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ABSTRACT

This dissertation develops theory and methodology based on Fenchel cutting

planes for solving stochastic integer programs (SIPs) with binary or general integer

variables in the second-stage. The methodology is applied to auto-carrier loading

problem under uncertainty. The motivation is that many applications can be mod-

eled as SIPs, but this class of problems is hard to solve. In this dissertation, the

underlying parameter distributions are assumed to be discrete so that the original

problem can be formulated as a deterministic equivalent mixed-integer program.

The developed methods are evaluated based on computational experiments using

both real and randomly generated instances from the literature. We begin with

studying a methodology using Fenchel cutting planes for SIPs with binary variables

and implement an algorithm to improve runtime performance.

We then introduce the stochastic auto-carrier loading problem where we present

a mathematical model for tactical decision making regarding the number and types

of auto-carriers needed based on the uncertainty of availability of vehicles. This

involves the auto-carrier loading problem for which actual dimensions of the vehicles,

regulations on total height of the auto-carriers and maximum weight of the axles, and

safety requirements are considered. The problem is modeled as a two-stage SIP, and

computational experiments are performed using test instances based on real data.

Next, we develop theory and a methodology for Fenchel cutting planes for mixed-

integer programs with special structure. Integer programs have to be solved to

generate a Fenchel cutting plane and this poses a challenge. Therefore, we propose

a new methodology for constructing a reduced set of integer points so that the

generation of Fenchel cutting planes is computationally favorable. We then present

the computational results based on randomly generated instances from the literature
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and discuss the limitations of the methodology. We finally extend the methodology

to SIPs with general integer variables in the second-stage with special structure, and

study different normalizations for Fenchel cut generation and report their computa-

tional performance.
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NOMENCLATURE

ALC Auto-Carrier logistic company

BAB Branch-and-bound

BAC Branch-and-cut

CPU Central processing unit

DEP Deterministic equivalent problem

EV Expected value

FCG Fenchel cut generation

FD Fenchel decomposition

IP Integer programming

ISG Integer set generation

LP Linear programming

max Maximum value for the given parameters

Max Maximize the objective function

min Minimum value for the given parameters

Min Minimize the objective function

MIP Mixed-integer programming

MP Master problem

SACP Stochastic auto-carrier problem

SFP Starting feasible point

SIP Stochastic integer programming

SMIP Stochastic mixed-integer programming

SP Sub problem

ST-FD Stage-wise Fenchel decomposition

VSS Value of stochastic solution
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1. INTRODUCTION

1.1 Motivation and Problem Statement

Uncertainty is a key ingredient in many decision making problems. Financial

planning, airline scheduling, unit commitment in power systems, and supply chain

network planning are a few examples of areas in which ignoring uncertainty of-

ten results in sub-optimal decisions. Recent advancements in the availability of

computing power and mathematical techniques have made decision making under

uncertainty an important field of study. In this research, we study stochastic integer

programs (SIPs). SIPs are a class of optimization problems in which some of the input

parameters for the model are not known with certainty. We make the assumption that

we know the probability distribution of the ‘uncertain’ parameters, and hence the

objective function will explicitly include all the outcomes of the uncertain parameter

rather than using an expected value for the uncertain parameters. In a two-stage SIP,

first-stage decisions are made here-and-now before the future outcomes are known.

In the second-stage, the outcomes of the uncertain parameters are considered, and

if necessary, corrective or recourse actions are made. The uncertainties in the SIPs

are represented by probability distributions.

In the last two decades, there has been a steady growth in the development

of efficient solution methods for SIPs. Though there is a considerable amount of

literature on solving stochastic programming models with continuous variables in

the second-stage, the developments for general integer variables are very limited.

This is due to the fact that SIPs are difficult to solve in general. This research

develops a new methodology for solving stochastic programs with general integer

variables.
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1.1.1 Stochastic Mixed-Integer Programming

Following is a two-stage SIP formulation where we minimize the sum of first-stage

costs and expected second-stage costs:

SIP2: Min c>x+QE(x)

s.t. Ax ≥ b

x ∈ X.

(1.1)

In the above formulation, QE(x) denotes the expected second-stage cost based on

the first-stage decision x. The set X imposes binary restrictions on all or some com-

ponents of x. The objective function coefficients, technology matrix and righthand

side are assumed to be stochastic. Therefore, the function QE(x) is given as

QE(x) = EωΦ(q(ω), h(ω)− T (ω)x, ω). (1.2)

The second-stage value function Φ is given as

Φ(ρ, τ, ω) = Min{ρ>y(ω) : Wy(ω) ≤ τ, 0 ≤ y(ω) ≤ u, y(ω) ∈ Y }. (1.3)

In problem SIP2, x denotes the first-stage decision vector, c ∈ Rn1 is the first-

stage cost vector, b ∈ Rm1 is the first-stage righthand side, and A ∈ Rm1×n1 is the

first-stage constraint matrix. In the second-stage formulation (1.3), y(ω) denotes

the recourse decision vector, q(ω) ∈ Rn2 is the cost vector, h(ω) ∈ Rm2 is the

righthand side, T (ω) ∈ Rm2×n1 is the technology matrix, and W ∈ Rm2×n2 is the
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fixed recourse matrix. We also assume that T (ω) : Ω 7→ Rm2×n1 , h(ω) : Ω 7→ Rm2 and

q(ω) : Ω 7→ Rn2 are measurable mappings defined on a probability space (Ω,F ,P).

The function QE(x) is the expected recourse function, where ω is a realization of

a multivariate random variable ω̃, and Eω denotes the mathematical expectation

operator satisfying Eω[ |Φ(q(ω), h(ω)−T (ω)x), ω| ] <∞ for all x ∈ {Ax ≥ b, x ∈ X}.

This requirement is the relatively recourse assumption. The set Y is the restriction

for the second-stage variables. Finally, the vector u ∈ Zn2 defines the upper bound

for the second-stage variables. Subproblem (1.3) is generally referred as the scenario

problem.

A scenario ω will have a corresponding probability pω, and
∑

ω∈Ω pω = 1. If the

underlying probability distribution of ω̃ is discrete with a finite number of realizations

(scenarios), then the formulation (1.1) - (1.3) can also be written in extensive form,

also known as deterministic equivalent problem (DEP) as follows:

DEP : Min c>x+
∑
ω∈Ω

pωq(ω)>y(ω)

s.t. Ax ≥ b

T (ω)x+Wy(ω) ≤ h(ω)

x ∈ X, y(ω) ∈ Y.

(1.4)

In formulation (1.4), y(ω) is the recourse decision variable vector, and the other

dimensions are as stated before.

Even for a reasonable number of scenarios in Ω, DEP is a large scale MIP. With

integer variables in both first and second stages, a moderate sized DEP is difficult to

solve using a direct solver like CPLEX [40]. This makes a decomposition approach

a necessity for most practical sized problems. In SIP2, the type of decision vari-

ables (continuous, binary, integer) and in which stage they appear greatly influences

3



algorithm design. The complexity of the solution methodologies depends on the

definitions of the sets X and Y . When X ∈ R+ and Y ∈ R+ for a given ω ∈ Ω, the

recourse function Φ(ρ, τ, ω) is a well-behaved piecewise linear and convex function of

x. Thus, Benders’ decomposition [16] is applicable in this case [108] and the L-shaped

method [104] can be used to solve the problems. Assuming fixed recourse (i.e, the

recourse matrix W is independent of the scenario ω), the value function of Φ(ρ, τ, ω)

will be a piecewise linear function in x. Hence, the L-shaped method works by

approximating the linear functions from the subproblems by constructing optimality

cuts in the first-stage based on the dual values from the subproblems. However,

when X ∈ Z+ and Y ∈ Z+, the linear approximation procedure by L-shaped method

is not viable, as the value function is discontinuous, and more precisely the function

is lower semicontinuous [19]. Also, the function is non-convex and sub-additive [87].

General efficient methods like the L-shaped method or Dantzig-Wolfe decompo-

sition methods are not applicable to SIP. With the integrality restrictions on the

second-stage decision variables, dual values from the second-stage program cannot

be used to approximate the value function of the second-stage program. Hence,

new algorithms or extensions of the L-shaped method are required to handle integer

variables in the second or in both of the stages.

1.1.2 Fenchel Cutting Planes

Within a generic framework like L-shaped method, the approach to solve a SIP

will be to approximate the value function of the subproblems by solving them as

relaxed linear programs (LPs). Based on the dual solution of the relaxed sub-

problems, the optimality cuts will be constructed to approximate the second-stage

value function. However, in the event of second-stage problems giving non-integer

solutions, suitable separation problems are constructed to remove the non-integer

solution from further iterations. Construction of valid inequalities via solving sep-
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aration problems is an important aspect of this research, where we try to exploit

the special structure of the subproblem. In this research, Fenchel cuts will be

used as valid inequalities in the second-stage relaxed subproblems. Under certain

normalizations, Fenchel cuts are the deeper cuts which guarantee to give facets for

the polyhedron. However, for getting the Fenchel cuts, the cut generation procedure

involves solving the subproblem as an integer program (IP). In the current literature,

Fenchel cuts are used only for subproblems with binary variables. In this research,

theory and methodology are devised to generate Fenchel cuts for subproblems with

general integer variables.

1.1.3 Stochastic Auto-Carrier Loading Problem

The last mile delivery of cars, trucks and vans to dealerships is one of the most

expensive logistics part of vehicle distribution. The final leg of the delivery of vehicles

to the dealer lot is invariably carried out by a special type of trucks called auto-

carriers. These carriers are specialized trucks with a tractor and a trailer, with

upper and lower loading ramps (platforms) as shown in Figure 1.1. An auto-carrier

can have anywhere between one and four ramps in each loading level, and a typical

version used in delivery of new vehicles has about nine loading ramps. Although

vehicle delivery is a specialized transportation problem, this is a very important part

of the trucking industry. In 2013 alone, 15.6 million new vehicles were sold in the

US [57]. A conservative estimate of $100 per vehicle for the last mile delivery (in

general the average cost for the final leg is between $250 and $400) puts the expected

expenditure in auto transportation in excess of $15 billion in 2013. The American

Trucking Association accords this industry with a special status in their group called

Automotive Carrier Conference (ACC).

5



Figure 1.1: An auto-carrier with nine loading ramps

The auto-manufacturers ship their finished vehicle to a distribution center (DC)

through ships and by train. From the staging areas in a DC, the vehicles are shipped

to auto dealerships through auto-carriers. Typically a DC receives about 20,000 to

40,000 vehicles a month, and they schedule the delivery to the auto dealerships on

a weekly basis. The main objective of a logistics company operating a DC is to

reduce the number of trips they make each week to deliver the vehicles. Each trip

is subject to loading constraints such as height, length and shape of the vehicle, and

also restrictions on maximum length, height and weight of cargo set by local and

government organizations such as the U.S. Department of Transportation. Every

year, new vehicle types with various dimensions and weights are introduced and this

complicates the already difficult loading problem. Table 1.1 shows the wide range of

vehicle types, and their dimensions sold by some of the auto-manufacturers in the

US. As seen in the table, the heaviest vehicle type is at least three times as heavy

as the lightest one, and it requires two loading ramps to transport it. The large

quantities of new vehicles being sold each year, the rising cost of fuel, and increasing

variety of vehicle types have made this problem very difficult to solve.
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Honda Toyota Ford

Ridgeline Accord Fit Tundra Camry Yaris F350 Focus Fiesta

Truck Sedan HB Truck Sedan HB Truck Sedan HB

Weight
(lbs)

6,050 3,216 2,496 6,800 3,190 2,295 9,900 2,097 3,620

Length
(inches)

207 195 162 229 189 154 233 179 160

Height
(inches)

70 58 60 76 58 59 77 58 58

Width
(inches)

78 73 67 80 72 67 80 72 68

Table 1.1: Sample vehicle types dimensions (HB- Hatchback)

Many approaches in current literature use approximation and rule of thumb for

auto-carrier loading process. This research presents a tactical planning regarding

the number and type of auto-carriers required based on uncertainty in demand for

vehicle types. The tactical planning includes an auto-carrier loading problem, which

considers actual dimensions of the vehicles, regulations on total height of the auto-

carriers, and maximum weight of the axles, and safety requirements. The problem

is modeled as a two-stage SIP, and computational experiments using real data are

performed.

1.2 Research Contributions

Research contributions include devising of theory and algorithms towards solving

SIP2 models based on Fenchel cutting planes. The existing approach of using

Fenchel cutting planes for stochastic programs with binary variables exploits the

special structure in binary problems. Unfortunately, such direct exploitation is not

applicable for SIP with general integer variables. We develop a new algorithm to

effectively address the stochastic programs with general integer variables for problems

7



with special structure. The proposed methodology is tested on randomly generated

instances from the literature. The specific research contributions (RC) are as follows:

• RC1: Theory and algorithm for SIP2 with general integer variables in the

second-stage based on Fenchel cutting planes. The methods for generating

Fenchel cutting planes require to solve IPs, which may be difficult in general.

Therefore a new algorithm is developed to overcome this challenge.

• RC2: Investigation of normalization for the cut co-efficients in the Fenchel

cutting planes for SIP2. The normalization provides the alignment of the

Fenchel cuts, hence the norms give the ability for the Fenchel cuts to separate

a relaxed solution from the solution space. We investigate the usefulness of

different norms, both in terms of computation time and ability to recover

integer solutions.

• RC3: Implementation of algorithms from RC1 and RC2. Test the implemen-

tations with randomly generated instances and standard test instances from

the literature.

• RC4: Computational study for Fenchel decomposition algorithm SIP2 with

special structure. Perform a computational study based on randomly generated

instances from the literature. Also, propose and implement techniques to

improve the run time for computational experiments.

• RC5: Formulation for SACP. Generate the instances using real data, and

perform computational experiments using the implementation of the ST-FD

algorithm.

This research provides a new methodology to solve SIP2 with general integer

variables in second-stage. Also, the proposed methods will give a new direction for
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future research extensions. The computational study using standard and stochastic

auto-carrier instances will provide insights on the practical applicability and limita-

tions of the proposed methodology. In a stochastic setup, other general applications

with special structure using general integer variables can also benefit directly from

using the proposed methodology.

1.3 Dissertation Organization

This dissertation is organized as follows: Literature review for SIP, Fenchel

cutting planes, and stochastic auto-carrier loading problem are provided in Section

2. Section 3 details the ST-FD for SIP with binary second-stage recourse problems.

Section 4 presents the mathematical model and computational results for SACP.

Theory, methodology and computational studies are presented for ST-FD for IP,

and SIP with second-stage general integer variables in Section 5. Finally, Section 6

summarizes the contributions of this dissertation, and presents the avenues for future

research.
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2. LITERATURE REVIEW

This dissertation focuses on using Fenchel cutting planes for SIPs with special

structure. This section reviews theory necessary for later sections. It also summa-

rizes current state-of-the art approaches for solving SIPs, generating Fenchel cutting

planes, and modeling auto-carrier loading problem.

2.1 Stochastic Mixed-Integer Programming

Mathematical programming deals with optimization problems to seek a best

solution from the given alternatives. We consider problems with linear constraints

and objective function. When all the decision variables of a mathematical program

are allowed to take continuous values, and the problem data are known precisely,

then the problem is a LP ([42], [33] and [14]). If some or all of the decision variables

are restricted to take discrete values then the problem is an IP. Some of the good

references for IP are [109], [86] and [71]. A LP with uncertain parameters is a

stochastic LP ([41], [58] and [91]). When the data are unknown for the parameters,

and some of the variables have integrality restrictions, then it is a SIP. A good

introduction to stochastic programming can be found at [18], [58] and [79], and

for surveys on SIP, the reader can refer to [65], [98], [59], [94] and [90]. To aid

the discussion on the literature, we use a classification scheme to represent the

various classes of two-stage SIPs. This scheme is based on the variable restrictions

represented by X and Y . We use the sets F and S to denote the first and second

stages of the stochastic program, respectively, and B,C,D for binary, continuous

and discrete variables, respectively. For example, the class of problems considered in

this literature have F = {B,C,D} and S = {B,C,D}, i.e., binary, continuous, and

general integer variables may appear in both stages.
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The integer L-shaped algorithm [64] is a pioneering methodology for solving SIP.

The algorithm solves problems with F = {B};S = {B,C,D}. In the algorithm,

the second-stage objective function values are used to construct cuts for the first-

stage. However, solving second-stage MIPs to optimality is a challenging task for

large scale problems. The work in [27] and [28] uses Lagrangian dual and BAB for

F = {B,C,D};S = {B,C,D}. In the algorithm, a non-anticipativity constraint

is relaxed, and the corresponding Lagrangian dual is solved to get the Lagrange

multipliers. Furthermore, a BAB scheme is used for non-integer solutions. This

is a pioneering work to suggest a BAB scheme for solving SIPs. However, the

implementation needs very careful devising for choosing appropriate Lagrangian

multipliers.

The IP duality in L-shaped framework and Gomory cuts are used in [30] for prob-

lems of type F = {B,C,D};S = {B,D}. The subproblems are solved to optimality

for a given x ∈ X in a cutting plane algorithm using Gomory cuts. Furthermore,

the optimality cuts for master problem are linear functions with integer variables.

This is computationally challenging due to the presence of integer variables, and

they are required to solve to optimality in the first-stage. In a closely related work

[49], a decomposition algorithm for two-stage stochastic programs with binary first-

stage and integer second-stage variables is proposed. The second-stage cost function,

technology and recourse matrices are allowed to be random. Since this decomposition

method exploits the property that the first-stage variables are binary to derive valid

cuts for the second-stage, it is not directly extendable to SIPs with general integer

variables in the first-stage.

Cutting plane methods that can partially approximate the second-stage problems

within the L-shaped method have been proposed for SIPs with integer variables in

the second-stage. In the literature, such methods for two-stage problems have been
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almost exclusively restricted to disjunctive cut-generation schemes. In [29], lift-and-

project cutting planes approach based on the ideas from [12] is used to solve problems

with F = {B,C};S = {B,C}. Cutting planes are used to separate non-integer

solutions from the relaxed LPs. In [92], for problems with F = {B};S = {B,C},

disjunctive cuts are developed for the second-stage. Furthermore, the cuts can be

made valid across all the other scenarios by calculating an appropriate righthand side

function. This has a computational advantage as the cuts need not be generated

independently for each scenario. Additionally, the value function is sequentially

approximated using linear cutting planes in the first-stage. The work in [95] and [96]

uses the framework of reformulation linearization technique. The algorithm in [92] is

extended in [93] for problems with S = {B,C,D}. A combination of disjunctive pro-

gramming and a partial BAB tree is used in the second-stage. Computational studies

are reported in [[74] and [75]], [110] for the algorithms of [92] and [93], respectively.

