response more accurately.

The objective of the inversion is to sample the posterior distribution p (θ|dobs), built to

fully describe the model parameters in terms of a density function, given the data dobs is

observed. According to Bayes theorem

p (θ|dobs) =
p (dobs|θ) p (θ)

∫

Θ
p (dobs|θ) p (θ) dθ

(4.11)

The likelihood function p (dobs|θ) is the conditional probability that the observed real-

ization dobs is produced by model θ. Given the errors ǫi are identically distributed Gaus-

sian random variables with mean zero and covariance matrix Cd, (i.e., ǫ ∼ N (0,Cd)), the
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likelihood function is found with reference to a multivariate normal density

p (dobs|θ) =
1

[(2π)n|Cd|]1/2
exp

[

−1

2
(G (θ)− dobs)

T C−1
d (G (θ)− dobs)

]

(4.12)

where n is the number of observations and Cd is the covariance of the error term. The

quantity in the denominator of equation 4.11 (the probability of observing the data dobs) is

a normalizing constant, such that the posterior is integrated to one. If further assumption

is made such that random error components ǫ = (ǫ1, . . . , ǫn)
T are ǫ

iid∼ N
(
0, σ2dIn

)
, the

likelihood function will be reduced to the following form

p (dobs|θ) =
1

σnd
exp

{

‖dobs −G (θ) ‖2
2σ2d

}

(4.13)

where In is an n × n identity matrix and ‖dobs − G (θ) ‖2 =
∑n

i=1 (dobsi −G (θ))2. If

there is a knowledge of spatial dependence between the data points (due to specific events

such as sensor miscalculation), these could naturally be incorporated in formulating the

likelihood. The level of data uncertainty is difficult to quantify a-priori, therefore, the noise

variance σd is considered a random variable being inferred from the data. By assigning a

conjugate Gamma prior for σ−2
d (i.e., σ−2

d ∼ Ga (δd, ηd)) we are able to integrate out the

variance term from equation 4.13 which leads to the following simplified expression for the

likelihood:

p (dobs|θ) ∝
Γ (δd + n/2)

(
ηd +

1
2‖dobs −G (θ) ‖2

)δd+n/2
(4.14)

where Γ (.) is the Gamma function. It is also of interest to determine σd whether as an

estimator of the data uncertainty, as a type of measure of validity of the forward model or

for predictive purposes. The posterior for σd, p
(
σ−2
d |θ,dobs

)
, will also be Gamma, due to

the conjugate specification, with the following updated parameters
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p
(
σ−2
d |θ,dobs

)
= Ga

(

δd +
n

2
, δd +

1

2
‖dobs −G (θ) ‖2

)

(4.15)

A Monte Carlo method will be used to draw samples of θ from p (θ|dobs). Once a

samples of θ collected the above equation could be applied to directly generate samples of

σd.

4.4.2 Velocity Field Parameterization Using Voronoi Tessellations

The velocity field comprise a continuous infinite dimensional function of spatial coor-

dinate: cs (x). This infinite dimensional stochastic field can be adequately described by a

certain collocation points xi to render the parameter space finite. In a regular treatment of

an inverse medium problem (grid-based inversion), the pointwise value of cs (x) is explored

at each of the N discretized blocks with a Monte Carlo search. This proves computation-

ally exhaustive (practically infeasible) task, and explicit regularization of the solution is

required.

Here, we opted for a mobile irregular type of discretization. We partition the velocity

field into a number of disjoint regions through a set of Voronoi tessellations. Given a set

of k nuclei (center) with spatial coordinates denoted by {xc1 , . . . ,xck} where xci ∈ R
2, the

Voronoi tessellations (also referred to as Dirichlet tessellations) define k non-overlapping

regions denoted by {R1, . . . ,Rk}, where all the points nearest to xci belongs to region Ri

so that

Ri = {x ∈ R
2 : ‖x− xci‖ < ‖x− xcj‖ for all j 6= i}

where ‖.‖ denotes Euclidian distance defined for all points x ∈ R
2. Boundaries between the

tessellations are defined by straight lines. The splits are defined only via the coordinates

of its nucleus, and a constant weight denoting the shear wave velocity for the region. For

a velocity field described by a Voronoi diagram the following expression holds:
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cs (x) =

k∑

i=1

IRi
(x) csi (4.16)

where IR (x) is an indicator function of the tessellation region R, which assumes IR (x) = 1

if x ∈ R and IR (x) = 0 otherwise. This representation basically states that cs (x) made up

of a linear combination of constant basis functions IR with the corresponding coefficients

(cs1 , . . . , csk) denoting the velocities of the k cells. Within each tessellation region the

velocity field is assumed to be constant. Higher order polynomials (a linear, quadratic,

etc.) can be assumed at the cost of added complexity and computational burden, as

this requires additional unknowns for each partition. Figure 4.3 shows an example of a

Voronoi diagram where partitions R1 and R2 are characterized by their nuclei xc1 and xc2 .

The number of unknowns, therefore, reduces to 2k (k discrete parameters describing the

coordinates of the nuclei in the plane plus k velocity values assigned to each partition). As

the inversion proceeds, the number of partitions, their geometry, and the corresponding

velocities varies dynamically to adapt the shape and physical properties of the subsurface

features with possibly sharp boundaries between geologic units.

4.4.3 The Choice of Priors

The first step in Bayesian inverse modeling is to formulate a prior distribution for each

participating parameter. That is, formalizing any information about the model’s variables,

available through expert’s judgement, historical evidence or prior beliefs by choosing func-

tional forms of probability and estimating the parameters of the prior density. In this

section we give a brief summary of the Gaussian Markov random field (GMRF) as a stan-

dard model used to describe spatial fields. GMRFs have widely been adopted to model

sampling distribution of spatial data involved in variety of applications such as image pre-

cessing, (blur and noise removal, detection of boundaries of an object), remote sensing and

disease mapping (Besag et al., 1991; Cressie & Chan, 1989). GMRFs have been also used

to formalize the prior beliefs about the (unknown) structure of a spatially varying random

field, as appears in an inverse problem. The latter application is the focus of this section.
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xci

R1

xc2

R2

xc1

Ri

Figure 4.3: An example of Voronoi tessellation formed about 18 pseudo random points on
the plane populated from a bivariate normal density. The boundary of two neighboring
tessellations is the perpendicular bisector of the line connecting their nuclei.

We choose to model the log-velocity field to ensure the inferred velocity is a positive

valued field, where the log-velocity field is decomposed into a number of subregions rep-

resented by a Voronoi cell. A GMRF model is used to formalize the correlation structure

among the tessellations, implying that the measure of velocity at a particular cell depends

only on the velocity value at the neighboring cells.

Typically, Markov random fields are defined over a regular lattice, where the specifi-

cation of the neighboring system is rather standard. In our application there is an added

difficulty associated with the irregular areal units. Again, consider the Voronoi diagram

partitioned the unknown field composed of k tessellations indexed 1, . . . , k in a domain of

interest ΩRegular. We assume the neighborhood set Ni of partition i is constituted by its

immediately adjacent cells sharing a common border with i. More extended neighborhood

structures are possible depending on the specifics of the problem and user choices. Fig-

ure 4.4 depicts the presentation of the neighborhood system for a given region. Having

denoted the log-velocity measures corresponding to the spatial locations xc = {xci}ki=1 by
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Figure 4.4: Definition of the neighborhood set for a given tessellation: In a Markov Random
field the distribution of the spatial process at a given location depends only on the attributes
of the process at the neighboring cells

cs = {csi}ki=1, a proper Gaussian Markov random field prior model for cs is defined by the

joint distribution (Ferreira & Oliveira, 2007)

p (cs|cs0 , k, τ, φ) ∼ Nk

(
cs01k, τ

−1Σφ

)
(4.17)

Vector xc holds the coordinates of the cells nuclei. cs0 is a location parameter. Naturally,

any prior information on the mean of the velocity random field could be incorporated in

this parameter. 1k is a k-dimensional vector of ones, and τ > 0 ia a scale parameter.

Σ−1
φ = (φIk +H), where Ik is a k × k identity matrix. φ ≥ 0 is a spatial parameter which

controls the measure of correspondence between velocities of different partitions (Ferreira

& Lee, 2007), and controls the smoothness of process cs.

H is defined as follows
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Hji =







hi j = i,

−gji j ∈ Ni,

0 otherwise,

(4.18)

where gji = gij is a positive scalar denoting the measure of similarity between regions j and

i. Ni is the collection of tessellations j comprising the neighborhood set of region i, and

hi =
∑

j∈Ni
gji. Here, gji is assumed to be one. Equation 4.18 indicates that a diagonal

elements Hii equals the number of neighbors of cell i, and an off-diagonal element Hij is

−1 if i and j are neighbors and zero otherwise.

A familiar reader may realize that as φ approaches zero, the GMRF model of equation

4.17 reduces to a so called intrinsic Gaussian Markov random field (IGMRF):Nk

(
cs01k, τ

−1H−1
)

(Besag et al., 1991). This type is very popular prior for spatial fields, however their use is

rather delicate for a varying dimensional problem. H is a rank deficient matrix, therefore,

not positive definite. Hence, an IGMRF prior density is improper (priors which are not

integrable or their constant of proportionality is unknown). The use of improper priors

for varying dimensional inverse problems and Bayesian model selection is restricted as this

may result in an identifiability issue. An interested reader is referred to (Bilancia et al.,

2013) for more details. Further details on Bayesian model selection and unidentifiable

Bayes factor is provided in appendix E.

On the other hand as φ grows very large, model of equation 4.17 reduces to a simple

Gaussian process with constant covariance structure, stating that the component of cs =

{csi}ki=1 are independent random variables with mean cs0 and constant variance τ−1.

τ and φ appeared in equation 4.17 are random variables. We propose a Gamma prior

for the both variables:

p (τ |δτ , ητ ) ∼ Ga (δτ , ητ ) =
ηδττ

Γ (δτ )
τ δτ−1 exp (−ηττ) (4.19)
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and

p (φ|δφ, ηφ) ∼ Ga (δφ, ηφ) (4.20)

To allow for higher flexibility and robustness of the inference, we avoid fixing the hyper-

parameters of the Gamma densities δτ , ητ , δφ, ηφ. Thus, another level of hierarchy is added

by introducing hyper-priors to these parameters. Consider the Gamma prior appeared

in equation 4.19. In order to avoid any subjective inputs to the inference, mean of the

Gamma density is assumed to be a random variable. The quantity µτ = ητ/δτ is defined

where µτ is a location parameters to which an exponential prior is assigned such that

p (µτ |aµτ ) =
1

aµτ
exp (−µτ/aµτ ). The hyper-parameter of the exponential density aµτ could

be chosen to be a very small value (aµτ = 10−4) to constitute a non-informative density.

Noting that p (τ, µτ |δτ , aµτ ) ∝ p (τ |µτ , δτ ) p (µτ |aµτ ), integrating out µτ from the joint

density in the left hand side of the latter proportionality leads to the following prior

p (τ |δτ , aµτ ) =
Γ (δτ + 1)

Γ (δτ )
δδττ

τ (δτ−1)

aµτ

(
δτ τ + a−1

µτ

)(δτ+1)
(4.21)

If similar derivation repeated considering equation 4.20 one could obtain

p
(
φ|δφ, aµφ

)
=

Γ (δφ + 1)

Γ (δφ)
δ
δφ
φ

φ(δφ−1)

aµφ

(
δφφ+ a−1

µφ

)(δφ+1)
(4.22)

xc is the position vector of the k Voronoi nuclei. We wish to specify an non-informative

prior for xc. An underlying grid is defined which coincides with the finite element dis-

cretization of the physical domain. Having k Voronoi cells, and N elements in the regular

domain ΩRegular, there are
(N
k

)
= N !

k!(N−k)! possible configurations to position the Voronoi

nuclei. Given that any of these configurations is equally likely, the discrete uniform prior

for the nuclei positions is obtained

p (xc|k) ∝
(
N

k

)−1

(4.23)

A prior of the above form does not place an explicit penalty on the model complexity.
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However, as stated earlier, the marginal likelihood contains a built-in penalty on the model

dimension, which strongly depends on the prior variance τ−1Σφ of the coefficients cs.

An assumption that significantly contributes to the expressivity and flexibility of the

model to recover the shape and structure of subsurface formations is that the size of the

model (number of tessellations) could vary. Having assumed that this number is unknown

a priori, in the absence of any specific information concerning the optimum number of cells,

a hierarchical truncated Poisson prior is proposed for k|λ:

p (k|λ) = e−λλk

k! (1− e−λ)
k = 1, . . . ,K (4.24)

The truncation term K is the maximum allowable number of cells which could simply set

equal to the number of regular domain elements. This setting controls the prior weights

given to over-parameterized models, while avoiding to subjectively regularize the solution

by freeing λ. λ is a hyperparameter to be elicited from the data. An exponential hyper-

prior is used for λ:

p (λ|δλ, ηλ) ∼ Ga (δλ, ηλ) (4.25)

Hyper-parameters δλ, ηλ could be chosen such that the above prior becomes flat (δλ = ηλ =

0.01). The overall prior for the model becomes:

p (θ, k) = p (k, cs,xc, λ, τ, φ) = p
(

k, {csi}ki=1, {xci}ki=1, λ, τ, φ
)

= p (k|λ) p (λ|δλ, ηλ) p (cs|k, cs0 , τ, φ) p (τ |δτ , aµτ ) p
(
φ|δφ, aµφ

)
p (xc|k)(4.26)

The components of the above equation are given in equations 4.17 and 4.21-4.25. The

posterior kernel, therefore, is given by

p (θ, k|dobs) ∝ p (θ, k) p (dobs|θ) (4.27)
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where p (dobs|θ) is defined in equation 4.14.

4.4.4 Bayesian Computation

Bayesian inference relies on the ability to estimate probabilities and statistical quan-

tities associated with the posterior distribution. The posterior distribution derived above

(equation 4.27) is known up to a proportionality constant which cannot be expressed in

a convenient analytical form. Monte Carlo methods provide essentially the only accurate

mean of inferring the posterior which does not depend on the knowledge of the propor-

tionality. Markov Chain Monte Carlo (MCMC) is an iterative stochastic method, designed

to generate samples from the posterior kernel. The methods consist of generating Markov

chain according to the transition function which asymptotically converges to the target

as the sample size grows. A sequence of models generates the Markov chain where each

model is a perturbation of the last. The perturbations are proposed according to an easy-to-

sample proposal distribution, and are accepted or rejected in accordance with a prescribed

criteria such as Metropolis Hastings scheme (see for example (Sivia, 1996)). The sampling

is continued until specific convergence conditions are met (Cowles & Carlin, 1996).

Although theoretical convergence is assured under weak condition (Liu, 2001), slow

chain mixing and lack of convergence often arise in high dimensional, highly correlated,

multi-modal target density configurations. As a result exuberant number of likelihood

computation and hence repeated forward simulation is required. This might render the

inference impractical, especially when dealing with large scale forward solvers.

In this work there is an added difficulty related to the varying dimensionality of the

target distribution, that is the dimension of the model space is unknown depending on the

number of Voronoi cells k. We opted a generalization of MCMC, so-called the Reversible

Jump MCMC (RJMCMC) framework introduced by Green (Green, 1995), which is utilized

to move Markov chains among different dimensions. The key aspect of the reversible jump

algorithm is the introduction of some auxiliary random variable to equalize the dimension-

ality of the parameter space across models. A series of one-to-one deterministic functions

are defined to perform dimension matching such that the balance condition is satisfied.
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Balance condition is the necessary condition for a Markov chain to converge to the target

density. A detailed introduction to geophysical transdimensional Bayesian inversion can

be found in Sambridge et al. (Sambridge et al., 2013).

Suppose, p (θ, k) ∝ p (θ|k) p (k) is the target distribution up to a proportionality con-

stant, where k ∈ K = {1, . . . ,K} and θ ∈ Θk (Θk denoting the parameter space of the

k dimensional model), and K is a finite integer. In a transdimensional configuration, k

is also an unknown which denotes the dimension of vector of parameters θ. Hence, the

support of the target density p (θ, k) lies on ∪Kk=1{k} ×Θk.

We seek to construct a reversible Markov chain {(θ, k)n} which has a stationary dis-

tribution p (θ, k). At the (s)th iteration the chain state is (θ(s), k(s)). Two proposals are

needed to traverse the posterior surface when a dimension change is involved: one to move

from Θk(s) → Θk∗ another for Θk∗ → Θk(s) . That is, any transit from current state of

the chain Θk(s) to the candidate space Θk∗ must have a degenerate density for the reverse

move from Θk∗ to Θk(s) . A new model of (possibly different) dimension k∗ is proposed

with probability q(k∗|k(s)) = qk(s),k∗, where
∑

k∗∈K qk(s),k∗ = 1. The basis of Green’s idea

(Green, 1995) is to supplement each of Θk(s) and Θk∗ with adequate artificial spaces in

order to create a bijection between them.

Suppose a proposal from (k(s),θ(s)) to (k∗,θ∗) that increases the dimension by one

(Θk(s) is nested within Θk∗; k
∗ = k(s)+1), and qk(s),k∗ the probability that such candidate

is proposed, and qk∗,k(s) probability that the reverse candidate is proposed. In order to

account for dk(s),k∗ = dim(Θk∗)− dim(Θk(s)) dimension difference, θ(s) is augmented with

dk(s),k∗ dimensional auxiliary variable u drawn form a proposal distribution ψ (u). The new

state of the chain θ∗ is found from the transformation T such that θ∗ = Tk(s),k∗(θ(s),u).

Tk(s),k∗ is a deterministic mapping, so called dimension matching transformation such that

Tk(s),k∗ : R
k(s)+d

k(s),k∗ → R
k∗, where R

k∗ denotes the proposed parameter space of k∗

dimension. This transformation ensures that the detailed balance condition maintains

(Mondal et al., 2010).

The proposed state (θ∗, k∗) is accepted with probability
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r = min

{

1,
p(θ∗, k∗)

p(θ(s), k(s))

qk∗,k(s)

qk(s),k∗

1

ψ(u)

∣
∣
∣
∣
∣

∂θ∗

∂(θ(s),u)

∣
∣
∣
∣
∣

}

(4.28)

where
∣
∣
∣

∂θ∗

∂(θ(s),u)

∣
∣
∣ is the Jacobian of the dimension matching transformation T . This states

that the new state of the chain is (θ∗, k∗) with probability r, or (θ(s), k(s)) with the comple-

ment probability 1− r. Similarly, the acceptance ratio of the reverse move, which involves

lowering the dimension, is defined below

r = min

{

1,
p(θ(s), k(s))

p(θ∗, k∗)

qk(s),k∗

qk∗,k(s)
ψ(u)

∣
∣
∣
∣
∣

∂θ∗

∂(θ(s),u)

∣
∣
∣
∣
∣

−1}

(4.29)

The algorithm can be completed with additional steps within a given spaceΘk, or about

hyperparameters that are not model dependent, which is the case for our hierarchical Bayes

model implementation. We implement the preceding algorithm to reconstruct the spatial

distribution of the shear wave velocity random field cs (x). For a more detailed discussion

on the reversible jump algorithm, definition of the dimension matching transformation and

its Jacobian the reader is referred to (Denison et al., 2002b).

4.4.4.1 Reversible Jump MCMC Algorithm as Birth and Death Process

This section sets out the details of the RJMCMC move steps we employ to traverse

the transdimensional posterior surface, specific to our waveform inversion. Firstly, for

ease of notation two vectors θM and θH are defined which hold the model specific and

global hyper-parameters, respectively. The global parameters are those which bear on

parameters common to all the competing models. Hence, θM = {cs,xc}, θH = {λ, τ, φ}

and θ = {k,θM ,θH}. The proposed search algorithm consists of four types of moves:

Birth (B), Death (D), Move (M), and Perturb (P). Different search strategies have been

designed depending on the application (e.g., see the original work by Green (Green, 1995),

and Denison et al. (Denison et al., 1998)). As long as the algorithm satisfies the detailed

balance condition, the acceptance ratio remains computationally efficient and moves are

simulated suitably, the algorithm design could be flexible.

101



Let us suppose that at the (s)th step, the chain is at k(s),θ
(s)
M ,θ

(s)
H (denoting number of

cells, model specific parameters c
(s)
s = {c(s)s }k(s)i=1 and x

(s)
c = {x(s)c }k(s)i=1 and hyper-parameters

λ(s), τ (s), φ(s), respectively). Notice that σd was integrated out from the posterior and will

not be sampled from by MCMC search.

The possible RJMCMC transitions are: (B) add a new generating point (nucleus) to the

tessellation with probability p
(B)

k(s)
. (D) Delete a randomly chosen nucleus with probability

p
(D)

k(s)
. (M) Swap a randomly chosen nucleus for a randomly chosen available node in T

with probability p
(M)

k(s)
, where T is the set of candidate node locations, and T is the size

of the set T (|T | = T ). (P) Perturb velocity of a randomly chosen cell with probability

p
(P )

k(s)
. Where p

(B)

k(s)
+ p

(D)

k(s)
+ p

(M)

k(s)
+ p

(P )

k(s)
= 1, ∀ k(s). Notice that (B) and (D) propose

moves between different dimensions while (M) and (P) propose moves within the current

dimension, hence no dimension change takes place, and the latter proceeds similar to the

regular Metropolis-Hastings algorithm (Robert & Casella, 2004). Below is the definition

of each transition:

• Birth

k∗ = k(s) + 1

With probability p
(B)

k(s)
= qk(s),k∗, a Birth move is proposed, and a nucleus i is added

at an available grid location. This random location is proposed from a uniform

discrete probability qx(x
∗
c |x(s)

c , k(s)) (having N elements in the regular domain and

k(s) current partitions N − k(s) knots are available to chose from). A velocity value

must be assigned to the generated cell centered at x∗c
k(s)+1

. This is obtained by

perturbing the existing velocity value where the birth takes place from a Gaussian

proposal qc(c
∗
s|c

(s)
s , k(s)) (i.e., c∗s

k(s)+1
= c

(s)
si + ζcuc where uc ∼ N (0, 1)). ζc is a

variance measure, defining size of the search step, and is a user tuned parameter.