Furthermore, the algorithm in [92] is extended in [72] for problems with random

recourse and fixed technology matrices. This ensures that the cuts for the second-

stage have common coefficients. Another approach using reformulation linearization

technique cuts is introduced in [97] for problems with F = {B,C};S = {B,C}.
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Method Authors FS-
Binary

FS-
Integer

SS-
Binary

SS-
Integer

1. Integer L-shaped Laporte and Louveaux X X X
2. Parametric Gomory Cuts Gade et al. X X
3. Cutting Plane Approach Caroe and Tind X X X
4. Disjunctive Decomposi-
tion

Sen and Higle X X

5. Disjunctive Decomposi-
tion and Branch-and-Cut

Sen and Sherali X X X

6. Enumeration Algorithm Schultz et al. X X
7. Finite branch-and-bound
Algorithm

Ahmed et al. X X X

8. Fenchel Decomposition Ntaimo X X
9. Dual Decomposition Caroe and Schultz X X X X
10. Super-additive Dual
Approach

Kong et al. X X X X

11. L-shaped Decomposi-
tion

Caroe and Tind X X X X

Table 2.1: Literature review

Continuous variables in the first-stage F = {C} present more difficult prob-

lems, as their solutions dictate the orientation of the cutting planes in the second-

stage. An enumeration algorithm is developed in [88], and the algorithm is based on

polynomial ideal theory (Gröbner bases) for problems with F = {C};S = {B,D}.

Unfortunately, Gröbner bases are notoriously difficult to compute [68]. A finite

BAB algorithm is developed in [4] for problems with F = {B,C};S = {B,D}

and fixed technology matrix. A formulation to obtain value functions in both the

stages is proposed in [62], and problems with F = {B,D};S = {B,D} are studied.

Furthermore, a BAB framework in combination with a level-set approach is used as

solution methodology. Table 2.1 briefly lists the contributions from the literature.
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2.2 Fenchel Cutting Planes

Several types of cutting planes have been proposed in IP. The types of cutting

planes include split cuts ([36], [39] and [7]), intersection cuts ([8], [9] and [35]),

disjunctive cuts ([11], [12] and [38]) and Fenchel cuts. For a relatively recent review

on cutting planes, the reader is referred to [37]. This research work is based on

a type of valid inequalities called Fenchel cutting planes. Fenchel cutting planes

are a class of deep cutting planes derived using Fenchel duality in convexity theory

[81], and they take advantage of the maximum separation/minimum distance duality.

Fenchel cuts are suggested in [24], and a number of characteristics are derived in [23],

[25] and [26]. The most important results from [24], [25] and [26] are that Fenchel

cutting planes are facet defining under certain conditions, and the use of Fenchel

cuts in a cutting plane approach yields an algorithm with finite convergence. The

work also highlights the fact that generating a Fenchel cut for binary programs is

computationally expensive in general; therefore, problems with special structure are

desirable to achieve faster convergence. Computational experiments demonstrating

the effectiveness of Fenchel cuts are presented for knapsack polyhedra in [22] and for

pure binary problems in [25]. Fenchel cuts are derived for two-stage SIPs under a

stage-wise decomposition setting in [73]. In [73], considering x as first-stage decision

variable, and y as second-stage decision variable, two forms of cuts called Fenchel

decomposition (FD) cuts are derived: one based on the (x, y) space, and the other

derived based on the y space, and then lifted ([10] and [13]) to the (x, y) space.

However, a direct extension of the current methodology to general integer variables

may not be scalable, since solving the subproblems as IPs may be computationally

expensive. Also, appropriate normalization should be used in the cut generation

process. In this research, we study the effect of different normalizations for the

cut-generation procedure.
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After the pioneering work in [24], only a few have adopted Fenchel cuts in their

work. In [83], Fenchel cuts are used to improve the bounds obtained from MIPs using

Lagrangian relaxation. More recently, Fenchel cuts are used to solve deterministic

capacitated facility location problems [80]. This work compares Fenchel cuts to

Lagrangian cuts in finding good relaxation bounds for their problem. In [20], Fenchel

cutting planes are used for finding p median nodes in a graph using a cut and branch

approach.

2.3 Stochastic Auto-Carrier Loading Problem

To the best of our knowledge this is the first time SIP has been considered in

auto-carrier loading problem. In this section, we survey the literature related to

auto-carrier loading problem in deterministic setup, and we present on how our

approach and features differ from the current literature. Though loading problems

are studied in combination with routing, we restrict ourselves to the literature for

loading problems. The literature is considered only for the auto-carriers used for

loading vehicles for delivery as the loading problems are available in 2-dimensional

and 3-dimensional spaces in other areas of applications ([48], [56]). One such example

is [55], where the authors have used meta-heuristics for routing with two-dimensional

and three-dimensional loading constraints.

The pioneering work on auto-carrier loading problem is presented in [2]. This

work is extended in [3]. A quadratic assignment model is presented for auto-carrier

loading problem. Vehicle-slot and pairwise incompatibilities are considered for vehi-

cles in the adjacent slots. Furthermore, a BAB is presented to solve the quadratic

assignment model.

The loading and routing problem is formulated as an IP model in [99]. This work

also shows that the problem is NP-hard. Furthermore, a heuristic that considers

loading, routing and vehicle selection is proposed. The use of vehicle dimensions
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is substituted by a parameter proposed by transportation companies. Based on the

parameters from the companies, the total length of the loaded vehicles is constrained.

In [69], loading process is simplified so that vehicle dimensions are not considered.

The loads are considered in two flat loads with an assumption that any two vehicles

can be assigned to the two flat beds. The work proposes a construction heuristics,

and presents limited computational results.

A quadratic assignment model very similar to the model suggested in [3] is used

in [32]. Furthermore, computational results are presented. The reported results show

that the quadratic assignment model produces an exact optimal solution. Similar

to the work in [3], compatibility indicators are used for vehicle-slot and pairwise

incompatibilities for vehicles in adjacent slots.

An iterated local search approach for both routing and loading of auto-carriers

is presented in [44]. Instead of vehicle dimensions, reduction coefficients are used,

which are based on auto-carrier type, vehicle type, and slot used for loading. The

reduction coefficients are proposed by logistics companies. The reduction coefficients

are used to construct restrictions on length of a platform used for loading the vehicles.

For each generated route, loading constraints are checked for feasibility. The work

also presents extensive computational results.

In all of the works mentioned above, the assignment of vehicles to the slots are

constrained based on a parameter value obtained from logistics or transportation

companies. These parameters are assumed based on the experience of loaders or

loading rules generally maintained in the logistics companies. However, this approach

can be cumbersome whenever there are large number of vehicles for loading or

vehicles are new to the market. Whenever there are new vehicle types introduced

in the market for loading, then generating a reasonable representative parameter for

a vehicle is a challenge. Also, in the US we have government regulations on the
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maximum weight for each of the axles of an auto-carrier [103]. An approximate

estimation for the weight of an auto-carrier’s axle based on the position of vehicle

types in the slots is not trivial to estimate. These challenges motivated us to consider

the actual dimensions of vehicle types in our mathematical model. Our model

considers actual physical dimensions for the vehicle types to estimate the overall

length and height, and weight on each axle of the auto-carriers based on the vehicle

types loaded in the respective slots.

We presented literature review for SIP and SACP. We reviewed the decomposition

approaches available for SIP. SACP is an application of SIP. Hence, a scalable

algorithm for SIP will be useful to solve the instances of SACP.
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3. FENCHEL DECOMPOSITION FOR STOCHASTIC MIXED 0-1

PROGRAMS WITH SPECIAL STRUCTURE

3.1 Introduction

Decomposition approaches for SIP traditionally fall under one of two categories:

stage-wise decomposition or scenario-wise decomposition. Stage-wise decomposition

strategies are usually based on Benders’ decomposition ([16], [104]). Scenario-wise

decomposition involves variable splitting on the first-stage decision variables to create

nonanticipativity constraints to enforce the first-stage solution to be the same for

all scenarios ([28], [82] and [65]). Applications of scenario-wise decomposition can

be found in [46], [53], [106] and [70]. In this research, we consider the stage-wise

decomposition approach for solving SIP2.

3.2 Fenchel Decomposition Cut Generation

Stage-wise Fenchel decomposition (ST-FD) adopts the Benders’ decomposition

setting with x as the first-stage decision variable in the master problem, and y as the

second-stage decision variable in the subproblem. In SIP2, instead of working with

the IP subproblem directly, ST-FD seeks to find the optimal solution via a cutting

plane approach on a partial LP-relaxation of SIP2 where only the subproblems

are relaxed. Fenchel cuts are sequentially generated to recover (at least partially)

the convex hull of integer points for each scenario subproblem feasible set. If a

subproblem LP has a non-integer solution, a Fenchel cut is generated and added to

cut off the fractional solution. Fenchel cuts are capable of recovering faces of the

convex hull of binary programs, which is the special structure for SIP2. The goal

is to construct the convex hull of integer points in the neighborhood of the optimal

solution so that by solving subproblems LPs with enough Fenchel cuts added, we
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can find the optimal solution without having to use BAB to guarantee optimality.

At a given iteration k of the ST-FD cutting plane algorithm, the master problem

takes the following form:

zk = Min c>x+ θ

s.t. Ax ≥ b

(ηt)>x+ θ ≥ γt, t ∈ 1, ..., k (3.1a)

x ∈ {0, 1}.

Constraints (3.1a) are the optimality cuts, which are computed based on the optimal

dual solution of all the subproblems. Optimality cuts approximate the value function

of the second-stage subproblems. For a first-stage solution xk from the master

problem (3.1), the subproblem for each scenario ω ∈ Ω, denoted SP(ω), is given

as follows:

SP(ω) : Φk
LP (ρ, τ, ω) = Min ρ>y(ω)

s.t. Wy(ω) ≤ τ

βt(ω)>y(ω) ≤ g(ω, βt(ω)), t ∈ Θ(ω) (3.2a)

y(ω) ≥ 0.

Constraints (3.2a) are the Fenchel cuts, and Θ(ω) is the index set for algorithm

iterations at which a Fenchel cut is generated for each ω ∈ Ω. Next, we describe how

these cuts are generated.

We start with the preliminaries for Fenchel cut generation (FCG) for SIP2.

Consider a methodology for FCG to solve problems of type (1.3), especially when
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second-stage variables have integer restrictions. We will restrict our discussion to

problems of type (1.3) in this section. Also in this section we consider the set Y

to have only binary restrictions for some of its components. For ease of exposition,

we will ignore the parameter ω in the following derivation. We will start with the

definitions.

Let the objective function value of the LP-relaxation to (1.3) be given as,

ΦLP (ρ, τ) = Min{ρ>y : Wy ≤ τ, 0 ≤ y ≤ u, y ∈ Rn2}. (3.3)

Feasible set for the problem (3.3) be given as:

FLP = {y : Wy ≤ τ, 0 ≤ y ≤ u, y ∈ Rn2}. (3.4)

Let the feasible set for the problem (1.3) be given as:

F IP = {y ∈ FLP : y ∈ Y }. (3.5)

The convex hull of feasible integer points for F IP is represented as C(F IP ).

Let ŷ ∈ FLP and ŷ /∈ C(F IP ) be given. Then the separation problem is to find a

valid inequality β>y ≤ β0 for the problem (1.3) such that β>ŷ > β0, where β and β0

are the vectors with appropriate dimensions.
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Figure 3.1: Separation problem for binary variables

For illustration, let ŷ ∈ FLP be the optimal solution to the LP-relaxation (3.3)

as depicted in Figure 3.1. Using a separation problem, we generate a cut π>y ≤ π0

such that π>ŷ > π0.

In FCG, the objective is to derive such valid inequalities called Fenchel cuts. We

start devising the FCG procedure for IPs of type (1.3) with the following theorem.

THEOREM 3.1. Let ŷ ∈ FLP be given. Define g(β) = Max {β>y | y ∈ C(F IP )}

and let δ(β) = β>ŷ − g(β). Then there exists a vector β for which δ(β) > 0 if and

only if ŷ /∈ C(F IP ).

Theorem 3.1 is based on generating a Fenchel cut for IPs as proposed in [24], so

we omit the proof. The result of Theorem 3.1 is that given a ŷ ∈ FLP , if δ(β) > 0,

then there exists a valid inequality that will separate ŷ from the convex hull of
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integer feasible points C(F IP ). The inequality derived in such a way is of the form

β>y ≤ g(β) and is called a Fenchel cut. When generating a Fenchel cut, it is desirable

to maximize the distance between ŷ and the hyperplane β>y ≤ g(β) without cutting

off any integer points in C(F IP ). This requires maximizing δ(β).

While any β vector that gives a positive δ(β) will provide a valid Fenchel cut,

finding such a β vector requires a search of the β space constrained to a convex set

Πβ. Maximizing the function δ(β) provides such a search and returns the deepest

cutting plane possible. This maximization provides a Fenchel cut, and separates ŷ

from C(F IP ). To generate a Fenchel cut, a solution to the following optimization

problem is required:

δ = Max
β∈Πβ

{
β>ŷ − g(β)

}
. (3.6)

where the maximization is done over a domain Πβ and

g(β) = Max
y∈C(F IP )

{
β>y

}
. (3.7)

Once found, the Fenchel cut separating the non-integer point ŷ from C(F IP ) is:

β>y ≤ g(β). (3.8)

Note that the cut (3.8) must pass through a point in C(F IP ) (found in (3.7)), and

could be potentially a facet of C(F IP ).

Solving (3.6) is not a trivial task. For this work, a generalized programming

method based on Benders’ decomposition is used. The method uses a master problem
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(given below) to construct a linear approximation of the subproblem space while the

subproblem returns feasible integer points from F IP .

δ(t) = Max
β∈Πβ

θ

s.t. − θ + (ŷ − y(ν))>β(ν) ≥ 0, ν = 1, · · · , t.
(3.9)

Let t be the number of iteration, then β(t) represents the value of β in iteration t,

and let βi represent a component of β. Given an optimal solution (θ(t), β(t)) to (3.9)

at iteration t, where y(t) is the optimal solution to the following subproblem:

g(β(t)) = Max β
(t)>y

s.t. y ∈ F IP .
(3.10)

It should be noted that solving (3.10) is generally difficult. A straight forward

approach will be to solve (3.10) as MIP, however this may not be trivial for larger

instances. Adopting a Benders’ decomposition framework, a method for generating

Fenchel cuts is stated in Algorithm 1.

In step [1] we initialize the parameters for the algorithm. Initially, each compo-

nent of β(0) is set to 0.5. Since problem (3.6) has to be solved many times to generate

Fenchel cuts, a linearly constrained domain for Πβ such as the L1 unit sphere,

Πβ = {β ∈ Rn2
+ : 0 ≤ β ≤ 1,

∑
β ≤ 1}

provides a better choice in terms of solution time. However, an L2 unit sphere,

Πβ = {β ∈ Rn2
+ : 0 ≤ β ≤ 1,

∑
i

β2
i ≤ 1}
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can also be used. Step [2] uses β(0) as co-efficients, then subproblem (3.7) is solved,

and the corresponding objective value stored. It should be noted that problem (3.7)

is solved as an IP, and this solution y(t) is integral. The bounds and incumbent

solutions are updated in step [2]. Based on the solution y(t) from (3.7), the cut is

added to master problem (3.9). In step [3], master problem (3.9) is solved and the

termination condition is checked. Based on the termination condition, the algorithm

either stops or continues.

3.3 Stage-Wise Fenchel Decomposition Algorithm

We extend the algorithm by using L-shaped algorithm to solve the LP-relaxation

of SIP2, and then carefully choosing a starting solution for ST-FD algorithm to yield

better results. This version of ST-FD algorithm is formally stated in Algorithm 2.

The ST-FD algorithm starts by initializing data in step [1] and getting an initial

solution by solving the LP-relaxation of SIP2 in step [2]. If the initial solution

satisfies the integrality restrictions for all subproblems in step [3], i.e., x ∈ X and

y(ω) ∈ Y, ∀ω ∈ Ω, then the solution is optimal, and the algorithm stops. Otherwise,

the algorithm continues by calculating and storing the optimality cut coefficients for

all subproblems with an integer solution in step [4].
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Algorithm 1 Fenchel Cut Generation Procedure (FCG)

[1] Initialization: Set t ← 0, ε > 0, LB ← −∞, UB ← ∞, and get an initial point

β(0) ∈ Πβ.

[2] Solve subproblem:

Use β(t) to solve (3.7) and get solution y(t) and the corresponding objective value

g(β(t)).

Compute lower bound:

Let d(t) ← (ŷ − y(t))>β(t).

Set l(t+1) ← max{d(t), l(t)}.

if l(t+1) is updated then

Update incumbent solution:

Set µ← d(t) and (β∗, g(β∗))← (β(t), g(β(t))).

end if

Use ŷ and solution y(t) from (3.7) to form and add constraint to the problem (3.9).

[3] Solve problem (3.9) to get an optimal solution (θ(t), β(t)).

Compute upper bound:

Set u(t+1) ← min{θ(t), u(t)}.

if u(t+1) − l(t+1) ≤ ε′ then

The incumbent solution is optimal.

Stop.

else

Set t← t+ 1 and go to [2].

end if
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Algorithm 2 Stage-Wise Fenchel Decomposition (ST-FD) Algorithm

[1] Initialization: set k ← 0, ε > 0, LB ← −∞ and UB ←∞.

[2] Get initial solution: Solve problem (3.1-3.2) using the L-shaped algorithm to

get solution (x̂0, ŷ0(ω)), objective function value ϕ0 =
∑

ω∈Ω pωΦk
LP (ρ, τ, ω), and dual

solutions π̂k(ω) for each ω ∈ Ω.

[3] Check solution integrality:

if ŷk(ω) ∈ Y then

Report (x̂k, ŷk(ω)) as optimal.

Stop.

end if

[4] Calculate and store optimality cuts coefficients for scenarios with integer

solution

for ω ∈ Ω do

if ŷ(ω)k ∈ Y then

Calculate and store optimality cut coefficients η(ω)k ← π̂(ω)k>T (ω) and γ(ω)k ←

π̂(ω)k>h(ω).

end if

end for

[5] Fenchel cuts and optimality cuts generation:

for ω ∈ Ω do

if ŷ(ω)k /∈ Y then

Compute scenario Fenchel cut coefficients: Run FCG to get β(ω)k and g(ω, β(ω)k).

Add the cut β(ω)k>y(ω) ≤ g(ω, β(ω)k) to subproblem (3.2).

Solve the updated subproblem SP(ω) and get updated subproblem dual solution

π̂(ω)k.

Update optimality cut coefficients ηk ← ηk + pω · (π̂(ω)k)>T (ω) and γk ← γk + pω ·

(π̂(ω)k)>h(ω).

end if

end for
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[6] Add optimality cut ηkx+ θ ≥ γk to master problem (3.1) and update iterator: set

k ← k + 1.

[7] Solve master problem (3.1) to get a new first-stage solution x̂k and objective value

zk.

[8] Update lower bound: Set LB ← max{LB, zk}

[9] ε-optimality check:

if |UB − LB| ≤ ε|LB| then

Go to step [14].

end if

[10] Solve subproblems:

for ω ∈ Ω do

Solve subproblem (3.2) to get updated subproblem solution ŷ(ω)k, optimal value

Φk
LP (ρ, τ, ω) and dual solution π̂(ω)k.

if ŷ(ω)k ∈ Y then

Calculate and store optimality cut coefficients η(ω)k ← π̂(ω)k>T (ω) and γ(ω)k ←

π̂(ω)k>h(ω).

end if

end for

[11] Subproblem solutions integrality check:

for ω ∈ Ω do

if y(ω)k /∈ Y then

Go to step [5].

end if

end for
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[12] Update solution and bound information:

Update incumbent solution: x∗ ← xk.