Notice that the dimension difference between the current and proposed states equal

to two, therefore, two auxiliary variables are needed for dimension balance). The

hyperparameters remain unchanged in the Birth (also in Death) move. The candidate
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state is accepted with probability

rk(s),k∗(θ
(s)
M ,θ∗

M ) = min

{

1,
p(θ∗

M , k
∗)

p(θ
(s)
M , k(s))

︸ ︷︷ ︸

prior ratio

p(dobs|θ∗
M ,θ

(s)
H , k∗)

p(dobs|θ(s)
M ,θ

(s)
H , k(s))

︸ ︷︷ ︸

likelihood ratio

×
qk∗,k(s)

qk(s),k∗

qc(c
(s)
s |c∗s, k∗)

qc(c∗s|c
(s)
s , k(s))

qx(x
(s)
c |x∗

c , k
∗)

qx(x∗
c |x

(s)
c , k(s))

︸ ︷︷ ︸

proposal ratio

×
∣
∣
∣
∣
∣

∂Tk(s),k∗(c(s), uc)
∂c(s)∂uc

∣
∣
∣
∣
∣

︸ ︷︷ ︸

Jacobian

}

(4.30)

where the prior ratio is

p(θ∗
M , k

∗)

p(θ
(s)
M , k(s))

=
p(c∗s|τ (s), φ(s), k∗)p(x∗

c |k∗)p(k∗|λ(s))
p(c

(s)
s |τ (s), φ(s), k(s))p(x(s)

c |k(s))p(k(s)|λ(s))
(4.31)

p (cs|τ, φ, k), p (xc|k) and p (k|λ) are given in equations 4.17, 4.23 and 4.24, respec-

tively. The precision matrix H (equation 4.18) needs to be updated at each step,

since those elements of H which corresponds to the regions belonging to the neigh-

borhood set of the new born tessellation changes during the Birth. The components

of the proposal ratio are as follows
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qx(x
∗
c |x(s)

c , k(s)) ∝ 1

T − k(s) (4.32a)

qx(x
(s)
c |x∗

c , k
∗) ∝ 1

k∗
(4.32b)

qc(c
∗
s|c(s)s , k(s)) ∼ N (c∗s

k(s)+1
|c(s)si , ζc) =

1

ζc
√
2π

exp

{

− 1

2ζ2c

(

c∗s
k(s)+1

− c(s)si

)2
}

(4.32c)

qc(c
(s)
s |c∗s, k∗) ∝ 1 (4.32d)

qk(s),k∗ =







1/2 k(s) = 1

1/4 otherwise

(4.32e)

qk∗,k(s) =







1/3 k(s) = K

1/4 otherwise

(4.32f)

|J|Birth =

∣
∣
∣
∣
∣

∂Tk(s),k∗(c(s), u)
∂c(s)∂u

∣
∣
∣
∣
∣
= 1 (4.32g)

p(dobs|θM ,θH , k) is the likelihood function, which is constructed according to equa-

tion 4.14. Equation 4.32a gives the probability of generating a cell centered at x∗c
k(s)+1

and equation 4.32b is the probability of deleting the cell centered at x∗c
k(s)+1

. The

probability that the new born cell is assigned a velocity value c∗s
k(s)+1

is given by

equation 4.32c, and equation 4.32d is the probability of the reverse proposal: re-

moving a velocity when cell is deleted. According to equations 4.32e and 4.32f the

probability of proposing each of Birth, Death, Move and Perturb is chosen to be

equal (i.e., 1
4). The only exceptions are k(s) = 1 and k(s) = K. If k(s) = 1, only Birth

and Perturb moves are allowed, each with equal probability of 1
2 and k(s) = K. If

k(s) = K, the Birth proposal is prohibited so other search types are conducted with

equal probability of 1
3 . The Jacobian term |J|Birth accounts for the change in scale
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when moving to a different dimension. A short derivation is provided in F where we

show for the problem considered here |J|Birth = 1. More detailed discussion could be

found in (Robert & Casella, 2004) and (Denison et al., 2002b).

• Death

k∗ = k(s) − 1

With probability p
(D)

k(s)
= qk(s),k∗, a Death move is proposed. A current Voronoi

nucleus i is randomly chosen from the probability qx(x
∗
c |x(s)

c , k(s)) and removed. The

Death move is the exact reverse of the Birth move.

The acceptance ratio for the Death proposal is the same as equation 4.30 where the

components are defined bellow:

qx(x
∗
c |x(s)

c , k(s)) ∝ 1

k(s)
(4.33a)

qx(x
(s)
c |x∗

c , k
∗) ∝ 1

T − k∗ (4.33b)

qc(c
∗
s|c(s)s , k(s)) ∝ 1 (4.33c)

qc(c
(s)
s |c∗s, k∗) ∼ N (c(s)sk∗+1

|c∗si , ζc) =
1

ζc
√
2π

exp

{

− 1

2ζ2c

(

c(s)sk∗+1
− c∗si

)2
}

(4.33d)

qk(s),k∗ =







1/3 k(s) = 1

1/4 otherwise

(4.33e)

qk∗,k(s) =







1/2 k(s) = K

1/4 otherwise

(4.33f)

|J|Death =

∣
∣
∣
∣
∣

∂Tk(s),k∗(c(s), u)
∂c(s)∂u

∣
∣
∣
∣
∣
= 1 (4.33g)

• Move
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k∗ = k(s)

With probability p
(M)

k(s)
= qk(s),k∗ , a “Move” move is proposed. A Voronoi cell nucleus

xci in randomly chosen from a uniform probability, and moved to an available knot

location found by perturbing the coordinates of its current position vector according

to a bivariate normal distribution.

qx(x
∗
ci |x(s)

ci ) =
1

2πζ2x
exp

{

− 1

2ζ2x
(x∗

ci − x(s)
ci )

T (x∗
ci − x(s)

ci )

}

(4.34)

where ζx determines the amount that the nucleus i is displaced with respect to its

original location. A new set of hyper parameters θ∗
H is drawn from probability

q(θ∗
H |θ

(s)
H ). To sample the hyper-parameters τ, φ and λ we use a log-normal proposal

based on the current values of the chain using a properly tuned variance parameters

(search step size) ςτ , ςφ and ςλ, respectively. According to a log-normal proposal, the

log of the candidate parameter is centered on the log of the current value such that

qτ (τ
∗|τ (s)) = 1

τ∗ςτ
√
2π

exp

{

− 1

2ς2τ

(

ln τ∗ − ln τ (s)
)2

}

(4.35)

The proposal densities for qφ(φ
∗|φ(s)) and qλ(λ∗|λ(s)) are constructed in a same fash-

ion as equation 4.35. In a Move step, as the number of Voronoi cells is fixed, the

algorithm reduces to the regular Metropolis-Hastings MCMC with the acceptance

probability of the following form:

rk(s),k∗(θ
(s),θ∗) = min

{

1,
p(θ∗)

p(θ(s))
︸ ︷︷ ︸

prior ratio

p(dobs|θ∗
M ,θ

∗
H , k

(s))

p(dobs|θ(s)
M ,θ

(s)
H , k(s))

︸ ︷︷ ︸

likelihood ratio

q(θ
(s)
H |θ∗

H)

q(θ∗
H |θ

(s)
H )

︸ ︷︷ ︸

proposal ratio

}

(4.36)

The prior ratio is p(θ∗)

p(θ(s))
=

p(k∗|λ∗)p(λ∗|δλ,ηλ)p
(

c
(s)
s |cs0 ,τ

∗,φ∗

)

p(τ∗|δτ ,aµτ )p
(

φ∗|δφ,aµφ

)

p(k(s)|λ(s))p(λ(s)|δλ,ηλ)p
(

c
(s)
s |cs0 ,τ

(s),φ(s)
)

p(τ (s)|δτ ,aµτ )p
(

φ(s)|δφ,aµφ

) .

The velocity parameter assigned to the displaced cell moves with the cell, therefore,

the velocity vector remains unchanged (c∗s = c
(s)
s ). The precision matrix H needs to
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be updated accordingly, as the tessellation geometry changes in the vicinity of the

moved cell. The proposal ratio is given by
q(θ

(s)
H

|θ∗

H )

q(θ∗

H |θ
(s)
H

)
= qτ (τ (s)|τ∗)

qτ (τ∗|τ (s))

qφ(φ
(s)|φ∗)

qφ(φ∗|φ(s))

qλ(λ
(s)|λ∗)

qλ(λ∗|λ(s))
.

Notice that the proposal made to move a nucleus (equation 4.34) is symmetrical, that

is qx(x
∗
ci |x

(s)
ci ) = qx(x

(s)
ci |x∗

ci), and hence cancels out from the proposal ratio.

• Perturb

k∗ = k(s)

With probability p
(P )

k(s)
= qk(s),k∗, a Perturb move is proposed. A Voronoi cell i is

randomly picked from a uniform density, and its velocity parameter is perturbed

with a Gaussian proposal qc(c
∗
si |c

(s)
si ):

qc(c
∗
si |c(s)si ) =

1

ζc
√
2π

exp

{

− 1

2ζ2c

(

c∗si − c(s)si

)2
}

(4.37)

It is also attempted to update the model hyperparameters from log-normal pro-

posal densities (same as the M move, equation 4.35). The probability of accepting

the candidate state is found from equation 4.36, with prior ratio defined such that

p(θ∗)

p(θ(s))
=

p(k∗|λ∗)p(λ∗|δλ,ηλ)p(c∗s |cs0 ,τ
∗,φ∗)p(τ∗|δτ ,aµτ )p

(

φ∗|δφ,aµφ

)

p(k(s)|λ(s))p(λ(s)|δλ,ηλ)p
(

c
(s)
s |cs0 ,τ

(s),φ(s)
)

p(τ (s)|δτ ,aµτ )p
(

φ(s)|δφ,aµφ

) . The preces-

sion matrix H remains unchanged in a Perturb, since the geometry of the cells are

not affected. The proposal ratio is the same as the Move step. Again, the Gaussian

proposal to update csi (equation 4.37) dose not appear in this ratio, for reasons of

symmetry.

4.5 Numerical Results

In this section, the numerical results of the transdimensional Bayesian material profile

inversion scheme outlined in the preceding sections will be discussed.

We will look into the inversion of four shear waves velocity profiles. We tend to introduce

more complexity into the synthesized profiles as we proceed, by adding inclined layers

and/or inclusion of a buried object. A 60m by 30m heterogeneous half-plane is considered

where the computational domain is surrounded by PMLs on the sides and the bottom. The

107



medium is probed with a Gaussian pulse-type stress load p(t) applied on the entire surface

of the regular domain. The maximum frequency of the excitation is 15Hz and the peak

amplitude is 10kPa. The readings are recorded every 0.0025 seconds. Figure 4.5 illustrates

the time history and the frequency spectrum of the excitation applied in all four cases.
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Figure 4.5: (a) Source time signal p (t) (b) Frequency spectrum of the time signal p (t) with
fmax = 15 Hz

The first velocity profile (profile A), shown in figure 4.6, is composed of three horizontal

layers with shear wave velocities 100m/s, 115m/s, and 130m/s from top to bottom. The soil

density is assumed to be 2000kg/m3 for all the layers. Notice that the layers are extended

into the PML zone, such that the shear wave velocity remains constant in a direction

perpendicular to the regular domain-PML interface, with a value equal to the velocity at

the interface. In theory, the PML is to be located at a point beyond which homogeneity is

ascertained perpendicular to the interface. The forward model (equations 4.4 and 4.5) is

solved numerically using a mixed finite element scheme (Kang & Kallivokas, 2010b). The

domain is discretized by biquadratic elements of of size 1.5m and 0.75m for the regular

domain and the PML zone, respectively. The user tuned reflection coefficient (shown in
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equation 4.3) is set to |R| = 10−8.
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Figure 4.6: Target shear wave velocity profile A (cs = 110 m/s, cs = 115 m/s and cs =
130 m/s from top to bottom)

The displacement time history measurements v (x, t) are collected at the ground level,

where one reading is made every 1.5m of the regular domain. The synthetic data is gen-

erated by perturbing the forward model solution under the target velocity profile, with

10% Gaussian noise (10% of the average observed displacement). Figure 4.7 depicts the

displacement time history response of Earth to the prescribed excitation together with the

synthesized data set. Displacement response, as a measurable characteristic of the wave

field, will serve as the input to our inversion scheme.

No constraint is placed on the maximum allowable number of cells in the Voronoi

diagram, allowing the number of cells to increase as many as the number of elements of the

regular domain (K = 800). This indicates maximum number of 2K +3 = 1603 unknowns.

Notice that each Voronoi cell is identified by two numbers: a discrete value corresponding

to the element number which includes the nucleus and a velocity value. In addition, τ , φ,

and λ are to be sampled by the MCMC search.
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Figure 4.7: (a) Displacement responses u (x, t) measured over the surface. Data is obtained
by applying a uniformly-distributed Gaussian pulse with fmax = 15 Hz over the entire
surface of profile A. (b) Synthetic data: Measured displacement response at the ground
level perturbed with 10% Gaussian noise

The constants of the prior density (equation 4.26) need to be specified. The following

values are assigned to the hyperparameters: cs0 = 100 (equation 4.17); δτ = 1, aµτ = 10−4

(equation 4.21); δφ = 1, aµφ
= 10−4 (equation 4.22); δλ = ηλ = 0.01 (equation 4.25);

δd = ηd = 0.01 (equation 4.14). These values are chosen to construct fairly flat hyper-

priors. These specifications encourage complexity of the recovered model (defined by the

number of basis functions/Voronoi tessellations, and smoothness parameters) be specified

only by the data.

Posterior inference for the unknowns of the target profile A is made based on ensemble

of 3500 collected RJMCMC samples. We started the inversion from homogenous initial

guess cs = 100m/s (one tessellation k = 1, nucleus of which positioned at a randomly

chosen knot). The first 1000 samples were discarded as burn-in iterations, only after which

the chain is guaranteed to sample from the posterior. Every third visited sample was kept

in the chain as high dependency is expected, especially between successive values of k,

since the difference between the current and the proposed k values could be at most one.

110



MCMC trace plot for k is shown in figure 4.8a (only first 400 samples are presented). This

figure shows that k raises up to k = 5 and in about 150 iterations it settles down to the

k = 3 Voronoi cells, which is the minimum number of partitions that could recover the

three layer target profile. This clearly manifests how the Bayesian model selection adheres

to the principle of parsimony, also known as Bayesian Occam’s Razor, indicating Bayes

rule’s natural penalty against unnecessarily complex models. This figure also implies that

even though our sampling strategy dose not force the model to undergo dimension changes

at every iteration (in Move and Perturb k remains unchanged), the waiting time at a single

model is not long. Hence, the sampler promptly explores the space of plausible models until

it converges to the simplest model that retrieves the structure. The rest of the simulation

effort is devoted to arriving at the stationary condition in sampling the parameters of the

few favored models. This observation confirms the efficiency of the algorithm design and

of the proposal density formulations.

Figures 4.8b and 4.8c depict cumulative mean and standard deviation trace plots for an

ensemble of 400 pointwise velocity values. Visual inspection of the sampling sequence and

cumulative first and second order statistics traces of parameters are easy non-convergence

checks. This, however, only applies to output of variables that do not change dimension.

In practice we expect to see the cumulative traces tending toward a constant value and

not drifting in any direction. A thorough review of the MCMC convergence diagnostic

techniques could be found in (Brooks & Roberts, 1998; Cowles & Carlin, 1996). These

techniques, however, apply only to situations which the dimension of the parameter space

is fixed. Brooks and Guidici (Brooks & Giudici, 1999) have proposed a convergence assess-

ment specifically for transdimensional samplers.

The posterior mean velocity model is displayed in figure 4.9a which precisely recovers

the target. This is obtained by averaging the post burn-in velocity values at every grid

location. The best partitioned velocity model which maximizes the posterior is also shown

in figure 4.9b. The cell geometry and nuclei positioning constructing the optimal solution

are superimposed on the inverted image. The nuclei are arranged such that the three
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layer structure is formed after only about 150 samples are collected. Posterior inference

on the number of tessellations needed to construct the velocity model p (k|dobs) is shown

in figure 4.9c which quantifies the level of certainty in accepting each model configuration.

No models with more than 5 partition have been accepted, given that the upper limit for k

is set to 800. This presents the capability of Bayesian inversion to deduce the true nature

of the underlying process without imposing any regularization constraint to penalize overly

complex models. An error map for the inverted velocity image could be constructed. This

map, displayed in figure 4.9d, assigns an error estimate (which is the pointwise standard

deviation of an ensemble of post burn-in velocity models) to each grid location. This type

of error estimation provides information to make precise statement about the degree of

confidence in the inference about the Earth’s interior. According to this figure maximum

uncertainty occurs at the interface of the first two layers. An overall trend of increasing

uncertainty with depth is apparent.

In figure 4.10 the the posterior mean velocity profile are plotted for three vertical cross

section lines positioned at x = −21.75, x = 0.75 and x = 11.25 m of the regular domain.

The target profile together with the 95% credible intervals for the posterior predictions are

also superimposed. This figure highlights the capability of the reversible jump algorithm in

recovering earth models with sharp material interfaces. Figure 4.12 illustrates the marginal

posterior densities of pointwise velocity values at six selected locations p (cs|dobs) |x=xi,y=yi .

The configuration of the selected elements is shown in figure 4.11. The target values are

also superimposed on each histogram (dashed lines). The figure indicates the ability of the

inversion scheme to deduce the target parameters. Notice that instead of having a single

velocity value at each spatial location indicating the optimal solution, a density function is

obtained which summarizes all the plausible solutions with the corresponding probability

of occurrence. Hence, the inherent ill-posedness (solution non-uniqueness) of the inverse

medium problem is resolved. Posterior cumulative density function (cdf) of the shear wave

velocities at the same bench mark locations are provided in figure 4.13. This figure also

indicates that the uncertainty of the inferred wave velocity slightly increases with depth.
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Figure 4.8: (a) RJ-MCMC sampling sequence of the number of cells in the Voronoi diagram
k; (b) and (c) Convergence diagnosis: plots the cumulative mean and standard deviation
(over iterations) for element-wise velocities corresponding to target profile A.
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Figure 4.9: Reversible jump MCMC output for target profile A: (a) Average solution
(posterior mean velocity field estimate) (b) Best solution which maximizes the posterior
density (c) Posterior mass function p(k|dobs) of the number of cells in the Voronoi diagram
(d) Estimated error map showing the pointwise variability of the post burn-in velocity
draws.
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Figure 4.10: Cross-section profiles showing the true models (solid res dots), posterior mean
estimates (black hollow dots) and 95% credible intervals for the posterior mean (black
dotted line) corresponding to profile A.

Figure 4.11: Configuration of the six benchmark elements for target shear wave velocity
profile A.
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(a) cs (−23.25,−5.25) (b) cs (0.75,−5.25)

(c) cs (−23.25,−14.25) (d) cs (0.75,−14.25)

(e) cs (−23.25,−23.25) (f) cs (0.75,−23.25)

Figure 4.12: Marginal posterior density of the shear wave velocities and the corresponding
target values (dashed line) at six selected elements a, b, c, d, e, and f (profile A).
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Figure 4.13: Posterior cumulative density function (cdf) of the shear wave velocities at six
selected elements a, b, c, d, e, and f (profile A).
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Figure 4.14 depicts the posterior densities of the inferred hyper-parameters. In fig-

ure 4.14a the variance of the observational error term σ2d is displayed, which is relatively

centered around the target added Gaussian noise (signal to noise ratio, SNR=10). The

marginal posterior histogram of the rate parameter λ in the truncated Poisson prior (equa-

tion 4.24) is provided in figure 4.14b. We can see that the this parameter is centered

around 3 (Bayesian point estimate for λ). This parameter is the mean of the Poisson prior,

which reflects the numbers of cells k constructing the model cs. Figure 4.14c depicts the

marginal posterior histograms of φ, which is a spatial parameter that controls the measure

of correspondence between velocities of different cells and tunes the smoothness of the ve-

locity field. The lower values of φ result in stronger dependence between the velocity of

the neighbouring cells, hence, represents smoother models.

Figure 4.14d depicts the dispersion parameter τ . This parameter is of crucial signifi-

cance in our transdimensional framework, since fixing τ to large values (choice of relatively

sharp priors on cs) limits the flexibility of each basis function coefficient, therefore many

tessellations are required to adequately model the target process (i.e., E (k|dobs) grows).

The definition of the basis functions in a Bayesian partition model is given in equation 4.16.

By contrast, small values of τ (relatively diffuse prior on cs) results in a more flexible mean

posterior velocity field E (cs|dobs), which can accommodate wilder oscillations in its be-

havior. Hence, fewer basis functions are needed to reflect the true underlying process (i.e.,

E (k|dobs) becomes increasingly small), as each basis function has more degrees of freedom.

Notice that here we did not choose to set up a fixed value for τ . Rather, this parameter is

considered as a random variable which is assigned a Gamma prior (equation 4.19), and its

value is deduced from the data. A second level of hierarchical prior (an exponential prior)

is assigned to the parameters of the Gamma prior for increased robustness and flexibility.

Figure 4.14e displays the scatter plot of τ against φ. A strong inverse correlation between

these two quantities is observed.

Next, we consider a profile composed of two layers with an inclined interface depicted

in figure 4.15 (profile B). The size of the computational domain, the PML zone and the
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discretization are the same as profile A. The layer velocities are cs = 110 m/s and cs =

135 m/s from top to bottom. The domain is illuminated with the stress load shown in figure

4.5. The sources and receivers are distributed on the entire surface of the domain, and the

readings are collected at every 1.5 m intervals for 2 seconds, where the time step is 0.0025

sec. The soil’s density is 2000kg/m3 for the entire domain. Figure 4.16b shows the synthetic

data generated by perturbing the forward solver output (figure 4.16a) with a Gaussian

random noise (SNR=10). The RJMCMC algorithm is run and every 3 visited model is

collected. The first 1000 samples are withdrawn as burn-in and the posterior inference

is made using an ensemble of 3000 models. The convergence is checked by inspecting

the cumulative mean and standard deviation traces of point wise velocities in the regular

domain plotted in figure 4.17. Figures 4.18a and 4.18b depict the average solution velocity

map and the best sampled model which maximizes the posterior. The target is precisely

recovered by four Voronoi cells in average (figure 4.18c). An error map for the inverted

velocity image is presented in figure 4.18d.

The target and the inverted velocity profiles are plotted together over three vertical

sections in figure 4.19. The credible regions are also included showing a very narrow range

of variability around the mean profile. Marginal posterior histograms of wave velocity at

six grid locations are plotted in figure 4.21. The benchmark grid blocks are marked in

figure 4.20. Posterior cdf of the shear wave velocities at the same bench mark locations

are presented in figure 4.22. Figure 4.23 shows marginal posterior histograms of model

hyperparameters.

In figure 4.24 target profile C is displayed, showing an elliptical object (cs = 150 m/s)

in a background velocity of cs = 115 m/s. The synthetic data is presented in figure 4.25.

The recovered average profile is shown in figure 4.26. The location, shape, and the velocity

of the inclusion are detected fairly well. The optimal solution is comprised of 14 “mobile”

tessellations (figure 4.26b) making the total number of unknowns equal to 31 instead of 800

(number of elements in the 40 × 20 mesh) in a grid based inversion approach. Again, in

the transdimensional approach, overcomplex models are not penalized by global damping
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parameters; instead the algorithm smoothens the model in response to the data. Hence,

the number of basis functions increases until a reasonable saturation is reached. From

that point on, adding more basis functions has strongly diminishing return, as this reduces

the marginal likelihood (see appendix E for discussion on Bayesian model selection and

definition of the marginal likelihood).

The posterior mean inverted profile is plotted along three vertical cross-sections together

with the target and estimated 95% credible regions (figure 4.27). Mild discrepancy could

be seen between the target and retrieved velocity values, however the location of the object

is obtained pretty well. Figures 4.29 and 4.30 present the inference on the wave velocity

of six selected grid blocks (presented in figure 4.28). Figure 4.31 shows marginal posterior

histograms of model hyperparameters.

In the last profile (profile D), depicted in figure 4.32, the same elliptical inclusion as

profile C is added to profile B. The inversion setup is the same as the previous cases.

The initial guess is homogenous with cs = 125 m/s. The data is shown in figure 4.33.

The mean inverted solution shown in figure 4.34a recovers the shape and the location of

the inclusion fairly good. By adding more complexity to the target the number of cells

required to form the features increases. This could be observed from figure 4.34b where

the optimum solution is constructed by 20 tessellations (total of 43 inversion parameters).

The posterior mass function p (k|dobs) presented in figure 4.34c shows the average number

of Voronoi cells is nearly E (k|dobs) = 21. The standard deviation for the inverted velocity

image is presented in figure 4.9d, which assigns an error estimate to each grid location.

The cross-sectional profiles (figure 4.35) illustrates deviation of the mean solution from

the target, and quantifies the amount of variation around the mean. Although the quality

of the recovered image degrades as more complexity is introduced into the target, except for

a few sections, the credible regions include the true velocities. A similar observation could

be made from figures 4.37 and 4.38, where marginal posterior histogram and posterior cdf

of shear wave velocity are depicted at the 9 benchmark elements presented in figure 4.36.

Finally figure 4.39 depicts the posterior densities of hyper-parameters σ2d, λ, τ , and φ.
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(a) Noise variance p
(

σ2
d|dobs

)

(b) Rate parameter in Poisson prior p (λ|dobs)

(c) p (φ|dobs) (d) Scale parameter of the Gaussian Markov
random field prior p (τ |dobs)
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Figure 4.14: (a)-(d) Marginal posterior density for model hyper-parameters. (e) Scatter
plot of τ and φ MCMC samples, displaying the correlation structure between the two
hyper-parameters (profile A).
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Figure 4.15: Target shear wave velocity profile B (cs = 110 m/s and cs = 135 m/s from
top to bottom)
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Figure 4.16: (a) Displacement responses u (x, t) measured over the surface. Data is ob-
tained by applying a uniformly-distributed Gaussian pulse with fmax = 15 Hz over the
entire surface of profile B. (b) Synthetic data: Measured displacement response at the
ground level perturbed with 20% Gaussian noise
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Figure 4.17: Convergence diagnosis: plots the cumulative mean and standard deviation
(over iterations) for element-wise velocities corresponding to target profile B.

123



−30 −20 −10 0 10 20 30
−35

−30

−25

−20

−15

−10

−5

0  

x(m)

 

y(
m

)

100

105

110

115

120

125

130

135

140

145

150

(a) (b)

(c)

−30 −20 −10 0 10 20 30
−35

−30

−25

−20

−15

−10

−5

0  

x(m)

 

y(
m

)

2

2.5

3

3.5

4

4.5

5

5.5

6

(d)

Figure 4.18: Reversible jump MCMC output for target profile B: (a) Average solution
(posterior mean velocity field estimate) (b) Best solution which maximizes the posterior
density (c) Posterior mass function p(k|dobs) of the number of cells in the Voronoi diagram
(d) Estimated error map showing the pointwise variability of the post burn-in velocity
draws.
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Figure 4.19: Cross-section profiles showing the true models (solid res dots), posterior mean
estimates (black hollow dots) and 95% credible intervals for the posterior mean (black
dotted line) corresponding to profile B.

Figure 4.20: Configuration of the six benchmark elements for target shear wave velocity
profile B.
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(a) cs (0.75,−8.25) (b) cs (9.75,−8.25)

(c) cs (21.75,−8.25) (d) cs (0.75,−23.25)

(e) cs (9.75,−23.25) (f) cs (21.75,−23.25)

Figure 4.21: Marginal posterior density of the shear wave velocities and the corresponding
target values (dashed line) at six selected elements a, b, c, d, e, and f (profile B).
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Figure 4.22: Posterior cumulative density function (cdf) of the shear wave velocities at six
selected elements a, b, c, d, e, and f (profile B).
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(a) Noise variance p
(

σ2
d|dobs

)

(b) Rate parameter in Poisson prior p (λ|dobs)

(c) Scale parameter of the Gaussian Markov
random field prior p (τ |dobs)

(d) p (φ|dobs)

Figure 4.23: Marginal posterior density for model hyper-parameters (profile B).
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Figure 4.24: Target shear wave velocity profile C (the background velocity is cs = 115 m/s
and velocity of the ellipsoidal anomaly is cs = 150 m/s)
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Figure 4.25: (a) Displacement responses u (x, t) measured over the surface. Data is ob-
tained by applying a uniformly-distributed Gaussian pulse with fmax = 15 Hz over the
entire surface of profile C. (b) Synthetic data: Measured displacement response at the
ground level perturbed with 20% Gaussian noise
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Figure 4.26: Reversible jump MCMC output for target profile C: (a) Average solution
(posterior mean velocity field estimate) (b) Best solution which maximizes the posterior
density (c) Posterior mass function p(k|dobs) of the number of cells in the Voronoi diagram
(d) Estimated error map showing the pointwise variability of the post burn-in velocity
draws.
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Figure 4.27: Cross-section profiles showing the true models (solid res dots), posterior mean
estimates (black hollow dots) and 95% credible intervals for the posterior mean (black
dotted line) corresponding to profile C.

Figure 4.28: Configuration of the six benchmark elements for target shear wave velocity
profile C.
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(a) cs (−11.25,−8.25) (b) cs (−5.25,−8.25)

(c) cs (21.75,−8.25) (d) cs (−11.25,−17.25)

(e) cs (−5.25,−17.25) (f) cs (21.75,−17.25)

Figure 4.29: Marginal posterior density of the shear wave velocities and the corresponding
target values (dashed line) at six selected elements a, b, c, d, e, and f (profile C).
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Figure 4.30: Posterior cumulative density function (cdf) of the shear wave velocities at six
selected elements a, b, c, d, e, and f (profile C).
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(a) Noise variance p
(

σ2|dobs

)

(b) Rate parameter in Poisson prior p (λ|dobs)

(c) Scale parameter of the Gaussian Markov
random field prior p (τ |dobs)

(d) p (φ|dobs)

Figure 4.31: Marginal posterior density for model hyper-parameters (profile C).
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4.6 Concluding Remarks

A Bayesian framework has been introduced for the identification of the spatially vary-

ing soil elastic characteristics of a heterogeneous unbounded earth. This defines an inverse

medium problem in which the object of inference constructs a continuous random field.

That is, an essentially infinite dimensional parameter space is to be deduced from a fi-

nite dimensional, sparse and noisy measurements, resulting in the ill-posed nature of the

problem. A self-regularized dynamic parametrization of the shear wave velocity field is for-

mulated based on the notion of Bayesian partition modeling. The method offers a reduced

dimensional inversion technique by partitioning the velocity random field into a number of

disjoint regions through a set of Voronoi tessellations. The number of tessellations, their

geometry and weights (defining the intensity of the velocity field) dynamically vary during

the inversion, in order to recover the subsurface formations. The method is specifically

suitable when modeling subsurfaces with zoned structures and sharp material interfaces,

where the field is not smooth enough to be adequately described by a correlation function,

and common dimensionality reduction techniques such as Karhunen-Loève expansion. The

reward of the approach is that the explicit regularization of the inverted profile by global

damping procedures or even through imposition of priors, which carry smoothness con-

straints, (and might introduce subjectivity to the inference process), is not required. We

further stabilize the inverse problem by assigning a proper Gaussian Markov random field

prior within the tessellations. The prior constitutes the correlation structure across the

tessellations stating the velocity value at a particular cell depends only on the velocity of

the neighboring cells. A hierarchical structure is defined such that the level of correlation

(smoothness of the process) is merely controlled by the data. The reversible jump MCMC

algorithm was implemented to carry out the simulation of the resulting varying dimen-

sional posterior density. The provided synthetic case indicates significant functionality of

the inversion scheme to retrieve the benchmark subsurface profiles.
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Figure 4.32: Target shear wave velocity profile D (the background velocities are cs =
115 m/s and cs = 135 m/s from top to bottom and velocity of the ellipsoidal anomaly is
cs = 150 m/s).
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Figure 4.33: (a) Displacement responses u (x, t) measured over the surface. Data is ob-
tained by applying a uniformly-distributed Gaussian pulse with fmax = 15 Hz over the
entire surface of profile D. (b) Synthetic data: Measured displacement response at the
ground level perturbed with 20% Gaussian noise
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Figure 4.34: Reversible jump MCMC output for target profile D: (a) Average solution
(posterior mean velocity field estimate) (b) Best solution which maximizes the posterior
density (c) Posterior mass function p(k|dobs) of the number of cells in the Voronoi diagram
(d) Estimated error map showing the pointwise variability of the post burn-in velocity
draws.
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(b) x = 0.75 m
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Figure 4.35: Cross-section profiles showing the true models (solid res dots), posterior mean
estimates (black hollow dots) and 95% credible intervals for the posterior mean (black
dotted line) corresponding to profile D.

Figure 4.36: Configuration of the nine benchmark elements for target shear wave velocity
profile D.
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(a) cs (−11.25,−8.25) (b) cs (0.75,−8.25) (c) cs (11.25,−8.25)

(d) cs (−11.25,−17.25) (e) cs (0.75,−17.25) (f) cs (11.25,−17.25)

(g) cs (−11.25,−23.25) (h) cs (0.75,−23.25) (i) cs (11.25,−23.25)

Figure 4.37: Marginal posterior density of the shear wave velocities and the corresponding
target values (dashed line) at nine selected elements a, b, c, d, e, f, g, h and i (profile D).
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Figure 4.38: posterior cumulative density function (cdf) of the shear wave velocities at nine
selected elements a, b, c, d, e, f, g, h and i (profile D).
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(a) Noise variance p
(

σ2
d|dobs

)

(b) Rate parameter in Poisson prior p (λ|dobs)

(c) Scale parameter of the Gaussian Markov
random field prior p (τ |dobs)

(d) p (φ|dobs)

Figure 4.39: Marginal posterior density for model hyper-parameters (profile D).
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5. JOINT STATES OF INFORMATION FROM DIFFERENT

PROBABILISTIC GEO-PROFILE RECONSTRUCTION METHODS

5.1 Overview

Development of technologies for site characterization has grown at a faster pace com-

pared to the development of decision-making methods required for the assimilation of

inferences they generate. In the case of geophysical surveying, such dephase adds to the

dependency on the use of expert’s judgment in the interpretation of geophysical mappings.

A systematic assimilation of this type of geo-surveying evidence is required, in particular

for the integration of spatial geomorphological information (i.e. stratigraphy), character-

ized from different geophysical methods. This paper presents a methodology to address

this challenge by the use of a probabilistic approach. A set of synthetic geophysical map-

pings are used to illustrate the applicability of the proposed methodology and its potential

extrapolation to other scientific imaging disciplines.

5.2 Introduction

This paper introduces a methodology for integrating multiple types of evidence (i.e.

theoretical, experimental and experts’ beliefs), and multiple sources of geo-surveying in-

formation (e.g. image profiles from different geophysical methods), for the systematic

assimilation of states of evidence into the mechanistic characterization of a given site. The

same approach can be extrapolated to any other similar scientific imaging settings.

The overarching objective of the present work is to improve the number and quality

of inferences related to site characterization based on geophysical site investigation. This

aligns with the new scientific paradigm that asks for developing a scheme of work that

can expedite the process of systematic evidence assimilation to significantly enhance the

expert’s judgment (i.e. “big data” paradigm). That means, to provide effective theoretical

methods and computational applications to improve the expert’s ability to systematically

assimilate scientific evidence (Hey, 2009).
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Here, better expert judgment means better decision-making, which translates into im-

proved scientific and engineering practices (Kaynia et al., 2008). This is particularly rel-

evant on geo-engineering applications, where the challenge is to integrate geological, geo-

physical, geochemical, hydrogeological and geotechnical evidence, with varying spatial and

time scales, and sometimes with varying sampling and modeling conditions. This inte-

grated approach is required before, during, and after the design/analysis/instllation of

engineering structures, or during the development of mid to long-term geo-processes.

Probability, in particular Bayesian theory, stands out as a way to facilitate the inte-

gration of geo-evidence since it allows for a translation of information content into the

probability space, where this can be fully operated. In fact, Bayesian theory is revolu-

tionizing the way in which science generate scientific inferences because of its ability to

integrate, in a logical manner, a) experimental observations (data), b) model predictions

and c) experts judgment (Robert, 2007).

Furthermore, investigations on the combination of logic and probability by Jaynes and

Tarantola (Jaynes & Bretthorst, 2003; Tarantola, 2005) helped to define a generalization

of the Bayes’ theorem and created a beautiful, yet complex, mathematical “collaboration

models”, on which this paper is based. Where the Bayes’ paradigm is now defined as

only one possibility on a sounder framework to integrate scientific evidence. To be fair, it

should be acknowledged that the promising use of advanced probability logic investigations

depends on efficient computations. This, in fact, may become a limitation, particularly

when the number of parameters required as part of the computational assimilation of

evidence grows, since it requires the numerical sampling of multidimensional probability

distributions (Gentle et al., 2004).

The proposed methodology relies on the current expertise on probabilistic geophysical

inversions found elsewhere (Tarantola & Valette, 1982; Cary & Chapman, 1988; Gouveia

& Scales, 1998; Ulrych et al., 2001; Malinverno, 2002; Dosso, 2002; Dettmer et al., 2009;

Medina-Cetina et al., 2013), which allows for populating probability density functions of a

material property at every point within the domain of interest. That is, representing the
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solution to the inverse medium problem as a random field of mechanical parameters.

Therefore, by having this approach, the inherent ill-posed nature of the geophysical

inversion problem is resolved (i.e. multiple mappings may generate the same ‘measured’

site response). But the major benefit of the probabilistic inversion is that it provides

a measure of the spatial correlation structure of the resulting stratigraphy, and of the

uncertainty associated to the inferences, something that cannot be achieved by typical

optimization-based inversions. This approach provides a measure of the uncertainty on the

geophysical estimates stemmed from the use of a mechanically-based forward model.

From the probabilistic definition of the geophysical inversion, it is thus possible to sam-

ple multiple likely realizations of the site’s spatially varying material properties (considering

that the solution to an inverse problem is not unique, and that several likely material pro-

files may be the ‘true’ image of the soil). From the sampling of this likely combinations,

a probability map defining each ‘geo-morphological’ feature of interest can be populated

(i.e. location and concentration of faults, soil layers, gas hydrates, salt layers, bottom rock,

etc.).

This paper introduces a methodology to populate probability maps of geomorphological

features that can be applied to characteristics observed in different geophysical investiga-

tions at the same location, and it introduces a methodology to operate across these maps

to improve (or enrich) the resulting mechanistic stratigraphy representing the geological

‘earth model’. A set of theoretically-based synthetic cases are presented to illustrate the

applicability of the proposed method.

5.3 Rationale

This work focuses on geophysical investigations that generate soil images (or soil pro-

files) via the probabilistic solution of the inverse problem. This is defined by a collection

of realizations of media properties m (x) representing mechanical parameters, distributed

within the spatial domain of interest D, where x = (x1, x2, x3)
T is the position vector.

The probabilistic solution of the inverse problem allows for defining full probability den-

sity functions of the vector of material property a, at any point ma

(
xi
)
, and for defining
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the correlation structure between material properties at varying points (i.e., mk

(
xi
)
and

mb

(
xj

)
. Indexes a and b represent distinct material properties (e.g. electrical conductivity

and P-wave velocity) and superscripts i and j represent distinct points in space.

The probabilistic inversion can be obtained by the use of the Bayesian paradigm, which

maps a set of observations dobs (y, t) onto the random field m (x) (i.e. probabilistic solution

of the inverse problem). The set of observations dobs (y, t) are the series of ground responses

at different locations y and times t to a given excitation P (z, t), where y and z are typically

located in the upper boundary of the domain D (figure 5.2). In a probabilistic setup, the

process to define the mapping from dobs (y, t) to m (x) relies on the sampling of realizations

of the medium’s mechanical properties m (x) via a Marcov-Chain Monte-Carlo MCMC

approach, and the use of a selection rule such as Metropolis-Hastings (Robert & Casella,

2004), which guarantees convergence to a stationary condition as the number of samples

grows to infinite.

The MCMC sampling process consists in proposing realizations of m (x) that serve as

input for the simulation of the forward problem defined by dpred (y, t) = g (P (z, t) ,m (x)),

such that the model predictions dpred (y, t) can be evaluated at the same locations y and

times t as the experimental observations dobs (y, t). g (P (z, t) ,m (x)) is called the forward

problem, which is typically a nonlinear mapping that transforms an earth model m (x)

into a unique set of observations dobs (y, t). g is a mathematical/empirical operator that

reflects the governing physics of the forward model (e.g. elastic wave propagation, diffusion

of electrical potential, etc). According to Metropolis-Hastings rule, the probability of

accepting the proposed earth model m (x) increases as the sampler moves toward the true

earth model that generated the observations. The sampling is continued until specific

convergence conditions are met (Cowles & Carlin, 1996).

As pointed out earlier, in a geophysical inverse modeling the unknown quantity of

interest comprise a real-valued random field m(x), denoting the spatial variation of a

material property. This signifies that the number of unknowns (i.e., pointwise values of

the unknown field) is essentially infinite. In a computational setting, to construct a finite-
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Figure 5.1: Parametrization of the material field (i.e. forming model vector m(x)): (a)
Layered model (b) Gridded model (c) Parametric model

dimensional (n dimensional) parameter vector m (x) ≃ {m1,m2, . . . ,mk}T as a proxy for

the continuous model, the unknown field must be effectively parameterized.

In a one dimensional earth model, where the material properties are assumed to only

vary with depth (a reasonable assumption in near surface geotechnical investigation), the

subsurface might be partitioned into a number of layers where the location of the interfaces

and the corresponding material properties are defined as unknowns or random variables.

As an example, a set of resistivity measurements might be interpreted in terms of a layered

earth with k electrical resistivities and k − 1 layer thicknesses (e.g. (Dettmer et al., 2010;

Minsley, 2011; Malinverno, 2002)). This parametrization pattern is referred to as a layered

model as presented in figure 5.1a.

In case of two-dimensional heterogeneity, where the medium is no longer assumed hori-

zontally stratified, the portion of the earth model under investigation might be gridded into

rectangular blocks at a specified resolution, such that m(x) can be adequately represented

at this finite set of grid blocks (see Figure 5.1b). The inverse problem, therefore, reduces to

inferring the material properties at each grid location (e.g. (Mosegaard & Tarantola, 1995;

Gouveia & Scales, 1998)). In a gridded parametrization, however, the dimensionality of

the parameter space is generally tied to the dimensionality of the numerical discretization

(Koutsourelakis, 2009). That is, if finite element method is used to discretize the forward
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equation, the vector of unknowns is of the same dimension as the number of elements.

Hence, depending on the resolution of the forward solver mesh, the number of parameters

might rise up to thousands, which are to be estimated from the inherently sparse noisy

data. This condition leads to ill-posed nature (solution non-uniqueness) of the inverse

problem. Grid-based formulation, therefore, requires imposition of additional assumptions

about the parameter field to alleviate the solution non-uniqueness. This is performed by

global damping procedures which might introduce subjectivity to the inference process.