Update upper bound: UB ← min{UB, c>xk +
∑

ω∈Ω pωΦk
LP (ρ, τ, ω)}.

[13] ε-optimality check:

if |UB − LB| > ε|LB| then

Go to step [6].

end if

[14] Declare x∗ ε-optimal.

Stop.

For subproblems with a solution that does not satisfy the integrality requirements,

Fenchel cut coefficients βk(ω), and the righthand side g(ω, βk(ω)) are computed for

the iteration k in step [5]. A Fenchel cut is added to subproblem SP(ω). Next, the

dual solution obtained by solving the subproblem is used to generate the optimality

cut coefficients. Once all subproblems have been solved at a given iteration, the

optimality cut is added to the master problem in step [6]. The iteration counter k

is increased, and the master problem is solved again in step [7] to get an updated

first-stage solution and objective value.

The lower bound LB is updated in step [8]. The gap between the lower bound

LB and the upper bound UB is verified in step [9]. If this gap is small enough, then

the incumbent solution is declared ε-optimal in step [14], and then the algorithm

terminates. Otherwise, all the subproblems are solved again, and optimality cut

coefficients are updated for subproblems with an integer solution in step [10]. The

integrality of subproblem solutions is verified in step [11]: if a subproblem’s solution is

not integral, the algorithm returns to step [5], to add Fenchel cuts to the subproblems

with a non-integer solution, and compute their optimality cut coefficients. Otherwise,
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the incumbent solution x∗ and the upper bound UB are updated in step [12]. The

optimality check is done again in step [13]: if it is satisfied, the incumbent solution

is ε-optimal, and the algorithm is terminated. Otherwise, the algorithm returns to

step [6], and the optimality cut is added to the master problem, and its solved again.

The algorithm is continued until the termination condition is satisfied.

3.4 Computational Study

We implemented the ST-FD algorithm, and performed a computational study to

demonstrate the performance of the algorithm on randomly generated instances from

the literature. The algorithm was implemented in C++ using CPLEX 12.1 Callable

Library [40] in Microsoft Visual Studio 2010. Computations were performed on an

ACPI x64 computer with an Intel R©Xeon R©Processor E5620 (2.4GHz) and 12GB

RAM. CPLEX MIP and LP solvers were used to optimize the master problem and

subproblems. The instances were run to optimality or stopped when a CPU time limit

of 3600 seconds (1 hour) was reached. As a benchmark, the deterministic equivalent

problem (DEP) for each test instance was created and solved using the CPLEX MIP

solver. Computational experiments were conducted on four sets of test instances

from stochastic multidimensional knapsack problems with special structure. Next,

we describe the formulation and test sets, and then report computational findings.

3.4.1 Stochastic Multidimensional Knapsack Problems Test Sets

General knapsack constrained stochastic programs have received attention in

the literature. Knapsack constraints appear in many applications of SIP such as

investment planning ([31] and [54]), transportation, scheduling, selling of assets and

investment selection ([60] and [61]) and operations strategy [34]. The stochastic

multidimensional knapsack problem test instances we consider were first reported in
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a dissertation in [15]. This class of SIP can be formulated as follows:

Min

n1∑
i=1

c>i xi +QE(x)

s.t.

n1∑
i=1

xi ≤ b

xi ∈ {0, 1}, ∀i = 1 . . . n1

(3.11)

The function QE(x) is given as,

QE(x) = EωΨ(ω, x), (3.12)

In problem (3.11), x denotes the first-stage decision vector, c ∈ Rn1 is the first-

stage cost vector, b ∈ R is the first-stage righthand side, Ψ(ω, x) is the recourse

function with ω as a realization of a multivariate random variable ω̃, and Eω denotes

the mathematical expectation operator satisfying Eω[ |Ψ(ω, x)| ] < ∞. The under-

lying probability distribution of ω̃ is discrete with a finite number of realizations

(scenarios/subproblems) in set Ω and corresponding probabilities pω, ω ∈ Ω. Thus

for a given scenario ω ∈ Ω, the recourse function Ψ(ω, x) is given by the following

second-stage binary program:

Ψ(ω, x) = Min

n2∑
i=1

q(ω)i>y(ω)i

s.t.

n2∑
i=1

wijy(ω)i ≤ h(ω)j −
n1∑
i=1

xi, ∀j = 1 . . .m2

y(ω)i ∈ {0, 1}, ∀i = 1 . . . n2.

(3.13)

In formulation (3.13), y(ω) is the recourse decision vector, q(ω) ∈ Rn2 is the recourse
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cost vector, w ∈ Rm2×n2 is the recourse matrix, and h(ω) ∈ Rm2 is the righthand

side.

This formulation has knapsack constraints in both the first- and second-stages,

and each subproblem has equal probability of occurrence. Instance data were ran-

domly generated using the uniform distribution (U) with different parameter values.

The knapsack weights were generated by sampling from U(2, 8). Objective function

coefficients were generated as done in [105], with the first-stage costs being chosen

to be much higher than second-stage costs. Objective function coefficients for first-

stage variables were sampled from U(400, 650) while those for the second-stage were

sampled from U(6, 16). To generate tight knapsack constraints, the righthand side

value for each of the constraints was generated by finding the maximum knapsack

weight (Wmax) for the constraint and sampling from U(2 + 2Wmax, 4Wmax).

We considered four test sets, each with five randomly generated instances of

same size. The problem characteristics are given in Table 3.1. The columns of the

table are explained as follows, ‘Problem’ is the instance name, ‘Scens’ is the number

of scenarios, ‘Bvars’ is the number of binary variables, ‘Constr’ is the number of

constraints, and ‘Nzeros’ is the number of non-zero elements for each of the problem

instances. The first numeral in the problem name describes the number of first-stage

variables, the second describes the number of second-stage variables, and the third

describes the number of scenarios.

3.4.2 Computational Results

Due to the large number of test instances, we give summary plots of the results to

avoid distraction from the discourse and put the detailed numerical results in tables

in the Appendix for the interested reader. The computational results in the Appendix

are in tables A.1, A.2, A.3 and A.4, with each table reporting results for one of the

four test sets. For each instance, five different replications were executed, with an
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hour time limit. The columns of the tables are organized as follows: ‘Instance’ is

the instance name and the following five columns are based on the runs from ST-FD

algorithm. ‘LB’ is the lower bound of the algorithm, and ‘UB’ is the upper bound of

the algorithm. ‘FD Cuts’ is the number of Fenchel cuts, ‘%FD’ is the percentage of

time taken for generating Fenchel cuts, and ‘%Gap’ is the gap between the LB and

UB value after the stipulated runtime of one hour. The final row of each table gives

the average of the columns.

Problem Scens Bvars Constr Nzeros

K.10.20.25 25 510 510 15,100
K.10.20.50 50 1,010 1,010 30,100

Set 1 K.10.20.100 100 2,010 2,010 60,100
K.10.20.150 150 3,010 3,010 90,100
K.10.20.200 200 4,010 4,010 120,100

K.20.30.25 25 770 510 25,200
K.20.30.50 50 1,520 1,010 50,200

Set 2 K.20.30.100 100 3,020 2,010 100,200
K.20.30.150 150 4,520 3,010 150,200
K.20.30.200 200 6,020 4,010 200,200

K.30.40.25 25 1,030 510 35,300
K.30.40.50 50 2,030 1,010 70,300

Set 3 K.30.40.100 100 4,030 2,010 140,300
K.30.40.150 150 6,030 3,010 210,300
K.30.40.200 200 8,030 4,010 280,300

K.40.50.25 25 1,290 510 45,400
K.40.50.50 50 2,540 1,010 90,400

Set 4 K.40.50.100 100 5,040 2,010 180,400
K.40.50.150 150 7,540 3,010 270,400
K.40.50.200 200 10,040 4,010 360,400

Table 3.1: DEP instance characteristics

Due to the large-scale nature of the instances, an optimality cut suggested in [64]

for pure binary first-stage SIP2 was generated and added to the master problem to
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completely close the gap between the lower and upper bounds for ST-FD. This was

also done in [76] under the D2 algorithms. Finally, the last column is the CPLEX

MIP gap after directly solving the DEP for one hour.

The results from the tables are summarized in Figure 3.2 to show the final percent

gap at termination of the algorithms. The instances for each test set (five different

size instances each with five replications) are numbered 1 to 25 and are plotted on the

horizontal axis of each graph. As can be seen from the plots, the results clearly show

that ST-FD algorithm gives the best performance compared to DEP. The results

show that the ST-FD algorithm scales well with instance size. Notice that as the

size of the instances increase (from 1 to 25) so does the percent gap, an indication

of increasing problem difficulty. The direct solver generally performs comparatively

well on the smaller size instances in each test set, implying that decomposition may

not be necessary for such instances.

As can be seen in the tables in the Appendix, most of the computation time in

the ST-FD algorithm is spent in generating Fenchel cuts.

3.4.3 Stochastic Server Location Problem

We also tested the ST-FD algorithm on large-scale SSLP instances introduced

in [74], and further reported in [76]. These instances were previously solved using

disjunctive decomposition (D2) algorithms. Similar to multidimensional knapsack

instances, due to the large-scale nature of the SSLP instances, we generated and

added the L2 optimality cut [64] to the master problem to close the gap between

the lower and upper bounds when x stabilizes. The results show that CPLEX is

unable to solve several instances to optimality within the time limit, an indication

of problem difficulty. The usage of decomposition methods is therefore necessary.

The characteristics of the instances set used for our computational tests are given

in Table 3.2. This set has a total of 45 instances: 9 problem sizes with 5 replications
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Figure 3.2: Percent gap of each test instance

each. The instances are named ‘SSLPm.n.S’, where m is the number of potential

server locations, n is the number of potential clients, and S= |Ω| is the number of

scenarios. In Table 3.2, ‘Cons’ is the number of constraints for the instance, ‘Bins’ is

the number of binary variables, ‘Cvars’ is the number of continuous variables, ‘Total

Vars’ is the total number of the variables, ‘SS-Cons’ is the number of second-stage

constraints, ‘SS-Bins’ is the number of second-stage binary variables, and ‘SS-Cvars’

is the number of continuous variables in the second-stage.

3.4.4 Heuristics for Starting Solution

Larger SSLP instances needed a significant amount of time to run L-shaped

algorithm, where the convergence between the lower and upper bounds was much

slower. The purpose of L-shaped algorithm is to provide the ST-FD algorithm with

a ‘good’ initial feasible solution. The poor performance of the L-shaped method
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Instance Cons Bins Cvars Total Vars SS-Cons SS-Bins SS-Cvars

SSLP5.25.50 1,501 6,255 250 6,505 30 130 5
SSLP5.25.100 3,001 12,505 500 13,005 30 130 5
SSLP10.50.50 3,001 25,010 500 25,510 60 510 10
SSLP10.50.100 6,001 50,010 1,000 51,010 60 510 10
SSLP10.50.500 30,001 250,010 5,000 255,010 60 510 10
SSLP10.50.1000 60,001 500,010 10,000 510,010 60 510 10
SSLP10.50.2000 120,001 1,000,010 20,000 1,020,010 60 510 10
SSLP15.45.5 301 3,390 75 3,465 60 690 15
SSLP15.45.20 1,201 13,515 300 13,815 60 690 15

Table 3.2: SSLP instance characteristics

for larger SSLP instances prompted us to devise a Starting Feasible Point (SFP)

algorithm. Instead of using L-shaped algorithm in step [2] for ST-FD, we used SFP

algorithm. However, with SFP the master problem of the ST-FD algorithm will

not have any optimality cuts, since the L-shaped algorithm was not performed. This

slows the convergence for ST-FD algorithm. To compensate for the lack of optimality

cuts in the master problem, in step [2] of SFP we solved the relaxed subproblems,

and provided optimality cuts to the master problem. Finally, in step [3], a lower

bound to the master problem was added based on the objective function values from

the relaxed subproblems. Finally, in step [4], a constraint is added to master problem

(3.1) to set the lower bound for the number of non-zero binary variables based on

the solution from solving DEP in step [1]. This criterion is derived based on the

knowledge of the problem.

35



Algorithm 3 Starting Feasible Point Algorithm

[1] Solve the instance as a DEP with binary first-stage variables and continuous

second-stage variables to get a binary first-stage solution x̂ and relaxed subproblem

solutions ŷ. The runtime is limited to 1800 seconds or a MIP-Gap of 5%.

[2] Solve the relaxed subproblems to get the dual solution using the first-stage

solution values, and compute optimality cuts for the master problem.

[3] Bound η in (3.1) using the subproblem objective values.

[4] Add a constraint
∑

i xi ≥ m0 to the master problem, where m0 is the number of

non-zero solution values from step [1].

3.4.5 Computational Results

Tables A.5 and A.6 provide the runtime characteristics using ST-FD algorithm

for the SSLP instances. Table 3.3 refers the performance results using the improved

ST-FD algorithm. The ‘LB’ and ‘UB’ columns refer to the lower and upper bounds

obtained using SFP algorithm. The ‘Itr’ column provides the number of iterations

performed by the ST-FD algorithm, ‘ST-FD-S Gap (%)’ refers the gap between

the lower and upper bound after the stipulated runtime using SFP with ST-FD

algorithm, ‘DEP Gap (%)’ is the gap for the DEP solved using CPLEX, and ‘STFD

Gap (%)’ is the gap obtained using the standard ST-FD algorithm with the L-

shaped algorithm to get the starting feasible solution. The results indicate that SFP

algorithm for the starting feasible solution gives better runtime performance as the

improvement on the solution gap is below 5% for most of the instances.
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Instance LB UB Itr STFD-S Gap(%) DEP Gap(%) STFD Gap(%)

SSLP.10.50.500a -343.04 -344.25 24 0.40 6.00 22.00
SSLP.10.50.500b -349.37 -349.37 23 0 0.50 24.20
SSLP.10.50.500c -335.53 -335.53 12 0 0.20 21.70
SSLP.10.50.500d -338.54 -340.58 22 0.60 0.10 25.90
SSLP.10.50.500e -315.33 -288.14 26 8.60 14.10 25.30

Average 1.92 4.18 23.82

SSLP.10.50.1000a -358.87 -343.54 13 4.30 6.90 25.30
SSLP.10.50.1000b -354.90 -331.54 12 6.60 0.50 21.40
SSLP.10.50.1000c -336.65 -336.65 12 0 13.50 18.70
SSLP.10.50.1000d -337.39 -340.48 12 0.90 0.60 21.90
SSLP.10.50.1000e -325.26 -283.10 12 13.00 15.40 47.20

Average 4.96 7.38 26.90

SSLP.10.50.2000a -360.78 -333.57 4 7.50 23.80 43.70
SSLP.10.50.2000b -354.03 -345.90 4 2.30 24.30 44.40
SSLP.10.50.2000c -339.61 -332.71 6 2.00 64.70 46.90
SSLP.10.50.2000d -339.89 -343.07 4 0.90 15.90 44.80
SSLP.10.50.2000e -329.39 -296.31 4 10.00 25.20 46.10

Average 4.54 30.78 45.18

Table 3.3: Performance results for larger SSLP instances

3.5 Conclusion

This section presented the ST-FD algorithm for two-stage SIP2s having special

structure with binary variables in the second-stage. The algorithm uses Fenchel

cuts generated based on the scenario subproblem under each decomposition setting

to iteratively recover (at least partially) the convex hull of integer points in the

neighborhood of the optimal solution. In ST-FD, the L-shaped algorithm is the

method of choice for solving the LP-relaxation of SIP2 problem. Computational

results on knapsack and SSLP instances show that the approach can solve large

instances in reasonable amount of time in comparison to a direct solver.
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4. STOCHASTIC AUTO-CARRIER LOADING PROBLEM

4.1 Introduction

Auto-carrier loading is the process of assigning vehicles to the ramps of an

auto-carrier in an optimal manner. The restrictions in auto-carrier loading include

government regulations on the height, weight of the axles, and overall weight of the

auto-carrier. An auto-carrier contains ramps for loading the vehicles. Furthermore,

the safety of the vehicles is an important factor in the loading process. With these

restrictions, an auto-carrier logistic company would like to maximize their revenue

by delivering the vehicles, and maintaining a higher load efficiency. In the current

literature, most of the approaches focus on the integrated problem of routing and

loading ([50], [55] and [45]) of auto-carriers, where the loading problem is looked

upon for feasibility for a given optimal route. In our setup, we consider a cluster

of loads that are to be delivered to a same destination or zip-code, hence loading

becomes an important aspect than routing. Good references for algorithms for vehicle

routing include [5], [102], [63] and [51]. We consider the tactical planning for the

auto-carrier problem, which deals with deciding the types of resources to be used

for actual delivery. Such decisions have to be performed four to five days before the

actual delivery of vehicles. Based on the nature of the demand, expected revenue,

operating costs of the auto-carriers, and loading challenges, the tactical plan will

suggest the required resources for the operations. Using operations decisions for

tactical planing has been done in the literature before. This has been done in supply

chain context in [84], [47], [89] and [6].

38



4.2 Problem Description

We start with the details of supply chain of auto-carrier transportation, and then

give the details of the loading problem.

4.2.1 Distribution Supply Chain

Auto-manufacturers get requests from the dealers for each of the vehicle types.

The dealers’ demands are aggregated at the auto-manufacturer location, and then

vehicles are shipped to the auto-carrier locations in large quantities to take advantage

of economy of scale. Auto-carriers logistics companies (ALC) receive the vehicles

from the auto-manufacturers in bulk quantities, and deliver the vehicles to the dealers

based on their demands. Furthermore, the ALCs have processing centers which

process the vehicles based on the customization requests from the dealers. The

individual customization requests do not provide an economy of scale for the auto-

manufacturers. The dealerships need to carry inventory for customization requests,

and this will be an operations overload for the dealers. Hence, ALCs are the preferred

locations to complete the customization requests.

Figure 4.1: Information and vehicle flow in an auto-carrier supply chain

As depicted in Figure 4.1, the customer orders are passed from the dealers to the
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auto-manufacturers. Based on the production schedule of the auto-manufacturers,

the vehicles are transported (typically by rail) to an ALC in mass quantity. In the

US, each vehicle is identified by a sixteen digit alpha numeric code named vehicle

identification number (VIN). Each VIN is scheduled to be delivered by ALC to a

specified dealer. The dealer and ALC co-ordinate for any customization needs for a

particular VIN. The processing center at an ALC location processes the individual

customer requests, and then the vehicles are transported to the dealers. There are

very limited number of ALCs and auto-manufacturers, while the number of dealers

is enormous. The core objective of ALC is to distribute the vehicles requested by

the dealers at a minimized cost. The revenue for an ALC is based on the type and

location of vehicle delivered.

The processes followed at an ALC are depicted in Figure 4.2. The vehicles are

delivered at an ALC’s receiving yard from the auto-manufacturers. The vehicles are

further processed in the ALC’s processing center, where additional customizations

are performed based on individual customer requests. Once the processing of the

vehicles is completed, the vehicles are transported by auto-carriers to the dealer

locations.

Figure 4.2: Process flow for an ALC
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In the US, there are limited ALCs which are delivering vehicles to thousands of

dealers. The vehicles vary in size, weight and contour making the loading problem

challenging to look at mathematically.