In a more efficient treatment of the inverse problem, instead of imposing regularity

assumptions on large number of parameters, the problem is reduced to the estimation of a

few parameters that controls the shape and location of the subsurface structures. In this

type of models, known as “parametric models”, definition of the subsurface geomorpholog-

ical features is directly defined by a few inversion parameters (e.g. (Cardiff & Kitanidis,

2009; Bodin & Sambridge, 2009; Mondal et al., 2010)). Methods of boundary detection and

shape reconstruction such as level set protocol have been used in earth science applications

such as hydrological mapping (Cardiff & Kitanidis, 2009) and reservoir modeling (Mondal

et al., 2010).

Notice that within an Uncertainty Quantification approach (UQ), such as by the use

of the Bayesian paradigm for the solution of the probabilistic inversion discussed above,

it is also possible to measure the influence of a set of hyper-parameters associated to the

experimental observations and the model predictions (Medina-Cetina & Rechenmacher,

2010) (e.g., the amount and location of data, influence of boundary conditions, and even

numerical parameters such as mesh resolution, time step integration, etc). A schematic

representation of a probabilistic geophysical inversion is shown in Figure 5.2.

Once the probabilistic inversion is completed, it follows to define the geomorphological

features of interest lying within the domain D. This relies on the ability to delineate the

subsurface geomorphological formations from inverted images of material properties m (x).

Let hq (x) be a function of spatial coordinates defining a geomorphological event q

(e.g. a function representing stratigraphic characteristics such as location of layer inter-
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Figure 5.2: Schematic representation of a probabilistic geophysical inversion. Right to
left (the forward problem): dobs = g (P (z, t) ,m (x)) denotes the forward modeling: the
process of obtaining the seismic response of earth to a given excitation P (z, t) given the
spatial variation of the subsurface material properties m (x) is fully known. Left to right
(the inverse problem): g−1 (dobs). The inverse deduction of the spatial distribution of
the subsurface material properties, given the data dobs is observed over the surface. The
solution to an inverse problem is not unique. i.e., at each point xi in space D, the value
of the material property m

(
xi
)
is not certain. This uncertainty is fully quantified by a

probability density function.
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faces, boundary between different geological facies, location of faults, etc.). The proposed

methodology, requires that the mapping from m (x) to hq (x) be systematized. Imaging

the geomorphological structure from the reconstructed spatial variability of the property of

interest (the mapping from m (x) to hq (x)) requires the use of a classifier. This means, if

the aim is to reconstruct the boundaries between geological facies, the classifier establishes

the membership of each point in space in a given facies. Classification process is conducted

by assigning values to an indicator function corresponding to each geomorphological fea-

ture q at each point x. The indicator function Iq (x) will assume a “zero” value if the

geomorphological feature q is absent at point x, and “one” if it is present.

For instance, consider a case of detecting concentration of gas hydrates (denoted by

material D1). From a single realization of m (x), a scanning of each point x for the feature

q defined by the location of gas hydrates, Iq (x) will yield regions of zeros and ones, where

the sets of ‘ones’ will indicate the presence of gas hydrates:

Iq (x) =







1, x ∈ D1

0, x /∈ D1

(5.1)

The same approach could then be applied to delineate all the q geomorphological fea-

tures of interest (e.g., transition between the soil units, concentration of materials, faults,

etc.) using the same realization drawn from m (x). This is performed by properly defining

the indicator function corresponding to each feature.

Defining the indicator function is not always a trivial task, specifically if the material

properties are strongly heterogeneous. Numerous mathematical algorithms (e.g., k-means

clustering algorithm, expectation-maximization algorithm, minimum-variance algorithm,

etc.) are available to assign values of indicator function to poorly differentiated material

fields (Wohlberg & Tartakovsky, 2009). Defining the identification function completes the

classification process for a single realization of the material field, since pointwise values of

the field are available at each grid location. In general classification problems, however,
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Figure 5.3: Schematic representation of the classification process; defining the identifier
function.

there is an additional step to assign the value of the indicator function at points where

measurements are not available. The definition of the optimal classifier is out of the scope

of this work, but not the fundamental step on the proposed methodology to translate

the expert’s knowledge into a systematic identification of geomorphological features. A

schematic representation of the classification process is shown in Figure 5.3. Details on

how to perform a standard probabilistic classification can be found in (Denison et al.,

2002b).

Also, notice that in terms of computational accuracy, the higher the resolution of the

media (i.e. discretization of the spatial domain in the forward model), the finer the defi-

nition of the topological features of interest. Here, it is worth mentioning that if a layered

or parametric model is used, since the shape of the subsurface structure of interest (e.g.

boundaries between material zones and geologic facies) is directly modeled as an inversion
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parameter, the classification step is skipped. The case study presented in this paper is

parameterized as a layered model.

Since the resulting classification (binary) mapping can be repeated n times by drawing

different realizations from m (x), every time that a realization is presented to the classifier,

a new binomial mapping Iq (x) is computed (see figure 5.4). After sampling sufficient n

realizations, a smooth description of the topological regions can be retrieved in the form

of relative frequency measures at each point x, leading to the definition of a probability

distribution f (hq(x)), the integral of which equals to one. This distribution leads the

probability of finding the geomorphological feature q at a point x, which can be simply

defined as the result of a ‘probabilistic classification’ (Duda et al., 2001). The described

procedure to construct f (hq(x)) is summarized in the workflow presented in figure 5.5. A

schematic representation of the probabilistic classification process is shown in Figure 5.4.

Provided that r geophysical investigations are performed at the same site and within

the same domain D, it is anticipated that distinct geomorphological features will be de-

fined. In fact, some will be able to identify specific features better than others, and some

will identify some features that the others will not, since the ‘physics’ behind each pro-

file’s reconstruction method are different. However, when implementing the methodology

described above, it is not only the identification of the geomorphological feature q what

is relevant, but the degree of certainty to find it. Consequently, it is possible to generate

r distinct probability maps of the q feature f (hq(x))r, which can now be operated in the

probability space to produce joint states of information based on the use of different geo-

physical methods. As a result, an ‘enriched’ spatial geological model can be produced with

uncertainty measures. Below, two basic operators are proposed to operate the mappings

f (hq(x))r, and later these are illustrated when applied to a couple of synthetic cases.
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Figure 5.4: Schematic representation of the probabilistic classification process:
(I): Random realizations from m (x),
(II): Corresponding binomial mappings (defining the identifier function for each realization
of the material random field) hq (x),
(III): Joint probability distribution f (hq (x)) which gives the probability of occurrence of
geomorphological event hq at point x
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5.4 Fundamentals of the Bayesian Approach to Inverse Problems

A Bayesian inversion consists in generating a probabilistic mapping of a set of observa-

tions dobs (y, t) onto a random field m (x). The inverse deduction of the earth model (i.e.,

full descriptions of both the location of the geomorphological features and spatially vari-

able material properties) calls for a ‘probabilistic calibration’, which consists in mapping

the ground response to a geophysical excitation dobs onto governing physical parameters

m = m (x), embedded in each forward mechanical model. The following relationship holds:

dobs = g (m (x)) + ǫ (5.2)

where g (m) (presented as g (P (z, t) ,m (x)) in the previous section) is the mathematical

operator which captures the physics of the forward model. ǫ is the random error component

which quantifies the deviation between model prediction and measurements. This random

term encompass both measurement and theoretical errors, where the latter is defined as

the discrepancy between the model predictions and the true process due to the model not

fully capturing the governing physics.

The Bayesian paradigm stands out as a suitable tool to define the proposed mapping.

Because, it combines the prior knowledge about the model parameters (i.e. expert’s judg-

ment), the evidence carried by the data (i.e. experimental observations), and the evidence

provided by the physical theory (i.e. model predictions), in order to define the posterior

density. The posterior represents the full description of the model parameters in terms of a

density function p (m|dobs) (Robert, 2007). It also reflects any interventions in the solution

of the inverse problem (e.g. via changes on the experimental observations, model predic-

tions and expert’s beliefs), by updating the probabilistic solution to the inverse problem.

The Bayesian formulation for the solution to an inverse problem is defined as

p (m|dobs) =
p (dobs|m) p (m)

∫

M p (dobs|m) p (m) dm
(5.3)

where p (m) is called the prior density, which quantifies the initial uncertainty about the
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material parameters. Ideally, this density limits the space of plausible parameters by giving

higher probability to those which describe the data more closely. The likelihood function

p (dobs|m) characterizes the data random behavior with respect to the model predictions,

and is the probability that the observed realization dobs is produced by model m. M

denotes the space of admissible model parameters.

By assuming that the random error components ǫ = (ǫ1, . . . , ǫn)
T are such that ǫ

iid∼

N
(
0, σ2In

)
, the likelihood function is defined with reference to a multivariate normal

density as

p (dobs|m) =
1

[(2π)n|Cd|]1/2
exp

[

−1

2
(g (m)− dobs)

T C−1
d (g (m)− dobs)

]

(5.4)

n is the number of observations, and In is an n × n identity matrix, and Cd = σ2In is

the covariance of the error term. More complex likelihood models which could account for

the spatial dependence of the data, non-Gaussian error structures or capture events such

as sensor miscalibration could also be formulated. The quantity in the denominator of

equation 5.3, called the marginal likelihood, (the probability of observing the data dobs) is

a normalizing constant, such that the posterior is integrated to one.

As it was mentioned earlier, due to the inherent high-dimensional nature of the problem

(i.e. the finer the discretization of the problem the higher the resolution of the geophysical

imaging), computing posterior moments normally requires performing high-dimensional

integrations. This poses a major computational challenge for the Bayesian formulation of

inverse problems. The computation of the posterior requires most of the times a numerical

solver such as the Markov-Chain Monte-Carlo method MCMC, along with a decision rule

(e.g., the Metropolis-Hastings M-H algorithm). These guarantee convergence to the target

posterior as the number of samples grows (Robert & Casella, 2004). A summary of the

MCMC-MH approach is included in the Appendix for further reference. In this study

probabilistic inversion is carried out for two sets of geophysical data; seismic and electrical

155



resistivity. The next two sections are dedicated to introduce the basics of the forward

model and formulation of the inverse problem for each geophysical survey.

5.5 Vertical Electrical Sounding (VES)

The electrical resistivity sounding is comprised of inverse deduction of the spatially

variable resistivity of the subsurface ρ(z) from a set of four-electrode (two transmitter-

two potential) readings placed on the ground. The two current electrodes are deployed to

introduce an electrical circuit into the earth and the induced potential difference (voltage)

is recorded by the two potential electrodes. On the surface of a horizontally layered soil the

electrical potential V (x) at a distance x from a grounded electrode carrying direct current

I is given by (Koefoed, 1979): (Figure 5.6)

V (x) =
IDC
2π

∫ ∞

0
T (λ) J0 (λx) dλ (5.5)

where T (λ) = ρ1[1 + 2K(λ)] is known as the transfer function of resistivities and layer

thicknesses of the model. K(λ) is called the Stefanesco kernel function (Stefanesco et al.,

1930) of resistivity which is a function of layer parameters and identifies the departure

in response of a homogeneous half space from the horizontally layered earth. ρ1 is the

resistivity of the upper layer, λ is the integration variable (wavenumber), and J0 is the

Bessel function of the the first kind of zeroth order.

With the measurements of voltage, the apparent resistivity (i.e., the resistivity of an

electrically homogeneous and isotropic half space which generates the actual measurements)

ρa can be found for any type of electrode configuration. The Schlumberger arrangement is

well suited for the purpose of this 1D profiling, since it can achieve high penetration depth

with current electrode separation sufficiently large (Parasnis, 1997).

Resistivity sounding survey data is presented as a smooth apparent resistivity curve

plotted on a log-log graph. The field procedure for Schlumberger sounding consists of

centering the potential probes at a fixed location, while the current electrodes are shifted

apart in steps. The voltage readings are made successively as the separation between the
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Figure 5.6: Problem configuration (benchmark).
Left: Acoustic imaging with a Gaussian pulse type load excitation over the surface.
Right: Vertical electrical sounding with Schlumberger electrode configuration.

current electrodes expands. Assuming that conductivity varies with depth only, as the

separation between the potential and current electrodes grows, the current lines samples

from increasingly deeper levels in the subsurface, resulting in observed variations in the

apparent resistivity readings.

Given the spatial variation of the layer resistivities with depth, the forward model

returns the predicted vector of apparent resistivity denoted by ρa. The apparent resistivity

for the Schlumberger configuration is given by (Koefoed, 1979):

ρa(L) = L2

∫ ∞

0
T (λ)J1 (λx)λdλ (5.6)

where L is the one-half of the current electrode separation and J1 is the first order Bessel

function. Transform T (λ) constructed by recurrence formulae for k − 1 layers resting on

an kth layer (infinite substratum) is given by:

Tj(λ) =







ρj
1−κjυj
1+κjυj

if j = k − 1

Wj(λ)+Tj+1(λ)

1+Wj(λ)Tj+1(λ)/ρ2j
if j = k − 2, k − 3, . . . , 1

(5.7)
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where κj =
ρj−ρj+1

ρj+ρj+1
, Wj(λ) = ρj

1−υj
1+υj

,and υj = exp (−2hjλ) in equation 5.7. hj and

ρj denote layer thickness and resistivity of the jth layer, respectively. The transform

T (λ) = T1(λ) in equation 5.6 is found by recursive application of equation 5.7, starting

from j = k − 1. More details on the VES formulation can be found in (Parasnis, 1997).

The integral in equation 5.6 (called Hankel J1 transform), can be carried out numerically

using the method of digital linear filtering (Ghosh, 1971a,b; Guptasarma & Singh, 1997).

The Hankel J1 transform is solved by a 140-point filter proposed in (Guptasarma & Singh,

1997).

The inverse electrical resistivity problem is constructed according to equation 5.3:

p
(
mVES|dVES

obs

)
∝ p

(
dVES

obs |mVES

)
p (mVES) (5.8)

where dVES

obs = (ρa1 , ρa2 , . . . , ρanVES )
T is the vector of noisy apparent resistivity measurements

collected successively as the separation between the current electrodes expands in steps,

and nVSS is the number of data points. mVES = (ρ1, ρ2, . . . , ρk, h1, h2, . . . , hk−1, σVES)
T is

the parameter vector associated to the a k layer soil model. Hyper-parameter σVES is the

variance of the resistivity data which is appears in the likelihood function:

p
(
dVES

obs |mVES

)
∝ 1

σnVES

VES

exp

{∑nVES

i=1

(
dVESobsi

− g (mVES)
)2

2σ2
VES

}

(5.9)

The above equation is a simplified representation of equation 5.4, given the assumption

that uncertainty associated with the data is multi-variate normal with constant variance,

and data points are independent of each other. g (mVES) is defined in equation 5.6. The

prior density is defined as p (mVES) ∝ 1
σ2
VES

. This prior signifies that the prior on parameters

(ρ1, ρ2, . . . , ρk, h1, h2, . . . , hk−1)
T and log(σVES) are uniform in (0,∞).

5.6 Vertical Seismic Sounding (VSS)

The objective of the vertical seismic sounding is to infer the elastic characteristics

of a horizontally stratified semi-infinite soil model by leveraging the medium’s response

to the interrogating waves. The forward physics describing the phenomenon is vertical
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propagation of compressional waves when the media is subjected to a uniform mechanical

excitation p (t) over the surface (Figure 5.6). This problem is one dimensional along the

direction of the symmetry (Fichtner, 2010).

In a computational setting a major issue associated with the seismic inverse problem

is to model the semi-infinite spatial domain. In order to arrive at a computationally

finite region, the media must be truncated at some depth. If the truncated boundary

is fixed or inadequately modeled, the propagating waves are (partially) reflected in the

domain, and distort the inverted profile (Kang & Kallivokas, 2010a). To address the

issue, Perfectly-Matched-Layer (PML) wave absorbing boundaries are introduced at the

truncation interface (Kang & Kallivokas, 2010b). The introduced boundary enforces the

rapid decay of the wave motion within the buffer zone, with ideally no reflection to the

domain. Figure 5.7 illustrates the schematic representation of the problem. The forward

model definition shows detailed derivations of the computational implementation (Kang &

Kallivokas, 2010b), including the finite element formulation of the derived PDEs. However,

for the sake of completeness only the governing wave equation is included here: find ν (z, t)

and σ (z, t) such that

∂2ν

∂t2
+ Vp(z)ζ

∂ν

∂t
− ∂σ

∂z
= 0, for z ∈ (0, Lt) , t ∈ (0, T ] ,

∂σ

∂t
+ Vp(z)ζσ − V 2

p (z)
∂2ν

∂z∂t
= 0, for z ∈ (0, Lt) , t ∈ (0, T ] , (5.10)

subject to

ν (Lt, t) = 0

σ (0, t) = p (t)

ν (z, 0) = 0

∂ν

∂t
(z, 0) = 0

σ (z, 0) = p (t) (5.11)
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Figure 5.7: Schematic presentation of the 1D problem. (a) Original semi-infinite soil media
(b) PML truncated domain.

where ν = γu is the normalized displacement (with u the measurable vertical displacement).

γ denotes the soil density which is assumed to be a known constant in this study; and the

attenuation effect is disregarded. σ denotes stress (not to be confused with the standard

deviation; σ denoting stress only appears in this section). ζ (z) is an attenuation function

which accounts for the artificial decay of the wave motion within the PML buffer zone,

and Lt is the depth of the fixed end of the PML. Vp (z) indicates the 1D soil compressional

wave velocity random field which is the inverse problem parameter. Equation 5.10 presents

the displacement (ν) - stress (σ) mixed equations governing wave propagation in a PML

truncated one dimensional domain.

The inverse compressional wave propagation problem (VSS) consists in deduction of

the subsurface elastic properties of a horizontally stratified semi-infinite soil medium from

noisy surficial vertical displacement measurements. The posterior density is

p
(
mVSS|dVSS

obs

)
∝ p

(
dVSS

obs |mVSS

)
p (mVSS) (5.12)

where dVSS

obs = (u1, u2, . . . , unVSS
)T is the vector of noisy vertical displacement measurements.

mVSS = (Vp1 , Vp1 , . . . , Vpk , h1, h2, . . . , hk−1, σVSS)
T is the parameter vector associated to the

a k layer soil model, where Vp1 , Vp1 , . . . , Vpk and h1, h2, . . . , hk−1 denote the p-wave velocities

and heights of the soil layers, respectively. σ2
VSS

is the variance of the seismic data. The
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likelihood function forms similar to the equation 5.9:

p
(
dVSS

obs |mVSS

)
∝ 1

σnVSS

VSS

exp

{∑nVSS

i=1

(
dVSSobsi

− g (mVSS)
)2

2σ2
VSS

}

(5.13)

nVSS is number of data points and g (mVSS) is defined in equations 5.10 and 5.11, which is

numerically solved using a mixed finite elements scheme. Similar to the resistivity problem,

a non-informative prior p (mVSS) ∝ 1
σ2
VSS

is assigned to the model parameters.

5.7 Basic Probability Operators

Once the probabilistic calibration is completed for each geophysical method (as de-

scribed in the preceding sections) it is now possible to integrate the multiple states of

information following a premise of “collaboration”. The theoretical basis for achieving the

claims discussed above are based on the definition of the spaces of probability distributions

portrayed by Kolmogorov’s axioms, through the use of two basic operations called AND

and OR (Tarantola, 2005). These are symbolically denoted by ∧ and ∨ respectively. The

operations ‘conjunction’ (AND) and ‘disjunction’ (OR) for any subset A, and for any two

probability distributions P1 and P2 are defined to satisfy the set of axioms below:

(P1 ∨ P2) (A) 6= 0 ⇒ P1 (A) 6= 0 or P2 (A) 6= 0

(P1 ∧ P2) (A) 6= 0 ⇒ P1 (A) 6= 0 and P2 (A) 6= 0 (5.14)

The first axiom means that if any event is possible for P1 OR P2 the event is either

possible for each of the distributions. The second one states if an event is possible for

P1 AND P2, the event is possible for both P1 and P2. Also a probability distribution M,

namely homogenous measure distribution exists to satisfy for any P

P ∧M = P (5.15)

M is the neutral element for the conjunction operator, which is interpreted as a proba-
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bility distribution that bears no information. If f1(x), f2(x), . . . , fn(x) and µ(x) are the

probability densities associated with P1,P2, . . . ,Pn, and M, the following equalities holds:

(f1 ∨ f2 ∨ . . . ∨ fn) (x) =
1

n
(f1(x) + f2(x) + . . . + fn(x))

(f1 ∧ f2 ∧ . . . ∧ fn) (x)
µ(x)

=
1

η

f1(x)

µ(x)

f2(x)

µ(x)
. . .

fn(x)

µ(x)
(5.16)

where η is a normalization constant η =
∫

X

f1(x)
µ(x)

f2(x)
µ(x) . . .

fn(x)
µ(x) , and the integration is

carried out over a finite dimensional space of all parameters X. The aforementioned axioms

constitute what is called the inference space.

Interpretation of Tarantola’s operators is illustrated in Figure 5.8 by the use of two dis-

tinct states of information (e.g. two different experts’ opinions, or same material property

evaluated from different geophysical methods at the same point in space, etc.). The avail-

able evidence regarding a specific event is defined by a “First” probability density function

of Gaussian shape, with mean −α0 and standard deviation σ (Figure 5.8a). Similarly, a

“Second” probability density function is defined with mean α0 and standard deviation σ

(Figure 5.8b). Figure 5.8c shows how the AND operator follows the Bayesian approach,

defining the combination of states of information as an updating process, which is ap-

plied only when the sampling of both distributions comes from the same population. This

results in a Gaussian distribution with zero mean and a standard deviation σAND < σ,

meaning that what is common to the First and Second distribution is emphasized, with

a reduction on the new representation of the information uncertainty. The OR operator

(Figure 5.8d) on the other hand, applies when the sampling of both distributions comes

from different populations. It then preserves the original modes at −α0 and α0 respec-

tively, and shows zero mean (since both distributions are symmetric with respect to zero)

but penalizes the new scheme of information with higher uncertainty, σOR > σ. Notice

that if the modes of the First and Second states of information approach to each other,

they will tend to become the same distribution with no uncertainty penalty (σOR ≥ σ).
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Figure 5.8: Conjunction and disjunction in a 1D probability space; (a),(b): Input proba-
bilities, (c): Conjunction, (d): Disjunction.

In many respects, the use of both the AND and the OR operators resembles distinct na-

tures of collaboration: the enhancement of what is of interest for two information contents

with a reduction of uncertainty, and the preservation of different modes, in exchange for

a relaxation on the collaborative uncertainty. Same principle applies for jointing geomor-

phological information derived from each geophysical inversion outlined in sections 5.5 and

5.6. By substituting f1 and f2 (equation 5.16) with the marginal posterior densities of the

layer depths p
(
h1, h2, . . . , hk|dVES

obs

)
and p

(
h1, h2, . . . , hk|dVSS

obs

)
inferred from VES and VSS,

respectively, the operators conjunction and disjunction provide the joint description of soil

stratification:
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p
(
h1, h2, . . . , hk|dVES

obs

)
∨ p

(
h1, h2, . . . , hk|dVSS

obs

)
=

1

2

[
p
(
h1, h2, . . . , hk|dVES

obs

)
+ p

(
h1, h2, . . . , hk|dVSS

obs

)]

p
(
h1, h2, . . . , hk|dVES

obs

)
∧ p

(
h1, h2, . . . , hk|dVSS

obs

)
∝

p
(
h1, h2, . . . , hk|dVES

obs

)
× p

(
h1, h2, . . . , hk|dVSS

obs

)

(5.17)

µ in equation 5.16 (the homogeneous density function) is proportional to the unity.

5.8 Application to a 1D Tomography Study

5.8.1 Integration of Evidence Among Different Physics: VES-VSS

A case study is presented to illustrate the application of the probability “collaboration”

operators presented above when introduced to multiple geophysical survey data collected

over the same site but based on fundamentally different underlying physics. The main

argument here is that different geophysical methods are able to sense different physical

properties which usually contain complementary information about the site’s stratigraphy.

The goal of this synthetic exercise is to make use of the probability operators to combine

the inherent complementary information from different geophysical inversion and to define

a single and ‘richer’ stratigraphy description.

While the existing joint inversion schemes (e.g., (Hering et al., 1995; Manglik & Verma,

1998)) rely on the fact that the structures described by each of the geophysical methods

are congruent (full agreement and similarity between the interpreted subsurface structures

is the inherent assumption to jointly invert the multiple data sets), no restriction is placed

here on the features deduced from the different physics being concurrent. No relationship

of any type (e.g., empirical petrophysical relationships or statistical correlations (Lelièvre

et al., 2012)) are imposed between physical parameters of the different models.

The collaboration inversion scheme outlined in the preceding section is applied to a syn-

thetic 1D tomography problem. A simplified two layer horizontally stratified semi-infinite

soil media is considered as the target stratigraphy. The study is formulated by the joint
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application of a 1D vertical electrical sounding and by an elastic full-waveform inversion.

The probabilistic inversion scheme, presented in sections 5.5 and 5.6, is applied to a set

of synthetic seismic-electrical resistivity data set, for deducing the subsurface elastic prop-

erties, electrical conductivity measures, and stratification of the soil (i.e. location of the

transition between soil units). The two-layer Earth model considered as the benchmark is

presented in Figure 5.6, with the target velocity and resistivity profiles defined as follows:

the p-wave velocity values for the top layer and the stratum are 250 and 520 m/s respec-

tively, and the thickness of the top layer is assumed to be 18 m. As for the resistivity

profile, ρ1, ρ2, and h are 10 Ωm, 390 Ωm, and 15 m, respectively.

In the seismic setting, the media is modeled as a one-dimensional PML-truncated do-

main, with the regular domain extended to z = 100 m, and PML buffer zone thickness

being 10m (Lt = 110m). The domain is probed with a Gaussian pulse-type mechanical

excitation p(t) applied at the soil surface with a maximum frequency equal to fmax = 40

Hz, and the peak amplitude of 10 kPa. The time signal p(t) and its frequency spectrum

are shown in Figure 5.9. The attenuation effect is disregarded in this study, and the soil

density is assumed to be known a priori (γ = 2000 kg/m3).
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Figure 5.9: Excitation time signal and its Fourier spectrum.
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Figure 5.10a illustrates the displacement time history response of media given the

benchmark soil model, found by solving the forward problem (equations 5.10 and 5.11),

and by using a mixed finite element technique (Kang & Kallivokas, 2010b). The displace-

ments response, is used as a measurable characteristic of the wave field, and will serve as

the input to the inversion scheme. Synthetic seismic data was fabricated by perturbing the

model response with 20% Gaussian noise (shown in Figure 5.10a). The data is comprised

of 101 data points recorded every 0.02 seconds for total of 2 seconds.

The synthetic resistivity data (the apparent resistivity readings made at different elec-

trode separations collected with a Schlumberger electrode array) is shown in Figure 5.10b.

The data consist of 60 measurements of apparent resistivity values in the electrode separa-

tion range of L ∼1-10000 m, where 15 readings are made per decade. The synthetic data

is generated by adding 15% Gaussian noise to the predicted model response obtained from

equation 5.6, where the benchmark resistivity model is introduced to equation 5.7.
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Figure 5.10: Synthetic data. a) Measured displacement response at the surface (solid line)
perturbed with 20% Gaussian noise. b) Theoretical apparent resistivity curve generated
for the benchmark two layer Earth model (solid line) perturbed with 15% Gaussian random
noise.

First, the Bayesian inversion methodology introduced above was applied to the seismic

166



and the resistivity data independently. In this case, each model consists of 4 parameters:

two resistivity values, one thickness (thickness of the top layer), and a hyper-parameter

σ2
VES

denoting the variance of the data noise for the VES; and two p-wave velocities, one

thickness, and a hyper-parameter σ2
VSS

corresponding to the variance of the data noise for

the VSS. Notice that, here, it is assumed that the true number of soil layers is known.

In a horizontally stratified earth model, prior to making an inference about the likely

variation of the material properties within the geological layers, an assumption must be

made concerning the number of layers in a certain depth range of interest. This assumption

defines the dimensionality (i.e., the number of unknowns) of the inverse problem. In

reality, however, such information is rarely available for the dimension and definition of

the parameter space to be fixed. In this synthetic study, our main focus is dedicated to

demonstrate the outlined framework of jointing states of geophysical information using the

introduced probability operators, hence, we avoid adding complexity to the probabilistic

inversion step. However, to relax the hypothesis about the number of soil layers prior to

inversion, it is possible to define the number of layers, as well as their locations, and their

corresponding material properties as random variables. From a Bayesian perspective, this

set up is closely associated with probabilistic model selection, where a collection of models

with varying number of parameters are presented for inversion, and the task is to select

the models that most likely describe the experimental observations. This type of inverse

problems are referred to as trans-dimensional (varying-dimensional) inverse problems since

the number of unknowns is an unknown itself. Recently, a Monte Carlo method, so-

called reversible jump Markov chain Monte Carlo (RJMCMC) algorithm (Green, 1995) has

been introduced to the earth science literature, which is applied to sample the posterior

distribution of varying dimension. More details on the RJMCMC algorithm or alternative

asymptotic techniques of Bayesian model class selection could be find in (Malinverno, 2002;

Minsley, 2011; Cao & Wang, 2013; Wang et al., 2013).

A uniform non-informative prior (defined in sections 5.5 and 5.6) was specified to all

the model parameters, denoting that no information was available about the earth model
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parameters prior to the ‘field data collection’, founding the inference merely on the exper-

imental observations. The likelihood function reflects the observational tradeoff between

the experimental observations and the model predictions, which in this case is populated

from a Gaussian model (equations 5.9 and 5.13).

The solution of the numerical integration of the posterior, the simple multiplicity of

the uniform prior and the Gaussian likelihood (equations 5.8 and 5.12), was obtained after

10,000 MCMC simulations where convergence was guaranteed. The first 2000 samples were

discarded as burn-in iterations. The runtime to draw 10000 (accepted) samples on a 2.4

GHz Quad-Core AMD Opteron machine are 201 and 284 minutes for the VES and VSS,

respectively.

Figure 5.11 presents the estimated probability marginal distributions for the 1-D earth

model parameters (ρ1, ρ2, and the thickness of the top layer) from the electrical resistivity

sounding. Figures 5.11a and 5.11b show the marginal posterior probability density of the

resistivity of each layer (ρ1, ρ2). The probability density function for the location of the

transition between layers (i.e. the geomorphological feature) is shown in Figure 5.11c.

These distributions provide a measure of uncertainty about the materials and the location

of the geomorphological feature of interest. The variance of the induced ground response

σ2
VES

is also considered as a random variable here, which indicates a direct influence of the

data, which converges to the measure of the added 15% noise used to populate it (Figure

5.11d). Notice that the probability estimates vary closely around the target values (dashed

lines).

Results of the seismic inversion are presented in Figure 5.12. The marginal posterior

densities of the two layer soil model parameters (p-wave velocities Vp1, Vp2, and the thick-

ness of the upper layer) are shown in Figures 5.12a-5.12c, respectively. Similarly to the

resistivity inversion, material properties and the geomorphological feature of interest coin-

cide with the benchmark values, and provide a measure of uncertainty on their estimates.

Table 5.1 presents the statistics defined for the independent inversions of both VES and

VSS. This shows that the standard deviation of the electrical resistivity grows with respect
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Figure 5.11: Marginal posterior densities regarding the vertical electrical sounding, together
with the target values (dashed line).

to depth about 55% from the upper to the lower layer. That is not the case for the wave

velocities, where the uncertainty is slightly lower for the bottom layer (about 3.6%). This

is hypothesized to be due to the disregard for the viscosity effect of the soil in the VSS

forward model (i.e soil is modeled as a perfectly elastic media). In reality, however, the

viscous characteristic of the soil results in the attenuation of wave energy as it propagates

in depth. The poor quality of the seismic recordings retrieved from the higher depths is

attributed to this effect. This means the slight change in the uncertainty of the inferred

wave speed could be related to a numerical effect rather than a physical phenomenon.
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Figure 5.12: Marginal posterior densities regarding the seismic inversion, together with the
target values (dashed line).

Second, results from the coupled or joint probabilistic inversion between the VES and

VSS are presented in figure 5.13. This shows the inverted material properties of the two-

layer earth model obtained from the the coupled or joint inversion of both data sets. The

formulation of this inversion considered the existence of a single transition between soil lay-

ers, as opposed to the two distinct locations retrieved from the independent probabilistic

inversions of VES and VSS discussed above. Table 5.2 presents the statistics corresponding

to this inversion, indicating that the material properties’ mean estimates of the coupled

inversion converge to about the same estimates from the independent inversions. Figures

170



Table 5.1: Statistics of the posterior parameters of the independent resistivity and seismic
inversions.

Mean Standard deviation

VES

ρ1 (Ωm) 10.093 1.332
ρ2 (Ωm) 389.381 2.069
h1 (m) 15.357 2.049
σ 11.157 0.625

VSS

Vp1 (m/s) 268.679 19.292
Vp2 (m/s) 509.608 18.618
h1 (m) 17.857 1.922
σ 0.233 0.019

5.13a and 5.13c show a reduced uncertainty on the retrieved elastic-resistivity properties

of the upper layer compared with the independent inversions illustrated in Figures 5.11a

and 5.12a respectively (72.7% reduction for the electrical resistivity and 29.8% for the wave

velocity). On the other hand, the uncertainty change was moderate on the inverted prop-

erties of the lower layer (35.3% reduction for the electrical resistivity and 1.38% increase

for the wave velocity). Estimates of the location of the soil interface lied between the two

known reference depths (15m and 18m) for resistivity and seismic inversions respectively

(Figure 5.13g). These show a significant reduction with respect to the independent soil

transitions, between 65% and 55% with respect to VES and VSS respectively. However,

this contradicts ‘reality’ as imposed by construction of the case study, since the inversion of

each physics showed above its ability to find their ‘true’ distinct geomorphological features.

Figures 5.13e, 5.13f show σVES and σVSS, denoting the variability of resistivity and seismic

data respectively, which converge to about the same values obtained in the independent in-

versions. Indeed, coupling VES and VSS converge to the same standard deviation assumed

for the generation of each individual data set.

A major advantage of the probabilistic model calibration is that it makes it feasible to

retrieve the correlation structure defining the degree of association between the regression

parameters, something that cannot be achieved by typical deterministic calibrations, where

a single vector of optimal parameters is retrieved. Figure 5.14 introduces the correlation
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Table 5.2: Statistics of the posterior parameters of the coupled resistivity and seismic
inversion.

Mean Standard deviation

Joint VES & VSS

ρ1 (Ωm) 10.837 0.764
ρ2 (Ωm) 389.466 2.071
Vp1 (m/s) 257.195 14.260
Vp2 (m/s) 507.640 18.885
h1 (m) 16.986 1.241
σV ES 11.277 0.666
σV SS 0.233 0.022

among the resistivity-velocity properties of the upper and the lower layer respectively.

The relevance of these figures is to emphasize the capability of a probabilistic inversion to

quantify the cross-correlation structure of the model parameters. In the case of the coupled

probabilistic inversion, a clear linear correlation among the properties of the upper layer

Vp1 and ρ1 can be observed (Figure 5.14a). A slight negative Vp2 and ρ2 correlation can be

detected in Figure 5.14b.

Third, once the independent probabilistic calibration is completed for all participating

geo-mappings, it is then possible to merge information content from each geophysical inver-

sion now making use of Tarantola’s ‘collaboration’ probability operators. For the 1D soil

modeling, the geomorphological information extracted from both geophysical data is the

definition of the location of the transition between layers. In general, this step is carried

out following the proposed classification method described in section 5.3. For this specific

1D example the location of the interface is retrieved as an inversion parameter (i.e. for

this case there is no need to complete the classification analysis).

Figure 5.15 shows the merging of geomorphological information via the AND conjunc-

tion operator, which shows an enhanced location of the resulting layer boundary. These

figures are obtained by direct application of equations 5.17, where p
(
h|dVES

obs

)
and p

(
h|dVSS

obs

)

denote the marginal posterior probability density of the depth of the layer interface, cap-

tured from independent seismic and resistivity modelings.

Following the assumption that each geophysical method detects distinct characteristics
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of the soil media, it can be stated that the findings of each physics belong to distinct

populations. Following this rationale, the AND-conjunction operation showed in Figure

5.15 cannot be interpreted as the distribution of the location of a single transition between

soil units, which in this case shows further reduction of uncertainty compared to the joint

inversion (it would be misleading). On the other hand, the probability distribution de-

scribing the OR-disjunction operation can be interpreted as the existence of two distinct

geomorphological features showing their corresponding modes, which spans a region (after

merging both distributions) indicating the probability of finding two distinct geomorpho-

logical features (or one) that will represent more accurately the stratigraphy description.

It is therefore hypothesized that this approach will improve the identification of geomor-

phological features, for which the OR-disjunction operator would be more suitable.

5.8.2 Integration of Evidence Among the Same Physics

A case study is presented to illustrate further the application of the probability ‘collab-

oration’ operators, when introduced to multiple geophysical survey data stemmed from the

‘same physics’ collected over the same site. This case was designed to represent the sce-

nario of merging evidence belonging to the same population, consisting on a seismic survey

conducted using two different pulse-type stress sources with max frequencies fmax = 20Hz

and fmax = 70Hz respectively (Figure 5.16). That is, to maximize the inferences that can

be populated by making use of a previous low resolution seismic available at the same site

(meaning the merging of two independent field investigations with low and high resolutions

using the AND operator).

The field experimental observations (synthetic) are generated by solving the forward

problem under the target velocity profile (Vp1 = 250m/s, Vp2 = 520m/s, and depth of the

interface h = 15m) with an added 20% Gaussian random noise. The synthesized sensor

readings are plotted in Figure 5.17, indicating the inclusion of 101 data points. Figures

5.18a and 5.18b show the velocity measures retrieved from the independent calibration of

the two sensor readings, with a more certain (narrower) pdf defined by the high frequency

survey data (Figure 5.18a). This shows also the density function of material properties
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obtained by the application of the AND-conjunction operator. These results aim at quan-

tifying the confidence gained from using low to high resolution seismic, and to outline the

local differences from the lower to the upper soil layers, showing a consistent confidence

gain in the upper soil layer with respect to the lower soil layer.

The use of the AND operator for updating the probability distributions of both the

material properties and the geomorphological features, corroborates the proper use of the

AND operator. It shows an improved estimate of the ‘true’ material properties and the

corresponding reduction of uncertainty on the material estimates and in the location of the

materials boundary.

Table 5.3: Statistics of the seismic inversion where the media is probed with two sources
of different frequencies

fmax = 20Hz fmax = 70Hz Conjunction

101 Data points

E[Vp1] 259.868 250.205 253.086
E[Vp2] 505.243 544.403 523.623
E[h1] 14.406 14.544 14.512

std[Vp1] 14.217 9.267 7.763
std[Vp2] 12.024 12.785 8.759
std[h1] 1.330 0.729 0.640

202 Data points

E[Vp1] 261.775 252.877 255.561
E[Vp2] 520.850 532.687 527.233
E[h1] 14.969 15.216 15.161

std[Vp1] 10.128 6.656 5.562
std[Vp2] 9.647 8.917 6.548
std[h1] 0.923 0.492 0.434

Moreover, when increasing the data sampling intensity from the ground response to

202 data points (twice as in the previous case), further uncertainty reductions can be

observed. Figure 5.19c presents similar plots to those discussed for 5.18c. These show a

consistent reduction on uncertainty for both the material properties and the location of the

transition between soil units. Table 5.3 presents the statistics defined for this inversion,

where uncertainty reductions are observed between 30 to 40%.
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Figure 5.13: Marginal posterior densities regarding the joint seismic-electrical resistivity
inversion, together with the target values (dashed line).
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(a) (b)

Figure 5.14: Correlation structure between compressional wave velocity and electrical re-
sistivity. Posterior probability projections of the p-wave velocity vs resistivity for a) top
layer and b) bottom layer.

(a) (b)

Figure 5.15: Seismic-electrical resistivity inversion of depth of the layer interface for a
2-layer Earth model, superimposed with multi-physics reconstructed soil profile via a)
Conjunction operator and b) Disjunction operator.
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Figure 5.16: Excitation time signals and their Fourier spectrum.
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Figure 5.17: Synthetic data generated by perturbing the model response with 20% Gaussian
noise (SNR=5) together with the measured displacement response at the ground level (solid
curve).
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(a) (b)

(c)

Figure 5.18: Inverted compressional wave velocities (a and b) and inverted depth of the
boundary (c) of a 2-layer earth model corresponding to sources with fmax = 20 Hz and
fmax = 70 Hz, together with the target values (dashed line). The measurements are made
every 0.02 sec (101 data points).
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(a) (b)

(c)

Figure 5.19: Inverted compressional wave velocities (a and b) and inverted depth of the
boundary (c) of a 2-layer earth model corresponding to sources with fmax = 20 Hz and
fmax = 70 Hz, together with the target values (dashed line). The measurements are made
every 0.01 sec (202 data points).
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5.9 Concluding Remarks

The sequence a) probabilistic geophysical inversion, b) geomorphological classification,

and c) probabilistic calibration, set the basis for the use of two basic probability operators,

AND-Conjunction and OR-Disjunction, for defining joint states of evidence from different

geo-profile reconstruction methods. Once these three steps are completed for a given q

geomorphological feature of interest, it is then possible to enrich the geo-spatial geological

model when two or more probabilistic geophysical reconstruction mappings are available.

The use of the AND-conjunction operator is shown to be the same as of the Bayesian

paradigm, based on the principle of conjunction of information, which applies to evidence

sampled from the same population that anticipates a resulting reduction on the uncer-

tainty of both the material properties and the location of the geomorphological features.

The use of the OR-disjunction operator, is an alternative when information from the par-

enting probability mappings are sampled from different populations, which then facilities

the integration of complementary evidence for the location of geomorphological features,

resulting on the enrichment of the stratigraphical description or earth model. When the

degree of complementary information between parenting probability mappings is not sig-

nificant, the OR-disjunction operator simply reflects the convergence between methods to

the same state of information.

From the discussion of the applicability of the proposed method to the synthetic cases

discussed above, it is observed that the use of the AND-conjunction operator (Bayesian

paradigm), may be utilized for objectives different to what it may be required. Such as in

the case of having a true collaborative operator (OR-disjunction operator), that can make

distinctions between the differences of maps describing the same object based on different

information source or knowledge.
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6. BAYESIAN MODEL SELECTION FOR VIRIAL EQUATIONS OF STATE

6.1 Overview

This paper introduces a generic model selection methodology to define the most likely

order of the virial Equation of State (EOS) for describing a set of PρT experimental obser-

vations. Current practice on the deterministic model calibration techniques applied to EOS

and its corresponding standard statistical inferences overlooks model uncertainty. Hence,

typical EOS parameterizations make use of subjective or optimization-based selections of

a truncation term in the virial expansion model. Emphasis is given solely to a qualitative

curve fitting to the data, without questioning the potential influence of the aleatory and

epistemic uncertainties involved in the process. Bayesian model selection through the use

of the Bayes Factors (BF) provide a coherent and reproducible framework for accounting

for all participating sources of uncertainty while penalizing any over-fitting effects. The

aim is to adopt a formal prior selection to avoid subjective assumptions. Consequently, the

favored virial model shows a full probabilistic description of its regression-type coefficients

in the form of a joint probability density function, namely the posterior density or the

probabilistic solution to the inverse problem. Therefore, improved statistical inferences

can be generated from the sampling of the posterior, by sampling likely combinations of

the virial coefficients and estimating descriptive statistics about the response of the EOS

model. To illustrate the applicability of the proposed methodology, the virial EOS model

is applied to isothermal experimental curves of pure Argon (Ar) measurements.