4.2.2 Loading Challenges

ALCs own the auto-carriers used to deliver the vehicles from an ALC’s distribu-

tion center to dealers. The number and capabilities of ramps depend on an auto-

carrier type. The vehicle can be loaded in two different positions, namely front and

back. A front position is where a vehicle faces the front side of an auto-carrier, and

the back position is where a vehicle faces the rear side of an auto-carrier. All the

ramps can be slid in a forward or backward position. The maximum slide for each

ramp is limited, and for modeling purposes, we consider a set of discrete slide angles.

The vehicle assignments to the ramps may not be one-to-one as a pair of ramps can

hold a single large vehicle. We call this a ‘split ramp’, when more than one ramp is

used for holding a vehicle. However, only a specific set of ramps in an auto-carrier

can be used as split ramps. Unlike a typical cubing problem, the auto-carrier loading

problem is very different with respect to loading flexibility. These flexibilities include

sliding the ramps at an angle, changing the vehicle position, and split ramp. For

example, vehicles can be loaded at an angle to make adjustments for total height

and length of a loaded auto-carrier.

Figure 4.3 shows how the overall length of a loaded auto-carrier changes when

some of the ramps are changed from the angular to the flat position. Considering

L as the legal length allowed for an auto-carrier, the overall length of auto-carrier

L′ exceeds the legal limit when all the upper deck ramps are loaded flat. However,

when the same vehicles are loaded in sliding positions, the overall length is within

the legally allowed limit.

Similarly, loading vehicles on ramps at angles help meeting the legal requirements
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Figure 4.3: Illustration of length advantage (L′-L) due to angular ramps

for total height of an auto-carrier. Another example for benefits in height adjustment

due to angular ramp adjustment can be seen in Figure 4.4. If the vehicle on ramp 2

is loaded horizontally, it would exceed the legally allowed height limit for the auto-

carrier. With the help of an angular ramp, it is possible to get an advantage in

height measurement, and satisfy the legal requirement for the loaded auto-carrier.

Similarly, a very long vehicle can be loaded in a split ramp. Although this reduces

the overall capacity (number of vehicles loaded in an auto-carrier), it helps to load

larger vehicles. A sample case of a split ramp is shown in Figure 4.5.

While the above-mentioned flexibility enhances our ability to build a load with

maximum number of vehicles while satisfying legal requirements for height and weight

for a loaded auto-carrier, it changes the weight distribution at axles. In the Figure

4.6, let ‘W1’, ‘W2’ and ‘W3’ represent the steer, drive, and tandem axles of an

auto-carrier respectively. The axle loads for an auto-carrier are dependent upon the

position or distance of a vehicle’s center of gravity from the axle of an auto-carrier
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Figure 4.4: Auto-carrier showing height advantage due to backward slide on the
ramps.

Figure 4.5: A sample case of split ramp

under consideration. Therefore, when we change the vehicle from ‘backed in’ position

to ‘driven in’ (e.g., see Figure 4.6, ramp 5), it changes the amount of load it exerts

on kingpin and tandem axles.

The position of vehicles in the ramps affects the load distribution on the axles.

As shown in Figure 4.6, by changing the position of vehicle in ramp 5 from ‘driven in’

to ‘backed in’, the load at tandem axle increases by 310 pounds, which exceeds the

allowable weight for the axle. On the other hand, the change in ramp 5 position does

not make any changes to the weight in the steer axle, but reduces the drive axles

load by 347 pounds. In addition to vehicle position, a change in ramp angle can

also cause changes to the axle load distribution. Also, the ramp angles and vehicle

positions impact the type of vehicle assigned in the adjacent ramp (both vertical
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Figure 4.6: Illustration of load variations at various axles due to angular ramps and
vehicle positions

and horizontal) due to physical dimensions of a vehicle such as contour, height and

length.

ALCs ideally like to reduce the number of auto-carriers used for delivery thereby

minimizing operating costs. The vehicles must be loaded in the auto-carriers op-

timally taking all the above described restrictions into account. The availability

of vehicles from the processing center for loading is a random variable. Therefore,

we address the tactical problem of deciding the number and types of auto-carriers

required under uncertainty in the availability of the vehicles. We call this problem

as stochastic auto-carrier problem. In the stochastic auto-carrier model, we choose

the type and number of auto-carriers needed while minimizing the operating costs in

the first-stage. In the second-stage, we maximize the total expected revenue based

on the auto-carriers selected in the first-stage.
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4.3 Mathematical Formulation

4.3.1 First-Stage Formulation

Notation

R ≡ set of ramps, indexed by i.

T ≡ set of auto-carriers, indexed by t.

Rs(t) ≡ set of steering wheel ramps for auto-carrier t, Rs(t) ⊂ R.

Rd(t) ≡ set of tandem wheel ramps for auto-carrier t, Rd(t) ⊂ R.

Ru(t) ≡ set of ramps in the upper deck for auto-carrier t.

Ro(t) ≡ set of ramps in the lower deck for auto-carrier t.

Rh
i (t) ≡ set of ramps for height limitation for auto-carrier t, Rh

i (t) ⊂ R

and
∣∣Rh

i (t)
∣∣ = 2.

Rτ
i (t) ≡ set of ramps for length limitation for auto-carrier t, Rτ

i (t) ⊂ R.

Rsp
i (t) ≡ set of split ramps, Rsp

i (t) ⊂ R for auto-carrier t.

J ≡ set of positions for a vehicle type in a ramp, indexed by j.

K ≡ set of vehicle types, indexed by k.

L ≡ set of allowable slides, indexed by `.

M ≡ set of allowable angles, indexed by m.

lkm ≡ length of vehicle type k on a ramp inclined at angle m.

ltmax(τ) ≡ maximum allowable loaded length for auto-carrier t based

on the ramp set τ .

htmax ≡ maximum allowable height for auto-carrier t.

mt ≡ maximum number of vehicle types allowed for auto-carrier t.

hk ≡ height of vehicle type k.

45



hadvjk`m ≡ height advantage for vehicle type k at position j with ramp

at an angle m and slide position `.

ladvijk`m ≡ allowable height advantage in the lower deck ramp slide i

for vehicle type k that can allow the upper deck vehicle type to slide

(due to the contour of vehicle type at lower deck) with position j,

ramp angle m and slide position `.

nsplitsti ≡ number of ramps within the split Rsp
i (t) for auto-carrier t.

wk ≡ weight of vehicle type k.

swijk`m ≡ weight (at steering axle of an auto-carrier) of the vehicle

type k at ramp i, at position j, ramp angle m and slide position `.

dwijk`m ≡ weight (at driving axle of an auto-carrier) of the vehicle type k

at ramp i, at position j, ramp angle m and slide position `.

swmax ≡ maximum allowable weight at the steering axle for any auto-carrier.

dwmax ≡ maximum allowable weight at the driving axle for any auto-carrier.

twmax ≡ maximum allowable weight at the tandem axle for any auto-carrier.

kt ≡ kingpin weight constant of auto-carrier t.

awmax ≡ maximum allowable weight for any auto-carrier.

ct ≡ operating cost of auto-carrier t.

tMax ≡ maximum number of auto-carriers.

rk ≡ potential revenue for the vehicle type k.

Ω ≡ set of scenarios, a scenario ω is defined for the number of available

vehicle types.
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lr(i) ≡ ramp in the lower deck for the given ramp i ∈ R.

aωk ≡ number of available vehicle type k for the scenario ω.

pω ≡ probability of occurrence for scenario ω.

Decision variables

In the first-stage, a decision is made whether or not a particular auto-carrier is to

be used for the loading in the second-stage. We minimize the total auto-carrier

operating costs in the first-stage based on the expected revenue from the second-

stage. The total number of auto-carriers to be used is capacitated by the availability

of the drivers or required loads.

xt =

 1, if auto-carrier t is used,

0, otherwise.

Objective function

The objective function is given as follows:

Min
∑
t∈T

ctxt + EωΦ(x, ω) (4.1)

We minimize the total operating costs of auto-carriers. A scenario ω is a re-

alization of random variable ω̃. Assuming ω̃ is a discrete random variable with

finite realizations, EωΦ(x, ω) can be represented as EωΦ(x, ω) =
∑

ω∈Ω pωΦ(x, ω). A

scenario ω describes a realization for the availability of vehicle types based on the

random variable ω̃.
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Constraints

The objective function is optimized over the set of feasible solutions described by the

following constraints.

Capacity constraints

∑
t∈T

xt ≤ tMax (4.2)

Constraint (4.2) enforces the capacity limitation for the different auto-carriers to be

used for loading.

4.3.2 Second-Stage Formulation

Decision variables

In the second-stage, for each scenario ω, a decision is made on how to load the vehicle

types on ramps considering the possible positions, slides and angles.

ytωijk`m =



1, if vehicle type k is assigned to ramp i with position j,

ramp angle m, slide position ` for auto-carrier t for

the scenario ω,

0, otherwise.
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ytωspijk`m =



1, if vehicle type k is assigned to split ramp spi

at position j, ramp angle m, slide position ` for auto-carrier

t for the scenario ω,

0, otherwise.

srtωspijk`m =



1, if split ramp spi is used for vehicle type k at position j,

ramp angle m, slide position ` for auto-carrier t

for the scenario ω,

0, otherwise.

ahrtωi` adjusted height of the ramp i at slide position ` for auto-carrier t

for the scenario ω.

lrtωi` allowance in the lower ramp i at slide position ` for auto-carrier t

for the scenario ω.

kwtω kingpin weight of the loaded auto-carrier t for the scenario ω.

tdwtω auto-carrier drive load weight of the loaded auto-carrier t for

the scenario ω.

tlwtω auto-carrier trailer load weight of the loaded auto-carrier t for

the scenario ω.

nlwtω auto-carrier net trailer load weight of the loaded auto-carrier t for

the scenario ω.
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Objective function

The objective function can now be formulated as follows:

Φ(x, ω) = Max
∑
t∈T

(
∑
k∈K

rk(
∑
ij`m

ytωij`m +
∑

spijk`m

ytωspijk`m)) (4.3)

Constraints

The objective function is optimized over the set of feasible solutions described by the

following sets of constraints.

Height constraints

∑
i∈Rhi ,jk`m

hky
tω
ijk`m +

∑
spi∈Rhi ,jk`m

hky
tω
spijk`m

−
∑
i∈Rhi ,`

ahrtωi` ≤ htmax ∀Rh
i (t), t ∈ T

(4.4)

ahrtωi` ≤
∑
jkm

hadvjk`my
tω
ijk`m ∀ i ∈ R, ` ∈ L, t ∈ T

(4.5)

ahrtωi` ≤ lrtωlr(i)` ∀ i ∈ Ru(t), ` ∈ L, t ∈ T

(4.6)

lrtωi` ≤
∑
jkm

ladvjk`my
tω
ijk`m ∀ i ∈ Ro(t), ` ∈ L, t ∈ T

(4.7)

Constraints (4.4) enforce maximum height limitation for a pair of vehicle types in

the lower and upper deck for each of the auto-carriers. Each element of the set

Rh
i (t) represents a ramp in a lower and upper deck which are vertically aligned for

an auto-carrier t, and constitutes for maximum height limitation. The variable ahrtωi`
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represents maximum allowable slide in vertical position of the vehicle type k assigned

at ramp i ∈ Rh
i (t) or split ramp spi ∈ Rh

i (t). Constraints (4.5) limit the variables

ahrtωi` based on contour of vehicle type at the ramp i ∈ R. Constraints (4.6) limit

variables ahrtωi` based on contour of vehicle type at the ramp in lower deck. The

maximum slide for a vehicle type in upper deck on top of the lower deck vehicle

type is limited by lrtωi` . Constraints (4.7) limit the variables lrtωi` based on contour of

vehicle type k in the lower deck.

Weight constraints

∑
i∈Rs(t),jk`m

swijk`my
tω
ijk`m +

∑
spi∈Rs(t),jk`m

swspi,jk`my
tω
spijk`m

+kwtω − tdwtω ≤ swmax ∀ t ∈ T

(4.8)∑
i∈Rs(t),jk`m

dwijk`my
tω
ijk`m +

∑
spi∈Rs(t),jk`m

dwspijk`my
tω
spijk`m

+tdwtω ≤ dwmax ∀ t ∈ T

(4.9)∑
i∈Rd(t),jk`m

dwijk`my
tω
ijk`m +

∑
spi∈Rd(t),jk`m

dwspijk`my
tω
spijk`m

≤ twmax ∀ t ∈ T

(4.10)∑
ijk`m

wky
tω
ijk`m +

∑
spijk`m

wky
tω
spijk`m

≤ awmax ∀ t ∈ T

(4.11)

tdwtω = ktkwtω ∀ t ∈ T

(4.12)
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∑
i∈Rd(t),jk`m

dwijk`my
tω
ijk`m +

∑
spi∈Rd(t),jk`m

dwspijk`my
tω
spijk`m

= tlwtω ∀ t ∈ T

(4.13)∑
i∈Rd(t),jk`m

wky
tω
ijk`m +

∑
spi∈Rd(t),jk`m

wky
tω
spijk`m

= nlwtω ∀ t ∈ T

(4.14)

kwtω = nlwtω − tdwtω ∀ t ∈ T

(4.15)

The total weight for each axle of auto-carrier t is restricted in the weight constraints.

The three axle weights, namely steer axle weight, drive axle weight, and tandem axle

weight are restricted in the constraints (4.8), (4.9), and (4.10), respectively. The

set of ramps for steer and drive axle weights are represented in the set Rs(t) for an

auto-carrier t. Similarly, the set of ramps for tandem axle weight are represented in

the set Rd(t) for auto-carrier t. Constraints (4.11) restrict the total weight for an

auto-carrier t. Constraints (4.12) provide the relationship between trailer drive load

and kingpin weight for an auto-carrier t. Constraints (4.14) and (4.15) determine the

value for trailer load and net load for the trailer ramps. Finally, constraints (4.16)

give the relationship between kingpin, net trailer load, and trailer load.

Length constraints

∑
km

lkm · (
∑

i∈Rτi (t),j`

ytωijk`m +
∑

spi∈Rτi (t),j`

ytωspijk`m) ≤ ltmax(τ) ∀Rτ
i (t), t ∈ T

(4.16)

Constraints (4.17) restrict the total length for each of the ramp sets in Rτ
i (t) for

auto-carrier t.
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Split Ramp constraints

∑
jk`m

ytωspijk`m ≤ srtωspi ∀ spi ∈ Rsp
i (t), t ∈ T (4.17)

∑
ijk`m

ytωijk`m ≤ nsplitsti · (1− srtωspi) ∀ spi ∈ Rsp
i (t), t ∈ T (4.18)

Constraints (4.18) ensure whether a ramp is used as a split ramp or not. The variable

srtωspi is used as an indicator variable for split ramps usage. Constraints (4.19) ensure

that assignment of vehicle types to the individual ramps is based on whether the

ramps are used as split ramps or not.

Assignment constraints∑
jk`m

ytωijk`m +
∑

i⊂spi∈Rspi (t),jk`m

ytωspijk`m ≤ 1 ∀ i ∈ R, t ∈ T (4.19)

∑
t

(
∑
ij`m

ytωijk`m +
∑

spi∈Rspi (t),jk`m

ytωspijk`m) ≤ aωk ∀ k ∈ K (4.20)

Constraints (4.20) ensure that each ramp is assigned a maximum of only one vehicle

type. Constraints (4.21) restrict the availability of each vehicle type k for scenario ω.

First/second-stage linking constraints

∑
ijk`m

ytωijk`m +
∑

spi∈Rspi (t),jk`m

ytωspijk`m ≤ mtxt ∀ t ∈ T (4.21)

Constraints (4.22) ensure that availability of a particular auto-carrier t for the second-

stage is based on the first-stage decision xt.

4.4 Solution Scheme and Instance Generation

For our analysis, the vehicle types are classified into three categories: Truck,

Sedan, and Hatchback. For each of these categories, the processing times are assumed
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from uniform distribution U(2, 10). In the future, for the generation of scenarios, a

distribution fitting needs to be done using real data. Based on the batch of VINs to

be delivered, and the processing times for each of the vehicle types, the availability

for each vehicle type is determined. Based on the realization of the processing time

for the vehicle types, the availability parameter aωk is determined.

We constructed three types of action plans for processing the vehicle types. They

are 1) Optimistic: the vehicle types are processed 20% earlier than the realized

completion time, 2) Realistic : the vehicle types are processed as realized completion

time, and 3) Pessimistic : the vehicle types are processed 20% later than the realized

completion time. The action plans are kept at 20% apart from each other. However,

the percentage should be based on the discretion of the planner in the processing

center. As each vehicle type can take any of the three different action plans, there

are 27 possible scenarios. The possible scenarios at an aggregated level is depicted

in Figure 4.7. In Figure 4.7, Truck(O), Truck(R), and Truck(P) represent that

all the vehicles of type ‘Truck’ are processed ‘Optimistically’, ‘Realistically’, and

‘Pessimistically’ respectively. Similarly, action plans for ‘Sedan’ and ‘Hatchback’ can

be constructed.

In Figure 4.8, nine possible scenarios for Truck(O) are shown. Similarly, possible

scenarios for Truck(R) and Truck(P) sets can be constructed. For an illustration,

in Figure 4.8, the first scenario (Truck(O), Sedan(O), and Hatchback(O)) represent

optimistic completion time for Truck, Sedan, and Hatchback. Similarly other eight

scenarios can be constructed for vehicle type ‘Truck’. Though there are twenty

seven scenarios, there are two scenarios which could be unrealistic in practice. The

scenario ‘Truck(O)’, ‘Sedan(O)’, and ‘Hatchback(O)’ may not be practical. This

indicates that all the vehicles are processed 20% before the completion time which

may not be possible without additional resources. Similarly, the scenario ‘Truck(P)’,
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Figure 4.7: Illustration of instance generation based on action plans

‘Sedan(P)’, and ‘Hatchback(P)’ leaves too much slack for the resources. Hence, these

scenarios are not included in the study. The expected profit from the load will drive

the schedule of vehicles at the vehicle processing center, and the profit is a function

of both the vehicle type and destination. The planner prefers to get an indication of

expected profit from different possible action plans for the vehicle processing center.

For example, if the planner likes to provide preference to ‘Trucks’ for loading, then

the planner gets an indication of expected revenue from an instance with the scenarios

with ‘Truck(O)’ getting a preference over other scenarios. Similarly, other instances

can be constructed based on planner’s preference.

Let F be the set of preferences of the planner. Let us consider the set F with three

realizations namely ‘Truck(O)’, ‘Sedan(O)’, and ‘Hatchback(O)’, where ‘Truck(O)’

represents planner’s choice to estimate the expected revenue with an optimistic action

plan for the trucks at the vehicle processing center, and similarly for ‘Sedan(O)’ and

‘Hatchback(O)’. The scenarios with ‘T(O)’ as the only optimistic setting are provided
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Figure 4.8: Scenario generation

with a higher probability (60%), followed by scenarios with two optimistic setting as

5%, which are rare to occur, and the rest of the probability are split among other

scenarios. The probability of occurrence for each scenario is represented as,

pω(f) =


0.15, if |f | = 1 and |O| = 1;

0.0083, if |O| = 2;

0.023, otherwise

where f is an element from the set F . For illustration, when f is ‘Truck(O)’, then

the scenarios with ‘Truck(O)’, and only one ‘optimistic’ setting will get probability

of occurrence as 0.15. The set |f | = 1 represents that the condition is true, and |O|

denotes the number of optimistic setting in the scenario. Denoting ‘T’ for ‘Truck’,

‘S’ for ‘Sedan’, and ‘H’ for ‘Hatchback’, the scenarios with probability of occurrence

as 0.15 (4 scenarios splitting 60% equally), i.e, f is ‘Truck(O)’ and |O| = 1 are
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(T(O),S(R),H(R)), (T(O),S(R),H(P)), (T(O),S(P),H(R)), and (T(O),S(P),H(P)).

These scenarios are more realistic as the planner needs to handle optimistic setting

only for one vehicle type considering all the vehicle types have equal amount of load.

Similarly, for the scenarios with two optimistic setting will get 0.0083 (6 scenarios

splitting 5% equally) as probability of occurrence, and there will be six such scenarios.

All the remaining scenarios, 15 of them will get 0.023 as probability of occurrence.

4.5 Computational Study

The ST-FD algorithm was used for computational study. The algorithm was

implemented in C++ using CPLEX 12.1 Callable Library [40] in Microsoft Visual

Studio 2010. Computations were performed on an ACPI x64 computer with an

Intel R©Xeon R©Processor E5620 (2.4GHz) and 12GB RAM. CPLEX MIP and LP

solvers were used to optimize the master problem and subproblems. The instances

were run to optimality or stopped when a CPU time limit of 10,800 seconds (3

hours) was reached. As a benchmark, DEP for each test instance was created

and solved using CPLEX MIP solver. We also analyzed the value of stochastic

solution (VSS), which represents the advantage of using stochastic information for

decision making. Without considering stochastic information, the planner could have

used the expected value of the stochastic data by substituting ω̃ with E[ω̃] in the

recourse function. This problem is called expected value (EV) problem. The first-

stage decision made using EV problem can then be evaluated in a two-stage setting.

The objective is the expected value of EV problem, denoted by EEV. The difference

between the EEV and the objective from the stochastic program (4.1) - (4.3) is VSS.

The larger the VSS, the higher the benefit from using a stochastic model. Table 4.1

depicts the characteristics of the instance used for computational study. The instance

has 20 variables in the master problem, and 1,24,440 variables in the subproblem,

and the number of non-zero elements for 25 scenarios is more than 41 million.
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Instance Scenarios MP-Vars SP-Vars DEP - NZs

20- 25 20 1,24,440 41,510,020

Table 4.1: Instance characteristics

The large number of non-zero elements in DEP indicate the necessity for decom-

position algorithm. The runtime results are presented in Table 4.2. The columns

are as follows, ‘Instances’ is the type of the instance, ‘Auto-Carriers’ is the number

of auto-carriers available for loading, ‘Loads’ is the number of loads required, ‘ST-

FD gap (%)’ is the percentage gap at the end of stipulated time by using ST-FD

algorithm, ‘DEP (%)’ is the MIP gap for solving DEP using CPLEX, and ‘VSS(%)’

is the percentage of value of stochastic solution for the instance.

Instance Auto-Carriers Loads ST-FD Gap(%) DEP(%) VSS(%)

Truck(O) 20 2 3.02 2.86 2.81
Sedan(O) 20 2 3.87 1.81 3.66

Hatchback(O) 20 2 4.18 1.68 4.12

Truck(O) 20 4 5.11 7.93 5.62
Sedan(O) 20 4 4.85 6.56 4.95

Hatchback(O) 20 4 4.93 4.22 4.92

Truck(O) 20 6 6.85 36.68 5.51
Sedan(O) 20 6 0.41 52.11 4.21

Hatchback(O) 20 6 2.08 49.71 3.83

Truck(O) 20 8 1.71 34.57 8.66
Sedan(O) 20 8 0.88 25.37 8.13

Hatchback(O) 20 8 1.57 44.05 6.38

Table 4.2: Runtime characteristics (2 hours)

The results clearly indicate the advantage of using ST-FD algorithm over DEP

for SACP instances. The VSS % increases as the number of requested loads increases

which indicates the importance of stochastic information when demand and supply
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gets tighter. For e.g., the objective value for the instance Sedan(O) is around

$115,000, and hence, a 8.13% VSS can be valued at $9,350. Each instance constructed

for an action plan will provide an expected profit for the planner based on the

uncertainty of vehicles available for loading. The planner is expected to run few

action plans to decide the further course of action for the vehicle processing center.

4.6 Conclusion

In this section, we introduced stochastic auto-carrier loading problem. Then we

provided two-stage SIP formulation for tactical planning on the number and types

of auto-carriers needed for loading based on the uncertainty in the availability of

vehicle types. Instances were generated based on the preferences of the planner’s

action plan for the vehicle processing center. We used ST-FD algorithm presented

in the section 3 to solve the instances. Expected value problems were solved, and

the results justify the use of stochastic information for decision making.
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5. FENCHEL DECOMPOSITION FOR MIXED INTEGER PROGRAMS WITH

SPECIAL STRUCTURE

5.1 Introduction

In the literature, Fenchel cuts have been derived for the IPs with binary variables.

In this section, we derive Fenchel cuts for IPs with general integer variables and

special structure. We develop theory to characterize the properties of the convex

hull of integer points needed for the generation of a Fenchel cut. Then we derive

an algorithm for obtaining a reduced set of integer points needed for generating a

Fenchel cut based on the relaxed solution of the IP. In general, it is a challenging

task to get the smallest set of integer points required for the generation of a Fenchel

cut. We then extend the methodology for SIP2 with general integer variables in

the second stage. We perform computational experiments with randomly generated

and MIPLIB instances to evaluate the new methodology. The results from our

preliminary computational experiments show that FCG procedure is able to generate

additional Fenchel cuts by using the reduced set of integer points.

5.2 Fenchel Cut Generation Procedure for General Integer Programs

Let us start with the definitions needed for the derivation of Fenchel cuts for IPs

with general integer variables. Based on the definition of the set F IP in (3.5), let

C(F IP ) denote the convex hull of feasible integer points for the set F IP . Let F IP
υ be

the subset of integer points within F IP , i.e, F IP
υ ⊆ F IP and let C(F IP

υ ) denote the

convex hull of feasible integer points in F IP
υ . In this section, we consider that the set

Y defined in (1.3) imposes integer restrictions on all or some of its components.

Based on the definition for FLP in (3.4), let ŷ ∈ FLP be given, such that ŷ /∈

C(F IP ). Then the separation problem (SP) is to find a valid inequality π>y ≤ π0 for
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problem (1.3) such that π>ŷ > π0, where π and π0 are the vectors with appropriate

dimensions.

Figure 5.1: Separation problem

For the problem depicted in Figure 5.1, let ŷ ∈ FLP be the solution to LP-

relaxation ΦLP (ρ, τ) as defined in (3.3). By solving a separation problem, we can

generate a Fenchel cut π>y ≤ π0, such that π>ŷ > π0.

We would like to restrict our derivation of Fenchel cuts to the subset of integer

points F IP
υ , so that a generated cut valid for C(F IP

υ ) is also valid for C(F IP ). The

Fenchel cut generated using a subset of integer points is depicted in Figure 5.2.
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Figure 5.2: Separation problem with reduced integer feasible set

5.2.1 Integer Set Generation for Fenchel Cut Generation

We devise a methodology to obtain the subset F IP
υ , and subsequently use it to

generate Fenchel cuts. Also, since F IP
υ ⊆ F IP , we need to form the set F IP

υ such

that the generated Fenchel cut does not cut off any integer point in the set F IP .

As stated in the section 3, we need to solve problem (3.7) for generating a Fenchel

cut. However, this is not a trivial task due to integrality restrictions on F IP . To

generate a Fenchel cut based on the LP-relaxation solution, the FCG procedure

generally needs a subset of integer points of the LP-relaxation feasible set. In this

section, we derive an algorithm to obtain such a set F IP
υ ⊆ F IP for generating a

Fenchel cut. The smallest possible subset F IP
υ is desirable but we need to make sure

that C(F IP
υ ) does not cut off any integer solution. In this section, since our focus is

to generate a subset F IP
υ for solving (3.7), we restate the subproblem (1.3) can be
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restated as follows:

IP(ρ, τ): Min ρ>y

s.t. Wy ≤ τ

0 ≤ y ≤ u

y ∈ Zn2

(5.1)

The dimensions of the parameters are as stated in section 1. The general integer

variables y are bounded by the vector u. Let I be the set of variable indices, and K

be the set of constraint indices for (5.1). Also, let the elements of the matrix W be

denoted by wkt, where k ∈ K is the constraint index, and t ∈ I is the variable index.

We consider (5.1) under the following assumptions:

(A1) The polyhedron P defined by (5.1) is full dimensional with dimension n2.

(A2) The dimension of C(F IP ) is n2.

(A3) F IP contains the origin.

(A4) All the elements of W and τ are non-negative. The formulation (5.1) has only

knapsack constraints with positive co-efficients and righthand side.

Let p be an index for an integer point yp such that yp ∈ F IP , and P is the set of

indices for the integer points in C(F IP ). Let ypi be the ith component of y. Referring

to Figure 5.2, considering the integer point yp = (3, 2) then yp1 = 3, and yp2 = 2.

Let yLP be the solution to the LP-relaxation to (5.1), yIP be the optimal solution to

(5.1), and ȳ be the lower bound on y. Let ȳ be initialized as byLP c.
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Let dpij be the projected distance in the (i, j) space. The value of dpij is calculated as

follows:

dpij = min


([

τk −
∑

t∈I:t6=i,t 6=j

wkty
LP
t − wkiȳi

]
/wkj

)
∀k∈K

− ypj , uj − y
p
j

 , (5.2)

where τk is the righthand side for the constraint k ∈ K, and uj is the upper

bound for the variable j ∈ I Also, let fi(y
p) be the shortest projected distance along

the axis j for the point yp. The value of fi(y
p) is calculated as follows:

fi(y
p) = min

{
dpij
}
∀j∈I|i 6=j

(5.3)

Let f ′i(y
p) be the shortest projected distance along the axis i for the point yp. The

value of f ′i(y
p) is calculated as follows:

f ′i(y
p) = min

{
dpji
}
∀j∈I|i 6=j

(5.4)

Next, we state that there exists a set F IP
υ ⊆ F IP , which is sufficient to generate the

Fenchel cutting plane.

LEMMA 5.1. Given F IP , there exists a set F IP
υ ⊆ F IP such that F IP

υ is sufficient

for generating a Fenchel cut.

Proof. Given F IP , then either F IP
υ = F IP or F IP

υ ⊂ F IP . For F IP
υ = F IP , it

is obvious that entire set F IP can be used for generating a Fenchel cut to cut off

yLP . Now consider the case F IP
υ ⊂ F IP . Since the origin belongs to F IP , then

|F IP | ≥ n2 + 1 as C(F IP ) is full dimensional. Then F IP
υ can be constructed such

that there exists an integer point yp
′
/∈ F IP

υ and yp
′ ∈ F IP , as |F IP

υ | ≥ n2. This
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is due to the fact that only n2 affinely independent integer points are needed to

construct a facet for C(F IP ). Hence, |F IP | > |F IP
υ | which gives F IP

υ ⊂ F IP .

We state the required properties for an integer point yp ∈ F IP
υ in the following

corollary.

COROLLARY 5.2. Let yp ∈ F IP
υ . Then either of the following must be true:

(i) dpij < 1, ∀i, j ∈ I|j 6= i or

(ii) dpij ≥ 1 and any integer point yp
′ ∈ F IP such that yp

′

i − y
p
i ≥ 1,∀i ∈ I for at

least one index i ∈ I also belongs to F IP
υ .

When dpij < 1, then there does not exist an integer point ypi ∈ F IP . Alternatively,

when dpij ≥ 1, then there exists an integer point yp
′

i ∈ F IP such that dpij > dp
′

ij . This

means that there is an integer point yp
′

i between ypi and the binding constraint. Since,

ypi < yp
′

i , and ypi , y
p′

i > 0 ⇒ dpij − y
p
i > dpij − y

p′

i ⇒ yp
′

i − y
p
i > 0, which implies that

yp
′

i − y
p
i ≥ 1, since yp

′

i , y
p
i ∈ F IP . However by (ii), if dpij ≥ 1 and yp

′

i − y
p
i ≥ 1,∀i ∈ I,

then the point yp
′ ∈ F IP

υ .

In corollary 5.2, we define the properties for the integer points in the set F IP
υ . It

may be desirable to get the smallest possible set F IP
υ . However, by construction the

Fenchel cut generated based on the set F IP
υ should not cut off any optimal solution

in the set F IP . We evaluate each of the components of y and add an integer point

yp to the set F IP
υ if it is the closest integer point to yLP for the component or if all

other integer points between yp and constraints are already in the set F IP
υ .

In the following lemma, we state the requirements for the minimum cardinality

for the set F IP
υ . Ideally, we would like the set F IP

υ to have lesser number of integer

points, as evaluating (3.7) is expensive.
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LEMMA 5.3. Given F IP
υ , there exists an integer point y′ ∈ F IP

υ . Let Υi be a set

of integer points such that

Υi = argmin
yp

{fi(yp) | yp ∈ F IP , ypi > 0} then y′ = argmin
yk

{f ′i(yk) | yk ∈ Υi} (5.5)

for all i ∈ I.

Proof. When C(F IP ) is not full dimensional, then it is obvious that any point yp ∈

{F IP
υ ∪ F IP} will satisfy the lemma. However for assumption (A2), we prove this

by contradiction. Let yp
′

be the origin, and also let us assume that there exists an

index i ∈ I for which yp /∈ F IP
υ with ypi > 0 for any p ∈ P . But this would mean

that yp
′ ∈ F IP

υ , so a Fenchel cut could potentially pass through yp
′
. This implies

that C(F IP ) is not full dimensional, which is a contradiction.

For any two points yp
′
, yp

′′ ∈ F IP , if dp
′

ij > dp
′′

ij for a given j ∈ I|j 6= i, then if

yp
′ ∈ F IP

υ ⇒ yp
′′ ∈ F IP

υ by corollary 5.2. However, for a smallest set F IP
υ , yp

′′ ∈ F IP
υ .

PROPOSITION 5.4. The minimum cardinality of the set F IP
υ is n2.

Proof. By lemma 5.3, there should be at least one integer point for every component

i ∈ I. This implies that |I| = n2. Also, since Fenchel cutting planes are facets, then

we need at least n2 affinely independent points in the set F IP
υ for generating the

facet.

Based on the properties stated, we would like to form a smallest set F IP
υ for

evaluating (3.7). Based on the properties of lemma 5.3 and proposition 5.4,
∣∣F IP

υ

∣∣ =

n2, assuming (5.1) is full dimensional. However, getting the smallest set is not trivial

unless we have an oracle providing an ideal interior point yp ∈ F IP , on which the

smallest set F IP
υ can be constructed. In the next section, we present an algorithm
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to obtain the set F IP
υ using the corollary 5.2, lemma 5.3, and proposition 5.4. In the

algorithm, we start with an initial point yp ∈ F IP
υ , where yp is constructed based on

yLP . The corollary 5.2 and lemma 5.3 are used to check whether the set of points

in F IP
υ are enough and valid, if not then the set F IP

υ is expanded further by adding

adequate integer points from the set F IP .

5.2.2 Integer Set Generation Algorithm

In Algorithm 4, we initially use the lower bounds for the components of yLP to

obtain the set F IP
υ . In each iteration, we evaluate two components of y along i and

j, and the lower bounds for the components are decreased based on the projected

distance of the components from the binding constraints. Each pair of components,

yi and yj are evaluated in two dimensional space by projecting all other variables

into the two (i, j) dimensional space. The pair of components (yi, yj) are evaluated

in the two dimensional space with the criterion that ȳi and ȳj provide at least one

integer point for the generation of the Fenchel cut in ith direction. We also make

sure that ȳi and ȳj do not remove any integer point in C(F IP ), so that the generated

Fenchel cut does not cut off any optimal solution. The algorithm for obtaining the

set F IP
υ is stated as follows:
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Algorithm 4 Integer Set Generation (ISG) Procedure

[1] Initialize: Let yLP be the LP-relaxation solution for the program ΦLP (ρ, τ). Let ȳ

be the lower bound of the variables in (5.1), and initialized as ȳi = byLPi c. Let K ′ ⊆ K

be the subset of indices for the binding constraints at current solution yLP .

[2] Compute Distance dij:

for i ∈ I do

for j ∈ I \ i do

dij = 0, fk = 0

for k ∈ K ′ do

(a) Assign RHS for constraint index k:

fk ← τk

(b) Projections for all other variables except indices i and j:

for t ∈ I \ {i, j} do

fk ← fk − wktyLPt

end for

(c) Compute Distance:

rk ← fk − wkiȳi

dij ← min {rk/wkj , uj}

end for

end for

end for
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[3] Evaluate of Bounds:

for i ∈ I do

for j ∈ I \ i do

for k ∈ K ′ do

(d) Evaluate dij:

if (i < j) & (dij < 1) then

if ȳi ≥ 1 then

ȳi ← ȳi − 1; k ← k − 1;

end if

else if dij − ȳj < 1 then

if ȳi ≥ 1 then

ȳi ← ȳi − 1; k ← k − 1;

else if ȳj ≥ 1 then

ȳj ← ȳj − 1; k ← k − 1;

end if

end if

(e) Check for Integer Points:

b← 1

while ȳi − b > 0 do

r
(1)
k ← fk − wki(ȳi − b); d

(1)
ij ← r

(1)
k /wkj ; b← b+ 1;

if (bd(1)
ij c − bdijc ≥ 1) & (bd(1)

ij c ≤ ui) then

ȳi ← ȳi − b

end if

end while

end for

end for

end for

[4] Use the computed lower bound ȳi for the variable index i ∈ I in FCG.
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In step [1], we initialize the parameters using the solution to the LP-relaxation for

(5.1) represented as yLPi for i ∈ I, where I is the set of variable indices. Furthermore,

ȳi is the parameter of the algorithm which we intend to use as lower bound for the

ith component in the formulation (5.1). We would like to maximize the value of

ȳi without cutting off any integer solution for the original problem. Initially ȳi is

initialized to byLPi c. In step [2a], the righthand side of binding constraint k ∈ K ′ is

assigned to parameter fk. In step [2b], for any i, j ∈ I, such that i 6= j, we calculate

the projected distance dij in (i, j) space as given in (5.4). We then evaluate dij in step

[2c]. The distance dij is the measure of distance from the other component’s axis to

the binding constraint. If dij indicates the absence of an integer point along ith axis,

then both ȳi and constraint index are reduced by one, so that ȳ will be re-evaluated

again for the binding constraint k using the expanded set F IP
υ . Hence, we start with

a smallest set of integers based on byLPi c, and as the algorithm progresses, the set

F IP
υ is expanded by decreasing ȳ based on corollary 5.2 and lemma 5.3.