6.2 Introduction

The use of gas models of equations of state (EOS) in industrial applications requires the

proper characterization of its model parameters. The lack of an uncertainty quantification

approach may translate into significant economical loses, due to the deterministic point es-

timation approaches used to define the model parameters, and because of the large trading

volumes involved. In practice, the parametrization of advanced models commonly appears
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as an optimization problem, where an objective function minimizes the deviation between

experimental observations and the corresponding model predictions (Edgar & Himmelblau,

1988). The result is a single vector of the model parameters: the optimal.

In addition, most of the current calibration processes imply that the data used to define

the optimal set of model parameters is fully certain, or represents the mean or the statistical

trend of the experimental observations. Also, the amount and location of data used for the

calibration is typically assumed to have no impact on the selection of the model parameters.

These two related assumptions imply discarding the effect of the aleatory uncertainty in the

calibration process, not to mention the epistemic uncertainty related to the data collection.

Moreover, it is common to disregard the uncertainty carried by the model generation,

which is known a-priori to contain limitations as to accurately predict the process of inter-

est, either because of limited knowledge about the physics of the problem (i.e. in physically

based models), or because of low model fidelity (i.e. low order empirical models). This later

model related assumption implies discarding the effect of the model epistemic uncertainty

in the calibration process.

Nevertheless, the most common assumption made during the calibration of EOS mod-

els, is the belief that only one combination of the model parameters exists to generate

model predictions that best approximate the experimental observations. This assumption

is exacerbated when calibrating multivariate models. The calibration of EOS models is

ill-posed.

Use of a probabilistic calibration or solution to the inverse problem (Tarantola, 2005)

can overcome this difficulty, because it allows a systematic exploration of all combinations

of the model parameters within a transparent definition of the impact of the participating

uncertainty sources. During such exhaustive parameter exploration, a probability met-

ric can assess the likelihood of selecting sets of parameters that approximate the model

predictions of the experimental observations (likelihood function). In addition, a proba-

bility metric can reflect the degree of a-priori knowledge for the model parameters (prior

probability density). By the virtue of Bayes theorem, the combination of these two states
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of knowledge about the model of interest yields the following benefits: a transition from

deterministic to probabilistic model parameters, assessment of the type and degree of cor-

relation between the model parameters (e.g. linear or non-linear), measurement of the

impact of the varying experimental observations and hyper-parameters (e.g., varying num-

ber of parameters, varying variance, etc.), and consequently the assessment of the model

performance (Robert, 2007).

This work extends this approach for the probabilistic selection of competing models,

where the aim is to select the best model to describe the process that generated a given

set of observations, based on the state of uncertainty of the participating evidence (i.e.

experimental observations, EOS model, and even expert’s judgment). This approach is

defined as a probabilistic model selection (Kass & Raftery, 1995), which provides a coherent

and reproducible methodology for the optimal selection of EOS models. Results of this

work will show the benefits of a full probabilistic calibration and selection of EOS for Argon

model parameters, when presented to the experimental database generated by Gilgen et

al. (Gilgen et al., 1994a).

The canonical regression model for the virial EOS is proposed to illustrate the appli-

cability of the probabilistic model selection methodology. This procedure uses Bayesian

hypothesis testing and model selection when conducted through the definition of Bayes

Factors (BF), which were first introduced by Jeffreys (Jeffreys, 1935, 1998). In order to

compute BFs, a prior distribution must be assigned to the parameters of each model. In

the absence of some closely related data to construct a proper prior distribution, as in the

case of this study, a key concern is how to opt for a prior distribution that best represents

the available information. This selection becomes a challenge in the case of BFs because

they are more sensitive to the choices of priors on the model parameters (Robert, 2007)-§7.

In standard Bayesian point estimation, the influence of the prior distribution vanishes as

the sample size grows, but that is not the case in model selection (Berger & Pericchi, 1996).

Furthermore, the goal is to define a systematic scheme for prior determination to (ideally)

avoid any subjective input to the inference process. In the case of non-informative priors,
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used whenever little knowledge exists about the variability of the given model parameters,

these are typically constructed by standard formal rules that generate so called improper

priors up to a constant of proportionality (Kass & Wasserman, 1996). The problem with

these is that the improper priors cannot be used in a model selection setting, because

choice of the normalizing constant influences the BF, which is a multiple of this arbitrary

constant.

To circumvent the difficulty of choosing a relevant prior to compute the BF, one may

rely upon non-Bayesian model selection approaches such as Akaike Information Criterion

(AIC) (Akaike, 1974). This method introduces ad hoc terms in the model selection criteria

to penalize inclusion of unnecessary model dimensions. However these methods do not

fully incorporate the ”Occam’s razor” principle, noting that among two equally possible

theories, a simpler is favored over a more complex model, to better adapt to varying data

conditions within the same data population (Jefferys & Berger, 1992). This notion pro-

hibits choosing over-fitted models that perform poorly, particularly in terms of prediction.

Another possibility is to exploit asymptotic approximations to BFs, such as Schwartz’s

criterion, also called Bayes Information Criterion (BIC) (Schwarz, 1978; Kass & Raftery,

1995). Although this will lead to an appropriate determination for sufficiently large sam-

ples in regular well-behaved models, the criterion does not work for irregular likelihoods.

Therefore, the challenge is posed in the prior selection for the optimal probabilistic model

selection and in the computational implementation of the Bayesian framework to take

advantage of the benefits of BFs.

6.3 Virial Equation of State

The virial Equation of State (EOS) has special relevance in industrial applications

because of its precise basis in statistical mechanics that provides coefficients in terms of

molecular properties (Lucas, 1991). Kammerlingh Onnes in 1901 introduced the virial EOS

presenting the molar compressibility factor Z for a fluid as an infinite power series in the

molar density ρ (Privat et al., 2009).
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Z (T, ρ) =
P

ρRT
= 1 + β1(T )ρ+ β2(T )ρ

2 + . . .

= 1 +

+∞∑

i=1

βi(T )ρ
i

(6.1)

in which ρ, P, T, and R denote the molar density, pressure, thermodynamic temperature,

and the universal gas constant respectively. The βi parameters are virial coefficients de-

pending only on temperature. The first virial coefficient, β0 must be unity to to satisfy the

ideal gas limit. This equation encapsulates the departure from the ideal gas behavior into

the infinite summation terms. The second virial coefficient β1 is proved to be explicitly

related to the interaction energy between a pair of molecules. Analogously, β2 is associated

with the influence of interaction between triples of molecules and so on. Normally, the

credibility of the virial equation is restricted to relatively low density systems. Including

higher order terms in the expansion extends the range of applicability of the virial equa-

tion to higher densities. Analytical evaluation of the higher order virials are intractable for

common intermolecular interaction potentials, hence, these coefficients are commonly cal-

ibrated by fitting to volumetric data gathered isothermally. However, from the statistical

point of view, there is no real limitation for extending the proposed methodology to the

calibration of surface-type models.

The virial coefficients, as with any other regression-type model parameters, can come

from fitting experimental data. However, the full formulation of the virial EOS as an infinite

series is computationally infeasible and may not be justifiable. Therefore, the virial EOS

requires truncation after a definite number of terms to proceed with the model calibration.

Having a probabilistic calibration of each model (i.e. model expansions with varying terms)

and using the same isothermal dataset makes it possible to assess the uncertainty of the

model performance, yielding a probabilistic measure of how good one model is with respect

to others (including models different from the virial EOS).
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Least squares-type methods have been utilized to parameterize virial EOS for conditions

with varying experimental setups (e.g. (Gilgen et al., 1994a,b; Dymond & Alder, 1971),

and review article on methodologies used for calculating the virial coefficients (Masters,

2008)). Some of these include gas factor measurements (e.g. using the Burnett apparatus),

direct density measurements (e.g. weighing methods), and energy determinations (e.g.

heats of formation and vaporization, heat capacity determinations, and Joule-Thomson

coefficients) (Ewing & Marsh, 1979; McElroy et al., 1989; Stewart & Jacobsen, 1989). For

the former, when parameterizing models from volumetric techniques, numerical procedures

have involved direct polynomial fits. For the latter, it is known that less accurate values

result because the procedure involves a simplified inverse problem and different indirect

models. Best results so far showing the lowest deviations between data and model predic-

tions, are the direct polynomial correlations of data gathered with the Burnett apparatus,

and by more sophisticated weighing methods like those based upon the Magnetic Suspen-

sion Densitometry (MSD) (Kleinrahm & Wagner, 1986; Patil et al., 2007). It is worth

noting that all existing parameterizations of the virial EOS are deterministic.

The use of a probabilistic approach to quantify the uncertainty involved in the solution

of the inverse problem is necessary for proper qualification of model performance. This

work focuses upon the uncertainty quantification of the virial parameters to determine the

optimal number of terms for the model, by considering the effect of the number of data

points used, and the local variability of the experimental observations. Truncation of the

polynomial model occurs via implementation of a probabilistic model selection methodol-

ogy, conditioned to available experimental observations and to the model capabilities to

capture the data trend. This methodology outlines a standard, systematic, and objective

methodology to determine the optimum number of terms for a virial EOS. In particular,

the Bayesian model selection approach offers a robust tool to achieve this goal (Key et al.,

1999).
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6.4 Bayesian Model Selection

Defining a number of terms for the virial EOS determines a single model. That is,

varying the number of terms of the polynomial model monotonically defines a number of

competing models to describe a given set of experimental observations. Having i ’s of such

competing models M1,M2, . . . ,Mi, it is desired to find the model that best describes the

existing data. The Bayes Factor (BF) (Kass & Raftery, 1995), within the Bayesian model

selection framework offers a sound criteria to compare performance of a set of competing

models. This approach requires specifying priors on the unknowns (model parameters)

for each competing model, and updating prior probabilities of models according to the

Bayes’ theorem (Liang et al., 2008). This procedure identifies the model with the highest

probability of capturing the data trend. By the virtue of the Bayes theorem the posterior

probability that the observed data is generated from the model indexed by k is:

p (Mk|y) =
p(Mk)p(y|Mk)

∑

k p(Mk)p(y|Mk)
(6.2)

where y denotes data and θk is the vector of model parameters corresponding to model

Mk, and p(Mk) is the prior probability of Mk being the reference model. p (y|Mk) is called

the marginal likelihood, and given by:

p (y|Mk) =

∫

Θk

p (y|θk,Mk) p (θk|Mk) dθk (6.3)

The marginal likelihood provides the probability of model Mk being the true model given

the observed data and prior information. In a Bayesian model selection setup, the criteria

to compare the relative merits of one model over another is the BF. The BF for model i

relative to model j is:

BF [Mi : Mj] =
p (y|Mi)

p (y|Mj)
(6.4)

Indeed, the above expression for BF does not require the two models to be nested
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(and belong to a same class of models), as opposed to its non-Bayesian counterpart, the

Likelihood Ratio Test (LRT) (Casella & Berger, 2002), in which the null hypothesis must

always reside within the alternative hypothesis (Robert, 2007). Jeffreys (Jeffreys, 1998) and

with slight modification Kass and Raftery (Kass & Raftery, 1995) proposed the following

guideline to interpret results of BFs: (table 6.1)

Table 6.1: Bayes Factor interpretation: grades of evidence corresponding to values of the
BF against Mj

Bij Evidence against Mj

1 to 3 Not worth more than a bare mention
3 to 20 Positive
20 to 150 Strong
>150 Decisive

To make the preceding BF definition explicit for choosing from a set of virial EOS, let

the model Mi be a virial EOS truncated to p terms (equation 6.1). This equation is a

linear regression of X on y according to:

y = Xn×pβp×1 + ǫ (6.5)

where ǫ is the error term representing the deviation between the data and the model

prediction. n and p are the sample size and the order of the virial expansion, respectively.

6.5 Bayesian Linear Regression

The general formulation for Bayesian linear regression (for which the virial EOS is a

suitable representation) is:

y = Xβ + ǫ (6.6)

where response vector y = (y1, . . . , yn)
T is normally distributed, with mean (expected

model) vector Xβ and covariance matrix σ2In, in which σ2 is the variance of error term
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ǫ, and In is a n× n identity matrix. X is a set of predictor variables arranged in a n× p

design matrix. β is the vector of regression parameters, and ǫ = (ǫ1, . . . , ǫn)
T is a vector

of random error components such that ǫ
iid∼ N

(
0, σ2In

)
.

To proceed with the implementation of the Bayesian regression, a prior distribution

π(θ) must be incorporated for representing the known variability of the model parameters

θ =
(
β, σ2

)T
. Notice that here it is assumed that σ2 is also a random variable which

is to be inferred from the data. According to the Bayes’ paradigm, the most general

solution to the above regression problem is cast in the form of a density function namely

the posterior distribution π (θ|y) which results from the product of the prior distribution

for the parameters π (θ) and the likelihood function f (y|θ) normalized by its marginal

(Box & Tiao, 1992):

π (θ|y) = f (y|θ) π(θ)
∫

Θ
f (y|θ)π(θ) dθ (6.7)

where the integration is carried out over the parameter space Θ. The likelihood function

f (y|θ) describes the data-error statistics. That is, the probability that the observed re-

alization y is produced by model θ ∈ Θ . In particular, the likelihood for a linear model

defined within a multivariate normal density (which proves to be the case for the data

under study) takes the form:

f
(
y|β, σ2

)
=

(
2πσ2

)−n/2
exp

(−1
2σ2

(y−Xβ)′ (y−Xβ)

)

(6.8)

where the prime denotes transpose here and throughout the text.

6.5.1 Selection of Priors

A fundamental phase in Bayesian modeling is the selection of priors. The use of stan-

dard objective selection of priors helps to minimize subjective inputs into a scientific in-

ference problem, such as the probabilistic calibration of a given virial EOS. Opting for

non-informative priors is a convenient choice, when little information exists about the

variability of the model parameters. This type of priors gives stronger relevance to the
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interaction between the experimental observations and the model predictions. However, a

majority of non-informative priors, constructed by semi-automatic schemes, are improper

defined up to a constant of proportionality (Kass & Wasserman, 1996). In general improper

priors for model specific parameters (parameters which are not common to all compared

models) cannot be used in model selection setting because the choice of the normalizing

constant (the denominator in equation 6.7) influences the computation of the BF. More-

over, proper vague priors (proper priors with a large dispersion parameters) also do not

solve the problem, as they give rise to the so called Jeffreys-Lindley paradox (Robert, 2007).

The paradox is a problem related to the stability of the BF which causes the most parsi-

monious model (which might be a very poor reflection of the data) always been favored by

the BF.

In normal regression models, a convenient choice of proper prior is a conjugate prior

from the normal inverse-gamma family (Denison et al., 1998, 2002b), in which the exact

analytic assessment of all marginal likelihoods is feasible (equation 6.3). In particular, Zell-

ner’s G-prior (Zellner, 1986) provides a conjugate prior on regression coefficients which al-

lows for constructing the prior covariance structure directly from the observed data through

the design matrix X. Zellner’s G-prior on regression coefficients and dispersion parameter

are given by

β|σ2, c,X ∼ N

(

µ0, cσ
2
(
X′X

)−1
)

(6.9)

σ2|X ∼ I G (α0, δ0) (6.10)

Definition of the priors is therefore reduced to choosing µ0 and the inverse-gamma

parameters α0, δ0. The prior mean µ0 in the present study is set to zero, and α0 = δ0 = 0

without loss of generality. The choice of α0 = δ0 = 0 reflects the well-known improper

Jeffreys prior (Jeffreys, 1946; Kass & Wasserman, 1996) for σ2. It should be noted that

that improperness of the prior on σ2 does not make the BF indeterminate, as σ2 is common
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to all the competing models. c is a dispersion hyper-parameter reflecting the amount of

information available in the prior relative to the observations. In this sense, as c goes to

infinity, the influence of the prior tends to vanish at the rate of 1/c. When setting c = 1,

the prior is given the same weight as the data.

Herein, it is stressed that the value of c cannot be fixed as BF is highly sensitive to the

choice of c. Several works provide recommendations on the relevant uniform choices of c

(Kass & Wasserman, 1995; Foster & George, 1994). However, a more natural alternative

is to treat c as a random hyper-parameter in the model which is elicited from the analysis.

A proper prior is specified on c, which accordingly leads to a mixture of G-priors for the

regression parameters β, resulting in a more reliable inference and model selection. The

proposed approach is based on a family of priors for c introduced by Liang et al., so called

hyper-g priors (Liang et al., 2008):

π(c) =
a− 2

2
(1 + c)−a/2, c > 0 (6.11)

This prior is proper for a > 2 and hence provides the possibility of comparing the linear

virial EOS to any other family of models that does not contain c. Even though a choice

of 1 < a ≤ 2 is plausible as it results in a proper posterior density, the issue of arbitrary

constant of proportionality of the prior gives rise to indeterminate BFs, and hence should

be avoided in a model selection setup. Setting a = 3 and a = 4 is a recommendation in

(Liang et al., 2008).

It is often convenient to present the prior density as a product of its conditional distri-

butions as follows:

π
(
β, σ2

)
= π

(
β|σ2, c,X

)
π
(
σ2|X

)
π(c) (6.12)

with
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π
(
β, σ2| c,X

)
= π

(
β| σ2, c,X

)
π
(
σ2|X

)

=

(
δ0
2

)α0/2

(2π)p/2 |V0|1/2 Γ
(
α0
2

)

×
(
σ2

)−
(

α0+p+2
2

)

exp

[

−
(
(β − µ0)

′V−1
0 (β − µ0) + δ0
2σ2

)]

(6.13)

with Γ being the Gamma function, and V0 = c (X′X)
−1

. |.| denotes the determinant.

Hence the quantity

(
δ0
2

)α0/2

(2π)p/2 |V0|1/2 Γ
(
α0
2

)

is the proportionality constant for the N I G prior. This normalizing constant is of great

significance to develop Bayesian testing by constructing closed form BFs. The constant for

the posterior density assumes the exact same functional form because of conjugacy, with

prior parameters substituted by updated parameters.

6.5.2 Bayesian Point Estimation

By introducing the expressions derived for the prior density and the likelihood function,

(equations 6.13, and 6.8), into the Bayes formula (equation 6.7), one can determine the

form of the posterior up to a constant term. Using a conjugate prior structure, which is a

normal inverse-gamma π
(
β, σ2|X, c

)
= N I G (µ0,V0, α0, δ0), the posterior distribution

maintains the same functional form, except that the prior parameters are updated condi-

tioned on the observed data. Hence, conditional on c, the posterior probability distribution

is of the form:

π
(
β, σ2|X,y, c

)
= N I G (µ⋆,V⋆, α⋆, δ⋆) (6.14)
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in which updated parameters are indicated by an asterisk. Setting α0 = δ0 = 0, µ0 =

0p, V0 = c (X′X)
−1

simplifies the updated parameters to:

µ⋆ =

(
c

c+ 1

)

β̂

V⋆ =

(
c

c+ 1

)
(
X′X

)−1

δ⋆ = y′y− c

c+ 1
y′X

(
X′X

)−1
X′y

α⋆ = n (6.15)

in which β̂ is the maximum likelihood estimate for β, and equals to:

β̂ =
(
X′X

)−1
X′y (6.16)

The standard updating procedure for the normal inverse-gamma model appears else-

where (Denison et al., 2002b; Bernardo & Smith, 2009). Notice that the preceding expres-

sion for the posterior density is conditional on c. In order to appraise the posterior density

for c, one may exploit Monte Carlo methods (Robert & Casella, 2004) to sample from the

marginal posterior π (c|y) = f (y|c) π (c). Having noted that the closed form expression for

f (y|c) exists (see equation 6.20), any simulation-based method is easy to apply.