In step [3d], we check the property (ii) of corollary 5.2, and if there are any

integer points along the component i, then ȳi is reduced further to accommodate

additional integer points into the set F IP
υ . A set obtained using ISG procedure is

illustrated in Figure 5.3.
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Figure 5.3: Illustration of ISG procedure

We need to make sure that the reduced set C(F IP
υ ) is sufficient to get the required

Fenchel cut. We evaluate only the set of binding constraints indices K ′ ⊆ K based

on yLP , since we are only interested in the set F IP
υ based on yLP for generating the

Fenchel cut. In step [2] and [3], we evaluate each pair (i, j) ∈ I for the binding

set of constraints indices K ′ ⊆ K. For a given pair (i, j), we calculate the distance

between the new lower bound ȳi of the component and the binding constraint. If the

calculated distance dij is less than one, then ȳi has to be reduced further as there is

no integer point available in the given axis for the generation of Fenchel cut. If ȳi

can not be lowered further due to the lower bound of the variable, then ȳj is reduced

to accommodate an integer point for C(F IP
υ ). The complexity of the algorithm is

O
(
n3m

)
, where n is the number of variables, and m is the number of constraints.

The two components projection is similar to ‘Fourier-Motzkin elimination method’.
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The details of Fourier-Motzkin elimination method can be found at [43], [107], and

the details of its implementation in [17], [67] and [85].

Next, we describe a procedure for integer set generation (ISG) procedure within

FCG for solving 5.1.

Algorithm 5 Integer Set Generation (ISG) Procedure for Integer Programs

[1] Initialize: set t← 0.

[2] Solve LP-Relaxation: Solve the LP-relaxation of problem (5.1), and let yLP be

the relaxed solution to (5.1).

[3] Check solution integrality:

if yLP ∈ Z then

Report yLP as optimal.

Stop.

end if

[4] Use ISG and FCG to generate Fenchel cuts:

Run FCG with ISG to get β(t) and g(β(t)).

Add the cut β(t)y ≤ g(β(t)) to problem (5.1).

Increment the counter t← t+ 1.

Go to step [2].

We use Algorithm 5 for testing instances of formulation (5.1). In the algorithm,

we first initialize the parameters in step [1]. In step [2], we solve the LP-relaxation

of the problem , and the solution is stored as yLP . We check of integrality for yLP

in step [3]. If yLP is integral, we report yLP as optimal. Otherwise, we generate

a Fenchel cut using the ISG procedure, and add to the LP-relaxation of (5.1), and

continue to step [2].
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5.2.3 Numerical Example

Let problem (5.1) be given as follows:

IP1: Min− y1 − y2

s.t. 0.4y1 + y2 ≤ 3.4

0 ≤ y1, y2 ≤ 3

y1, y2 ∈ Z,

(5.6)

The LP-relaxation to the problem (5.6) has the optimal solution (3, 2.2). Thus, a

Fenchel cut has to cut off the fractional point. The steps are as follows:

1. yp = (b3c, b2.2c)(3, 2). Therefore, yp1 = 3, yp2 = 2, ȳ1 = 3, ȳ2 = 2, based on

yLP1 = 3 and yLP2 = 2.2.

2. i = 1, j = 2, k = 1, r1 ← 3.4− 0.4(3) = 2.2.

dp12 = min {2.2/1− yp2, 3− y
p
2} = 0.2.

Since dp12 < 1 ⇒ ȳ1 ← ȳ1 − 1 = 3− 1 = 2, update yp as (2, 2), and re-evaluate

the constraint. In the next iteration, ȳ1 = 1, and the algorithm passes to the

next component ȳ2.

Similarly, for ȳ2 = 2, r1 ← 3.4− 2 = 1.4.

dp21 = min {1.4/0.4− yp1, 3} = min {3.5− yp1, 3− y
p
1} = 2.

Since dp21 ≥ 1, we do not make any changes to ȳ2. Hence, the new lower bounds

for the components are y1 = 1 and y2 = 2, respectively.

The value dp12 = 0.2 represent the distance between the point yp(3, 2) and the

point yp(3, 2.2) for a binding constraint in y2 component’s direction. Since there is

no integer point in the direction, the algorithm iterates to reach the point yp
′
(2, 2),
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where the distance dp
′

12 = min
{

2.6/1− yp
′

2 , 3− y
p′

2

}
= 0.6. The distance 0.6 is

the distance between the point yp
′
(2, 2) and the binding constraint in yp

′

2 direction.

Since dp
′

12 < 1, the algorithm is continued to next iteration. The distance dp
′′

12 =

min
{

3/1− yp
′′

2 , 3− y
p′′

2

}
= 1 is the distance between the point yp

′′
(1, 2) and the

binding constraint at the point yp
′′
(1, 2).

The feasible set based on the new origin (1, 2) is depicted in Figure 5.4-(a). The

feasible set is used for the generation of Fenchel cuts using FCG procedure, and the

generated Fenchel cut is depicted in Figure 5.4-(b). The procedure to shift the origin

is performed using step (d) in ISG procedure. Based on the ISG procedure, the new

origin for the FCG procedure is shifted to (1, 2).

Figure 5.4: ISG procedure - step (d)
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Let us consider another problem for (5.1) and depicted in Figure 5.5 as follows:

IP1: Min− 1.2y1 − 3.4y2

s.t. 6y1 + 5y2 ≤ 37.4

0 ≤ y1, y2 ≤ 5

y1, y2 ∈ Z,

(5.7)

The LP-relaxation for the problem (5.7) gives the solution (5,1.48). Thus, the

objective for FCG procedure is to cut off the relaxed solution from the solution

space. Using step [d] of the ISG procedure, the new origin for FCG procedure is

shifted to (4,0). However, based on C(F IP
υ ), the generated Fenchel cut removes an

integer point (2,5) from the convex hull of the solution space. Hence, we use step

[e] to deduct any possibility of removing off integer points from the solution space

based on the current reference obtained using step [d]. Thus step [e] gives the new

reference (2,0) accounting for the possible integer points in C(F IP ). The reduced

solution space based on the new origin (4,0) without step (e) is shown in Figure

5.5-(a). The reduced solution space based on step [e] for the generation of Fenchel

cuts using the FCG procedure is shown in Figure 5.5-(b).
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Figure 5.5: ISG procedure - step (e)

The newly computed lower bounds from ISG procedure is used for (3.10) in

step [2] of FCG. The objective of ISG procedure is to obtain a smaller reduced set

F IP
υ ⊆ F IP which further gives C(F IP

υ ) ⊆ C(F IP ). A reduced set F IP
υ for solving

(3.10) is expected to provide better runtime for the generation of Fenchel cut.

5.3 Computational Study

We performed a computational study of the ISG procedure using bounded knap-

sack problems. We used randomly generated instances to validate the procedure,

and instances from the literature to quantify the performance. The procedure is

embedded in the ST-FD algorithm, and computational experiments were performed

for SIP2s with general integer variables in the second-stage.

5.3.1 Integer Programs Test Set

We performed computational study of Algorithm 5. The focus of the study for

this section is to validate ISG procedure rather than measuring its performance.
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The objective values for each instance are compared with the corresponding optimal

value of DEP. We constructed instances for the formulation (5.1) in 12 different

sizes. The sets one to six are ‘small’, while the sets seven to twelve are ‘large’. The

characteristics of the test sets are given in Table 5.1,

Instances
Instance Characteristics - Small

# Variables # Constraints Avg # NZs

Set1 4 4 17

Set2 4 4 17

Set3 6 6 37

Set4 6 6 33

Set5 8 8 58

Set6 8 8 59

Table 5.1: Instance characteristics - small

Each of the sets has 100 randomly generated instances. In the tables 5.1 and 5.3,

‘# Variables’ is the number of variables in the model, ‘# Constraints’ is the number

of constraints in the model, and ‘Avg # NZs’ is the average number of non-zeros in

the model.

Instances
Runtime Characteristics - Small

Avg # R-MIPs Avg # R-FC-Cuts Avg # MIPs Avg # FC-Cuts

Set1 11.71 0.84 11.71 0.84

Set2 10.45 0.73 10.48 0.73

Set3 33.59 1.30 33.35 1.29

Set4 34.62 1.29 34.61 1.29

Set5 80.61 1.93 80.55 1.93

Set6 65.28 1.56 65.38 1.56

Table 5.2: Runtime characteristics - small (100 instances for each set)
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In Table 5.2, ‘Avg # MIPs’ denotes the average number of MIPs solved for FCG

procedure, ‘Avg # FC-Cuts’ denotes the average number of Fenchel cutting planes

generated by FCG, ‘Avg # R-MIPs’ denotes the average number of MIPs solved

for FCG procedure using ISG procedure, ‘Avg # R-FC-Cuts’ denotes the average

number of Fenchel cutting planes generated by FCG using ISG procedure. The

results for larger instances are given in Table 5.3 and 5.4.

Instances
Instance Characteristics - Large

# Variables # Constraints Avg # NZs

Set7 10 10 92

Set8 10 10 92

Set9 15 15 204

Set10 15 15 204

Set11 20 20 361

Set12 20 20 361

Table 5.3: Instance characteristics - large

Instances
Runtime Characteristics - Large

Avg # B-MIPs Avg # B-FC-Cuts Avg # MIPs Avg # FC-Cuts

Set7 147.46 2.38 148.12 2.39

Set8 138.25 2.27 138.32 2.27

Set9 506.16 4.01 504.65 4.01

Set10 544.45 4.33 546.34 4.32

Set11 1523.26 7.24 1502.06 7.17

Set12 1007.36 4.54 985.18 4.46

Table 5.4: Runtime characteristics - large (100 instances for each set)

In each instance, the upper bound of the variable was set to five. Random
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parameter ‘rMin’ is the product of ‘# Variables’, upper bound for the variables,

and 2. Another random parameter ‘rMax’ is the product of ‘# Variables’, upper

bound for the variables, and 5. Then the right hand side for each of the constraints

is set as rMin+(U(0, 1)∗(rMax−rMin)). Similarly, let ‘vMin’ be the lower bound

for the variable, and ‘vMax’ be the upper bound of the variable. The co-efficient

for the variable in a constraint is generated as vMin + (U(0, 1) ∗ (vMax− vMin)).

The co-efficients of the variables in the objective function are taken from uniform

distribution U(0, 10).

Tables 5.2 and 5.4 represent the average number of Fenchel cuts and MIPs solved

for each of the sets. E.g., 3,335 MIPs are solved for 100 instances of Set3 without

ISG to generate 129 Fenchel cuts. Similarly, 3,359 MIPs are solved for 100 instances

with ISG procedure to generate 130 Fenchel cuts. Hence, 24 additional MIPs are

solved for ISG for 100 randomly generated instances.

5.3.2 MIPLIB Instances

We tested the implementation of the algorithm with appropriate MIPLIB [1]

instances. We chose MIPLIB instances with constraint type legend as ‘IKN’ (Integer

knapsack), and the characteristics of the instances are given in the Table 5.5.

Instance Rows Cols NZs Int Bin Con Obj

noswot 182 128 735 25 75 28 -41

lectsched-4-obj 14,163 7,901 82,428 236 7,665 - 4

lectsched-2 30,738 17,656 186,520 369 17,287 - 0

neos16 1,018 377 2,801 41 336 - 446

Table 5.5: Problem characteristics - MIPLIB

The columns of Table 5.5 are explained as follows : ‘Instance’ is the name of
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the MIPLIB instance, ‘Rows’ is the number of constraints for the instance, ‘Cols’ is

the number of variables for the instance, ‘NZs’ is the number of non-zero elements

for the instance, ‘Int’ is the number of general integer variables, ‘Bin’ is the number

of binary variables, ‘Con’ is the number of continuous variables, and ‘Obj’ is the

objective value for the instance.

Tables 5.6 and 5.7 depict the runtime characteristics for MIPLIB instances with

and without using ISG procedure, respectively. The columns are explained as follows

: ‘Instance’ is the name of the instance, ‘# F Cuts’ is the number of Fenchel cuts

generated, ‘LB’ is the lower bound of the algorithm, ‘UB’ is the upper bound of the

algorithm, ‘MIPs Solved’ is the number of MIPs solved for generating the Fenchel

cuts for the instances, ‘Time(secs)’ is the time taken for each of the instances, and

‘MIPs/F Cut’ is the average number of MIPs solved for generating a Fenchel cut.

Instance # F Cuts LB UB MIPs Solved Time(secs) MIPs/F Cut

noswot 130 -41 -41 5,609 3,626 43.1

neos16 1 425 446 36 10,800 36.0

Table 5.6: Runtime characteristics - FCG-ISG

A 3-hour time limit is used, and there is only one instance that could reach

optimality within three hours using ISG procedure. Two out of four instances are able

to generate Fenchel cuts thus producing lower and upper bounds for the algorithm

using ISG procedure. As stated earlier, the ISG procedure has a complexity of

O
(
n3m

)
. As shown in Table 5.5 for runtime characteristics for the instances, ISG

procedure is able to scale only for two instances with lesser number of ‘Rows’ and

‘Cols’. However, for the scalable instances, FCG procedure with ISG uses fewer

number of MIPs compared to FCG procedure without ISG as noted in the column
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‘MIPs/F Cut’ in Tables 5.6 and 5.7. This indicates that ISG has let FCG procedure

to evaluate lesser number of integer points for the function (3.10) compared to FCG

procedure without using it.

Instance # F Cuts LB UB MIPs Solved Time(secs) MIPs/F Cut

noswot 160 -41 -41 23,179 3,634 144.9

neos16 1 425 446 38 10,800 38.0

lectsched-2 3 0 0 74 10,600 24.7

lectsched-4-obj 4 0 4 434 10,800 108.5

Table 5.7: Runtime characteristics - FCG

FCG procedure without ISG is able to obtain lower and upper bounds as it

only needs to evaluate (3.10) rather than obtaining the reduced integer set for the

instances.

5.4 Extension to Stochastic Integer Programs

We embedded ISG procedure with ST-FD algorithm, and computational exper-

iments are performed based on randomly generated instances for two-stage SIP2s

with general integer variables in the second-stage.

5.4.1 Multidimensional Knapsack Instances for SIP

General knapsack constrained stochastic programs have received attention in the

literature. This class of SIP can be formulated as follows:

Min

n1∑
i=1

c>i xi +QE(x)

s.t.

n1∑
i=1

xi ≤ b

xi ∈ {0, 1}, ∀i = 1 . . . n1

(5.8)
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In the above formulation, QE(x) denotes the expected second-stage cost based

on the first-stage decision x, and we assume randomness in the objective costs,

technology matrix and righthand side in the second-stage. The function QE(x) is

given as,

QE(x) = EωΦ(q(ω), h(ω), T (ω)x), (5.9)

In problem (5.8), x denotes the first-stage decision vector, c ∈ <n1 is the first-

stage cost vector, b ∈ < is the first-stage righthand side, QE(x) is the expected

recourse function with ω̄ being a multivariate random variable, andQE(.) denotes the

mathematical expectation operator satisfying Eω [| Φ(q(ω), h(ω), T (ω)x) |] <∞. The

underlying probability distribution of ω̄ is discrete with a finite number of realizations

(scenarios/subproblems) in set Ω, and corresponding probabilities pω, ω ∈ Ω. Thus

for a given scenario ω ∈ Ω, the recourse function Φ(q(ω), h(ω), T (ω)x) is given by

the following second-stage IP:

Φ(q(ω), h(ω), T (ω)x) = Min

n2∑
i=1

q(ω)i>y(ω)i

s.t.

n2∑
i=1

wijy(ω)i ≤
n1∑
i=1

m · tixi, ∀j = 1 . . .m2

n2∑
i=1

viy(ω)i ≤ h(ω)j, ∀j = 1 . . .m3

0 ≤ y(ω)i ≤ ui, y(ω)i ∈ Z+, ∀i = 1 . . . n2.

(5.10)

In formulation (5.10), y(ω) is the recourse decision vector, q(ω) ∈ <n2 is the recourse

cost vector, w ∈ <m2×n2 is the fixed recourse parameter, and t ∈ <n1 , v ∈ <n2 are

parameter vectors taking values 0 or 1, m is a constant, and h(ω) ∈ <m3 is the
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righthand side. The decision vector y(ω) is bounded by vector u. Finally, Z+ is

the set of nonnegative integers. In a supply chain context, the first-stage decision

vector x can be a decision on selection of facilities or mode of transport or resources.

For a realization ω, the recourse decision vector y(ω) in the second-stage could be

an amount of products produced or transported based on strategic decision from

the first-stage solution x. Additionally, we have included knapsack type constraints

for the second-stage decision vectors. The problem setup is similar to a stochastic

lot-sizing problem ([21], [52], [100] and [101]).

The formulation in (5.8)-(5.9) has knapsack constraints in both the first- and

second-stages, and each subproblem has equal probability of occurrence. Instance

data were randomly generated using uniform distribution (U) with different parame-

ter values. The knapsack weights were generated by sampling from U(2, 8). Objective

function coefficients were generated with the first-stage costs being chosen to be

much higher than second-stage costs. The coefficients for the decision vector in the

objective function for the first-stage were sampled from U(0, 400) and for the second-

stage were sampled from U(10, 20). To generate tighter knapsack constraints, the

righthand side value of each constraint was generated by finding the maximum knap-

sack weight (Wmax) for the constraint, and then sampling from U(2+2Wmax, 4Wmax).

5.4.2 Larger Test Instances - I

We constructed five test sets, each with 15 randomly generated instances. The

problem characteristics are given in Table 5.8. The columns of the table are as

follows: ‘Instance’ is the name of the instance, ‘Scens’ is the number of scenarios,

‘Bvars’ is the number of binary variables, ‘Ivars’ is the number of general integer

variables, ‘Constr’ is the number of constraints, ‘Nzeros’ is the number of non-zero

elements, and ‘Avg LP Gap (%)’ is the average gap between LP-relaxation and final

integer objective values for the problem sets. The first numeral in the problem name
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describes the number of first-stage variables, the second describes the number of

second-stage variables, and the third describes the number of scenarios. For e.g,

‘KI.10.20.25’ represents the test instance with 10 first-stage variables, 20 second-

stage variables, and 25 scenarios. The runtime performance of ST-FD with ISG is

compared with DEP. The DEPs were run using direct solver CPLEX 12.5. We used

12 randomly generated instances for Set1.10, and 15 randomly generated instances

for each of the other sets.

Instance Scens Bvars Ivars Constr Nzeros Avg LP Gap (%)

Set1.10 KI.10.20.25 25 10 500 510 13,780 24.40
Set2.10 KI.10.20.50 50 10 1,000 1,010 27,530 9.40
Set3.10 KI.10.20.100 100 10 2,000 2,010 55,030 12.90
Set4.10 KI.10.20.150 150 10 3,000 3,010 127,530 17.40
Set5.10 KI.10.20.200 200 10 4,000 4,010 174,030 17.00

Table 5.8: DEP instance characteristics

In the following figures and tables, let ‘ST-FD’ denotes the ST-FD algorithm using

L1-norm, and ‘ST-FD-R’ denotes the ST-FD using L1-norm and ISG procedure.

Figures 5.6, 5.7 and 5.8 depict the gap in percentage for each instance in Set1.10

and Set2.10, Set3.10 and Set4.10, and Set5.10, respectively. For Set1.10, the gaps

for the instances using ST-FD algorithm for ‘ST-FD and’ ‘ST-FD-R’, and MIP gap

from DEP are almost identical. However, for all other sets, runtime performance for

ST-FD and ST-FD-R is better than DEP.
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Figure 5.6: Gap percentage for Set1.10 and Set2.10

Figure 5.7: Gap percentage for Set3.10 and Set4.10

For larger test instances like Set5.10, runtime performance of ST-FD and ST-

FD-R is consistently better than DEP. Also, the runtime performance of ST-FD and

ST-FD-R is almost identical, and ST-FD-R performs slightly better than ST-FD for

larger test instances Set4.10 and Set5.10.
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Figure 5.8: Gap percentage for test Set5.10

Figure 5.9 depicts the percentage of improvement in terms of total number of

MIPs solved in ST-FD-R and ST-FD. The improvement in the percentage is given by

(ST-FD-RMIPs - ST-FDMIPs)/ST-FDMIPs, where ST-FD-RMIPs is the total number

of MIPs solved for an instance with ST-FD-R, and ST-FDMIPs is the total number of

MIPs solved for an instance with ST-FD. The results show that ST-FD-R consistently

solves a greater number of MIPs for FCG. The improvement in the percentage for

the larger sets is around 3-4%.
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Figure 5.9: Percentage improvement for MIPs solve using ST-FD-R

Table 5.9 details the performance characteristics. The columns are explained

as follows, ‘Sets’ is the set of instances, ‘Avg Impr (%)’ is the average for the

improvement in the percentage of total number of MIPs solved by ST-FD-R over

ST-FD, ‘Avg FC Cuts (ST-FD)’ is the average number of Fenchel cuts generated by

FCG using ST-FD, ‘Avg FC Cuts (ST-FD-R)’ is the average number of Fenchel cuts

generated by FCG using ST-FD-R, ‘Avg Gap(%) - ST-FD’ is the average gap using

ST-FD, ‘Avg Gap(%) ST-DF-R’ is the average gap using ST-FD-R, and finally, ‘Avg

Gap DEP(%)’ is the average MIP gap for DEP instances using direct solver CPLEX.

The results show that the average number of Fenchel cuts generated by ST-FD

and ST-FD-R is almost identical, and slightly more Fenchel cuts are generated by

ST-FD-R in Set3.10 and Set4.10. The improvement in the percentage for the total

number of MIPs solved by ST-FD-R is around 3-4%. This indicates that ST-FD-R

algorithm is able to solve more MIPs compared to ST-FD algorithm. However, both

ST-FD and ST-FD-R have better gaps compared to MIP gap from DEP instances.
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Sets Avg
Impr
(%)

Avg FC
Cuts (ST-
FD)

Avg FC
Cuts (ST-
FD-R)

Avg
Gap(%)
- ST-FD

Avg
Gap(%)
ST-DF-R

Avg
Gap
DEP(%)

Set1.10 3.28 146 143 2.16 2.17 2.15
Set2.10 6.92 228 261 1.09 1.24 1.30
Set3.10 3.05 293 300 1.81 1.50 2.06
Set4.10 4.40 400 420 1.02 0.98 3.34
Set5.10 3.38 360 360 2.05 2.05 2.90

Table 5.9: Performance characteristics

5.4.3 Larger Test Instances - II

In this section, we present the computational results for KI.30.40 instances. As

per the nomenclature, these instances have 30 first-stage variables and 40 second-

stage variables. The DEP instance characteristics are given in table 5.10.

Instance Scens Bvars Ivars Constr Nzeros

Set1.30 KI.30.40.25 25 20 1,000 510 15,100
Set2.30 KI.30.40.50 50 20 2,000 1,010 30,100
Set3.30 KI.30.40.100 100 20 4,000 2,010 60,100
Set4.30 KI.30.40.150 150 20 6,000 3,010 90,100
Set5.30 KI.30.40.200 200 20 8,000 4,010 120,100

Table 5.10: DEP instance characteristics
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Figure 5.10: Gap percentage for Set1.30, Set2.30, and Set3.30

Figure 5.11: Improvement for MIPs solve using ST-FD-R (Set1.30, Set2.30, Set3.30)

Five instances are randomly generated for each set. Figure 5.10 shows the gap

from ST-FD algorithm with and without using ISG procedure, and MIP gap from

DEP. Set1.30 instances are numbered from one to five, followed by Set2.30 instances
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from six to ten, and so on. Figure 5.11 depicts the percentage of improvement in

the total number of MIPs solved by ST-FD-R and ST-FD. The results indicate that

ST-FD-R is consistently able to solve more MIPs in FCG procedure. Figure 5.12

depicts the total number of Fenchel cuts generated by ST-FD and ST-FD-R. The

total number of Fenchel cuts generated by ST-FD-R and ST-FD-R is almost identical

for sets Set1.30, Set2.30 and Set3.30.

Figure 5.12: Number of Fenchel cuts for Set1.30, Set2.30, and Set3.30

5.4.4 L1 vs L2 Normalization

In this section, we report the computational results for larger instances Set4.30

and Set5.30 using L1 and L2 normalizations. We solve a LP and a quadratic program

in FCG procedure with L1 and L2-normalizations, respectively. An L1-normalization,

Πβ = {β ∈ Rn2
+ : 0 ≤ β ≤ 1,

∑
β ≤ 1} is expected to provide a better choice in
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terms of solution time. However, an L2 unit sphere,

Πβ = {β ∈ Rn2
+ : 0 ≤ β ≤ 1,

∑
i β

2
i ≤ 1} is expected to provide faster convergence in

FCG procedure.

Figure 5.13: Gap percentage for Set4.30 and Set5.30

Figure 5.14: Number of Fenchel cuts for Set4.30 and Set5.30
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Figure 5.13 depicts the gap for ST-FD and ST-FD-R algorithms using L1 and

L2 normalizations. Except for few instances, both ST-FD and ST-FD-R perform

better than DEP. Figure 5.14 depicts the total number of Fenchel cuts generated

by ST-FD and ST-FD-R algorithms using L1 and L2 normalizations. ST-FD-R

under L2 normalization generates maximum number of Fenchel cuts, and ST-FD

using L1 normalization generates minimum number of Fenchel cuts. As expected,

L2 normalization provides better convergence in FCG.

Figure 5.15 depicts the ratio for the number of MIPs solved in ST-FD and ST-

FD-R using L1 and L2 normalizations. The ST-FD algorithm with L2 normalization

solves lesser number of MIPs for the generation of Fenchel cuts, hence it is used as

a benchmark. The ratio is the number of MIPs generated by each algorithm to the

number of MIPs generated by ST-FD using L2 normalization. ST-FD-R algorithm

using L1 has the highest ratio, and this indicates that more MIPs are solved by

ST-FD-R during the stipulated runtime.

Figure 5.15: Ratio of MIPs solved for Set4.30 and Set5.30
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Tables 5.11 and 5.12 represent the average performance characteristics of ST-FD,

ST-FD-R and DEP using L1 and L2 normalizations, respectively. The columns are

explained as follows, ‘Avg M/F’ is the average number of MIPs solved for generating

a Fenchel cut using ST-FD, ‘Avg M/F-R’ is the average number of MIPs solved for

generating a Fenchel cut using ST-FD-R, and other columns are as explained for

Table 5.9.

Scenarios Avg
Impr
(%)

Avg FC
Cuts
(ST-
FD)

Avg FC
Cuts
(ST-
FD-R)

Avg
Gap(%)
- ST-
FD

Avg
Gap(%)
ST-FD-
R

Avg
Gap
DEP(%)

Avg
M/F

Avg
M/F-
R

Set1.30 21.64 63.00 71.40 2.07 0.90 1.06 117.68 122.57
Set2.30 10.46 166.40 177.20 1.54 1.67 1.17 93.06 94.54
Set3.30 6.53 83.60 87.40 0.87 0.87 1.17 148.69 151.53
Set4.30 83.37 113.00 202.00 0.81 0.89 1.18 134.63 140.33
Set5.30 103.27 110.20 220.20 0.88 0.74 1.13 133.29 135.46

Table 5.11: Performance characteristics - using L1 norm

ST-FD and ST-FD-R have better average gap compared to the gap of DEP

instances for most of the sets. The average number of MIPs solved for generating

a Fenchel cut is slightly higher for ST-FD-R procedure compared to ST-FD. This

indicates that ST-FD-R uses a greater number of iterations for convergence in FCG.

However, the average gap % indicates that ST-FD-R has a better gap compared to

ST-FD.

Table 5.12 indicates that the average number of MIPs solved for generating

Fenchel cuts using ST-FD and ST-FD-R algorithms is almost identical. However, the

results for Set4.30 and Set5.30 in Table 5.11 indicate that a Fenchel cut is generated
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Scenarios Avg
Impr
(%)

Avg FC
Cuts
(ST-
FD)

Avg FC
Cuts
(ST-
FD-R)

Avg
Gap(%)
- ST-
FD

Avg
Gap(%)
ST-FD-
R

Avg
Gap
DEP(%)

Avg
M/F

Avg
M/F-
R

Set4.30 58.14 182.60 285.60 1.45 0.94 1.18 50.11 51.62
Set5.30 68.05 188.00 304.40 0.74 0.70 1.13 48.52 50.43

Table 5.12: Performance characteristics - using L2 norm

with lesser number of MIPs using L2 normalization.

5.5 Conclusion

We presented a new procedure to obtain a reduced set of integer points for

FCG for generating a Fenchel cutting plane. We illustrated the validity of the

procedure using IPs, and the limitations of the procedure by MIPLIB instances.

Furthermore, the methodology is extended to two-stage SIP2s with general integer

variables in the second-stage. The results exhibit the computational advantages by

the new methodology. Even though the new methodology takes more iterations

for convergence in FCG procedure, it is able to solve MIPs quickly. Finally, we

compared L1 and L2 normalizations for FCG procedure. Despite of solving quadratic

programs for L2 normalization, it provides a faster convergence in FCG. In the future,

computational instances for second-stage formulation can be generated as described

in [78], [77] and [66]. This will be useful to observe the ability of ISG to reduce the

gap between lower and upper bounds of ST-FD algorithm.
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6. CONCLUSIONS AND FUTURE WORK

6.1 Summary

Stochastic programming is an important field within mathematical programming

and deals with finding optimal solutions to mathematical programs with uncertain

data. In the last decade, due to the advent of computing power, the field has been

getting a lot of attention from the researchers. This dissertation develops theory

and a methodology based on Fenchel cutting planes for SIPs with binary or general

integer variables in the second stage. Computational experiments demonstrate the

scalability of the proposed methods.

In SIP, Fenchel cutting planes are used for recovering (at least partially) the con-

vex hull of integer points for the subproblems. Fenchel cutting planes are developed

for SIP with binary variables in second-stage based on the theory developed in [73]. A

computational study is performed based on randomly generated instances. The ST-

FD algorithm is consistently able to outperform DEP runs. Also, the performance

of ST-FD algorithm is tested using instances from the literature. SFP algorithm is

introduced and used instead of L-shaped algorithm to obtain initial solution, and

this new approach for ST-FD algorithm outperforms the DEP runs. This shows the

importance of using a good starting point algorithm in Benders’ framework.

One important application we study is the stochastic auto-carrier loading problem

(SACP). This may be the first time that an SIP model has been considered for the

auto-carrier loading problem. SACP involves the supply chain of vehicle delivery

from the auto-manufacturers to the end customers. Our SIP model for SACP focuses

on tactical planning regarding the number and type of auto-carriers required based

on the random availability of vehicle types. We use the actual dimensions of vehicle
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types and auto-carriers in our mathematical model. A preliminary computational

study for SACP problem exhibits the scalability of ST-FD algorithm for real world

problems. Similarly, higher VSS values justifies the importance of using stochastic

information for real world auto-carrier loading problems.

We explore Fenchel cuts for IPs with general integer variables and develop theory

and a methodology for generating a reduced set of integer points for computing

a Fenchel cutting plane. The methodology is validated using computational ex-

periments and is within the ST-FD framework to solve SIP2 with general integer

variables in the second-stage. Preliminary computational experiments show that the

new methodology is able to solve more MIPs during the stipulated runtime. The

new methodology also generates more Fenchel cutting planes compared to ST-FD.

In terms of normalizations, the L2 norm is able to generate the most number of

Fenchel cutting planes using FCG. Though quadratic programming models are to

be solved for the L2 norm, it provides better convergence as compared to the L1

normalization.

6.2 Future Work

For two-stage SIP2 with binary variables in the second-stage with special struc-

ture, the ST-FD algorithm obtained better percentage gaps compared to the DEP.

As future work, algorithm can be extended to problems with general integer variables

in the first-stage. Even though the Fenchel cuts are computationally expensive to

generate, ST-FD algorithm exhibited better performance for problems with special

structure. Combining the idea of disjunctive cuts in disjunctive decomposition (D2)

algorithm introduced in [92] with the Fenchel cuts is a potential extension of the

new method. Fenchel cuts provide deeper cuts but are computationally expensive.

Hence, in the future, the D2 algorithm can be embedded within the ST-FD algorithm

to allow for generating a Fenchel cut for one scenario, and then extrapolating it to
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other scenarios.

The delivery of vehicles to the dealers is a costly affair, and considering stochastic

information in tactical planning leverages higher monetary benefits. Extension to

SACP is to include the capacity planning of auto-carriers for auto-logistic companies

(ALCs). Auto-carriers are huge investments for ALCs, and they are available in

various capabilities and capacities. It is an important asset and strategic decision for

ALCs to invest in auto-carriers. Based on the stochastic information on vehicle types

and future demand, SIP is a suitable tool for such a decision making process. In the

current SACP computational study, IPs for FCG are quickly solved, but FCG took

many iterations to generate a Fenchel cut. Hence, in the future any additional effort

to speed up the convergence may provide improvement in runtime performance.

In this dissertation, theory and methodology are derived for SIP2 with general

integer variables in the second-stage, and then the methodology is verified by com-

putational experiments. For larger instances, ST-FD with ISG is able to generate

more Fenchel cuts compared to ST-FD without ISG procedure. There is still room

to improve the theory and computational study. Another possible extension to the

theory is to derive a methodology to enumerate the integer points in the convex hull

of subproblem for FCG based on the reduced set generated by ISG. Finally, another

potential extension is to use BAB scheme along with Fenchel cutting planes for SIP2

with general integer variables.
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COMPUTATIONAL RESULTS - ST-FD

ST-FD Algorithm CPLEX
No. Instance LB UB FD Cuts %FD %Gap C %Gap
1 K.10.20.25a -131.70 -131.70 350 73.93 0 1.56
2 K.10.20.25b -126.13 -126.13 889 80.17 0 1.06
3 K.10.20.25c -128.14 -128.14 740 75.01 0 0.70
4 K.10.20.25d -129.82 -129.82 625 80.01 0 0.92
5 K.10.20.25e -130.65 -130.65 650 80.75 0 0.71

Average 651 77.97 0 0.99
6 K.10.20.50a -88.83 -88.83 4,195 76.07 0 5.26
7 K.10.20.50b -90.38 -90.38 5,550 66.04 0 4.03
8 K.10.20.50c -81.75 -81.75 6,720 66.44 0 4.35
9 K.10.20.50d -81.02 -81.02 2,944 66.49 0 5.05
10 K.10.20.50e -87.31 -87.31 5,166 62.65 0 5.82

Average 4,915 67.54 0 4.90
11 K.10.20.100a -60.66 -58.71 10,469 66.34 3.32 7.64
12 K.10.20.100b -64.77 -61.95 12,097 64.66 4.55 6.58
13 K.10.20.100c -59.27 -56.63 12,785 58.88 4.66 5.36
14 K.10.20.100d -57.67 -56.14 10,242 74.56 2.73 8.34
15 K.10.20.100e -59.33 -56.21 10,635 62.55 5.55 7.05

Average 11,246 65.40 4.16 6.99
16 K.10.20.150a -54.94 -53.52 13,200 64.46 2.65 4.87
17 K.10.20.150b -51.77 -51.41 11,935 61.55 0.70 11.07
18 K.10.20.150c -55.03 -53.01 11,111 82.52 3.81 10.53
19 K.10.20.150d -48.31 -46.63 11,264 79.07 3.60 11.09
20 K.10.20.150e -53.17 -50.30 12,674 67.96 5.71 6.71

Average 12,037 71.11 3.29 8.85
21 K.10.20.200a -51.29 -48.55 13,183 65.47 5.64 8.66
22 K.10.20.200b -50.21 -48.39 12,727 86.69 3.76 9.58
23 K.10.20.200c -50.36 -49.31 10,600 86.90 2.14 11.74
24 K.10.20.200d -51.21 -51.17 12,892 70.59 0.08 10.94
25 K.10.20.200e -49.49 -48.04 13,181 85.16 3.02 8.47

Average 12,517 78.96 2.93 9.88

Table A.1: Set 1 Computational results
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ST-FD Algorithm CPLEX
No. Instance LB UB FD Cuts %FD %Gap C %Gap
1 K.20.30.25a -142.13 -142.13 1,156 76.82 0 1.70
2 K.20.30.25b -141.23 -141.23 1,150 64.85 0 2.95
3 K.20.30.25c -138.81 -138.81 850 65.75 0 1.81
4 K.20.30.25d -136.65 -136.65 1,775 69.90 0 1.79
5 K.20.30.25e -141.71 -141.71 2678 65.24 0 1.99

Average 1,522 68.51 0 2.05
6 K.20.30.50a -92.43 -92.43 5,953 61.98 0 3.09
7 K.20.30.50b -90.57 -88.39 7,195 68.81 2.47 5.16
8 K.20.30.50c -89.35 -89.35 5,850 62.88 0 2.93
9 K.20.30.50d -93.30 -90.84 7,700 82.63 2.71 3.95
10 K.20.30.50e -90.45 -90.45 5,700 61.63 0 4.68

Average 6,480 67.59 1.03 3.96
11 K.20.30.100a -69.40 -67.17 8,000 80.55 3.32 6.66
12 K.20.30.100b -59.88 -58.76 7,585 84.60 1.91 6.94
13 K.20.30.100c -65.66 -62.81 10,734 69.14 4.54 5.34
14 K.20.30.100d -64.34 -62.72 7,982 85.43 2.58 5.72
15 K.20.30.100e -60.28 -58.60 7,535 82.81 2.87 7.34

Average 8,367 80.51 3.04 6.40
16 K.20.30.150a -59.78 -56.70 8,700 69.50 5.43 8.76
17 K.20.30.150b -58.46 -56.34 8,231 88.67 3.76 10.57
18 K.20.30.150c -57.58 -54.88 7,800 87.87 4.92 9.53
19 K.20.30.150d -55.42 -53.25 8,247 78.83 4.08 11.42
20 K.20.30.150e -58.82 -56.44 8,366 73.38 4.22 8.00

Average 8,269 79.65 4.48 9.66
21 K.20.30.200a -53.83 -51.48 8,570 79.11 4.56 10.18
22 K.20.30.200b -51.70 -49.70 9,000 83.68 4.02 11.68
23 K.20.30.200c -51.54 -49.90 9,393 82.65 3.29 10.34
24 K.20.30.200d -55.33 -52.46 8,600 85.31 5.47 11.47
25 K.20.30.200e -55.16 -52.29 8,365 82.87 5.49 12.53