6.5.3 Bayesian Linear Model Comparison

Having determined the modeling representation, and the corresponding proper-informative

priors, the Bayesian model selection problem reduces to treating some often high-dimensional

integrations (equation 6.3). In general these integrations cannot be carried out with com-

mon numerical methods. However, full analytical calculations of the BF and other statistics

of interest are available for a linear regression with the considered conjugate prior setting

because the marginal likelihood of the data under each model p (y|Mk) can be evaluated

analytically (see equation 6.17). However, one may also marginalize the posterior density

first by integrating out all the model unknowns θ =
(
β, σ2

)T
conditionally on c, leaving a
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one dimensional integral over c. In this sense, the marginal likelihood of the data under

model Mk is:

p (y|Mk) =

∫ ∞

0
f (y|Xk, c) π(c) dc (6.17)

where f (y|Xk, c) comes from the following integration:

f (y|Xk, c) =

∫∫

Θ

f
(
y|β, σ2, c,Xk

)
π
(
β, σ2| c,Xk

)
dβdσ2 (6.18)

Substituting equations 6.8 and 6.13 into equation 6.18 provides:

f (y|Xk, c) =
|V⋆|1/2 (δ0)α0/2 Γ

(
α⋆

2

)

|V0|1/2 (π)n/2 Γ
(
α0
2

) (δ⋆)−α⋆/2 (6.19)

Under the assumed prior setting and using equations 6.15, f (y|Xk, c) is proportional to:

f (y|Xk, c) ∝ (c+ 1)−pk/2

[

y′y−
(

c

c+ 1
y′Xk(X

′
kXk)

−1X′
ky

)]−n/2

(6.20)

The resulting one dimensional integration is easy to perform using standard numerical

or Laplace approximation methods (Tierney & Kadane, 1986; Kass & Steffey, 1989). Hav-

ing calculated the marginal likelihoods, equation 6.4 determines a BF of any two competing

virial models:

BF [Mi : Mj] =

∫
∞

0
(c+ 1)−pi/2

[

y′y−
(

c
c+1 y′Xi(X

′
iXi)

−1X′
iy
)]−n/2

π(c) dc
∫

∞

0
(c+ 1)−pj/2

[

y′y−
(

c
c+1 y′Xj(X

′
jXj)−1X′

jy
)]−n/2

π(c) dc

(6.21)

6.5.4 Posterior Statistics

In addition to the entire posterior presentation (equation 6.14), statistics of the posterior

are desired. Posterior location parameter and variation summaries for a normal linear

model are all closed-form as the posterior is of a known family. Here the Bayesian estimates
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of β and σ2 are derived based on the rules of calculating means and variances of conditional

distributions (Gelman et al., 2003)-§1. Accordingly, the posterior mean of β|y comes from

averaging the conditional mean β|y, c over the marginal distribution of c:

E[β|y,X] = E [E(β|y,X, c)|y,X]

where E denotes the expectation operator. In the inner expectation, averaging occurs over

β|y conditional on c, and in the outer expectation averaging occurs over c|y. The inner

expectation may also appear in a conditional form:

E[β|y,X, c] = E
[
E(β|y,X, σ2, c)|y,X

]

= E[µ∗|y,X]

= E[
c

c+ 1
β̂|y,X] (6.22)

This expectation results from integrating over the entire domain of c with respect to the

posterior density of c, which leads to:

E[β|y,X] =

∫
∞

0

c
c+1 f (y|c) π(c) dc∫
∞

0
f (y|c) π(c) dc

β̂ (6.23)

The denominator in the above expression denotes the posterior normalizing constant,

and β̂ is the the MLE estimate of β. Following the same steps, the Bayes estimate of the

variance is:

E[σ2|y,X] =

1
n−2

∫
∞

0

[

y′y−
(

c
c+1

)

y′X (X′X)
−1

X′y
]

f (y|c) π(c) dc
∫

∞

0
f (y|c) π(c) dc

(6.24)

Equation 6.20 provides f (y| c) in the preceding expressions.

Correspondingly, the identity for the conditional variance is:
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V[β|y,X] = E [V(β|y,X, c)|y,X] +V [E (β|y,X, c) |y,X] (6.25)

By averaging the joint posterior density over σ2, analytical form for the marginal poste-

rior distribution of the regression coefficients, π (β|X,y, c), admits a multivariate-t density,

Tp (α
⋆,µ⋆, δ⋆V⋆), in which α⋆ is the degree of freedom, µ⋆ is the location parameter, and

δ⋆V⋆ is the p × p scale matrix. Consequently, in the right hand side of the identity 6.25,

the inner variance provides the variance of the Tp density, and the inner expectation refers

its mean. The variance of β is:

V[β|y,X] =






n
n−2

∫
∞

0

(
c

c+1

) [

y′y−
(

c
c+1

)

y′X (X′X)
−1

X′y
]

f (y|c) π(c) dc
∫

∞

0
f (y|c) π(c) dc






(
X′X

)−1

+ β̂






∫
∞

0

(
c

c+1

)2
f (y|c) π(c) dc

∫
∞

0
f (y|c) π(c) dc




 β̂

′

− E [β|y,X]′ E [β|y,X]

(6.26)

Likewise:

V[σ2|y,X] =






1
(n−2)(n−4)

∫
∞

0

[

y′y−
(

c
c+1 y′X(X′X)−1X′y

)]2
f (y|c) π(c) dc

∫
∞

0
f (y|c) π(c) dc






− E
[
σ2|y,X

]2

(6.27)

Although the derived Bayesian point estimate and variance relations involve integra-

tions over infinite limits, they are still easy to deal with in one dimension using ordinary

numerical methods. By integrating over the parameter c, it is possible to sample directly
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from the N I G posterior distribution independently of c.

The above development presents the application of Bayesian model selection and pa-

rameter estimation within virial family to optimally determine the truncation term given a

set of isothermal data. However, the methodology is general and not limited to any specific

family of equation of state. More sophisticated and more accurate EOS (such as Statistical

Associated Fluid Theory (SAFT) EOS (Chapman et al., 1989; Gross & Sadowski, 2001)

and Multiparameter EOS (Span, 2000)) which are known to be useful for phase equilibrium

calculations, can be treated in a similar fashion. It is of interest to compare credibility of

different type of EOS to adapt to the behavior of fluids under specific thermodynamic

conditions. However, for more complex EOS which are not mathematically linear, a closed

form solution for the BF and posterior statistics no longer exist. For such problems, it

is resorted to numerical techniques to tackle the high dimensional integration of equation

6.3. One limitation on the application of the BF concerns the constraint in using nonin-

formative priors. As mentioned before, given the competing models have parameter spaces

of differing dimensions, assigning noninformative improper priors to the model specific

parameters yields erroneous BF estimates. Moreover, in the majority of cases, prior infor-

mation available about the models is too vague or unreliable, that derivation of informative

priors becomes impossible. A significant number of references can be found for determining

BF statistics, but is worth noticing that this is still a research topic under development

(see for example (Kass & Raftery, 1995)). Default Bayesian approaches to model selection

involve approximate and asymptotic methods such as Laplace’s (Tierney & Kadane, 1986;

Tierney et al., 1989), the Intrinsic Bayes Factor approach (IBF) (Berger & Pericchi, 1996),

and numerical simulation based methods such as psuedo-prior approach (Carlin & Chib,

1995) and reversible jump MCMC algorithm (Green, 1995). Depending on the situation

being analyzed, the degree of irregularity of the model, the number of competing models,

sample size, availability of the computational resources, etc., distinct approaches might be

employed.
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6.6 Bayesian Inference for Virial Equation of State

The probabilistic model selection and point estimation approach outlined in the preced-

ing sections is applied to a set of PρT experimental observations describing Argon (Gilgen

et al., 1994a). Before estimating the virial coefficients, the Bayesian model selection as-

sesses the optimum number of terms for the virial EOS. The parameters of the truncated

virial EOS then fit the model into the experimental observations. The implemented com-

prehensive uncertainty-based approach offers a full description of the virial coefficients for

each model through the joint posterior densities of the parameters (equation 6.14). The

joint probability maps depicting the uncertainty of the model parameters and their de-

gree of cross-correlation (i.e. posterior distributions) can provide a basis to assess model

performance. Posterior statistics encapsulates the Bayesian point estimates, regarded as

the optimal sets of model parameters, and quantifies the uncertainty associated with the

estimates.

6.6.1 Data Description

The data used in this study correspond to independent experiments conducted to pop-

ulate isothermal gas responses (Gilgen et al., 1994a). During each experiment, the tem-

perature was constant, ranging from 100K to 370K. The data tables contain pressure and

density measurements for each isotherm. The experimental compressibility factor is:

Zexp =
P

ρRT
(6.28)

where P , ρ, R, and T denote pressure, molar density, universal gas constant, and tempera-

ture respectively. Figure 6.1 illustrates the full data series. The selected isotherms for the

current study are also appear separately in figure6.1a.

6.6.2 Bayesian Model Choice for the Virial EOS

Prior to performing the model selection analysis, the explanatory variables
(
ρ, ρ2, ρ3, . . .

)

must be properly scaled. As the gas density approaches small values, the X′X matrix
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Figure 6.1: Data series of isothermal experimental observations

rapidly tends to become singular, since the order of the model tends to exceed degree four

for the majority of temperatures. This problem leads to model non-identifiability where

no unique solution exists for maximum likelihood estimates (equation 6.16). To avoid the

singularity problem, it is necessary to scale the data prior to analysis. The outputs may

be rescaled later once the the posterior computations are performed.

To be in accordance with the general notations used in the definition of normal Bayesian

linear regression (equation 6.6) and the derivation of the governing equations (equations

6.14 and 6.15), equation 6.1 truncated at order p, can be rewritten as Z = 1 + Xβ + ǫ

(E[Z] = 1+Xβ). Hence, the compressibility factor (Z) is the response parameter denoted

by y, and the design matrix X is of full rank p in density such that:

X =












ρ1 ρ21 · · · ρp1

ρ2 ρ22 · · · ρp2
...

...
. . .

...

ρn ρ2n · · · ρpn












(6.29)

The probabilistic model selection approach discussed above permits searching for the

most likely model for each isotherm. The proposed search strategy is to focus on BF

computation for adjacent pairs of models. Table 6.2 gives the results for models selected

199



by the BF analysis for each isotherm. Equation 6.21 is used to define the BFs, where π(c) is

given in equation 6.11, in which a = 3. Each ’proposed’ model is compared to a successive

lower-order model, starting from a quadratic polynomial until the BF cease to show decisive

evidence (BF> 150) for the higher-order model. Table 6.1 contains scales to judge the

evidence in favor of the ’proposed’ model brought by the data. In the case of T = 295K,

for example, BF3,2 = 3.39e4 and BF4,3 = 2.03e3 indicating data provide decisive support

for the cubic over quadratic and quartic over cubic model respectively. On the other hand,

through the ’chain rule’ of BF: BF4,2 = BF4,3 × BF3,2, hence, BF4,2 ≫ 150. Therefore the

BF analysis favored the quartic model over second and third order polynomials. Notice

that BF5,4 = 0.04 does not provide any conclusive evidence in favor of the p = 5 model.

BFs relative to a base quadratic model also appear in table 6.3. The highest BF in the

latter setting designates the most likely model to describe the observations. Accordingly, a

quintic model is selected as the best model for T = 153K. Similarly, a cubic, a quartic, and

a quintic model, are the best choices for T = 220K, T = 280K, and T = 295K respectively.

A major benefit of using BF is that it automatically encompasses the notion of the Oc-

cam’s razor principle to penalize unnecessarily complicated models. A simple comparison

between the output of the Bayesian model selection with an asymptotic method such as

Schwarz’s criteria (BIC) (Schwarz, 1978) illustrates this notion. Although BIC is a first

order approximation to the logarithm of the BFs as the sample size grows to infinity, this

method is not considered a Bayesian testing scheme because the dependence on the prior

assumption disappears in its formulation (Robert, 2007) and the criteria is based merely

on the likelihood function and its estimate at the maximum (equation 6.30). The Schwarz

criterion indicates that the model with the highest posterior probability minimizes the

quantity:

BIC (Mk) = −2 log f
(

y|θ̂k, k
)

+ p log n, θk =
(
β, σ2

)T
(6.30)

in which p denotes the number of regression parameters in model Mk, and θ̂k is the
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maximum likelihood estimate (MLE) of θk, assuming the model Mk is the true model.

The second term in this identity is a type of ad hoc penalty term, combatting overfitting

the data by penalizing the dimension of the model.

Equation (6.16) provides the MLE estimate of β, (β̂), and a classical, unbiased estima-

tor of σ2 is:

σ̂2 =
1

n− p− 1

(

y−Xβ̂
)′ (

y−Xβ̂
)

(6.31)

To examine the BIC to determine the appropriate order of the virial EOS, MLE models

are computed using equations 6.16 and 6.31, for parameterizations that include quadratic

up to tenth-order polynomials. Table 6.4 summarizes BIC factor values determined for

a prescribed set of models. To illustrate this comparison, the normalized BIC factors are

plotted as a function of the number of unknowns (p) in the EOS (figure 6.2). The minimum

of each curve occurs at the order of the selected model. Figure 6.2 shows for T = 153K

the BIC method fails to select a model, because the BIC factor continues to decrease as

the model order grows, without reaching a minimum. For T = 220K and T = 295K BIC

tends to favor overly flexible models relative to those chosen by the BFs (forth order and

sixth order respectively). Both BIC and BF methods choose the same model (pk = 5) for

T = 280K, which might be attributed to the relatively large sample size for this isotherm

(n = 49). Sample sizes for T = 153K, 220K, and 295K are 42, 17, and 10, respectively.

BIC is proved asymptotically consistent, meaning that given a family of models which

contains the true model, the probability that the BIC selects the correct model approaches

one as the sample size grows to infinity (Hastie et al., 2009).

6.6.3 Probabilistic Calibration of a Virial Equation of State

Once the most likely model parametrization is identified for each isotherm using BFs,

Bayesian linear regression is performed to estimate the virial coefficients of the selected

models. The inference results containing the virial coefficient estimates and their associ-

ated uncertainties are provided for each isotherm. Bayes expected estimates and covari-
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Figure 6.2: Results of the model selection study in terms of the normalized BIC as a
function of the order of the virial EOS.

Table 6.2: Bayes Factors relative to a lower degree model

T=153K T=220K T=280K T=295K

BF[M3 : M2] 2.45e + 00 2.32e + 04 1.32e + 33 3.39e + 04
BF[M4 : M3] 1.26e + 10 6.96e − 02 3.87e + 34 2.03e + 03
BF[M5 : M4] 1.51e + 30 5.65e − 05 7.13e + 03 3.50e − 02
BF[M6 : M5] 2.90e − 02 6.63e − 05 1.37e − 04 4.06e − 04

ance matrix of β are given in tables 6.5 and 6.6 respectively. Table 6.7 gives the posterior

moments of σ2. Content of these tables are obtained by directly using closed form expres-

sions provided in section 6.5.4 (equations 6.23, 6.24, 6.26, and 6.27). Having determined

these “sufficient statistics” for the known family of posterior distribution (normal inverse-

gamma), Bayesian inference for the regression coefficients β and hyper-parameter σ is

complete.

Figures 6.3 to 6.6 introduce information about the parameter uncertainty, as well as

parameter correlation structure. The information in these figures are extracted from 0.5M

random realizations drawn from a multi-variate standard-t distribution with statistics

(mean and covariance matrix) summarized in tables 6.5 and 6.6 (recall from section 6.5.4
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Table 6.3: Bayes Factors relative to a quadratic base model

T=153K T=220K T=280K T=295K

BF[M3 : M2] 2.44 2.32e + 04 1.32e + 33 3.39e + 04
BF[M4 : M2] 3.07e + 10 1.62e + 03 5.11e + 67 6.87e + 07
BF[M5 : M2] 4.65e + 40 0.09 3.64e + 71 2.40e + 06
BF[M6 : M2] 1.35e + 39 6.04e − 06 5.00e + 67 9.76e + 02

Table 6.4: Results of the model selection study in terms of the BIC as a function of the
order of the virial EOS.

T=153K T=220K T=280K T=295K

p = 2 −249.36 −263.62 −509.68 −101.35
p = 3 −259.36 −308.33 −683.30 −146.36
p = 4 −320.44 −324.30 −872.10 −197.90
p = 5 −492.66 −321.11 −908.25 −220.27
p = 6 −499.36 −317.84 −904.57 −227.77
p = 7 −613.89 −314.81 −908.97 −224.15
p = 8 −635.49 −312.35 −908.92 −222.98
p = 9 −719.18 −317.52 −905.47 −215.00

that the marginal posterior distribution of β|y, averaging over σ2 and c, is a multivariate

student-t with mean and variance given in equations 6.23 and 6.26 respectively, with n de-

grees of freedom). A major advantage of the probabilistic model calibration is that it makes

it feasible to retrieve the correlation structure defining the degree of association between

the regression parameters, something that cannot be achieved by typical deterministic cal-

ibrations. The histograms along the diagonal in these figures illustrate the distribution of

the virial coefficients for the selected model. The off-diagonal joint probability maps are

cross-plots for all combinations of the regression parameters taken two at a time. These

results show a clear linear correlation among all the regression parameters. Also, it can be

observed a decrease of cross correlation between coefficients when the difference between

their orders increases. This effect is of great relevance for capturing multi scale correlations,

since the lower terms are associated to the process trend, while the higher order terms are

associated to the local effects.
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It is also perceived that the degree of correlation among the successive regression pa-

rameters drastically increases for higher order terms, which is an expected phenomenon

for polynomial models. This effect, also referred to as multicollinearity, may cause lack of

interpretability of the regression coefficients. However, the ability to get a good predictive

equation is not impaired. A similar plot shows the correlation between the variance and

regression parameters β1 and β5 for T = 153K (figure 6.7). This figure is produced by

drawing 0.5M random samples directly from an inverse-gamma distribution with statistics

given in table 6.7. From this plot it is observed that the variance of the error compo-

nent and the regression coefficients are independent variables, even though no restricting

assumption is made in definition of the priors.

Overall, these plots carry information on how interaction energy between a pair of

molecules is inversely related to interaction between triples of molecules, or likewise that

two-body interaction potential is positively correlated to the four-body interactions, and

so on. These plot, furthermore, propose that the relation between i-body interactions for

large i’s is almost deterministic irrespective of degree of uncertainty in the data (measure

of linear correlation between higher order virials tends to ±1), and that little interpretation

can be added in this case, for potential multi scale effects due to the smoothness of the

data ensemble.

Finally, the mean posterior predictions together with the 95% credibility regions around

the mean estimates are pictured in figures 6.8a and 6.9a for T = 153K, and T = 295K

respectively. These figures present a comparative analysis between the different model

parameterizations (quadratic, cubic, quartic, ...) in terms of their capability to fit the

Argon data. To produce the posterior mean of Z(ρ), denoted by Z̃(ρ), the average was

computed over 20, 000 EOS posterior simulations (E[Z(i)(ρ)]), each of which produced a

random sample of regression coefficients β(i) from the posterior parametric space. Hence:

Z̃(ρ) ≈ 1

N

N∑

i=1

E[Z(i)]; i = 1, . . . , N. (6.32)
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in which N = 20, 000 and E[Z(i)] = 1+β(i)X. The shaded area in these figures represents

the 95% credible intervals for the posterior mean of the regression function also estimated

using the generated samples. In figure 6.8a it is observed that the 4th and 5th order

EOS follow the trend of the T = 153K data comparably well, however, the width of

the confidence intervals shows a substantial uncertainty reduction in prediction for p = 5

(which is the selected model by the BF). This enhanced model performance is also reflected

by reduced standard deviation of the quintic trend model plotted over the range of the data

(figure 6.8b). A similar behavior is observed in figure 6.9 for T = 295K where the least

model prediction uncertainty is associated with the selected model (p = 4).

It is worth mentioning that the considered set of isotherms represent the mean of the

sampling process. A full uncertainty quantification of the thermodynamic data could not

be made using the process mean, since the inherent randomness in the data is averaged out.

Experimental data bear the major source of uncertainty which directly propagates to the

model parameters (and hence the model prediction) variability. The provided interpreta-

tion is being made using the standard practice on the calibration of EOS, and results show

that still there is significant variability on the model response, which can be now localized

along the domains of interest. However, in order to fully account for the inherent sources

of uncertainty in the model calibration and selection, data variability must be incorporated

in the model parametrization (e.g. aleatoric uncertainty).

Table 6.5: Bayes estimate of regression coefficients

T=153K T=220K T=280K T=295K

β1 −8.09e + 01 −3.85e + 01 −1.96e + 01 −1.64e + 01
β2 8.63e + 02 1.43e + 03 1.13e + 03 1.15e + 03
β3 2.60e + 05 4.72e + 03 5.80e + 03 −6.16e + 03
β4 −1.66e + 07 9.23e + 04 1.19e + 06
β5 3.41e + 08 3.24e + 07
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Figure 6.3: Posterior probability projections of the virial coefficients at T = 153K
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Figure 6.4: Posterior probability projections of the virial coefficients at T = 220K
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Figure 6.5: Posterior probability projections of the virial coefficients at T = 280K
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Figure 6.6: Posterior probability projections of the virial coefficients at T = 295K
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Figure 6.7: Posterior probability projection of regression parameters and variance of the
error component at T = 153K
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Table 6.6: Covariance matrices of regression coefficients

V[β|y,X]

T = 153K













2.51e + 00 −7.99e + 02 8.60e + 04 −3.82e + 06 6.00e + 07
−7.99e + 02 2.76e + 05 −3.11e + 07 1.42e + 09 −2.29e + 10
8.60e + 04 −3.11e + 07 3.62e + 09 −1.69e + 11 2.76e + 12
−3.82e + 06 1.42e + 09 −1.69e + 11 8.01e + 12 −1.32e + 14
6.00e + 07 −2.29e + 10 2.76e + 12 −1.32e + 14 2.21e + 15













T = 220K





2.46e − 03 −8.45e − 01 6.71e + 01
−8.45e − 01 3.12e + 02 −2.59e + 04
6.71e + 01 −2.59e + 04 2.21e + 06





T = 280K













6.77e − 03 −4.09e + 00 8.36e + 02 −7.00e + 04 2.07e + 06
−4.09e + 00 2.63e + 03 −5.61e + 05 4.84e + 07 −1.46e + 09
8.36e + 02 −5.61e + 05 1.24e + 08 −1.10e + 10 3.38e + 11
−7.00e + 04 4.84e + 07 −1.10e + 10 9.92e + 11 −3.11e + 13
2.07e + 06 −1.46e + 09 3.38e + 11 −3.11e + 13 9.87e + 14













T = 295K









6.35e − 03 −2.45e + 00 2.93e + 02 −1.10e + 04
−2.45e + 00 9.64e + 02 −1.16e + 05 4.39e + 06
2.93e + 02 −1.16e + 05 1.41e + 07 −5.38e + 08
−1.10e + 04 4.39e + 06 −5.38e + 08 2.06e + 10









Table 6.7: Bayes estimates of variances of random error component σ2

E[σ2|y,X] V[σ2|y,X]

T = 153K 3.70e − 07 8.57e − 15
T = 220K 7.16e − 10 1.14e − 19
T = 280K 4.17e − 10 8.92e − 21
T = 295K 1.77e − 10 6.25e − 20
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(a) Posterior mean estimates of the molar compress-
ibility factor Z̃(ρ) together with 95% credible inter-
vals around the mean
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Figure 6.8: Posterior prediction statistics for cubic, quartic, and quintic virial EOS, T =
153K

(a) Posterior mean estimates of the molar compress-
ibility factor Z̃(ρ) together with 95% credible inter-
vals around the mean
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Figure 6.9: Posterior prediction statistics for quadratic, cubic, and quartic virial EOS,
T = 295K
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6.7 Concluding Remarks

This work introduces a probabilistic methodology to determine the best model selection

for a virial EOS as applied to isothermal observations on Argon. The use of a probabilistic

model selection approach allows for defining the truncation of the number of terms for a

virial-type of EOS based upon the use of Bayes Factors. The virial coefficients result for the

selected model using a standard Bayesian linear regression formulation. The implemented

uncertainty approach offers the full description of the regression coefficients through the

posterior probability density, which fully accounts for the uncertainty associated with the

available data. This inherent uncertainty directly propagates to the estimates of the virial

coefficients. Posterior statistics can be retrieved analytically from the proposed formulation

providing posterior first and second moments.