Average 8,786 82.72 4.57 11.24

Table A.2: Set 2 Computational results
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ST-FD Algorithm CPLEX
No. Instance LB UB FD Cuts %FD %Gap C %Gap
1 K.30.40.25a -142.16 -142.16 2,325 78.60 0 2.21
2 K.30.40.25b -144.10 -144.10 3,250 60.21 0 3.02
3 K.30.40.25c -141.16 -141.16 3,200 70.03 0 2.77
4 K.30.40.25d -141.71 -141.71 1,400 59.18 0 1.99
5 K.30.40.25e -146.17 -146.17 5,700 59.99 0 2.68

Average 3,175 65.60 0 2.53
6 K.30.40.50a -96.25 -93.25 7,650 66.15 3.22 3.45
7 K.30.40.50b -94.07 -90.98 6,550 73.22 3.40 4.80
8 K.30.40.50c -93.38 -93.38 5,800 60.78 0 4.18
9 K.30.40.50d -95.30 -92.65 6,800 72.66 2.86 5.44
10 K.30.40.50e -98.20 -94.89 6,800 57.80 3.49 5.28

Average 6,720 66.12 2.59 4.63
11 K.30.40.100a -68.39 -64.83 6,600 63.98 5.49 9.91
12 K.30.40.100b -69.29 -67.59 6,600 88.68 2.51 5.87
13 K.30.40.100c -64.26 -63.08 7,500 70.43 1.88 6.85
14 K.30.40.100d -67.31 -64.52 6,800 86.12 4.32 7.73
15 K.30.40.100e -67.19 -63.93 6,900 73.55 5.10 7.25

Average 6,880 76.55 3.86 7.52
16 K.30.40.150a -63.63 -59.78 8,530 84.77 6.44 10.73
17 K.30.40.150b -63.01 -59.56 7,200 82.14 5.79 9.66
18 K.30.40.150c -61.13 -58.41 7,200 89.53 4.66 9.97
19 K.30.40.150d -62.88 -58.09 7,950 67.74 8.25 10.26
20 K.30.40.150e -60.41 -58.20 6,750 78.86 3.80 7.90

Average 7,526 80.61 5.79 9.70
21 K.30.40.200a -59.19 -55.69 6,800 89.03 6.28 10.89
22 K.30.40.200b -59.40 -56.01 7,600 72.00 6.05 11.48
23 K.30.40.200c -53.33 -51.49 7,600 81.32 3.57 9.85
24 K.30.40.200d -56.46 -53.82 6,991 84.42 4.91 9.76
25 K.30.40.200e -57.13 -54.48 6,600 86.82 4.86 11.80

Average 7,118 82.72 5.14 10.76

Table A.3: Set 3 Computational results
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ST-FD Algorithm CPLEX
No. Instance LB UB FD Cuts %FD %Gap C %Gap
1 K.40.50.25a -147.33 -143.50 5,175 57.68 2.67 3.29
2 K.40.50.25b -149.68 -145.69 5,750 83.57 2.74 3.01
3 K.40.50.25c -146.17 -146.17 5,050 55.90 0 1.85
4 K.40.50.25d -146.70 -144.56 5,925 65.91 1.48 1.67
5 K.40.50.25e -147.34 -147.34 4,975 58.44 0 2.16

Average 5,375 64.30 1.38 2.40
6 K.40.50.50a -97.30 -94.23 5,950 81.21 3.26 4.96
7 K.40.50.50b -95.79 -93.29 5,550 84.62 2.68 4.98
8 K.40.50.50c -99.68 -95.70 6,350 59.94 4.16 4.50
9 K.40.50.50d -99.68 -96.07 5,900 82.22 3.76 5.49
10 K.40.50.50e -96.50 -93.60 5,400 85.65 3.10 5.79

Average 5,830 78.73 3.39 5.14
11 K.40.50.100a -70.01 -66.84 6,600 75.51 4.74 7.72
12 K.40.50.100b -69.48 -66.32 5,900 73.53 4.76 8.26
13 K.40.50.100c -71.21 -67.50 6,100 89.03 5.50 7.05
14 K.40.50.100d -70.39 -66.89 6,300 74.76 5.23 6.89
15 K.40.50.100e -68.91 -66.56 6,000 91.19 3.53 7.04

Average 6,180 80.81 4.75 7.39
16 K.40.50.150a -60.61 -57.86 6,000 88.33 4.75 9.42
17 K.40.50.150b -62.93 -59.65 5,850 81.39 5.50 9.41
18 K.40.50.150c -63.87 -60.30 6,300 77.91 5.92 10.44
19 K.40.50.150d -61.17 -58.17 5,700 82.50 5.16 8.81
20 K.40.50.150e -65.37 -61.45 6,750 88.47 6.38 9.54

Average 6,120 83.72 5.54 9.52
21 K.40.50.200a -61.04 -57.46 6,800 87.20 6.23 11.01
22 K.40.50.200b -60.11 -56.99 6,600 88.89 5.47 12.07
23 K.40.50.200c -59.45 -56.52 6,400 88.56 5.18 11.52
24 K.40.50.200d -59.21 -56.14 6,400 88.99 5.47 11.22
25 K.40.50.200e -58.48 -55.55 6,200 89.43 5.27 12.19

Average 6,480 88.62 5.53 11.60

Table A.4: Set 4 Computational results
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ST-FD Algorithm CPLEX
No. Instance LB UB FD Cuts %FD %Gap C %Gap
1 SSLP.5.25.50a -79.86 -79.86 5 5.47 0 0
2 SSLP.5.25.50b -134.24 -134.24 13 8.84 0 0
3 SSLP.5.25.50c -117.08 -117.08 0 0.41 0 0
4 SSLP.5.25.50d -112.98 -112.98 3 0.44 0 0
5 SSLP.5.25.50e -110.42 -110.42 10 0.11 0 0

Average 6 3.05 0 0
6 SSLP.5.25.100a -90.75 -90.75 65 10.67 0 0
7 SSLP.5.25.100b -131.03 -131.03 26 12.31 0 0
8 SSLP.5.25.100c -117.37 -117.37 1 0.03 0 0
9 SSLP.5.25.100d -122.48 -122.48 6 5.30 0 0
10 SSLP.5.25.100e -109.65 -109.65 10 7.30 0 0

Average 22 7.12 0 0
11 SSLP.10.50.50a -344.54 -344.54 247 11.52 0 0
12 SSLP.10.50.50b -330.88 -330.88 161 7.37 0 0
13 SSLP.10.50.50c -343.22 -343.22 300 19.15 0 0
14 SSLP.10.50.50d -327.80 -327.80 229 15.70 0 0
15 SSLP.10.50.50e -313.54 -313.54 264 12.03 0 0

Average 240 13.15 0 0
16 SSLP.10.50.100a -338.56 -338.56 465 12.20 0 0
17 SSLP.10.50.100b -347.88 -347.88 385 9.12 0 0
18 SSLP.10.50.100c -333.32 -333.32 492 14.34 0 0
19 SSLP.10.50.100d -338.59 -338.59 486 15.68 0 0
20 SSLP.10.50.100e -307.98 -307.98 523 14.05 0 0

Average 470 13.08 0 0
21 SSLP.10.50.500a -410.38 -322.19 4,758 39.65 27.37 6.57
22 SSLP.10.50.500b -410.06 -318.43 4,862 34.14 28.78 0
23 SSLP.10.50.500c -378.10 -296.15 3,814 29.65 27.67 0
24 SSLP.10.50.500d -389.47 -288.62 3,319 24.10 34.94 0
25 SSLP.10.50.500e -370.69 -285.63 4,134 41.80 29.78 14.02

Average 4,177 33.87 29.71 4.12

Table A.5: Computational results SSLP instance - I
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ST-FD Algorithm CPLEX
No. Instance LB UB FD Cuts %FD %Gap C %Gap
26 SSLP.10.50.1000a -447.11 -343.54 5,512 38.41 30.15 6.93
27 SSLP.10.50.1000b -434.68 -344.30 5,852 38.06 26.25 0.54
28 SSLP.10.50.1000c -409.12 -332.69 6,205 39.60 22.97 13.53
29 SSLP.10.50.1000d -418.33 -328.13 5,585 39.94 27.49 0.60
30 SSLP.10.50.1000e -392.08 -292.47 5,644 37.66 34.06 15.39

Average 5,760 38.74 28.18 7.40
31 SSLP.10.50.2000a -475.58 -267.68 5,236 36.65 77.67 23.83
32 SSLP.10.50.2000b -471.24 -267.03 5,822 37.18 76.47 24.29
33 SSLP.10.50.2000c -453.75 -251.25 7,290 41.98 80.60 64.66
34 SSLP.10.50.2000d -460.25 -253.99 5,506 36.19 81.21 15.94
35 SSLP.10.50.2000e -442.52 -238.37 6,999 40.99 85.64 25.18

Average 6,171 38.60 80.32 30.78
36 SSLP.15.45.5a -236.38 -231.20 4,060 64.02 2.24 0
37 SSLP.15.45.5b -230.60 -230.60 3,660 62.58 0 0
38 SSLP.15.45.5c -215.63 -208.80 3,765 68.67 3.27 0
39 SSLP.15.45.5d -202.60 -196.40 4,014 71.78 3.16 0
40 SSLP.15.45.5e -219.62 -212.40 4,995 78.81 3.40 0

Average 4,099 69.17 2.41 0
41 SSLP.15.45.20a -206.15 -206.15 1,416 26.08 0 0
42 SSLP.15.45.20b -256.70 -256.70 190 6.73 0 0
43 SSLP.15.45.20c -245.33 -239.80 1,156 44.32 2.31 0
44 SSLP.15.45.20d -263.05 -263.05 147 5.62 0 0.16
45 SSLP.15.45.20e -267.05 -262.55 354 18.67 1.71 0

Average 653 20.28 0.80 0.03

Table A.6: Computational results SSLP instance - II
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ST-FD Algorithm ST-FD-R Algorithm CPLEX
No. Instance LB UB FD Cuts %Gap # MIPs LB UB FD Cuts %Gap # MIPs C %Gap
1 KI.10.20.25a 0 0 0 0 0 0 0 0 0 0 0
2 KI.10.20.25b 0 0 50 0 1,988 0 0 50 0 2,034 3.23
3 KI.10.20.25c -286.17 -284.63 296 0.54 16,510 -286.22 -284.63 296 0.55 16,913 0.77
4 KI.10.20.25d -234.09 -230.33 150 1.61 16,055 -234.09 -230.33 150 1.61 16,338 1.37
5 KI.10.20.25e -305.39 -302.44 125 0.97 11,511 -305.39 -302.44 125 0.97 11,996 1.48

Average 124 0.62 9,212 124 0.63 9,456 1.37
6 KI.10.20.50a -415.52 -413.38 300 0.52 21,505 -415.32 -413.21 350 0.51 26,911 1.08
7 KI.10.20.50b -486.00 -483.33 200 0.55 13,727 -486.00 -483.33 200 0.55 14,376 0.71
8 KI.10.20.50c -254.44 -250.81 200 1.43 19,534 -488.20 -484.54 300 0.75 22,402 1.08
9 KI.10.20.50d -392.05 -389.14 150 0.74 12,074 -392.08 -389.14 150 0.75 12,547 0
10 KI.10.20.50e -318.00 -315.46 200 0.80 18,007 -318.01 -315.46 200 0.80 18,546 1.46

Average 210 0.81 16,969 240 0.67 18,956 0.87
11 KI.10.20.100a -488.20 -484.39 300 0.78 31,150 -488.20 -484.54 300 0.75 32,004 1.08
12 KI.10.20.100b -388.95 -385.79 300 0.81 27,464 -388.95 -385.79 300 0.81 28,409 0.92
13 KI.10.20.100c -415.31 -411.76 300 0.86 29,949 -415.31 -411.76 300 0.86 30,652 0.99
14 KI.10.20.100d -440.42 -436.61 400 0.86 27,159 -440.42 -436.61 400 0.86 27,886 1.86
15 KI.10.20.100e -288.39 -285.84 300 0.89 25,779 -288.39 -285.84 300 0.88 26,461 1.43

Average 320 0.83 28,300 320 0.84 29,082 1.26
16 KI.10.20.150a -5.56 -5.56 300 0 4,251 -5.56 -5.56 300 0 4,284 27.40
17 KI.10.20.150b -202.44 -203.39 748 0.47 31,150 -202.44 -203.39 748 0.47 31,266 2.36
18 KI.10.20.150c -347.46 -345.82 600 0.47 35,900 -347.46 -345.82 600 0.47 38,287 0.60
19 KI.10.20.150d -162.02 -160.07 600 1.21 27,166 -161.62 -160.07 750 0.96 32,283 2.94
20 KI.10.20.150e -364.47 -360.92 300 0.97 27,848 -364.47 -360.92 300 0.97 28,934 1.30

Average 510 0.62 25,263 0.57 27,000 6.92
21 KI.10.20.200a -354.10 -354.10 400 0 17,876 -354.10 -354.10 400 0 18,525 2.12
22 KI.10.20.200b -380.50 -377.72 400 0.73 31,515 -380.50 -377.72 400 0.73 32,674 1.10
23 KI.10.20.200c -451.11 -447.08 400 0.89 40,852 -451.11 -447.08 400 0.89 41,925 0.96
24 KI.10.20.200d -247.10 -244.45 400 1.07 35,371 -247.10 -244.45 400 1.07 37,235 1.62
25 KI.10.20.200e -405.47 -400.14 400 1.31 35,720 -405.47 -400.14 400 1.31 37,115 1.56

Average 400 0.80 32,266 0.80 33,494 1.47

Table A.7: Set10.20 Computational results (using L1 norm)
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ST-FD Algorithm ST-FD-R Algorithm CPLEX
No. Instance LB UB FD Cuts %Gap # MIPs LB UB FD Cuts %Gap # MIPs C %Gap
1 KI.30.40.25a -584.11 -578.87 32 0.90 4,545 -584.11 -578.87 47 0.90 7,002 0.92
2 KI.30.40.25b -563.92 -558.99 47 0.87 6,688 -563.57 -558.99 50 0.81 7,329 1.04
3 KI.30.40.25c -501.02 -496.05 44 0.99 6,477 -501.02 -496.05 47 0.99 7,215 1.15
4 KI.30.40.25d -606.43 -601.25 32 0.85 6,287 -606.43 -601.25 38 0.85 7,662 1.00
5 KI.30.40.25e -2566.43 -2393.42 160 6.74 13,073 -2,591.59 -2,566.77 175 0.96 14,551 1.18

Average 63 2.07 7,414 71 0.90 8,751 1.06
6 KI.30.40.50a -501.14 -495.42 87 1.14 11,338 -500.88 -495.42 104 1.09 13,957 1.43
7 KI.30.40.50b -537.59 -535.06 39 0.47 7,404 -540.59 -535.06 41 1.02 7,758 1.08
8 KI.30.40.50c -714.96 -708.57 72 0.89 11,115 -712.35 -705.36 82 0.98 12,839 1.05
9 KI.30.40.50d -2,390.51 -2,372.8 291 0.74 28,228 -2,390.52 -2372.80 290 0.74 28,575 1.03
10 KI.30.40.50e -2,143.38 -2,047.66 343 4.47 19,345 -2,143.38 -2,046.44 369 4.52 21,036 1.24

Average 166 1.54 15,486 177 1.67 16,753 1.10
11 KI.30.40.100a -687.99 -683.20 43 0.70 8,251 -687.99 -683.20 46 0.70 8,814 0.84
12 KI.30.40.100b -431.61 -425.76 125 1.35 13,278 -431.61 -425.76 125 1.35 13,801 1.82
13 KI.30.40.100c -539.86 -534.59 101 0.98 13,541 -539.86 -534.58 110 0.98 15,187 1.24
14 KI.30.40.100d -787.87 -782.05 75 0.74 12,704 -786.67 -781.43 78 0.67 13,211 0.89
15 KI.30.40.100e -575.38 -571.90 74 0.60 14,378 -575.62 -571.90 78 0.65 15,204 1.05

Average 83 0.87 12,430 87 0.87 13,243 1.17
16 KI.30.40.150a -549.46 -543.14 84 1.15 11,700 -554.09 -548.49 133 1.01 18,986 1.60
17 KI.30.40.150b -712.58 -707.13 80 0.76 13,767 -712.58 -707.13 119 0.76 20,865 1.20
18 KI.30.40.150c -615.62 -617.81 114 0.36 15,011 -617.41 -617.82 214 0.06 29,736 1.09
19 KI.30.40.150d -482.34 -477.27 160 1.05 19,480 -481.93 -473.83 307 1.68 39,988 0.89
20 KI.30.40.150e -555.72 -551.73 127 0.72 16,110 -556.75 -551.70 237 0.91 32,162 1.14

Average 113 0.81 15,213 202 0.89 28,347 1.18
21 KI.30.40.200a -613.86 -609.18 116 0.76 15,618 -618.41 -612.47 226 0.96 31,011 1.01
22 KI.30.40.200b -633.17 -627.92 110 0.83 15,096 -632.70 -627.92 214 0.76 29,097 1.08
23 KI.30.40.200c -701.63 -695.56 118 0.87 16,952 -705.40 -705.94 237 0.08 35,227 0.72
24 KI.30.40.200d -527.71 -522.44 120 1.00 12,733 -527.64 -522.44 238 0.99 25,461 1.62
25 KI.30.40.200e -745.98 -739.09 87 0.92 13,046 -745.98 -739.09 186 0.92 28,347 1.22

Average 110 0.88 14,689 220 0.74 29,828 1.13

Table A.8: Set30.40 Computational results (using L1 norm)

ST-FD Algorithm ST-FD-R Algorithm CPLEX
No. Instance LB UB FD Cuts %Gap # MIPs LB UB FD Cuts %Gap # MIPs C %Gap
1 KI.30.40.150a -552.44 -549.70 141 0.50 7,356 -555.25 -549.70 183 1.00 9,739 1.60
2 KI.30.40.150b -710.71 -707.13 126 0.50 7,543 -712.10 -707.09 176 0.70 10,611 1.20
3 KI.30.40.150c -622.91 -617.81 177 0.82 9,175 -622.91 -617.81 288 0.82 15,397 1.09
4 KI.30.40.150d -482.29 -476.61 260 1.18 11,852 -481.90 -475.55 437 1.32 21,082 0.89
5 KI.30.40.150e -555.47 -531.97 209 4.23 9,820 -556.35 -551.69 344 0.84 16,886 1.14

Average 182 1.45 9,149 285 0.94 14,743 1.18
6 KI.30.40.150a -615.44 -613.16 189 0.37 8,995 -613.86 -609.22 302 0.75 14,904 1.01
7 KI.30.40.150b -633.17 -627.93 182 0.83 8,977 -632.66 -627.93 303 0.75 15,516 1.08
8 KI.30.40.150c -711.42 -707.12 200 0.60 9,893 -694.84 -696.17 339 0.19 17,558 0.72
9 KI.30.40.150d -527.48 -522.44 199 0.95 8,938 -527.63 -522.44 318 0.98 15,013 1.62
10 KI.30.40.150e -745.98 -739.10 170 0.92 8,808 -745.26 -739.09 260 0.83 13,762 1.22

Average 188 0.74 9,122 304 0.70 15,350 1.13

Table A.9: Set30.40 Computational results (using L2 norm)
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