Results on the Bayesian assessment of model performance for the virial EOS is presented

to four sets of isotherms. To illustrate how the Bayes Factors automatically accommodate

the notion of Occam’s razor, the output of Bayesian model selection is compared to the

BIC method. Even though the essence of the BIC method is to approximate the Bayes

Factor asymptotically, the effect of the prior is completely overlooked in its derivation, and

hence is observed as a deterministic model assessment tool. The comparison indicates that

the approximate method generally favors overly-flexible models, which will perform poorly,

especially in terms of prediction. The method failed to select a model for T = 153K, and

rendered the same result as Bayes Factor for T = 280K, which might be attributed to the

large number of data points for this isotherm.

Finally, it is worth emphasizing that a major advantage of the probabilistic approach

over classical optimization methods is the possibility of retrieving the correlation structure

defining the degree of association among the regression parameters, which is not feasible

using typical optimization-based calibrations. This paper presents all the possible com-

binations of regression parameters (two at a time) in a matrix format for four isotherms.

The maps provide extensive information on the state of correlation, negative or positive,

extent of correlation, and the measure of uncertainty around the means. Results confirm
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a clear linear regression correlation among all the regression parameters, in which the de-

gree of correlation increases among parameters of higher-order terms, and decreases as the

difference between the term’s order increases.
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7. CONCLUSION

7.1 Observations

The following summarizes the conclusions from this dissertation:

• A Bayesian approach was adopted to update the remolded undrained shear strength

from a global dataset in the light of a new set of experimental observations from the

Storegga slope region. Two variance structures have been considered in the study:

homoscedastic and heteroscedastic, the former reflecting the underlying assumption

in traditional deterministic regression. The probabilistic calibration has been intro-

duced to each dataset individually to calibrate the empirical Su−r− IL model. It was

observed that the uncertainty of the posterior values of the parameters, conditioned

on the local dataset is higher compared to that of the global dataset, which attributes

to the (unusual) fact that the dispersion in the site-specific data is greater than the

dispersion in the global data. Next, we applied Bayesian updating to construct a uni-

fied regression model reflecting the characteristics of the both contributing datasets.

This is conducted using the “Conjunction” probability operator, which is the same

practice as using the posterior from the first experiment (i.e., global data) as the

prior, and updating the model information conditional on the second experiment

(which forms the likelihood function). A seemingly contradictory observation of -

increased posterior uncertainty as a result of Bayesian updating- was obtained. We

hypothesize that the contradictory observation is due to the fact that the global and

the local data belong to different populations. The hypothesis was confirmed by a

two dimensional Kolmogorov-Smirnov test. The fact that the two data sets belong to

different populations, questions whether the Bayesian updating is a proper choice to

“joint” the two datasets. We propose the application of the “Disjunction” operator

in order to arrive at a conclusive model space, particularly capable of accounting for

the site dependency effect.

214



• We discussed a full waveform inversion approach for reconstructing the spatially vary-

ing soil elastic characteristics of one- and two-dimensional heterogeneous semi-infinite

media, truncated by the Perfectly Matched Layer (PML), based on surface measure-

ments of the medium’s response to an excitation applied on the ground level. This

defines an inverse medium problem in which the object of inference constructs a con-

tinuous random field. Ordinary treatment of the problem constitutes a grid-based

parametrization of the unknown field where the unknown wave velocity value is ex-

plored at each discretized grid block with a Monte Carlo search. The approach proves

to be computationally exhaustive, and relies on explicit regularization of the solu-

tion. We proposed a dimensionally reduction of the parameter space using Bayesian

Partition Models (BPM), where the velocity random field is divided into a number

of non-overlapping regions, the number of partitions, their geometry and weights

(defining the intensity of the velocity field) dynamically vary during the inversion,

in order to recover the subsurface image. In one dimension the partitions simply de-

scribe the soil layers, however in two dimensions all ideas of ordering are lost. In two

dimensions the splits are defined via Voronoi tessellations, for which the geometry is

completely defined only via the coordinates of tessellation’s nuclei. We employed a

hierarchical structure to strictly avoid any subjective smoothness constraint into the

inversion. Since the number of unknowns is also an unknown in BPM formulation

of the inverse problem, the resulting posterior density is of varying dimension. We

designed a Reversible Jump Markov Chain Monte Carlo search to efficiently sample

the posterior surface of varying dimension. We provided synthetic case studies for

both one- and two-dimensional cases, which indicate significant functionality of the

inversion scheme to retrieve the benchmark subsurface profiles.

• We developed the idea of applying the basic probability operators “Conjunction” and

“Disjunction” to the probabilistic images of the subsurface material properties (con-

structed via Bayesian solution of an inverse medium problem) obtained from different

geophysical surveys, to arrive at a more conclusive definition of subsurface geomor-
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phological features. This idea relies on the ability of Bayesian method to project the

information content of data (geophysical, geotechnical, hydrological, etc.) onto the

probability space, in form of a posterior density function, where “Conjunction” and

“Disjunction” could operate. The methodology was applied to retrieve an enhanced

definition of the location of a layer interface, were synthetic electrical resistivity and

seismic data were synthesized for a same site in one-dimension. The principle of

conjunction of information, which applies to evidence sampled from the same popu-

lation (based on same physics), results in a reduction of the uncertainty of both the

material properties and the location of the geomorphological features. The use of the

Disjunction operator, is an alternative when information from the parenting prob-

ability mappings are sampled from different populations (different physics), which

then facilities the integration of complementary evidence for the location of geomor-

phological features, resulting on the enrichment of the stratigraphical description or

Earth model. When the degree of complementary information between parenting

probability mappings is not significant, the OR-disjunction operator simply reflects

the convergence between methods to the same state of information.

• A Bayesian model selection formulation is derived for normal-linear regression mod-

els. In a Bayesian perspective, model selection is conducted through definition of

Bayes factor, which offers a sound criteria to directly compare relative plausibil-

ity of a number of competing models to describe a dataset. For general non-linear

models the direct calculation of BF is infeasible as this often involves performing

high-dimensional integrations. In such cases either approximate methods (e.g., BIC),

or numerical simulation based technicians (e.g., reversible jump MCMC) are em-

ployed. For linear (multivariate) linear models, exact analytic evaluation the BF is

possible, given a specific (conjugate) family of priors is specified to the model pa-

rameters. The full formulation of the Bayes factor, first and second order statistics

of parameters of a linear regression model have been derived. This framework has

been introduced to a set of isothermal PρT observations of Argon, to determine the
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truncation term (number of terms) in the virial equation of state (EOS). Bayesian

model selection has successfully determined the best EOS that describes the data

(four sets of isotherms), where approximate (BIC) method either failed to select a

model or fevered an overly-flexible (with unnecessarily high number of terms) model,

which specifically perform poorly in terms of prediction.

7.2 Future Work

There are several key directions that arise as natural extensions to the present work:

• The probabilistic inversion presented in this work for one-dimensional elastic, and

two-dimensional SH waves could be extended to the general three-dimensional elas-

ticity case. The higher-dimensional formulation could be accommodated by parti-

tioning the spatial domain through Voronoi tessellations, with mobile number and

geometry, to yield the reconstruction of the unknown elasticity parameters (λ, µ).

However, two major difficulty arising in this case are: the large computational cost

of mixed PML formulation of wave propagation in three dimensions, which strictly

limits the number of calls to the forward solver, and increased number of inverse

problem unknowns.

• It is significant to improve the computational efficiency of the outlined inversion

algorithm, specifically in extension to three dimensions. We propose two approaches:

– Coupled multi-scale Markov chain Monte Carlo sampling: This is based on run-

ning two or more Markov chain in parallel on different scales (mesh resolutions).

A coarsened version of the inverse problem yields a more tractable posterior dis-

tribution which “guides” the posterior simulation on the fine-scale specification.

This approach is particularly favored, since it is embarrassingly parallel.

– Two-stage Markov chain Monte Carlo sampling: This approach is aiming to

increase the acceptance rate of the reversible jump MCMC by using a coarse-

scale model to screen the proposed values of the Markov cahin, in order to decide

whether to run the expensive fine-scale simulation.
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• In the present work we assumed the soil density be a known constant and the atten-

uation is disregarded. Characterizing the soil’s attenuation properties and density

should be considered in the future efforts.

• Integrating different geo-survey data using the conjunction and disjunction prob-

ability operators was presented in a one-dimensional study. Extension to higher

dimensions, where delineating the subsurface geomorphological features requires the

use of a classifier, is subject of a future study.

• One of the difficulties we encountered in the two-dimensional waveform inversion was

relatively high computational cost of forward model runs. This limits the number of

forward model calls required to infer the estimators in MCMC algorithm, and restricts

high resolution forward model discretizations. The use of surrogate models such as

Gaussian process emulators as a proxy to the forward simulator could significantly

reduce the computational cost of a statistical inverse problem.
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APPENDIX A

POSTERIOR INTEGRATION USING THE MCMC-METROPOLIS

HASTINGS ALGORITHM

Markov Chain Monte Carlo (MCMC) method is a numerical procedure that allows for

the direct sampling of a posterior. An important property of the MCMC method is that

it converges to the target joint density as the sample grows. The decision rule that selects

the samples is the Metropolis-Hastings (MH), which is a generalized form of the Metropolis

and Gibbs methods (Robert & Casella, 2004).

Suppose we want to generate from a target distribution p (m|dobs). That is to construct

a Markov chain {(m)n} which has stationary distribution p (m|dobs). At the sth iteration

the chain state is m(s). A new model is proposed by sampling a candidate model m∗ from

a proposal distribution q
(
.|m(s)

)
. The latter is conditioned only on the previous state of

the chain
(
m(s)

)
.

The candidate point m∗ is accepted or rejected as the next state of the chain with a

probability given by:

α(m(s),m∗) = min

{

1,
p (m∗|dobs) q

(
m(s)|m∗

)

p
(
m(s)|dobs

)
q
(
m∗|m(s)

)

}

(A.1)

Notice that p (m|dobs) in the above equation is the posterior kernel (unnormalized

posterior) which is the multiplicity of the prior density and the likelihood function. As the

above decision rule appears as a ratio, the constant of the proportionality (the denominator

in equation 5.3) cancels out. There for the direct sampling of the posterior is feasible

without the need to perform the integration.

The Metropolis-Hastings algorithm is as follows

1. Set initial guess of the model parameters vector m(1) at s = 1

2. Generate a candidate point m∗ from q
(
.|m(s)

)
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3. Draw U from a uniform [0, 1] distribution

4.

m(s+1) =







m∗ if U ≤ α(m(s),m∗)

m(s) if U > α(m(s),m∗)

5. Set s = s+ 1 and repeat steps 2 through 5.
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APPENDIX B

PARALLEL TEMPERING MARKOV CHAIN MONTE CARLO

Markov Chain Monte Carlo methods has been extensively employed to treat a variety

of statistical applications, wherever an intractable integration is involved in the analysis.

Although the method works well often times, slow chain mixing and lack of convergence

arise in more complex, high dimensional, highly correlated, multi-modal target density con-

figurations. Parallel tempering, also known as replica exchange MCMC sampling (Geyer

& Thompson, 1995; Earl & Deem, 2005; Radford, 1996), offers a simulation scheme which

speeds up mixing and alleviates convergence concerns by improving the dynamic behavior

of Monte Carlo sampling methods. The essence of the method is to draw the realizations

from a sequence of distributions each at a different “temperature” level, allowing the dis-

tributions trade configurations randomly as the chain proceeds. Even though often times

one specific configuration (with a specific temperature) is of interest, the simulation results

are robust ensembles for all the distributions.

Contrary to the classical Monte Carlo update schemes which consist of a single stochas-

tic process, parallel tempering MCMC method simulates N replica of a distribution of in-

terest which is generally the kernel of the target density hi(x), i = T1, · · · , TN , each replica

being indexed by a parameter called “temperature” (Ti). Generally, T1 < T2 < · · · < TN ,

and for majority of cases T1 corresponds to the target distribution. Accordingly, hT1(x)

is called “cold” distribution (configuration), and hTN
(x) is the “hot” distribution, which

is the easiest density to simulate. Normally, sampling from the cold distribution is of in-

terest, and the high temperature systems contribute to expedite the mixing process. The

main un-normalized density h(x) is “powered up” to a sequence of unnormalized densities

h(x)1/βi , where βi > 1. βi =
1

kBTi
is proportional to the reciprocal temperature, and kB is

the Boltzmann constant. The terminology is borrowed from statistical physics, where the

distribution of a thermodynamic equilibrium has a kernel of the form e
−U(x)
kBT , where U(x)
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is potential energy function of the system.

It is primarily supposed that within each configuration at temperature Ti a sampling

scheme, Gibbs or Metropolis Hastings, is available to update state x that has a stationary

distribution e−U(x)/kBTi . Transition between distributions are also allowed. The adjacent

configurations i, j are exchanged through a Monte Carlo process, typically with Metropolis-

Hastings acceptance criteria. The swapping attempts are made with the probability of

qi,j = 1/2. The states at which the chains are swapped, i, is randomly chosen, and the

attempt is accepted with the following probability

r = min
(

1, e(Ui−Uj)(βi−βj)
)

(B.1)

Obviously the probability to accept a proposed swamp grows as the two adjacent sys-

tems are less different in temperature, and as the systems become smaller. Here is the

strategy; The high temperature replicas are generally able to sample a large volume of the

domain of interest, whereas the low temperature systems are more likely to be trapped

in the local “energy” minima, whilst they certify to achieve precise sampling in a local

domains of the parameter space. The contribution of the parallel tempering is to allow

within configuration transitions. As a result, a “cold” simulation is given a fresh config-

uration for sampling at a point in space, which is presumably distant enough from the

point from which it is swapped. Moreover, the low temperature configuration is exchanged

with a higher temperature, at which it has a higher chance of being released from the

local energy minima, and access to a new region of space before being swapped back into a

low temperature simulation. In fact high temperature systems carry the low temperature

samplers to a set of local regions of the space to draw samples.

Here, eleven levels of temperature are considered, where the eleven replicas are running

in parallel. The median temperature value is one which retrieves the desired target density.

The swapping probability is 1/2, and the within chain and between chain transitions are

carried out according to Metropolis Hastings criteria. A thinning algorithm is applied to
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to store every M = 5 samples to save memory usage.
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APPENDIX C

ALTERNATIVE APPROACHES TO INFER PARAMETERS OF A

DISTRIBUTION FROM TWO SETS OF DATA

Suppose two data vector y1 and y2 are populated from a probability distribution with

parameter θ, and p(θ) expresses the prior before the first data set y1 is observed. Two

alternative approaches might be followed to infer θ, having observed both y1 and y2: 1.

Using the posterior from the first experiment as the prior leading into experiment two,

where y2 is observed. Hence the posterior after the second experiment is

p2 (θ|y2) ∝ p2 (θ|y1) f2 (y2|θ)

∝ f1 (y1|θ) f2 (y2|θ) p (θ) (C.1)

where f(.) denotes the likelihood function.

2. The second possibility is to treat (y1,y2) as a single data set, hence, p (θ|y1,y2) ∝

f (y1,y2|θ) p (θ). Comparing this proportionality with proportionality C.1 shows in general

the two approach give rise to the same inference about the parameter θ if and only if

p (θ|y1,y2) ∝ f1 (y1|θ) f2 (y2|θ) ∀ θ (C.2)

which requires y1 and y2 be statistically independent.
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APPENDIX D

BAYESIAN OCCAM’S RAZOR

A simple explanation of why the Bayesian model selection adheres to the concept of

parsimony is presented in figure D.1. This figure illustrates the Bayesian embodiment to

the later concept (Jefferys & Berger, 1992; MacKay, 1995; Denison et al., 2002b). The

horizontal axes presents the data space, and the vertical axes shows the measure of the

marginal likelihood. M1 and M2 are two competing explanations of a same process.

Model M1 is the simpler theory, and M2 is the more complex one. The simple model

is only capable of reaching a limited subdomain in the data space D1, whereas the more

complex model is able to embrace a wider space due to it’s flexibility. As both p (d|M1)

and p (d|M2) are integrated to one over the data space, if the observed data lies in D1

which is accessible by the both models, thenM1 is favored overM2, as it assumes higher

probability in this region.

Figure D.1: Schematic presentation of Bayesian Occam’s razor
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APPENDIX E

BAYESIAN MODEL SELECTION AND UNIDENTIFIABLE BAYES

FACTORS

Improper priors can not be assigned to model specific parameters in Bayesian model

determination, as the choice of the arbitrary normalizing constant will influence the Bayes

factor. The Bayes factor is a multiple of the prior normalizing constant.

Inherent to a Bayesian model selection is to compare the relative merits of a number

of competing models via the definition of the Bayes factor. Consider a set of K plausible

models (here these K models correspond to K different discretization scenarios of the

unknown random field with k tessellations, where k ∈ {1, . . . ,K}). Denoting model k with

Mk (here Mk refers to the model with k tessellations), Bayes factor offers a thorough

criteria to pairwise comparison of members in {Mk}. The relative plausibility of model i

versus model j having observed data dobs is determined by the Bayes factor given by

BF [Mi :Mj ] =
p (Mi|dobs) /p(Mi)

p (Mj |dobs) /p(Mj)
(E.1)

which by definition is the posterior to prior odds ratio. Here p (Mi) and p (Mi|dobs) are

the prior and the posterior probability ofMi being the true model respectively. It can be

shown that the above expression is equivalent to

BF [Mi :Mj ] =
p (dobs|Mi)

p (dobs|Mj)
(E.2)

where p (dobs|Mi) is the marginal likelihood of data given modelMi is the true model

p (dobs|Mi) =

∫

Θi

p (dobs|Mi,θi) p (θi|Mi) dθi (E.3)

θi is a set of parameters specific to modelMi, and p (dobs|Mi,θi) and p (θi|Mi) are the
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likelihood function and the prior density of the model specific parameters θi, respectively,

givenMi is the true model.

One could rewrite BF [Mi :Mj ] of equation E.2 in the following form

BF [Mi :Mj ] =
pi/ci
pj/cj

(E.4)

where hi (θi) ∝ p (θi|Mi), and ci =
∫
hi (θi) dθi is the normalizing constant. pi is the

unnormalized marginal likelihood pi =
∫
p (dobs|Mi,θi) hi (θi) dθi (see equation E.3), and

pj and cj have identical definitions as pi and ci, respectively. The Bayes factor is a multiple

of the prior normalizing constant.

By the virtue of equation E.4 it is necessary for the prior density being proper (ci and cj

being finite) for the ratio cj/ci being well defined. In case improper priors (ci and cj infinite)

are assigned to model specific parameters, the Bayes factor becomes “unidentifiable” and

results in erroneous model comparison output.
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APPENDIX F

THE JACOBIAN OF THE DIMENSION MATCHING

TRANSFORMATION

When moving between dimensions (Birth and Death) the acceptance probability in-

cludes a Jacobian term. Let a Birth move is proposed: k∗ = k(s) + 1. The Jacobian term

accounts for the following change in variables:

θ(s) :=
(

{x(s)c }k
(s)

i=1 , {c(s)s }k
(s)

i=1 , ux, uc

)
T←→ θ∗ :=

(

{x∗c}k
∗

i=1, {c∗s}k
∗

i=1

)

(F.1)

The above transformation T must be bijective for its Jacobian to exist. The random

variable ux is populated from a discrete uniform distribution ux ∼ U (1, T ) to add a new

nucleus from a set of available grid locations T , where T = |T |. Another random number

is drawn from a Gaussian density uc ∼ N (0, 1) to determine the velocity of the newly

generated cell by perturbing the current velocity value where the Birth takes place, as

follows:

T
(

c(s)s , uc

)

=







c∗s1 = c
(s)
s1

...

c∗si = c
(s)
si

...

c∗s
k(s)+1

= c
(s)
si + uc

(F.2)

The Jacobian for the above dimension matching transformation is given by

|J|Birth =

∣
∣
∣
∣
∣

∂T (c(s)s , uc)

∂c
(s)
s ∂uc

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∂(c∗si , c
∗
s
k(s)+1

)

∂c
(s)
si ∂uc

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1 0

1 1

∣
∣
∣
∣
∣
= 1 (F.3)
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The Jacobian for the death move is |J|Death = |J|−1
Birth = 1. Notice that the parameter

space for the nuclei positions is discrete (whereas its continuous for the velocity space),

and the random variable ux we drew to propose the position of the new nucleus is also

discrete. Denison etal Denison et al. (2002a) shows that the Jacobian term is always unity

for discrete transformations. Therefore only where continuous model spaces change in

dimensions, determining the Jacobian is required.
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